SAS ${ }^{\circledR}$ Studio 3.3

User's Guide

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2015. SAS® Studio 3.3: User's Guide. Cary, NC: SAS Institute Inc.

SAS® Studio 3.3: User's Guide

Copyright © 2015, SAS Institute Inc., Cary, NC, USA
All rights reserved. Produced in the United States of America.
For a hard-copy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS Institute Inc.

For a web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at the time you acquire this publication.
The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the publisher is illegal and punishable by law. Please purchase only authorized electronic editions and do not participate in or encourage electronic piracy of copyrighted materials. Your support of others' rights is appreciated.
U.S. Government License Rights; Restricted Rights: The Software and its documentation is commercial computer software developed at private expense and is provided with RESTRICTED RIGHTS to the United States Government. Use, duplication or disclosure of the Software by the United States Government is subject to the license terms of this Agreement pursuant to, as applicable, FAR 12.212, DFAR 227.7202-1(a), DFAR 227.7202-3(a) and DFAR 227.7202-4 and, to the extent required under U.S. federal law, the minimum restricted rights as set out in FAR 52.227-19 (DEC 2007). If FAR 52.227-19 is applicable, this provision serves as notice under clause (c) thereof and no other notice is required to be affixed to the Software or documentation. The Government's rights in Software and documentation shall be only those set forth in this Agreement.

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513-2414.
February 2015
SAS provides a complete selection of books and electronic products to help customers use SAS® software to its fullest potential. For more information about our offerings, visit support.sas.com/bookstore or call 1-800-727-3228.

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.
Other brand and product names are trademarks of their respective companies.

Contents

Using This Book ix
What's New in SAS Studio 3.3 $x i$
Accessibility xvii
Chapter 1 • Introduction to SAS Studio 1
About SAS Studio 1
Using SAS Studio 3
Chapter 2 • Working with Programs 21
About the Code Editor 22
Opening and Creating Programs 22
Working with Code Snippets 34
Customizing the Code Editor 43
Chapter 3 • Working with Queries 47
What Is a Query? 48
Creating a Query 48
Understanding Joins 50
Selecting Data 55
Filtering Data 60
Managing Output 63
Chapter 4 • Working with Process Flows 71
Understanding Process Flows 72
Adding a SAS Program to the Process Flow 77
Adding a Query to a Process Flow 84
Add a Task to a Process Flow 86
Understanding Subflows 88
Linking Nodes in a Process Flow 91
Running a Process Flow 92
Save a Process Flow 92
Chapter 5 • Working with Data 93
About the Table Viewer 93
Opening and Viewing Data 96
Viewing the Query Code That Is Used to Create a Table 97
Filtering and Sorting Data 97
Exporting Data 100
Chapter 6 • Working with Results 103
Viewing Results 103
Sending Your Results to Another User 104
About the SAS Output Delivery System 106
About SAS ODS Statistical Graphics 106
Specifying the Style for Your Results 112
Chapter 7 • Understanding Tasks in SAS Studio 115
What Is a Task? 115
How to Run a Task 116
Save a Task and Its Option Settings 118
Edit a Predefined Task 119
Create a New Task 120
Customizing the Task Code and the Task Layout in the Workspace 122
Chapter 8 • Data Tasks 125
Characterize Data Task 126
Combinations Task 131
List Data Task 133
Permutations Task 138
Rank Data Task 140
Random Sample Task 147
Sort Data Task 153
Table Attributes Task 156
Transpose Data Task 159
Chapter 9 • Econometrics Tasks 163
Count Data Regression Task 164
Heckman Selection Model Task 170
Panel Data: Count Data Regression Task 175
Panel Data: Linear Regression 180
Binary Probit/Logit Regression Task 186
Chapter 10 • Graph Tasks 193
Bar Chart Task 195
Bar-Line Chart Task 200
Box Plot Task 206
Bubble Plot Task 210
Histogram Task 214
Line Chart Task 218
Pie Chart Task 222
Scatter Plot Task 226
Series Plot Task 231
Simple HBar Task 234
Chapter 11 • High-Performance Statistics Tasks 239
About the High-Performance Tasks 240
Bin Continuous Data Task 240
High-Performance Correlation Analysis Task 245
Generalized Linear Models 248
Replace Missing Values Task 259
Random Sampling Task 260
Chapter 12 • Combinatorics and Probability Tasks 265
Same Birthday Probability Task 266
Coin Toss Simulation Task 268
Dice Roll Simulation Task 270
Poker Hand Probability Task 272
Chapter 13 • Statistics Tasks 275
Data Exploration Task 278
Summary Statistics Task 284
Distribution Analysis Task 291
One-Way Frequencies Task 298
Correlation Analysis Task 302
Table Analysis Task 307
T Tests Task: One-Sample t Test 313
T Tests Task: Paired t Test 318
T Tests Task: Two-Sample t Test 324
One-Way ANOVA Task 330
Nonparametric One-Way ANOVA Task 337
N-Way ANOVA Task 343
Analysis of Covariance Task 348
Linear Regression Task 352
Binary Logistic Regression Task 368
Predictive Regression Model 383
Generalized Linear Models 396
Appendix 1 • Input Data Sets for Task Examples 407
About the Task Data Sets 407
FITNESS Data set 407
GETSTARTED Data Set 408
GREENE Data Set 411
IN Data Set 411
LONG97DATA Data Set 412
MROZ Data Set 431
Appendix 2 • References 449
Recommended Reading 451
Index 453

Using This Book

Audience

This book is designed for all users of SAS Studio. SAS Studio was initially released with the first maintenance release for SAS 9.4. SAS Studio 3.3 is the latest release.
x Using This Book

What's New

What's New in SAS Studio 3.3

Overview

SAS Studio 3.3 includes these new features and enhancements:

- support for the Windows operating environment in SAS Studio Basic
- new visual programming perspective, which enables you to create process flows
- new tool to create queries
- new and enhanced tasks
- new variable name and encoding options

Support for Windows Operating Environments in SAS Studio Basic

SAS Studio Basic is now supported in both Windows and UNIX operating environments. For more information, see SAS Studio: Administrator's Guide.

New Visual Programming Perspective

This new perspective enables you to create process flows. A process flow consists of one or more objects. Each object is represented by a node in the process flow. The process flow shows the relationship between two or more objects, such as a SAS program, a task, a query, and so on. For more information, see Chapter 4, "Working with Process Flows," on page 72.

New Query Feature

You can use the query feature to extract data from one or more tables according to criteria that you specify. You can create a query that is based on only one table, or you can join tables together. When you create a query, you specify the columns to include in the output, and you can filter the rows that are included based on values in the data. You can also perform a summary function on the columns in your data and sort your data by one or more columns. For more information, see Chapter 3, "Working with Queries," on page 48.

SAS Studio Tasks

New Tasks

- The new Analysis of Covariance task enables you to augment the analysis of variance model with a quantitative variable in order to reduce the variance of the error terms in the model. For more information, see "Analysis of Covariance Task" on page 348.

The new Bubble Plot task explores the relationship between three or more variables. In a bubble plot two variables determine the location of the bubble centers, and a third variable specifies the size of each bubble. For more information, see "Bubble Plot Task" on page 210.
There are six new Combinatorics and Probability tasks:
\square The new Combinations task computes the possible combinations of the total number of objects into sets with the specified number in each set. For more information, see "Combinations Task" on page 131.
\square The Same Birthday Probability task computes the probability that two or more people in a room have the same birthday. For more information, see "Same Birthday Probability Task" on page 266.
\square The Coin Toss Simulation task simulates the tossing of 10 coins and calculates the probabilities for the possible outcomes. For more information, see "Coin Toss Simulation Task" on page 268.
\square The Dice Roll Simulation task simulates the tossing of two dice and calculates the probabilities for the possible outcomes. For more information, see "Dice Roll Simulation Task" on page 270.
\square The Poker Hand Probability task calculates the frequency and probability of poker hands. For more information, see "Poker Hand Probability Task" on page 272.
\square The new Permutations task computes the possible permutations of a given number of objects. For more information, see "Permutations Task" on page 138.

- The new Generalized Linear Models task enables you to create classical linear models with normal errors, logistic and probit models for binary data, and log-linear models for multinomial data. For more information, see "Generalized Linear Models" on page 396.
- The new N-way ANOVA task performs an N-way analysis of variance. For more information, see "N-Way ANOVA Task" on page 343.
- To perform a one-sample t test, paired sample t test, or two-sample t test, use the new T Test task. For more information, see "T Tests Task: One-Sample t Test" on
page 313, "T Tests Task: Paired t Test" on page 318, and "T Tests Task: TwoSample t Test" on page 324.

Enhanced Tasks

- In the High-Performance Generalized Linear Model task, you can now specify an offset variable to use as an offset to the linear predictor. The new Dispersion parameter option enables you to specify a fixed dispersion parameter for distributions that have a dispersion parameter. For more information, see "Generalized Linear Models" on page 248.
- The One-Way ANOVA task now includes these comparison methods: Dunnett twotail, Dunnett lower one-tail, and Dunnett upper one-tail. For more information, see "One-Way ANOVA Task" on page 330.

Updates to the Custom Task Model

If you create custom tasks for your site, here are the changes to the Common Task Model (CTM) 3.3.

- The new dualselector input type creates a control that displays a list of default values for the option. However, the user can change the list of values by selecting from a list of values that appear in a separate window. The dualselector input type can use the OptionChoice element in the user interface.
- The new outputdata input type creates a text box where the user can specify the name of the output data set that is created by the task.
- The required attribute is now available for the combobox, distinct, color, and numstepper input types. Now for these input types, you can specify whether an option is required to run the task.
- For the combobox and distinct input types, the new selectMessage attribute specifies the message to display when a value is required for the combobox control, and no default value has been set. The default message is select a value.
- For the multientry input type, the new reorderable attribute specifies whether the user can reorder the values in a list.

For more information, see SAS Studio: Developer's Guide.

New Variable Name and Encoding Options

The new SAS variable name policy option enables you to specify the set of rules that you want to use for SAS variable names. The Default text encoding option specifies the character-set encoding that is used when text files are read or written. For more information, see "Setting General Preferences" on page 15.

Accessibility

For information about the accessibility of this product, see Accessibility Features of SAS Studio 3.3.

Introduction to SAS Studio

About SAS Studio 1
Using SAS Studio 3
About Using SAS Studio 3
Using the Navigation Pane 4
Using the Work Area 10
Rearranging the Tabs in the Work Area 12
Searching in SAS Studio 13
Setting General Preferences 15
Understanding Perspectives 16
Editing the Autoexec File 18
Changing Your SAS Workspace Server 19

About SAS Studio

SAS Studio is a development application for SAS that you access through your web browser. With SAS Studio, you can access your data files, libraries, and existing programs, and you can write new programs. You can also use the predefined tasks in SAS Studio to generate SAS code. When you run a program or task, SAS Studio connects to a SAS server to process the SAS code. The SAS server can be a hosted server in a cloud environment, a server in your local environment, or a copy of SAS on your local machine. After the code is processed, the results are returned to SAS Studio in your browser.

SAS Studio supports multiple web browsers, such as Microsoft Internet Explorer, Apple Safari, Mozilla Firefox, and Google Chrome.

In addition to writing and running your own SAS programs, you can use the predefined tasks that are included with SAS Studio to analyze your data. The tasks are based on SAS System procedures and provide access to some of the most commonly used graph and analytical procedures. You can also use the default task template to write your own tasks.

SAS Studio includes two different perspectives: the SAS Programmer perspective and the Visual Programmer perspective. A perspective is a predetermined set of features that is customized to meet the needs of a specific user type. By selecting a specific perspective, you can narrow the choices that are available in the interface and focus on the features that you need to use regularly. By default, when you open SAS Studio, the SAS Programmer perspective is selected. After you open SAS Studio, you can change the perspective by using the perspectives menu on the toolbar. For more information, see "Understanding Perspectives" on page 16.

Using SAS Studio

About Using SAS Studio

When you sign on to SAS Studio, the main SAS Studio window appears with a blank program window so that you can start programming immediately. You also have access to all five sections of the navigation pane.

Note: To sign out of SAS Studio, click the Sign Out button on the toolbar. Do not use the Back button on your web browser.

The main window of SAS Studio consists of a navigation pane on the left and a work area on the right. The navigation pane provides access to your folder shortcuts and
folders, your tasks and snippets, the libraries that you have access to, and your file shortcuts. The Folders section is displayed by default.

The work area is used to display your data, code, tasks, logs, and results. As you open these items, they are added to the work area as windows in a tabbed interface.

Using the Navigation Pane

About Using the Navigation Pane

You can expand the sections of the navigation pane by clicking the section that you want to view.

Working with Folders

The Folders section of the navigation pane enables you to access files and folders from the following locations:

- your SAS server
- any remote FTP server on which you have an account

Note: SAS Studio supports only FTP servers that use a UNIX style directory listing. Filenames in Asian languages are not supported on the FTP servers.

The type of SAS Studio deployment you are using determines the folders and files you can access from the Folders section and the locations to which you can assign libraries.

- If you are running the SAS Studio Mid-Tier (the enterprise edition) deployment, then your My Folders location is your home directory on the remote SAS server.
- If you are running the SAS Studio Basic deployment, then your My Folders location is your home directory on the remote SAS server. The folders list also includes the root folder of the UNIX file system on the remote SAS server.
- If you are running the SAS Studio Single-User deployment, then your SAS server is your local machine. Your My Folders location is your home directory on your local machine. The folders list also includes folders for your desktop, documents folder, and all currently mapped drives.

For more information, see SAS Studio: Administrator's Guide.

You can open files that are saved on the SAS server or the FTP server, such as SAS program files or program package files. You can also open SAS tables that are saved on the SAS server.

Note: You cannot open SAS tables from a remote FTP server.
You can use the Folders section to create folders and folder shortcuts, download and upload files, and create a new SAS program. From the folders tree, you can expand and collapse folders and open items in folders by double-clicking them or dragging them to the work area.

Note: Files and folders that are located on an FTP server and are accessible by using an FTP shortcut cannot contain any of the following characters in their names:

SAS Studio cannot access, move, rename, or delete files and folders on an FTP server whose names contain invalid characters.

To create a new folder shortcut:
1 Click Folders in the navigation pane. Then click [${ }^{\text {B }}$ and select Folder Shortcut. The New Folder Shortcut window opens.

2 In the Name box, enter the name of the folder.
3 From the Folder Type drop-down list, specify whether the shortcut refers to a SAS server folder or an FTP folder.

4 If you are creating a shortcut to a SAS server folder, enter the physical path for the directory in the Directory box.

If you are creating a shortcut to an FTP folder, enter the network address of the FTP host in the Host Name box as well as your user name and password. By default, the directory is the home directory of the FTP user. You can use the Directory box to specify another directory that is relative to the home directory. For example, if the home directory of the FTP user is c: \homedir, and you specify data in the Directory box, then the root directory of the shortcut is $c: \backslash$ homedir \backslash data on the FTP server. You can validate your connection to the FTP server by clicking Test.

Note: If your mid-tier and FTP servers are running different operating systems, you must fully qualify the name of the FTP host in the Host Name box. If this name is not fully qualified, then the connection might fail.

New Folder Shortcut				\times
Name:	FTPshortcut			
Folder Type:	FTP Folder		-	
Host Name:	ftpserver			
User ID:	myuser			
Password:	-•••••••			
Directory:				
	Test			
		Save		

5 Click Save to create the folder shortcut. The new shortcut is added to the list of folder shortcuts.

To create a new folder, select the folder in the Folders section in which you want to
 Enter the name of the new folder. The new folder is added to the list of folders.

To download a file, select the file that you want to download and click You are prompted to open the file in the default application or save it to your local computer.

To upload one or more files from your local computer, select the folder to which you want to upload the files and click 个 The Upload Files window opens. Click Choose Files to browse for the files that you want to upload.

Working with Tasks

The Tasks section of the navigation pane enables you to access tasks in SAS Studio. Tasks are based on SAS procedures and generate SAS code and formatted results for you. SAS Studio is shipped with several predefined tasks that you can run. You can also edit a copy of these predefined tasks, and you can create your own new tasks.

To create a new task, click SAS Studio creates a template in the work area that you can use to create custom tasks for your site. Custom tasks can be accessed from the My Tasks folder. For more information, see Chapter 7, "Understanding Tasks in SAS Studio," on page 115.

To edit a task that you have created, select the task from the My Tasks folder and click

区
The XML code that is used to create the task is opened in the work area. If you want to edit a predefined task, you must first right-click the task and select Add to My Tasks. For more information, see "Edit a Predefined Task" on page 119.

Note: You can edit only the tasks that are in the My Tasks folder.

Working with Snippets

The Snippets section of the navigation pane enables you to access your code snippets. Code snippets are samples of commonly used SAS code that you can insert into your SAS program. SAS Studio is shipped with several predefined code snippets that you can use. You can also edit a copy of these snippets and create your own custom snippets. Your custom snippets can be accessed from the My Snippets folder. For more information, see Chapter 2, "Working with Programs," on page 22.

To edit a snippet that you have created, select the snippet from the My Snippets folder and click . If you want to edit a predefined snippet, you must first right-click the snippet and select Add to My Snippets.

Note: You can edit only the snippets that are in the My Snippets folder.

Working with Libraries

The Libraries section of the navigation pane enables you to access your SAS libraries. SAS tables are stored in SAS libraries. From the Libraries section, you can open SAS tables and add them to your programs. You can use the Libraries section to expand a
table and view the columns in that table. The icon in front of the column name indicates the type.

Here are examples of common icons for the column types.
Icon Type of Column

Character

Numeric

Date
䛴
Datetime

You can drag tables and columns from the Libraries section to a program, and SAS Studio adds code for the dragged items to your program. For more information, see "Opening and Creating Programs" on page 22.

You can also create new libraries and assign existing libraries.
To create a new library:
1 Click Libraries in the navigation pane and then click 7. The New Library window appears.

New Library

To create a library for this session, specify these values:
Name:
Libref
Path:

Options:

LIBNAME options (separated by spaces)
Re-create this library at start-up
(adds the library to the SAS autoexec file)

Cancel

2 In the Name box, enter the libref for the library. The libref must be eight characters or fewer.

3 In the Path box, enter the physical path where the library resides.
4 In the Options box, specify any configuration options that you need. For the appropriate options, see the documentation for your operating environment.

5 If you want to access this library each time you use SAS Studio, select Re-create this library at start-up.

6 Click OK to create the library. The new library is added to the list of libraries in the navigation pane.

To assign unassigned libraries, click 香. If you want to access the selected libraries each time you use SAS Studio, select Assign selected libraries at start-up. If a library is unassigned, then you cannot access the tables in that library.

Using File Shortcuts

File shortcuts enable you to quickly access files that you specify. You can create a file shortcut to a file on your SAS server, via a URL, or on your FTP server.

Note：You can create a file shortcut to a file on an FTP server only if you have created a folder shortcut to an FTP folder．

To create a new file shortcut，click $⿴ 囗 ⿱ 一 乂$ ．You can define the shortcut by specifying a complete path and filename or by specifying a URL．If you want this shortcut to be available the next time you use SAS Studio，select Re－create this file shortcut at start－up．

You can open a file from a file shortcut by double－clicking it or dragging it to the work area．

Customizing the Navigation Pane

By default，all five sections of the navigation pane are displayed when you open SAS Studio．To customize which sections are displayed，click $\overline{\bar{\cdots}}$ and select View．Select or clear any sections that you want to add or remove．The navigation pane is updated immediately．

Using the Work Area

About Using the Work Area

The work area is the main portion of the SAS Studio application for accessing programs and tasks and for viewing data．The work area is always displayed and cannot be minimized．When you open a program，task，or table，the windows open as new tabs in the work area．The code，log，and results that are associated with programs and tasks are grouped together under the main tab for the program or task．

Customizing the Work Area

By default, the work area is displayed beside the navigation pane, but you can maximize the work area and hide the navigation pane. You can also close all of the tabs in the work area at once.

To maximize the work area, click 표 and select Maximize View.
Note: To reopen the navigation pane, click $\#$ and select Exit Maximized View.

To close all tabs that are open in the work area, click 표 and select Close All Tabs. You are prompted to save any unsaved programs or tasks.

Rearranging the Tabs in the Work Area

In the work area, you can rearrange the tabs by using a drag-and-drop operation to move them to the left or right. You can also dock a tab on the right side or bottom of the work area to view more than one tab at a time.

To rearrange a tab:
1 Select the tab that you want to move.
2 Move the tab icon to the location where you want to view this content. The icon indicates a valid location.

CODE LOG	RESULTS						
* (1) リー 日 区 [［（\％）¢\％光	旦		B	K		
							\wedge
1 proc print data＝sashelp．class；	Obs	Name	Sex	Age	Height	Weight	
2 run；	1	Alfred	M	14	69.0	112.5	
3	2	Alice	F	13	56.5	84.0	
	3	Barbara	F	13	65.3	98.0	
	4	Carol	F	14	62.8	102.5	
	5	Henry	M	14	63.5	102.5	
	6	James	M	12	57.3	83.0	
	7	Jane	F	12	59.8	84.5	
	8	Janet	F	15	62.5	112.5	
	9	Jeffrey	M	13	62.5	84.0	
	10	John	M	12	59.0	99.5	
	11	Joyce	F	11	51.3	50.5	
Line 3，Column 1	12	Judy	F	14	64.3	90.0	\checkmark

Note：The Results tab in Program 2 has also been moved to the right side of the program tab．

Searching in SAS Studio

You can use the Search feature to search all of the sections of the navigation pane．The types of items that you can search for depend on what is selected in the navigation pane．For example，if a folder or folder shortcut in the Folders section is selected，you can search for folders and files，and you can choose whether to include subfolders in the search．If a task category in the Tasks section is selected，you can search for task names，associated SAS procedures，and task descriptions．

To access the Search feature, click The search box opens so that you can enter the text that you want to search for.

You can limit the scope of your search by selecting or clearing any of the Narrow by options. These options vary depending on what is selected in the navigation pane. By default, the search is case sensitive. To search for both uppercase and lowercase text, clear the Match case check box.

The following example shows a search for "class" in the Sashelp library. The search includes all tables and columns in the Sashelp library, and it is not case sensitive.

You can open an item from your results by double-clicking it. To return to your search results list, click again.

To clear the search results, click $\boldsymbol{\otimes}$.

Setting General Preferences

The Preferences window enables you to change several options that affect SAS Studio.
To access the general options, click $\overline{\bar{\cdots}}$ and select Preferences. Click General.

Option	Description
Show generated code in the SAS log	displays the ODS statements, \%LET is statements, and any other code that is automatically generated by SAS in the log file. This option applies to both SAS tasks and SAS program files.
Include a Show Details button in error messages	adds a Show Details button to any error messages that SAS Studio generates.
Start new programs in interactive mode	opens new programs with the interactive mode on. This option is available only if you are running the first maintenance release for SAS 9.4. For more information, see "Working in Interactive Mode" on page 32.
Time-out interval: (hours)	specifies the amount of time that SAS Studio allows you to be logged on without any activity. The default value is one hour.

Option

SAS variable name policy

Description

enables you to specify one of the following sets of rules to apply to SAS variable names.

- ANY - specifies that the variable names can begin with or contain any characters, including blanks, must contain at least one character, and cannot contain any null bytes. Variable names can contain mixedcase letters as well as special and multibyte characters. Names can be up to 32 bytes in length. This option is selected by default. Leading blanks are preserved, but trailing blanks are ignored.
V7 - specifies that the variable names must begin with a letter of the Latin alphabet (A-Z, a-z) or the underscore character. They cannot contain blanks or special characters except for the underscore and cannot be assigned the names of special SAS automatic variables or variable list names. Variable names can contain mixed-case letters and can be up to 32 bytes in length.
specifies the character-set encoding that is used when text files are read or written. The default value is UTF-8. This option is not available for SAS servers running on z/OS.

Note: You can also specify the text encoding when you open a single file by holding down the Alt key and double-clicking the file. The Choose Text Encoding window opens and you can select the encoding. This option applies to SAS program files (*.SAS), text files (*.txt), comma-separated values files, (*.csv), and log (*.log) file types.

Understanding Perspectives

Because SAS Studio can be used by a variety of people and groups within an organization, you can choose to view a specific subset of features, or perspective, that
meets your needs best. Perspectives are sets of functionality that are customized to meet the needs of different types of users. SAS Studio includes two perspectives: the SAS Programmer perspective and the Visual Programmer perspective.

The SAS Programmer perspective is for users who intend to use SAS Studio mainly for writing and editing SAS programs. By default, the SAS Programmer perspective opens with a new program window and includes all five sections of the navigation pane so that you can easily manage all of your program files and code snippets.

The Visual Programmer perspective is designed for users who want to work with process flows in a project-based environment. You can use process flows in the Visual Programmer perspective to combine individual processes into one repeatable process flow that you can save, reuse, and share with other users. By default, the Visual Programmer perspective opens with a new process flow window and includes four sections in the navigation pane: Folders, Tasks, Snippets, and Libraries.

Note: If you open a process flow while you are using the SAS Programmer perspective, you are prompted to switch to the Visual Programmer perspective.

In both perspectives, you can run the predefined tasks that are shipped with SAS Studio, and you can create and edit tasks. You can also use both perspectives to create and run SAS programs and queries.

The differences between the perspectives can be viewed in the following table:

Element in SAS Studio	Available in SAS Programmer?	Available in Visual Programmer?
Navigation Pane sections		
Folders	Yes	Yes
Tasks	Yes	Yes
Snippets	Yes	Yes
Libraries	Yes	Yes
File Shortcuts	Yes	Yes, but not displayed by default

Element in SAS Studio	Available in SAS Programmer?	Available in Visual Programmer?
SAS Programs	Yes	Yes
Queries	Yes	Yes
Process Flows	No	Yes

After you have started SAS Studio and selected a perspective, you can change the perspective that you are using by clicking the perspectives menu on the toolbar and selecting the perspective that you want to use.

You can specify which sections of the navigation pane are displayed in SAS Studio by clicking $\overline{\bar{\cdots}}$ and selecting View.

Editing the Autoexec File

The autoexec.sas file includes SAS statements that run each time you start SAS Studio and connect to your SAS server. For example, you can use the autoexec.sas file to assign libraries that you want to be available every time you use SAS Studio in both interactive and noninteractive modes.

Note: If you create a new library by using the New Library window, you can select the Re-create this library at start-up option to automatically add the LIBNAME statement to the autoexec.sas file. For more information, see "Working with Libraries" on page 7.

To edit the autoexec.sas file:
1 Click $\overline{\equiv \ldots}$ and select Edit Autoexec File.
2 Enter the code that you want to include in the autoexec.sas file.
3 To validate your syntax, click Run. The Log tab opens so that you can view the log.
4 Click Save to save and close the autoexec file.

Changing Your SAS Workspace Server

If you have access to more than one SAS workspace server, you can change the server that SAS Studio connects to. To change the server, click $\overline{\bar{\cdots}}$ and select Change SAS Workspace Server. Select the server that you want to use. When you change servers, any libraries and file shortcuts that you created are deleted. For more information, see SAS Studio: Administrator's Guide.

20 Chapter 1 / Introduction to SAS Studio

Working with Programs

About the Code Editor 22
Opening and Creating Programs 22
Opening a Program 22
Creating a New Program 22
Running a Program 22
Using the Autocomplete Feature 23
Using the Syntax Help 26
Adding Table Names and Column Names 28
Editing the Code from a Task 28
Creating a SAS Program Package 29
Creating a Program Summary 30
Using Macro Variables 30
Using Your Submission History 31
Automatically Formatting Your SAS Code 31
Working in Interactive Mode 32
Working with Code Snippets 34
Why Use Code Snippets? 34
Create a Code Snippet 42
How to Insert a Code Snippet 42
Customizing the Code Editor 43

About the Code Editor

SAS Studio includes a color-coded, syntax-checking editor for editing new or existing SAS programs. You can also edit SOURCE entries in SAS catalogs. The editor includes a wide variety of features such as autocomplete, automatic formatting, and pop-up syntax help. With the code editor, you can write, run, and save SAS programs. You can also modify and save the code that is automatically generated when you run a task.

SAS Studio also includes several sample code snippets that you can use to make programming common tasks easier.

Opening and Creating Programs

Opening a Program

You can open SAS programs from the Folders section of the navigation pane. To open a program, expand the appropriate folder and double-click the program that you want to open, or drag it into the work area. The program opens in a new tab in the work area.

Creating a New Program

You can create a new SAS program from the Folders section of the navigation pane. To create a new program, click ${ }^{[7}$ and select SAS Program. A program window appears in a new tab in the work area.

Note: You can also click \mathbb{F}^{7} on the main application toolbar and select New SAS Program.

Running a Program

After you have written your program, you can run it by clicking \mathcal{N}.

If there are no errors, the results open automatically. If there are errors, the Log tab opens by default. You can expand the Errors, Warnings, and Notes sections to view the messages. When you click on a message, SAS Studio highlights it for you in the log so that you can see exactly where the message occurs in the log.

Note: Because you are working in a server environment, do not include the ENDSAS statement in your SAS programs. If you run a program that contains ENDSAS, reset your SAS session by clicking $\overline{\bar{\cdots}}$ and selecting Reset SAS Session.

Using the Autocomplete Feature

About the Autocomplete Feature

The autocomplete, or code completion, feature in the code editor can predict the next word that you want to enter before you actually enter it completely. The autocomplete feature can complete keywords that are associated with SAS procedures, statements, macros, functions, CALL routines, formats, informats, macro variables, SAS colors,
style elements, style attributes, and statistics keywords, and various SAS statement and procedure options.

Note: The autocomplete feature is available only for editing SAS programs.
This example shows the keywords and help that appear when you enter proc a in the code editor.

In this example, you select APPEND from the list of procedures, so that proc append appears in the code editor. When you enter a space, the code editor displays a list of options for the APPEND procedure.

How to Use the Autocomplete Feature

To use the autocomplete feature:
1 How you open the autocomplete list depends on the keyword that you want to add.

- If you want to add a global statement, DATA step statement, CALL routine, procedure, macro statement, or automatic macro variable, enter the first one or more letters of the keyword that you want to use.

A window opens with a list of suggested keywords that begin with those letters.

- If you want to specify colors, formats, informats, macro functions, SAS functions, statistics keywords, style elements, or style attributes, position your mouse pointer in a comment and press Ctrl+spacebar. To navigate through the list of options backward, press Ctrl+Shift+spacebar.

Note: These shortcuts work even if you have deselected the Enable autocomplete option in the Preferences window. For more information, see "Customizing the Code Editor" on page 43.

2 You can navigate to the keyword that you want to use in several ways:

- Continue to type until the correct keyword is selected (because the matching improves as you type).
- Scroll through the list by using the up and down arrow keys, the Page Up and Page Down keys, or your mouse.

3 You can add the keyword to your program by double-clicking the selected keyword or by pressing the Enter key.

Using the Syntax Help

The code editor displays brief SAS syntax documentation as you write and edit your programs. You can display the Help in the following ways:

- Right-click a keyword in your program and select Syntax Help.
- Start typing a valid SAS keyword, and then click a suggested keyword in the autocomplete window.
- Position the mouse pointer over a valid SAS keyword in your program. This works only if you have selected the Enable hint option in the Editor preferences. For more information, see "Customizing the Code Editor" on page 43.

The SAS Product Documentation provides more comprehensive usage information about the SAS language, but the syntax help in the code editor can get you started with a hint about the syntax or a brief description of the keyword. You can get additional help by clicking links in the syntax help window as follows:

- Click the keyword link at the top of the window to search the support.sas.com website for the keyword.

- Click the links at the bottom of the window to search for the keyword in the SAS Product Documentation, Samples and SAS Notes, and SAS Technical Papers.

Adding Table Names and Column Names

From the Libraries section of the navigation pane, you can use a drag-and-drop operation to move table names and column names into the SAS code. For example, you can move the Sashelp.Cars table into the DATA option for the PRINT procedure. When you release the mouse, the fully qualified name for the table appears in your code.

```
落 *Program 1 x
CODE LOG RESULTS
```



```
1proc print data=SASHELP.CARS
```


Editing the Code from a Task

You can edit the code that is generated automatically when you run a task and then run it with your modifications. When you edit the code, SAS Studio opens it in a separate program window. The code is no longer associated with the original task.

To edit a program generated by a task:
1 On the appropriate task tab in the work area, click Code to display the code that is associated with the task.

Note: In order to edit the code that is associated with a task, you must first display the code with the task. If the task code is not displayed, click $\overline{\overline{\ldots .0}}$ and select Preferences. Click Tasks, and then select Show Task Code.

2 On the toolbar, click Edit. The code is opened in a new program window.

Creating a SAS Program Package

A SAS Program Package is a file that contains a snapshot of a SAS program along with its log and HTML results. You can create a program package from code that you have
written as well as code that is automatically generated when you run a task. When you open a program package in SAS Studio, you can access the code as well as the log and results without running the program again. If you make changes to the code and rerun it, the package is not automatically updated. You must save the package again to keep the changes.

Note: The program package does not include PDF or RTF results. You cannot create a program package if you are running your program in interactive mode.

To create a program package file, open the code that you want to use and click $\mathbb{8}$. Specify the file location and name, and then select SAS Program Package as the Save as type option.

Note: If you want to save the program or log individually or download the results as an HTML, PDF, or RTF file, you must resubmit the program after you open the program package file.

Creating a Program Summary

You can create a summary page for code that you have written as well as code that is automatically generated when you run a task. The Program Summary page is an HTML file that opens in a separate browser tab and includes information about the program execution, the complete SAS source code, the complete SAS log, and the results. To view the Program Summary page for a program, click [(ิ).

Note: The Program Summary is available only after you have run the program.
You can also save a Program Summary file to a folder that you specify by clicking and selecting SAS Program Summary as the Save as type option. The Program Summary is saved as an HTML file.

Using Macro Variables

Macro variables can be used to add information that is obtained when a program or task is run, such as the name and version number of the application. You can reference these items within code, titles, or footnotes by preceding them with " $\&$ ".

For example, you can use macros in a footnote like the following:
Generated with \&_CLIENTAPP \&_CLIENTAPPVERSION
Note: In addition to the following macro variables, you can use SAS macro functions and variables in your code. For information about SAS macro functions and variables, see SAS Macro Language Reference.

Macro Variable

CLIENTAPP
_CLIENTAPPVERSION
SASPROGRAMFILE

Description

name of the application.
application version number.
the full path and filename of the SAS program that is currently being run. This macro variable is available only for SAS program files that are saved on the same server on which your SAS Studio code is running.

Using Your Submission History

SAS Studio maintains a log with entries for each time you run a program or task. You can use this log, or submission history, to access prior versions of your submitted code. To view your submission history, click the Code tab in your program or task window. On the toolbar, click (4) and select the version that you want to open. The prior version of the program opens in a new window from which you can copy and paste the code as needed.

Note: The submission history is cleared when you sign off from SAS Studio.

Automatically Formatting Your SAS Code

You can use the code editor to make your programs easier to read by automatically formatting your code. When you automatically format your code, line breaks are added, and each line is correctly indented according to its nesting level. To format the code in the code editor, click $\stackrel{\text { 部 }}{\boldsymbol{Z}}$.

For example, the following code is difficult to read because it lacks indention and logical line breaks:

```
data topn;
length rank 8; label rank="Rank";
set topn; by &category descending &measure;
if first.&category then rank=0; rank+1;
if rank le &n then output;
run;
```

After you use the automatic code-formatting feature, the program looks like this:

```
data topn;
    length rank 8;
    label rank="Rank";
    set topn;
    by &category descending &measure;
    if first.&category then
        rank=0;
    rank+1;
    if rank le &n then
        output;
run;
```


Working in Interactive Mode

Some SAS procedures are interactive, which means they remain active until you submit a QUIT statement, or until you submit a new PROC or DATA step. In SAS Studio, you can use the code editor to run these procedures, as well as other SAS procedures, in interactive mode.

By using interactive mode, you can run selected lines of code from your SAS program and use the results to determine your next steps. For example, the OPTMODEL procedure in SAS/OR enables you to model and solve mathematical programming models. By running this procedure interactively, you can quickly check results for parts of the program and determine whether you need to make any modifications without running the entire program.

Note: Interactive mode is available only if you are running the first maintenance release for SAS 9.4.

Note: When you use interactive mode, the default output library is Webwork. If you run a program that creates output data in interactive mode, you must refresh the Libraries section of the navigation pane to view the new data.

To run a program in interactive mode, click \gg on the toolbar. To turn off interactive mode, click $>$ again. If you change modes while a program is open, the log and results for that program are cleared. You can also clear the log and results manually by clicking ${ }^{\prime} \times$ on the appropriate toolbar.

Note: If you create a new library when you are in interactive mode, the library might not be available when you turn off interactive mode. If you want the library to be available in both interactive and noninteractive modes, you can assign the library again in noninteractive mode, or you can add the library assignment to your autoexec.sas file. For more information, see "Editing the Autoexec File" on page 18.

When you run a program in interactive mode, SAS Studio does not add any automatically generated code, such as ODS and \%LET statements, to your program. In addition, results are generated only in HTML. In interactive mode, the log and results are appended to the existing log and results. Previously submitted code remains active until you terminate it.

For example, suppose you have the following program:

```
proc sql;
    select * from sashelp.cars;
    select * from sashelp.class;
    quit;
```

In noninteractive mode, if you select the first two lines of code and submit them, the code runs successfully. If you then select the last two lines of code and submit them, the code fails because the PROC SQL statement is missing.

If you switch to interactive mode and follow the same steps, the last two lines of code run successfully because the PROC SQL statement is still active.

Note: For documentation about specific procedures, see the SAS Programmer's Bookshelf on support.sas.com.

Working with Code Snippets

Why Use Code Snippets?

Code snippets enable you to quickly insert SAS code into your program and customize it to meet your needs. SAS Studio is shipped with several code snippets. You can also create your own snippets and add snippets to your list of favorites.

Snippet Name	Description
Catalogs	enables you to specify the content for the SOURCE entry type in a catalog. The SOURCE entry can contain the same code as SAS programs.
Edit a SOURCE Entry	lists in a SAS table all of the catalogs in the specified library. By default, this table is saved in the Work library and with catalogs as the filename.
List Catalogs	lists all the catalog types in the specified catalog.
List Catalog Entries	prints the GRSEG entry to the open destinations specified by the SAS Output Delivery System (ODS output).
Print GRSEG Entry	

Data

Snippet Name

DS2 Code

Description

provides a template for a DS2 program. DS2 is a SAS programming language that is appropriate for advanced data manipulation. DS2 is included with Base SAS and shares core features with the SAS DATA step. DS2 exceeds the DATA step by adding variable scoping, userdefined methods, ANSI SQL data types, and user-defined packages. The DS2 SET statement accepts embedded FedSQL syntax, and the run-time-generated queries can exchange data interactively between DS2 and any supported database. This allows SQL preprocessing of input tables, which effectively combines the power of the two languages. For more information, see SAS DS2 Language Reference.
provides a template for a DS2 package. A package is similar to a DS2 program. The package body consists of a set of global declarations and a list of methods. The main syntactical differences are the PACKAGE and ENDPACKAGE statements. These statements define a block with global scope. For more information, see SAS DS2 Language Reference.

DS2 Thread
provides a template for a DS2 threaded program. Typically, DS2 code runs sequentially. That is, one process runs to completion before the next process begins. It is possible to run more than one process concurrently, using threaded processing. In threaded processing, each concurrently executing section of code is said to be running in a thread. For more information, see SAS DS2 Language Reference.

Generate CSV File

Generate PowerPoint Slide

Generate XML File

Import CSV File
enables you to export SAS data as a comma-separated text file.
enables you to stream Microsoft PowerPoint output to your web browser.
enables you to export SAS data as an XML file that you can view in your web browser.
enables you to import a comma-separated file and write the output to a SAS data set.

Snippet Name

Import XLSX File

Description

enables you to import a Microsoft XLSX file and write the output to a SAS data set.

Simulate Linear Regression Data
creates an input data source that you can use for linear regression analysis. Linear regression analysis tries to assign a linear function to your data by using the least squares method.
creates an input data source that considers one treatment factor with three treatment levels. When you analyze this data by using the One-Way ANOVA task, the goal is to test for differences among the means of the levels and to quantify these differences.

Descriptive
Custom ODS Output

PROC SQL

provides a template for creating HTML, PDF, and RTF output by using the SAS Output Delivery System. For more information, see SAS Output Delivery System: User's Guide.
provides a template for writing SQL queries. For more information, see SAS SQL Procedure User's Guide.

Graph

Note: For more information about the SGPLOT, SGPANEL, and SGSCATTER procedures, see SAS ODS Graphics: Procedures Guide.

Bar Panel

Box Panel

Comparative Scatter Plot

Dot Plot
uses the VBAR statement in the SGPANEL procedure and enables you to create multiple bar charts.
uses the VBOX statement in the SGPANEL procedure and enables you to create multiple box plots.
uses the COMPARE statement in the SGSCATTER procedure. This code snippet creates a comparative panel of scatter plots with shared axes.
uses the DOT statement in the SGPLOT procedure. Dot plots summarize horizontally the values of a category variable. By default, each dot represents the frequency for each value of the category variable.

Snippet Name
Fit Plot

Description

uses the REG statement in the SGPLOT procedure. This code snippet produces a regression plot with a quadratic fit and includes confidence limits.

HBar Plot
uses the HBAR statement in the SGPLOT procedure. This code snippet creates a horizontal bar chart that summarizes the values of a category variable.

HighLow Plot
uses the HIGHLOW statement in the SGPLOT procedure. High-low charts show how several values of one variable relate to one value of another variable. Typically, each variable value on the horizontal axis has several corresponding values on the vertical axis.

Histogram Plot

Scatter Plot Matrix
uses the HISTOGRAM statement in the SGPLOT procedure. This code snippet produces a histogram with two density plots. In this snippet, one density plot uses a normal density estimate and the other density plot uses a kernel density estimate.
uses the MATRIX statement in the SGSCATTER procedure. This code snippet creates a scatter plot matrix.

VBox Plot

uses the VBOX statement in the SGPLOT procedure. A box plot summarizes the data and indicates the median, upper and lower quartiles, and minimum and maximum values. The plot provides a quick visual summary that easily shows center, spread, range, and any outliers. The SGPLOT and the SGPANEL procedures have separate statements for creating horizontal and vertical box plots.

Macro

Note: For more information about SAS macros, see SAS Macro Language: Reference.

Snippet Name

SAS Macro Char Functions

SAS Macro Do Statement

Description

provides several examples of these SAS macros that work with character values:

- The \%EVAL function evaluates arithmetic and logical expressions by using integer arithmetic. This function operates by converting its argument from a character value to a numeric or logical expression. After the expression is evaluated, the result is converted back to a character value.
This function is useful because the SAS Macro Facility is basically a text generator. As a result, an arithmetic expression is first converted to a numeric expression. After this numeric expression is evaluated, it is converted back to an arithmetic expression.
- The \%INDEX function returns the position of the first character of a string.
- The \%LENGTH function returns the length of a string.
- The \%SCAN function searches for a word that is specified by its position in a string.
The \%SUBSTR function produces a substring of a character string.

The \%UPCASE function converts values to uppercase.
designates the beginning of a section of a macro definition that is treated as a unit until a matching \%END statement is encountered. This macro section is called a \%DO group.

A simple \%DO statement often appears in conjunction with \%IF-\%THEN-\%ELSE statements to designate a section of the macro to be processed depending on whether the \%IF condition is true or false.

Note: SAS also provides a \%DO iterative statement, which is different from the code that is generated by this snippet.
For more information, see SAS Macro Language:
Reference.

SAS Macro If Statement
conditionally processes a portion of a macro. The expression that is the condition for the \%IF-\%THEN\%ELSE statement can contain only operands that are constant text or text expressions that generate text.
Snippet Name
DescriptionSAS Macro Parametersnames one or more local macro variables whose valuesyou specify when you invoke the macro. There are twotypes of macro variables: positional and keyword.Parameters are local to the macro that defines them. Youmust supply each parameter name. You cannot use a textexpression to generate it. A parameter list can contain anynumber of macro parameters separated by commas. Themacro variables in the parameter list are usually referencedin the macro.
SAS Macro
provides a basic template for working with SAS macros. Macros enable you to perform many tasks, including substituting text in a program. A SAS program can contain any number of macros, and you can invoke a macro multiple times in a single program. For more information, see SAS Macro Language: Reference.

Snippet Name

SAS Macro Quoting

Description

provides examples of macro functions that tell the macro processor to interpret special characters and mnemonics as text rather than as part of the macro language.

The \%STR function masks special characters and mnemonic operators in constant text at macro compilation. This function masks these special characters and mnemonic operators:


```
AND OR NOT EQ NE LE LT GE GT IN
```

This function also masks these characters when they occur in pairs and when they are not matched and are marked by a preceding \%:

II ()
The \%NRSTR function masks special characters and mnemonic operators in constant text at macro compilation. This function masks all of the special characters and mnemonic operators listed for the \%STR function. In addition, the \%NRSTR function masks these characters:
\& \%
The \%BQUOTE function masks special characters and mnemonic operators in a resolved value at macro execution. This function masks these special characters and mnemonic operators:
' " () $+-* /<>=\neg \wedge \sim$; \quad \# blank
AND OR NOT EQ NE LE LT GE GT IN

Snippet Name

SAS Macro Quoting (continued)

Description

The \%SUPERQ function masks all special characters and mnemonic operators at macro execution but prevents further resolution of the value. This function masks these special characters and mnemonic operators:

```
& % ' " () + - * / < > = ᄀ ^ ~ ; , # blank
AND OR NOT EQ NE LE LT GE GT IN
```

- The \%QSCAN function searches for a word and masks special characters and mnemonic operators.
- The \%QSUBSTR function produces a substring and masks special characters and mnemonic operators.
- The \%QUPCASE function converts a value to uppercase and returns a result that masks special characters and mnemonic operators.
- The \%UNQUOTE function unmasks a value during macro execution so that any special characters and mnemonic operators are interpreted as macro language elements instead of text.

For more information about macro complication and macro execution, see SAS Macro Language: Reference.

SAS Macro Variables
provides examples of how to create user-defined global and local macro variables. Macro variables are tools that enable you to dynamically modify the text in a SAS program through symbolic substitution. You can assign large or small amounts of text to macro variables. Then you can use that text by simply referencing the variable that contains the text.

Macro variables that are defined by the macro programmer are called user-defined macro variables. Macro variables that are defined by the macro processor are called automatic macro variables. You can define and use macro variables anywhere in SAS programs, except within data lines.

IML
Note: These snippets are available only if your site licenses SAS/IML.

Snippet Name

Find Roots of Nonlinear Equation

Description

enables you to find the roots of a function of one variable. Finding the root (or zero) of a function enables you to solve nonlinear equations.

Integrate a Function

Generate a Bootstrap
Distribution
enables you to numerically integrate a one-dimensional function by using the QUAD subroutine in SAS/IML software. Use the QUAD subroutine to numerically find the definite integral of a function on a finite, semi-infinite, or infinite domain.

Fit by using Maximum
Likelihood
Simulate Multivariate Normal Data
uses the IML procedure to create and analyze a bootstrap distribution of the sample mean.
uses maximum likelihood estimation to estimate parameters for the normal density estimate.
simulates data from a multivariate normal distribution with a specified mean and covariance.

Create a Code Snippet

To create your own snippet:
1 Open your .sas file in SAS Studio and select the code that you want to save as a snippet.

2 On the Code tab, click 巨; The Add to My Snippets dialog box appears.

3 Enter a name for the snippet and click Save.

This snippet is now available from the My Snippets folder.

How to Insert a Code Snippet

To include a code snippet in your program:
1 Click the location in your program where you want to insert the snippet.

2 In the navigation pane, open the Snippets section.
3 You can add the snippet to your program in these ways:

- use a drag-and-drop operation to move the snippet.
- double-click the name of the snippet.
- right-click the name of the snippet and select Insert. To select multiple snippets, use the Ctrl key. Then right-click and select Insert.

The following example shows the Import XLSX File snippet inserted into a program.

```
貕 *Program 1 x 區 SASHELP.CLASS x
    CODE LOG RESULTS
```



```
    1proc print data=SASHELP.CARS;
    2
    3/** Import an XLSX file. **/
    4
    5 PROC IMPORT DATAFILE="<Your XLSX File>"
        OUT=WORK.MYEXCEL
        DBMS=XLSX
        REPLACE;
    9RUN;
10
11/** Print the results. **/
12
13PROC PRINT DATA=WORK.MYEXCEL; RUN;
14
```


Customizing the Code Editor

The Preferences window enables you to change several options that affect the features in the code editor, including autocomplete and color coding.

To access the editor options, click $\overline{\bar{\cdots}}$ and select Preferences. Click Editor.

Option	Description
Enable autocomplete	turns on the autocomplete feature of the code editor. This feature can predict the next keyword that you want to type before you actually type it completely. For more information, see "Using the Autocomplete Feature" on page 23.
Enable hint	displays the syntax help window when you position the mouse pointer over a valid SAS keyword in your program. If this option is not selected, then you can view the syntax help by right-clicking a keyword and selecting Syntax Help. This option is not selected by default.
Tab width	displays the number of spaces that are inserted into your text when you insert a tab character. The default value is four spaces for each tab character.
Fote: In Microsoft Internet Explorer and	
Apple Safari, spaces are used instead of Tab	
characters. If you are using those browsers,	
you must select the Substitute spaces for	
tabs check box in order for the value of the	
tab width to be used.	

Option
 Description

Enable autosave
automatically creates auto-saved copies of each previously saved program file that you are editing so that you can recover the files if your browser closes unexpectedly. New program files are not auto-saved until you save them first. The files are saved at the interval specified in the Autosave Interval option. The default interval is 30 seconds.

46 Chapter 2 / Working with Programs

Working with Queries

What Is a Query? 48
Creating a Query 48
Creating a New Query 48
Adding Tables to a Query 49
Understanding Joins 50
Joining Tables 50
Creating a Join 50
Understanding the Types of Joins 54
Modifying an Existing Join 55
Selecting Data 55
Specifying Columns in the Output 55
Using Summary Functions 57
Filtering Data 60
Creating a Filter 60
Changing the Relationship between Filters 62
Managing Output 63
Sorting Your Output 63
Eliminating Duplicate Rows in Output 65
Grouping Your Output 65
Saving Your Results 68
Running a Query 69

What Is a Query?

A query enables you to extract data from one or more tables according to criteria that you specify. You can create a query that is based on only one table, or you can join tables together. When you create a query, SAS Studio generates Structured Query Language (SQL) code, which you can view. You can create queries in both the SAS Programmer and the Visual Programmer perspectives.

Creating a Query

Creating a New Query

On the main SAS Studio toolbar, click ㅍ. and select New Query. A query window opens on a new tab in the work area.

Adding Tables to a Query

On the Tables tab in the query window, click + and select Table. From the Choose a Table window, expand the appropriate library and select the table that you want to use. The table is added to the query.

Note: You can also add tables to the query by using the Libraries section of the navigation pane. Click Libraries and expand the appropriate library. Drag the table that you want to use to the Tables tab of the query window.

Understanding Joins

Joining Tables

When you create a query, you can join multiple tables together. SAS Studio can automatically join the tables together for you, or you can manually create the join. SAS Studio attempts to join tables by columns that have the same name and type. If no matches for column name and type are found, then you can specify the join criteria.

Note: If you have more than one table in your query and you do not specify join criteria, then your output data includes the Cartesian product, or every possible combination, of the data values.

Creating a Join

To add a table and automatically create a join:
From the Libraries section of the navigation pane, drag the table that you want to add to the query to the Tables tab. Next, drop that table on top of the first table in the query to join the two.

The Join window displays the join criteria. In the following example, the Classfit table is automatically joined to the Class table by using the Name column in both tables.

If a join cannot be created automatically, you can specify the join condition manually. To manually create a join:

1 On the Tables tab of the query window, make sure that you can view the tables that you want to join.

2 Click + on the toolbar and select Join. The New Join window opens.

3 From the Left table drop-down list, select the table for the left side of the join.

4 From the Join type drop-down list, select the type of join that you want to use. The default join type is Inner join.

5 From the Right table drop-down list, select the table for the right side of the join.
6 Click Save. A join is created between the tables. If the tables include columns with matching names and data types, then a join condition is automatically created. If the tables do not include columns with matching names and data types, then you can select the columns for the join condition from the column drop-down lists.

7 To add another join condition to the join, click + and select the columns that you want to use from the column drop-down lists.

Understanding the Types of Joins

SAS Studio supports four different types of joins. You can select the type of join you want by modifying an existing join.

You can select the join option that you want to use in the Join window.

| SAS Studio Join Type | Description Icon |
| :--- | :--- | :--- |
| Inner Join | The output rows include
 those for which the column in
 the first table matches the
 joining criterion of the column
 in the second table. Joins are
 inner joins by default. |
| Left Join | The output rows include all
 rows from the first table and
 the rows from the second
 table in which the joining
 criterion is met. |
| Right Join | The output rows include all
 rows from the second table
 and the rows from the first
 table in which the joining
 criterion is met. |
| Full Join | The output rows include all
 matching and nonmatching
 rows from both tables. |

Modifying an Existing Join

You can modify an existing join by selecting a different type of join or by changing the columns that are used in the join condition. You can also add and remove join conditions or remove the entire join.

To modify a join:
1 On the Tables tab of the query window, click the join indicator that you want to modify. The join is displayed in the Join area.

2 To change the type of join, select a new type from the Join type drop-down list.
3 To add a new join condition, click + and specify the columns to use in the join. To remove a join condition, click 貫 next to the appropriate condition.

To delete the entire join, right-click the join indicator and select Delete.

Selecting Data

Specifying Columns in the Output

By default, no columns are included in the output. You must specify the columns that you want to appear in the output table. You can also specify an alias to use in place of the column name in the output table.

The order in which the columns are listed on the Select tab is the order in which they appear in the output table.

To select columns for the output table:
1 In the query window, click the Columns tab to view the list of columns from the tables in the query.

2 You can add one or more columns to the output data by dragging them from the columns list to the Select tab. You can also click + on the Select tab toolbar and select one or more columns from the Choose Column window.

To specify an alias for a column:

- On the Select tab, enter the alias that you want to use for each column. The alias is used as the column heading for the output data.

Using Summary Functions

You can perform summary functions on any of the columns in your query. To perform a summary function, select the column on which you want to perform a summary function. Use the drop-down list in the Summary column to select the function that you want to use. By default, the query generates an output data set. The following example shows you how to find the average age of all of the students:

58 Chapter 3 / Working with Queries

By default, the query generates an output table with the results:

By default, when you summarize a column, your output is grouped by all of the columns without summaries. For more information, see "Grouping Your Output" on page 65.

Filtering Data

Creating a Filter

When you query data, you might want to retrieve only rows that meet certain criteria, based on values of columns in the data. The process of telling SAS Studio which rows to retrieve is called setting a filter and is done on the Filter tab. This corresponds to using a WHERE clause in an SQL query.

1 In the query window, click the Columns tab to view the list of columns from the tables in the query.

2 You can add one or more columns to the filter by dragging them from the columns list to the Filter tab. You can also click + on the Filter tab toolbar and select one or more columns from the Choose Column window.

3 Select a comparison operator from the Operator drop-down list. The default value is Equals.

4 If the operator that you have selected requires a value, click ind to enter or select a value in the Select Value window. To choose from a list of values, click $\overline{\bar{\nabla}}$ to expand the Value list. Select the values that you want to use and click Add.

Note: If you are selecting values for a character column, and you want the values to be enclosed in single quotation marks, select the Enclose values in quotes option. This option is selected by default. If you are using a macro variable or other value that is evaluated when the filter is run, you should clear this option.

If you want to choose from a list of columns, click $\overline{\bar{F}}$ to expand the Column list. Select the column that you want to use and click Add.

5 Click OK to add the values to the filter.

Changing the Relationship between Filters

You can use only one column in a filter, or you can use multiple columns to create several comparison expressions. If you create more than one comparison expression in your filter, then the default relationship between these filter elements is AND. You can change the relationship between filter elements from AND to OR, and you can group elements together.

To change the relationship between filters:

- On the Filter tab, click the relationship value and select a new value.

Managing Output

Sorting Your Output

You can sort the output from your query by one or more columns from the tables that are used in the query.

Note: It is possible to sort the output table by columns that are not selected for the output.

To sort your output:

1 In the query window, click the Sort tab.
2 You can add one or more columns to the Sort tab by dragging them from the columns list to the Sort tab. You can also click + on the Sort tab toolbar and select one or more columns from the Choose Column window.

3 Click the Sort box for the column on which you want to sort the data. From the dropdown list, select Ascending or Descending. The default sort direction is Ascending.

4 If you are sorting by multiple columns, the output table is sorted first by the column that is listed first. Within each level of the first column, the rows are sorted by the second column in the list, and so on. You can change the sort order by selecting a column and clicking \uparrow and \downarrow to move the column up and down the list.

Eliminating Duplicate Rows in Output

Some types of queries output multiple, identical rows. Because these duplicate rows are generally not useful, SAS Studio enables you to keep only one of the identical rows and eliminate the duplicates.

To eliminate duplicate rows, click the Select tab and select the Select distinct rows only check box.

Grouping Your Output

If you have created a summarized column, you can choose to classify your data into groups based on the values in a column. This is equivalent to using the GROUP BY clause in an SQL query. For example, if you are calculating the average height of a group of students, you might want to group the results by age so that you can see the average height for each age group.

By default, when you perform a summary function on a column, your query is grouped by all columns without summaries. You can choose to edit the list of columns that the query is grouped by.

To group your output:
1 In the query window, click the Group tab.
2 You can add one or more columns to the Group tab by dragging them from the columns list to the Group tab. You can also click + on the Group tab toolbar and select one or more columns from the Choose Column window.

3 To change the order in which the columns are used to group the data, select the column that you want to move and click \uparrow and \downarrow.

The following example shows you how to find the average weight of students in each age group. First, add the Age and Weight columns to the Select tab, and then select the AVG summary function for the Weight column:

To see the average weight of students by age, you group by the Age column. The results show the average weight for each age group:

Note: By default, the query generates a table of the result. To generate a report of the results (which is displayed in Results tab), you must specify report as the output type for the query. For more information, see "Saving Your Results" on page 68.

Saving Your Results

You can choose to generate your results in any one of three formats: data table, data view, or report.

If you save your results as a data table or data view, you can specify the library and filename that you want to use. If you don't specify the library and filename, the results are saved in the Work library.

To specify the results format:
1 In the query window, click the Settings tab.
2 Click the Properties tab. In the Results area, select the format that you want to use from the Output type drop-down list.

Report
saves the query results as a report that you can download as an HTML, PDF, or RTF file. Query results in this format are not updated until you rerun the query. You cannot run SAS tasks against query results in this format.

Table
saves the query results as a static data table against which you can run SAS tasks. Query results in this format are not updated until you rerun the query. By default, the data table is stored in the Work library.

View

saves the query results as a dynamic data view against which you can run SAS tasks. Each time you open query results in the data view format, the results are updated with any changes to the data that is used in the query. By default, the data view is stored in the Work library.

To save your results to a specific location:
1 In the query window, click the Settings tab.
2 Click the Properties tab. In the Results area, enter the name of the library in which you want to save your results in the Output location box.

3 To specify a name for the results, enter the name that you want to use in the Output name box.

Running a Query

After you specify all the criteria for your query, you can generate your results by clicking $*$ on the query window toolbar. The output data opens in the workspace on a separate tab.

70 Chapter 3 / Working with Queries

Working with Process Flows

Understanding Process Flows 72
What Is a Process Flow? 72
Creating Process Flows 73
What Are Ports? 73
Understanding the Status of Each Node 75
Customizing a Process Flow 76
Viewing the Properties of a Process Flow 76
Adding a SAS Program to the Process Flow 77
Create a New SAS Program 77
Add an Existing SAS Program 79
Add a Snippet 80
Adding a Query to a Process Flow 84
Create a New Query 84
Add an Existing Query to a Process Flow 85
Add a Task to a Process Flow 86
Understanding Subflows 88
What Is a Subflow? 88
Create a New Subflow 89
Create a Subflow from an Existing Process Flow 90
Linking Nodes in a Process Flow 91
Running a Process Flow 92
Save a Process Flow 92

Understanding Process Flows

What Is a Process Flow?

You must be working in the Visual Programming perspective to work with process flows. For more information about the Visual Programming perspective, see "Understanding Perspectives" on page 16.

A process flow consists of one or more objects. Each object is represented by a node in the process flow. The process flow shows the relationship between two or more objects, such as a SAS program, a task, a query, and so on.

This sample process flow contains three branches.

- In the first branch, a query is created for the Sashelp.Classfit data set. As a result of this query, only observations where Sex=M are included in the output data set (called Webwork.Query). The Rank Data task ranks the Height and Weight values by Age.
- In the second branch, you write a SAS program that generates an output data set. After this program runs, a subflow that contains more program and task nodes runs. Then finally, SAS Studio tries to run the Bar Chart node. However, this task generates a warning.
- In the third branch, the SAS program generates an error. The information for the Table Attributes node is incomplete. SAS Studio cannot run the process flow until you provide the required data.
© *Process Flow $1 x$

Creating Process Flows

In SAS Studio, you can have multiple process flows. These process flows run independently of each other. To create a new process flow, click \mathbb{F}^{-}and select New Process Flow. A new Process Flow tab appears in the interface.

What Are Ports?

In a process flow, you can have two types of ports:
control ports
In the process flow, these types of ports appear as \square. You use these ports to specify the order in which nodes run in the process flow. For more information, see "Linking Nodes in a Process Flow" on page 91.
data ports
In the process flow, these types of ports appear as $\mathbb{B}^{\boldsymbol{B}}$.
When you run a task, you must specify an input data source. You specify the input data source in the task interface. From the process flow, you can determine the name of the input data source by positioning your mouse pointer over the input data port. To view the data source on a separate tab, double-click the data port icon.

In this example, the input data source for the Sort Data task is SASHELP.CLASSFIT.

Rank Data

Tasks from the Data category, such as the Sort Data task, have an output data source as well as an input data source. You can use the output data port to determine the name of the output data source. To view the data source on a separate tab, double-click the data port icon.

In this example, the output data source for the Sort Data task is WORK.SORT.

By default, ports are displayed in the process flow. To turn off the ports, click Show Ports.

Understanding the Status of Each Node

When you run a process flow，some nodes might run successfully，and others might not． To see the status of each node，how long it took to run the node，and whether any output data was created，click the Results tab．

Here are the contents of the Results tab for the previous process flow．

\triangle＊Process Flow $1 \times$ \rightarrow Run ■ Stop｜日回甼				
FLOW	RESULTS PROPERTIES			
－ 1 －				
Name		Status	Elapsed	Output
Query		Success	0：0：0：0．670	WEBWORK．QUERY
Rank Data		Success	0：0：0：0．266	WORK．Rank
Program		Success	0：0：0：0．345	
Sub－flow		Success		
Bar Chart		Warning	0：0：0：2．469	

You can use these icons to determine the status of each node in the process flow：
Icon Description
\bigcirc
specifies that more information is needed before SAS Studio can run the node．For example，if you see this icon on a task node， you must specify values for the required options in the task．This icon can also appear on an empty subflow node after SAS Studio tries to run it．
specifies that the node is in the queue to run．
specifies that the code for the node was submitted．
specifies that the code for the node generated a warning. Review the log for that node for more information.

specifies that the code for the node generated an error. Review the log for that node for more information.

Customizing a Process Flow

You can customize your process flow in these ways.

- To specify a color for a node or a group of nodes, select the nodes and click Color. From the drop-down list, select the color that you want to use.
- By default, you can arrange objects in the process flow any way you like. However, your process flow might become confusing if it contains many objects. Click :" for SAS Studio to arrange the objects in your process flow. When arranging the nodes, SAS Studio considers any dependencies and the order in which the nodes were added to the process flow.

Viewing the Properties of a Process Flow

To view the properties of the current process flow, click the Properties tab. From the properties, you can specify the priority of execution of the nodes. The process flow runs the nodes in the order in which the nodes are added to the process flow. If node 1 is dependent on another node 2 , node 2 must run completely before node 1 will run. You can also choose to run the nodes in parallel, which means that multiple workspace servers are used to run the nodes. As a result, the nodes do not share a common Work library, so SAS Studio saves any generated output to the Webwork library.

Adding a SAS Program to the Process Flow

Create a New SAS Program

To add a new SAS program to a process flow:
1 Click + and select SAS program. A node for the SAS program is added to the process flow.

2 Select the node and click \quad. (You can also select the node and press Enter.) The code editor appears.

3 Enter the code for your program.

4 To name the program, to provide a brief description for the program, and to include any notes, click the Node tab.

－Run ■ Stop｜日 国 区 区

Process Flow $1>$ PROC PRINT
CODE LOG RESULTS NODE

4 IDENTIFICATION

Label：

PROC PRINT
Description：
Prints the SASHELP．CLASSFIT data set

Created：$\quad 10 / 13 / 2014$ 1：35：38 PM
Modified：$\quad 10 / 13 / 2014$ 2：07：15 PM
4 NOTES

Notes：
Run this program only once a day．

The SAS program node in the process flow now contains the name and description that you specified on the Node tab．

```
"--a *Process Flow 1 x
```



```
FLOW RESULTS PROPERTIES
```


"K1 PROC PRINT
Prints the
SASHELP.CLASS

Add an Existing SAS Program

You might have already written a SAS program that you want to include in the process flow. To add this program:

1 In the navigation pane, click the Folders section.
2 Expand the folders in the Folders section until you find the program that you want to add.

3 Select the program that you want to add, and then drag it in the process flow. (A green check mark indicates that you can add this file to the process flow.)

In this example, you are adding the existing TopNCategories.sas file to the process flow in SAS Studio.

Add a Snippet

You can use snippets as the starting point for your SAS programs.
To add a snippet to a process flow:
1 In the navigation pane, select Snippets.
2 In the Snippets section, select the snippet that you want to add, and then drag it to the process flow.

In this example, the Import XLSX file snippet is added to the process flow.

3 To view the code for the snippet, select the snippet node and click $\boldsymbol{\sigma}$. (You can also select the node and press Enter.) Edit the code to meet your needs.

Here is the code for the Import XLSX file snippet．In this example，specify in the code the location of the XLSX file that you want to import．

```
****Process Flow 1 x
> Run ■ Stop|回回侪
Process Flow 1 > Import XLSX File
    CODE LOG RESULTS NODE
```



```
    1/** Import an XLSX file. **/
    2
    3PROC IMPORT DATAFILE="<Your XLSX File>"
    4
    5 DBMS=XLSX
    6 REPLACE;
    7RUN;
    8
    9/** Print the results. **/
10
11 PROC PRINT DATA=WORK.MYEXCEL; RUN;
```

4 To name the program that you created，to provide a brief description for the program， and to include any notes，click the Node tab．
*Process Flow $1 \times$

Run m Stop 日 日

Process Flow $1>$ Import XLSX File
CODE LOG RESULTS NODE

4 IDENTIFICATION

Label:
Import XLSX File
Description:
Imports the Sales.XLSX file
Created: $\quad 10 / 13 / 2014$ 2:16:27 PM
Modified: 10/13/2014 2:19:03 PM
\triangle NOTES

Notes:

The Import XLSX File node in the process flow now includes the description that you provided.

ㄴ-1 *Process Flow $1 \times$

```
- Run
Stop 日白
※
```

FLOW RESULTS PROPERTIES

Adding a Query to a Process Flow

Create a New Query

To create a new query:
1 Click + and select Query. A node for the query is added to the process flow.
2 Select the node and click \boldsymbol{F}. The Query Builder appears.
3 Use the Query Builder to define your query. For more information, see "Creating a New Query" on page 48.

4 To define the type of results for the query, use the Properties tab. For more information, see "Saving Your Results" on page 68.

5 To name the query node, to provide a brief description for the query, and to include any notes, click the Node tab.

To return to the view of the process flow, select the name of the process flow in the breadcrumbs. The query node in the process flow now contains the name and description that you specified on the Node tab.

Add an Existing Query to a Process Flow

You might have already written a query that you want to include in the process flow. To add this query:

1 In the navigation pane, click the Folders section.
2 Expand the folders in the Folders section until you find the program that you want to add.

3 Select the query that you want to add, and then drag it in the process flow. (A green check mark indicates that you can add this file to the process flow.)

In this example, you are adding the existing Query_CLASSFIT file to the process flow in SAS Studio.

Add a Task to a Process Flow

You can add custom tasks and tasks that shipped with SAS Studio to your process flow.
1 In the navigation pane, click the Tasks section.
2 Select the task that you want to add, and then drag it in the process flow.

Here is an example of a process flow that contains the Sort Data task.

3 Select the task node and click \boldsymbol{E}. To run the task, you must specify values for any required options.

Here is the user interface for the Sort Data task.

When you run the task, SAS Studio uses the values that you specified for the task options.

Understanding Subflows

What Is a Subflow?

Within a process flow, you could have subflows. These subflows contain one or more objects. The advantage to creating a subflow is that you can easily run the nodes within a subflow without running the entire process flow. If the subflow links to another node in the entire process flow, the subflow must run to completion before SAS Studio runs the subsequent node.

In this example, there are three nodes: a programming node called PROC PRINT, a node for a subflow, and a query node called CLASS=F. All of the nodes in the subflow node must run before SAS Studio runs the CLASS=F node. By default, the node for a subflow is white.

Note: SAS Studio cannot run a process flow that contains an empty subflow. An error message appears instead.

Create a New Subflow

To add a subflow to a process flow:
1 Click + and select Sub-Flow. A node for the subflow appears in the process flow.
2 Select the subflow node and click \boldsymbol{E}. Use the breadcrumbs to verify that you are working in the subflow.

```
"-3.EProcess Flow 1 x
```

```
> Run ■ Stop|回自济
```

```
> Run ■ Stop|回自济
```

Process Flow $1>$ Sub-flow -- CLASS


```
Query
```

3 Add the content for the subflow．A subflow can contain other subflows．
4 To name the subflow node，to provide a brief description for the subflow，and to include any notes，click the Node tab．

After you enter this information，the subflow node in the process flow contains the name and description that you specified on the Node tab．

Create a Subflow from an Existing Process Flow

You might want to add an existing process flow as a subflow to another process flow．
To add an existing process flow as a subflow：
1 In the navigation pane，click the Folders section．
2 Expand the folders in the Folders section until you find the program that you want to add．

3 Select the process that you want to add，and then drag it in the process flow．（A green check mark indicates that you can add this file to the process flow．）

In this example, you are adding the existing PF_Example.cpf file to the process flow in SAS Studio.

Linking Nodes in a Process Flow

In a process flow, you can specify the order in which each node runs. Generally, each node has an input port and an output port. To view the ports for the nodes in your process flow, click Show Ports.

To link nodes in the process flow:
1 Select a control port for the node that you want to link.

2 Draw an arrow from the control port of one node to the control port of the node that you want to link to.

If a link is allowed between the two nodes, the two nodes are connected by a dotted line in the process flow.

Running a Process Flow

To run all the nodes in the process flow, click $>$ Run.
To run a select group of nodes, use the mouse to draw a box around the nodes that you want to run. Right-click your selection. From the pop-up menu, select Run Selected.

To stop running a process flow, click ■Stop.

Save a Process Flow

To save the current process flow, click 回. The process flow is saved as a CPF file in Folder Shortcuts or My Folders.

?

Working with Data

About the Table Viewer 93
Opening and Viewing Data 96
Viewing the Query Code That Is Used to Create a Table 97
Filtering and Sorting Data 97
Exporting Data 100

About the Table Viewer

When you open a table in SAS Studio, you use the table viewer.

Note: The table viewer displays the first 100 rows of the table. If the structure or data values of the table change while the table is open, you must refresh the table viewer to see the changes. If the structure of the table changes and you do not refresh the table, the columns that are listed in the Libraries section of the navigation pane might be different from the columns that are displayed in the table viewer.

You can view the properties of the table and its columns by clicking ${ }^{[10}$ on the toolbar.

SAS Table Properties		
General	Columns	Extended Attributes
Column Extended Attributes		
Name:	CARS	
Description:	2004 Car Data	
Type:	Table	
Location:	SASHELP.CARS	
Rows:	428	
Columns:	15	
Date created:	Jun 12, 2013, 9:09:53 PM	
Date modified:	Jun 12, 2013,9:09:53 PM	

SAS Table Properties						\times
General Column Ex		Extended Attributes	Column Extended Attributes			
Column Name	Type:	Length:	Format:	Informat:	Label:	
MAKE	Char	13				-
MODEL	Char	40				
TYPE	Char	8				
ORIGIN	Char	6				
DRIVETRAIN	Char	5				
MSRP	Numeric	8	DOLLAR8.			
INVOICE	Numeric	8	DOLLAR8.			
ENGINESIZE	Numeric	8			Engine Size (L)	
CYLINDERS	Numeric	8				
HORSEPOWEI	Numeric	8				
MPG_CITY	Numeric	8			MPG (City)	
					MPG,	\checkmark
					Close	

The extended attributes tabs enable you to associate additional user-defined characteristics with the table and columns in the table. For example, you could create extended attributes that contain a URL with information about your table or the formula that is used to create a column. For more information about creating extended attributes, see Base SAS 9.4 Procedures Guide.

Note: You can add extended attributes only to SAS tables that were created on a SAS 9.4 (or later) server.

Opening and Viewing Data

You can open files in SAS Studio in several ways：
－You can double－click a file in the Folders and Libraries sections．
－You can drag a file from the Folders and Libraries sections to the work area．
－You can search for a file and open it from the search results．You can open the file by double－clicking it or by dragging it to the work area．
－You can open a file by using a file shortcut in the File Shortcuts section．You can open the file by double－clicking it or by dragging it to the work area．

When you open a table，all of the columns in the table are displayed．You can use the Columns area to specify which columns you want to include in the table viewer．By default，the column names are displayed，but you can choose to display the column labels by selecting Column labels from the View drop－down list．

毙 SASHELP．CARS x								
	旦	目	9	（＊）Filter：（no				
Column labels	Total rows： 428 Total columns： 15					16	Rows 1－100 \Rightarrow	$\Rightarrow 1$
		Type	Origin	DriveTrain	MSRP	Invoice	EngineSize	
－ $\mathbf{A}_{\text {Make }}$	1	SUV	Asia	All	\＄36，945	\＄33，337	3.5	\wedge
$\square \mathbf{A}_{\text {Model }}$	2	Sedan	Asia	Front	\＄23，820	\＄21，761	2	
－Atype	3	Sedan	Asia	Front	\＄26，990	\＄24，647	2.4	
－AOrigin	4	Sedan	Asia	Front	\＄33，195	\＄30，299	3.2	
－A DriveTrain	5	Sedan	Asia	Front	\＄43，755	\＄39，014	3.5	
－ （23）$_{\text {MSRP }}$	6	Sedan	Asia	Front	\＄46，100	\＄41，100	3.5	
－ 122 $^{\text {Invoice }}$	7	Sports	Asia	Rear	\＄89，765	\＄79，978	3.2	
－（23）EngineSize	8	Sedan	Europe	Front	\＄25，940	\＄23，508	1.8	

Viewing the Query Code That Is Used to Create a Table

While you select options and customize the table to look the way you want it to, SAS Studio is generating SAS code that you can use. To view the query code, click 畈 on $^{\text {on }}$ the toolbar. A new program window appears with the code that was used to create the view of the table in the table viewer. The program is a copy of the query code and is no longer associated with the original query. Editing the code does not affect the data that is displayed in the table viewer, and modifying the table viewer does not affect the contents of the code.

Filtering and Sorting Data

In the table viewer, you can right-click a column heading to filter and sort the data by that column.

Total rows: 19 Total columns: 5					-	Rows 1-19	\Rightarrow	\#*
	Name	- Sex			Height			
1	Alfred	M	Sort Ascending		69			
2	Alice	F	Sort Descending		56.5			
3	Barbara	F	Add Filter		65.3			
4	Carol	F	14		62.8			
5	Henry	M	14		63.5			
6	James	M	12		57.3			
7	Jane	F	12		59.8			
8	Janet	F	15		62.5			
9	Jeffrey	M	13		62.5			
10	John	M	12		59			
11	Joyce	F	11		51.3			
12	Judy	F	14		64.3			
13	Louise	F	12		56.3			
14	Mary	F	15		66.5			
15	Philip	M	16		72			
16	Robert	M	12		64.8			
17	Ronald	M	15		67			
18	Thomas	M	11		57.5			
19	William	M	15		66.5			
4								,

The filter options vary depending on the type of column that you have selected. The Add Filter window for a numeric column enables you to specify one or two filter criteria for each column. To add a second filter criterion, click $\boldsymbol{+}$.

Total rows: 19 Total columns: 5					$14 \leqslant \mathrm{R}$	Rows 1-19	\Rightarrow	- 1
	Name	$\stackrel{\rightharpoonup}{*}$		Age	Height			
1	Alfred		M	14	69			
2	Alice		F	13	56.5			
3	Barba	Add Filter						
4	Carol				\times			
5	Henry Sp	Specify the criteria for "Height"						
6	Jame							
7	Jane		60		\pm			
8	Janet	$=1-$			自			
9	Jeffre	$=$						
10	John	\geq		Filter	Cancel			
11	Joyce			Filter	Cancel			
12	Judy	>		14	64.3			
13	Louise			12	56.3			
14	Mary			15	66.5			
15	Philip			16	72			
16	Robert		M	12	64.8			
17	Ronald		M	15	67			
18	Thomas		M	11	57.5			
19	William		M	15	66.5			
4								-

The Add Filter window for a character column enables you to select one or more values in the column.

Add Filter

Select one or more values.

Filter
Clear Cancel

The Add Filter window for a date column enables you to select a date value from a popup calendar window.

When you create a filter on your data, the filter criteria are displayed at the top of the workspace. You can click $\boldsymbol{\vartheta}$ to edit the filter and $\boldsymbol{\otimes}$ to delete the filter.

Exporting Data

You can use SAS Studio to export your data as another file type to a folder that you specify.

Note: You cannot export your data to an FTP folder.
To export your data:

1 Click Libraries in the navigation pane and browse to find the file that you want to export.

2 Right-click the file that you want to export and select Export. The Export Table window opens.

3 Select the folder in which you want to save the exported file.
4 In the Filename box, enter the name of the exported file.
5 From the File format drop-down list, select the format of the exported file.

6 Click Export to export the file.

102 Chapter 5 / Working with Data

Working with Results

Viewing Results 103
Sending Your Results to Another User 104
About the SAS Output Delivery System 106
About SAS ODS Statistical Graphics 106
About SAS ODS Statistical Graphics 106
SAS ODS Graphics Designer 107
SAS ODS Graphics Editor 109
How to Edit Your Graphics Output 110
Specifying the Style for Your Results 112

Viewing Results

When you run a task or a program in SAS Studio, the results are displayed in the work area. You can save the results as an HTML, PDF, or RTF file. You can also download any generated data.

Sending Your Results to Another User

You can send a copy of your results and the associated code and log files to another user through electronic mail. Files that you can send include results in HTML, RTF, and PDF formats as well as the code and log files that are associated with the results. You can also send a Program Summary file, which includes information about the program execution, the complete SAS source code, the complete SAS log, and the results. The code, log, and program summary files are sent as HTML files. To send files through e-
mail, you need access to an SMTP server. For more information, contact your site administrator.

Note: If your SAS Studio e-mail messages are being marked as junk mail, see SAS Studio: Administrator's Guide for information about your configuration file.

To send results by e-mail:
1 On the toolbar for your results, click $>$. The Send Email window opens.

2 Select the items that you want to include as attachments to your e-mail. By default, the HTML results are selected.

3 In the To box, enter the e-mail addresses to which you want to send the files. Separate addresses with a semicolon.

4 If you want to send a copy of the e-mail to another address, enter the address in the Cc box.

5 In the Subject box, enter a subject for the e-mail. You can also add a message to include in the body of the e-mail.

6 Click Send to send the message and attachments.

About the SAS Output Delivery System

The SAS Output Delivery System (ODS) gives you greater flexibility in generating, storing, and reproducing SAS procedure and DATA step output along with a wide range of formatting options. ODS provides formatting functionality that is not available when using individual procedures or the DATA step without ODS.

SAS Studio uses very specific ODS options and the GOPTIONS statements so that the output is displayed properly in the web environment. To view all of the ODS options in your code, click $\overline{\bar{\ldots}}$ and select Preferences. In the Preferences window, click General and select the Show generated code in the SAS log option.

Note: To ensure that your output is displayed properly, do not change the settings of the ODS options or GOPTIONS statements in the generated code.

About SAS ODS Statistical Graphics

About SAS ODS Statistical Graphics

SAS ODS Statistical Graphics, more commonly referred to as SAS ODS Graphics, is an extension of the SAS Output Delivery System (ODS). ODS manages all output that is created by procedures and enables you to display the output in a variety of forms, including HTML and PDF.

Many SAS analytical procedures use ODS Graphics functionality to produce graphs as automatically as these procedures produce tables. ODS Graphics uses the Graph Template Language (GTL) syntax, which provides the power and flexibility to create many complex graphs. The GTL is a comprehensive language for defining statistical graphics.

In SAS Studio, you can use the ODS Graphics Designer to define these statistical graphics without knowing the GTL. After a graph definition is created, you can use that graph definition to create an ODS statistical graph in SAS Studio.

SAS ODS Graphics Designer

What Is the SAS ODS Graphics Designer?

The SAS ODS Graphics Designer is an interactive graphical application that you can use to create and design custom graphs. The designer creates graphs that are based on the Graph Template Language (GTL), which is the same language that is used by SAS analytical procedures and SAS ODS Graphics procedures. The ODS Graphics Designer provides a graphical user interface so that you can design graphs easily without knowing the details of templates and the GTL.

Using point-and-click interaction, you can create simple or complex graphical views of data for analysis. The ODS Graphics Designer enables you to design sophisticated graphs by using a wide array of plot types. You can design multi-cell graphs, classification panels, and scatter plot matrices. Your graphs can have titles, footnotes, legends, and other graphics elements. You can save the results as an image for inclusion in a report or as an ODS Graphics Designer file (SGD) that you can later edit.

For more information, see SAS ODS Graphics Designer: User's Guide, which is available from support.sas.com.

How to Install the SAS ODS Graphics Designer

If you have SAS Foundation installed on your machine, the SAS ODS Graphics Designer is already available. For example, if you are using the single-user edition of SAS Studio, the SAS ODS Graphics Designer is already installed because you are running SAS Foundation and SAS Studio on the same machine.

Note: Only the Windows version of the SAS ODS Graphics Designer is supported when you are running SAS Studio. The SAS ODS Graphics Designer must be installed on the same machine as the browser you are using to access SAS Studio. (SAS Studio might be installed on a different machine.) If multiple users are accessing SAS Studio and these users are on different machines, SAS ODS Graphics Designer must be installed on each user's machine.

To install the SAS ODS Graphics Designer:
1 Click $\overline{\overline{\ldots .}}$. Select Tools $>$ Install ODS Graphics Designer. The downloads and hot fixes page for Base SAS Software on support.sas.com opens.

2 Under the SAS 9.4M2 heading, click SAS ODS Graphics Designer.
3 From the list of download pages, click Request download for your Windows operating environment and follow the subsequent installation steps.

Open the SAS ODS Graphics Designer

After the SAS ODS Graphics Designer is installed, you can open it by using a menu option in SAS Studio. To open SAS ODS Graphics Designer, click $\bar{\ldots}$ and select Tools. Then select ODS Graphics Designer.

SAS ODS Graphics Editor

What Is the SAS ODS Graphics Editor?

The ODS Graphics Editor enables you to edit the various elements in the output graph while keeping the underlying data unchanged. In addition, you can annotate a graph by inserting text, lines, arrows, images, and other items in a layer above the graph. You can save the results of your customization as an ODS Graphics Editor (SGE) file and make incremental changes to the file. You can also save the results as a Portable Network Graphics (PNG) image file for inclusion in other documents.

For more information about the SAS ODS Graphics Editor, see SAS ODS Graphics Editor: User's Guide, which is available from support.sas.com.

How to Install the SAS ODS Graphics Editor

When you install the SAS ODS Graphics Editor, SAS Studio automatically creates the ~/Projects/ODSEditorFiles directory.

Note: If you are running the single-user edition of SAS Studio, then the SAS ODS Graphics Editor is already installed.

To install the SAS ODS Graphics Editor:
1 Click $\overline{\bar{\ldots} .}$. Select Tools $>$ Install ODS Graphics Editor. The downloads and hot fixes page for Base SAS Software on support.sas.com opens.

2 For your release of SAS, click ODS Graphics Editor. (For example, if you are running on SAS 9.4, select ODS Graphics Editor under the SAS 9.4 heading.)

3 From the list of download pages, click Request download for your Windows operating environment and follow the subsequent installation steps.

How to Edit Your Graphics Output

1 Include this statement in your SAS code so that you can edit your graphics output: ods listing sge=on gpath="\{home\}/Projects/ODSEditorFiles"; When you run this program, the graphical output is saved as an SGE file in your ~/ Projects/ODSEditorFiles directory.

2 In the Folders section of the navigation pane, expand the ODSEditorFiles folder.

Folders

园 SGPanel．png
－SGPanel．sge
D SGPanel1．sge
® SGPanel2．png
D SGPlot．sge
－SGPlot1．sge
－SGPlot10．png
园 SGPlot2．png
－SGPlot2．sge
D SGPlot3．sge
园 SGPlot4．png
－SGPlot4．sge
SGPlot6．png
园 SGPlot8．png
－SGScatter．png
D SGScatter．sge

3 Double－click the filename to open the graph in the SAS ODS Graphics Editor．

For example, here is the SGPanel1.sge file in the SAS ODS Graphics Editor.

Note: The default list of files in your ODSEditorFiles folder is created by the code snippets in the Snippets section. For more information, see "Working with Code Snippets" on page 34.

Specifying the Style for Your Results

The Preferenceswindow enables you to change several options that affect how your results are displayed.

To access the editor options, click $\overline{\overline{\cdots e}}$ and select Preferences. Click Results.

Option

Description

Display warning if results are larger than n MB
displays a warning message when you attempt to open a results file that is larger than n megabytes (MB). The default value is 4 MB .

Option	Description
HTML output style	displays the style that is applied to results in HTML. To change the style that is applied to the results, select another style from the drop- down list.
Produce PDF output	generates results in PDF format. This option is selected by default.
PDF output style	displays the style that is applied to results in PDF. To change the style that is applied to the results, select another style from the drop- down list.
Generate the default table of contents	automatically creates a table of contents in the PDF file.
Produce RTF output	generates results in RTF format. This option is selected by default.
RTF output style	displays the style that is applied to results in RTF. To change the style that is applied to the results, select another style from the drop- down list.

114 Chapter 6 / Working with Results

Understanding Tasks in SAS Studio

What Is a Task? 115
How to Run a Task 116
Save a Task and Its Option Settings 118
Edit a Predefined Task 119
Create a New Task 120
Customizing the Task Code and the Task Layout in the Workspace 122

What Is a Task?

A task is an XML and Apache Velocity code file that generates SAS code and formats results for you. Tasks include SAS procedures from simple data listings to complex analytical procedures. SAS Studio is shipped with several predefined tasks. You can edit a copy of these predefined tasks in order to customize the tasks for your site. You can also build your own tasks.

How to Run a Task

To run a predefined task:
1 In the navigation pane, click the Tasks section.
2 Expand the folder that contains the task.
3 Right-click the task name and select Open. Alternatively, you can double-click the task to open it.

The task opens to the right of the work area.

4 If the Data tab is available, specify an input data source and select columns for the roles in the data source. A role is a description of a variable's purpose in the task. To add a column to a role, click $\boldsymbol{\psi}$. A list of available columns for that role appears. If only one column can be assigned to the role, you select a column and the list
disappears. If multiple columns can be assigned, you can press Ctrl or Shift to select multiple columns from the list and click OK.

5 On the remaining tabs, specify any other required options, which are denoted with a red asterisk. As you assign values to the task, the relevant SAS code is generated.

6 To run the task, click \qquad
If the task generates output data, the table opens in your work area.

If the task generates results, the output appears on the Results tab under the tab for the current task.

Save a Task and Its Option Settings

If you use a task frequently, you might want to save the task after you specify the input data source and the option settings. In SAS Studio, you can save a task as a CTK file in your Folders directory. The next time that you need to run the task, double-click the task in your Folders directory and the task appears with all of your previous settings.

Note: Before you can save a task, you must specify an input data set and all the options that are required to run the task.

To save a task:
1 Click ©. The Save As window appears.
2 Select the location where you want to save the task file. You can save this file in the Folders section or in your My Tasks folder. Specify a name for this file. For the file type, select CTK Files (*.CTK). Click Save.

In this example, the task is now available from the Folders section.

Folders

5

- त Folder Shortcuts

4 My Folders

- Desktop
- Documents
- WebWork

Bar Chart.ctk

Tasks

Snippets

Libraries

File Shortcuts

Note: In the Tasks section, you are still working with this task. If you save the task again, the CTK file in the Folders section is updated.

Edit a Predefined Task

To customize the predefined tasks for your site, you can edit the XML code that is used to create the task.

To edit a predefined task:
1 In the navigation pane, open the Tasks section.
2 Expand the folder that contains the task.
3 Right-click the name of the task that you want to edit and select Add to My Tasks. The Add to My Tasks window opens.

4 Specify a name and description for the task. By default, the name and description from the predefined task is used. Using the Category drop-down list, you can also specify where to save a copy of this task in the My Tasks folder. If you select (none), the task is added directly to the My Tasks folder.

Click Add.
5 Open the My Tasks folder and select the copied task.
6 Click [. The XML file for the task appears.
7 Edit the XML file and save your changes. To preview your changes, click

Create a New Task

SAS Studio provides a template that you can use to create custom tasks for your site.
To create a custom task:
1 In the navigation pane, open the Tasks section.
2 Click 蝷 and select Blank Task. A task template opens.

医垁 Program $1 \times$ 相 Blank Task x


```
    1<?xml version="1.0" encoding="UTF-8"?>
    2<Task schemaVersion="2.0">
    3 <Registration>
        <Name nlsKey="NameKey">Blank Task</Name>
        <Description nlsKey="DescriptionKey">This is a blank task</Description>
        <GUID>*</GUID>
        <Procedures>TBD</Procedures>
        <Version>3.2</Version>
        <Links>
        <Link href="http://support.sas.com/software/products/sasstudio/index.html#s1=2"
        </Links>
    </Registration>
    <Metadata>
            <DataSources>
            </DataSources>
            <Options>
            </Options>
            </Metadata>
            <UI>
            </UI>
    <CodeTemplate>
        <![CDATA[
27
28proc print data=sashelp.cars;run;
29
30 ]l>
31 </CodeTemplate>
32</Task>
```

3 Edit the code in the task template to create your task．To view the user interface for the task template，click $\boldsymbol{\mathcal { R }}$ ．In the user interface for the task template，you can see examples of radio buttons，check boxes，combination boxes，and other types of options．For more information about this file，see SAS Studio：Developer＇s Guide．

4 Click ．

Note：The name of the task cannot include these special characters：

```
[ ] {}, ? / \ * # " % + < < > :
```


Customizing the Task Code and the Task Layout in the Workspace

The Preferences window enables you to change several options that affect what and how the task code is displayed.

To access these options, click $\overline{\overline{\ldots ⿰ ⿺}}$ and select Preferences. Click Tasks.

Trim all leading and trailing blank spaces in generated code
removes any blank spaces that appear before or after the generated code.

Generate header comments for task code

Automatically format generated code
adds comments before the generated code for a SAS task.

View
automatically formats any code that is generated by a task and displayed in the code editor.

View	specifies how to lay out the task options, task code, and task results in your workspace. You can choose from these options:
	Split - displays the task settings, the code, and the results for the task.
	Settings - displays only the options for the task in the workspace.
	Code/Results - displays the SAS code, the log, and any results in the workspace.

Show task code

specifies whether to display the SAS code for the task when you select the Split view or the Code/Results view.

Show task log

specifies whether to display the log that is generated when you run the task. This option is available only if you select the Split view or the Code/Results view.

Display task settings on right

displays the task option to the right of the SAS Studio workspace. By default, the task options are displayed to the left.

124 Chapter 7 / Understanding Tasks in SAS Studio

Data Tasks

Characterize Data Task 126
About the Characterize Data Task 126
Example: Characterize Data Task 126
Assigning Data to Roles 130
Setting Options 131
Combinations Task 131
About the Combinations Task 131
Example: Calculating the Combinations of 52 Objects in 5 Sets 131
Setting Options 133
List Data Task 133
About the List Data Task 133
Example: Reports of Drive Train, MSRP, and Engine Size by Car Type 133
Assigning Data to Roles 135
Setting Options 136
Permutations Task 138
About the Permutations Task 138
Example: Calculating the Permutations of Six Objects 138
Setting Options 140
Rank Data Task 140
About the Rank Data Task 140
Example: Ranking Students by Age and Height 140
Assigning Data to Roles 142
Setting Options 143
Random Sample Task 147
About the Random Sample Task 147
Example: Creating a Random Sample of the Sashelp.Pricedata Data Set 147
Assigning Data to Roles 149
Setting Options 151
Sort Data Task 153
About the Sort Data Task 153
Assigning Data to Roles 153
Setting Options 154
Table Attributes Task 156
About the Table Attributes Task 156
Example: Table Attributes for the Sashelp.Pricedata Data Set 156
Setting Options 158
Transpose Data Task 159
About the Transpose Data Task 159
Assigning Data to Roles 160
Setting Options 161

Characterize Data Task

About the Characterize Data Task

The Characterize Data task creates a summary report, graphs, and frequency and univariate SAS data sets that describe the main characteristics of the data.

Example: Characterize Data Task

In this example, you want a better understanding of the contents in the Sashelp.Pricedata data set.

To create this example:
1 In the Tasks section, expand the Data folder and double-click Characterize Data. The user interface for the Characterize Data task opens.

2 On the Data tab, select the SASHELP.PRICEDATA data set.
3 To run the task, click

Here is a sample of the results:
Summary of Character Variables for SASHELP.PRICEDATA

Limited to the 30 Most Frequent Distinct Values per Variable \begin{tabular}{|l|l|l|r|r|}

\hline \multirow{2}{*}{ Variable } \& Label \& Value \& | Frequency |
| ---: |
| Count | \& | Percent of Total |
| ---: |
| Frequency |

\hline \multirow{4}{*}{ productLine } \& \multirow{3}{*}{ Name of product line } \& Line2 \& 240 \& 23.5294

\cline { 3 - 5 } \& Line3 \& 240 \& 23.5294

\cline { 3 - 5 } \& \& Line1 \& 240 \& 23.5294

\hline \& \& Line5 \& 180 \& 17.6471

\hline
\end{tabular}

Variable	Label	Value	Frequency Count	Percent of Total Frequency
	Product1	60	5.8824	
	Product10	60	5.8824	
	Product11	60	5.8824	
	Product12	60	5.8824	
	Product13	60	5.8824	
	Product14	60	5.8824	

Summary of Numeric Variables for SASHELP.PRICEDATA

Variable	Label	\mathbf{N}	NMiss	Total	Min	Mean	Median	Max	StdMean
cost	Unit Cost	1020	0	37419.00	16.400	36.685	29.7	78.0	0.55372

Variable	Label	\mathbf{N}	NMiss	Total	Min	Mean	Median	Max	StdMean
discount	Price Discount	1020	0	11.50	0.000	0.011	0.0	0.2	0.00122

Variable	Label	N	NMiss	Total	Min	Mean	Median	Max	StdMean
line	Product Line ID	1020	0	2940.00	1.000	2.882	3.0	5.0	0.04003

Variable	Label	\mathbf{N}	NMiss	Total	Min	Mean	Median	Max	StdMean
price	Unit Price	1020	0	80304.68	26.720	78.730	65.2	171.4	1.23613

Variable	Label	N	NMiss	Total	Min	Mean	Median	Max	StdMean
price1	Product 1 Unit Price	1020	0	52723.63	44.455	51.690	52.3	52.3	0.06410

Variable	Label	N	NMiss	Total	Min	Mean	Median	Max	StdMean
price10	Product 10 Unit Price	1020	0	57312.53	45.520	56.189	56.9	56.9	0.07740

By default, the task also creates output data-a table with the frequency data and a table with the univariate data. Both of these tables are saved in the Work library.

Assigning Data to Roles

You must select a data source to run the Characterize Data task. However, no roles are available.

Setting Options

Option Name	Description
Output Options	You must select at least one output option. By default, a summary report, graphs, and output tables for the frequency data and univariate data are created.
Limit categorical values	Specifies the maximum number of categorical values to report per variable. By default, 30 values are reported. You can change this maximum value in the Maximum number of unique values per variable box.

Combinations Task

About the Combinations Task

The Combinations task computes the possible combinations of the total number of objects into sets with a specified number in each set.

Example: Calculating the Combinations of 52 Objects in 5 Sets

To create this example:
1 In the Tasks section, expand the Combinatorics and Probability folder and double-click Combinations. The user interface for the Combinations task opens.

2 On the Options tab, specify these options.
Assign columns to these roles:

Option Name	Value to Specify
Total number of objects	52
Number of objects in a set	5
Data set name	Combo

3 To run the task, click $\boldsymbol{\gamma}$.
The Combinations task creates an output data set. In SAS Studio, this data set opens on the WORK.Combo tab.

Setting Options

All of these options are required to run the Combinations task.

Option Name

Observations
Total number of objects
Number of objects in a set
Output Data Set
Data set name

Description specifies the number of objects.
specifies the number of objects in a set.

List Data Task

About the List Data Task

The List Data task displays the contents of a table as a report. For example, you can use the List Data task to create a report that sums the expenses and revenues for each sales region.

Example: Reports of Drive Train, MSRP, and Engine Size by Car Type

In this example, you want to create reports for each car type. Each report lists the drive train, MSRP, and engine size.

To create this example:
1 In the Tasks section, expand the Data folder and double-click List Data. The user interface for the List Data task opens.

2 On the Data tab, select the SASHELP.CARS data set.
3 Assign columns to these roles:

Role	Column Name
List variables	DriveTrain
	MSRP
	EngineSize
Group analysis by	Type

4 To run the task, click

Here is a subset of the results:

List Data for SASHELP.CARS

Type=Hybrid			
Row number	DriveTrain	MSRP	Engine Size (L)
$\mathbf{1}$	Front	$\$ 20,140$	1.4
$\mathbf{2}$	Front	$\$ 19,110$	2.0
$\mathbf{3}$	Front	$\$ 20,510$	1.5

Type=SUV			
Row number	DriveTrain	MSRP	Engine Size (L)
$\mathbf{4}$	All	$\$ 36,945$	3.5
$\mathbf{5}$	All	$\$ 37,000$	3.0
$\mathbf{6}$	All	$\$ 52,195$	4.4
$\mathbf{7}$	All	$\$ 37,895$	4.2
$\mathbf{8}$	Front	$\$ 26,545$	3.4
$\mathbf{9}$	Front	$\$ 52,795$	5.3
$\mathbf{1 0}$	Front	$\$ 46,995$	4.6
$\mathbf{1 1}$	Front	$\$ 42,735$	5.3
$\mathbf{1 2}$	All	$\$ 41,465$	5.3
$\mathbf{1 3}$	Front	$\$ 30,295$	4.2
$\mathbf{1 4}$	Front	$\$ 20,255$	2.5
$\mathbf{1 5}$	All	$\$ 32,235$	4.7

Assigning Data to Roles

Role	Description
List variables	Prints the variables in the order in which they are listed.

Role	Description
Group analysis by	When you assign one or more variables to this role, the table is sorted by the selected variable or variables, and a listing is generated for each distinct value, or BY group, in the variable or combination of variables.
Total of	Prints the sum of the selected variable at the bottom of the listing report.
Identifying label	When you specify one or more variables in this role, the List Data task uses the formatted values of these variables to identify the rows, rather than observation numbers (designated in the results by the column heading "Obs").

Setting Options

Option Name

Basic Options

Display row numbers

Includes in the output a column that lists the row number for each observation.
You can specify a label for this column in the Column label text box. By default, the name of this column is Row number.

Uses the column label instead of the column name as the column heading.

Reports the number of rows in the table at the end of the output, or the number of rows in each BY group at the end of each BY group's output.

Option Name
 Round values before summing the variable

Description

Rounds each numeric value to the number of decimal places in its format, or to two decimal places if no format is specified. If this option is specified, the List Data task performs the rounding before summing the variable.

Heading direction

Column width

Column headings can be printed horizontally or vertically, or you can select Default and let SAS determine the optimal arrangement for each column.

Specifies how the List Data task determines
column widths:

Default

determines the column widths on a perpage basis.

Full

uses a format width (or default width if no format is specified) for all pages.

Minimum

uses the smallest possible column width on a per-page basis.

Uniform

reads the entire table to determine the appropriate column widths before generating output. When this option is not selected, different pages could have different widths for the same column.

Uniform by

formats all columns uniformly within a BY group, using each variable's formatted width as its column width. If the variable does not have a format that explicitly specifies a field width, the task uses the widest data value as the column width.

Option Name

Split labels

Description

If the variable labels contain one of the split characters (*, !, @, \#, \$, \%, ^, \&, or +), the labels will be split at the split character or characters. For example, for a variable label that reads "This is*a label" and the * character is selected as the split character, the column heading will read

This is
a label
You do not need to select both the Use variable label as column headings and Split labels options. The Split labels option implies that you want to use variable labels.

Rows to list
specifies the number of rows to list in the output. By default, all rows are listed.

Permutations Task

About the Permutations Task

The Permutations task computes the possible permutations of a given number of objects.

Example: Calculating the Permutations of Six Objects

To create this example:
1 In the Tasks section, expand the Combinatorics and Probability folder and double-click Permutations. The user interface for the Permutations task opens.

2 On the Options tab, specify these options.
Assign columns to these roles:

Option Name	Value to Specify
Number of objects	6
Data set name	Perms

3 To run the task, click $\boldsymbol{\gamma}$.
The Permutations task creates an output data set. In SAS Studio, this data set opens on the WORK.Perms tab.

Setting Options

All of these options are required to run the Permutations task.

Option Name

Observations

Number of objects

Description

specifies the number of objects for which you want to compute permutations. This value can range from 1 to 10.

Output Data Set
Data set name
specifies the name of the output data set.

Rank Data Task

About the Rank Data Task

The Rank Data task computes ranks for one or more numeric variables across the rows in a table and includes the ranks in an output table.

For example, you might want to rank the sales for each product that your company sells. In this case, the ranking variable would show the order of product sales. The product with the highest number of sales would be ranked first.

Example: Ranking Students by Age and Height

In this example, you want to rank the students in your class by age and height.

To create this example:
1 In the Tasks section, expand the Data folder and double-click Rank Data. The user interface for the Rank Data task opens.

2 On the Data tab, select the SASHELP.CLASS data set.
3 Assign columns to these roles:

Role	Column Name
Columns to rank	Height
Rank by	Age

4 To run the task, click
The Rank Data task creates an output data set. In SAS Studio, this data set opens on the WORK.Rank tab. This data set contains the additional rank_Height column, which shows where that student ranks within her age group. For example, in the 11-year-old age group, Joyce is ranked number one. In the 12-year-old age group, Louise is ranked number 1.

Assigning Data to Roles

To run the Rank Data task, you must assign a column to the Columns to rank role.

Role

Columns to rank

Description

Each column that is assigned to this role is ranked. You must assign at least one variable to this role. By default, the rankings column is given the name rank_column-name, where column-name is the name of the original column.
Role Description

Rank by
When you assign one or more columns to this role, the input table is sorted by the selected column or columns and rankings are calculated within each group.

Setting Options

You must select at least one output option.

Option Name

Options

Ranking method

Description

specifies the method to use when ranking the data. Here are the valid values:

None

does not use a method to rank the data.

Percentile ranks

partitions the original values into 100 groups, in which the smallest values receive a percentile value of 0 and the largest values receive a percentile value of 99.

Deciles

partitions the original values into 10 groups, in which the smallest values receive a decile value of 0 and the largest values receive a decile value of 9 .

Option Name

Ranking method (continued)

Description

Quartiles

partitions the original values into four groups, in which the smallest values receive a quartile value of 0 and the largest values receive a quartile value of 3 .

Group = n (NTILES)

partitions the original values into n groups, in which the smallest values receive a value of 0 and the largest values receive a value of $n-1$. Specify the value of n in the Number of groups box.
Fractional ranks with denominator $=\mathbf{n}$ computes fractional ranks by dividing each rank by the number of observations that have nonmissing values of the ranking variable.

Fractional ranks with denominator $=\mathbf{n + 1}$ computes fractional ranks by dividing each rank by the denominator $n+1$, where n is the number of observations that have nonmissing values of the ranking variable.

Percents

divides each rank by the number of observations that have nonmissing values of the variable and multiplies the result by 100 to get a percentage.

Option Name

Ranking method (continued)

Description

Normal scores (Blom formula), Normal scores (Tukey formula), Normal scores (van der Waerden formula)
computes normal scores from the ranks.
The resulting variables appear normally distributed. Here are the formulas:

Blom formula

$$
y_{i}=\Phi^{-1}\left(\frac{\left(r_{i}-\frac{3}{8}\right)}{\left(n+\frac{1}{4}\right)}\right)
$$

Tukey formula

$$
y_{i}=\Phi^{-1}\left(\frac{\left(r_{i}-\frac{1}{3}\right)}{\left(n+\frac{1}{3}\right)}\right)
$$

van der Waerden

$$
y_{i}=\Phi^{-1}\left(\frac{r_{i}}{(n+1)}\right)
$$

In these formulas, Φ^{-1} is the inverse cumulative normal (PROBIT) function, r_{i} is the rank of the ith observation, and n is the number of nonmissing observations for the ranking variable.

Note: If you set the If values tie, use option, the Rank Data task computes the normal score from the ranks based on non-tied values and applies the ties specification to the resulting score.

Savage scores (exponential)

 computes Savage (or exponential) scores from the ranks.Note: If you set the If values tie, use option, the Rank Data task computes the Savage score from the ranks based on non-tied values and applies the ties specification to the resulting score.

Option Name

If values tie, use:

Description

specifies how to compute normal scores or ranks for tied data values.

Mean (Midrank)

assigns the mean of the corresponding rank or normal scores

High rank

assigns the largest of the corresponding ranks or normal scores

Low rank

assigns the smallest of the corresponding ranks or normal scores

Dense rank

computes scores and ranks by treating tied values as a single-order statistic. For the default method, ranks are consecutive integers that begin with the number one and end with the number of unique, nonmissing values of the variable that is being ranked. Tied values are assigned the same rank.

Rank order

Results

Location to save output data

Include ranked columns
specifies the location of the output table. By default, the table is saved in the temporary Work library.
specifies that the output table contains the original columns as well as the ranked columns. If you want to replace the original column with the ranked columns, deselect the Include ranking columns check box.
By default, the ranked column is given the name rank column-name, where columnname is the name of the original column.

Random Sample Task

About the Random Sample Task

The Random Sample task creates an output table that contains a random sample of the rows in the input table.

You might use this task when you need a subset of the data. For example, suppose you want to audit employee travel expenses in an effort to improve the expense reporting procedure and possibly reduce expenses. Because you do not have the resources to examine all expense reports, you can use statistical sampling to objectively select expense reports for audit.

Example: Creating a Random Sample of the Sashelp.Pricedata Data Set

In this example, you want to create a subset of the data in the Sashelp.Pricedata data set.

To create this example:
1 In the Tasks section, expand the Data folder and double-click Random Sample. The user interface for the Random Sample task opens.

2 On the Data tab, select the SASHELP.PRICEDATA data set.
3 To run the task, click

Here are the tabular results:

The SURVEYSELECT Procedure

Selection Method Simple Random Sampling

Input Data Set	PRICEDATA
Random Number Seed	496093001
Sample Size	10
Selection Probability	0.009804
Sampling Weight	102
Output Data Set	RANDOMSAMPLE

The task also creates a sample data set in the Work library. In SAS Studio, this data set opens on the WORK.RandomSample tab.

Assigning Data to Roles

For the Random Sample task, you must specify an input data source. No roles are required to run the task.

Role	Description
Output columns	specifies the variables to include in the output table. By default, all variables are included in the output table. However, you can select the variables to include in the output.

Role

Description

Strata columns

specifies the variables to use to partition the input table into mutually exclusive, nonoverlapping subsets that are known as strata. Each stratum is defined by a set of values of the strata variables, and each stratum is sampled separately. The complete sample is the union of the samples that are taken from all the strata.

Note: If you do not assign any variables to this role, then the entire input table is treated as a single stratum.
You can allocate the total sample size among the strata in proportion to the size of the stratum. For example, the variable GENDER has possible values of M and F, and the variable VOTED has possible values of Y and N . If you assign both GENDER and VOTED to the Strata columns role, then the input table is partitioned into four strata: males who voted, males who did not vote, females who voted, and females who did not vote.
The input table contains 20,000 rows, and the values are distributed as follows:
7,000 males who voted

- 4,000 males who did not vote
- 5,000 females who voted
- 4,000 females who did not vote

Therefore, the proportion of males who voted is $7,000 / 20,000=0.35$ or 35%. The proportions in the sample should reflect the proportions of the strata in the input table. For example, if your sample table contains 100 observations, then 35% of the values in the sample must be selected from the males who voted stratum to reflect the proportions in the input table.

Setting Options

Option Name

Sample size

Description

specifies the sample size in the desired number of rows or in the desired percentage of input rows. For example, if you specify 3% of rows and there are 400 input rows, then the resulting sample has 12 rows.

Note: If you assign variables to the Strata columns role, then the sample size specification that you make here applies to each stratum rather than to the entire input table.

Option Name

Sample method

Description

specifies the method to use when sampling the data. Here are the valid values:

Simple (no duplicates)

specifies the simple method when sampling the input data. When a row is selected, it is removed from eligibility for subsequent selections. This makes it impossible to select the same row more than once.

Unrestricted (duplicates allowed) specifies the unrestricted method when sampling the input data. When a row is selected, it remains eligible for subsequent selections. This makes it possible to select the same row more than once. You can specify how multiple selections of the same row are recorded in the output table.

You can choose from the following options:
Show each observations once in output (exclude duplicates)
a row that is selected n times occurs in the sample once. In the output, the NumberHits variable (which is calculated automatically by the Random Sample task) lists the number of times that the observation occurred in the input table.
Show all observations in output (include duplicates)
a row that is selected n times occurs in the sample n times.

Location of output data set
specifies the name and location for the output data. By default, the data is saved to the Work library.

Random seed number

specifies the initial seed for the generation of random numbers. If you do not specify a random seed number, then a seed that is based on the system clock will be used to produce the sample.

Option Name

Generate a sample selection summary

Description

generates a summary table that includes the seed that was used to produce the sample. By specifying this same seed later with the same input table, you can reproduce the same sample.

Sort Data Task

About the Sort Data Task

The Sort Data task enables you to sort the table by any of its columns. The result from this task is a sorted table in the Work library. No results or output data is displayed when you run this task.

Assigning Data to Roles

To run the Sort Data task, you must assign a column to the Sort by role.

Role	Description
Sort by	When you assign one or more variables to this role, the table is grouped by the selected variable or variables. The order in which the variables appear within this role determines which variable is the primary sort key, which variable is the secondary sort key, and so on. The primary sort key is always the first variable that is listed within the Sort by role.
Columns to drop	When you assign one or more variables to this role, the output that is generated does not contain the specified variables. You can assign a maximum of $(n-1)$ variables to this role, where n is the total number of variables in the table.

Setting Options

Option Name

Description

Output Order

Collating sequence

indicates what collating sequence to use when sorting character variables. You can use these collation standards:

- sequence that is defined on the server (Server default)
- the ASCII or EBCDIC collating sequences
- the reverse collation order for character variables
- a national standard, such as Danish, Finnish, Italian, Norwegian, Spanish, or Swedish
- a custom-defined collating sequence that is defined by your installation site

Maintain original data order within 'Sort by' groupings

groups the data according to the order that you set for the Sort by role. If this option is not selected, then the output table is grouped in an undefined order within the sorted key groups.

Duplicate Records

Keep all records

keeps all of the records that are in the output table, including all duplicates of records.

Option Name

Keep only the first record for each 'Sort by' group

Description

eliminates any duplicate observations that have the same values for the Sort by group. If the Group data in the order of the Sort by variable option is selected, then the observation that is retained for each Sort by group is the first one that is read from the original table. However, if the Group data in the order of the Sort by variable option is not selected, then the observation that is kept for each Sort by group cannot be predetermined.

Do not keep adjacent duplicate records

compares each record to the previous record in the output table. If an exact match is found, the duplicate record is not written to the output table.

Note: If you do not assign all variables to the Sort by role, some duplicate records might not be removed because the records are not adjacent.

Advanced Sorting

Memory for sorting

Reduce temporary disk space requirements
specifies the maximum amount of memory that can be used for the Sort Data task. You can specify the amount of memory in bytes (B), kilobytes (KB), megabytes (MB), or gigabytes (GB). You can also specify to use all of the available memory or to use the default amount of memory that has been allocated on the server.
indicates that during the Sort Data process, only the Sort by variables and the observation numbers are stored within temporary files, reducing the amount of storage necessary to perform the sort. In the final phase of the sort, the temporary file is used as an index to access the original table and then to send the data to the results table in the correctly sorted sequence.

Option Name

Force a sort of indexed data

Description

indicates that you want to sort all tables even if the table is already sorted in the desired sequence or the table contains a user-created index with keys that reflect those specified in the Sort by role. If you specify this option, the table is sorted regardless of the current order of the table or whether it contains an index.

Results

Location to save output data
specifies the location for the output table. By default, this table is saved to the temporary Work library.

Table Attributes Task

About the Table Attributes Task

The Table Attributes task enables you to create these types of reports:

- a default report that includes the following data attributes: the date on which the table was created and last modified, the number of rows, the encoding, any enginedependent or host-dependent information, and an alphabetic list of the variables and their attributes.
- an enhanced report displays the table and variable attributes. Unlike the default report, you can specify the order of the contents in the report. From this report, you can determine the table type, the date on which the table was created and modified, the number of observations, the variable labels, and the variable types.

Example: Table Attributes for the Sashelp.Pricedata Data Set

In this example, you want to view the table attributes for the Sashelp.Pricedata data set.

To create this example:
1 In the Tasks section, expand the Data folder and double-click Table Attributes. The user interface for the Table Attributes task opens.

2 On the Data tab, select the SASHELP.PRICEDATA data set.
3 On the Options tab, deselect the Default report check box.
4 To run the task, click
Here is a subset of the results for the Table Attributes task. These results are the enhanced report for the Sashelp.Pricedata data set.

Table Name	Label	Type	Date Created	Date Modified	Number of Obs.	Char. Set	Password Protected	Data Set Type
PRICEDATA	Simulated monthly sales data with hierarchy of region, line, product	DATA	20JUN13:00:29:56	20JUN13:00:29:56	1020		---	

Name	Variable Number	Type	Format	Label	Length
cost	5	Numeric		Unit Cost	8
date	1	Numeric	MONYY	Order Date	8
discount	4	Numeric		Price Discount	8
line	27	Numeric		Product Line ID	8
price	3	Numeric		Unit Price	8
price1	6	Numeric		Product 1 Unit Price	8
price10	15	Numeric		Product 10 Unit Price	8
price11	16	Numeric		Product 11 Unit Price	8
price12	17	Numeric		Product 12 Unit Price	8
price13	18	Numeric		Product 13 Unit Price	8
price14	19	Numeric		Product 14 Unit Price	8
price15	20	Numeric		Product 15 Unit Price	8

An output data set also opens on the WORK.TableAttributes tab.

Setting Options

Option Name

Default report

Description

contains the output from the DATASETS procedure. This report includes the following data attributes: the date on which the table was created and last modified, the number of observations, the encoding, any enginedependent or host-dependent information, and an alphabetic list of the variables and their attributes.

Option Name	Description
Enhanced report	contains the output from the DATASETS procedure. The REPORT procedure is used to create the enhanced report. This report displays the table and variable attributes. From this report, you can determine the table type, the date on which the table was created and modified, the number of observations, the variable labels, and the variable types.
Sort variables by	sorts the rows in the variable table by variable name, variable order in the table, variable type, variable format, or variable label. Note: This option affects only the enhanced report.
Order sequence	specifies whether to sort the rows in the table by ascending or descending order. Note: This option affects only the enhanced report.
Location to save output data	specifies the location of the output table. By default, this table is saved to the temporary Work library.

Transpose Data Task

About the Transpose Data Task

The Transpose Data task turns selected columns of an input table into the rows of an output table. If you do not use grouping variables, then each selected column is turned into a single row. If you use grouping variables, then the selected columns are divided into subcolumns based on the values of the grouping variables. Each subcolumn is turned into a row of the output table.

Assigning Data to Roles

To run the Transpose Data task, you must assign a column to the Transpose variables role.

Role

Transpose variables

Description

Each variable that you assign to this role becomes one or more rows of the output table. If you do not select any grouping variables, then an entire column is turned into a single row. If you select one or more grouping variables, then the grouping variables are used to segment each column into subcolumns, each of which is turned into a row. In this case, a column is transposed to the number of rows that is equal to the number of groups that are defined by the grouping variables.
You must assign at least one column to the Transpose variables role. To select a grouping variable, assign a column to the Group analysis by role.

Copy variables

Each variable that you assign to this role is copied directly from the input table to the output table without being transposed. Because these columns are copied directly to the output table, the number of rows in the output table equals the number of rows in the input table. The output table is padded with missing values if the number of rows in the input table does not equal the number of variables that it transposes.

Group analysis by

Each variable that you assign to this role is used to segment the about-to-be-transposed columns into subcolumns that will be transposed separately. Each subcolumn, defined by a set of values of the grouping variables, becomes a row of the output table.

Role	Description
New column names	The variable that you assign to this role is used to name the transposed variables in the output data set. When the variable name is created for the transposed data set, all the nonmissing, formatted values are concatenated in the same order that the variables are assigned to this role. If you select the Allow duplicate items check box, the transposed output data set contains only the last observation for each BY group.
New column labels	The values of the variable that you assign to this role are used to label the variables in the New column names role.
Setting Options	Same Same Solumn Description

Option Name Description
Label

Each row of the output table includes the label of the variable in the input table to which the values in that output row belong. To specify a heading for the output column that contains these variable labels, enter the heading in the Label box. The label can include special characters, leading numbers, and white space, but it cannot exceed 32 characters. The default label is Label.
Column Name Prefix

Use prefix

You can specify a prefix to use in constructing the names for the transposed variables in the output data set. When you use a prefix, the variable name begins with the prefix value and is followed by the value of the variable that you assigned to the New column names role.

Results

You can designate a different name for the output table.

Econometrics Tasks

Count Data Regression Task 164
About the Count Data Regression Task 164
Example: Count Data Regression 164
Assigning Data to Roles 167
Setting Options 167
Heckman Selection Model Task 170
About the Heckman Selection Model Task 170
Example: Heckman Selection Model Task 170
Assigning Data to Roles 172
Setting Options 173
Panel Data: Count Data Regression Task 175
About the Panel Data: Count Data Regression Task 175
Example: Count Data Regression with Panel Data 175
Assigning Data to Roles 178
Setting Options 178
Panel Data: Linear Regression 180
About the Panel Data: Linear Regression Task 180
Example: Linear Regression with Panel Data 180
Assigning Data to Roles 183
Setting the Model Options 183
Setting Options 185
Binary Probit/Logit Regression Task 186
About the Binary Probit/Logit Regression Task 186
Example: Binary Probit/Logit Regression Task 187
Assigning Data to Roles 189
Setting Options 189

Count Data Regression Task

About the Count Data Regression Task

The Count Data Regression task performs a regression analysis of a continuous dependent variable. This variable takes a nonnegative integer value from distributions such as Poisson, negative binomial, zero-inflated Poisson, and zero-inflated negative binomial.

Note: The version of the task depends on what version of SAS/ETS is available at your site. For example, if your site is running SAS 9.4 or earlier, SAS Studio is running version 1 of the Count Data Regression task. If your site is running the first maintenance release for SAS 9.4 or later and SAS/ETS 13.1 or later is available, then SAS Studio is running version 2 of the Count Data Regression task. The difference between the two versions is the addition of new options in SAS/ETS 13.1 or later.

Example: Count Data Regression

To create this example:
1 Create the WORK.LONG97DATA data set. For more information, see "LONG97DATA Data Set" on page 412.

2 In the Tasks section, expand the Econometrics folder and double-click Count Data Regression. The user interface for the Count Data Regression task opens.

3 On the Data tab, select the WORK.LONG97DATA data set.
4 Assign columns to these roles:

Role	Column Name
Dependent variable	art
Continuous variables	ment
	phd
	mar
Categorical variables	kid5

5 To run the task, click $\boldsymbol{2}$.

Here is a subset of the results:

Class Level Information		
Class	Levels	Values
kid5	4	0123

Model Fit Summary	
Dependent Variable	art
Number of Observations	915
Data Set	WEBWORK.LONG97DATA
Model	Poisson
Log Likelihood	-1659
Maximum Absolute Gradient	$4.52499 E-9$
Number of Iterations	5
Optimization Method	Newton-Raphson
AIC	3332
SBC	3368

Algorithm converged.

Parameter Estimates						
Parameter	DF	Estimate	Standard Error	t Value	Approx $\mathrm{Pr}>\|\mathrm{t}\|$	
Intercept	1	-0.570945	0.296411	-1.93	0.0541	
ment	1	0.026211	0.002014	13.01	$<.0001$	
phd	1	0.015683	0.026428	0.59	0.5529	
mar	1	0.179880	0.062563	2.88	0.0040	
kid5 0	1	0.726807	0.280831	2.59	0.0097	
kid5 1	1	0.594124	0.283226	2.10	0.0359	
kid5 2	1	0.451952	0.288913	1.56	0.1177	
kid5 3	0	0				

Assigning Data to Roles

To run the Count Data Regression task, you must assign a column to the Dependent variable role.

Role	Description
Dependent variable	specifies the numeric column that has nonnegative integer or count values. The Distribution option specifies the type of model to be analyzed. You can specify these
	types of models:
	Poisson regression model
	negative binomial regression model with a
	linear variance function
	negative binomial regression model with a
	quadratic variance function

Setting Options

Option

Description

Methods

Option

Type of covariances of the parameter estimates

Description

specifies the type of covariance matrix of the parameter estimates.

You can specify these types of matrices:

- the covariance from the inverse Hessian matrix
- the covariance from the outer product mix
- the covariance from the outer product and Hessian matrices (also called the quasi-maximum-likelihood-estimates)
specifies whether to include the intercept in the model.

Optimization

Method

specifies the iterative minimization method to use.
specifies the maximum number of iterations for the selected method.

Statistics

You can specify whether to include in the results the default statistics that the task creates, the default statistics and any additional statistics that you select, or no statistics.
Here are the additional statistics that you can include in the results:

- correlation matrix of the parameter estimates
- covariance matrix of the parameter estimates
- iteration history of the objective function and parameter estimates

Plots

Note: The plot options are available only if you are running the first maintenance release for SAS 9.4 or later.

Select plots to display

specifies whether to include in the results only the default plots, only the plots that you choose, or no plots.

Diagnostic Plots

Option
Profile likelihood plot

Description

produces the profile likelihood functions of the model parameters. The model parameter on the X axis is varied, whereas all other parameters are fixed at their estimated maximum likelihood estimates.
produces the overdispersion diagnostic plot.

Overall predictive probabilities plot

Predictive probability profiles plot
produces the overall predictive probabilities of the specified count levels.
produces the predictive probability profiles of specified count levels against model regressors. The regressor on the X axis is varied, whereas all other regressors are fixed at the mean of the observed data set.
supplies the values of the response variable for the overall predictive probabilities plot and the predictive probability profiles plot. Each value should be a nonnegative integer. Nonintegers are rounded to the nearest integer.
This value can also be a list in the form X TO Y BY Z. For example, COUNTS(0 12 TO 10 BY 2 15) creates a plot for counts $0,1,2,4$, $6,8,10$, and 15.

Zero-Inflation Plots

Note: The Probability profiles plot of zero-inflation process selection option is available only if you select Zero-inflated Poisson or Zero-inflated negative binomial as the distribution for the dependent variable.

Probability profiles plot of zero-inflation process selection

produces the probability profiles of zeroinflation process selection and zero count prediction against model regressors. The regressor on the X axis is varied, whereas all other regressors are fixed at the mean of the observed data set.

Option

Display as

Description

specifies whether to display the plots in a panel or individually. This option applies to all distributions.

Heckman Selection Model Task

About the Heckman Selection Model Task

The Heckman two-step selection method provides a means of correcting for nonrandomly selected samples. It is a two-stage estimation method. The first stage performs a probit analysis on a selection equation. The second stage analyzes an outcome equation based on the first-stage binary probit model.

Note: This task is available only if you are running SAS 9.4 (or later) and SAS/ETS 12.3 (or later).

Example: Heckman Selection Model Task

To create this example:
1 Create the Work.Mroz data set. For more information, see "MROZ Data Set" on page 431.

2 In the Tasks section, expand the Econometrics folder and double-click Heckman Selection Model. The user interface for the Heckman Selection Model task opens.

3 On the Data tab, select the WORK.MROZ data set.
4 Assign columns to these roles:

Role	Column Name
Selection Equation	inlf
Dependent variable	nwifeinc exper expersq age kidslt6 kidsge6
Continuous variables	Iwage
Outcome Equation	exper expersq
Dependent variable	educ
Continuous variables	
Categorical variables	

5 To run the task, click

Here is a subset of the results:

Summary Statistics of Continuous Responses								
Variable	N	Mean	Standard Error	Type	Lower Bound	Upper Bound	N Obs Lower Bound	N Obs Upper Bound
Iwage	428	1.190173	0.723198	Regular				

Discrete Response Profile of inlf		
Index	Value	Total Frequency
1	0	325
2	1	428

Class Level Information		
Class	Levels	Values
educ	13	567891011121314151617

Heckman First Step Model Fit Summary	
Number of Endogenous Variables	1
Endogenous Variable	inlf
Number of Observations	753
Log Likelihood	-415.37436
Maximum Absolute Gradient	0.0001730
Number of Iterations	13
Optimization Method	Qussi-Newton
AIC	844.74872
Schwarz Criterion	877.11718

Goodness-of-Fit Measures		
Measure	Value	Formula
Likelihood Ratio (R)	199	$2^{*}(\mathrm{Log} \mathrm{L}-\mathrm{Log} \mathrm{L} 0)$
Upper Bound of R (U)	1029.7	-2 LogL0
Aldrich-Nelson	0.209	$\mathrm{R} /(\mathrm{R}+\mathrm{N})$
Cragg-Uhler 1	0.2322	$1-\exp (-R / N)$
Cragg-Uhler 2	0.3116	$(1-\exp (-\mathrm{R} / \mathrm{N})) /(1-\exp (-\mathrm{U} / \mathrm{N})$)
-.	nr.	- A. manaman

Assigning Data to Roles

To run the Heckman Selection Model task, you must assign columns to the Dependent variable roles for the selection and outcome equations.

Role

Column Name

Selection Equation

Role	Column Name
Dependent variable	specifies a single numeric column that takes binary values. By default, the task uses samples where the dependent variable is equal to 1.
Continuous variables	specifies the independent columns (or regressors) to use in the model for the selection equation dependent variable.
Categorical variables	specifies how to group the values into levels. specifies whether to include the intercept in the selection equation.
Include the intercept	specifies a single numeric column to use.
Outcome Equation	specifies the independent columns (or regressors) to use in the model for the outcome equation dependent variable.
Dependent variable	specifies how to group the values into levels.
Continuous variables	specifies whether to include the intercept in the selection equation.
Categorical values	Include the intercept

Setting Options

Option

Description

Methods

Variance estimation method

specifies whether to calculate the standard errors by using the corrected standard errors or the OLS standard errors.

Option

Type of covariances of the parameter estimates

Description

specifies the method to calculate the covariance matrix of parameter estimates. You can select the covariance from the outer product matrix, from the inverse Hessian matrix, or from the output product and Hessian matrices (the quasi-maximum likelihood estimates).

Optimization

Method

specifies the iterative minimization method to use. By default, the Quasi-Newton method is used.

Maximum number of iterations

specifies the maximum number of iterations for the selected method.

Statistics

You can specify whether the results include the statistics that the task creates by default, the default statistics and any additional statistics that you select, or no statistics.
Here is the information that you can include in the results:

- correlation matrix of the parameter estimates
- covariance matrix of the parameter estimates
- iteration history of the objective function and parameter estimates

Panel Data: Count Data Regression Task

About the Panel Data: Count Data Regression Task

The Panel Data: Count Data Regression task performs count data regression of a continuous dependent variable. This variable is a nonnegative integer value from Poisson or negative binomial distributed panel data.

Note: This task is available only if you are running the first maintenance release for SAS 9.4 (or later) and SAS/ETS 13.1 (or later).

Example: Count Data Regression with Panel Data

To create this example:
1 Create the WORK.LONG97DATA data set. For more information, see "LONG97DATA Data Set" on page 412.

2 In the Tasks section, expand the Econometrics folder and double-click Panel Data: Count Data Regression. The user interface for the Panel Data: Count Data Regression task opens.

3 On the Data tab, select the WORK.LONG97DATA data set.
4 Assign columns to these roles:

Column Name

Dependent variable
art

Role	Column Name
Continuous variables	ment phd mar
Categorical variables	kid5
Cross-sectional ID	fem

5 To run the task, click $\boldsymbol{2}$.

Here is a subset of the results:

Class Level Information		
Class	Levels	Values
kid5	4	0123

Model Fit Summary	
Dependent Variable	art
Number of Observations	915
Data Set	WORK.COUNTPANELREGDATA
Model	Poisson
Error Component	Random
Optimization Method	Newton-Raphson
Log Likelihood	-1654
Maximum Absolute Gradient	$1.87227 \mathrm{E}-6$
Number of Iterations	13
AIC	3323
SBC	3362

Algorithm converged.

Parameter Estimates						
Parameter	DF	Estimate	Standard Error	t Value	Approx Pr $>\|\mathrm{t}\|$	
Intercept	1	-0.615254	0.305887	-2.01	0.0443	
ment	1	0.025452	0.002024	12.57	<0001	
phd	1	0.013129	0.026437	0.50	0.6195	

Assigning Data to Roles

To run the Count Panel Data Regression task, you must assign columns to the Dependent variable and Cross-sectional ID roles.
$\left.\begin{array}{ll}\text { Role } & \text { Description } \\ \hline \text { Dependent variable } & \begin{array}{l}\text { specifies the numeric column that has } \\ \text { nonnegative integer or count values. }\end{array} \\ & \begin{array}{l}\text { The Distribution option specifies the type of } \\ \text { model to be analyzed. You can specify these } \\ \text { types of models: }\end{array} \\ & \begin{array}{l}\text { Poisson regression model }\end{array} \\ & \text { negative binomial regression model with a } \\ \text { linear variance function }\end{array}\right\}$

Setting Options

Option

Description
Methods

Option

Type of covariances of the parameter estimates

Description

specifies the type of covariance matrix of the parameter estimates.

You can specify these types of matrices:

- the covariance from the inverse Hessian matrix
- the covariance from the outer product matrix
- the covariance from the outer product and Hessian matrices (also called the quasi-maximum-likelihood-estimates)
specifies whether to include the intercept in the model.

Optimization

Method

Maximum number of iterations

specifies the iterative minimization method to use.
specifies the maximum number of iterations for the selected method.

Statistics

You can specify whether to include the statistics that the task creates by default and any additional output tables in the results.
Here are the additional statistics that you can include in the results:

- correlation matrix of the parameter estimates
- covariance matrix of the parameter estimates
- iteration history of the objective function and parameter estimates

Panel Data: Linear Regression

About the Panel Data: Linear Regression Task

The Panel Data: Linear Regression task analyzes a class of linear econometric models that commonly arise when time series and cross-sectional data are combined. This type of pooled data on time series cross-sectional bases is often referred to as panel data. Typical examples of panel data include observations over time on households, countries, firms, trade, and so on. For example, in the case of survey data on household income, the panel is created by repeatedly surveying the same households in different time periods (years).

Note: The version of the task depends on what version of SAS/ETS is available at your site. For example, if your site is running the second maintenance release for SAS 9.3, SAS/ETS 12.1 is available, and SAS Studio is running version 1 of the Panel Data: Linear Regression task. If your site is running SAS 9.4 or later and SAS/ETS 12.3 or later is available, then SAS Studio is running version 2 of the Panel Data: Linear Regression task. The difference between the two versions is the addition of new options in SAS/ETS 12.3 or later.

Example: Linear Regression with Panel Data

To create this example:
1 Create the WORK.GREENE data set. For more information, see "GREENE Data Set" on page 411.

2 In the Tasks section, expand the Econometrics folder and double-click Panel Data: Linear Regression. The user interface for the Panel Data: Linear Regression task opens.

3 On the Data tab, select the WORK.GREENE data set.

4 Assign columns to these roles:

Role	Column Name
Dependent variable	cost
Continuous variables	production
Cross-sectional ID	firm
Time series ID	year

5 To run the task, click
Wansbeek and Kapteyn Variance Components (RanO
Dependent Variable: cost

Model Description	
Estimation Method	RanOne
Number of Cross Sections	3
Time Series Length	4
HAC Kernel	Bartlett
HAC Bandwidth	Newey and West

Fit Statistics			
SSE	0.1541	DFE	8
MSE	0.0193	Root MSE	0.1388
R-Square	0.8774		

Variance Component Estimates	
Variance Component for Cross Sections	0.058961
Variance Component for Error	0.018214

Hausman Test for Random Effects		
DF	m Value	Pr $>\mathbf{m}$
1	2.82	0.0930

Parameter Estimates								
Variable	DF	Estimate	Standard Error	t Value	Pr > \|t			
Intercept	1	-2.16577	0.6317	-3.43	0.0090			

Assigning Data to Roles

To run the Panel Data: Linear Regression task, you must assign columns to the Dependent variable, Cross-sectional ID, and Time series ID roles.

Role	Description
Dependent variable	specifies the numeric column that contains the count values. The dependent count variable should take on only nonnegative integer values in the input data set.
Continuous variables	specifies the independent covariates (regressors) for the regression model. If you do not specify a continuous variable, the task fits a model that contains only an intercept.
Categorical variables	specifies the variables to use to group data in the analysis.
Cross-sectional ID	specifies the cross section for each observation. The task verifies that the input data is sorted by the cross-sectional ID and by the time series ID within each cross section.
Time series ID	specifies the time period for each observation. The task verifies that the time series ID values are the same for all cross sections.

Setting the Model Options

Option

Description

Model

Option	Description
Model type	specifies whether to create a random effects model or a fixed effects model.
	Note: The remaining options that are available in this section depend on whether you are creating a random or fixed effect.
Include the intercept in the model	specifies whether to include the model. This option applies whether you are creating a random effects model or a fixed effects model.
	Note: This option is available only if you are running on SAS 9.4 or later.
Random Effects	
Random effects	specifies whether a one-way or two-way random-effects model is estimated. By default, a one-way random-effects model is estimated.
Variance component estimation method	specifies the type of variance component estimate to use. For more information about the type of estimations, see the PANEL procedure in SAS/ETS User's Guide.
Test for Random Effects	
One-way Breusch-Pagan test Two-way Breusch-Pagan test	requests the Breusch-Pagan one-way or twoway test for random effects.
Fixed Effects	
Fixed effects	specifies whether a one-way or two-way fixed-effects model is estimated.
Display the fixed effects	specifies whether to include the fixed effects in the results.
	Note: This option is available only if you are running on SAS 9.4 or later.

Setting Options

Option Description

Methods

Covariance matrix estimator
specifies the estimator of the covariance matrix. You can select from these options:

Newey and West

Note: This option is available only if you are running on SAS 9.4 or later.
OLS estimator specifies that the variancecovariance matrix is not corrected.

HCCMEn specifies a heteroscedasticitycorrected covariance matrix. \boldsymbol{n} is a value from 0-4.

Cluster correction for heteroscedasticityconsistent covariance matrix
specifies the cluster correction for the variance-covariance matrix.

Note: This option is available only if you select one of the HCCME0-3 options for the covariance matrix estimator.

Statistics

You can specify whether the results include the statistics that the task creates by default, the default statistics and any additional statistics that you select, or no statistics.
Here is the information that you can include in the results:

- correlation matrix of the parameter estimates
- covariance matrix of the parameter estimates
- iteration history of the objective function and parameter estimates

Plots

Diagnostic Plots

Option

Description

You can display these types of diagnostic plots:
Plot of the predicted and actual values

- QQ plot of residuals
- Plot of residuals by observation
- Histogram of residuals

Cross Sections Plots

You can display these types of plots:
Plot of actual values by time series

- Predicted values by time series
- Stacked residuals by time series
- Residuals by time series

Number of cross sections in one time series plot

specifies the number of cross sections to be combined into one time series plot.

Note: This option is available only if you select Individual plots for the Display as option.
specifies whether to display the plots in a panel or individually.

Binary Probit/Logit Regression Task

About the Binary Probit/Logit Regression Task

The Binary Probit/Logit Regression task performs a regression analysis of a binary dependent variable from normal or logistic distributed panel data.

Note: The version of the task depends on what version of SAS/ETS is available at your site. For example, if your site is running the second maintenance release for SAS 9.3,

SAS/ETS 12.1 is available, and SAS Studio is running version 1 of the Binary Probit/ Logit Regression task. If your site is running SAS 9.4, SAS/ETS 12.3 or later is available, and SAS Studio is running version 2 of the Binary Probit/Logit Regression task. The difference between the two versions is the addition of new options in SAS/ETS 12.3 or later.

Example: Binary Probit/Logit Regression Task

To create this example:
1 Create the Work.Mroz data set. For more information, see "MROZ Data Set" on page 431.

2 In the Tasks section, expand the Econometrics folder and double-click Binary Probit/Logit Regression. The user interface for the Binary Probit/Logit Regression task opens.

3 On the Data tab, select the WORK.MROZ data set.
4 Assign columns to these roles:

Role	Column Name
Dependent variable	inlf
Continuous variables	nwifeinc exper expersq age
	kidslt6 kidsge6
Categorical variables	educ

5 To run the task, click

Here is a subset of the results:

Discrete Response Profile of inlf		
Index	Value	Total Frequency
1	0	325
2	1	428

Class Level Information			
Class	Levels	Values	
educ	13	567891011121314151617	

Model Fit Summary	
Number of Endogenous Variables	1
Endogenous Variable	inlf
Number of Observations	753
Log Likelihood	-396.16371
Maximum Absolute Gradient	1.27229
Number of Iterations	157
Optimization Method	Qussi-Newton
AIC	830.32742
Schwarz Criterion	918.18466

Goodness-of-Fit Measures		
Measure	Value	Formula
Likelihood Ratio (R)	237.42	2* (LogL - Log L0)
Upper Bound of R (U)	1029.7	-2^{*} LogL0
Aldrich-Nelson	0.2397	$\mathrm{R} /(\mathrm{R}+\mathrm{N})$
Cragg-Uhler 1	0.2704	$1-\exp (-R / N)$
Cragg-Uhler 2	0.3629	$(1-\exp (-R / N)) /(1-\exp (-U / N))$
Estrella	0.3012	$1-(1-R / U)^{\wedge}(U / N)$
Adjusted Estrella	0.255	1-((LogL-K)/LogL0) ${ }^{(}\left(-2 / \mathrm{N}^{*} \log \mathrm{~L} 0\right)$
McFadden's LRI	0.2306	R/U
Veall-Zimmermann	0.415	$\left(\mathrm{R}^{*}(\mathrm{U}+\mathrm{N})\right)^{\prime}(\mathrm{U}$ * (R+N) $)$

Assigning Data to Roles

To run the Binary Probit/Logit Regression task, you must assign a column to the Dependent variable role.

Role	Description
Dependent variable	specifies the numeric column to use as the dependent variable for the regression analysis. Use the Distribution drop-down list to specify whether to create a normal or logistic model.
Continuous variables	specifies the numeric columns to use as the independent regressor (explanatory) variables for the regression model.
Categorical variables	specifies how to group values into levels.

Setting Options

Option

Description

Methods

Type of covariances of the parameter estimates

specifies the type of covariance matrix of the parameter estimates.
You can specify these types of matrices:

- the covariance from the inverse Hessian matrix
- the covariance from the outer product matrix
- the covariance from the outer product and Hessian matrices (also called the quasi-maximum-likelihood-estimates)

Option

Include the intercept in the model

Description

specifies whether to include the intercept in the model.

Heteroscedasticity

Analyze heteroscedasticity

Variables on the variance function
displays the heteroscedasticity options.
specifies the columns that are related to heteroscedasticity of the residuals and how these variables are used to model error variances. Here is the heteroscedastic regression model that is supported by this task: $y_{i}=x_{i}^{\prime} \beta+\varepsilon_{i}$

$$
\varepsilon_{i} \sim N\left(0, \sigma_{i}^{2}\right)
$$

Form of variance function

specifies the link function to use. You can choose from these options:

Exponential $\sigma_{i}^{2}=\sigma^{2}\left(1+\exp \left(z_{i}^{\prime} \gamma\right)\right)$

Exponential with no constant
$\sigma_{i}^{2}=\sigma^{2} \exp \left(z_{i}^{\prime} \gamma\right)$
Linear $\sigma_{i}^{2}=\sigma^{2}\left(1+z_{i}^{\prime}\right)$
Square of linear function
$\sigma_{i}^{2}=\sigma^{2}\left(1+\left(z_{i}^{\prime}\right)^{2}\right)$

Optimization

Method

specifies the iterative minimization method to use. By default, the Quasi-Newton method is used.

Maximum number of iterations

specifies the maximum number of iterations for the selected method.

Statistics
Option Description

You can specify whether to include any statistics in the results.
Here is the information that you can choose to include in the results:

- correlation matrix of the parameter estimates
- covariance matrix of the parameter estimates
- iteration history of the objective function and parameter estimates

Plots
Select plots to display
specifies whether to display the default plots created by the task, only the plots that you select, or no plots.

Diagnostic Plots

Error standard deviations by observed
regressor

Profiled log likelihood
displays the error standard deviation versus observed regressors when you assign a column to the Variables on the variance function option.
displays the profiled log likelihood. Each profiled graph is obtained by setting all the parameters to their maximum likelihood estimate except for the profiling parameter. The profiling parameter takes values on a predefined grid that is determined by the maximum likelihood estimate of the corresponding standard deviation.

Output Plots
Predicted values by regressor

Marginal effects by regressor
displays the model predicted values. Each contributing regressor is set equal to its mean, except for the parameter that is reported on the X axis.
displays the marginal effects. Each contributing regressor is set equal to its mean, except for the parameter that is reported on the X axis.

Option	Description
Inverse Mills ratio by regressor	displays the inverse Mills ratio. Each contributing regressor is set equal to its mean, except for the parameter that is reported on the X axis.
Predicted response probability by regressor	displays the predicted response probability. Each contributing regressor is set equal to its mean, except for the parameter that is reported on the X axis.
Predicted probabilities for each level of the response by regressor	displays the predicted probabilities for each level of the response. Each contributing regressor is set equal to its mean, except for the parameter that is reported on the X axis.
Linear predictor values by regressor	displays the structural part on the right side of the model. Each contributing regressor is set equal to its mean, except for the parameter
that is reported on the X axis.	

Graph Tasks

Bar Chart Task 195
About the Bar Chart Task 195
Example: Bar Chart of Mean Sales for Each Product Line 195
Assigning Data to Roles 196
Setting Options 198
Bar-Line Chart Task 200
About the Bar-Line Chart Task 200
Example: City and Highway Mileage by Origin 200
Assigning Data to Roles 202
Setting Options 203
Box Plot Task 206
About the Box Plot Task 206
Example: Box Plots Comparing MPG (City) for Cars 206
Assigning Data to Roles 207
Setting Options 208
Bubble Plot Task 210
About the Bubble Plot Task 210
Example: 210
Assigning Data to Roles 211
Setting Options 213
Histogram Task 214
About the Histogram Task 214
Example: Histogram of Stock Volume 214
Assigning Data to Roles 215
Setting Options 216
Line Chart Task 218
About the Line Chart Task 218
Example: Displaying the Mean Horsepower for Each Car Type 218
Assigning Data to Roles 219
Setting Options 220
Pie Chart Task 222
About the Pie Chart Task 222
Example: Pie Chart That Shows Total MSRP for Each Car Type by Region 222
Assigning Data to Roles 224
Setting Options 225
Scatter Plot Task 226
About the Scatter Plot Task 226
Example: Scatter Plot of Height versus Weight 227
Assigning Data to Roles 228
Setting Options 230
Series Plot Task 231
About the Series Plot Task 231
Example: Series Plot of Stock Trends 231
Assigning Data to Roles 232
Setting Options 233
Simple HBar Task 234
About the Simple HBar Task 234
Example: Horizontal Bar Chart of Mileage by Origin and Type 234
Assigning Data to Roles 236
Setting Options 237

Bar Chart Task

About the Bar Chart Task

The Bar Chart task creates horizontal or vertical bar charts that compare numeric values or statistics between different values of a chart variable. Bar charts show the relative magnitude of data by displaying bars of varying height. Each bar represents a category of data.

Example: Bar Chart of Mean Sales for Each Product Line

For example, you can create a bar chart that compares the total amount of sales for each product line in the Sashelp.Pricedata data set. By default, the task calculates the mean of the response variable for each product line. This bar chart shows that Line 2 has the highest mean product sales.

To create this example:
1 In the Tasks section, expand the Graph folder and double-click Bar Chart. The user interface for the Bar Chart task opens.

2 On the Data tab, select the SASHELP.PRICEDATA data set.
3 Assign columns to these roles:

Role	Column Name
Category variable	productLine
Response variable	sale

4 To run the task, click $\boldsymbol{2}$.

Here are the results:

Assigning Data to Roles

You can subset the data in the input data set by applying an SQL WHERE clause. In the Where string box, enter your valid SQL syntax. You must enclose character strings in single quotation marks. To view this WHERE clause with the resulting graph, select the Include as footnote check box.

To run the Bar Chart task, you must assign a column to the Category variable role.

Option Name	Description
Roles	specifies the variable that classifies the observations into distinct subsets.
Category variable	specifies a numeric response variable for the plot.
Response variable	specifies a variable that is used to group the data.
Group variable	specifies a character variable that contains URLL for web pages to be displayed when parts of the plot are selected within an HTML page.
URL variable	creates a separate graph for each BY group.
BY variable	displays group values as separate adjacent bars that replace the single category bar. Each set of group values is centered at the midpoint tick mark for the category.
Direction	overlays group values without any clustering. Each group is represented by unique visual attributes derived from the GraphData1... GraphDatan style elements in the current style.
You can create either a vertical or horizontal bar chart.	

Option Name

Description

Statistics

Note:

The Statistics options are not available in these cases:

- You did not assign a column to the Response variable role. If you do not assign a response variable, the default statistic is frequency.

You selected Stack for the group layout. In this case, the default statistic is sum.

Mean	calculates the mean of the response variable.
Sum	calculates the sum of the response variable.
Limits	specifies which limit lines to display. Limits are displayed as heavier line segments with a serif at the end that extends from each bar. Limit lines are displayed only if you select the Mean statistic.
Limits	specifies the statistic for the limit lines.
Limit statistic	specifies the number of standard units for the limit lines. By default, this value is 1.
Limit multiplier	

Setting Options

Option Name

Description

Title and Footnote

You can specify a custom title and footnote for the output. You can also specify the font size for this text.

Bar Details

Option Name	Description
Apply bar color	specifies the color for the bars when a column is not assigned to the Group variable role.
Transparency	specifies the degree of transparency for the plot. The range is 0 (completely opaque) to 1 (completely transparent).
Apply bar gradient	applies a gradient to each bar.
	Note: This option is available only if you are running the second maintenance release of SAS 9.4 or later.
Data skin	specifies a special effect to be used on all filled bars.
Bar Labels	
Show bar labels or statistics	displays the values of the calculated response as data labels.
Category Axis	
Reverse	specifies that the values for the tick marks are displayed in reverse (descending) order.
Show values in data order	places the discrete values for the tick marks in the order in which they appear in the data.
Show label	enables you to display a label for the axis. Enter this label in the Custom label box.
Response Axis	
Show grid	creates grid lines at each tick on the axis.
Drop statistics suffix	removes the name of the calculated statistic in the axis label. For example, if you are calculating the mean, the axis label could be Weight (Mean).

Option Name

Show label

Description

specifies whether to display the label for the response axis. By default, the axis label is the name of the variable. However, you can create a custom label.

Legend Details

Legend location

Graph Size

You can specify the width and height of the graph in inches, centimeters, or pixels.

Bar-Line Chart Task

About the Bar-Line Chart Task

The Bar-Line Chart task creates a vertical bar chart with a line chart overlay.
You can use this task to perform the following tasks:

- display and compare exact and relative magnitudes
- examine the contribution of each part to the whole
- determine trends and patterns in the data

Example: City and Highway Mileage by Origin

For example, you can create a bar-line chart that compares the number of miles per gallon (in the city and on the highway) that cars use depending on their country of origin. The task calculates the mean of the number of miles per gallon in the city and in
the highway for each country. This bar-line chart shows that cars from Asia tend to get the highest number of miles per gallon in city and highway driving.

To create this example:
1 In the Tasks section, expand the Graph folder and double-click Bar-Line Chart. The user interface for the Bar-LineChart task opens.

2 On the Data tab, select the SASHELP.CARS data set.
3 Assign columns to these roles:

Role	Column Name
Category variable	Origin
Bar response variable	MPG_City
Line response variable	MPG_Highway

4 To run the task, click $\boldsymbol{2}$.

Assigning Data to Roles

You can subset the data in the input data set by applying an SQL WHERE clause. In the Where string box, enter your valid SQL syntax. You must enclose character strings in single quotation marks. To view this WHERE clause with the resulting graph, select the Include as footnote check box.

To run the Bar-Line Chart task, you must assign a column to the Category variable, Bar response variable, and Line response variable roles.

Option Name

Roles

Option Name	Description
Category variable	specifies the variable that classifies the observations into distinct subsets.
Bar response variable	specifies a numeric response variable for the bar chart.
Line response variable	specifies a numeric response variable for the line plot.
specifies a variable that is used to group the	
data.	

Option Name

Transparency

Description

specifies the degree of transparency for the plot. The range is 0 (completely opaque) to 1 (completely transparent).
applies a gradient to each bar.
Note: This option is available only if you are running the second maintenance release for SAS 9.4 or later.
specifies a special effect to be used on all filled bars.

Line Details

Apply line color

Line thickness

Transparency

specifies the color for the line.
specifies the thickness (in pixels) of the line.
specifies the degree of transparency for the
plot. The range is 0 (completely opaque) to 1 (completely transparent).
specifies a solid pattern for the line.
Category Axis

Reverse

Show values in data order

Show label

Response Axes

Use zero baseline

specifies that the values of the tick marks are displayed in reverse (descending) order.
places the discrete values for the tick marks in the order in which they appear in the data.
enables you to display a label for the axis. Enter this label in the Custom label box.

Option Name	Description
Use uniform scale	uses the same scale for both response axes.
Show grid on left (bar) axis	creates grid lines at each tick on the axis for the bar chart.
Drop statistics suffix	removes the name of the calculated statistic in the axis label. For example, if you are calculating the mean, the axis label could be Weight (Mean).
Add plot prefix to axis labels	adds (Bar) and (Line) to the labels for the response axes.
Custom label for left (bar) axis	enables you to specify a custom label for the response axis in the bar chart. The default label is the name of the bar response variable.
Custom label for right (line) axis	enables you to specify a custom label for the response axis in the line chart. The default label is the name of the line response variable.
Legend Details	Legend location
Sraph Size	specifies whether the legend is placed outside or inside of the axis area.

You can specify the width and height of the graph in inches, centimeters, or pixels.

Box Plot Task

About the Box Plot Task

The Box Plot task creates a single box plot, which represents numeric values measured as intervals. If you choose to categorize the values of the analysis variable, then multiple box plots are created.

Example: Box Plots Comparing MPG (City) for Cars

This example creates three box plots that compares how many miles per gallon (city) cars consume depending on their area of origin (Asia, Europe, and United States).

To create this example:
1 In the Tasks section, expand the Graph folder and double-click Box Plot. The user interface for the Box Plot task opens.

2 On the Data tab, select the SASHELP.CARS data set.
3 Assign columns to these roles:

Role	Column Name
Analysis variable	MPG_City
Category variable	Origin

4 To run the task, click $\boldsymbol{2}$.

Here is the resulting box plot:

Assigning Data to Roles

You can subset the data in the input data set by applying an SQL WHERE clause. In the Where string box, enter your valid SQL syntax. You must enclose character strings in single quotation marks. To view this WHERE clause with the resulting graph, select the Include as footnote check box.

To run the Box Plot task, you must assign a column to the Analysis variable role. You can create either a vertical box plot or a horizontal box plot.

Role

Description

Analysis variable
specifies the analysis variable for the plot.

Role

Description

Category variable
creates a box plot for each distinct value of the category variable.

Group variable

specifies a variable that is used to group the data.

BY variable creates a separate graph for each BY group.

Setting Options

Option Name

Description

Title and Footnote
You can specify a custom title and footnote for the output. You can also specify the font size for this text.

Box Detail

Box width

Fill

Data skin

Transparency

specifies whether the boxes are filled with color. The default color is white.
specifies the width of each box. Specify a value between 0.0 (0% of the available width) and 1.0 (100% of the available width).
specifies a special effect to be used on the plot. The data skin affects all filled boxes. The effect that a data skin has on a filled area depends on the skin type, the graph style, and the color of the skinned element. Most of the skins work best with lighter colors over a medium to large filled area.
specifies the degree of transparency for the plot. The default value is 0 . However, valid values range from 0 (completely opaque) to 1 (completely transparent).
$\left.\begin{array}{ll}\hline \text { Option Name } & \begin{array}{l}\text { Description }\end{array} \\ \hline \text { Set cap shape } & \begin{array}{l}\text { specifies whether to display the cap lines for } \\ \text { the whiskers. If you select this option, you can } \\ \text { select the shape of the whisker cap lines. } \\ \text { Here are the valid values: } \\ \text { Bracket displays a straight line with } \\ \text { brackets. }\end{array} \\ & \begin{array}{l}\text { Line displays a straight line. } \\ \text { Serif displays a short straight line. }\end{array} \\ \hline \text { Notches } & \begin{array}{l}\text { specifies that the boxes be notched. The } \\ \text { endpoints of the notches are at the following } \\ \text { computed locations: median } \pm 1.58\left(\frac{I Q R}{\sqrt{N}}\right)\end{array} \\ \hline \text { Group Layout } & \begin{array}{l}\text { specifies the orderi of boxes within a group. }\end{array} \\ \hline \text { The groups can be displayed in ascending } \\ \text { order, in descending order, or in the order in } \\ \text { which they appear in the data. }\end{array}\right\}$
Option Name
Legend Details
Description
Legend location
specifies whether the legend is placed outside or inside the axis area.

Graph Size
You can specify the width and height of the graph in inches, centimeters, or pixels.

Bubble Plot Task

About the Bubble Plot Task

The Bubble Plot task explores the relationship between three or more variables. In a bubble plot, two variables determine the location of the bubble centers, and a third variable specifies the size of each bubble.

Example:

To create this example:
1 In the Tasks section, expand the Graph folder and double-click Bubble Plot. The user interface for the Bubble Plot task opens.

2 On the Data tab, select the SASHELP.CLASS data set.

3 Assign columns to these roles:

Role	Column Name
X variable	Height
Y variable	Weight

Role
Size variable

Column Name

Age

4 To run the task, click

Assigning Data to Roles

You can subset the data in the input data set by applying an SQL WHERE clause. In the Where string box, enter your valid SQL syntax. You must enclose character strings in single quotation marks. To view this WHERE clause with the resulting graph, select the Include as footnote check box.

To run the Bubble Plot task, you must assign a column to the \mathbf{X} variable, \mathbf{Y} variable, and Size variable roles.

Option Name	Description
Roles	specifies the variable for the X axis.
X variable	specifies the variable for the Y axis.
Y variable	specifies a numeric variable that controls the size of the bubbles. The minimum and maximum values automatically provide the range that is used to determine bubble size. You can set these values on the Options tab.
Size variable	specifies the numeric variable that is used to map colors to a gradient legend.
Color response variable	specifies the variable that is used to group the data. The bubbles for each group are automatically distinguished by different colors.
Group variable	Note: If you also assign a variable to the Color response variable role, the group variable is ignored.
Label variable	specifies the values to use as labels for each data point. If you assign a variable to this role, the values of that variable are used for the data labels. If you do not assign a variable to this role, the values of the Y variable are used for the data labels.
URL variable	specifies a character variable that contains URLs for web pages to be displayed when parts of the plot are selected within an HTML page.

Setting Options

Option Name	Description
Title and Footnote	
You can specify a custom title and footnote for the output. You can also specify the font size for this text.	
Bubble Details	specifies the color for the bars when a column is not assigned to the Group variable role.
Apply color	specifies the radius of the smallest bubble.
Minimum radius	specifies the radius of the largest bubble. specifies the degree of transparency for the to 1 (completely transparent).
Maximum radius	specifies a special effect to be used on all filled bubbles.
Transparency	
Data skin	

If you assign a variable to the Color response variable role, you can specify three colors to use in the color map.

Bubble Labels

If you assign a variable to the Label variable role, you can determine the label color, the font size for the label text, and the label position.
X Axis and Y Axis
Show grid lines
creates grid lines at each tick on the axis.

Option Name

Show label

Description

specifies whether to display the label for the response axis. By default, the axis label is the name of the variable. However, you can create a custom label.

Legend Details

Group legend location

Color legend position

specifies whether the group legend is located inside or outside the plot. This option is available when you assign a variable to the Group variable role.
specifies whether the color legend appears to the right or below the plot.

Graph Size

You can specify the width and height of the graph in inches, centimeters, or pixels.

Histogram Task

About the Histogram Task

The Histograms task creates a chart that displays the frequency distribution of a numeric variable.

Example: Histogram of Stock Volume

To create this example:
1 In the Tasks section, expand the Graph folder and double-click Histogram. The user interface for the Histogram task opens.

2 In the Data tab, select the SASHELP.STOCKS data set.

3 To the Analysis variable role, assign the Volume column.
4 To run the task, click $\boldsymbol{2}$.
Here are the results:

Assigning Data to Roles

You can subset the data in the input data set by applying an SQL WHERE clause. In the Where string box, enter your valid SQL syntax. You must enclose character strings in single quotation marks. To view this WHERE clause with the resulting graph, select the Include as footnote check box.

To run the Histogram task, you must assign a column to the Analysis variable role.
You can specify whether to create a density curve that shows the distribution of values for a numeric variable. You can create density curves for normal and kernel distributions.

Setting Options

Option Name

Description

Title and Footnote
You can specify a custom title and footnote for the output. You can also specify the font size for this text.

Bin Details

For the bins in the histogram, you can specify the color and the transparency. If you are running the second maintenance release for SAS 9.4 or later, you can also specify whether to apply a gradient to each bin.

Horizontal Axis

Interval axis

creates tick marks at regular intervals on the horizontal axis based on the minimum and maximum values of the analysis variable.

Bin axis

Specify number of bins

creates tick marks at the midpoints of the value bins on the horizontal axis.
enables you to specify the number of bins in
the histogram. Valid values range from 2 to 20.

The bins always span the range of data. The task tries to produce tick values that are easily interpreted (for example, $5,10,15,20$). Sometimes the location of the first bin and the bin width might be adjusted. By default, the task automatically determines the number of bins.
displays the label for the analysis variable along the horizontal axis. You can also enter a custom label.

[^0]| Option Name | Description
 Specify axis scaling
 specifies the scaling that is applied to the
 vertical axis. You can choose from these
 options:
 COUNT
 the axis displays the frequency count
 PERCENT
 the axis displays values as a percentage of
 the total.
 PROPORTION
 the axis displays values as proportions
 (0.0 to 1.0) of the total. |
| :--- | :--- |
| Show grid | specifies whether to show the grid lines for
 the vertical axis. |
| Show label | specifies whether to show the label for the
 type of axis scaling. |
| Legend Details | Show legend
 Specifies whether to display a legend in the
 output. |
| Segend location | specifies whether the legend is placed
 outside or inside of the axis area. |

You can specify the width and height of the graph in inches, centimeters, or pixels.

Line Chart Task

About the Line Chart Task

The Line Chart task assumes that the values in the category variable are discrete. The task groups these values into distinct categories. If you assign a column from the input data source to the Response variable role, you can select the statistic (either mean or sum) for the response values. By default, the task calculates the mean of the values for the response variable. If no response variable is assigned, a frequency chart by category is created.

Example: Displaying the Mean Horsepower for Each Car Type

In this example, you want to display the mean horsepower for each car type in a line plot. The result shows that sports cars have the highest average horsepower and hybrid cars have the lowest average horsepower.

To create this example:
1 In the Tasks section, expand the Graph folder and double-click Line Chart. The user interface for the Line Chart task opens.

2 On the Data tab, select the SASHELP.CARS data set.
3 Assign columns to these roles:

Role
Category variable
Response variable

Column Name

Type
Horsepower

4 To run the task, click

Assigning Data to Roles

You can subset the data in the input data set by applying an SQL WHERE clause. In the Where string box, enter your valid SQL syntax. You must enclose character strings in single quotation marks. To view this WHERE clause with the resulting graph, select the Include as footnote check box.

To run the Line Chart task, you must assign a column to the Category variable role.

Option Name

Description

Role

Option Name	Description
Category variable	specifies the variable that classifies the observations into distinct subsets.
Response variable	specifies a numeric response variable for the plot.
Group variable	specifies a variable that is used to group the data.
URL variable	specifies a character variable that contains URLs for web pages to be displayed when parts of the plot are selected within an HTML page.
Statistics	calculates the mean of the response variable.
Mean	calculates the sum of the response variable.

Setting Options

Option Name

Description

Title and Footnote

You can specify a custom title and footnote for the output. You can also specify the font size for this text.

Line Details

Apply line color

specifies the color for the line when you do not assign a column to the Group variable role.

Line thickness
specifies the thickness (in pixels) of the line.

Option Name	Description
Transparency	specifies the degree of transparency for the plot. The range is 0 (completely opaque) to 1 (completely transparent).
Use solid line	specifies a solid pattern for the line.
Line Labels	
Show line labels	displays the label from the response variable. If you assign a column to the Group variable role, each line is labeled with the group value.
Category Axis	
Reverse	specifies that the values of the tick marks are displayed in reverse (descending) order.
Show values in data order	places the discrete tick values in the order in which they appear in the data.
Show label	enables you to display a label for the axis. By default, the label is the variable name.
	To customize this label, enter this label in the Custom label box.
Response Axis	
Show grid	creates grid lines at each tick on the axis.
Drop statistics suffix	removes the name of the calculated statistic in the axis label. For example, if you are calculating the mean, the axis label could be Weight (Mean).
Show label	enables you to display a label for the axis. By default, the label is the variable name.
	To customize this label, enter this label in the Custom label box.
Legend Details	

Option Name

Legend location

Description

specifies whether the legend is placed outside or inside of the axis area.

Graph Size

You can specify the width and height of the graph in inches, centimeters, or pixels.

Pie Chart Task

About the Pie Chart Task

The Pie Chart task creates pie charts that represent the relative contribution of the parts to the whole by displaying data as wedge-shaped "slices" of a circle. Each slice represents a category of data. The size of a slice represents the contribution of the data to the total chart statistic.

Example: Pie Chart That Shows Total MSRP for Each Car Type by Region

In this example, you want to compare the manufacturer's suggested retail price (MSRP) for each car type grouped by region of origin. The resulting pie chart consists of six rings-one for each car type. The rings are then subset into the MSRP values for the three regions: Asia, Europe, and USA. Using this chart, you can compare the total MSRP values for each region. The ring for the SUV car type shows that the USA has the highest MSRP and that Europe has the lowest MSRP.

To create this example:
1 In the Tasks section, expand the Graph folder and double-click Pie Chart. The user interface for the Pie Chart task opens.

2 On the Data tab, select the SASHELP.CARS data set.

3 Assign columns to these roles:

Role	Column Name
Category variable	Origin
Response variable	MSRP
Group variable	Type

4 To run the task, click

Here is the result:

Assigning Data to Roles

You can subset the data in the input data set by applying an SQL WHERE clause. In the Where string box, enter your valid SQL syntax. You must enclose character strings in
single quotation marks. To view this WHERE clause with the resulting graph, select the Include as footnote check box.

To run the Pie Chart task, you must assign a column to the Category variable role.

Option Name	Description
Role	specifies the variable that classifies the observations into distinct subsets.
Category variable	specifies a numeric response variable for the plot.
Response variable	specifies a variable that is used to group the data.
Group variable	specifies a character variable that contains URLs for web pages to be displayed when parts of the plot are selected within an HTML page. Note: If the task generates an "Other" slice in the pie chart, there is not a URL associated with this slice. Therefore, this slice does not contain a link.
URL variable	specifies where to create the first slice in the pie chart. The remaining slices appear counterclockwise.
Orientation	specifies whether to offset the first slice.
Starting point	

Setting Options

Option Name

Description

Title and Footnote

Option Name

Description

You can specify a custom title and footnote for the output. You can also specify the font size for this text.

Pie Details

Fill transparency

Data skin

Pie Labels

Location

specifies the degree of transparency for the plot. The range is 0 (completely opaque) to 1 (completely transparent).
specifies a special effect to be used on all filled bars.
specifies whether to display the label inside or outside the slice in the pie chart. By default, the Pie Chart task determines the best location for the slice.
enables you to specify the font size of the label for each slice.

Graph Size

You can specify the width and height of the graph in inches, centimeters, or pixels.

Scatter Plot Task

About the Scatter Plot Task

The Scatter Plot task creates plots that show the relationships between two or three variables by revealing patterns or concentrations of data points. For example, a twodimensional scatter plot can display the heights and weights of all students in a class.

Example: Scatter Plot of Height versus Weight

In this example, you want to create a scatter plot of height versus weight.
To create this example:
1 In the Tasks section, expand the Graph folder and double-click Scatter Plot. The user interface for the Scatter Plot task opens.

2 On the Data tab, select the SASHELP.CLASS data set.
3 Assign columns to these roles:

Role	Column Name
X variable	Height
Y variable	Weight

4 To run the task, click $\boldsymbol{\gamma}$.

Assigning Data to Roles

You can subset the data in the input data set by applying an SQL WHERE clause. In the Where string box, enter your valid SQL syntax. You must enclose character strings in single quotation marks. To view this WHERE clause with the resulting graph, select the Include as footnote check box.

To run the Scatter Plot task, you must assign columns to the \mathbf{X} variable and \mathbf{Y} variable role.

Roles

Option Name	Description
X variable	specifies the variable for the x axis.
Y variable	specifies the variable for the y axis.
Group variable	specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.
Marker label variable	displays a label for each data point. If you specify a variable, the values of that variable are used for the data labels. If you do not specify a variable, then the values of the Y variable are used for the data labels.
URL variable	specifies a character variable that contains URLs for web pages to be displayed when parts of the plot are selected within an HTML page.
Fit Plots Note: This is available only if you assign numeric variables.	
Regression	creates a plot with the fitted regression line. You can specify whether to include the confidence limits for means and the prediction limits for the individual predicted values. The Alpha option specifies the confidence level for the confidence limits. The Degree option specifies the degree of the polynomial fit.
Loess	creates a fitted loess curve. You can specify whether to include the confidence limits. The Alpha option specifies the confidence level for the confidence limits.
PBSpline	creates a fitted penalized B-spline curve. You can specify whether to include the confidence limits for means and the prediction limits for the individual predicted values. The Alpha option specifies the confidence level for the confidence limits.

Setting Options

Option Name

Description

Title and Footnote

You can specify a custom title and footnote for the output. You can also specify the font size for this text.

Marker Details

You can specify the symbol type, color, and size of the markers. You can also specify the degree of transparency for the plot. The range is 0 (completely opaque) to 1 (completely transparent).

Marker Labels

Font size

specifies the appearance of the labels in the plot when you assign a variable to the Marker label variable role.

X Axis, Y Axis

Show grid lines

Show label
creates grid lines at each tick on the axis.
displays the label for the axis. By default, the
label is the variable name.

To customize, enter this label in the Custom label box.

Legend Details

Legend location

specifies whether the legend is placed outside or inside the axis area.

Graph Size

You can specify the width and height of the graph in inches, centimeters, or pixels.

Series Plot Task

About the Series Plot Task

The Series Plot task creates a line plot. Series plots display a series of line segments that connect observations of input data.

Example: Series Plot of Stock Trends

In this example, you want to create a series plot that shows stock trends.
To create this example:
1 In the Tasks section, expand the Graph folder and double-click Series Plot. The user interface for the Series Plot task opens.

2 On the Data tab, select the SASHELP.STOCKS data set.
3 Assign columns to these roles:

Role	Column Name
\mathbf{X} variable	Date
Y variable	Open
Group variable	Stock

4 To run the task, click

The resulting series plot shows the stock values for three companies.

Assigning Data to Roles

You can subset the data in the input data set by applying an SQL WHERE clause. In the Where string box, enter your valid SQL syntax. You must enclose character strings in single quotation marks. To view this WHERE clause with the resulting graph, select the Include as footnote check box.

To run the Series Plot task, you must assign columns to the \mathbf{X} variable and \mathbf{Y} variable roles.

Role	Description
X variable	specifies the variable for the x axis.
Y variable	specifies the variable for the y axis.
Group variable	specifies a variable that is used to group the data.
URL variable	specifies a character variable that contains URLs for web pages to be displayed when parts of the plot are selected within an HTML page.

Setting Options

Option Name

Description

Title and Footnote
You can specify a custom title and footnote for the output. You can also specify the font size for this text.

Plot Details

You can specify the symbol type, color, and size of the markers in the scatter plot. You can also specify the degree of transparency for the plot. The range is 0 (completely opaque) to 1 (completely transparent).

Plot Labels

Show plot labels

adds a label for the curve. You can also specify the size of this text.

X Axis, Y Axis
creates grid lines at each tick on the axis.

Option Name

Show label

Description

displays the label for the axis. By default, the label is the variable name.

To customize, enter this label in the Custom label box.

Legend Details

Legend location

specifies whether the legend is placed outside or inside of the axis area.

Graph Size

You can specify the width and height of the graph in inches, centimeters, or pixels.

Simple HBar Task

About the Simple HBar Task

The Simple HBar task creates a simple horizontal bar chart. You can customize the title, footnotes, axes, and legends for the horizontal bar chart.

Example: Horizontal Bar Chart of Mileage by Origin and Type

To create this horizontal bar chart:
1 In the Tasks section, expand the Graphs folder and double-click Simple HBar. The user interface for the Simple HBar task opens.

2 On the Data tab, select the SASHELP.CARS data set.
3 Assign columns to these roles:

Role	Column Name
Category variable	Origin
Response variable	MPG_City
Group variable	Type

4 To run the task, click $\boldsymbol{2}$.
Here are the results:

Assigning Data to Roles

You can subset the data in the input data set by applying an SQL WHERE clause. In the Where string box, enter your valid SQL syntax. You must enclose character strings in single quotation marks. To view this WHERE clause with the resulting graph, select the Include as footnote check box.

To run the Simple HBar task, you must assign a column to the Category variable role.

Option Name

Role

Category variable

Response variable

Group variable

URL variable
specifies the variable that classifies the observations into distinct subsets.
specifies a numeric response variable for the plot.
specifies a variable that is used to group the data.
specifies a character variable that contains URLs for web pages to be displayed when parts of the plot are selected within an HTML page.

Group Layout

Cluster

displays group values as separate adjacent

Description

 bars that replace the single category bar. Each set of group values is centered at the midpoint tick mark for the category.Stack | overlays group values without any clustering. |
| :--- |
| Each group is represented by unique visual |
| attributes that are derived from the |
| GraphData1... GraphDatan style elements in |
| the current style. |

Statistics

Option Name
 Mean
 Sum
 Setting Options

Description

 calculates the mean of the response variable. calculates the sum of the response variable.
Option Name

Description

Title and Footnote

You can specify a custom title and footnote for the output. You can also specify the font size for this text.

Bar Details

Apply bar color

Transparency

Apply bar gradient

Data skin

Bar Labels

Show bar labels
specifies the color for the bars when a column is not assigned to the Group variable role.
specifies the degree of transparency for the plot. The range is 0 (completely opaque) to 1 (completely transparent).
applies a gradient to each bar.
Note: This option is available only if you are running the second maintenance release for SAS 9.4 or later.
specifies a special effect to be used on all filled bars.
displays the values of the calculated response as data labels.

Category Axis

Option Name	Description
Reverse	specifies that the values of the tick marks are displayed in reverse (descending) order.
Show values in data order	places the discrete tick values in the order in which they appear in the data.
Show label	enables you to display a label for the axis. Enter this label in the Custom label box.
Response Axis	creates grid lines at each tick on the axis.
Show grid	removes the name of the calculated statistic in the axis label. For example, if you are calculating the mean, the axis label could be Weight (Mean).
Drop statistics suffix	enables you to customize the label for the response axis. By default, the axis label is the name of the variable.
Custom Label	Legend Details
Legend location	specifies whether the legend is placed outside or inside of the axis area.
Graph Size	

You can specify the width and height of the graph in inches, centimeters, or pixels.

1
 1

High-Performance Statistics Tasks

About the High-Performance Tasks 240
Bin Continuous Data Task 240
About the Bin Continuous Data Task 240
Example: Winsorized Binning 240
Assigning Data to Roles 243
Setting Options 243
Creating an Output Data Set 244
High-Performance Correlation Analysis Task 245
About the High-Performance Correlation Analysis Task 245
Example: Correlation between Weight, Oxygen, and Run Time 245
Assigning Data to Roles 246
Setting Options 247
Creating an Output Data Set 248
Generalized Linear Models 248
About the Generalized Linear Models Task 248
Example: Model Selection 249
Assigning Data to Roles 250
Building a Model 255
Setting the Model Selection Options 257
Setting Options 258
Setting the Output Options 259
Replace Missing Values Task 259
About the Replace Missing Values Task 259
Assigning Data to Roles 259
Setting Options 260
Random Sampling Task 260
About the Random Sampling Task 260
Assigning Data to Roles 261
Creating the Output Data Set 262
Setting Options 262

About the High-Performance Tasks

The high-performance tasks are designed to be used with large data. Verify that you have adequate computing power before running these high-performance tasks on large data sets.

Bin Continuous Data Task

About the Bin Continuous Data Task

The Bin Continuous Data task is a data preparation task. This task divides the data values of a continuous variable into intervals and replaces the values for each interval with a single value that is representative of the interval.

Note: This task is available only if you are running SAS 9.4 or later.

Example: Winsorized Binning

In this example, the task provides the basic Winsorized statistical information for the input data.

To create this example:
1 To create the Work. Ex12 data set, enter this code into a Program tab:

```
data ex12;
    length id 8;
    do id=1 to 10000;
        x1 = ranuni(101);
        x2 = 10*ranuni(201);
        x3 = 100*ranuni(301);
        output;
    end;
run;
```

Click *

2 In the Tasks section, expand the High-Performance Statistics folder and doubleclick Bin Continuous Data. The user interface for the Bin Continuous Data task opens.

3 On the Data tab, select the WORK.EX12 data set.
4 To the Variables to bin role, assign the $\mathbf{x} 1$ and $\mathbf{x} \mathbf{2}$ columns.
5 Select the Options tab and set these options:

- In the Number of bins box, enter 10.
- From the Method drop-down list, select Winsorized binning.

6 To run the task, click

Here is a subset of the results:

Performance Information	
Execution Mode	Single-Machine
Number of Threads	4

Data Access Information			
Data	Engine	Role	Path
WEBWORK.EX12	V9	Input	On Client

Binning Information	
Method	Winsor Binning
Number of Bins Specified	10
Number of Variables	2

Mapping				
Variable	Binned Variable	Range	Frequency	Proportion
x 1	BIN_x1	$\mathrm{x} 1<0.137722$	1405	0.14050000
		$0.137722<=\mathrm{x} 1<0.227865$	849	0.08490000
		$0.227865<=\mathrm{x} 1<0.318007$	897	0.08970000
		$0.318007 \leqslant=\mathrm{x} 1<0.408150$	864	0.08640000
		$0.408150<=\mathrm{x} 1<0.498293$	906	0.09060000
		$0.498293<=\mathrm{x} 1<0.588435$	899	0.08990000
		$0.588435<=\mathrm{x} 1<0.678578$	935	0.09350000
		$0.678578<=\mathrm{x} 1<0.768720$	901	0.09010000
		$0.788720<=x 1<0.858863$	948	0.09480000
		$0.858883<=x 1$	1398	0.13980000
x 2	BIN_x2	$x 2<1.398500$	1385	0.13850000
		$1.398500<=x 2<2.301388$	941	0.09410000
		$2.301386<=x 2<3.204232$	888	0.08880000
		$3.204232<=x 2<4.107099$	855	0.08550000
		$4.107099<=x 2<5.009985$	905	0.09050000
		$5.009985<=x 2<5.912831$	864	0.08640000
		$5.912831<=x 2<6.815697$	908	0.09080000
		$6.815697 \leqslant=x 2<7.718563$	909	0.09090000

Assigning Data to Roles

To run the Bin Continuous Data task, you must assign a variable to the Variables to bin role.
Role Description

Roles

Variables to bin

specifies one or more variables as input variables for binning. The specified variables must be interval variables.

Additional Roles

Frequency count
specifies a numeric variable that contains the frequency of occurrence for each observation. If the frequency value is less than 1 or is missing, the observation is not used in the analysis. If no variable is assigned to the Frequency count role, each observation is assigned a frequency of 1.

Setting Options

Option Name

Description

Methods

Number of bins
specifies the global number of binning levels for all binning variables. This value can be any integer between 2 and 1,000 , inclusive. The default number of binning levels is 16.

Option Name

Method

Statistics

Select statistics to display

Description

specifies which binning method to use.
Bucket binning creates equal-length bins and assigns the data to one of these bins. You can choose the number of bins during the binning. The default number of bins (the binning level) is 16.
Winsorized binning is similar to bucket binning except that both tails are cut off to obtain a smooth binning result. This technique is often used to remove outliers during the data preparation stage.
You must specify a value for the Winsor rate option. Valid values are from 0.0 to 0.5 (exclusive). The default value is 0.05 .
Pseudo-quantile binning mimics the results of the quantile binning method but is more efficient by consuming less CPU time and memory.

In the results, you can specify whether to include statistics.
Here are the additional statistics that you can include:

Basic statistics displays the mean, pseudo-median, standard deviation, minimum, maximum, and number of bins for each binning variable.

Quantile statistics displays the estimated quantiles and extremes table.

Creating an Output Data Set

You can specify whether to save the results to an output data set. In the Additional variables to include in the output data set role, specify any columns from the input data set that you want to include in the output data set.

High-Performance Correlation Analysis Task

About the High-Performance Correlation Analysis Task

Correlation is a statistical procedure for describing the relationship between numeric variables. The relationship is described by calculating correlation coefficients for the variables. The High-Performance Correlation Analysis task computes Pearson statistics for investigating associations among variables. Correlations range from -1 to 1.

Note: This task is available only if you are running SAS 9.4 or later.

Example: Correlation between Weight, Oxygen, and Run Time

To create this example:
1 Create the Work.Fitness data set. For more information, see "FITNESS Data set" on page 407.

2 In the Tasks section, expand the High-Performance Statistics folder and doubleclick Correlation Analysis. The user interface for the High-Performance Correlation Analysis task opens.

3 On the Data tab, select the WORK.FITNESS data set.
4 To the Analysis variables role, assign the Weight, Oxygen, and RunTime columns.

5 To run the task, click

Here are the results:

Data Access Information			
Data	Engine	Role	Path
WEBWORK.FITNESS	V9	Input	On Client

Weight Oxygen Run Time			
Pearson Correlation Coefficients Prob > $\|r\|$ under H0: Rho=0 Number of Observations			
	Weight	Oxygen	RunTime
Weight	$\begin{array}{r} 1.00000 \\ 31 \end{array}$	$\begin{array}{r} -0.15358 \\ 0.4264 \\ 29 \end{array}$	$\begin{array}{r} 0.20072 \\ 0.2985 \\ 29 \end{array}$
Oxygen	$\begin{array}{r} -0.15358 \\ 0.4264 \\ 29 \end{array}$	$\begin{array}{r} 1.00000 \\ 29 \end{array}$	$\begin{array}{r} -0.86843 \\ <.0001 \\ 28 \end{array}$
RunTime	$\begin{array}{r} 0.20072 \\ 0.2985 \\ 29 \end{array}$	$\begin{array}{r} -0.86843 \\ <.0001 \\ 28 \end{array}$	$\begin{array}{r} 1.00000 \\ 29 \end{array}$

Assigning Data to Roles

To run the High-Performance Correlation Analysis task, you must assign two columns to the Analysis variables role.

Role

Description

Roles

Analysis variables

specifies the columns to use to calculate the correlation coefficients.

Additional Roles

Frequency count

specifies a numeric column whose value represents the frequency of the observation.

Role	Description
Weight	specifies the weights to use in the calculation of Pearson weighted product-moment correlation.

Setting Options

Option Name

Description

Methods

Missing values

specifies whether to include missing values in the calculations.

- If you select the Use nonmissing values for all selected variables option, any observations that have missing values are excluded from the analysis.
- If you select the Use nonmissing values for pairs of variables option, the data for an observation contributes to the correlation between two variables as long as both values are nonmissing. As a result, the correlations that are calculated for the analysis variable might be based on a different number of observations.

Statistics

You can specify whether the results include only the statistics that the task automatically generates, the statistics that you selected, or no statistics. By default, only the correlations table is displayed in the results.
You can include these statistics in the results:

- correlations
- covariances
- sum of squares and cross-products
- corrected sum of squares and cross-products
- descriptive statistics

Option Name

Display p-values

Description

specifies whether to display for each correlation coefficient the probability of observing a more extreme value than the observed coefficient.
displays the ordered correlation coefficients for each variable. Correlations are ordered from highest to lowest in absolute value.

Creating an Output Data Set

You can specify whether to save the results to an output data set. By default, the output data set contains the correlations. You can also include covariances, sum of squares and cross-products, and corrected sum of squares and cross-products.

Generalized Linear Models

About the Generalized Linear Models Task

The Generalized Linear Models task is a high-performance task that provides model fitting and model building for generalized linear models. It fits models for standard distributions such as Normal, Poisson, and Tweedie in the exponential family. This task also fits multinomial models for ordinal and nominal responses. The task provides forward, backward, and stepwise selection methods.

Note: This task is available only if you are running SAS 9.4 or later.

Example: Model Selection

To create this example:
1 Create the Work.getStarted data set. For more information, see "GETSTARTED Data Set" on page 408.

2 In the Tasks section, expand the High-Performance Statistics folder and doubleclick Generalized Linear Models. The user interface for the Generalized Linear Models task opens.

3 On the Data tab, select the WORK.GETSTARTED data set.
4 Assign columns to these roles:

Role or Option Name	Column Name
Distribution	Poisson
Response variable	Y
Classification variables	C1
	C2
	C3
	C4
	C5

5 Click the Model tab. In the Variables box, select C1-C5. Click Add.
6 Click the Selection tab. From the Selection method drop-down list, select Forward selection.

7 To run the task, click

Here is a subset of the results:

Performance Information	
Execution Mode	Single-Machine
Number of Threads	4

Data Access Information			
Data	Engine	Role	Path
WEBWORK.GETSTARTED	V9	Input	On Client

Model Information	
Data Source	WEBWORK.GETSTARTED
Response Variable	Y
Class Parameterization	GLM
Distribution	Poisson
Link Function	Log
Optimization Technique	Newton-Raphson with Ridging

Selection Information	
Selection Method	Forward
Select Criterion	Significance Level
Stop Criterion	Significance Level
Effect Hierarchy Enforced	Single
Entry Significance Level (SLE)	0.05
Stop Horizon	1

Number of Observations Read 100 Number of Observations Used
\qquadClass Level Information Class Levels Values C1 4 0123 C2 4 0123 C3 4 0123

Assigning Data to Roles

To run the Generalized Linear Models task, you must assign a column to the Response variable role.

Option Name

Description

Roles

Option Name
Response
Options for Binomial Distribution
Response data consists of numbers of events and trials
Description
Distribution specifies the distribution for your model. You can choose from these distributions:
Binomial

- Gamma
- Inverse Gaussian
- Multinomial
- Negative binomial
- Normal
- Poisson
Tweedie
Number of events
Number of trials
Response
Ren
specifies whether the data consists of a variable that specifies the number of positive responses (events) and another variable that specifies the number of trials.
specifies the column that contains the number of events.
specifies the column that contains the number of trials.
specifies the variable that contains response values.
If you create a binomial response model, you can specify the first or last ordered category as the reference category by using the Event of interest option. You can also select a custom category.
Note: This option is available only if you do not select the Response data consists of numbers of events and trials check box.

Options for All Distribution Types

Option Name

Response

Description

specifies the variable that contains response values.

If you create a binomial response model or a nominal multinomial model, you can specify the first or last ordered category as the reference category by using the Event of interest option. You can also select a custom category.

To create a binomial response model, select Binomial as the distribution. For the binomial response model, specifying one response category as the reference is the same as specifying the other response category as the event category.

- To create a nominal multinomial model, select Multinomial as the distribution and select Generalized logit as the link function. For the generalized logit model, each logit contrasts a nonreference category with the reference category.

Option Name

Link function

Description

specifies the link function for your model. The functions that are available depend on the selected distribution.

If you select Default for the link function, then the default link function for the model distribution is used.
Here is the list of distributions with the corresponding default link function:

- Binomial distribution uses the logit link function.
- Gamma distribution uses the reciprocal link function.
- Inverse Gaussian distribution uses the reciprocal square link function.
- Multinomial distribution uses the cumulative logit link function.
- Negative binomial distribution uses the log link function.

Normal distribution uses the identity link function.

Poisson distribution uses the log link function.

Tweedie distribution uses the log link function.

Explanatory Variables

Classification variables

specifies the variables to use to group (classify) data in the analysis. Classification variables can be either character or numeric.

Parameterization of Effects

Option Name

Coding

Description

specifies the parameterization method for the classification variable. Design matrix columns are created from the classification variables according to the selected coding scheme.
You can select from these coding schemes:
GLM coding specifies less-than-full-rank, reference-cell coding. This coding scheme is the default.
Reference coding specifies reference-cell coding.

Treatment of Missing Values
An observation is excluded from the analysis when either of these conditions is met:

- if any variable in the model contains a missing value
- if any classification variable contains a missing value (regardless of whether the classification variable is used in the model)

Continuous variables

Offset variable

Additional Roles

Frequency count

Weight variable

specifies the independent covariates (regressors) for the regression model. If you do not specify a continuous variable, the task fits a model that contains only an intercept.
specifies a variable to be used as an offset to the linear predictor. An offset plays the role of an effect whose coefficient is known to be 1. Observations that have missing values for the offset variable are excluded from the analysis.
specifies the numeric column that contains the frequency of occurrence for each observation.
specifies the column to use as a weight to perform a weighted analysis of the data.

Building a Model

Requirements for Building a Model

By default, no effects are specified, which results in the task fitting an intercept-only model. To specify an effect, you must assign at least one variable to the Classification variables role or the Continuous variables role. You can select combinations of variables to create crossed, nested, factorial, or polynomial effects.

To create a model, use the model builder on the Models tab. After you create a model, you can specify whether to include the intercept in the model.

Create a Main Effect

1 Select the variable name in the Variables box.
2 Click Add to add the variable to the Model effects box.

Create Crossed Effects (Interactions)

1 Select two or more variables in the Variables box. To select more than one variable, press Ctrl.

2 Click Cross.

Create a Nested Effect

Nested effects are specified by following a main effect or crossed effect with a classification variable or list of classification variables enclosed in parentheses. The main effect or crossed effect is nested within the effects listed in parentheses. Here are examples of nested effects: $B(A), C\left(B^{*} A\right), D^{*} E\left(C^{*} B^{*} A\right)$. In this example, $B(A)$ is read " A nested within B."

1 Select the effect name in the Model effects box.
2 Click Nest. The Nested window opens.
3 Select the variable to use in the nested effect. Click Outer or Nested within Outer to specify how to create the nested effect.

Note: The Nested within Outer button is available only when a classification variable is selected.

4 Click Add.

Create a Full Factorial Model

1 Select two or more variables in the Variables box.

2 Click Full Factorial.

For example, if you select the Height, Weight, and Age variables and then click Full Factorial, these model effects are created: Age, Height, Weight, Age*Height, Age*Weight, Height*Weight, and Age*Height*Weight.

Create an N-Way Factorial

1 Select two or more variables in the Variables box.
2 Click N-way Factorial to add these effects to the Model effects box.
For example, if you select the Height, Weight, and Age variables and then specify the value of N as 2, when you click N -way Factorial, these model effects are created: Age, Height, Weight, Age*Height, Age*Weight, and Height*Weight. If N is set to a value greater than the number of variables in the model, N is effectively set to the number of variables.

Create Polynomial Effects of the Nth Order

1 Select one variable in the Variables box.
2 Specify higher-degree crossings by adjusting the number in the \mathbf{N} field.
3 Click Polynomial Order=N to add the polynomial effects to the Model effects box.
For example, if you select the Age and Height variables and then you specify 3 in the \mathbf{N} field, when you click Polynomial Order=N, these model effects are created: Age, Age*Age, Age*Age*Age, Height, Height*Height, and Height*Height*Height.

Setting the Model Selection Options

Option

Model Selection

Selection method

Description

specifies the selection method for the model. The task performs model selection by examining whether effects should be added to or removed from the model according to the rules that are defined by the selection method.

Here are the valid values for the selection methods:

None fits the full model.
Forward selection starts with no effects in the model and adds effects based on the Significance level to add an effect to the model option.

Selection method (continued)

Select best model by
specifies the criterion to use to identify the best-fitting model.

Backward elimination starts with all the effects in the model and deletes effects based on the value in the Significance level to remove an effect from the model option.

- Stepwise selection is similar to the forward selection model. However, effects that are already in the model do not necessarily stay there. Effects are added to the model based on the Significance level to add an effect to the model option and are removed from the model based on the Significance level to remove an effect from the model option.

Details

Option

Selection process details

Maintain hierarchy of effects

Description

specifies how much information about the selection process to include in the results. You can display a summary, details for each step of the selection process, or all of the information about the selection process.
specifies to maintain the hierarchy of effects.

Setting Options

Option Description

Methods

Dispersion

Dispersion parameter

enables you to specify a fixed dispersion parameter for those distributions that have a dispersion parameter. By default, this parameter is estimated.

Optimization

Method

Maximum number of iterations

specifies the optimization technique to use.
specifies the maximum number of iterations to perform for the selected optimization technique.

Statistics

You can select the statistics to include in the output.
Here are the additional statistics that you can include:

- confidence limits for estimates
- correlations of parameter estimates
- covariances of parameter estimates

Setting the Output Options

You can specify whether to create an output data set. You can also specify whether to include predicted values, residuals, or any other variables in the output data set.

Replace Missing Values Task

About the Replace Missing Values Task

The Replace Missing Values task replaces missing values in a data set with an estimate of the missing value. The task also creates binary imputation indicators.

Assigning Data to Roles

Role
Roles
Replace missing values with the mean
Replace missing values with the pseudomedian

replaces missing values with the mean for the variable.

Replace missing values with a random number
replaces missing values with the pseudomedian of the variable. If there is no nonmissing value, the pseudo-median is 0 .
replaces missing values with a random value that is drawn between the minimum and maximum of the variable. If there is no nonmissing value, the random value is 0 .

Additional Roles

Role

Description

Frequency count
specifies a numeric variable that contains the frequency of occurrence for each observation. If the frequency value is less than 1 or is missing, the observation is not used in the analysis. If no variable is assigned to the Frequency count role, each observation is assigned a frequency of 1.

Setting Options

You can specify whether to create an output data set. This output data set includes the data, imputation indicator variables (0 for not imputed or 1 for imputed), and imputed variables. You can also include any variables from the input data set.

Random Sampling Task

About the Random Sampling Task

The Random Sampling task is a high-performance procedure that performs either simple random sampling or stratified sampling. The output from this task includes an output data set and the sample data, a table with performance information, and a table with frequency information for the population and sample.

Assigning Data to Roles

If you want to perform stratified sampling, you must assign a column to the Stratify by role. Otherwise, the Stratify by role is optional.

Role

Stratify by

Description

specifies the variables to use to partition the input table into mutually exclusive, nonoverlapping subsets that are known as strata. Each stratum is defined by a set of values of the strata variables, and each stratum is sampled separately. The complete sample is the union of the samples that are taken from all the strata.

Note: If you do not assign any variables to this role, then the entire input table is treated as a single stratum.
You can allocate the total sample size among the strata in proportion to the size of the stratum. For example, the variable GENDER has possible values of M and F, and the variable VOTED has possible values of Y and N . If you assign both GENDER and VOTED to the Stratify by role, then the input table is partitioned into four strata: males who voted, males who did not vote, females who voted, and females who did not vote.

The input table contains 20,000 rows, and the values are distributed as follows:

7,000 males who voted
4,000 males who did not vote

- 5,000 females who voted
- 4,000 females who did not vote

Role

Description

Stratify by (continued)
Therefore, the proportion of males who voted is $7,000 / 20,000=0.35$ or 35%. The proportions in the sample should reflect the proportions of the strata in the input table. For example, if your sample table contains 100 observations, then 35% of the values in the sample must be selected from the males who voted stratum to reflect the proportions in the input table.

Creating the Output Data Set

You can select the numeric and character variables from the input data set to include in the output data. Select the Include all input observations and a sampling indicator variable to produce an output table with the same number of rows as the input table. The output table has an additional partition indicator (_PARTIND_) to indicate whether an observation is included in the sample (1) or not (0).

Setting Options

Option Name

Methods

Sample by

Description

specifies the sample size in the desired number of rows or in the desired percentage of input rows. For example, if you specify 3% of rows and there are 400 input rows, then the resulting sample has 12 rows.
Note: If you assign variables to the Stratify by role, then the sample size specification that you make here applies to each stratum rather than to the entire input table.

Option Name	Description
Random seed	specifies the initial seed for the generation of random numbers. If you set this value to zero or a negative number, then a seed that is based on the system clock is used to produce the sample.
Ignore case of character stratification values	distinguishes stratified variables that share the same normalized value when you perform stratified sampling. For example, if a target has three distinct values, "A", "B", and "b", and you want to treat "B" and "b" as different levels, you need to select this option. Otherwise, "B" and "b" are treated as the same level. The task normalizes a value as follows:
1 Leading blanks are removed.	
	2 The value is truncated to 32 characters.

264 Chapter 11 / High-Performance Statistics Tasks

1

Combinatorics and Probability Tasks

Same Birthday Probability Task 266
About the Same Birthday Probability Task 266
Example: Probability of Two or More People Sharing a Birthday in a Room of 145 People 266
Setting Options 268
Coin Toss Simulation Task 268
About the Coin Toss Simulation Task 268
Example: Probability of Outcomes for 10,000,000 Coin Tosses 268
Setting Options 269
Dice Roll Simulation Task 270
About the Dice Roll Simulation Task 270
Example: Probability of Outcomes for 100,000,000 Dice Rolls 270
Setting Options 271
Poker Hand Probability Task 272
About the Poker Hand Probability Task 272
Example: Results from the Poker Hand Probability Task 272

Same Birthday Probability Task

About the Same Birthday Probability Task

The Same Birthday Probability task computes the probability that two or more people in a room have the same birthday.

Example: Probability of Two or More People Sharing a Birthday in a Room of 145 People

To create this example:
1 In the Tasks section, expand the Combinatorics and Probability folder and double-click Same Birthday Probability. The user interface for the Same Birthday Probability task opens.

2 On the Options tab, specify these options.

Option Name	Value to Specify
Number in a room	145
Data set name	Birthdays

3 To run the task, click

Here is a subset of the results:

Same Birthday Probability

Number in a Room	Probability
2	0.00273972602740
3	0.00820416588478
4	0.01635591246655
5	0.02713557369979
6	0.04046248364911
7	0.05623570309598
8	0.07433529235167
9	0.09462383388917
10	0.11694817771108
11	0.14114137832173
12	0.16702478883806
13	0.19441027523243
14	0.22310251200497
15	0.25290131976369
16	0.28360400525285
17	0.31500766529656
18	0.34691141787179
19	0.37911852603154
20	0.41143838358058
21	0.44368833516521
22	0.47569530766255
23	0.50729723432399
24	0.53834425791453
25	0.56869970396946
1	
1	

Setting Options

All of these options are required to run the Same Birthday Probability task.

Option Name

Observations

Number in a room

Output Data Set
Data set name
specifies the name of the output data set.

Coin Toss Simulation Task

About the Coin Toss Simulation Task

The Coin Toss Simulation task simulates the tossing of a specified number of coins. The results show the frequency and percentage of occurrences that the coin displays heads given a specified number of tosses.

Example: Probability of Outcomes for 10,000,000 Coin Tosses

To create this example:
1 In the Tasks section, expand the Combinatorics and Probability folder and double-click Coin Toss Simulation. The user interface for the Coin Toss Simulations task opens.

2 On the Options tab, specify these options.

Option Name	Value to Specify
Number of coins	10
Number of tosses	$10,000,000$
Data set name	Coins

3 To run the task, click
Here are the results for this example:

Tossing 10 coins 10000000 times

Number of Heads	Frequency	Probability
0	9,724	0.000972
1	97,915	0.009792
2	439,805	0.043981
3	$1,171,589$	0.117159
4	$2,050,285$	0.205029
5	$2,462,216$	0.246222
6	$2,049,961$	0.204996
7	$1,170,485$	0.117049
8	440,501	0.044050
9	97,952	0.009795
10	9,567	0.000957
.	$10,000,000$	1.000000

Setting Options

All of these options are required to run the Coin Toss Simulation task.

Option Name

Description

Observations

Number of coins

Option Name

Number of tosses

Description

specifies the number of times to toss the coins.

Output Data Set
Data set name
specifies the name of the output data set.

Dice Roll Simulation Task

About the Dice Roll Simulation Task

The Dice Roll Simulation task simulates rolling a specified number of dice. The results show the frequency and percentage of each possible roll given a specified number of throws.

Example: Probability of Outcomes for 100,000,000 Dice Rolls

To create this example:
1 In the Tasks section, expand the Combinatorics and Probability folder and double-click Dice Roll Simulation. The user interface for the Dice Roll Simulation task opens.

2 On the Options tab, specify these options.

Option Name	Value to Specify
Number of dice	2
Number of throws	$100,000,000$

Option Name
Data set name

Value to Specify

Dice

3 To run the task, click
Here are the results:

Rolling 2 dice 100000000 times

Value Rolled	Frequency	Probability
2	$2,776,093$	0.027761
3	$5,554,536$	0.055545
4	$8,335,512$	0.083355
5	$11,110,394$	0.111104
6	$13,888,936$	0.138889
7	$16,663,498$	0.166635
8	$13,891,321$	0.138913
9	$11,109,014$	0.111090
10	$8,336,640$	0.083366
11	$5,557,204$	0.055572
12	$2,776,852$	0.027769
.	$100,000,000$	1.000000

Setting Options

All of these options are required to run the Dice Roll Simulation task.

Option Name

Observations

Number of dice

Number of throws
Output Data Set
specifies the number of dice to roll.
specifies the number of times to roll the dice.

Poker Hand Probability Task

About the Poker Hand Probability Task

The Poker Hand Probability task calculates the frequency and probability of poker hands. The input data set for the Poker Hand Probability task must be the output data set generated by the Computations task.

Example: Results from the Poker Hand Probability Task

To create this example:
1 In the Tasks section, expand the Combinatorics and Probability folder and double-click Computations. The user interface for the Computations task opens.

2 On the Options tab, specify these options.

Option Name	Value to Specify
Total number	52
Number in a set	5
Data set name	Combo

3 To run the task, click $\boldsymbol{\gamma}$. The Work.Combo data set is created.
4 In the Tasks section, expand the Combinatorics and Probability folder and double-click Poker Hand Probability. The user interface for the Poker Hand Probability task opens.

5 For the input data set, select wORK . COMBO.

6 To run the task, click

Here are the results:

Poker Hand Probability

Poker Hand	Frequency	Probability
Nothing	$1,302,540$	0.501177
One Pair	$1,098,240$	0.422569
Two Pair	123,552	0.047539
Three of a Kind	54,912	0.021128
Straight	10,200	0.003925
Flush	5,108	0.001965
Full House	3,744	0.001441
Four of a Kind	624	0.000240
Straight Flush	36	0.000014
Royal Flush	4	0.000002
Total	$2,598,960$	1.000000

274 Chapter 12 / Combinatorics and Probability Tasks

1
 3

Statistics Tasks

Data Exploration Task 278
About the Data Exploration Task 278
Example: Exploring the SASHELP.CARS Data 278
Assigning Data to Roles 280
Setting the Plot Options 281
Summary Statistics Task 284
About the Summary Statistics Task 284
Example: Summary Statistics of Unit Sales 284
Assigning Data to Roles 285
Setting Options 287
Setting the Output Options 291
Distribution Analysis Task 291
About the Distribution Analysis Task 291
Example: Distribution Analysis of Sales for Each Region 292
Assigning Data to Roles 294
Setting Options 295
One-Way Frequencies Task 298
About the One-Way Frequencies Task 298
Example: One-Way Frequencies of Unit Sales 298
Assigning Data to Roles 300
Setting Options 300
Correlation Analysis Task 302
About the Correlation Analysis Task 302
Example: Correlations in the Sashelp.Cars Data Set 302
Assigning Data to Roles 303
Setting Options 304
Setting the Output Options 307
Table Analysis Task 307
About the Table Analysis Task 307
Example: Distribution of Type by DriveTrain 308
Assigning Data to Roles 309
Setting Options 310
T Tests Task: One-Sample t Test 313
About the One-Sample t Test Task 313
Example: One-Sample t Test for Horsepower 314
Assigning Data to Roles 316
Setting Options 316
T Tests Task: Paired t Test 318
About the Paired t Test Task 318
Example: Determining the Distribution of Price - Cost 319
Assigning Data to Roles 321
Setting Options 322
T Tests Task: Two-Sample t Test 324
About the Two-Sample t Test Task 324
Example: Two-Sample t Test 325
Assigning Data to Roles 327
Setting Options 328
One-Way ANOVA Task 330
About the One-Way ANOVA Task 330
Example: Testing for Differences in the Means for MPG_Highway by Car Type 331
Assigning Data to Roles 333
Setting Options 334
Setting the Output Options 337
Nonparametric One-Way ANOVA Task 337
About the Nonparametric One-Way ANOVA Task 337
Example: Wilcoxon Scores for MPG_Highway Classified by Origin 337
Assigning Data to Roles 340
Setting Options 340
Creating an Output Data Set 343
N-Way ANOVA Task 343
About the N-Way ANOVA Task 343
Example: Analyzing the Sashelp.RevHub2 Data Set 343
Assigning Data to Roles 345
Building a Model 345
Setting Options 347
Setting the Output Options 347
Analysis of Covariance Task 348
About the Analysis of Covariance Task 348
Example: Analyzing the Sashelp.Class Data Set 348
Assigning Data to Roles 350
Setting Options 351
Setting the Output Options 352
Linear Regression Task 352
About the Linear Regression Task 352
Example: Predicting Weight Based on a Student's Height 352
Assigning Data to Roles 357
Building a Model 358
Setting the Model Options 360
Setting the Model Selection Options 365
Creating Output Data Sets 367
Binary Logistic Regression Task 368
About the Binary Logistic Regression Task 368
Example: Classifying E-Mail as Junk 368
Assigning Data to Roles 371
Building a Model 373
Specifying the Model Selection Options 375
Setting Options 377
Creating Output Data Sets 382
Predictive Regression Model 383
About the Predictive Regression Model 383
Example: Predicting a Baseball Player's Salary 383
Partitioning Your Data 385
Assigning Data to Roles 386
Building a Model 388
Selecting a Model 390
Setting the Options for the Final Model 394
Setting the Scoring Options 396
Generalized Linear Models 396
About the Generalized Linear Models Task 396
Example: Analyzing the Sashelp.Baseball Data Set 397
Assigning Data to Roles 398
Building a Model 402
Setting Options 404
Setting the Output Options 406

Data Exploration Task

About the Data Exploration Task

The Data Exploration task provides graphs that can be used to explore the relationships among selected variables.

Example: Exploring the SASHELP.CARS Data

To create this example:
1 In the Tasks section, expand the Statistics folder and double-click Data Exploration. The user interface for the Data Exploration task opens.

2 On the Data tab, select the SASHELP.CARS data set.
3 Assign columns to these roles and specify these options:

Role	Column Name
Continuous variables	Horsepower
	MPG_City
	MPG_Highway
Classification variables	Type
	DriveTrain

4 To run the task, click
Here is a subset of the results:

Assigning Data to Roles

To run the Data Exploration task, you must assign either two columns to the Classification variables role or one column to the Continuous variables role.

Role

Description

Roles

Classification variables

specifies the classification variables to use to explore the data.

Continuous variables

specifies the continuous variables in the analysis.

Additional Roles

Role

Description

Group analysis by

creates separate analyses based on the number of $B Y$ variables.

Setting the Plot Options

The plot options that are available depend on the columns that you assigned on the Data tab.

Option Name
 Description
 Histogram and Box Plot

The combined histogram and box plot options are available when a column is assigned to the Continuous variables role, but no column is assigned to the Classification variables role.

Scatter Plot Matrix

The scatter plot matrix options are available when at least two columns are assigned to the Continuous variables role.

Add histograms

Add prediction ellipses

adds histograms to the diagonal cells of the matrix. You can add a normal density curve and the kernel density estimate to these histograms.
adds a prediction ellipse to each cell that contains a scatter plot. You can specify the confidence level for the ellipses. Valid values are between 0 and 1 .

Pairwise Scatter Plots

The pairwise scatter plot options are available when at least two columns are assigned to the Continuous variables role.

Option Name

Pairwise scatter plots
Add a prediction ellipse

Description

plots the values of two or more variables and produces a separate cell for each combination of Y and X variables. That is, each $Y^{*} X$ pair is plotted on a separate set of axes.
adds a prediction ellipse to each cell that contains a scatter plot. You can specify the confidence level for the ellipses. Valid values are between 0 and 1 .

Regression Scatter Plots

The regression scatter plot options are available when at least two columns are assigned to the Continuous variables role.

Regression scatter plots

Select response variables

Add a fitted line

Add a loess fit

Add a fitted, penalized B-spline curve
adds a regression fit to the scatter plot.
specifies the variables to use when fitting the regression line.
adds a regression fit to the scatter plot.
adds a loess fit to the scatter plot.
adds a fitted, penalized B-spline curve to the scatter plot.
Mosaic Plot

Mosaic plot

creates a mosaic plot, which displays tiles that correspond to the crosstabulation table cells. The areas of the tiles are proportional to the frequencies of the table cells. The column variable is displayed on the X axis, and the tile widths are proportional to the relative frequencies of the column variable levels. The row variable is displayed on the Y axis, and the tile heights are proportional to the relative frequencies of the row levels within column levels.

Option Name	Description
Square mosaic plot	produces a square mosaic plot, where the height of the Y axis equals the width of the X axis. In a square mosaic plot, the scale of the relative frequencies is the same on both axes.
Specify colors of mosaic plot tiles	colors the mosaic plot tiles according to the values of residuals. You can also specify to color the tiles according to the Pearson or standardized residuals of the corresponding table cells.
Histogram	creates a histogram by using any numeric variables in the input data set.
Histogram	adds a normal density curve to the histogram. adds a kernel density estimate to the
histogram.	

Summary Statistics Task

About the Summary Statistics Task

The Summary Statistics task provides descriptive statistics for variables across all observations and within groups of observations. You can also summarize your data in a graphical display, such as histograms and box plots.

For example, you could use this task to create a report on the number of new sales, arranged by product type and country.

Example: Summary Statistics of Unit Sales

In this example, you want to analyze unit sales. In addition to the tabular results, you choose to display a histogram of the distribution.

To create this example:
1 In the Tasks section, expand the Statistics folder and double-click Summary Statistics. The user interface for the Summary Statistics task opens.

2 On the Data tab, select the SASHELP.PRICEDATA data set.
3 To the Analysis variables role, assign the sale column.
4 On the Options tab, expand the Plots section and select the Histogram check box.
5 To run the task, click $\boldsymbol{2}$.

Here are the results:

Analysis Variable : sale Unit Sale					
Mean	Std Dev	Minimum	Maximum	N	
408.5558824	73.0840041	203.0000000	747.0000000	1020	

Assigning Data to Roles

To run the Summary Statistics task, you must assign a column to the Analysis variables role.

Role

Description

Roles

Role	Description
Analysis variables	The variables that you assign to this role are the numeric variables for which you want statistics. You must assign at least one variable to this role.
Classification variables	The variables that you assign to this role are character or discrete numeric variables that are used to divide the input data into categories or subgroups. The statistics are calculated on all selected analysis variables for each unique combination of classification variables.
Additional Roles	
Group analysis by	The variables that you assign to this role are used to compute separate statistics for each distinct value or combination of values of the Group analysis by variables. The data is automatically sorted by the variables in this role before the statistics are computed.
Frequency count	When you assign a variable to this role, each observation in the table is assumed to represent n observations, where n is the value of the frequency count for that row. Statistics are calculated accordingly. You can assign a maximum of one variable to this role.
Weight variable	If you assign a variable to this role, the value of the variable for each observation is used to calculate weighted means, variances, and sums. You can assign a maximum of one variable to this role.

Setting Options

Option Name	Description
Statistics	is the arithmetic average, calculated by adding the values of an analysis variable and dividing this sum by the number of nonmissing observations.
Basic Statistics	is a statistical measure of the variability of a group of data values. This measure, which is the most widely used measure of the dispersion of a frequency distribution, is equal to the positive square root of the variance.
Mean	is the smallest value for an analysis variable.
Standard deviation	is the largest value for an analysis variable.
Minimum value	is the middle value for an analysis variable. is the total number of observations with nonmissing values.
Maximum value	is the total number of observations with missing values.
Median	is the standard deviation of the sample mean. The standard error is defined as the ratio of the sample standard deviation to the square root of the sample size. Note: This option is available only if Degrees of freedom is selected in the Divisor for standard deviation and variance drop-down list.
Number of observations	missing values

Option Name	Description Variance is a statistical measure of dispersion of data values. This measure is an average of the total squared dispersion between each observation and the sample mean.
Mode	is the most frequent value for the analysis variable.
Range	is the difference between the largest and smallest values in the data.
Sum	is the sum of all values in the analysis variable.
Sum of weights	is the sum of the numeric variable that is used to weight each observation. Note: You cannot compute the sum of the weights unless you assign a variable to the Weight variable role.
Confidence limits for the mean	is the two-sided confidence limits for the mean. A two-sided $100(1-\alpha) \%$ confidence interval for the mean has the following upper and lower limits: $\bar{x} \pm t$
Skewness $\left.1-\frac{\alpha}{2} ; n-1\right) \frac{s}{\sqrt{n}}$, where s is	

Option Name

Kurtosis

Description

is the kurtosis, which measures the heaviness of tails.

Percentiles

1st, 5th, 10th, Lower quartile, Median, Upper quartile, 90th, 95th, 99th, Interquartile range
choose the percentiles and quantiles to compute.

Quantile method

specifies the method that is used to compute the quantiles, median, and percentiles.
Order statistics
reads all of the data into memory and sorts it by the unique values.
Piecewise-parabolic algorithm approximates the quantile and is a less memory-intensive method.

Note: If you assigned a variable to the Weight variable role, only the Order statistics method is available.

Plots

Histogram

creates a graph that is used to determine the distribution of the data. If you add a normal density curve, the task uses the sample mean and sample standard deviation for μ and σ. If you add a kernel density curve, the task uses the AMISE method to compute the kernel density estimates.
To include the statistics in the graph, select the Add inset statistics check box.

Option Name

Comparative box plot

Description

creates a graph that shows a measure of central location (the median), two measures of dispersion (the range and interquartile range), the skewness (from the orientation of the median relative to the quartiles), and potential outliers. Box plots are especially useful in comparing two or more sets of data.

Note: The Comparative box plot option is available only when no column is assigned to the Classification variable role.

You can choose to add the overall inset statistics to the graph or only the inset statistics for each group.

Histogram and box plot

displays the histogram and box plots together in a single panel, sharing common X axes. You can choose to add the overall inset statistics to the graph.
Note: The Histogram and box plot option is available only when no column is assigned to the Classification variable role.

Details

Option Name

Divisor for standard deviation and variance

Description

specifies the divisor to use in the calculation of the variance and standard deviation. Here are the valid options:

Degrees of freedom

$n-1$
By default, the divisor for the variance is the degrees of freedom.
Number of observations
n
Sum of weights minus one

$$
\left(\Sigma_{i} w_{i}\right)-1
$$

Sum of weights

$\Sigma_{i} w_{i}$
Note: The Sum of weights minus one and the Sum of weights options are available only if you assigned a variable to the Weight variable role.

Setting the Output Options

You can specify whether to save the statistics in an output data set.

Distribution Analysis Task

About the Distribution Analysis Task

Distribution analysis provides information about the distribution of numeric variables. A variety of plots such as histograms, probability plots, and quantile-quantile plots can be used in this analysis.

Example: Distribution Analysis of Sales for Each Region

In this example, you want to analyze the sales for each region. Because the data contains three regions, you get three sets of results.

To create this example:
1 In the Tasks section, expand the Statistics folder and double-click Distribution Analysis. The user interface for the Distribution Analysis task opens.

2 On the Data tab, select the SASHELP.PRICEDATA data set. Then assign the sale variable to the Analysis variables role.

3 Click the Options tab.
a In the Exploring Data group, assign the regionName variable to the Classification variables role.
b In the Checking for Normality group, select the Histogram and goodness-offit tests and Normal quantile-quantile plot options.

4 To run the task, click

Here is a subset of the results:

Assigning Data to Roles

To run the Distribution Analysis task, you must assign a column to the Analysis variables and select a plot or test on the Options tab.

Role
 Description

Roles
Analysis variables
specifies the analysis variables and their order in the results.
Role Description

Additional Roles
Frequency count
specifies a numeric variable whose value represents the frequency of the observation. The Distribution Analysis task assumes that each observation represents n observations, where n is the value of the variable.

Group analysis by

specifies the variables that the Distribution Analysis task uses to form groups.

Setting Options

Option Name Description

Exploring Data
By default, the task creates a histogram of the data. In the Classification variables role, specify the variables that are used to group the analysis variables into classification levels. You can assign a maximum of two columns to this role.

You can also specify whether to superimpose a kernel density estimate and the normal density curve on the histogram. Finally, you can specify whether to include an inset box of selected statistics in the graph.

Checking for Normality
Note: If you select any of these options, you can also specify whether to include these inset statistics: number of observations, goodness-of-fit test, mean, median, standard deviation, variance, skewness, and kurtosis.

Histogram and goodness-of-fit tests

requests tests for normality that include a series of goodness-of-fit tests based on the empirical distribution function. The table provides test statistics and p-values for the Shapiro-Wilk test (provided the sample size is less than or equal to 2,000), the KolmogorovSmirnov test, the Anderson-Darling test, and the Cramér-von Mises test.

Option Name

Normal probability plot

Description

creates a probability plot, which compares ordered variable values with the percentiles of the normal distribution. If the data distribution matches the normal distribution, the points on the plot form a linear pattern. Probability plots are preferable for graphical estimation of percentiles.

The distribution reference line on the plot is created from the maximum likelihood estimate for the parameter.
You can also specify whether to include an inset box of selected statistics in the graph.

Normal quantile-quantile plot

creates quantile-quantile plots (Q-Q plots) and compares ordered variable values with quantiles of the normal distribution. If the data distribution matches the normal distribution, the points on the plot form a linear pattern. QQ plots are preferable for graphical estimation of distribution parameters.
The distribution reference line on the plot is created from the maximum likelihood estimate for the parameter.

You can also specify whether to include an inset box of selected statistics in the graph.

Fitting Distributions

Note: If you select a plot option for any of these distributions, you can also specify whether to include these inset statistics: number of observations, mean, median, standard deviation, and variance.

Beta

Histogram and goodness-of-fit tests

fits beta distribution with threshold parameter θ, scale parameter σ, and shape parameters α and β.

Probability plot

specifies a beta probability plot for shape parameters α and β.

Option Name	Description
Quantile-quantile plot	specifies a beta Q-Q plot for shape parameters α and β.
Exponential	fits exponential distribution with threshold parameter θ and scale parameter σ.
Histogram and goodness-of-fit tests	specifies an exponential probability plot.
Probability plot	specifies an exponential Q-Q plot.
Quantile-quantile plot	fits gamma distribution with threshold parameter θ, scale parameter σ, and shape parameter α.
Gamma	specifies a gamma probability plot for shape parameter α.
Histogram and goodness-of-fit tests	specifies a gamma Q-Q plot for shape parameter α.
Probability plot	parameter θ, scale parameter ζ, and shape parameter c.
Quantile-quantile plot	specifies a lognormal Q-Q plot for shape parameter σ.
Histogram and goodness-of-fit tests	specifies a lognormal probability plot for shape parameter σ.
Lognormal	fits lognormal distribution with threshold parameter θ, scale parameter ζ, and shape
parameter σ.	

Option Name

Probability plot

Description

specifies a two-parameter Weibull probability plot.

Quantile-quantile plot specifies a two-parameter Weibull Q-Q plot.

One-Way Frequencies Task

About the One-Way Frequencies Task

The One-Way Frequencies task generates frequency tables from your data. You can also use this task to perform binomial and chi-square tests.

You might want to use this task to analyze the efficiency of a new drug. For example, suppose a group of medical researchers are interested in evaluating the efficacy of a new treatment for a skin condition. Dermatologists from participating clinics are trained to conduct the study and to evaluate the condition. After the training, two dermatologists examine patients with the skin condition from a pilot study and rate the same patients. The One-Way Frequencies task can be used to evaluate the agreement of the diagnoses.

Example: One-Way Frequencies of Unit Sales

In this example, you want to analyze unit sales for each sales region.
To create this example:
1 In the Tasks section, expand the Statistics folder and double-click One-Way Frequencies. The user interface for the One-Way Frequencies task opens.

2 On the Data tab, select the SASHELP.PRICEDATA data set.
3 Assign columns to these roles:

Role	Column Name
Analysis variables	sale
Group analysis by	regionName

4 To run the task, click $\boldsymbol{\gamma}$.
Here is a subset of the results:

Frequency for SASHELP.PRICEDATA
Sales Region=Region1

Unit Sale					
sale	Frequency	Percent	Cumulative Frequency	Cumulative Percent	
$\mathbf{2 9 8}$	1	0.56	1	0.56	
300	1	0.56	2	1.11	
301	1	0.56	3	1.67	
307	1	0.56	4	2.22	
308	1	0.56	5	2.78	
314	1	0.56	6	3.33	
316	1	0.56	7	3.89	
318	1	0.56	8	4.44	
320	1	0.56	9	5.00	
321	1	0.56	10	5.56	
322	2	1.11	12	6.67	
323	1	0.56	13	7.22	
324	2	1.11	15	8.33	
328	1	0.56	16	8.89	
331	3	1.67	19	10.56	
$\sim m$	\sim	\ldots	\sim	$\ldots \sim$	

Assigning Data to Roles

To run the One-Way Frequencies task, you must assign a column to the Analysis variables role.

Role

Roles
Analysis variables

Description

specifies the variables to be analyzed. For each variable that you assign to this role, the task creates a one-way frequency table. You must assign at least one variable to this role.

Additional Roles
Frequency count
specifies the variable to use as the frequency count. When you assign a variable to this role, each observation in the table is assumed to represent n observations. In this example, n is the value of the frequency count for that row. You can assign only one variable to this role.

Group analysis by

specifies one or more variables to sort the table by. Analyses are performed on each group.

Setting Options

Option Name

Description

Plots
By default, plots are included in the results. Select the Show frequencies table check box to create the frequency and cumulative frequency plots. Select the Asymptotic test check box for the chi-square goodness-of-fit to create the deviation plot.
To suppress the plots from the results, select the Suppress plots check box.

Option Name	Description
Frequencies and Percentages	
Show frequencies table	specifies whether to create the frequencies table.
Include percentages	creates a table that contains the frequencies and percentages of total frequencies for each value of the analysis variable.
Include cumulative frequencies and percentages	creates a table that contains the frequencies and cumulative frequencies for each value of the analysis variable.
Statistics	
Binomial Proportion	
Specify whether to perform an asymptotic test. For binomial proportions, specify a null hypothesis proportion and a confidence level.	
Chi-square goodness-of-fit	
Specify whether to perform an asymptotic test.	
To compute the Monte Carlo estimates of the exact p-values instead of directly computing the exact p-values, select the Use Monte Carlo estimation check box. Monte Carlo estimation can be useful for large problems that require a great amount of time and memory for exact computations but for which asymptotic approximations might be insufficient.	
Exact Computations Methods	
Note: This section appears if you select the Exact test check box for the binomial proportion or chi-square goodness-of-fit statistics.	
Limit computation time	specifies the time limit (in seconds) for the computation of each p-value for each crosstabulation table. The default is 300 seconds (or 5 minutes).
Missing Values	
Include in frequency table	includes missing values in the frequency tables.

Option Name

Include in percentages and statistics

Description

includes the frequencies of missing values in binomial or chi-square tests and in the calculations of percentages.

Correlation Analysis Task

About the Correlation Analysis Task

Correlation is a statistical procedure for describing the relationship between numeric variables. The relationship is described by calculating correlation coefficients for the variables. The correlations range from -1 to 1 . The Correlation Analysis task provides graphs and statistics for investigating associations among variables.

Example: Correlations in the Sashelp.Cars Data Set

To create this example:
1 In the Tasks section, expand the Statistics folder and double-click Correlation Analysis. The user interface for the Correlation Analysis task opens.

2 On the Data tab, select the SASHELP.CARS data set.
3 Assign columns to these roles:

Role

Analysis variables

Correlate with

Column

EngineSize

Horsepower

Cylinders

MPG_Highway

4 To run the task, click

Here are the results:

$\mathbf{2}$ With Variables:	Cylinders MPG_Highway
$\mathbf{2}$ Variables:	EngineSize Horsepower

| Pearson Correlation Coefficients
 Prob > \|r| under H0: Rho=0
 Number of Observations | | |
| :--- | ---: | ---: |
| | EngineSize | Horsepower |
| | 0.90800 | 0.81034 |
| Cylinders | $<.0001$ | $<.0001$ |
| | 426 | 426 |
| MPG_Highway | -0.71730 | -0.64720 |
| MPG (Highway) | $<.0001$ | $<.0001$ |
| | 428 | 428 |

Assigning Data to Roles

To run the Correlation Analysis task, you must assign at least two columns to the Analysis variables role, or you must assign at least one column to the Analysis variables role and one column to the Correlate with role.

Roles

Roles

Analysis variables

Correlate with

Description

lists the variables for which to compute correlation coefficients.
lists the variables with which the correlations of the analysis variables are to be computed.

Partial variables
removes the correlation of these variables from the analysis and correlates with variables before calculating the correlation.

Roles	Description
Additional Roles	lists a numeric variable whose value represents the frequency of the observation. If you assign a variable to this role, the task assumes that each observation represents n observations, where n is the value of the frequency variable. If n is not an integer, SAS truncates it. If n is less than 1 or is missing, the observation is excluded from the analysis. The sum of the frequency variable represents the total number of observations.
Weight	lists the weights to use in the calculation of Pearson weighted product-moment correlation.
Group analysis by	enables you to obtain separate analyses of observations in groups that are defined by the BY variables.

Setting Options

Option Name

Methods

Missing values

specifies how to treat observations with missing values. If you select the Use nonmissing values for all selected variables option, all observations with missing values are excluded from the analysis. If you select the Use nonmissing values for pairs of variables option, the correlation statistics are computed using the nonmissing pairs of variables.

Statistics

Option Name

Description

By default, the results contain a table with the correlations and p-values. You can also include these statistics:

Correlations

Selecting this option includes the correlations in the results. You can also specify probabilities that are associated with each correlation coefficient and whether to order the correlations from highest to lowest in absolute value.

Covariances

Selecting this option includes the variance and covariance matrix in the results. Also, the Pearson correlations are displayed. If you assign a column to the Partial variables role, the task computes a partial covariance matrix.

Sum of squares and cross-products

Selecting this option displays a table of the sums of squares and cross products in the results. The Pearson correlations are also included in the results. If you assign a column to the Partial variables role, the unpartial sums of squares and cross-products matrix is displayed.

Corrected sum of squares and cross-products

Selecting this option displays a table of the corrected sums of squares and cross products. The Pearson correlations are also included in the results. If you assign a column to the Partial variables role, the task computes both an unpartial and a partial corrected sum of squares and cross-products matrix.

Descriptive statistics

Selecting this option includes the simple descriptive statistics for each variable. Even if you do not select this option and you choose to create an output data set, the data set contains the descriptive statistics for the variables.

Fisher's z transformation

For a Pearson correlation, you can use the Fisher transformation options to request confidence limits and p-values under a specified alternative (null) hypothesis, $H_{0}: \rho=\rho_{0}$, for correlation coefficients that use Fisher's z transformation. If you select the Fisher's z transformation check box, you must specify a value in the Null hypothesis box.
You can choose from these types of confidence limits:

- Two-sided confidence limits requests two-sided confidence limits for the test of the null hypothesis, $H_{0}: \rho=\rho_{0}$. This is the default.
- Lower confidence limit requests a lower confidence limit for the test of the one-sided null hypothesis, $H_{0}: \rho \leq \rho_{0}$.
- Upper confidence limit requests an upper confidence limit for the test of the onesided null hypothesis, $H_{0}: \rho \geq \rho_{0}$.

By default, the level of the confidence limits for the correlation is 95%.

Option Name

Nonparametric Correlations

Spearman's rank-order correlation

Description

calculates Spearman rank-order correlation. This is a nonparametric measure of association that is based on the rank of the data values. The correlations range from -1 to 1 .

Kendall's tau-b

calculates Kendall tau-b. This is a nonparametric measure of association that is based on the number of concordances and discordances in paired observations. Concordance occurs when paired observations vary together, and discordance occurs when paired observations vary differently. Kendall's tau-b ranges from -1 to 1.

Hoeffding's measure of dependence

calculates Hoeffding's measure of dependence, D . This is a nonparametric measure of association that detects more general departures from independence. This D statistic is 30 times larger than the usual definition and scales the range between -0.5 and 1 so that only large positive values indicate dependence.

Plots

You can include either of these plots in your results:

- a scatter plot matrix for variables. You can also choose to include a histogram of the analysis variables in the symmetric matrix plot.
- a scatter plot for each applicable pair of distinct variables from the analysis variables. You can specify whether to display the prediction ellipses for new observations or the confidence ellipses for the mean.
You can also specify the number of variables to plot and the maximum number of points to plot.

Setting the Output Options

You can specify whether to create an output data set that contains the Pearson correlation statistics. This data set also includes means, standard deviations, and the number of observations.

You can also choose to include these statistics in the output data set:

- Correlations - By default, the output data set contains the correlation coefficients with the corresponding _TYPE_ variable value of 'CORR'.
- Covariances - When you select this option, the output data set contains the covariance matrix with the corresponding _TYPE_ variable value of 'COV'.
- Sum of squares and cross-products - If you assign a column to the Partial variables role, the output data set does not contain a sum of squares and crossproducts matrix.
- Corrected sum of squares and cross-products - If you assign a column to the Partial variables role, the output data set contains a partial corrected sum of squares and cross-products matrix.

Table Analysis Task

About the Table Analysis Task

The Table Analysis task provides one-way to n-way frequency and contingency (crosstabulation) tables. This task also generates statistics about the association between rows and columns.

Example: Distribution of Type by DriveTrain

To create this example:
1 In the Tasks section, expand the Statistics folder and double-click Table Analysis. The user interface for the Table Analysis task opens.

2 On the Data tab, select the SASHELP.CARS data set.
3 Assign columns to these roles:

Role	Column
Row variable	Type
Column variable	DriveTrain

4 To run the task, click $\boldsymbol{\gamma}$.
Here is a sample of the results:

Frequency	Table of Type by DriveTrain					
				DriveTrain		
	Type	All	Front	Rear	Total	
	Hybrid	0	3	0	3	
	38	22	0	60		
	28	179	55	262		
Sports	5	8	36	49		
Truck	12	0	12	24		
Wagon	9	14	7	30		
Total	92	226	110	428		

Assigning Data to Roles

To run the Table Analysis task, you must first assign at least one column to the Row variables or Column variables roles.

Roles
 Description

Roles

Row variables

specifies the row for one-way table analysis. If multiple variables are assigned to this role, the task performs multiple one-way table analyses.

Roles	Description
Column variables	creates the columns for one-way table analysis. If only column variables are assigned, the task performs multiple one-way table analyses.
Strata variables	creates the separate tables for n-way frequency and crosstabulation tables. Note: You must assign columns to both the Row variables or Column variables roles to use a strata variable.
Additional Roles	specifies that each row in the table is assumed to represent n observations. In this example, n is the value of the frequency count for that observation.
Frequency count	

Setting Options

Option Name
 Description
 Plots

By default, plots are included in the results. To suppress these plots, select the Suppress plots check box.

Frequency Table

Frequencies

Observed

displays the frequency count for each cell.
Expected displays the expected cell frequency for each cell.

Deviation

displays the deviation of the cell frequency from the expected value for each cell.

Option Name	Description
Percentages	
Cell	display of overall percentages in crosstabulation tables.
Row	display of row percentages in crosstabulation table cells.
Column	display of column percentages in crosstabulation table cells.
Cumulative	
Column percentages	displays the cumulative column percentage in each cell.
Frequencies and percentages	displays the cumulative frequencies and percentages in one-way frequency tables.
Cell contributions to the chi-square statistics	displays each table cell's contribution to the Pearson chi-square statistic in the crosstabulation table.
Statistics	
Chi-square statistics	requests chi-square tests of homogeneity or independence and measures of association that are based on the chi-square statistic. The tests include the Pearson chi-square, likelihood-ratio chi-square, and MantelHaenszel chi-square. For 2×2 tables, this test includes Fisher's exact test and the continuity-adjusted chi-square.
Measures of association	computes several measures of association and their asymptotic standard errors (ASE). The measures include gamma, Kendall's taub, Stuart's tau-c, Somers' D ($C \mid R)$, Somers' D $(R \mid C)$, the Pearson and Spearman correlation coefficients, lambda (symmetric and asymmetric), and uncertainty coefficients (symmetric and asymmetric).

Option Name

Cochran-Mantel-Haenszel statistics

Description

requests Cochran-Mantel-Haenszel statistics, which test for association between the row and column variables after adjusting for the remaining variables in a multiway table. These statistics include the CMH correlation statistic, the row mean scores (ANOVA), and the adjusted relative risks and odds ratios.
computes tests and measures of classification agreement for square tables. This option provides McNemar's test for 2×2 tables and Bowker's test of symmetry for tables with more than two response categories. It also produces the simple kappa coefficient, the weighted kappa coefficient, the asymptotic standard errors for the simple and weighted kappas, and the corresponding confidence limits. When there are multiple strata and two response categories, this option also computes Cochran's Q test.

Odds ratio and relative risk (for 2×2 tables)
requests relative risk measures and their asymptotic Walk confidence limits for 2×2 tables.

Binomial proportions and risk differences (for 2x2 tables)
requests risks (binomial proportions) and risk differences for 2×2 tables.

Exact Test
Fisher's exact test
requests Fisher's exact test for tables that are larger than 2×2.

Methods

Option Name

Missing value treatment

Description

specifies how to treat missing values:

Exclude missing values

specifies that an observation is excluded from a table if the observation has a missing value for any of the variables.
Display missing value frequencies displays the frequencies of the missing values in the frequency and crosstabulation tables. These frequencies are not included in any computations of percentages, tests, or measures.
Include missing values in calculations treats the missing values as valid for all variables.

T Tests Task: One-Sample t Test

About the One-Sample t Test Task

A one-sample t test compares the mean of the sample to the null hypothesis mean.
To compare an individual mean with a sample size of n to a value m, use $t=\frac{\bar{x}-m}{\frac{s}{\sqrt{n}}}$ where \bar{x} is the sample mean of the observations and s^{2} is the sample variance of the observations.

For example, you want to perform a one-sample t test on the horsepower values in the Sashelp.Cars data set. The null hypothesis is 300 .

To run a one-sample t test, open the T Tests task. From the T test drop-down list, select One-sample test.

Example: One-Sample t Test for Horsepower

To create this example:
1 In the Tasks section, expand the Statistics folder and double-click T Tests. The user interface for the T Tests task opens.

2 On the Data tab, select the SASHELP.CARS data set.
3 From the T test drop-down list, select One-sample test.
4 To the Analysis variable role, assign the Horsepower column.
5 On the Options tab, enter 300 in the Alternative hypothesis field.
6 To run the task, click

Here is a subset of the results:

Variable: Horsepower

Tests for Normality				
Test	Statistic		p Value	
Shapiro-Wilk	W	0.949922	Pr $<$ W	<0.0001
Kolmogorov-Smirnov	D	0.090516	Pr $>$ D	<0.0100
Cramer-von Mises	W-Sq	0.589806	Pr $>$ W-Sq	<0.0050
Anderson-Darling	A-Sq	3.685805	Pr $>$ A-Sq	<0.0050

Variable: Horsepower

N	Mean	Std Dev	Std Err	Minimum	Maximum
428	215.9	71.8360	3.4723	73.0000	500.0

Mean	95% CL Mean		Std Dev	95% CL Std Dev	
215.9	209.1	222.7	71.8360	67.3244	77.0007

DF	\boldsymbol{t} Value	Pr $>\|\mathbf{t}\|$
427	-24.22	$<.0001$

Assigning Data to Roles

To run a one-sample t test, select One-sample test from the \mathbf{T} test drop-down list.
Assign a numeric column to the Analysis variable role.

Setting Options

Option Name
Description
Test
Option Name
Description
Tails
specifies the number of sides (or tails) and direction of the statistical tests and test-based confidence intervals. You can choose from these options:

Two-tailed test specifies two-sided tests and confidence intervals for means.

- Upper one-tailed test specifies upper onesided tests in which the alternative hypothesis indicates a mean greater than the null value, and upper one-sided confidence intervals between the lower confidence limit and infinity.

Lower one-tailed test specifies lower onesided tests in which the alternative hypothesis indicates a mean less than the null value, and lower one-sided confidence intervals between minus infinity and the upper confidence limit.
specifies the value of the null hypothesis. By default, the null hypothesis has a value of 0 .

Normality Assumption

Tests for normality

runs tests for normality that include a series of goodness-of-fit tests based on the empirical distribution function. The table provides test statistics and p-values for the Shapiro-Wilk test (provided the sample size is less than or equal to 2000), the KolmogorovSmirnov test, the Anderson-Darling test, and the Cramér-von Mises test.

Nonparametric Tests

Note: This option is available only for a two-tailed test.

Option Name

Sign test and Wilcoxon signed rank test

Description

generates the results from these tests:

- The sign test statistic is $M=\left(n^{+}-n^{-}\right) / 2$, where n^{+}is the number of values that are greater than μ_{0}, and n^{-}is the number of values that are less than μ_{0}. Values equal to μ_{0} are discarded.

The Wilcoxon signed rank statistic S is calculated as
$S=\sum_{i:\left|x_{i}-\mu_{0}\right|>0} r_{i}^{+}-\frac{n_{t}\left(n_{t}+1\right)}{4}$, where r^{+}is
the rank of $x_{i}-\mu_{0}$ after discarding values of $x_{i}-\mu_{0}$, and n_{t} is the number of x_{i} values not equal to μ_{0}. Average ranks are used for tied values.

Plots

Histogram and box plot

Normality plot

Confidence interval plot

creates a histogram and box plot together in a single panel, sharing common X axes.
creates a normal quantile-quantile (Q-Q) plot.
creates a plot of the confidence interval for the means.

T Tests Task: Paired t Test

About the Paired \mathbf{t} Test Task

A paired t test compares the mean of the differences in the observations to a given number, the null hypothesis difference. The paired t test is used when the two samples are correlated, such as two measures of blood pressure from the same person.

To compare n paired differences to a value m, use $t=\frac{\bar{d}-m}{\frac{s_{d}}{\sqrt{n}}}$, where \bar{d} is the sample mean of the paired differences and $s^{2}{ }_{d}$ is the sample variance of the paired differences. To run a paired t test, open the T Tests task. From the \mathbf{T} test drop-down list, select Paired test.

Example: Determining the Distribution of Price - Cost

In this example, you want to compare the means of differences in price and cost in the Sashelp.Pricedata data set. The null hypothesis for this test is 30 .

To create this example:
1 In the Tasks section, expand the Statistics folder and double-click T Tests. The user interface for the T Tests task opens.

2 On the Data tab, select the SASHELP.PRICEDATA data set.
3 From the \mathbf{T} test drop-down list, select Paired test.
4 Assign columns to these roles:

Role	Column Name
Group 1 variable	price
Group 2 variable	cost

5 On the Options tab, enter 30 in the Alternative field.
6 To run the task, click

Here is a subset of the results:

Variable: _Difference_ (Difference: price - cost)

Tests for Normality				
Test	Statistic		p Value	
Shapiro-Wilk	W	0.896986	$\mathrm{Pr}<$ W	<0.0001
Kolmogorov-Smirnov	D	0.1888	Pr $>$ D	<0.0100
Cramer-von Mises	W-Sq	7.159388	$\mathrm{Pr}>$ W-Sq	<0.0050
Anderson-Darling	A-Sq	39.28743	$\mathrm{Pr}>$ A-Sq	<0.0050

Difference: price - cost

N	Mean	Std Dev	Std Err	Minimum	Maximum
1020	42.0448	21.9813	0.6883	6.5700	93.4000

Mean	95% CL Mean		Std Dev	95% CL Std Dev	
42.0448	40.6942	43.3954	21.9813	21.0671	22.9791

DF	t Value	$\operatorname{Pr}>\|\mathrm{t}\|$
1019	17.50	$<.0001$

Assigning Data to Roles

To run a paired t test, select Paired test from the \mathbf{T} test drop-down list. Assign columns to the Group 1 variable and Group 2 variable roles. The task compares these two variables. Because paired t tests are performed by subtracting each value of the Group 2 variable from the corresponding value of the Group 1 variable, the designation of the variables matters.

Setting Options

Option Name

Description

Test

Tails

specifies the number of sides (or tails) and direction of the statistical tests and test-based confidence intervals. You can choose from these options:

Two-tailed test specifies two-sided tests and confidence intervals for means.

- Upper one-tailed test specifies upper onesided tests in which the alternative hypothesis indicates a mean greater than the null value. The upper one-sided confidence intervals range between the lower confidence limit and infinity.
Lower one-tailed test specifies lower onesided tests in which the alternative hypothesis indicates a mean less than the null value. The lower one-sided confidence intervals range between minus infinity and the upper confidence limit.

Alternative

Normality Assumption

Tests for normality

runs tests for normality that include a series of goodness-of-fit tests based on the empirical distribution function. The table provides test statistics and p-values for the Shapiro-Wilk test (provided the sample size is less than or equal to 2000), the KolmogorovSmirnov test, the Anderson-Darling test, and the Cramér-von Mises test.

Nonparametric Tests
Note: This option is available only for a two-tailed test.

Option Name

Sign test and Wilcoxon signed rank test

Description

generates the results from these tests:
\square The sign test statistic is $M=\left(n^{+}-n^{-}\right) / 2$, where n^{+}is the number of values that are greater than μ_{0}, and n^{-}is the number of values that are less than μ_{0}. Values equal to μ_{0} are discarded.

The Wilcoxon signed rank statistic S is calculated as
$S=\sum_{i:\left|x_{i}-\mu_{0}\right|>0} r_{i}^{+}-\frac{n_{t}\left(n_{t}+1\right)}{4}$, where $r^{+}{ }_{i}$ is
the rank of $x_{i}-\mu_{0}$ after discarding values of $x_{i}-\mu_{0}$ and n_{t} is the number of x_{i} values not equal to μ_{0}. Average ranks are used for tied values.

Plots

Histogram and box plot

creates a histogram and box plot together in a single panel, sharing common X axes.

Normality plot

Agreement plot

creates a normal quantile-quantile (Q-Q) plot.
plots the second response in each pair against the first response. The mean is shown as a large bold symbol. A diagonal line with slope $=0$ and y-intercept=1 is overlaid. The location of the points with respect to the diagonal line reveals the strength and direction of the difference or ratio. The tighter the clustering along the same direction as the line, the stronger the positive correlation of the two measurements for each subject. Clustering along a direction perpendicular to the line indicates negative correlation.

Option Name

Response profile plot

Confidence interval plot

Description

creates a plot where a line is drawn for each observation from left to right that connects the first response to the second response. The mean first response and mean second response are connected with a bold line. The more extreme the slope, the stronger the effect. A wide spread of profiles indicates high between-subject variability. Consistent positive slopes indicate strong positive correlation. Widely varying slopes indicate lack of correlation. Consistent negative slopes indicate strong negative correlation.
creates a plot of the confidence interval for the means.

T Tests Task: Two-Sample t Test

About the Two-Sample t Test Task

A two-sample t test compares the mean of the first sample minus the mean of the second sample to a given number, the null hypothesis difference.

To compare means from two independent samples with n_{1} and n_{2} observations to a value m, use $t=\frac{\left(\overline{x_{1}}-\bar{x}_{2}\right)-m}{s \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}$. In this example, s^{2} is the pooled variance $s^{2}=\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{1}-1\right) s_{2}^{2}}{n_{1}+n_{2}-2}$, and $s^{2}{ }_{1}$ and $s^{2}{ }_{2}$ are the sample variances of the two groups. The use of this t statistic depends on the assumption that $\sigma_{1}^{2}=\sigma_{2}^{2}$, where σ_{1}^{2} and σ_{2}^{2} are the population variances of the two groups.

To run a two-sample t test, open the T Tests task. From the T test drop-down list, select Two-sample test.

Example: Two-Sample t Test

In this example, you want to analyze the height values for males and females in your class.

To create this example:
1 In the Tasks section, expand the Statistics folder and double-click T Tests. The user interface for the T Tests task opens.

2 On the Data tab, select the SASHELP.CLASS data set.
3 From the T test drop-down list, select Two-sample test.
4 Assign columns to these roles:

Role	Column Name
Analysis variable	Height
Groups variable	Sex

5 To run the task, click

Here is a subset of the results:

$$
\begin{aligned}
& \text { Variable: Height } \\
& \text { Sex }=\mathrm{F}
\end{aligned}
$$

Tests for Normality				
Test	Statistic		p Value	
Shapiro-Wilk	W	0.931231	Pr $<$ W	0.4932
Kolmogorov-Smirnov	D	0.203889	Pr $>$ D	>0.1500
Cramer-von Mises	W-Sq	0.049919	Pr $>$ W-Sq	>0.2500
Anderson-Darling	A-Sq	0.308707	Pr $>$ A-Sq	>0.2500

$$
\begin{gathered}
\text { Variable: Height } \\
\text { Sex }=M
\end{gathered}
$$

Tests for Normality				
Test	Statistic		p Value	
Shapiro-Wilk	W	0.954758	Pr $<$ W	0.7249
Kolmogorov-Smirnov	D	0.139972	Pr $>$ D	>0.1500
Cramer-von Mises	W-Sq	0.025769	Pr $>$ W-Sq	>0.2500
Anderson-Darling	A-Sq	0.202753	Pr $>$ A-Sq	>0.2500

Assigning Data to Roles

To run a two-sample t test, select Two-sample test from the T test drop-down list.
Assign a column to each of these roles:

Role

Analysis variable
Groups variable

Description

specifies the column to use in the analysis.
specifies the column to use for grouping. This column must have only two levels.

Setting Options

TestOption Name
Description

Tails

specifies the number of sides (or tails) and direction of the statistical tests and test-based confidence intervals. You can choose from these options:

Two-tailed test specifies two-sided tests and confidence intervals for means.

- Upper one-tailed test specifies upper onesided tests in which the alternative hypothesis indicates a mean greater than the null value, and upper one-sided confidence intervals between the lower confidence limit and infinity.
Lower one-tailed test specifies lower onesided tests in which the alternative hypothesis indicates a mean less than the null value, and lower one-sided confidence intervals between minus infinity and the upper confidence limit.
specifies the value of the null hypothesis.

Option Name

Cox and Cochran probability approximation for unequal variances

Description

calculates the Cochran and Cox approximation. This approximation of the p value of the t_{u} is the value of p such that $t_{u}=\frac{\left(\frac{s_{1}^{2}}{\sum_{i=1}^{n_{1}^{*}} f_{1 i} w_{1 i}}\right)_{1}+\left(\frac{s_{2}^{2}}{\sum_{i=1}^{n_{2}^{*}} f_{2 i}^{w} w_{2 i}}\right)^{2}}{\left(\frac{s_{1}^{2}}{\sum_{i=1}^{n_{1}^{*}} f_{1 i}{ }^{w} 1 i}\right)+\left(\frac{s_{2}^{2}}{\sum_{i=1}^{n_{2}^{*}} f_{2 i}^{w} w_{2 i}}\right)}$. In this example, t_{1} and t_{2} are the critical values of the t distribution corresponding to a significance level of p and sample sizes n_{1} and n_{2}, respectively. The degrees of freedom is undefined when $n_{1} \neq n_{2}$. (Cochran and Cox 1950).

Normality Assumption

Tests for normality

runs tests for normality that include a series of goodness-of-fit tests based on the empirical distribution function. The table provides test statistics and p-values for the Shapiro-Wilk test (provided the sample size is less than or equal to 2000), the KolmogorovSmirnov test, the Anderson-Darling test, and the Cramér-von Mises test.

Nonparametric Tests
Note: This option is available only for a two-tailed test when the alternative hypothesis equals 0.

Wilcoxon rank-sum test

generates an analysis of Wilcoxon scores. When there are two classification levels (samples), this option produces the Wilcoxon rank-sum test.

Option Name	Description
Plots	creates a histogram and box plot together in a single panel, sharing common X axes.
Histogram and box plot	creates a normal quantile-quantile (Q-Q) plot.
Normality plot	creates plots of the confidence interval for means. This plot is not created by default.
Confidence interval plot	creates a box plot of Wilcoxon scores. This plot is associated with the Wilcoxon analysis. This plot is not created by default.
Wilcoxon box plot	Note: This plot is available only for a two- tailed test when the alternative hypothesis equals 0.

One-Way ANOVA Task

About the One-Way ANOVA Task

The one-way analysis of variance (ANOVA) task tests and provides graphs for differences among the means of a single categorical variable on a single continuous dependent variable.

You might use the One-Way ANOVA task to do the following:

- study the effect of bacteria on the nitrogen content of red clover plants. The factor is the bacteria strain, and it has six levels.
- compare the life spans of three different brands of batteries. The factor is the brand, and it has three levels.

Example: Testing for Differences in the Means for MPG_Highway by Car Type

In this example, you want to study the differences in the means for the number of highway miles per gallon for six car types.

To create this example:
1 In the Tasks section, expand the Statistics folder and double-click One-Way ANOVA. The user interface for the One-Way ANOVA task opens.

2 On the Data tab, select the SASHELP.CARS data set.
3 Assign columns to these roles:

Role	Column Name
Dependent variable	MPG_Highway
Categorical variable	Type

4 To run the task, click

Here is a subset of the results:

Class Level Information		
Class	Levels	Values
Type	6	Hybrid SUV Sedan Sports Truck Wagon

Number of Observations Read	428
Number of Observations Used	428

Dependent Variable: MPG_Highway MPG (Highway)

Source	DF	Sum of Squares	Mean Square	F Value	Pr $>$ F
Model	5	6743.47900	1348.69580	77.64	$<.0001$
Error	422	7331.03268	17.37212		
Corrected Total	427	14074.51168			

R-Square	Coeff Var	Root MSE	MPG_Highway Mean
0.479127	15.52701	4.167987	26.84346

Source	DF	Type I SS	Mean Square	F Value	Pr $>$ F
Type	5	6743.478998	1348.695800	77.64	$<.0001$

Source	DF	Type III SS	Mean Square	F Value	Pr $>$ F
Type	5	6743.478998	1348.695800	77.64	$<.0001$

Assigning Data to Roles

To run the One-Way ANOVA task, you must assign columns to these roles:

Role Name

Dependent variable

Categorical variable

Description

specifies a continuous numeric column.
specifies a character or numeric column with values that specify the levels of the groups. The column that you assign to this role must have two or more distinct values.

Setting Options

Option Name
 Normality Assumption

Description

Tests for normality

runs tests for normality that include a series of goodness-of-fit tests based on the empirical distribution function. The table provides test statistics and p-values for the Shapiro-Wilk test (provided the sample size is less than or equal to 2,000), the KolmogorovSmirnov test, the Anderson-Darling test, and the Cramér-von Mises test.

Homogeneity of Variance

Test

specifies the type of test to perform. Here are the valid values:

None

specifies that no test is performed.

Bartlett

computes accurate Type I error rates when the distribution of the data is normal.

Option Name
Test (continued)
Welch's variance-weighted ANOVA

Description

Brown \& Forsythe
is a variation of Levene's test. Equal variances are determined by using the absolute deviations from the group medians. Although this is a good test for determining variance differences, it can be resource intensive if your data contains several large groups.

Levene

computes the squared residuals to determine equal variance. Levene's test is considered to be the standard homogeneity of variance test. This is the default.

O'Brien

specifies O'Brien's test, which is a modification of Levene's test that uses squared residuals.
tests the group means by using a weighted variance. You can use this test if the assumption of equal variances is rejected.

Comparisons

Option Name

Description

You can select from these comparison methods:

Bonferroni

performs Bonferroni t tests of differences between means for all means of the main effect.

Duncan multiple range

performs Duncan's multiple range test on all means of the main effect.

Dunnett two-tail

performs Dunnett's two-tailed t test, testing whether any treatments are significantly different from a single control for all main-effect means.

Dunnett lower one-tail

performs Dunnett's one-tailed t test, testing whether any treatment is significantly less than the control.

Dunnett upper one-tail

performs Dunnett's one-tailed t test, testing whether any treatment is significantly greater than the control.

Gabriel

performs Gabriel's multiple-comparison procedure on all means of the main effect.

Nelson

analyzes all the differences with the least squares means.

Ryan-Einot-Gabriel-Welsch

performs the Ryan-Einot-Gabriel-Welsch multiple range test on all means of the main effect.

Scheffé

performs Scheffé's multiple-comparison procedure on all means of the main effect.

Sidak

performs pairwise t tests on differences between means with levels adjusted according to Sidak's inequality for all means of the main effect.

Student-Newman-Keuls

performs the Student-Newman-Keuls multiple range test on all main effect means.

Least significant difference (LSD)

performs pairwise t tests for all means of the main effect. In the case of equal cell sizes, this test is equivalent to Fisher's least significant difference test.

Tukey

performs Tukey's studentized range test (HSD) on all means of the main effect. When the group sizes are different, this is the Tukey-Kramer test.
You can also specify the level of significance for the selected test.

Option Name
 Description

Plots
By default, the results include a box plot, a means plot, and a least squares mean difference plot. You can also specify to include any diagnostic plots, which can be displayed in a panel or as individual plots.
You can also specify the maximum number of points to include in these plots.

Setting the Output Options

You can specify whether to create an output data set. You can also specify the values to include in the output data set. You can include predicted values, residuals, standard errors, and influence statistics.

Nonparametric One-Way ANOVA Task

About the Nonparametric One-Way ANOVA Task

The Nonparametric One-Way ANOVA task consists of nonparametric tests for location and scale differences across a one-way classification. The task also provides a standard analysis of variance on the raw data and statistics based on the empirical distribution function.

Example: Wilcoxon Scores for MPG_Highway Classified by Origin

To create this example:
1 In the Tasks section, expand the Statistics folder and double-click Nonparametric One-Way ANOVA. The user interface for the Nonparametric One-Way ANOVA task opens.

2 On the Data tab, select the SASHELP.CARS data set.
3 Assign columns to these roles:

Role	Column Name
Dependent variable	MPG_Highway
Classification variable	Origin

4 To run the task, click

Wilcoxon Scores (Rank Sums) for Variable MPG_Highway					
Classified by Variable Origin					

Kruskal-Wallis Test	
Chi-Square	9.5856
DF	2
Pr $>$ Chi-Square	0.0083

Assigning Data to Roles

To run the Nonparametric One-Way ANOVA task, you must assign columns to the Dependent variable and Classification variable roles.

Role Name	Description
Roles	specifies the column to use as the dependent variable.
Dependent variable	defines the subgroups. Separate analyses are performed for each subgroup. You can specify whether to treat missing values as a valid level.
Classification variable	specifies that each row in the table is assumed to represent n observations. In this example, n is the value of the frequency count for that observation.
Additional Roles	sorts the table by these columns. The task performs analyses on each group.
Frequency count	Group analysis by

Setting Options

Option Name
 Description

Plots

Option Name Description

By default, plots are included in the results. These plots are determined by the options that you select. Here are some of the plots that you can create:

- By selecting the options in the Location Differences section, you can create a box plot of Wilcoxon scores, a stacked bar chart showing frequencies above or below the overall median, a box plot of Van der Waerden scores, and a box plot of Savage scores.
- By selecting the options in the Scale Differences section, you can create a box plot of Ansari-Bradley scores, a box plot of Klotz scores, a box plot of Mood scores, and a box plot of Siegel-Tukey scores.
- By selecting the options in the Location and Scale Differences section, you can create a box plot of Conover scores.
- By selecting the Empirical distribution function tests, including Kolmogorov-Smirnov and Cramer-von Mises tests option, you can create a plot of the empirical distribution test.
You can specify whether to display the p-values in the plot.
To suppress the plots from the results, select the Suppress plots check box.
Tests

Tests | specifies whether to calculate only the asymptotic tests or both the |
| :--- |
| asymptotic tests and exact tests for the various analyses. |

Location Differences

Wilcoxon scores ranks of the observations.

Median scores equals 1 for observations greater than the median and 0 otherwise.

Van der Waerden	the quantiles of a standard normal distribution. These scores are also
scores	known as quantile normal scores.

Savage scores the expected values of order statistics from the exponential distribution with 1 subtracted to center the scores around 0 .

Scale Differences

Ansari-Bradley scores

similar to the Siegel-Tukey scores, but assigns the same scores to corresponding extreme ranks.

Klotz scores
the squares of the Van der Waerden (or quantile normal) scores.
Option Name Description

Mood scores the square of the difference between each rank and the average rank.

Siegel-Tukey scores are computed as scores
$a(1)=1, a(n)=2, a(n-1)=3, a(2)=4, a(3)=5, a(n-2)=6, \ldots$.
The score values continue to increase in this pattern toward the middle ranks until all observations are assigned a score.

Location and Scale Differences

Conover scores based on the squared ranks of the absolution deviations from the sample means.

Additional Tests
Empirical the empirical distribution function (EDF) statistics.
distribution
function tests,
including
Kolmogorov-
Smirnov and
Cramer-von
Mises tests

```
Pairwise multiple computes the Dwass, Steel, Critchlow-Fligner (DSCF) multiple
comparison
    comparison analyses.
analysis
(asymptotic only)
```

Methods

Continuity Correction

Continuity

 correction for two sample Wilcoxon and Siegel-Tukey testsuses a continuity correction for the asymptotic two-sample Wilcoxon and Siegel-Tukey tests by default. The task incorporates this correction when computing the standardized test statistic z by subtracting 0.5 from the numerator $\left(S-E_{0}(S)\right)$ if it is greater than zero. If the numerator is less than zero, the task adds 0.5 .

[^1]
Option Name Description

Use Monte Carlo

 estimationrequests the Monte Carlo estimation of the exact p-values instead of using the direct exact p-value computation. You can also specify the level of the confidence limits for the Monte Carlo p-value estimates.

Limit computation time
specifies the time limit for calculating each exact p-value. Calculating exact p-values can consume a large amount of time and memory.

Creating an Output Data Set

You can specify whether to save the statistics to an output data set.

N-Way ANOVA Task

About the N-Way ANOVA Task

The N-Way ANOVA task tests and provides graphs for effects of one or more factors on the means of a single, continuous dependent variable.

Example: Analyzing the Sashelp.RevHub2
 Data Set

To create this example:
1 In the Tasks section, expand the Statistics folder and double-click N-Way ANOVA. The user interface for the N-Way ANOVA task opens.

2 On the Data tab, select the SASHELP.REVHUB2 data set.

3 Assign variables to these roles:

Role	Column Name
Dependent variable	Revenue
Factors	Source
	Type

4 On the Model tab, select Source and Type. Click Full Factorial.
5 To run the task, click $\boldsymbol{\sim}$.
Here is a subset of the results:

Class Level Information									
Class	Levels	Values							
SOURCE	4	Freight Other Passenger Service							
TYPE	3	Direct Indirect Other			Number of Observations Read				72
:---	:---	:---:	:---:	:---:					
Number of Observations Used				72					

Dependent Variable: REVENUE REVENUE

Source	DF	Sum of Squares	Mean Square	F Value	$\mathrm{Pr}>\mathrm{F}$
Model	11	9.7259489 E 13	8.8417717 E 12	30.35	$<.0001$
Error	60	1.7480696 E 13	291344930348		
Corrected Total	71	1.1474018 E 14			

Assigning Data to Roles

To run the N-Way ANOVA task, you must assign columns to the Dependent variable and Factors roles.

Role	Description
Dependent variable	specifies the dependent variable.
Factors	specifies the classification variables.

Building a Model

Requirements for Building a Model

By default, no effects are specified, which results in the task fitting an intercept-only model. To run the task, you must assign at least two variables to the Factors role. You can select combinations of variables to create crossed, nested, factorial, or polynomial effects.

To create a model, use the model builder on the Model tab. After you create your model, you can specify whether to include the intercept in the model.

Create a Main Effect

1 Select the variable name in the Variables box.
2 Click Add to add the variable to the Model effects box.

Create Crossed Effects (Interactions)

1 Select two or more variables in the Variables box. To select more than one variable, press Ctrl.

2 Click Cross.

Create a Nested Effect

Nested effects are specified by following a main effect or crossed effect with a classification variable or list of classification variables enclosed in parentheses. The main effect or crossed effect is nested within the effects listed in parentheses. Here are examples of nested effects: $B(A), C\left(B^{*} A\right), D^{*} E\left(C^{*} B^{*} A\right)$. In this example, $B(A)$ is read " A nested within B."

1 Select the effect name in the Model effects box.
2 Click Nest. The Nested window opens.
3 Select the variable to use in the nested effect. Click Outer or Nested within Outer to specify how to create the nested effect.

Note: The Nested within Outer button is available only when a classification variable is selected.

4 Click Add.

Create a Full Factorial Model

1 Select two or more variables in the Variables box.

2 Click Full Factorial.

For example, if you select the Height, Weight, and Age variables and then click Full Factorial, these model effects are created: Age, Height, Weight, Age*Height, Age*Weight, Height*Weight, and Age*Height*Weight.

Create an N-Way Factorial

1 Select two or more variables in the Variables box.
2 Click \mathbf{N}-way Factorial to add these effects to the Model effects box.
For example, if you select the Height, Weight, and Age variables and then specify the value of N as 2, when you click N -way Factorial, these model effects are created: Age, Height, Weight, Age*Height, Age*Weight, and Height*Weight. If N is set to a value greater than the number of variables in the model, N is effectively set to the number of variables.

Setting Options

Option

Description

Statistics

You can choose to display only the default statistics, the default statistics and additional statistics, or no statistics in the output.

Here are the options for the additional statistics:

Perform multiple comparisons computes the least squares means for the specified effects. You can specify the method for adjustments for the p-values and confidence limits for the differences of the least squares means.
The Sum of Squares options enable you to display the sum of squares associated with Type I estimable functions for each effect and the sum of squares associated with Type III estimable functions for each effect.

Plots

You can choose to display only the default plots, only selected plots, or no plots in your output. You can specify the maximum number of points to display in the plots.
Here are some plots that you can include in your results:

- least squares means plot
- mean difference plot
- interaction plot (available only if there are two variables assigned to the Factors role)
- analysis of means plot (available only if you select the Nelson method for adjustment)
- diagnostic plots, which can be displayed individually or in a panel

Setting the Output Options

You can specify whether to create an output data set. You can also specify the values to include in the output data set. You can include predicted values, residuals, standard errors, and influence statistics.

Analysis of Covariance Task

About the Analysis of Covariance Task

The Analysis of Covariance task fits a linear model that combines the continuous and categorical predictors of a continuous dependent variable. This task also produces graphical output to interpret the results.

Example: Analyzing the Sashelp.Class Data Set

To create this example:
1 In the Tasks section, expand the Statistics folder and double-click Analysis of Covariance. The user interface for the Analysis of Covariance task opens.

2 On the Data tab, select the SASHELP.CLASS data set.
3 Assign variables to these roles:

Role	Column Name
Dependent variable	Height
Categorical variable	Sex
Continuous variables	Weight

4 To run the task, click

Here is a subset of the results:

Class Level Information		
Class	Levels	Values
Sex	2	FM

Number of Observations Read	19
Number of Observations Used	19

Dependent Variable: Height

Source	DF	Sum of Squares	Mean Square	F Value	Pr $>$ F
Model	3	369.1762676	123.0587559	17.75	$<.0001$
Error	15	103.9879429	6.9325295		
Corrected Total	18	473.1642105			

R-Square	Coeff Var	Root MSE	Height Mean
0.780229	4.223778	2.632970	62.33684

Source	DF	Type I SS	Mean Square	F Value	Pr > F
Sex	1	52.2463216	52.2463216	7.54	0.0150
Weight* Sex	2	316.9299459	158.4649730	22.86	$<.0001$

Source	DF	Type III SS	Mean Square	F Value	Pr >F
Sex	1	2.7552010	2.7552010	0.40	0.5379
Weight* Sex	2	316.9299459	158.4649730	22.86	$<.0001$

Assigning Data to Roles

To run the Analysis of Covariance task, you must assign columns to the Dependent variable, Categorical variable, and Continuous covariate roles.

Role

Description

Dependent variable

Categorical variable

Continuous covariate

specifies a continuous numeric variable.
specifies a character or numeric variable that specifies the levels of the groups.
specifies a continuous numeric variable that is related to the dependent variable. You can specify whether to center the covariate variable.

Setting Options

Option	Description
Model	
Intercepts	specifies whether to use the equal or unequal intercepts for each level of the categorical variable.
Slopes	specifies whether to use the equal or unequal slopes for each level of the categorical variable.
Show parameter estimates	produces a solution to the normal equations (parameter estimates). By default, the task displays a solution if your model does not include any classification variables. Select this option only if you want to see the solution for models with classification effects.
Multiple Comparisons	performs the least squares means for the categorical variable.
Corform multiple comparisons	specifies the value to use in multiple comparisons. The covariate value can be either the mean value or a specified value.
Method	requests a multiple comparison adjustment ror the p-values and confidence limits for the differences of LS-means. Here are the available methods:
\square Bonferroni	

Option

Significance level

Description

specifies the significance level for the comparisons. The default is 0.05 .

Plots
You can choose to display only the default plots in your output, select the plots to display in the output, or display no plots in the output. The list of available plots depends on the method that you selected for multiple comparisons.

Setting the Output Options

You can specify whether to create an output data set. You can also specify the values to include in the output data set. You can include predicted values, residuals, standard errors, and influence statistics.

Linear Regression Task

About the Linear Regression Task

The Linear regression task fits a linear model to predict a single continuous dependent variable from one or more continuous or categorical predictor variables. This task produces statistics and graphs for interpreting the results.

Example: Predicting Weight Based on a Student's Height

In this example, you want to use regression analysis to find out how well you can predict a child's weight if you know the child's height.

To create this example:
1 In the Tasks section, expand the Statistics folder and double-click Linear Regression. The user interface for the Linear Regression task opens.

2 On the Data tab, select the SASHELP.CLASS data set.
3 Assign columns to these roles:

Role	Column Name
Dependent variable	Weight
Classification variables	Sex
Continuous variables	Age
	Height

4 Click the Model tab and create these models:
a Select the Height variable, and then press Ctrl and select the Age variable. Click Add.
b Select the Height variable, and then press Ctrl and select the Sex variable. Click Cross.

5 To run the task, click

Here is a subset of the results:

Data Set	SASHELP.CLASS
Dependent Variable	Weight
Selection Method	None
Number of Observations Read 19 Number of Observations Used 19	

Class Level Information		
Class	Levels	Values
Sex	2	FM

Dimensions	
Number of Effects	4
Number of Parameters	5

Least Squares Summary				
Step	Effect Entered	Number Effects In	Number Parms In	SBC
0	Intercept	1	1	120.6906
1	Age	2	2	108.5093
2	Height	3	3	98.4141*
3	Height* Sex	4	4	98.6423
* Optimal Value of Criterion				

Least Squares Model (No Selection)

Analysis of Variance						
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F	
Model	3	7498.06138	2499.35379	20.40	$<.0001$	
Error	15	1837.67546	122.51170			
Corrected Total	18	9335.73684				

Root MSE	11.06850
Dependent Mean	100.02632
R-Square	0.8032
Adj R-Sq	0.7638

Model: MODEL1
Dependent Variable: Weight

Assigning Data to Roles

To run the Linear Regression task, you must assign a column to the Dependent variable role and a column to the Classification variables role or the Continuous variables role.

Role

Description

Roles

Dependent variable

Classification variables

specifies the numeric variable to use as the dependent variable for the regression analysis. You must assign a numeric variable to this role.
specifies categorical variables that enter the regression model through the design matrix coding.

Parameterization of Effects

Coding

specifies the parameterization method for the classification variable. Design matrix columns are created from the classification variables according to the selected coding scheme.
You can select from these coding schemes:
Effects coding specifies effect coding.

- GLM coding specifies less-than-full-rank, reference-cell coding. This coding scheme is the default.
Reference coding specifies reference-cell coding.

Treatment of Missing Values

An observation is excluded from the analysis when either of these conditions is met:

- if any variable in the model contains a missing value
- if any classification variable contains a missing value (regardless of whether the classification variable is used in the model)

Role

Description

Continuous variables
specifies the numeric covariates (regressors) for the regression model.

Additional Roles

Frequency count

lists a numeric variable whose value represents the frequency of the observation. If you assign a variable to this role, the task assumes that each observation represents n observations, where n is the value of the frequency variable. If n is not an integer, SAS truncates it. If n is less than 1 or is missing, the observation is excluded from the analysis. The sum of the frequency variable represents the total number of observations.

Weight

specifies the variable to use as a weight to perform a weighted analysis of the data.

Group analysis by

specifies to create a separate analysis for each group of observations.

Building a Model

Requirements for Building a Model

To specify an effect, you must assign at least one column to the Classification variables role or the Continuous variables role. You can select combinations of variables to create crossed, nested, factorial, or polynomial effects. You can also specify whether to include the intercept in the model.

To create the model, use the model builder on the Model tab.

Create a Main Effect

1 Select the variable name in the Variables box.
2 Click Add to add the variable to the Model effects box.

Create Crossed Effects (Interactions)

1 Select two or more variables in the Variables box. To select more than one variable, press Ctrl.

2 Click Cross.

Create a Nested Effect

Nested effects are specified by following a main effect or crossed effect with a classification variable or list of classification variables enclosed in parentheses. The main effect or crossed effect is nested within the effects listed in parentheses. Here are examples of nested effects: $B(A), C\left(B^{*} A\right), D^{*} E\left(C^{*} B^{*} A\right)$. In this example, $B(A)$ is read " A nested within B."

1 Select the effect name in the Model effects box.
2 Click Nest. The Nested window opens.
3 Select the variable to use in the nested effect. Click Outer or Nested within Outer to specify how to create the nested effect.

Note: The Nested within Outer button is available only when a classification variable is selected.

4 Click Add.

Create a Full Factorial Model

1 Select two or more variables in the Variables box.

2 Click Full Factorial.

For example, if you select the Height, Weight, and Age variables and then click Full Factorial, these model effects are created: Age, Height, Weight, Age*Height, Age*Weight, Height*Weight, and Age*Height*Weight.

Create N-Way Factorial

1 Select two or more variables in the Variables box.
2 Click N-way Factorial to add these effects to the Model effects box.

For example, if you select the Height, Weight, and Age variables and then specify the value of N as 2, when you click N -way Factorial, these model effects are created: Age, Height, Weight, Age*Height, Age*Weight, and Height*Weight. If N is set to a value greater than the number of variables in the model, N is effectively set to the number of variables.

Create Polynomial Effects of the Nth Order

1 Select one variable in the Variables box.
2 Specify higher-degree crossings by adjusting the number in the \mathbf{N} field.
3 Click Polynomial Order=N to add the polynomial effects to the Model effects box.
For example, if you select the Age and Height variables and then you specify 3 in the \mathbf{N} field, when you click Polynomial Order=N, these model effects are created: Age, Age*Age, Age*Age*Age, Height, Height*Height, and Height*Height*Height.

Setting the Model Options

Option Name

Methods
Confidence level

Description

specifies the significance level to use for the construction of confidence intervals.

Statistics

You can choose to include the default statistics in the results or choose to include additional statistics.

Additional available statistics
Parameter Estimates

Option Name	Description
Standardized regression coefficients	displays the standardized regression coefficients. A standardized regression coefficient is computed by dividing a parameter estimate by the ratio of the sample standard deviation of the dependent variable to the sample standard deviation of the regressor.
Confidence limits for estimates	displays the $100(1-\alpha) \%$ upper and lower confidence limits for the parameter estimates.
Sums of Squares	
Sequential sum of squares (Type I)	displays the sequential sums of squares (Type I SS) along with the parameter estimates for each term in the model.
Partial sum of squares (Type II)	displays the partial sums of squares (Type II SS) along with the parameter estimates for each term in the model.
Partial and Semipartial Correlations	
Squared partial correlations	displays the squared partial correlation coefficients computed by using Type I and Type II sums of squares.
Squared semipartial correlations	displays the squared semipartial correlation coefficients computed by using Type I and Type II sums of squares. This value is calculated as sum of squares divided by the corrected total sum of squares.
Diagnostics	
Analysis of influence	requests a detailed analysis of the influence of each observation on the estimates and the predicted values.

Option Name

Analysis of residuals

Description

requests an analysis of the residuals. The results include the predicted values from the input data and the estimated model, the standard errors of the mean predicted and residual values, the studentized residual, and Cook's D statistic to measure the influence of each observation on the parameter estimates.
calculates predicted values from the input data and the estimated model.

Multiple Comparisons

Perform multiple comparisons

Select the effects to test

Method

specifies whether to compute and compare the least squares means of fixed effects.
specifies the effects that you want to compare. You specified these effects on the Model tab.
requests a multiple comparison adjustment for the p-values and confidence limits for the differences of the least squares means. Here are the valid methods: Bonferroni, Nelson, Scheffé, Sidak, and Tukey.
requests that a t type confidence interval be constructed for each of the least squares means with a confidence level of 1 - number. The value of number must be between 0 and 1 . The default value is 0.05 .

Collinearity

Collinearity analysis

requests a detailed analysis of collinearity among the regressors. This includes eigenvalues, condition indices, and decomposition of the variances of the estimates with respect to each eigenvalue.

Option Name	Description
Tolerance values for estimates	produces tolerance values for the estimates. Tolerance for a variable is defined as $1-R^{2}$, where R square is obtained from the regression of the variable on all other regressors in the model.
Variance inflation factors	produces variance inflation factors with the parameter estimates. Variance inflation is the reciprocal of tolerance.
Heteroscedasticity	performs a test to confirm that the first and second moments of the model are correctly specified.
Asymptotic covariance matrix	displays the estimated asymptotic covariance matrix of the estimates under the hypothesis of heteroscedasticity and heteroscedasticity- consistent standard errors of parameter estimates.
Plots analysis	Riagnostic and Residual Plots
By default, several diagnostic plots are included in the results. You can also specify whether	

Option Name

DFFITS statistic by observations

Description

plots the DFFITS statistic by observation number. If you select the Label extreme points option, observations with a DFFITS statistic greater in magnitude than $2 \sqrt{\frac{p}{n}}$ are deemed influential. The number of observations used is n, and the number of regressors is p.

DFBETAS statistic by observation number for each explanatory variable

Label extreme points

produces panels of DFBETAS by observation number for the regressors in the model. You can view these plots as a panel or as individual plots. If you select the Label extreme points option, observations with a DFBETAS statistic greater in magnitude than $\frac{2}{\sqrt{n}}$ are deemed influential for that regressor. The number of observations used is n.
identifies the extreme values on each different type of plot.

Scatter Plots

Fit plot for a single continuous variable

Observed values by predicted values

Partial regression plots for each explanatory variable
produces a scatter plot of the data overlaid with the regression line, confidence band, and prediction band for models with a single continuous variable. The intercept is excluded. When the number of points exceeds the value for the Maximum number of plot points option, a heat map is displayed instead of a scatter plot.
produces a scatter plot of the observed values versus the predicted values.
produces partial regression plots for each regressor. If you display these plots in a panel, there is a maximum of six regressors per panel.

Maximum number of plot points

specifies the maximum number of points to include in each plot.

Setting the Model Selection Options

Option

Model Selection

Selection method

Description

specifies the model selection method for the model. The task performs model selection by examining whether effects should be added to or removed from the model according to the rules that are defined by the selection method.

Here are the valid values for the selection methods:

None fits the full model.

- Forward selection starts with no effects in the model and adds effects based on the value of the specified criterion.
- Backward elimination starts with all the effects in the model and deletes effects based on the value of the specified criterion.

Stepwise selection is similar to the forward selection model. However, effects that are already in the model do not necessarily stay there. Effects are added to the model based on the values of the specified criteria.

Criterion to add or remove effects

Criterion to stop adding or removing effects

Select best model by

specifies the criterion to use to add or remove effects from the model.
specifies the criterion to use to stop adding or removing effects from the model.
specifies the criterion to use to identify the best fitting model.

Selection Statistics

Option

Model fit statistics

Description

specifies which model fit statistics are displayed in the fit summary table and the fit statistics tables. If you select Default fit statistics, the default set of statistics that are displayed in these tables includes all the criteria used in model selection.

Here are the additional fit statistics that you can include in the results:

- Adjusted R-square
- Akaike's information criterion
- Akaike's information criterion corrected for small-sample bias
- Bayesian information criterion
- Mallows' Cp
- Press statistic, which specifies the predicted residual sum of squares statistic
- R-square

Schwarz's Bayesian information criterion

Selection Plots

Criterion plots

displays plots for these criteria: adjusted Rsquare, Akaike's information criterion, Akaike's information criterion corrected for small-sample bias, and the criterion used to select the best fitting model.

Coefficient plots

displays these plots:

- a plot that shows the progression of the parameter values as the selection process proceeds
- a plot that shows the progression of the criterion used to select the best fitting model

Details

Option

Selection process details

Description

specifies how much information about the selection process to include in the results. You can display a summary, details for each step of the selection process, or all of the information about the selection process.

Creating Output Data Sets

You can specify whether to create an observationwise statistics data set. This data set contains the sum of squares and cross-products.

You can also choose to include these statistics in the output data set:

- Cook's D influence
- the standard influence of observation on covariance of betas
- the standard influence of an observation on predicted value (called DFFITS)
- leverage
- predicted values
- press statistic, which is the ith residual divided by $(1-h)$, where h is the leverage, and where the model has been refit without the ith observation
- residual
- studentized residuals, which are the residuals divided by their standard errors
- studentized residual with current observation removed

Binary Logistic Regression Task

About the Binary Logistic Regression Task

The Binary Logistic Regression task is used to fit a logistic regression model to investigate the relationship between discrete responses with binary levels and a set of explanatory variables.

Example: Classifying E-Mail as Junk

To create this example:
1 In the Tasks section, expand the Statistics folder and double-click Binary Logistic Regression. The user interface for the Binary Logistic Regression task opens.

2 On the Data tab, select the SASHELP.JUNKMAIL data set.
3 Assign columns to these roles and specify these options:

Role	Column Name
Response	Class
Event of interest	1
Continuous variables	Exclamation

4 Click the Model tab. Select the Exclamation and CapAvg variables, and click Add.
\triangle MODEL EFFECTS

\checkmark Include an intercept in the model

(123) Column

5 To run the task, click

Model Information		
Data Set	SASHELP.JUNKMAIL	Classifying Email as Junk or Not
Response Variable	Class	0 - Not Junk, 1 - Junk
Number of Response Levels	2	
Model	binary logit	
Optimization Technique	Fisher's scoring	

Number of Observations Read	4601
Number of Observations Used	4601

Response Profile		
Ordered Value	Class	Total Frequency
1	0	2788
2	1	1813

Probability modeled is Class=1.

Model Convergence Status
Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics		
Criterion	Intercept Only	Intercept and Covariates
AIC	6172.153	5035.224
SC	6178.587	5054.526
-2 Log L	6170.153	5029.224

Testing Global Null Hypothesis: BETA $=0$			
Test	Chi-Square	DF	Pr $>$ ChiSq
Likelihood Ratio	1140.9288	2	$<.0001$
Score	312.5004	2	$<.0001$
Wald	630.4776	2	$<.0001$

Analysis of Maximum Likelihood Estimates					
Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq
Intercept	1	-1.8144	0.0652	773.5908	$<.0001$
Exclamation	1	1.8816	0.1165	261.0441	$<.0001$
CapAvg	1	0.3077	0.0189	264.8582	$<.0001$

Odds Ratio Estimates			
Effect	Point Estimate	95% Confidence Limits	
Exclamation	6.584	5.224	8.247

Assigning Data to Roles

To run the Binary Logistic Regression task, you must assign columns to the Response variable and a column to either the Classification variables role or the Continuous variables role.

Role
Roles
Response
Response data consists of numbers of events and trials

Number of events

Description

Number of trials
specifies the variable that contains the number of events for each observation.

Number of trials
specifies the variable that contains the number of trials for each observation.

Response	specifies the variable that contains the response data. To perform a binary logistic regression, the response variable should have only two levels. Use the Event of interest drop-down list to select the event category for the binary response model.
Link function	specifies the link function that links the response probabilities to the linear predictors. Here are the valid values:
Complementary log-log is the complementary log-log function.	
Probit is the inverse standard normal distribution function.	
	Logit is the log odds function.

[^2]
Role
 Classification variables
 Parameterization of Effects

Description

specifies the classification variables to use in the analysis. A classification variable is a variable that enters the statistical analysis or model not through its values, but through its levels. The process of associating values of a variable with levels is termed levelization.

Coding

specifies the parameterization method for the classification variable. Design matrix columns are created from the classification variables according to the selected coding scheme.

You can select from these coding schemes:
Effects coding specifies effect coding.

- GLM coding specifies less-than-full-rank, reference-cell coding. This coding scheme is the default.

Reference coding specifies reference-cell coding.

Treatment of Missing Values
An observation is excluded from the analysis when either of these conditions is met:

- if any variable in the model contains a missing value
- if any classification variable contains a missing value (regardless of whether the classification variable is used in the model)

Continuous variables

specifies the continuous variables to use as the explanatory variables in the analysis.

Additional Roles

Frequency count

specifies the variables that contain the frequency of occurrence for each observation. The task treats each observation as if it appears n times, where n is the value of the variable for that observation.

Role

Description

Weight variable
specifies the how much to weight each observation in the input data set.

Group analysis by

creates separate analyses based on the number of $B Y$ variables.

Building a Model

Create a Main Effect

1 Select the variable name in the Variables box.
2 Click Add to add the variable to the Model effects box.

Create Crossed Effects (Interactions)

1 Select two or more variables in the Variables box. To select more than one variable, press Ctrl.

2 Click Cross.

Create a Nested Effect

Nested effects are specified by following a main effect or crossed effect with a classification variable or list of classification variables enclosed in parentheses. The main effect or crossed effect is nested within the effects listed in parentheses. Here are examples of nested effects: $B(A), C\left(B^{*} A\right), D^{*} E\left(C^{*} B^{*} A\right)$. In this example, $B(A)$ is read " A nested within B."

1 Select the effect name in the Model effects box.

2 Click Nest. The Nested window opens.
3 Select the variable to use in the nested effect. Click Outer or Nested within Outer to specify how to create the nested effect.

Note: The Nested within Outer button is available only when a classification variable is selected.

4 Click Add.

Create a Full Factorial Model

1 Select two or more variables in the Variables box.

2 Click Full Factorial.

For example, if you select the Height, Weight, and Age variables and then click Full Factorial, these model effects are created: Age, Height, Weight, Age*Height, Age*Weight, Height*Weight, and Age*Height*Weight.

Create N-Way Factorial

1 Select two or more variables in the Variables box.
2 Click N-way Factorial to add these effects to the Model effects box.
For example, if you select the Height, Weight, and Age variables and then specify the value of N as 2, when you click N -way Factorial, these model effects are created: Age, Height, Weight, Age*Height, Age*Weight, and Height*Weight. If N is set to a value greater than the number of variables in the model, N is effectively set to the number of variables.

Create Polynomial Effects of the Nth Order

1 Select one variable in the Variables box.
2 Specify higher-degree crossings by adjusting the number in the \mathbf{N} field.
3 Click Polynomial Order=N to add the polynomial effects to the Model effects box.
For example, if you select the Age and Height variables and then you specify 3 in the \mathbf{N} field, when you click Polynomial Order=N, these model effects are created: Age, Age*Age, Age*Age*Age, Height, Height*Height, and Height*Height*Height.

Setting the Model Options

Option	Description
Model	

Include an intercept in the model

Offset variable
specifies whether to include the intercept in the model.
specifies a variable to be used as an offset to the linear predictor. An offset plays the role of an effect whose coefficient is known to be 1. Observations that have missing values for the offset variable are excluded from the analysis.

Specifying the Model Selection Options

Option

Model Selection

Description
specifies the model selection method for the model. The task performs model selection by examining whether effects should be added to or removed from the model according to the rules that are defined by the selection method.

Here are the valid values for the selection methods:

None fits the full model.
Forward selection starts with no effects in the model and adds effects based on the Significance level to add an effect to the model option.

Backward elimination starts with all the effects in the model and deletes effects based on the value in the Significance level to remove an effect from the model option.

Option

Selection method (continued)

Description

Fast backward elimination uses a computational algorithm of Lawless and Singhal (1978). This algorithm computes a first-order approximation to the remaining slope estimates for each subsequent elimination of a variable from the model. Variables are removed from the model based on these approximate estimates. This selection method is extremely efficient because the model is not refitted for every variable removed.

Stepwise selection is similar to the forward selection model. However, effects that are already in the model do not necessarily stay there. Effects are added to the model based on the Significance level to add an effect to the model option and are removed from the model based on the Significance level to remove an effect from the model option.

Stepwise selection with fast backward

 elimination uses a computational algorithm of Lawless and Singhal. This algorithm computes a first-order approximation to the remaining slope estimates for each subsequent elimination of a variable from the model. Variables are removed from the model based on these approximate estimates. This selection method is extremely efficient because the model is not refitted for every variable removed.Details

Display selection process details

specifies how much information about the selection process to include in the results. You can choose to display a summary, details for each step of the selection process, or all of the information about the selection process.

Option

Maintain hierarchy of effects

Description

specifies how the model hierarchy requirement is applied and that only a single effect or multiple effects can enter or leave the model at one time. For example, suppose you specify the main effects A and B and the interaction $A^{*} B$ in the model. In the first step of the selection process, either A or B can enter the model. In the second step, the other main effect can enter the model. The interaction effect can enter the model only when both main effects have already been entered. Also, before A or B can be removed from the model, the $A^{*} B$ interaction must first be removed.

Model hierarchy refers to the requirement that, for any term to be in the model, all effects contained in the term must be present in the model. For example, in order for the interaction $\mathrm{A}^{*} \mathrm{~B}$ to enter the model, the main effects A and B must be in the model. Likewise, neither effect A nor B can leave the model while the interaction $A^{*} B$ is in the model.

Setting Options

Option Name

Description

Statistics

Note: In addition to the default statistics that are included in the results, you can select the additional statistics to include.

Classification table

classifies the input binary response observations according to whether the predicted event probabilities are above or below the cut-point value z in the range. An observation is predicted as an event if the predicted event probability equals or exceeds z.

Option Name

Partial correlation

Generalized R square

Description

computes the partial correlation statistic
$\left(\beta_{i}\right) \sqrt{\frac{x_{i}^{2}-2}{-2 \log L_{0}}}$ for each parameter i, where X_{i}; is the Wald chi-square statistic for the parameter and $\log L_{0}$ is the log-likelihood of the intercept-only model (Hilbe 2009). If $X^{2}{ }_{i}<$ 2 , the partial correlation is set to 0 .
requests a generalized R square measure for the fitted model.

Goodness-of-fit and Overdispersion

Deviance and Pearson goodness-of-fit

Aggregate by
specifies whether to calculate the deviance and Pearson goodness-of-fit.
specifies the subpopulations on which the Pearson chi-square test statistic and the likelihood ratio chi-square test statistic (deviance) are calculated. Observations with common values in the given list of variables are regarded as coming from the same subpopulation. Variables in the list can be any variables in the input data set.

Correct for overdispersion

specifies whether to correct for overdispersion by using the Deviance or Pearson estimate.

Option Name	Description
Hosmer \& Lemeshow goodness-of-fit	performs the Hosmer and Lemeshow goodness-of-fit test (Hosmer and Lemeshow 2000) for the case of a binary response model. The subjects are divided into approximately 10 groups of approximately the same size based on the percentiles of the estimated probabilities. The discrepancies between the observed and expected number of observations in these groups are summarized by the Pearson chi-square statistic. This statistic is then compared to a chi-square distribution with t degrees of freedom, where t is the number of groups minus n. By default, $n=2$. A small p-value suggests that the fitted model is not an adequate model.
Multiple Comparisons	specifies whether to compute and compare the least squares means of fixed effects.
Perform multiple comparisons	specifies the effects that you want to compare. You specified these effects on the Model tab.
Select the effects to test	requests a multiple comparison adjustment for the p-values and confidence limits for the differences of the least squares means. Here are the valid methods: Bonferroni, Nelson, Scheffe, Sidak, and Tukey.
Method	requests that a t type confidence interval be constructed for each of the least squares means with a confidence level of 1 - number.
The value of number must be between 0 and	
1. The default value is 0.05.	

Option Name

Select effects to test

Description

calculates exact tests of the parameters for the selected effects.

Significance level
specifies the level of significance α for $100(1-\alpha) \%$ confidence limits for the parameters or odds ratios.

Parameter Estimates

You can calculate these parameter estimates:

- standardized estimates
- exponentiated estimates
- correlations of parameter estimates
- covariances of parameter estimates

You can specify the confidence intervals for parameters, confidence intervals for odds ratios, and the confidence level for these estimates.

Diagnostics

Influence diagnostics

displays the diagnostic measures for identifying influential observations. For each observation, the results include the sequence number of the observation, the values of the explanatory variables included in the final model, and the regression diagnostic measures developed by Pregibon (1981). You can specify whether to include the standardized and likelihood residuals in the results.

Plots

Option Name

Description

You can select whether to include plots in the results.
Here are the additional plots that you can include in the results:

- standardized DFBETA by observation number
- influence statistics by observation number
- influence on model fit and parameter estimates
- predicted probability plots
- effect plot
- odds ratio plot

ROC plot
You can specify whether to display these plots in a panel or individually.

Label influence and ROC plots

Maximum number of plot points

specifies the variable from the input data that contains the labels for the influence and ROC plots.

Methods

Optimization

Method

specifies the optimization technique for estimating the regression parameters. The Fisher scoring and Newton-Raphson algorithms yield the same estimates, but the estimated covariance matrices are slightly different except when the Logit link function is specified for binary response data.
specifies the maximum number of points to include in the plots. By default, 5,000 points are shown.

Maximum number of iterations

specifies the maximum number of iterations to perform. If convergence is not attained in a specified number of iterations, the displayed output and all output data sets created by the task contain results that are based on the last maximum likelihood iteration.

Creating Output Data Sets

Option Name

Description

Output Data Sets

You can create two types of output data sets. Select the check box for each data set that you want to create.

Create output data set

outputs a data set that contains the specified statistics.
Here are the statistics that you can include in the output data set:

- linear predictor
- predicted values
- confidence limits for predicted values
- Pearson residuals
- Deviance residuals
- Likelihood residuals
- standardized Pearson residuals
- standardized deviance residuals
- change in the chi-square goodness-of-fit from deleting the individual observation
- change in the deviance from deleting the individual observation
- leverage
- standardized DFBETA
- standard error of the linear predictor
- predicted probabilities for each response level

Create scored data set

outputs a data set that contains all the statistics in the output data set plus posterior probabilities.

Add SAS scoring code to the log
writes SAS DATA step code for computing predicted values of the fitted model either to a file or to a catalog entry. This code can then be included in a DATA step to score new data.

Predictive Regression Model

About the Predictive Regression Model

The task is predictive in that it selects the most influential effects based on observed data. This task enables you to logically partition your data into disjoint subsets for model training, validation, and testing. The Predictive Regression Model task focuses on the standard independently and identically distributed general linear model for univariate responses and offers great flexibility and insight into the model selection algorithm. This task can also create a scored data set. The results for this task make it easy to explore the selected model in more detail with other tasks, such as the Linear Regression task.

Example: Predicting a Baseball Player's Salary

To create this example:
1 In the Tasks section, expand the Statistics folder and double-click Predictive Regression Model. The user interface for the Predictive Regression Model task opens.

2 On the Data tab, select the SASHELP.BASEBALL data set.
3 Assign columns to these roles and specify these options:

Role	Column Name
Dependent variable	logSalary
Classification variables	League
	Division

Role	Column Name
Continuous variables	nAtBat
	nHits
	nHome
	nRuns
	nRBI
	$n B B$

4 Click the Model tab. Select the nAtBat, nHits, nHome, nRuns, nRBI, nBB. League, and Division variables, and then click Add.

5 To run the task, click

Data Set	SASHELP.BASEBALL
Dependent Variable	logSalary
Selection Method	Stepwise
Select Criterion	SBC
Stop Criterion	SBC
Effect Hierarchy Enforced	Single

Number of Observations Read	322
Number of Observations Used	263

Class Level Information		
Class	Levels	Values
League	2	American National
Division	2	Esst West

Dimensions	
Number of Effects	9
Number of Parameters	11

Stepwise Selection Summary						
Step	Effect Entered	Effect Removed	Number Effects In	Number Parms In	SBC	
0	Intercept		1	1	-57.2041	
1	nHits		2	2	-124.6362	
2	nBB		3	3	-137.9363^{*}	
$*$ Optimal Value of Criterion						

Selection stopped at a local minimum of the SBC criterion.

Stop Details					
Candidate For	Effect	Candidate SBC		Compare SBC	
Entry	nRBI	-137.2172	$>$	-137.9363	
Removal	nBB	-124.6362	$>$	-137.9363	

Partitioning Your Data

When you have sufficient data, you can partition your data into three parts: training data, validation data, and test data. During the selection process, models are fit on the training data, and the prediction error for the model is determined using the validation
data. This prediction error can be used to decide when to terminate the selection process or which effects to include as the selection process proceeds. Finally, after a model is selected, the test data can be used to assess how the selected model generalizes on data that played no role in selecting the model.

You can partition your data in either of these ways:

- You can specify a proportion of the validation or test data. The proportions are used to divide the input data by sampling.
- If the input data set contains a variable whose values indicate whether an observation is a validation or test case, you can specify the variable to use when partitioning the data. When you specify the variable, you also select the appropriate values for validation or test cases. The input data set is divided into partitions by using these values.

Assigning Data to Roles

To run the Predictive Regression Model task, you must assign a column to the Dependent variable role and a column to the Classification variables role or the Continuous variables role.

Role	Description
Roles	specifies the numeric variable to use as the dependent variable for the regression analysis.
Dependent variable	specifies the variables to use to group (classify) data in the analysis. A classification variable is a variable that enters the statistical analysis or model through its levels, not through its values. The process of associating values of a variable with levels is termed levelization.
Classification variables	

Parameterization of Effects

Role

Description

Coding

specifies the parameterization method for the classification variable. Design matrix columns are created from the classification variables according to the selected coding scheme.
You can select from these coding schemes:
Effects coding specifies effect coding.
GLM coding specifies less-than-full-rank, reference-cell coding. This coding scheme is the default.
Reference coding specifies reference-cell coding.

Treatment of Missing Values

An observation is excluded from the analysis if any variable in the model contains a missing value. In addition, an observation is excluded if any classification variable specified earlier in this table contains a missing value, regardless if it is used in the model.

Continuous variables

specifies the independent covariates (regressors) for the regression model. If you do not specify a continuous variable, the task fits a model that contains only an intercept.

Additional Roles

Frequency count

lists a numeric variable whose value represents the frequency of the observation. If you assign a variable to this role, the task assumes that each observation represents n observations, where n is the value of the frequency variable. If n is not an integer, SAS truncates it. If n is less than 1 or is missing, the observation is excluded from the analysis. The sum of the frequency variable represents the total number of observations.

Weight

specifies the numeric column to use as a weight to perform a weighted analysis of the data.

Role

Description

Group analysis by
specifies to create a separate analysis for each group of observations.

Building a Model

Requirements for Building a Model

To specify an effect, you must assign at least one column to the Classification variables role or the Continuous variables role. You can select combinations of variables to create crossed, factorial, or polynomial effects.

To create a model, use the model builder on the Model tab. After you create a model, you can specify whether to include the intercept in the model.

Create a Main Effect

1 Select the variable name in the Variables box.
2 Click Add to add the variable to the Model effects box.

Create Crossed Effects (Interactions)

1 Select two or more variables in the Variables box. To select more than one variable, press Ctrl.

2 Click Cross.

Create a Nested Effect

Nested effects are specified by following a main effect or crossed effect with a classification variable or list of classification variables enclosed in parentheses. The main effect or crossed effect is nested within the effects listed in parentheses. Here are examples of nested effects: $B(A), C\left(B^{*} A\right), D^{*} E\left(C^{*} B^{*} A\right)$. In this example, $B(A)$ is read " A nested within B."

1 Select the effect name in the Model effects box.

2 Click Nest. The Nested window opens.
3 Select the variable to use in the nested effect. Click Outer or Nested within Outer to specify how to create the nested effect.

Note: The Nested within Outer button is available only when a classification variable is selected.

4 Click Add.

Create a Full Factorial Model

1 Select two or more variables in the Variables box.

2 Click Full Factorial.

For example, if you select the Height, Weight, and Age variables and then click Full Factorial, these model effects are created: Age, Height, Weight, Age*Height, Age*Weight, Height*Weight, and Age*Height*Weight.

Create N-Way Factorial

1 Select two or more variables in the Variables box.
2 Click \mathbf{N}-way Factorial to add these effects to the Model effects box.
For example, if you select the Height, Weight, and Age variables and then specify the value of N as 2, when you click N -way Factorial, these model effects are created: Age, Height, Weight, Age*Height, Age*Weight, and Height*Weight. If N is set to a value greater than the number of variables in the model, N is effectively set to the number of variables.

Create Polynomial Effects of the Nth Order

1 Select one variable in the Variables box.
2 Specify higher-degree crossings by adjusting the number in the \mathbf{N} field.
3 Click Polynomial Order=N to add the polynomial effects to the Model effects box.

For example, if you select the Age and Height variables and then you specify 3 in the \mathbf{N} field, when you click Polynomial Order=N, these model effects are created: Age, Age*Age, Age*Age*Age, Height, Height*Height, and Height*Height*Height.

Selecting a Model

Option Name

Model Selection

Selection method

Selection method (continued)

By default, the complete model that you specified is used to fit the model. However, you can also use one of these selection methods:

Forward selection

specifies forward selection. This method starts with no effects in the model and adds effects.

Backward elimination

specifies backward elimination. This method starts with all effects in the model and deletes effects.

Stepwise regression

specifies stepwise regression, which is similar to the forward selection method except that effects already in the model do not necessarily stay there.

LASSO

specifies the LASSO method, which adds and deletes parameters based on a version of ordinary least squares where the sum of the absolute regression coefficients is constrained. If the model contains classification variables, these classification variables are split.

Adaptive LASSO

requests that adaptive weights be applied to each of the coefficients in the LASSO method. The ordinary least squares estimates of the parameters in the model are used in forming the adaptive weights.

Option Name	Description
Selection method (continued)	Elastic net specifies the elastic net method, which is an extension of LASSO. The elastic net method estimates parameters based on a version of ordinary least squares in which both the sum of the absolute regression coefficients and the sum of the squared regression coefficients are constrained. If the model contains classification variables, these classification variables are split. Least angle regression specifies least angle regression. This method starts with no effects in the model and adds effects. The parameter estimates at any step are "shrunk" when compared to the corresponding least squares estimates. If the model contains classification variables, these classification variables are split.
Criterion to add or remove effects	specifies the criterion to use to determine whether an effect should be added or removed from the model.
Criterion to stop adding or removing effects	specifies the criterion to use to determine whether effects should stop being added or removed from the model.
Select best model by	specifies the criterion to use to determine the best fitting model.
Selection Statistics	

Option Name

Model fit statistics

Description

specifies which model fit statistics are displayed in the fit summary table and the fit statistics tables. If you select Default fit statistics, the default set of statistics that are displayed in these tables includes all the criteria used in model selection.

Here are the additional fit statistics that you can include in the results:

- Adjusted R-square
- Akaike’s information criterion
- Akaike's information criterion corrected for small-sample bias
- Average square error
- Bayesian information criterion
- Mallows' Cp
- Press statistic, which specifies the predicted residual sum of squares statistic
R-square
Schwarz's Bayesian information criterion

Selection Plots

Criterion plots

Coefficient plots

displays plots for these criteria: adjusted Rsquare, Akaike's information criterion, Akaike's information criterion corrected for small-sample bias, and the criterion used to select the best fitting model. You can choose to display these plots in a panel or individually.
displays these plots:

- a plot that shows the progression of the parameter values as the selection process proceeds
- a plot that shows the progression of the criterion used to select the best fitting model

Details

Option Name

Selection process details

Description

specifies how much information about the selection process to include in the results. You can display a summary, details for each step of the selection process, or all of the information about the selection process.

Model Effects Hierarchy

Model effects hierarchy

specifies how the model hierarchy requirement is applied and that only a single effect or multiple effects can enter or leave the model at one time. For example, suppose you specify the main effects A and B and the interaction $A^{*} B$ in the model. In the first step of the selection process, either A or B can enter the model. In the second step, the other main effect can enter the model. The interaction effect can enter the model only when both main effects have already been entered. Also, before A or B can be removed from the model, the $A^{*} B$ interaction must first be removed.
Model hierarchy refers to the requirement that, for any term to be in the model, all effects contained in the term must be present in the model. For example, in order for the interaction $A^{*} B$ to enter the model, the main effects A and B must be in the model. Likewise, neither effect A nor B can leave the model while the interaction $A^{*} B$ is in the model.

Model effects subject to the hierarchy requirement

specifies whether to apply the model hierarchy requirement to the classification and continuous effects in the model or to only the classification effects.

Setting the Options for the Final Model

Option Name
Statistics for the Selected Model

You can choose to include the default statistics in the results or choose to include additional statistics, such as the standardized regression coefficients. A standardized regression coefficient is computed by dividing a parameter estimate by the ratio of the sample standard deviation of the dependent variable to the sample standard deviation of the regressor.

Collinearity

Collinearity analysis

Tolerance values for estimates

Variance inflation factors

Plots for the Selected Model
Diagnostic and Residual Plots
You must specify whether to include the default diagnostic plots in the results. You can also specify whether to include plots of the residuals for each explanatory variable.

More Diagnostic Plots

Option Name
 Rstudent statistic by predicted values

Description

plots studentized residuals by predicted values. If you select the Label extreme points option, observations with studentized residuals that lie outside the band between the reference lines RSTUDENT $= \pm 2$ are deemed outliers.
plots the DFFITS statistic by observation number. If you select the Label extreme points option, observations with a DFFITS statistic greater in magnitude than $2 \sqrt{\frac{p}{n}}$ are deemed influential. The number of observations used is n, and the number of regressors is p.

DFBETAS statistic by observation number for each explanatory variable

Label extreme points

produces panels of DFBETAS by observation number for the regressors in the model. You can view these plots as a panel or as individual plots. If you select the Label extreme points option, observations with a DFBETAS statistic greater in magnitude than $\frac{2}{\sqrt{n}}$ are deemed influential for that regressor. The number of observations used is n.
identifies the extreme values on each different type of plot.

Scatter Plots

Observed values by predicted values

Partial regression plots for each explanatory variable
produces a scatter plot of the observed values versus the predicted values.
produces partial regression plots for each regressor. If you display these plots in a panel, there is a maximum of six regressors per panel.

Maximum number of plot points
specifies the maximum number of points to include in each plot.

Setting the Scoring Options

Option Name

Description

Scoring
You can create a scored data set, which contains the predicted values and the residuals.

Add SAS scoring code to the log

writes SAS DATA step code for computing predicted values of the fitted model either to a file or to a catalog entry. This code can then be included in a DATA step to score new data.

Generalized Linear Models

About the Generalized Linear Models Task

Generalized linear models are an extension of traditional linear models. In a generalized linear model, the mean of a population depends on a linear predictor through a nonlinear link function. The response probability distribution can be any member of the exponential family of distributions. Examples of generalized linear models include classical linear models with normal errors, logistic and probit models for binary data, and log-linear models for multinomial data. Other statistical models can be formulated as generalized linear models by the selection of an appropriate link function and response probability distribution.

The Generalized Linear Models task provides model fitting and model building for generalized linear models. It fits models for standard distributions such as Normal, Poisson, and Tweedie in the exponential family. This task also fits multinomial models for ordinal and nominal responses. The task provides forward, backward, and stepwise selection methods.

Example: Analyzing the Sashelp.Baseball Data Set

To create this example:
1 In the Tasks section, expand the Statistics folder and double-click Generalized Linear Models. The user interface for the Generalized Linear Models task opens.

2 On the Data tab, select the SASHELP.BASEBALL data set.
3 From the Distribution drop-down list, select Poisson. Assign columns to these roles:

Role	Column Name
Response	nHome From the Link function drop-down list, select Logarithm.
Response variable	League
Explanatory Variables	logSalary
Classification variables	
Continuous variables	

4 Click the Model tab. In the Variables box, select League and logSalary. Click Add to add these as main effects.

5 To run the task, click

Here is a subset of the results:

Model Information		
Data Set	SASHELP.BASEBALL	1986 Baseball Data
Distribution	Poisson	
Link Function	Log	
Dependent Variable	nHome	Home Runs in 1986

Number of Observations Read			322
Number of Observations Used			263
Missing Values			59
Class Level Information			
Class	Levels	Values	
League	2	American N	ional

Criteria For Assessing Goodness Of Fit			
Criterion	DF	Value	Value/DF
Deviance	260	1442.0654	5.5464
Scaled Deviance	280	1442.0654	5.5464
Pearson Chi-Square	260	1449.1038	5.5735
Scaled Pearson X2	260	1449.1038	5.5735
Log Likelihood		4726.6264	
Full Log Likelihood		-1237.6860	
AIC (smaller is better)		2481.3320	
AICC (smaller is better)		2481.4247	
BIC (smaller is better)		2492.0485	

Assigning Data to Roles

To run the Generalized Linear Models task, you must assign a column to the Response variable role for all distribution types except binomial. If you select a binomial distribution, you must assign either a single response variable or a pair of variables to the Number of events and Number of trials roles.

Option Name

Description
Roles

Option Name
Response

Option Name

Response

Description

specifies the single variable that contains response values.

Use the Event of interest option to select a value of the response variable that represents the event that you want to model.
Note: The Response role and the Event of interest option are available only if you do not select the Response data consists of numbers of events and trials check box.

Options for All Distribution Types

Response	specifies the variable that contains the response data. For most distribution types, you specify a single numeric variable.
Link function	specifies the link function for your model. The functions that are available depend on the selected distribution.
Explanatory Variables	specifies the variables to use to group (classify) data in the analysis. Classification variables can be either character or numeric. A classification variable is a variable that enters the statistical analysis or model through its levels, not through its values. The process of associating values of a variable with levels is termed levelization.
Classification variables	

Parameterization of Effects

Option Name

Coding

Description

specifies the parameterization method for the classification variable. Design matrix columns are created from the classification variables according to the selected coding scheme.
You can select from these coding schemes:
Effect coding specifies effect coding.
GLM coding specifies less-than-full-rank, reference-cell coding. This coding scheme is the default.
Reference coding specifies reference-cell coding.

Treatment of Missing Values
An observation is excluded from the analysis when either of these conditions is met:

- if any variable in the model contains a missing value
- if any classification variable contains a missing value (regardless of whether the classification variable is used in the model)

Continuous variables

specifies the independent covariates (regressors) for the regression model. If you do not specify a continuous variable, the task fits a model that contains only an intercept.
specifies a variable to be used as an offset to the linear predictor. An offset plays the role of an effect whose coefficient is known to be 1. Observations that have missing values for the offset variable are excluded from the analysis.

Additional Roles

Frequency count

specifies the numeric column that contains the frequency of occurrence for each observation.

Weight variable

specifies the numeric column to use as a weight to perform a weighted analysis of the data.

Option Name

Group analysis by

Description

specifies the column to use as the BY variable.

Building a Model

Requirements for Building a Model

By default, no effects are specified, which results in the task fitting an intercept-only model. To specify an effect, you must assign at least one variable to the Classification variables role or the Continuous variables role. You can select combinations of variables to create crossed, nested, factorial, or polynomial effects.

To create a model, use the model builder on the Models tab. After you create the model, you can specify whether to include the intercept in the model.

Create a Main Effect

1 Select the variable name in the Variables box.
2 Click Add to add the variable to the Model effects box.

Create Crossed Effects (Interactions)

1 Select two or more variables in the Variables box. To select more than one variable, press Ctrl.

2 Click Cross.

Create a Nested Effect

Nested effects are specified by following a main effect or crossed effect with a classification variable or list of classification variables enclosed in parentheses. The main effect or crossed effect is nested within the effects listed in parentheses. Here are examples of nested effects: $B(A), C\left(B^{*} A\right), D^{*} E\left(C^{*} B^{*} A\right)$. In this example, $B(A)$ is read " A nested within B."

1 Select the effect name in the Model effects box.

2 Click Nest. The Nested window opens.
3 Select the variable to use in the nested effect. Click Outer or Nested within Outer to specify how to create the nested effect.

Note: The Nested within Outer button is available only when a classification variable is selected.

4 Click Add.

Create a Full Factorial Model

1 Select two or more variables in the Variables box.

2 Click Full Factorial.

For example, if you select the Height, Weight, and Age variables and then click Full Factorial, these model effects are created: Age, Height, Weight, Age*Height, Age*Weight, Height*Weight, and Age*Height*Weight.

Create N-Way Factorial

1 Select two or more variables in the Variables box.
2 Click N-way Factorial to add these effects to the Model effects box.
For example, if you select the Height, Weight, and Age variables and then specify the value of N as 2, when you click N -way Factorial, these model effects are created: Age, Height, Weight, Age*Height, Age*Weight, and Height*Weight. If N is set to a value greater than the number of variables in the model, N is effectively set to the number of variables.

Create Polynomial Effects of the Nth Order

1 Select one variable in the Variables box.
2 Specify higher-degree crossings by adjusting the number in the \mathbf{N} field.
3 Click Polynomial Order=N to add the polynomial effects to the Model effects box.

For example, if you select the Age and Height variables and then you specify 3 in the \mathbf{N} field, when you click Polynomial Order=N, these model effects are created: Age, Age*Age, Age*Age*Age, Height, Height*Height, and Height*Height*Height.

Specifying Model Effects for Zero-Inflated Models

These options are available if you selected Zero-inflated negative binomial or Zeroinflated Poisson as the distribution on the Data tab.

You must choose the type of model that you want to create:

- an intercept-only model.
- a model that includes effects from the main model. You define these model effects by using the model builder.
- a custom model. You specify these effects in the Enter a custom model text box. If you specify multiple effects, use a space between each effect.

If you choose to include effects in the zero-inflated models, specify the link function for those effects.

Setting Options

Option

Methods
Dispersion
Adjust for overdispersion
adjusts the parameter covariance matrix and the likelihood function by a scale parameter. For the dispersion parameter, you can select a Pearson estimate or a deviance estimate. To define the subpopulations for calculating the Pearson and deviance chi-square goodness-of-fit tests, assign one or more variables to the role.

Note: This option is available only for binomial and multinomial distributions.

Option

Estimate dispersion parameter

Description

enables you to specify a fixed dispersion parameter for those distributions that have a dispersion parameter. By default, this parameter is estimated.
Note: This option is not available for binomial and multinomial distributions, but it is available for the other distribution types.

Optimization

Maximum number of iterations

specifies the maximum number of iterations to perform for the selected optimization technique.

Statistics

You can select the statistics to include in the output.
Here are the additional statistics that you can include:

- type 1 (sequential) analysis
- type 3 analysis
- Wald statistics for Type 3 contrasts
- confidence intervals, such as Profile likelihood confidence intervals and Wald confidence intervals
- correlations of parameter estimates
- covariances of parameter estimates
- observation statistics, such as influence diagnostics, predicted values and confidence intervals, and residuals
- multiple comparisons for classification effects
- exact tests, which are available only for binomial distributions with a logit link function or a Poisson distribution with a log link function.

Plots

Option

Description

You can select the plots to display in the output. If you choose to display multiple plots, you can display these plots individually or as a panel.

Here are some plots that you can include in your results:
predicted plots

- influence plots, such as Cook's D by observation number and DFBETA by observation number
- plots of residuals, deviance residuals, standardized deviance residuals, Pearson residuals, standardized Pearson residuals, standardized Pearson residuals, and likelihood residuals.

Setting the Output Options

You can specify whether to create an output data set. You can also specify the values to include in the output data set. You can include predicted values, residuals, influence statistics, and the standard error of the linear predictor in the output data set.

Appendix 1

Input Data Sets for Task Examples

About the Task Data Sets 407
FITNESS Data set 407
GETSTARTED Data Set 408
GREENE Data Set 411
IN Data Set 411
LONG97DATA Data Set 412
MROZ Data Set 431

About the Task Data Sets

To complete some of the examples in the task documentation, you might need to create one or more data sets. This appendix provides the SAS code that you need. To create these data sets, copy and paste this code (from the HTML version of SAS Studio: User's Guide) into a Program tab in SAS Studio and click $\mathcal{R}^{\mathcal{R}}$.

FITNESS Data set

To create the Fitness data set, enter this code into a Program tab:
data Fitness;
input Age Weight Oxygen RunTime @@;
datalines;
4489.4744 .60911 .37
4075.0745 .31310 .07
4485.8454 .2978 .65
4268.1559 .5718 .17
3889.0249 .874 .
4777.4544 .81111 .63
4075.9845 .68111 .95
4381.1949 .09110 .85
4481.4239 .44213 .08
3881.8760 .0558 .63
$4473.03 \quad 50.541 \quad 10.13$
$4587.66 \quad 37.388 \quad 14.03$
4566.4544 .75411 .12
4779.1547 .27310 .60
5483.1251 .85510 .33
4981.4249 .1568 .95
5169.6340 .83610 .95
5177.9146 .67210 .00
4891.6346 .77410 .25
4973.37 . 10.08
$5773.37 \quad 39.40712 .63$
5479.3846 .08011 .17
$5276.3245 .441 \quad 9.63$
$5070.87 \quad 54.625 \quad 8.92$
5167.2545 .11811 .08
5491.6339 .20312 .88
5173.7145 .79010 .47
$5759.08 \quad 50.5459 .93$
4976.32 . .
4861.2447 .92011 .50
5282.7847 .46710 .50
;

GETSTARTED Data Set

To create the getStarted data set, enter this code into a Program tab:
data getStarted;
input C1-C5 Y Total;
datalines;
03113228.361

```
2 3 0 3 1 2 39.831
1 3 2 2 2 1 17.133
1 2 0 0 3 2 12.769
0}22110011 1 29.46
0 2 1 0 2 1 4.152
1 2 1 0 1 0 0.000
0 2 1 1 2 1 20.199
1 2 0 0 1 0 0.000
0
2 2 2 2 1 1 31.923
0 3 2 0 3 2 37.987
2 2 2 0 0 1 1.082
0 2 0 2 0 1 6.323
130}00000.00
1 2 1 2 3 2 4.217
0}11223 1 1 1 26.08
1 1 0 0 1 0 0.000
1 3 2 2 2 0 0.000
2}113311412 52.64
1 3 0 1 2 1 3.257
2 0 2 3 0 5 88.066
2 2 2 1 0 1 15.196
3}1183110 1 11.95
3}113311223 91.79
3
3}1111121 0 1 2.12
3}11000002 32.76
3}11224306125.41
2 2 0 1 2 1 42.753
3}303222% 3 1 23.85
2 0 0 2 3 2 49.438
1 0 0 2 3 4 105.449
0}0022306101.53
0 3 1 0 0 0 0.000
3}00110018155.93
2 0 0 0 3 2 53.952
1 0 1 0 3 2 23.686
1 1 3 1 1 1 1 0.287
2 1 3 0 0 3 7 281.551
1 3 2 1 1 0 0.000
2 1 0 0 1 0 0.000
0
0 1 0 1 0 2 25.055
1 2 2 2 3 1 1.691
0}3322311410.71
3}303003 3 1 19.279
2 0 0 2 1 2 40.802
```

```
2 2 3 0 3 3 72.924
0 2 0 3 0 1 10.216
3 0 1 2 2 2 87.773
2 1 2 3 1 0 0.000
3 2 0 3 1 0 0.000
3 0 3 0 0 2 62.016
1 3 2 2 1 3 36.355
2 3 2 0 3 1 23.190
1 0 1 2 1 1 11.784
2 1 2 2 2 5 204.527
3 0 1 1 2 5 115.937
0 1 1 3 2 1 44.028
2 2 1 3 1 4 52.247
1 1 0 0 1 1 17.621
3 3 1 2 1 2 10.706
2 2 0 2 3 3 81.506
0 1 0 0 2 2 81.835
0 1 2 0 1 2 20.647
3 2 2 2 0 1 3.110
2 2 3 0 0 1 13.679
1 2 2 3 2 1 6.486
3 3 2 2 1 2 30.025
0 0 3 1 3 6 202.172
3 2 3 1 2 3 44.221
0 3 0 0 0 1 27.645
3 3 3 0 3 2 22.470
2 3 2 0 2 0 0.000
1 3 0 2 0 1 1.628
1 3 1 0 2 0 0.000
3 2 3 3 0 1 20.684
3 1 0 2 0 4 108.000
0 1 2 2 1 1 4.615
0 2 3 2 2 1 12.461
0 3 2 0 1 3 53.798
2 1 1 2 0 1 36.320
1 0 3 0 0 0 0.000
0 0 3 2 0 1 19.902
0 2 3 1 0 0 0.000
2 2 2 1 3 2 31.815
3 3 3 0 0 0 0.000
2 2 1 3 3 2 17.915
0 2 3 2 3 2 69.315
1 3 1 2 1 0 0.000
3 0 1 1 1 4 94.050
2 1 1 1 3 6 242.266
0 2 0 3 2 1 40.885
2011 2 2 74.708
```

```
2 2 2 2 3 2 50.734
1 0 2 2 1 3 35.950
1 3 3 1 1 1 2.777
3 1 2 1 3 5 118.065
0 3 2 1 2 0 0.000
;
```


GREENE Data Set

To create the Greene data set, enter this code into a Program tab:
data greene;
input firm year production cost @@;
datalines;

1	1955	5.36598	1.14867	1	1960	6.03787
1	1965	6.37673	1.52257	1	1970	6.95185
2	1955	6.54535	1.35041	2	1960	6.69827
2	1965	7.40245	2.09519	2	1970	7.82644
3	1955	8.07153	2.94628	3	1960	8.47109
				294879	3.25967	

IN Data Set

To create the In data set, enter this code into a Program tab:

```
data in;
    label q = "Quantity"
            p = "Price"
            s = "Price of Substitutes"
            y = "Income"
            u = "Unit Cost";
    drop i e1 e2;
    p = 0; q = 0;
    do i = 1 to 60;
        y = 1 + .05*i + .15*rannor(123);
        u = 2 + .05*rannor(123) + .05*rannor(123);
        s = 4 - .001*(i-10)*(i-110) + .5*rannor(123);
        e1 = .15 * rannor(123);
        e2 = .15 * rannor(123);
        demandx = 1 + .3 * y + . 35 * s + e1;
        supplyx = -1 - 1 * u + e2 - .4*e1;
```

```
\(q=1.4 / 2.15\) * demandx + .75/2.15 * supplyx;
\(p=(-q+s u p p l y x) /-1.4 ;\)
output;
```

end;
run;

LONG97DATA Data Set

To create the In data set, enter this code into a Program tab:

data long97data; input fem ment phd mar kid5 datalines;						
0	7.99999860	1.38000000	1	2	3	1.25276290
0	6.99999950	4.29000000	0	0	0	-0.69314720
0	47.00000760	3.84999990	0	0	4	1.50407740
0	19.00000190	3.58999990	1	1	1	0.40546510
0	0.00000000	1.80999990	1	0	1	0.40546510
0	6.00000050	3.58999999	1	1	1	0.40546510
0	9.99999900	2.11999990	1	1	0	-0.69314720
0	1.99999990	4.29000000	1	0	0	-0.69314720
0	1.99999990	2.57999990	1	2	3	1.25276290
0	3.99999900	1.80000000	1	1	3	1.25276290
0	0.00000000	4.29000000	1	2	1	0.40546510
0	3.00000000	2.76000000	1	1	0	-0.69314720
0	9.99999900	3.41000010	1	1	1	0.40546510
0	6.99999950	4.34000020	1	3	2	0.91629080
0	15.00000100	3.84999990	1	2	5	1.70474800
0	1.99999990	2.09999990	1	0	2	0.91629080
0	13.00000000	4.29000000	1	0	2	0.91629080
0	15.00000100	4.29000000	0	0	1	0.40546510
0	4.99999810	2.26000000	1	1	0	-0.69314720
0	6.00000050	2.09999990	0	0	0	-0.69314720
0	12.00000000	2.26000000	1	0	3	1.25276290
0	15.99999810	3.84999990	1	1	6	1.87180220
0	6.99999950	4.29000000	0	0	4	1.50407740
0	6.00000050	1.80000000	1	2	2	0.91629080
0	1.99999990	2.26000000	0	0	2	0.91629080
0	0.00000000	2.09999990	0	0	0	-0.69314720
0	30.00000190	4.29000000	1	0	4	1.50407740
0	9.99999900	4.29000000	1	2	1	0.40546510
0	1.99999990	2.09999990	1	0	1	0.40546510
0	0.99999990	3.58999990	1	0	7	2.01490310
0	3.00000000	3.42000010	1	1	2	0.91629080

0	9.99999900	4.29000000	1	2	2	0.91629080
0	9.99999900	4.29000000	0	0	2	0.91629080
0	0.999999990	3.33999990	1	2	0	-0.69314720
0	1.99999990	4.29000000	0	0	0	-0.69314720
0	10.99999710	4.29000000	1	0	1	0.40546510
0	4.99999810	3.61999990	1	0	4	1.50407740
0	0.00000000	4.29000000	1	3	1	0.40546510
0	3.99999900	4.34000020	1	1	1	0.40546510
0	1.99999990	1.25000000	1	1	2	0.91629080
0	19.00000190	4.34000020	0	0	7	2.01490310
0	3.00000000	1.67000000	1	3	1	0.40546510
0	0.00000000	3.47000000	0	0	0	-0.69314720
0	0.99999990	2.26000000	1	1	1	0.40546510
0	0.99999990	1.80000000	1	0	1	0.40546510
0	17.00000000	4.34000020	1	2	2	0.91629080
0	3.00000000	3.58999990	0	0	2	0.91629080
0	0.99999990	1.75000000	1	2	1	0.40546510
0	6.00000050	4.29000000	0	0	1	0.40546510
0	0.00000000	2.09999990	1	1	0	-0.69314720
0	15.00000100	4.29000000	1	2	0	-0.69314720
0	0.00000000	2.09999990	1	1	0	-0.69314720
0	26.99999810	3.31999990	1	2	2	0.91629080
0	4.99999810	4.34000020	1	0	2	0.91629080
0	6.99999950	3.41000010	0	0	4	1.50407740
0	0.00000000	4.29000000	1	0	1	0.40546510
0	10.99999710	3.19000010	1	0	2	0.91629080
0	13.00000000	4.29000000	1	0	2	0.91629080
0	3.99999900	1.74000000	1	2	1	0.40546510
0	3.99999900	2.76000000	0	0	1	0.40546510
0	26.99999810	3.58999990	1	1	7	2.01490310
0	9.99999900	1.80999990	1	0	4	1.50407740
0	13.00000000	4.29000000	1	1	2	0.91629080
0	0.99999990	4.29000000	1	1	1	0.40546510
0	6.00000050	2.76000000	0	0	1	0.40546510
0	6.00000050	3.47000000	0	0	6	1.87180220
0	4.99999810	2.50000000	1	2	2	0.91629080
0	1.99999990	1.25000000	1	0	5	1.70474800
0	13.99999710	3.58999990	1	1	3	1.25276290
0	0.00000000	2.09999990	1	1	0	-0.69314720
0	12.00000000	3.58999990	1	0	1	0.40546510
0	6.99999950	3.58999990	1	3	0	-0.69314720
0	3.00000000	1.75000000	1	0	1	0.40546510
0	1.99999990	1.75000000	1	2	1	0.40546510
0	1.99999990	3.58999990	1	1	1	0.40546510
0	1.999999990	4.29000000	0	0	1	0.40546510
0	0.00000000	4.29000000	0	0	0	-0.69314720
0	0.00000000	2.09999990	1	1	0	-0.69314720

0	. 00000000	2.	1	0	3	1.25276290
0	30.00000190	4.29000000	1	0	5	1.704748
0	21.00000000	1.74000000	1	0	16	2.80336
0	4.99999810	2.76000000	1	0	1	0.
0	9.00000000	4.29000000	0	0	0	-0.693
0	7.99999860	2.76000000	1	2	1	0.4054
0	25.00000000	4.29000000	1	2	3	1.25276290
0	0.00000000	3.47000000	1	1	5	1.
0	4.99999810	2.57999990	1	2	0	-0.6931
0	0.99999990	2.14000010	1	0	0	-0.
0	4.99999810	2.26000000	0	0	0	-0.6
0	0.00000000	4.29000000	1	2	3	1.252
0	15.00000100	4.29000000	1	0	3	1.2
0	30.00000190	4.29000000	0	0	3	1.25
0	1.99999990	2.20000000	1	0	0	-0.6931
0	6.00000050	1.80000000	1	2	3	1.2
0	0.00000000	2.09999990	1	2	1	. 40
0	13.00000000	4.29000000	1	1	1	0.4
0	0.00000000	4.29000000	0	0	0	-0.6
0	12.00000000	2.09999990	1	1	0	-0.693
0	30.00000190	4.29000000	1	2	2	0.9
0	4.99999810	1.80999990	1	1	1	0.
0	9.99999900	4.34000020	1	0	1	0.
0	4.99999810	4.2900000	1	1	0	-0.693
0	3.99999900	2.50000000	1	2	1	0.
0	13.00000000	2.05000000	1	2	4	1.5
0	7.99999860	3.47000000	1	0	3	1.2
0	6.00000050	2.60999990	1	1	1	0
0	6.00000050	4.29000000	1	2	1	0.40546510
0	25.00000000	4.29000000	0	0	2	. 9
0	1.99999990	4.29000000	1	1	2	0.
0	9.00000000	4.34000020	1	0	6	1.
0	9.99999900	2.1199999	1	1	0	-0.6
0	3.00000000	2.76000000	1	0	2	0.916
0	1.99999990	4.2900000	1	2	0	-0.6
0	0.00000000	2.50000000	1	0	1	0.4
0	6.00000050	4.34000020	1	0	5	1.7
0	7.9999986	2.76000000	1	1	2	0.9
	9.99999900	3.19000010	1	1	2	0.9
0	7.99999860	4.61999990	0	0	3	1.25
0	6.00000050	3.15000010	1	2	0	-0.6931
	21.00000000	2.55000000	1	1	4	1.504
0	3.99999900	1.52000000	1	0	0	-0.69314
	1.99999990	1.72000000	1	2	4	1.5040
0	0.99999990	1.78000000	1	1	2	0.91629080
	17.00000000	2.85999990	1	1	1	0.4
	30.00					

0	4.99999810	4.13999990	0	0	1	0.40546510
0	13.00000000	2.96000000	1	1	6	1.87180220
0	10.99999710	2.55000000	1	0	1	0.40546510
0	19.00000190	2.21000000	1	1	0	-0.69314720
0	4.99999810	3.08999990	1	0	3	1.25276290
0	66.00000760	4.54000000	1	2	4	1.50407740
0	0.00000000	1.78000000	1	0	3	1.25276290
0	3.00000000	2.21000000	1	3	0	-0.69314720
0	3.00000000	2.39000010	1	1	1	0.40546510
0	0.00000000	2.96000000	1	0	0	-0.69314720
0	7.99999860	2.51000000	1	1	0	-0.69314720
0	0.00000000	1.97000000	1	2	2	0.91629080
0	4.99999810	4.13999990	0	0	0	-0.69314720
0	29.00000000	4.25000000	1	1	4	1.50407740
0	10.99999710	2.85999990	1	2	0	-0.69314720
0	22.99999620	2.96000000	1	1	9	2.25129180
0	45.99999240	2.96000000	1	2	2	0.91629080
0	7.99999860	4.61999990	1	1	6	1.87180220
0	4.99999810	3.69000010	1	2	0	-0.69314720
0	0.99999990	3.15000010	1	1	0	-0.69314720
0	9.00000000	4.61999990	0	0	2	0.91629080
0	1.99999990	3.35999990	1	0	0	-0.69314720
0	6.99999950	3.69000010	0	0	4	1.50407740
0	10.99999710	3.54000000	1	0	1	0.40546510
0	56.99999620	2.96000000	1	1	4	1.50407740
0	15.99999810	2.55999990	1	1	1	0.40546510
0	0.00000000	2.31999990	1	0	0	-0.69314720
0	3.00000000	2.31999990	1	0	0	-0.69314720
0	0.99999990	0.92000000	1	2	0	-0.69314720
0	9.99999900	4.54000000	1	0	0	-0.69314720
0	10.99999710	4.54000000	1	3	0	-0.69314720
0	10.99999710	1.76000000	1	1	5	1.70474800
0	15.99999810	2.55999990	0	0	1	0.40546510
0	4.99999810	2.39000010	1	1	0	-0.69314720
0	9.00000000	3.40000010	1	0	2	0.91629080
0	19.99999620	2.86999990	1	2	2	0.91629080
0	21.00000000	4.54000000	1	2	4	1.50407740
0	4.99999810	2.82999990	1	0	4	1.50407740
0	6.00000050	1.67999990	1	0	0	-0.69314720
0	12.00000000	3.54000000	0	0	3	1.25276290
0	0.00000000	1.76000000	1	0	2	0.91629080
0	10.99999710	3.15000010	1	3	1	0.40546510
0	3.00000000	2.51000000	1	0	0	-0.69314720
0	15.99999810	3.69000010	1	1	0	-0.69314720
0	10.99999710	1.76000000	1	1	4	1.50407740
0	4.99999810	1.86000000	1	1	12	2.52572870
0	0.99999990	2.76000000	1	3	0	-0.69314720

	15.99999810	4.61999990	1	1	1	0.40546510
0	12.00000000	4.25000000	1	0	5	1.70474800
0	10.99999710	2.54000000	1	0	4	1.5040
0	0.00000000	2.20000000	1	1	0	-0.6
0	0.00000000	1.76000000	1	0	2	0.9162
0	3.00000000	2.85999990	1	3	3	1.
0	13.00000000	3.40000010	1	2	0	-0.693
0	45.00000000	4.54000000	1	1	1	0.4054
0	47.00000760	1.86000000	1	1	9	2.2
0	6.99999950	1.52000000	1	0	0	-0.6931
0	6.99999950	2.55999990	1	1	2	0.916290
0	19.00000190	2.21000000	1	0	0	-0.693
0	9.00000000	3.69000010	1	0	7	2.014
0	76.99998470	1.78000000	1	1	1	0.405
0	0.00000000	1.17999990	1	1	0	-0.6
0	3.99999900	2.00000000	1	0	1	0.4
0	19.00000190	2.21000000	1	0	0	-0.69314
0	12.00000000	4.1399999	1	2	0	-0.6
0	0.99999990	2.85999990	1	3	0	-0.69314
0	17.00000000	2.85999990	1	1	1	0.40546
0	6.00000050	2.54000000	0	0	7	2.
0	3.99999900	2.85999990	1	1	0	-0.693
0	6.00000050	2.52000000	0	0	4	1.504
0	3.00000000	1.52000000	1	1	2	0.
0	4.99999810	3.08999990	1	1	3	1.2
0	3.00000000	1.17999990	1	1	0	-0.69
0	3.00000000	1.42000000	1	0	0	-0.693
0	15.00000100	4.61999990	0	0	7	. 0
0	0.00000000	2.96000000	1	2	1	0.405
0	9.99999900	4.54000000	0	0	2	. 9
0	41.99999620	4.54000000	0	0	7	490
0	3.00000000	2.51000000	1	2	1	.
0	6.99999950	3.15000010	1	1	2	. 91629
0	0.00000000	2.50000000	1	0	1	0.40546510
0	6.00000050	2.96000000	1	3	1	0.
0	3.99999900	1.67999990	1	0	0	-0.693
0	0.00000000	1.22000000	1	1	1	
0	1.9999999	1.52000000	1	0	1	0.
0	4.99999810	2.21000000	1	1	0	-0.69314
0	0.99999990	3.92000010	1	1	0	-0.69314
0	13.00000000	4.54000000	1	0	5	1.7047480
0	0.00000000	1.17999990	1	0	2	0.916290
0	26.00000000	3.69000010	1	0	3	1.252762
0	0.99999990	1.72000000	1	0	2	0.91629080
0	25.00000000	2.57999990	1	1	5	1.70474800
	3.00000000	1.52000000	0	0	3	1.252
	47.00000760	1.8600000	1	1	4	

0	3.99999900	2.50000000	1	0	5	1.70474800
0	0.99999990	4.61999990	1	0	1	0.40546510
0	6.99999950	1.40000000	1	2	0	-0.69314720
0	4.99999810	4.54000000	1	0	3	1.25276290
0	26.99999810	1.67999990	1	1	0	-0.69314720
0	0.99999990	2.82999990	1	0	2	0.91629080
0	4.99999810	3.35999990	0	0	1	0.40546510
0	0.00000000	1.97000000	1	1	7	2.01490310
0	12.00000000	3.40000010	0	0	1	0.40546510
0	3.99999900	1.74000000	1	1	1	0.40546510
0	0.00000000	2.96000000	0	0	0	-0.69314720
0	25.00000000	2.57999990	1	1	4	1.50407740
0	3.00000000	4.54000000	1	1	1	0.40546510
0	1.99999990	3.15000010	1	1	0	-0.69314720
0	12.00000000	2.96000000	1	2	0	-0.69314720
0	15.99999810	3.54000000	1	2	2	0.91629080
0	4.99999810	2.96000000	1	1	3	1.25276290
0	12.0000000	4.25000000	1	0	1	0.40546510
0	4.99999810	2.55999990	1	1	2	0.91629080
0	4.99999810	1.86000000	1	0	1	0.40546510
0	3.00000000	4.61999990	1	1	1	0.40546510
0	3.99999900	2.85999990	0	0	2	0.91629080
0	4.99999810	3.15000010	1	1	5	1.70474800
0	0.00000000	2.51000000	1	0	2	0.91629080
0	26.99999810	3.15000010	1	1	5	1.70474800
0	4.99999810	2.51000000	1	0	2	0.91629080
0	0.00000000	1.52000000	1	1	0	-0.69314720
0	17.99999810	4.29000000	0	0	6	1.87180220
0	4.99999810	4.29000000	1	1	4	1.50407740
0	7.99999860	4.29000000	1	2	2	0.91629080
0	3.99999900	2.09999990	1	0	2	0.91629080
0	35.00000760	4.29000000	1	1	12	2.52572870
0	4.99999810	4.29000000	0	0	2	0.91629080
0	9.00000000	3.58999990	1	1	1	0.40546510
0	6.00000050	4.29000000	1	0	1	0.40546510
0	24.00000190	4.29000000	1	0	2	0.91629080
0	0.00000000	2.09999990	1	1	0	-0.69314720
0	4.99999810	1.80999990	1	1	0	-0.69314720
0	19.00000190	4.29000000	0	0	7	2.01490310
0	3.00000000	4.29000000	0	0	1	0.40546510
0	1.99999990	4.29000000	1	1	1	0.40546510
0	3.99999900	1.25000000	1	0	3	1.25276290
0	9.99999900	3.58999990	1	0	1	0.40546510
0	7.99999860	2.09999990	1	1	1	0.40546510
0	1.99999990	4.29000000	1	0	4	1.50407740
0	19.00000190	4.29000000	1	1	3	1.25276290
0	0.99999990	3.47000000	1	1	1	0.40546510

0	3.00000000	3.19000010	1	0	1	0.40546510
0	4.99999810	3.19000010	1	2	1	0.40546510
0	0.00000000	2.09999990	1	0	1	0.40546510
0	21.00000000	3.58999990	1	1	5	1.70474800
0	13.99999710	4.29000000	1	1	1	0.40546510
0	0.0000000	2.09999990	1	0	0	-0.69314720
0	6.99999950	2.76000000	1	1	1	0.40546510
0	4.99999810	2.60999990	1	0	3	1.25276290
0	22.00000000	4.29000000	1	0	4	1.50407740
0	19.99999620	3.41000010	0	0	7	2.01490310
0	38.00000380	4.29000000	1	0	3	1.25276290
0	19.00000190	4.29000000	0	0	4	1.50407740
0	3.00000000	2.26000000	0	0	2	0.91629080
0	15.99999810	3.58999990	0	0	3	1.25276290
0	1.99999990	4.29000000	1	1	0	-0.69314720
0	3.00000000	2.05000000	0	0	1	0.40546510
0	12.00000000	4.29000000	1	2	1	0.40546510
0	35.00000760	4.29000000	0	0	0	-0.69314720
0	19.00000190	4.29000000	1	0	0	-0.69314720
0	1.99999990	4.29000000	0	0	0	-0.69314720
0	6.99999950	2.76000000	0	0	1	0.40546510
0	3.99999900	2.09999990	1	2	3	1.25276290
0	13.99999710	2.35999990	0	0	1	0.40546510
0	9.00000000	4.29000000	0	0	0	-0.69314720
0	7.99999860	3.58999990	0	0	0	-0.69314720
0	12.00000000	4.29000000	1	1	2	0.91629080
0	3.00000000	4.29000000	1	1	0	-0.69314720
0	0.99999990	4.29000000	1	0	1	0.40546510
0	9.99999900	4.29000000	0	0	1	0.40546510
0	21.00000000	3.41000010	0	0	4	1.50407740
0	13.00000000	4.29000000	1	1	0	-0.69314720
0	17.00000000	4.29000000	1	0	2	0.91629080
0	4.99999810	4.29000000	0	0	0	-0.69314720
0	1.99999990	2.14000010	0	0	0	-0.69314720
0	7.99999860	4.29000000	1	0	0	-0.69314720
0	1.99999990	2.50000000	1	1	2	0.91629080
0	4.99999810	2.60999990	1	1	3	1.25276290
0	0.99999990	1.80999990	1	2	0	-0.69314720
0	1.99999990	2.26000000	1	1	0	-0.69314720
0	3.99999900	3.619999900	1	2	1	0.40546510
0	9.00000000	4.29000000	1	2	1	0.40546510
0	9.00000000	4.29000000	0	0	0	-0.69314720
0	17.00000000	4.29000000	0	0	2	0.91629080
0	24.00000190	4.29000000	1	2	0	-0.69314720
0	3.99999900	3.47000000	1	0	4	1.50407740
0	13.99999710	4.29000000	1	1	2	0.91629080
0	4.99999810	3.58999990	1	1	1	0.40546510

0	9.99999900	1.80999990	0	0	1	0.40546510
0	17.99999810	4.29000000	1	1	3	1.25276290
0	0.99999990	4.29000000	1	1	0	-0.69314720
0	0.00000000	2.09999990	1	0	1	0.40546510
0	3.99999900	2.15000010	1	2	0	-0.69314720
0	7.99999860	4.29000000	1	0	0	-0.69314720
0	0.99999990	2.26000000	1	0	1	0.40546510
0	7.99999860	4.29000000	1	0	0	-0.69314720
0	13.00000000	4.29000000	1	2	0	-0.69314720
0	4.99999810	3.58999990	1	2	0	-0.69314720
0	6.99999950	3.41000010	1	2	0	-0.69314720
0	6.99999950	3.58999990	0	0	3	1.25276290
0	4.99999810	3.61999990	1	1	3	1.25276290
0	0.00000000	2.09999990	1	3	1	0.40546510
0	13.99999710	4.29000000	0	0	1	0.40546510
0	6.00000050	4.29000000	1	0	0	-0.69314720
0	4.99999810	2.26000000	1	1	1	0.40546510
0	7.99999860	2.76000000	1	0	3	1.25276290
0	3.99999900	2.60999990	1	1	1	0.40546510
0	9.00000000	4.29000000	0	0	2	0.91629080
0	3.00000000	2.09999990	1	1	2	0.91629080
0	1.99999990	3.47000000	1	1	0	-0.69314720
0	0.00000000	2.09999990	0	0	0	-0.69314720
0	10.99999710	4.29000000	0	0	1	0.40546510
0	9.00000000	4.29000000	0	0	1	0.40546510
0	7.99999860	2.96000000	1	0	1	0.40546510
0	1.99999990	2.96000000	1	0	2	0.91629080
0	17.99999810	4.61999990	1	0	3	1.25276290
0	3.00000000	1.42000000	1	0	3	1.25276290
0	1.99999990	4.54000000	1	0	1	0.40546510
0	6.99999950	2.52000000	1	0	0	-0.69314720
0	9.99999900	4.54000000	1	1	2	0.91629080
0	15.99999810	2.00000000	1	1	1	0.40546510
0	4.99999810	2.54000000	1	0	0	-0.69314720
0	0.00000000	2.50000000	1	0	2	0.91629080
0	7.99999860	4.54000000	0	0	0	-0.69314720
0	9.99999900	3.35999990	0	0	1	0.40546510
0	17.99999810	3.40000010	1	1	0	-0.69314720
0	12.00000000	1.67999990	1	1	1	0.40546510
0	9.00000000	2.00000000	0	0	1	0.40546510
0	39.00000000	2.85999990	1	0	1	0.40546510
0	17.99999810	4.61999990	1	0	1	0.40546510
0	15.00000100	4.13999990	1	0	1	0.40546510
0	15.99999810	4.13999990	1	0	2	0.91629080
0	1.99999990	2.96000000	0	0	0	-0.69314720
0	6.99999950	2.82999990	1	2	3	1.25276290
0	24.00000190	2.55000000	1	0	2	0.91629080
0						

0	7.99999860	1.67999990	1	0	1	0.40546510
0	6.99999950	2.00000000	0	0	1	0.40546510
0	10.99999710	2.00000000	1	1	1	0.40546510
0	0.00000000	2.96000000	1	1	4	1.50407740
0	3.99999900	1.50500000	1	0	4	1.50407740
0	21.0000000	3.54000000	1	0	2	0.91629080
0	6.00000050	3.40000010	0	0	1	0.40546510
0	6.00000050	4.61999990	0	0	0	-0.69314720
0	7.99999860	2.82999990	0	0	3	1.25276290
0	3.99999900	2.54000000	1	0	1	0.40546510
0	12.00000000	2.86999990	0	0	1	0.40546510
0	15.00000100	1.86000000	0	0	1	0.40546510
0	0.00000000	3.92000010	1	1	1	0.40546510
0	4.99999810	3.69000010	1	1	1	0.40546510
0	15.00000100	2.85999990	1	2	4	1.50407740
0	4.99999810	4.54000000	0	0	0	-0.69314720
0	7.99999860	4.61999990	0	0	0	-0.69314720
0	13.00000000	2.85999990	1	1	0	-0.69314720
0	1.99999990	3.40000010	0	0	1	0.40546510
0	6.00000050	2.57999990	1	2	4	1.50407740
0	19.99999620	4.25000000	1	0	3	1.25276290
0	6.99999950	1.76000000	1	1	2	0.91629080
0	6.99999950	2.85999990	1	3	0	-0.69314720
0	15.99999810	3.69000010	1	2	4	1.50407740
0	13.00000000	3.40000010	1	0	0	-0.69314720
0	0.00000000	3.40000010	1	2	0	-0.69314720
0	0.99999990	4.54000000	1	2	0	-0.69314720
0	12.00000000	2.86999990	0	0	3	1.25276290
0	6.99999950	1.76000000	1	0	4	1.50407740
0	3.99999900	4.25000000	0	0	1	0.40546510
0	0.00000000	3.92000010	0	0	3	1.25276290
0	3.99999900	3.35999990	1	0	2	0.91629080
0	3.99999900	2.31999990	1	0	1	0.40546510
0	36.99999240	4.54000000	0	0	2	0.91629080
0	22.99999620	3.35999990	1	1	0	-0.69314720
0	7.99999860	2.00000000	1	3	2	0.91629080
0	7.99999860	3.92000010	1	1	1	0.40546510
0	1.99999990	3.92000010	0	0	1	0.40546510
0	0.00000000	3.35999990	0	0	1	0.40546510
0	0.99999990	1.78000000	1	0	1	0.40546510
0	21.00000000	3.54000000	1	1	1	0.40546510
0	9.99999900	3.92000010	0	0	2	0.91629080
0	7.99999860	2.31999990	0	0	3	1.25276290
0	33.99999240	1.67999990	1	0	1	0.40546510
0	13.99999710	3.08999990	0	0	2	0.91629080
0	6.00000050	2.57999990	1	1	0	-0.69314720
0	13.99999710	3.40000010	0	0	6	1.87180220

0	12.00000000	2.86999990	0	0	3	1.25276290
0	17.99999810	4.61999990	0	0	4	1.50407740
0	3.00000000	2.96000000	1	3	0	-0.69314720
0	6.00000050	1.86000000	1	2	2	0.91629080
0	1.99999990	1.22000000	1	1	0	-0.69314720
0	10.99999710	2.51000000	1	2	6	1.87180220
0	10.99999710	2.51000000	1	0	8	2.14006610
0	4.99999810	3.69000010	1	0	2	0.91629080
0	7.99999860	2.96000000	1	0	3	1.25276290
0	3.99999900	1.78000000	1	0	1	0.40546510
0	0.99999990	1.22000000	1	1	1	0.40546510
0	7.99999860	2.85999990	1	0	0	-0.69314720
0	19.00000190	3.69000010	0	0	7	2.01490310
0	1.99999990	2.11999990	0	0	0	-0.69314720
0	9.99999900	2.52000000	1	1	2	0.91629080
0	3.99999900	2.31999990	1	0	1	0.40546510
0	3.00000000	4.61999990	1	0	2	0.91629080
0	1.99999990	3.54000000	1	2	4	1.50407740
0	0.99999990	2.50000000	1	0	0	-0.69314720
0	4.99999810	1.67999990	0	0	0	-0.69314720
0	1.99999990	3.40000010	1	1	1	0.40546510
0	4.99999810	3.92000010	0	0	0	-0.69314720
0	52.99998090	4.54000000	1	1	5	1.70474800
0	54.99998860	4.54000000	0	0	2	0.91629080
0	0.00000000	2.50000000	0	0	0	-0.69314720
0	10.99999710	4.54000000	1	0	2	0.91629080
0	25.00000000	3.54000000	0	0	3	1.25276290
0	4.99999810	1.52000000	1	0	2	0.91629080
0	1.99999990	3.92000010	1	2	0	-0.69314720
0	7.99999860	4.61999990	1	0	2	0.91629080
0	0.00000000	3.92000010	1	0	3	1.25276290
0	4.99999810	2.31999990	1	2	0	-0.69314720
0	7.99999860	2.96000000	1	2	2	0.91629080
0	6.99999950	2.85999990	1	2	1	0.40546510
0	13.99999710	1.95000000	1	1	3	1.25276290
0	1.99999990	3.92000010	1	2	1	0.40546510
0	4.99999810	2.86999990	0	0	1	0.40546510
0	24.00000190	3.69000010	1	0	3	1.25276290
0	3.00000000	3.69000010	1	0	0	-0.69314720
0	3.99999900	2.39000010	0	0	2	0.91629080
0	3.00000000	1.95000000	1	2	3	1.25276290
0	10.99999710	3.35999990	0	0	5	1.70474800
0	3.99999900	2.39000010	1	1	2	0.91629080
0	26.00000000	3.69000010	0	0	2	0.91629080
0	3.99999900	2.96000000	1	1	5	1.70474800
0	1.99999990	3.21000000	1	0	0	-0.69314720
0	0.00000000	2.11999990	1	2	0	-0.69314720

0	52.99998090	4.54000000	1	1	2	0.91629080
0	3.99999900	2.31999990	1	0	3	1.25276290
0	6.00000050	2.54000000	1	1	3	1.25276290
0	1.99999990	2.85999990	1	1	1	0.40546510
0	13.99999710	3.47000000	1	0	3	1.25276290
0	15.00000100	2.86999990	0	0	4	1.50407740
0	3.99999900	2.31999990	1	0	0	-0.69314720
0	15.00000100	1.86000000	1	2	4	1.50407740
0	3.99999900	1.95000000	1	0	2	0.91629080
0	1.99999990	2.31999990	1	2	0	-0.69314720
0	19.99999620	4.25000000	1	2	1	0.40546510
0	3.99999900	1.97000000	0	0	6	1.87180220
0	41.99999620	1.86000000	1	0	19	2.97041440
0	7.99999860	3.69000010	1	1	0	-0.69314720
0	3.00000000	4.54000000	1	1	0	-0.69314720
0	9.00000000	3.54000000	1	0	4	1.50407740
0	9.99999900	4.54000000	1	1	1	0.40546510
0	6.99999950	2.85999990	1	2	11	2.44234700
0	25.00000000	3.35999990	1	0	0	-0.69314720
0	3.00000000	2.85999990	0	0	0	-0.69314720
0	3.99999900	2.96000000	1	2	0	-0.69314720
0	22.00000000	2.55999990	1	2	1	0.40546510
0	7.99999860	1.63000000	1	0	2	0.91629080
0	13.99999710	2.96000000	0	0	0	-0.69314720
0	0.00000000	2.96000000	1	0	1	0.40546510
0	7.99999860	1.63000000	1	1	1	0.40546510
0	0.00000000	2.96000000	0	0	0	-0.69314720
0	21.00000000	2.96000000	1	2	2	0.91629080
0	6.99999950	2.96000000	1	0	1	0.40546510
0	30.99998860	4.54000000	1	2	3	1.25276290
0	1.99999990	4.54000000	1	2	2	0.91629080
0	9.99999900	2.15000010	0	0	1	0.40546510
0	6.00000050	4.54000000	1	1	2	0.91629080
0	12.00000000	2.21000000	1	2	2	0.91629080
0	0.99999990	2.21000000	1	1	0	-0.69314720
0	29.00000000	4.54000000	0	0	2	0.91629080
0	9.99999900	2.21000000	1	1	3	1.25276290
0	6.00000050	2.21000000	1	0	0	-0.69314720
0	36.99999240	4.54000000	1	0	3	1.25276290
0	4.99999810	4.54000000	0	0	4	1.50407740
1	9.00000000	2.11999990	0	0	0	-0.69314720
1	1.99999990	2.11999990	1	0	0	-0.69314720
1	1.99999990	2.11999990	1	0	2	0.91629080
1	3.00000000	2.11999990	1	0	3	1.25276290
1	9.00000000	2.11999990	1	1	1	0.40546510
1	10.99999710	2.39000010	0	0	3	1.25276290
1	4.99999810	2.57999990	0	0	2	0.91629080

	6.99999950	3.19000010		0	4	1.5040774
1	4.99999810	3.75000000	0	0	0	-0.69314720
1	3.00000000	3.58999990	0	0	1	0.405
1	1.99999990	2.57999990	0	0	2	0.91629
1	0.00000000	3.75000000	0	0	3	1.2527
1	4.99999810	3.75000000	1	0	0	-0.6
1	0.99999990	3.75000000	0	0	0	-0.6931
1	3.99999900	1.22000000		2	2	0.916
	13.99999710	3.75000000	0	0	0	-0.
1	6.99999950	3.75000000	1	0	0	-0.6
1	26.00000000	3.75000000	0	0	0	-0.693
	7.99999860	3.75000000	0	0	2	0.916
1	3.00000000	3.75000000	0	0	4	1.504
1	6.00000050	3.75000000	0	0	0	-0.693
	21.00000000	3.75000000	0	0	1	0.4
	7.99999860	3.75000000	1	0	2	0.916290
1	3.99999900	3.75000000	0	0	0	-0.6931
	6.99999950	3.75000000	1	1	1	0.4
	0.00000000	3.75000000	1	0	2	0.916
	0.00000000	2.54000000	1	1	0	-0.69
	0.99999990	2.54000000	1	0	0	-0.6
	3.99999900	2.76000000	0	0	0	-0.6
	1.99999990	4.1399999	0	0	0	-0.6
	3.99999900	0.92000000	0	0	1	0.4
	0.00000000	1.00500000	0	0	0	-0.693
	6.00000050	3.08999990	0	0	2	0.91
	3.00000000	3.08999990	1	1	2	0.
	0.00000000	1.79000000	0	0	0	-0.693
	3.00000000	1.40000000	0	0	1	0.4
	3.00000000	1.40000000	0	0	4	1.50407740
	0.00000000	1.40000000	1	0	2	0.9162908
	0.00000000	1.40000000	0	0	2	0.
	13.99999710	1.40000000	0	0	0	-0.693
	12.00000000	1.40000000	0	0	1	0.40546510
	1.99999990	1.40000000	0	0	1	0.
	6.00000050	2.00000000	0	0	1	. 4
	10.99999710	4.34000020	1	0	2	0.9
	6.00000050	4.34000020	1	0	4	1.50
	0.00000000	1.75000000	0	0	0	-0.693
	36.00000000	2.09999990	1	0	6	1.87
	7.99999860	2.09999990	0	0	1	0.40546510
1	1.99999990	2.09999990	0	0	0	-0.693147
	10.99999710	3.58999990	1	0	2	0.916
	10.99999710	3.58999990	1	2	2	0.91629080
1	17.99999810	3.58999990	0	0	0	-0.69314720
	3.99999900	3.58999990	0	0	0	-0.6
	17.99999810	3.58999990	1	0	10	

	7.99999860	3.58999990	0	0	1	0.40546510
1	19.00000190	3.41000010	1	0	3	1.25276290
1	3.99999900	3.41000010	1	0	4	1.5040
1	4.99999810	3.41000010	1	2	0	-0.6931
1	6.99999950	3.40000010	0	0	1	0.405
1	3.99999900	3.40000010	1	1	2	0.9162
1	4.99999810	3.40000010	1	0	4	1.
1	13.99999710	3.40000010	1	0	1	0.40
	3.99999900	3.40000010	1	0	0	-0.693
1	3.99999900	2.52000000	0	0	3	1.25
	0.00000000	2.52000000	0	0	1	0.405
	15.00000100	3.69000010	1	1	2	. 9
1	0.99999990	3.69000010	1	0	1	0.405
1	3.00000000	3.69000010	1	1	0	-0.69314720
	17.99999810	3.69000010	0	0	1	0.405
1	15.00000100	2.86999990	0	0	0	-0.6931
1	4.99999810	2.86999990	1	0	1	0.4054
	17.99999810	2.86999990	1	0	1	0.405
	9.00000000	2.86999990	0	0	2	0.91
1	6.00000050	2.86999990	0	0	4	1.504
	15.00000100	2.86999990	1	0	1	0.40
	3.99999900	3.35999990	0	0	2	0.9162
1	1.99999990	3.35999990	1	2	0	-0.69314720
	3.00000000	3.35999990	0	O	2	0.916
	6.99999950	3.35999990	0	0	0	-0.69314720
	15.99999810	4.54000000	1	0	4	1.50407
	48.00000000	4.54000000	1	2	2	0.91
	15.00000100	4.54000000	1	0	5	1.70
	36.99999240	4.54000000	0	0	1	0.40
	9.99999900	4.54000000	1	0	2	0.91
	13.00000000	4.54000000	0	0	2	. 91
	6.00000050	4.54000000	1	2	0	-0.69
	13.00000000	0.75500000	0	0	0	-0.693
	6.99999950	4.54000000	1	1	2	. 916
	9.00000000	4.54000000	1	0	2	0.91
	4.99999810	4.54000000	0	0	2	0.916
	15.00000100	4.54000000	0	0	6	1.871
	3.00000000	4.54000000	0	-	3	1.
	13.99999710	4.54000000	0	0	0	-0.6931
	1.99999990	1.28000000	1	0	1	0.4
	3.99999900	1.28000000	1	-	4	1.
	3.99999900	1.28000000	1	0	0	-0.693147
	0.00000000	2.50000000	1	1	0	-0.693147
	47.00000760	3.84999990	1	2	2	0.91629080
	29.00000000	3.84999990	1	0	1	0.40546510
	0.99999990	3.84999990	1	1	5	1.70
	17.		0	0		

	13.00000000	2.05000000	0	0	1	0
1	17.00000000	2.05000000	0	0	1	0.40546510
1	1.99999990	2.05000000	0	0	2	0.9162908
1	3.99999900	1.78000000	1	0	4	1.50407740
1	0.99999990	1.17999990	1	0	1	0.405
1	3.00000000	1.52000000	1	0	0	-0.693
1	9.00000000	1.48000000	1	0	2	0.916
1	12.00000000	4.29000000	0	0	0	-0.693
1	17.00000000	4.29000000	0	0	1	0.4
1	4.99999810	4.29000000	0	0	3	1.25
1	1.99999990	3.08999990	1	0	2	0.91629
1	0.00000000	3.08999990	0	0	2	0.916
1	3.00000000	3.61999990	0	0	5	1.704
1	6.99999950	3.61999990	0	0	0	-0.6931
1	7.99999860	3.61999990	0	0	0	-0.6
1	0.00000000	4.29000000	0	0	0	-0.6931
1	6.00000050	2.60999990	1	1	1	0.4054
1	6.99999950	2.60999990	1	0	1	0.
1	9.00000000	2.09999990	0	0	0	-0.69314
1	7.99999860	2.96000000	1	0	2	0.9162
1	9.99999900	2.39000010	0	0	0	-0.69
1	3.00000000	1.95000000	1	0	1	0.405
1	13.99999710	3.41000010	0	0	2	0.916
1	0.99999990	4.29000000	0	0	2	. 91
1	10.99999710	3.58999990	0	0	2	. 9
1	9.99999900	4.61999990	0	0	1	0.4
1	6.00000050	2.14000010	0	0	1	0.4
1	10.99999710	2.85999990	0	0	0	-0.693
1	4.99999810	3.47000000	0	0	2	0.916
1	13.99999710	4.61999990	1	1	3	. 252
1	9.00000000	3.19000010	1	3	1	0.40546510
1	0.99999990	2.51000000	0	0	1	0.4
	0.00000000	2.11999990	0	0	0	-0.693
1	3.00000000	3.19000010	0	0	0	-0.6
1	3.99999900	1.74000000	1	1	2	0.
1	0.00000000	1.25000000	1	0	0	-0.693
1	6.99999950	3.69000010	1	0	0	-0.
1	4.99999810	3.21000000	0	0	0	-0.
1	15.00000100	4.61999990	1	1	0	-0.6931
1	24.00000190	2.85999990	1	0	5	1.7
1	9.00000000	2.39000010	1	1	1	0.4
1	0.00000000	1.17999990	1	0	3	1.252
1	6.99999950	3.35999990	0	0	2	0.91629
1	7.99999860	1.97000000	0	0	2	0.91629080
1	22.00000000	1.64000000	1	0	1	0.40546510
	6.99999950	3.92000010	1	0	2	0.916
	6.00000050	3.319999	0	0	6	

1	6.00000050	2.57999990	0	0	5	1.7047480
1	22.99999620	4.54000000	0	0	2	0.91629080
1	1.99999990	2.39000010	1	0	0	-0.69314
1	9.00000000	3.58999990	0	0	4	1.504
1	6.99999950	3.69000010	0	0	2	0.91
1	9.99999900	3.19000010	0	0	2	0. 916
1	3.99999900	2.31999990	0	0	2	0.916
1	10.99999710	3.47000000	1	1	2	0.916
1	3.99999900	3.69000010	0	0	2	0.91
1	4.99999810	2.31999990	1	1	3	1.25
1	10.99999710	3.19000010	0	0	1	0.40
1	19.00000190	4.54000000	0	0	1	0.4
1	3.00000000	3.35999990	1	1	0	-0.6931
1	4.99999810	2.57999990	1	0	2	0.916
1	6.99999950	3.21000000	1	1	2	. 9
1	3.00000000	1.40000000	0	0	1	0.405
1	9.99999900	2.50000000	0	0	4	1.5040
1	0.00000000	3.19000010	1	2	0	-0.
1	3.00000000	3.35999990	0	0	0	-0.6931
1	9.00000000	3.15000010	0	0	6	1.871
1	6.99999950	1.45000000	1	0	2	0.9
1	6.99999950	2.85999990	1	2	1	0.40
1	48.99999240	4.61999990	1	1	3	1.25
1	1.99999990	3.69000010	1	0	0	-0.69
1	19.00000190	2.96000000	1	0	1	0.4054651
1	12.00000000	3.08999990	1	1	1	0.4
1	0.99999990	3.08999990	0	0	0	-0.693
1	12.00000000	4.61999990	0	0	2	0.91
1	13.00000000	2.85999990	1	0	0	-0.693
1	1.99999990	3.21000000	0	0	0	-0.693
1	3.00000000	2.82999990	1	0	2	0.
1	22.00000000	4.29000000	0	0	1	0.
1	35.00000760	4.29000000	0	0	0	-0.693
1	0.99999990	3.08999	1	0	2	0.
1	3.99999900	3.69000010	0	0	0	-0.6
1	0.99999990	1.79000000	1	0	0	-0.693
1	1.99999990	3.35999990	1	1	0	-0.6
1	13.99999710	2.57999990	1	0	4	1.
1	24.00000190	3.75000000	0	0	1	0.4
1	4.99999810	3.19000010	0	0	2	0.916
1	0.99999990	2.09999990	0	0	0	-0.6931
1	7.99999860	3.58999990	1	1	0	-0.6931
1	0.99999990	3.92000010	0	0	0	-0.6931
1	24.00000190	3.31999990	1	1	1	0.405
1	1.99999990	2.00000000	0	0	0	-0.69314
1	1.99999990	3.47000000	1	0	0	-0.6
	3.999997	3.21000000				

1	4.99999810	2.05000000	0	0	3	1.25276290
1	0.99999990	2.52000000	0	0	0	-0.69314720
1	6.99999950	3.15000010	1	0	0	-0.69314720
1	38.00000380	1.86000000	1	2	6	1.87180220
1	3.00000000	2.85999990	0	0	2	0.91629080
1	3.99999900	4.29000000	1	1	4	1.50407740
1	0.00000000	1.25500000	1	2	0	-0.69314720
1	19.00000190	3.21000000	1	0	5	1.70474800
1	4.99999810	2.31999990	1	1	1	0.40546510
1	3.00000000	3.19000010	0	0	4	1.50407740
1	1.99999990	3.19000010	1	0	1	0.40546510
1	10.99999710	3.35999990	1	0	3	1.25276290
1	13.99999710	3.54000000	1	1	1	0.40546510
1	6.00000050	1.86000000	1	0	0	-0.69314720
1	13.00000000	1.50500000	0	0	0	-0.69314720
1	6.99999950	2.39000010	1	0	1	0.40546510
1	10.99999710	4.29000000	1	1	2	0.91629080
1	9.00000000	2.00000000	1	1	0	-0.69314720
1	3.99999900	3.92000010	0	0	1	0.40546510
1	6.00000050	4.29000000	1	0	2	0.91629080
1	6.00000050	3.35999990	0	0	1	0.40546510
1	13.99999710	4.61999990	1	0	3	1.25276290
1	6.00000050	2.00000000	0	0	1	0.40546510
1	4.99999810	3.58999990	1	0	2	0.91629080
1	6.00000050	2.86999990	0	0	1	0.40546510
1	3.99999900	2.96000000	0	0	0	-0.69314720
1	10.99999710	3.47000000	1	0	0	-0.69314720
1	7.99999860	3.19000010	1	0	4	1.50407740
1	3.00000000	2.85999990	1	1	0	-0.69314720
1	15.99999810	2.52000000	1	0	2	0.91629080
1	6.00000050	4.29000000	0	0	1	0.40546510
1	0.00000000	1.25500000	0	0	1	0.40546510
1	1.99999990	1.83000000	1	0	0	-0.69314720
1	12.00000000	4.29000000	0	0	3	1.25276290
1	7.99999860	2.96000000	1	0	0	-0.69314720
1	0.99999990	2.31999990	1	0	1	0.40546510
1	10.99999710	1.22000000	1	1	0	-0.69314720
1	10.99999710	4.29000000	1	0	1	0.40546510
1	1.99999990	4.25000000	0	0	1	0.40546510
1	36.00000000	2.55000000	0	0	2	0.91629080
1	10.99999710	1.95000000	1	0	1	0.40546510
1	1.99999990	3.69000010	0	0	0	-0.69314720
1	25.00000000	4.29000000	0	0	1	0.40546510
1	4.99999810	3.19000010	1	0	2	0.91629080
1	12.00000000	3.54000000	1	1	4	1.50407740
1	4.99999810	3.54000000	1	0	4	1.50407740
	7.99999860	3.54000000		1	0	-0.69314720

	0.99999990	1.86000000	1	1	3	1
1	3.00000000	4.61999990	0	0	4	504077
1	15.99999810	4.61999990	1	0	1	0.
1	9.99999900	4.61999990	1	0	3	1.252
1	13.00000000	4.54000000	1	0	1	0.405
1	0.99999990	3.47000000	1	0	0	-0.
1	15.99999810	2.85999990	0	0	0	-0.693
1	6.99999950	2.00000000	1	0	0	-0.6931
1	1.99999990	2.00000000	0	0	0	-0.
1	3.00000000	2.60999990	1	0	0	-0.69
1	6.00000050	2.05000000	0	0	0	-0.693
1	6.00000050	2.05000000	0	0	0	-0.6
1	4.99999810	3.54000000	0	0	0	-0.6931
1	0.00000000	0.92000000	1	0	2	0.9162
1	0.00000000	1.79000000	1	0	0	-0.6
1	6.00000050	2.00000000	1	0	0	-0.693
1	7.99999860	3.15000010	0	0	4	1.5040
1	15.99999810	2.26000000	1	0	5	1.7
1	3.99999900	2.26000000	0	0	1	0.4
1	0.99999990	4.29000000	1	0	6	1.8
1	21.00000000	4.29000000	1	0	1	0.4
1	9.00000000	4.54000000	0	0	1	0.4
1	3.00000000	3.35999990	1	1	0	-0.6
1	1.99999990	2.52000000	0	0	0	-0.6931
1	9.99999900	4.29000000	0	0	3	1.25
1	9.00000000	4.29000000	0	0	0	-0.693
1	12.00000000	4.54000000	0	0	2	0
1	0.00000000	2.50000000	0	0	0	-0.693
1	1.99999990	2.76000000	O	0	1	0.
1	0.00000000	2.55000000	1	1	0	-0.6931
1	0.00000000	4.6199	1	0	0	-0.6
1	6.00000050	1.63000000	0	0	2	0.9
1	3.00000000	3.47000000	1	0	1	0.4054651
1	30.99998860	3.41000	1	0	2	0.
1	0.99999990	4.29000000	0	0	0	-0.6
1	6.99999950	2.96000000	1	0	0	-0.693
1	0.00000000	4.619	1	0	5	1.7
1	12.00000000	3.58999990	1	0	0	-0.69
1	12.00000000	3.69000010	1	0	3	1.2
1	1.99999990	4.54000000	1	0	1	0.405
1	10.99999710	3.33999990	0	0	4	1.5
1	1.99999990	2.51000000	1	1	4	1.504
1	3.99999900	3.15000010	,	0	3	1.25
1	3.00000000	3.19000010	1	0	1	0.4054
1	17.99999810	3.19000010	0	0	1	0.405465
1	1.99999990	3.84999990		0	1	0.4
	3.99999900	3.33999990	1	1	2	0.9

	15.00000100	4.29000000	0	0	2	0.9162908
1	3.99999900	4.29000000	0	0	2	0.91629080
1	21.00000000	4.29000000	0	0	2	0.
1	3.99999900	4.29000000	1	1	0	-0.6931
1	0.00000000	2.96000000	1	0	0	-0.6931
1	0.99999990	1.78000000	1	0	0	-0.
1	17.00000000	3.54000000	1	2	1	0.405
1	3.00000000	3.69000010	1	0	0	-0.693
1	1.99999990	3.35999990	0	0	3	1.
1	1.99999990	3.54000000	1	0	0	-0.6
1	0.99999990	3.54000000	1	1	0	-0.693
1	3.00000000	1.22000000	1	1	3	1.25
1	3.99999900	3.35999990	0	0	1	0.405
1	1.99999990	2.21000000	0	0	1	0.4054
1	3.99999900	2.25000000	0	0	1	. 4
1	17.00000000	4.61999990	1	1	2	0.91629
1	4.99999810	3.58999990	1	0	1	0.405
1	0.99999990	4.29000000	1	0	0	-0.693
1	1.99999990	2.11999990	0	0	2	0.9162
1	3.00000000	2.26000000	0	0	2	0.9
1	3.00000000	2.26000000	1	0	4	1.5
1	4.99999810	4.29000000	0	0	0	-0.693
1	3.00000000	3.58999990	1	1	3	1.25
1	13.00000000	4.29000000	1	2	1	0.
1	1.99999990	2.00000000	0	0	1	0.405
1	0.00000000	1.97000000	1	2	0	-0.693
1	7.99999860	3.92000010	1	0	0	-0.693
1	39.00000000	2.85999990	0	0	4	1.504
1	26.00000000	2.82999990	0	0	2	0.9
1	3.00000000	3.35999990	1	1	3	. 2
1	22.99999620	2.55999990	0	0	4	1.5040774
1	7.99999860	1.63000000	0	0	1	0.
1	22.00000000	4.61999990	0	0	3	1.25
1	4.99999810	4.61999990	0	0	1	0.40546510
1	21.00000000	4.29000000	1	0	3	1.2
1	6.00000050	4.29000000	1	1	0	-0.693
1	3.99999900	4.29000000	1	1	2	0.9
1	24.00000190	4.29000000	1	0	6	1.871
1	6.00000050	4.29000000	1	0	1	. 405
1	33.99999240	3.35999990	0	0	1	0.405
1	0.00000000	3.21000000	0	0	2	0.916
1	9.99999900	2.00000000	0	0	1	0.405
1	1.99999990	3.21000000	1	2	2	0.916
1	3.00000000	2.57999990	1	2	2	0.91629080
1	3.00000000	2.57999990	1	0	0	-0.69314
	0.99999990	2.82999990	0	0	0	-0.6
	6.00000050	3.19000010	0	0	1	0.

	3.00000000	3.47000000	0	0	1	0
1	22.99999620	4.61999990	1	0	2	0.9162908
1	13.00000000	4.25000000	1	0	4	1.504
1	4.99999810	1.86000000	1	0	2	0.9162
1	9.00000000	4.29000000	1	1	0	-0.69314
1	9.00000000	3.35999990	0	0	0	-0.6
1	9.99999900	1.80000000	1	0	2	0.916
1	0.00000000	1.65500000	0			0.405
1	6.00000050	2.85999990	0	0	0	-0.
1	13.99999710	4.61999990	0	0	2	0.
1	3.00000000	4.29000000	0	0	0	-0.693
1	4.99999810	2.35999990	1	0	4	1.5
1	10.99999710	1.80999990	1	0	1	0.40
1	32.00001140	3.58999990	1	0	1	0.405
1	9.99999900	1.76000000	0	0	0	-0.693
1	4.99999810	2.00000000	1	0	1	0.405
1	13.99999710	3.58999990	0	0	5	1.704
1	6.00000050	2.26000000	1	0	3	1.2
1	3.99999900	2.26000000	0	0	1	0.4
1	3.99999900	1.76000000	1	1	1	0.4
1	0.99999990	3.58999990	,	0	1	0.4
1	0.99999990	3.58999990	1	0	0	-0.6
1	4.99999810	2.82999990	1	1	1	0.4
1	1.99999990	2.57999990	0	0	1	0.
1	17.99999810	4.61999990	1	0	1	. 4
1	15.00000100	2.31999990		0	1	0.4
1	0.00000000	2.39000010	1	0	0	-0.69
1	22.00000000	2.96000000	1	0	3	1.252
1	10.99999710	2.11999990		0	0	-0.6
1	17.99999810	4.61999990	1	0	1	0.4054651
1	3.00000000	2.25000000	1	0	1	.
1	7.99999860	1.76000000	-	0	1	0.
1	12.00000000	4.54000000	0	0	6	1.8718022
1	9.99999900	3.69000010	1	1	2	0.
1	1.99999990	1.25000000	0	0	0	-0.
1	4.99999810	1.25000000	1	0	1	0.4
1	3.99999900	3.19000010	1	0	0	-0.6
1	0.00000000	2.57999990	1	2	0	-0.6931
1	6.99999950	2.00000000	1	1	2	0.916
1	0.99999990	2.76000000	0	0	0	-0.693
1	3.99999900	2.54000000	0	0	2	0.916
1	0.00000000	3.19000010	0	0	0	-0.6931
1	9.00000000	3.08999990	1	2	1	0.405
1	3.99999900	3.19000010	0	0	2	0.91629
1	0.00000000	3.08999990	0	0	0	-0.693147
1	7.99999860	2.26000000	0	0	2	0.
	9.00000000	2.26000000	1	1	1	0.

1	7.99999860	3.35999990	1	0	2	0.91629080
1	9.00000000	3.15000010	1	0	1	0.40546510
1	3.99999900	4.54000000	1	0	0	-0.69314720
1	0.00000000	3.58999990	1	0	2	0.91629080
1	3.00000000	3.47000000	1	0	1	0.40546510
1	1.99999990	2.85999990	1	1	1	0.40546510
1	6.00000050	2.26000000	1	0	0	-0.69314720
1	3.99999900	3.47000000	1	1	2	0.91629080
1	0.00000000	2.76000000	1	0	0	-0.69314720
1	1.99999990	3.58999990	1	2	0	-0.69314720
1	13.00000000	3.75000000	0	0	5	1.70474800
1	1.99999990	2.57999990	1	2	1	0.40546510
1	1.99999990	3.58999990	1	1	2	0.91629080
1	15.99999810	1.89000000	1	2	3	1.25276290
1	9.00000000	3.15000010	0	0	7	2.01490310
1	12.00000000	2.86999990	0	0	5	1.70474800
1	0.99999990	2.11999990	1	2	0	-0.69314720
1	3.99999900	4.61999990	1	0	1	0.40546510
1	0.00000000	2.39000010	0	0	0	-0.69314720
1	10.99999710	2.11999990	0	0	0	-0.69314720
1	4.99999810	1.80999990	1	0	0	-0.69314720
1	7.99999860	2.31999990	0	0	4	1.50407740
1	15.00000100	2.39000010	0	0	0	-0.69314720
1	6.00000050	3.75000000	1	0	3	1.25276290
1	0.00000000	2.00000000	0	0	0	-0.69314720
1	13.99999710	3.58999990	1	1	0	-0.69314720
1	4.99999810	4.29000000	0	0	2	0.91629080
1	0.00000000	2.57999990	1	0	0	-0.69314720
1	4.99999810	4.61999990	1	0	0	-0.69314720
1	3.00000000	1.50500000	0	0	0	-0.69314720
1	3.99999900	3.75000000	1	0	2	0.91629080
1	3.99999900	3.75000000	1	2	0	-0.69314720
1	0.00000000	1.75000000	1	0	1	0.40546510
1	0.00000000	2.11999990	1	0	1	0.40546510
1	4.99999810	3.75000000	0	0	2	0.91629080
1	0.00000000	0.75500000	0	0	0	-0.69314720
1	6.99999950	2.25000000	0	0	1	0.40546510
1	3.00000000	3.19000010	0	0	1	0.40546510
$;$						
		0				

MROZ Data Set

data mroz;
input inlf nwifeinc educ exper expersq age kidslt6 kidsge6 lwage;
datalines;

110.91006	12	14	196	32	1	0	1.210154
119.49998	12	5	25	30	0	2	0.3285121
112.03991	12	15	225	35	1	3	1.514138
16.799996	12	6	36	34	0	3	0.0921233
120.10006	14	7	49	31	1	2	1.524272
19.859054	12	33	1089	54	0	0	1.55648
19.152048	16	11	121	37	0	2	2.12026
110.90004	12	35	1225	54	0	0	2.059634
117.305	12	24	576	48	0	2	0.7543364
112.925	12	21	441	39	0	2	1.544899
124.29995	12	15	225	33	0	1	1.401922
119.70007	11	14	196	42	0	1	1.524272
115.00001	12	0	0	30	1	2	0.7339532
114.6	12	14	196	43	0	2	0.8183691
124.63091	10	6	36	43	0	1	1.302831
117.53103	11	9	81	35	0	3	0.2980284
114.09998	12	20	400	43	0	2	1.16761
115.839	12	6	36	39	0	5	1.643839
114.1	12	23	529	45	0	0	0.6931472
110.29996	12	9	81	35	0	4	2.021932
122.65498	16	5	25	42	0	2	1.254248
18.090048	12	11	121	30	0	0	1.272958
117.479	13	18	324	48	0	0	1.178655
19.56	12	15	225	45	0	0	1.178655
18.274953	12	4	16	31	1	1	0.7675587
127.34999	17	21	441	43	0	2	1.331812
116	12	31	961	59	0	0	1.386294
116.99998	12	9	81	32	0	3	1.55327
115.10006	17	7	49	31	1	0	1.981815
115.69998	12	7	49	42	0	0	1.76936
15.11896	11	32	1024	50	0	0	0.4308079
116.75001	16	11	121	59	0	0	0.8997548
113.59993	13	16	256	36	0	2	1.76663
117.10005	12	14	196	51	0	1	1.272958
116.73405	16	27	729	45	0	3	1.336789
114.19698	11	0	0	42	0	1	0.9017048
110.31999	12	17	289	46	0	0	0.8651237
111.3841	10	28	784	46	0	1	1.511847
114.59408	14	24	576	51	0	0	1.726029
117.50044	17	11	121	30	0	0	2.683142
115.51	12	1	1	30	1	2	0.9852943
121.99998	12	14	196	57	0	0	1.365939
122.5	16	6	36	31	1	2	0.9450337
119.994	12	10	100	48			1.512376

114.13	12	6	36	30	0	3	0.6931472
15.000013	12	4	16	34	0	2	1.244788
121.1549	16	10	100	48	0	2	0.7011649
17.141946	12	22	484	45	0	0	1.519863
116.65007	12	16	256	51	0	0	0.8209686
16.352	12	6	36	30	0	2	0.9698315
127.31395	12	12	144	46	0	1	0.8285082
114.5	12	32	1024	58	0	0	0.0943096
116.25799	12	15	225	37	0	8	0.1625439
19.5	8	17	289	52	0	0	0.4700036
17.999956	10	34	1156	52	0	0	0.6292484
112.50003	16	9	81	31	0	0	1.39716
114.00003	14	37	1369	55	0	0	2.265444
120.80007	17	10	100	34	0	0	2.084541
119.38511	14	35	1225	55	0	0	1.525839
112.38699	12	6	36	39	0	2	0.7621601
128.5	14	19	361	40	0	3	1.481605
115.04991	12	10	100	43	0	4	1.262826
110.49998	8	11	121	48	0	0	0.9996756
111.81	12	15	225	47	0	0	1.832582
16.950073	12	12	144	41	0	4	2.479308
112.41997	8	12	144	36	0	0	1.279015
117.4	17	14	196	46	0	2	1.937936
115.5	12	11	121	34	0	0	1.070453
121.21704	12	9	81	41	0	3	1.123923
118	12	24	576	51	0	1	1.321756
111.89992	12	12	144	33	0	0	1.745
126.75196	12	13	169	52	0	0	1.301744
112.14996	9	29	841	58	0	0	1.641866
110.19999	10	11	121	34	2	4	2.10702
18.120015	12	13	169	31	0	1	1.467068
110.65996	12	19	361	48	0	1	1.605811
118.10001	12	2	4	32	0	2	-1.029739
18.599986	17	24	576	49	0	0	1.087686
113.665	15	9	81	32	2	2	0
132.34996	12	6	36	58	0	0	0.9382087
112.08501	6	22	484	50	0	0	-0.1505904
112.15	14	30	900	60	0	0	0
117.69502	12	10	100	50	0	1	1.073671
124.7	14	6	36	56	0	0	1.265848
12.133992	9	29	841	51	0	0	0.486369
120.95005	17	29	841	54	0	1	2.12026
110.50008	13	36	1296	59	0	0	1.129853
110.55	9	19	361	46	0	2	0.9932518
145.75	15	8	64	46	0	1	1.658628
113.63204	12	13	169	39	1	3	0.3474122
118.23894	12	16	256	44	0	2	1.568324

117.09
130.2349
128.7
119.63
112.82494
123.8
126.30003
120.69991

126
110.87702
125.61206
120.98899
170.74993
117.05

121
18.12
120.88599
117.66892
125.20003
114.24501
114.3
123.70001

146
142.9999
114.749
116.15005
117.774

191
122.29993
134.60001
19.620002
110.89995
114.49994
122.00002
117.90008
123.67506
111.79996
116.14195
118.39997
115.49995
117.324
119.205
121.30006
123.56
120.85
126.15

117
$1211 \quad 121$
$\begin{array}{lll}12 & 15 & 225\end{array}$
12636
$\begin{array}{lll}12 & 13 & 169\end{array}$
$12 \quad 22484$
1224576
1324
12636
1324
1224
1214196
12981
1611121
12981
13636
1119361
1226676
1219361
1239
17749
1428784
1613169
17981
$\begin{array}{ll}12 & 15 \\ 225\end{array}$
1120400
$\begin{array}{lll}12 & 29 & 841\end{array}$
12981
171
10864
$\begin{array}{ll}13 & 19 \\ 361\end{array}$
$\begin{array}{ll}11 & 23 \\ 529\end{array}$
1239
1613169
17864
$\begin{array}{ll}12 & 17 \\ 289\end{array}$
16416
$1215 \quad 225$
$\begin{array}{lll}16 & 11 & 121\end{array}$
$8 \quad 749$
1200
1200
$1210 \quad 100$
13864
1124
12416
12636
1418324

332
20
0.5108456
$\begin{array}{llll}33 & 1 & 2 & 0.1148454\end{array}$
$48 \quad 0 \quad 2 \quad-0.6931472$
$31 \quad 0 \quad 4 \quad-0.3364523$
$45 \quad 0 \quad 1 \quad 1.028226$
$45 \quad 0 \quad 1 \quad 1.580689$
32000.5558946
$47 \quad 0 \quad 0 \quad 0.9014207$
$34 \quad 0 \quad 2 \quad 0.8843046$
$37 \quad 0 \quad 1 \quad 0.4282046$
$36 \quad 0 \quad 1 \quad 1.058415$
$47 \quad 1 \quad 2 \quad 0.8783396$
$48 \quad 0 \quad 1 \quad 1.654908$
$42 \quad 0 \quad 2 \quad 1.321756$
$33 \quad 0 \quad 3 \quad 0.3285121$
$46 \quad 0 \quad 0 \quad 1.386294$
$47 \quad 0 \quad 3 \quad 1.172885$
$44 \quad 0 \quad 1 \quad 1.224187$
$\begin{array}{llll}36 & 0 & 4 & 0.2876571\end{array}$
31202.230262
550001.504077
$450 \quad 1 \quad 1.531152$
$47 \quad 0 \quad 0 \quad 1.375158$
$46 \quad 0 \quad 1.760269$
$49 \quad 0 \quad 0 \quad-0.6931472$
49001.406489
$45 \quad 0 \quad 2 \quad 1.791759$
$\begin{array}{llll}38 & 1 & 3 & 1.299292\end{array}$
$47 \quad 0 \quad 0 \quad 1.351004$
$54 \quad 0 \quad 3 \quad 1.016281$
$41 \quad 0 \quad 0 \quad 1.075344$
$430 \quad 2 \quad 1.478965$
$\begin{array}{llll}31 & 1 & 1 & 1.689487\end{array}$
47002.288598
$35 \quad 0 \quad 2 \quad-1.822631$
$45 \quad 0 \quad 3 \quad-0.9607652$
33101.290994
$54 \quad 0 \quad 1 \quad 0.8648711$
$35 \quad 0 \quad 4 \quad 1.540452$
$\begin{array}{llll}31 & 1 & 2 & 0.6162121\end{array}$
550001.648659
$34 \quad 0 \quad 2 \quad 1.193498$
$38 \quad 0 \quad 1 \quad 2.143976$
$45 \quad 0 \quad 1 \quad 0.7244036$
$47 \quad 0 \quad 1 \quad 0.9416075$
$39 \quad 0 \quad 2 \quad 0.7827594$
$\begin{array}{llll}36 & 1 & 0 & 1.832582\end{array}$

120.72	12	3	9	33	1	2	1.203963
117.00009	12	22	484	50	0	0	1.491645
116	12	33	1089	58	0	0	1.892133
119.50005	17	28	784	49	0	0	2.130895
112	14	23	529	41	0	2	1.480604
113.73191	12	27	729	51	0	1	0.8943313
127.19999	9	11	121	53	0	0	0.2025325
15.315	12	6	36	36	1	2	0.4855078
116	12	11	121	46	0	2	1.098612
127.87198	12	14	196	36	0	2	1.55327
140.00001	14	17	289	53	0	1	0.121598
115.90003	16	17	289	40	0	3	2.001804
127.49997	17	14	196	42	0	2	1.495037
117.02005	15	11	121	33	1	1	0.9052298
122.39494	12	7	49	43	0	3	0.6325476
111.1	16	8	64	31	1	0	1.386294
132.70001	17	6	36	47	0	0	2.102914
127.79996	17	8	64	54	0	0	1.959644
12.199994	12	4	16	33	1	3	0.5108456
119.72095	16	25	625	43	0	0	1.236924
19.999988	13	24	576	46	0	1	1.443313
113.19997	12	11	121	35	0	3	1.021659
112.70897	11	19	361	37	0	3	0.6361535
127.30005	16	9	81	37	0	2	1.616453
121.2	14	19	361	34	0	3	0.2231435
114.4	16	14	196	43	1	0	1.049807
120.57596	12	22	484	46	0	0	1.415052
112.49999	9	6	36	35	0	3	0.5753766
117.50022	17	23	529	46	0	0	2.606682
144.00004	14	15	225	46	0	0	1.517915
113.11895	12	6	36	43	0	2	0.7550416
114.00006	12	11	121	30	0	0	1.094972
19.645086	11	2	4	41	0	2	0.9421144
117.39705	12	22	484	54	0	1	1.724943
17.799889	12	10	100	31	0	1	1.031546
113.13398	10	14	196	44	0	0	0.4743691
125.6	12	12	144	32	0	1	0.8109302
113.90003	5	9	81	47	0	0	0.7092666
119.29794	17	13	169	46	0	1	1.710549
19.200016	11	18	324	37	0	0	0.4602689
137.99999	12	8	64	51	0	2	1.331812
144	12	11	121	49	0	1	1.098612
121.37202	14	9	81	36	0	4	2.157999
123.66802	11	9	81	39	0	1	1.437581
19	12	14	196	48	0	2	1.544899
125.19995	14	9	81	38	0	2	1.410597
121.22	12	2	4	40	0	2	3.218876

$\left.\begin{array}{llllllll}1 & 33.96991 & 10 & 12 & 144 & 39 & 1 & 5 \\ 1 & 17.07 & 16 & 15 & 225 & 37 & 0 & 0 \\ 1 & 6.016024 & 13 & 11 & 121 & 49 & 0 & 1\end{array}\right] 1.7917591619$

119.08006	12	11	121	30	1	0	1.602313
19.46604	13	2	4	31	0	1	1.018559
16.50006	12	19	361	38	0	1	1.297053
129.11701	12	7	49	43	0	3	1.685194
119.10302	8	2	4	49	0	1	-0.4209849
116.34997	12	20	400	55	0	0	1.562095
132.02502	17	10	100	38	0	2	2.146528
116.70006	17	19	361	52	0	0	2.347463
14.811038	12	17	289	48	0	0	0.9698315
124.62601	13	12	144	32	0	2	1.924146
117.40001	12	11	121	32	0	1	1.626728
113.02504	12	6	36	38	0	2	-0.0392607
119.00698	12	10	100	46	0	3	1.460149
114.03	12	4	16	40	0	3	1.955394
114.89991	9	2	4	31	0	4	0.9263599
125.00006	10	13	169	43	0	1	2.066192
110.70007	12	21	441	51	0	0	1.422843
124.25	16	9	81	30	1	0	2.101032
139.13997	13	4	16	52	0	0	2.261461
17.199973	8	2	4	30	1	5	0.7013138
131.811	16	19	361	51	0	0	2.031013
110.00005	13	4	16	31	0	2	1.162369
120.66	12	9	81	34	0	4	0.4700036
113.49998	11	14	196	49	0	0	1.410597
125.38	13	6	36	35	1	3	0.3930551
118.27498	12	24	576	53	1	0	1.290994
139.213	12	1	1	32	0	3	0
110.49994	10	13	169	38	0	3	0.9571255
134.857	12	3	9	54	0	0	0.5596158
128.502	17	10	100	47	0	1	1.568616
112.99996	15	16	256	45	0	1	1.710188
141.39991	16	9	81	47	0	1	1.410597
114.78	10	19	361	59	0	0	0.2231435
115.05	11	4	16	32	0	1	0.5108456
129.69998	12	10	100	45	0	1	1.332392
116.16502	12	5	25	40	0	4	0.8601859
125.20516	14	7	49	47	0	2	2.32278
114.2	16	3	9	36	1	2	1.919595
118.15897	14	38	1444	56	0	0	1.976107
128.98106	8	16	256	41	0	1	0.8954347
113.392	7	13	169	48	0	3	0.1812376
19.17502	12	1	1	36	1	2	0.4953058
127.03985	12	7	49	41	0	0	0.5777924
113.14995	14	15	225	41	0	0	1.078818
116.40007	12	10	100	36	0	3	1.603199
121.29999	12	2	4	37	0	3	0.6208453
117.20102	12	19	361	38	0	0	2.083894

18.560026	1425	625	43	0	2	1.379169
16.49084	1625	625	54	0	0	1.112384
112.49997	127	49	38	0	1	1.067122
127.00002	1215	225	30	1	0	1.118807
153.50005	1211	121	49	0	0	1.588541
152.49995	1325	625	45	0	1	1.390311
138.39998	1319	361	51	0	0	1.714806
113.89194	104	16	34	0	0	0.2010615
13.899993	1214	196	34	0	2	0.987271
134.2	1219	361	41	0	1	0.9835007
119.70008	1218	324	49	0	1	2.233171
118.49995	1214	196	32	0	0	1.143618
110.99998	1411	121	32	0	0	-0.6113829
143.30001	174	16	32	0	2	2.153052
118.76001	1029	841	47	0	0	1.299837
14.800096	921	441	39	0	1	0.8409204
121.5	1224	576	49	0	0	1.058484
128.03994	1219	361	37	0	3	1.152658
126	1631	961	59	0	0	1.293576
127	1228	784	50	0	0	1.832582
117.79969	1715	225	32	0	1	2.32718
117.40195	1227	729	46	0	0	1.166146
119.30999	1713	169	43	0	2	2.034993
19.99998	114	16	37	0	3	0.6792511
111.17998	1610	100	32	0	2	1.547137
118.85696	118	64	39	0	1	0.7530186
112.30002	134	16	34	0	2	0.8472836
113.67712	1118	324	39	0	1	0.871126
19.559997	83	9	45	0	3	0.2282505
124.49998	1111	121	50	0	0	0.0896578
123.15	128	64	40	0	1	1.321756
115.59088	1010	100	30	0	1	1.196102
114.42092	1733	1089	57	0	0	1.636119
117.45491	1219	361	39	0	1	1.892012
19.800019	1235	1225	53	0	0	1.518309
117.57446	1721	441	48	0	1	2.472159
116.555	147	49	46	0	1	1.321756
113.29497	1218	324	47	0	0	1.473641
111.844	124	16	43	0	1	1.369479
146.64506	1212	144	47	0	0	1.203963
114.69999	1216	256	47	0		1.198729
126.09008	1214	196	47	0	0	1.27021
19.9	123	9	46	0	0	0.4700036
19.048026	91	1	34	0	4	0.7999817
130.75006	1027	729	48	0	0	1.565946
18.49994	1212	144	30	0	1	1.758978
122.24999	126	36	51	0	1	0.8580258

142.91	12	9	81	52	0	5	0.6931472
133.3	12	2	4	37	0	2	0.6418539
113.8199	12	6	36	32	0	2	1.63374
123.60001	17	9	81	36	0	2	1.703748
113.00007	12	16	256	35	0	2	1.844004
120.74994	17	22	484	45	0	0	1.966119
16.3	12	26	676	56	0	0	0.8649974
17.788925	10	11	121	40	0	2	0.9333052
110.47004	12	11	121	45	1	2	0.7792332
112	12	15	225	32	0	2	0.9555114
116.97992	12	13	169	45	0	0	1.316247
117.9	12	6	36	40	0	2	1.475906
115.53994	12	20	400	38	0	1	1.491397
19.883986	12	17	289	49	0	4	1.45575
128.59995	16	8	64	47	0	1	0.5108456
117.66001	13	13	169	52	0	0	1.180438
125.99992	13	15	225	34	0	1	1.688489
113.60201	12	14	196	44	0	2	0.7907275
115.8	16	14	196	36	0	3	1.401799
141.09999	17	6	36	50	0	0	-0.433556
110.77504	12	24	576	45	0	0	1.683172
19.000047	14	10	100	44	0	2	-1.766677
124.39899	12	2	4	57	0	2	3.155595
137.30009	17	9	81	35	0	0	2.259521
127.99995	12	23	529	46	0	0	1.306926
113.7	14	12	144	30	2	1	0.7984977
117.20994	12	8	64	42	0	3	0.5590442
114.00001	12	16	256	34	0	1	0.1479026
135.75502	17	10	100	45	0	2	1.944495
123.5	16	7	49	35	1	2	1.378338
131.99993	16	19	361	40	0	0	3.064745
117.15	12	2	4	32	0	1	-0.7419173
120.25002	9	9	81	54	0	0	0.7657004
15.485985	12	14	196	38	0	3	0.619393
125.07504	12	9	81	43	0	3	1.465452
118.21995	16	16	256	54	0	0	2.18926
126	14	7	49	39	0	3	1.021659
134.50007	12	6	36	37	0	1	0.9770095
112.4	12	22	484	46	0	2	0.9162908
110.78685	11	9	81	56	0	0	2.905096
116.32301	12	9	81	41	0	3	-0.1996712
130.5	16	14	196	45	0	1	0.6931472
151.29963	17	17	289	44	0	1	2.733393
133.04997	17	12	144	50	0	1	1.868335
134.75001	14	13	169	37	0	5	2.12026
116.40004	12	8	64	44	0	1	1.515193
119.70007	14	10	100	32	0	2	0.9146093

$\left.\begin{array}{llllllll}1 & 6.600003 & 12 & 16 & 256 & 34 & 1 & 1 \\ 1 & 9.020008 & 10 & 1 & 1 & 32 & 0 & 2 \\ 1 & 10.40001 & 12 & 6 & 36 & 37 & 0 & 3 \\ 1 & 0.8030772 \\ 1 & 14.51999 & 13 & 4 & 16 & 44 & 0 & 1\end{array}\right] 0.516416$

1	14.43403	12	13	169	49	0	2
1	23.709	12	9	81	45	1	1
1	15.1	17	14	196	32	2	0
1.241269							
1	18.19998	10	2	4	36	0	5
1	22.64106	12	21	441	40	0	1
1	21.64008	13	22	484	43	0	2
1	23.99998	12	14	196	33	0	1.6688867
1	16.00002	12	7	49	30	0	1
0	21.025	12	2	4	49	0	1
0	23.6	16	5	25	30	2	0
0	22.8	12	12	144	30	1	0
0	35.91	12	1	1	41	0	4
0	21.7	12	12	144	45	0	1

	33.856	14	10	100	54	0	0
0	20.5	12	4	16	30	1	2
0	28.6	12	0	0	55	0	0
0	18.75	10	10	100	51	0	1
0	20.3	12	5	25	44	0	1
0	13.42	12	0	0	53	0	0
0	18.4	10	0	0	42	0	2
0	16.682	12	19	361	38	0	2
0	32.685	13	2	4	38	1	3
0	7.05	12	12	144	41	1	4
0	10.867	8	5	25	35	0	3
0	18.22	12	5	25	33	1	2
0	26.613	13	5	25	48	0	0
0	25	12	10	100	47	0	0
0	15.7	12	0	0	34	0	5
0	40.25	13	4	16	33	2	1
0	73.6	13	3	9	31	3	1
0	10.592	8	2	4	58	0	0
0	8	12	1	1	49	0	0
0	13.4	8	0	0	55	0	1
0	23.7	14	1	1	44	0	0
0	18.9	9	1	1	44	0	0
0	48.3	16	6	36	36	0	3
0	24.47	12	12	144	38	0	3
0	28.63	16	6	36	37	0	3
0	25.32	12	9	81	47	0	0
0	13.53	12	14	196	47	0	3
0	14.8	12	13	169	32	1	1
0	17.4	12	8	64	43	1	2
0	15.98	11	0	0	42	1	4
0	16.576	12	1	1	56	0	0
0	21.85	13	3	9	38	0	5
0	14.6	12	13	169	52	0	2
0	21.6	12	3	9	50	0	0
0	24	16	8	64	33	0	0
0	20.883	16	8	64	44	0	2
0	19.5	12	18	324	41	0	1
0	42.8	12	2	4	45	0	1
0	41.5	14	3	9	53	0	0
0	18.965	14	5	25	53	0	0
0	16.1	12	2	4	42	0	1
0	14.7	13	10	100	32	2	0
0	18.8	12	30	900	56	0	0
0	14.75	11	1	1	37	1	3
0	21	12	5	25	40	1	2
0	35.4	15	8	64	54	0	3
0	10.7	7	0	0	53	0	0

0	24.5	12	4	16	48	0	1
0	17.045	12	2	4	36	1	2
0	18.8	12	30	900	57	0	0
0	14	12	25	625	51	0	0
0	18.214	13	3	9	33	0	4
0	20.177	12	20	400	52	0	0
0	8.3	10	20	400	56	0	0
0	14.2	12	0	0	36	1	2
0	21.768	14	15	225	36	1	0
0	29.553	12	10	100	46	0	1
0	4.35	10	4	16	31	0	3
0	24	11	3	9	52	0	0
0	18.3	12	10	100	46	0	2
0	17.2	12	9	81	35	2	0
0	16.476	12	7	49	59	0	0
0	13.4	8	12	144	36	0	1
0	44.988	7	0	0	51	1	3
0	18.2	16	16	256	31	1	0
0	28	14	4	16	31	0	2
0	11.55	12	7	49	32	1	1
0	28.45	16	7	49	35	1	2
0	15.096	12	14	196	40	0	3
0	8.009	10	2	4	33	1	2
0	10.04	7	20	400	54	0	0
0	16.7	12	5	25	36	1	1
0	8.4	10	10	100	50	0	1
0	13	8	20	400	54	0	0
0	17.97	11	10	100	48	0	1
0	18.45	15	8	64	41	0	4
0	31	12	11	121	50	0	4
0	24.135	12	3	9	46	0	2
0	31.7	13	6	36	42	0	1
0	10.19	9	4	16	31	1	2
0	21.574	12	4	16	53	0	0
0	26.68	12	9	81	51	0	1
0	17.7	12	10	100	47	0	1
0	29.4	12	3	9	50	0	1
0	22.159	6	2	4	37	0	1
0	35	12	2	4	30	2	2
0	8.63	12	0	0	49	0	0
0	17.08	12	8	64	52	0	2
0	32.5	12	6	36	47	0	2
0	16	12	15	225	49	0	0
0	18.85	12	15	225	44	0	4
0	17.5	8	9	81	53	0	0
0	19.392	12	8	64	30	1	0
0	14.45	12	18	324	54	0	2

	0	21.8	7	3	9	47	1	1
0	7.7	15	10	100	56	0	0	.
0	31.8	12	6	36	49	0	1	.
0	17.258	6	20	400	48	0	0	.
0	13.399	12	8	64	49	0	1	.
0	16.073	12	3	9	56	0	1	.
0	23.26	12	4	16	46	0	0	.
0	37.3	12	13	169	45	0	2	.
0	11	12	4	16	32	0	2	.
0	13.075	12	17	289	43	1	1	.
0	13.7	12	4	16	34	1	1	.
0	25.1	12	0	0	30	1	1	.
0	18.6	17	15	225	38	2	0	.
0	29	16	11	121	33	1	1	.
0	19.237	12	23	529	52	0	0	.
0	19.855	11	1	1	43	0	3	.
0	9.45	12	5	25	33	1	1	.
0	30	10	1	1	45	0	0	.
0	15	10	5	25	36	2	1	.
0	24.701	12	3	9	34	1	1	.
0	15.9	14	3	9	37	0	2	.
0	16.24	10	19	361	46	0	1	.
0	21.1	12	20	400	47	0	0	.
0	23	16	5	25	31	2	1	.
0	6.34	5	0	0	57	0	0	.
0	42.25	12	3	9	30	1	1	.
0	14.694	12	3	9	30	0	0	.
0	21.417	12	7	49	44	0	3	.
0	20.2	13	7	49	53	0	0	.
0	12.09	8	1	1	51	0	0	.
0	24.76	12	13	169	39	1	3	.
0	23	8	0	0	52	0	0	.
0	19.365	8	0	0	46	0	4	.
0	5.55	12	12	144	47	0	5	.
0	68.035	8	0	0	52	0	2	.
0	29.3	12	5	25	45	0	2	.
0	18.5	11	45	2025	60	0	0	.
0	22.582	13	10	100	41	0	2	.
0	21.5	8	2	4	39	0	3	.
0	28.07	12	3	9	49	0	1	.
0	50.3	15	1	1	32	1	1	.
0	23.5	12	5	25	33	1	3	.
0	15.5	10	10	100	36	0	4	.
0	13.44	13	4	16	37	3	3	.
0	8.1	12	7	49	30	1	2	.
0	9.8	11	9	81	44	1	1	.
0	20.3	12	5	25	48	0	1	.
0								

015	114	16	40	0	4	.
056.1	1311	121	47	0	0	
022.846	129	81	36	0	2	
022.225	114	16	40	0	2	
017.635	122	4	46	0	1	
018.5	1223	529	52	0	0	
013.39	123	9	44	0	1	
015.15	1015	225	45	0	1	
016.2	78	64	30	2	1	
033.92	123	9	40	1	3	
014	1225	625	43	0	1	
016.736	122	4	49	0	2	-
030.65	120	0	46	1	4	
012.4	1119	361	52	0	0	-
019.022	123	9	31	1	1	
011.203	107	49	42	1	1	.
019.876	111	1	33	0	3	
057	169	81	57	0	0	-
018.29	103	9	49	0	0	
020.22	148	64	45	0	1	-
022.15	110	0	56	0	0	
030.623	125	25	41	1	3	.
09.38	520	400	56	0	0	-
022	103	9	48	0	1	-
023.675	1612	144	52	0	2	-
033.671	125	25	51	0	0	
012.367	111	1	35	0	3	-
021.95	120	0	45	0	0	
032	127	49	54	0	0	-
022.61	1213	169	54	0	2	
012.092	123	9	31	1	0	-
03.777	60	0	53	0	3	
036	142	4	35	2	2	-
026.9	120	0	36	1	3	
032.242	122	4	59	0	0	-
035.02	161	1	54	0	0	
037.6	1210	100	37	1	1	-
01.5	1210	100	44	0	0	-
096	171	1	34	1	2	-
018.15	123	9	49	0	0	-
015.5	1232	1024	49	0	0	-
014	90	0	60	0	0	
014.756	127	49	51	0	0	-
022	125	25	30	1	1	.
024.466	122	4	47	0	2	-
024.4	125	25	36	0	4	
024	123	9	35	1	3	

0	15.5	12	25	625	58	0	0
0	30.8	14	0	0	41	1	3
0	10.66	10	3	9	51	0	1
0	13.35	12	10	100	47	0	0
0	10.09	9	10	100	45	1	2
0	55.6	14	7	49	60	0	0
0	25.7	16	5	25	30	1	1
0	29	11	15	225	55	0	0
0	7.286	12	1	1	32	1	2
0	37.752	12	5	25	36	0	2
0	13.072	12	9	81	55	0	0
0	7.044	12	18	324	47	0	0
0	18.2	12	1	1	47	0	1
0	27	11	0	0	37	0	1
0	30.3	12	6	36	50	0	2
0	12	12	1	1	30	0	3
0	31.5	17	2	4	48	0	1
0	27.092	10	15	225	43	0	2
0	20.968	11	25	625	48	1	0
0	27	14	1	1	41	1	2
0	11.225	12	0	0	50	0	0
0	37.7	8	0	0	58	0	0
0	28.2	13	0	0	38	0	5
0	34	12	8	64	37	0	1
0	63.2	16	22	484	50	0	0
0	7.5	8	5	25	42	0	4
0	17.41	9	10	100	37	1	3
0	51	16	1	1	41	0	2
0	12.916	12	1	1	31	0	2
0	21.9	12	6	36	51	0	0
0	17.64	12	4	16	36	1	2
0	20	15	6	36	54	0	0
0	15	12	0	0	49	0	0
0	14.06	9	1	1	48	1	1
0	15.825	9	3	9	42	0	2
0	16.51	12	15	225	41	1	2
0	13	16	33	1089	55	0	0
0	10	9	2	4	42	0	0
0	22	15	1	1	32	0	1
0	29.8	12	10	100	43	0	2
0	15	12	0	0	33	1	3
0	22.3	15	14	196	48	0	1
0	14.55	12	15	225	43	0	2
0	19.73	17	15	225	47	1	3
0	35	12	10	100	54	0	0
0	21.014	12	6	36	51	0	1
	10.876	10	18	324	51	0	1

0	27.85	13	15	225	43	1	1	
0	9.56	12	30	900	53	0	0	
0	30.3	11	15	225	34	1	1	
0	7.72	8	10	100	31	1	1	
0	10.55	12	0	0	56	0	0	
0	24.106	16	0	0	42	0	1	
0	22.995	12	4	16	32	0	2	
0	6	12	0	0	35	1	3	
0	24.35	12	3	9	30	1	1	
0	7.608	10	20	400	51	0	0	
0	28.2	12	3	9	47	0	3	
0	16.15	12	1	1	54	0	1	
0	51.2	15	5	25	31	3	0	
0	12.646	10	7	49	47	0	0	
0	19	14	6	36	47	0	3	
0	19	12	2	4	40	0	3	
0	14.4	8	0	0	48	0	0	
0	7.232	8	10	100	34	0	7	
0	21.943	12	6	36	38	0	3	
0	47.5	12	4	16	32	1	3	
0	28.9	16	8	64	48	0	1	
0	12.4	12	18	324	41	0	2	
0	6.531	5	7	49	49	0	2	
0	22.422	8	15	225	59	0	0	
0	22.2	13	7	49	58	0	0	
0	77	12	8	64	41	0	3	
0	88	12	8	64	45	0	2	
0	26.04	14	3	9	30	1	1	
0	63.5	12	10	100	41	0	1	
0	12.1	12	9	81	30	2	0	
0	17.505	12	24	576	53	0	1	
0	18	12	12	144	31	0	0	
0	28.069	14	2	4	43	0	2	
0	14	12	6	36	31	1	1	
0	8.117	12	18	324	51	0	0	
0	11.895	9	17	289	43	0	0	
0	45.25	14	7	49	31	1	2	
0	31.106	11	6	36	48	0	0	
0	4	12	10	100	31	1	1	
0	40.5	12	5	25	44	0	1	
0	21.62	11	7	49	48	0	1	
0	23.426	12	11	121	53	0	1	
0	26	10	14	196	42	0	3	
0	7.84	12	5	25	39	2	6	
0	6.8	10	2	4	32	1	2	
0	5.33	12	4	16	36	0	2	
0	28.2	13	5	25	40	0	2	

448 Appendix 1 / Input Data Sets for Task Examples

0	10	12	14	196	31	2	3	.
0	9.952	12	4	16	43	0	0	.
0	24.984	12	15	225	60	0	0	.
0	28.363	9	12	144	39	0	3	.
$;$								

Appendix 2

References

Cochran, W. G., and G. M. Cox. 1950. Experimental Designs. New York, : Wiley.
Hilbe, J. M. 2009. Logistic Regression Models. London, England: Chapman \& Hall/ CRC.

Hosmer, D. W. Jr., and S. Lemeshow. 2000. Applied Logistic Regression. 2 ed. New York, NY: John Wiley \& Sons.

Lawless, J. F., and K. Singhal. 1978. "Efficient Screening of Nonnormal Regression Models." Biometrics (34): 318-327.

Pregibon, D. 1981. "Logistic Regression Diagnostics." Annals of Statistics (9): 705724.

450 Appendix 2 / References

Recommended Reading

- Getting Started with Programming in SAS Studio
- The Little SAS Book: A Primer (Buy)
- Learning SAS by Example: A Programmer's Guide (Buy)
- SAS Statistics by Example (Buy)
- Elementary Statistics Using SAS (Buy)

For a complete list of SAS books, go to support.sas.com/bookstore. If you have questions about which titles you need, please contact a SAS Book Sales Representative:

SAS Books
SAS Campus Drive
Cary, NC 27513-2414
Phone: 1-800-727-3228
Fax: 1-919-677-8166
E-mail: sasbook@sas.com
Web address: support.sas.com/bookstore

452 Recommended Reading

Index

A

analysis of covariance 348

B

bar charts 195
horizontal 234
bar-line charts 200
box plots 206
bubble plots 210

C

charts
bar 195
bar-line 200
box 206
histograms 214
line 218
pie 222
code
adding comments 122
formatting 122
correlation 245
correlations 302Count Panel Data Regressiontask 164,175
custom tasks 120
D
data
about 126
computations 131
exploration 278
permutations 138
random sampling 260
ranking 140
replacing missing values 259
sorting 153
transposing 159
data binning 240
data characteristics 126
data exploration 278
distribution analysis 291
F
frequency tables 298

H

Heckman selection model 170 high-performance tasks generalized linear models 248 histograms 214

L

line charts 218

linear models
generalized 248, 396
linear regression 180, 352
List Data task 133
logistic regression 368
logit regr,ession 186

M

missing values 259
My Tasks folder 119

N

n-way ANOVA 343
nonparametric one-way analysis of variance 337

0

one-way analysis of variance

nonparametric 337
one-way frequencies 298

P

panel data
Count Panel Data Regression task 164, 175
pie charts 222
plots
bubble 210
predictive regression
modeling 383
probit regression 186
process flows
adding a snippet 80
adding queries 84
adding SAS programs 77
adding tasks 86
arranging 76
color of nodes 76
control ports 73, 91
creating 73
data ports 73
linking nodes 91
overview 72
priority of execution 76
properties 76
results 75
running 92
saving 92
status of nodes 75
subflows 88

R

random sampling 147, 260
regression
linear 180

S

scatter plots 226
series plots 231
summary statistics 284

T

t test
one-sample 313
paired 318
two-sample 324
table analysis 307
tables
attributes 156
tasks
about 115
analysis of covariance 348
bar chart 195
bar-line chart 200
binary logistic regression 368
birthdays 266
box plot 206
bubble plot 210
characterize data 126
coins 268
computations 131
correlation 245
correlations 302
Count Panel Data Regression 164, 175
creating 120
data binning 240
data exploration 278
dice roll simulation 270
distribution analysis 291
editing 119
generalized linear models 248, 396
Heckman selection model 170
histograms 214
horizontal bar charts 234
line charts 218
linear panel data regression 180
linear regression 352
List Data 133
N-way ANOVA 343
nonparametric one-way
analysis of variance 337
one-sample t test 313
one-way analysis of variance 330
one-way frequencies 298
paired t test 318
permutations 138
pie chart 222
poker hand probability 272
predictive regression modeling 383
probit/logit regression 186
random sample 147
random sampling 260
ranking data 140replace missing values 259
running 116
scatter plot 226
series plot 231
sorting data 153
summary statistics 284
table analysis 307

Gain Greater Insight into Your SAS ${ }^{\circ}$ Software with SAS Books.

Discover all that you need on your journey to knowledge and empowerment.

[^0]: Vertical Axis

[^1]: Exact Statistics Computation

[^2]: Explanatory Variables

