
SAS® 9.3 BI Web Services
Developer's Guide

SAS® Documentation

The correct bibliographic citation for this manual is as follows: SAS Institute Inc 2011. SAS® 9.3 BI Web Services: Developer’s Guide. Cary, NC:
SAS Institute Inc.

SAS® 9.3 BI Web Services: Developer’s Guide

Copyright © 2011, SAS Institute Inc., Cary, NC, USA.

All rights reserved. Produced in the United States of America.

For a hardcopy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS Institute Inc.

For a Web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at the time you acquire this
publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the publisher is illegal and
punishable by law. Please purchase only authorized electronic editions and do not participate in or encourage electronic piracy of copyrighted
materials. Your support of others' rights is appreciated.

U.S. Government Restricted Rights Notice: Use, duplication, or disclosure of this software and related documentation by the U.S. government is
subject to the Agreement with SAS Institute and the restrictions set forth in FAR 52.227–19, Commercial Computer Software-Restricted Rights
(June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.

1st electronic book, July 2011

SAS® Publishing provides a complete selection of books and electronic products to help customers use SAS software to its fullest potential. For
more information about our e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site at
support.sas.com/publishing or call 1-800-727-3228.

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other
countries. ® indicates USA registration.

Other brand and product names are registered trademarks or trademarks of their respective companies.

http://support.sas.com/publishing

Contents

What's New in SAS 9.3 BI Web Services . v

Chapter 1 • Overview of SAS BI Web Services . 1
What Are SAS BI Web Services? . 1
Creating SAS BI Web Services . 3
Differences between Web Service Types . 5
Overview of Security for Web Services . 6
Understanding Error Codes . 7
Migrating SAS BI Web Services for .NET to SAS BI Web Services for Java 8

Chapter 2 • Writing SAS BI Web Services Using XMLA . 9
Writing SAS Programs for XMLA Web Services . 9
Discover Method . 11
Execute Method . 16
Sample PROC MEANS Using SAS BI Web Services . 18

Chapter 3 • Using Structured Web Services . 25
What Are Structured Web Services? . 25
Writing SAS Programs for Structured Web Services . 26
Accessing SOAP Endpoints for Stored Processes and Generated Web Services 28
Using Attachments with Web Services . 29
Using Prompts with Generated Web Services . 31
Sample WSDLs . 40

Chapter 4 • Using JSON and Plain XML with RESTful Web Services . 49
What Are REST and JSON? . 49
Supported Types of Input and Output for XML and JSON Messages 51
Accessing RESTful JSON and XML Web Service Endpoints . 54
Invoking RESTful Web Services . 55

Index . 65

iv Contents

What's New in SAS 9.3 BI Web
Services

Overview

SAS 9.3 BI Web Services introduce several new features for programmers that make it
easier to consume SAS Stored Processes using popular Web service protocols. New
features include support for new transport types, integration with SAS 9.3 Stored
Process features, more management capabilities, an engine rewrite for speedier
execution and more comprehensive extensions, and a feature that eliminates the need to
use the Deploy as Web Service wizard in SAS Management Console to create new
generated Web services by exposing stored processes for dynamic execution. In
addition, SAS BI Web Services for .NET has been discontinued in SAS 9.3.

General Enhancements

The following general enhancements have been added to SAS BI Web Services:

• The SAS BI Web Services for Java engine has been rewritten to use the Spring
Framework. This new engine is backwards compatible with SAS 9.2 generated Web
services and the XMLA Web service. You can continue to use any existing client
proxy code when invoking migrated SAS 9.2 generated Web services and XMLA
proxies should continue to work as they did in SAS 9.2.

• You no longer need to generate Web services using the Deploy as a Web Service
wizard in SAS Management Console. As soon as you create a SAS Stored Process, it
is available for execution by SAS BI Web Services. You can continue to generate
Web services to group multiple stored processes under one endpoint or to publish the
intent that these stored processes are to be executed by Web service clients.

• SAS BI Web Services for .NET has been discontinued. SAS BI Web Services for
Java will support migrated .NET 9.2 generated Web services in a way that is
transparent for clients. In fact, clients should need only to change endpoint addresses
(and this step can be omitted if a proxy server is used). For more information, see
“Migrating SAS BI Web Services for .NET to SAS BI Web Services for Java” on
page 8.

SAS Stored Process Enhancements

The following stored process enhancements have been added to SAS BI Web Services:

v

• The SAS Workspace Server supports stored processes with output parameters and
stored processes with streaming output, except stored processes that use sessions.

• Data tables can be specified as data sources and data targets. Data tables are similar
to traditional data sources and targets, but they eliminate the need for stored process
authors to hardcode LIBNAME statements in SAS code. Also, data tables enable
stored process authors to specify a template table. This template table is used to
automatically generate schema for the table in SAS BI Web Service WSDLs.

Transport Type Additions

SAS BI Web Services has always provided SOAP endpoints for XMLA and generated
Web services. SOAP is widely used in enterprise scenarios because of the set of WS-*
standards available for the protocol, for its use of a Web Service Description Language
(WSDL) files, and for its structured and namespaced messages. However, sometimes
SOAP is overkill. Many mobile client development libraries lack native SOAP libraries
and Web applications typically use client-side asynchronous JavaScript remoting calls
where SOAP is not appropriate. Therefore, SAS 9.3 BI Web Services supports plain
XML and JSON as transport types. For more information, see Chapter 4, “Using JSON
and Plain XML with RESTful Web Services,” on page 49.

vi SAS BI Web Services

Chapter 1

Overview of SAS BI Web Services

What Are SAS BI Web Services? . 1

Creating SAS BI Web Services . 3
Prerequisites . 3
Creating XMLA Web Services . 3
Creating Generated Web Services . 4
Accessing the Web Service Endpoint for a Stored Process . 5

Differences between Web Service Types . 5
Differences between XMLA and Structured Web Services . 5
Differences among XML, JSON, and SOAP Invocations . 6

Overview of Security for Web Services . 6

Understanding Error Codes . 7

Migrating SAS BI Web Services for .NET to SAS BI Web Services for Java 8

What Are SAS BI Web Services?
A Web service is an interface that enables communication between distributed
applications. Web services enable cross-platform integration by enabling applications
that are written in various programming languages to communicate by using a standard
Web-based protocol. This functionality makes it possible for businesses to bridge the
gaps between different applications and systems.

The following figure shows how Web services work.

Figure 1.1 Web Services Communications

Client
(Web Application

or
Desktop Appication)

Web Service
(Middle-Tier Java Code) HTTP

(SOAP, REST)
IOM

SAS Server
(SAS Stored

Process Server or
SAS Metadata Server)

In general, SAS BI Web Services expose SAS Stored Processes for execution by using
Web service protocols. Remote clients are then able to specify input parameters, drive
execution of SAS code, and obtain results from that execution. Also, Web services make
it possible to write clients that perform this act in a myriad of languages and on a variety

1

of operating systems by using HTTP to exchange messages. Web services can enable a
service-oriented, enterprise application approach, or they can support the development of
mobile or Web clients, all of which leverage reusable SAS Stored Processes.

There are two core types of SAS BI Web Services: XMLA and structured Web services.
Structured Web services can further be divided based on how you access the services
and the format of the messages that you send and receive.

SAS BI Web Services expose a single XMLA Web service endpoint with two
operations: Discover and Execute. Clients call Discover in order to obtain information
from the system, including the list of SAS Stored Processes that are available for
execution by the XMLA engine, the inputs and outputs of those stored processes, and
other metadata about the stored processes. Clients can then use the Execute operation to
specify input, execute a stored process, and obtain the results of that execution. The
XMLA Web service is more limited than structured Web services because it provides
only a general interface for invoking stored processes. For example, XMLA includes a
Web Service Description Language (WSDL) file, but because XMLA can be used to
execute any number of stored processes, this WSDL does not actually describe the
stored process inputs and outputs. Instead, the WSDL describes the information that the
Discover calls will return to the client. This makes XMLA Web services unsuited for use
with client Web service libraries where automatic proxy generation and easy service
execution are desired. Also, XMLA only supports XML and the SOAP protocol for all
operations and does not support many features of SAS Stored Processes.

In SAS 9.3, all stored processes are available individually for execution using Web
services without any action required from the user. SAS BI Web Services automatically
exposes a WSDL file for each and every stored process that is available in the system.
These WSDL files use XML to include detailed information about the inputs and outputs
of each stored process using XML schema descriptions. Also, the WSDL file includes
the URLs of endpoints to use to invoke these stored processes by using SOAP over
HTTP. You can use these WSDL files to automatically generate code in your client
framework of choice that can be used to invoke the Web services. SAS BI Web Services
exposes these services using a simple mapping from the metadata folder path of the
stored process.

You can group multiple stored processes together in a single, named Web service using
the Deploy As Web Service wizard in SAS Management Console. In 9.2, these were
called generated Web services because the wizard generated a grouping (and because
server artifacts were actually generated as well). You can group stored processes for
Web service execution to simplify management or to enable generated client code to
invoke more than one stored process. The grouping generates a single WSDL file that
describes all stored processes together in one document and all stored processes in a
generated Web service grouping are invoked at the same, unique endpoint based on the
name of the generated service. Stored processes that are a member of a generated Web
service are still individually available for execution.

All structured Web services can be invoked by using SOAP over HTTP. SOAP strictly
defines message structure, including the envelope containing headers and body. SAS BI
Web Services define the content (and namespace) of the payload within the body. In
addition, SAS 9.3 BI Web Services support Javascript Simple Object Notation (JSON)
and plain XML as message formats for all structured Web services. The format of input
XML messages for a structured Web service can be deduced from its WSDL file. The
addition of new output resource URL suffixes in conjunction with the new SAS folder
path mapping means that SAS BI Web Services now support Representational State
(REST) style Web service invocation.

SAS BI Web Services for Java are administered by using JBoss, Oracle WebLogic, or
IBM WebSphere. If you install SAS BI Web Services for Java, then you also need to
have a Java Virtual Machine for an application server. For more information about

2 Chapter 1 • Overview of SAS BI Web Services

administering and configuring Web services, see the SAS Intelligence Platform: Web
Application Administration Guide.

Creating SAS BI Web Services

Prerequisites
Before you can use Web services, you need to perform the following steps:

1. Install SAS Integration Technologies, which includes SAS BI Web Services and the
SAS Metadata Server.

Note: When you install SAS 9.3 BI Web Services, you are actually installing several
Web services: the XMLA Web service, the WebServiceMaker Web service that
is used to create generated Web services, and a Web service that is responsible
for handling non-generated, JSON, and REST invocations.

2. Write a SAS program to use as a stored process with Web services. See “Writing
SAS Programs for XMLA Web Services” on page 9. See “Writing SAS Programs
for Structured Web Services” on page 26.

3. Define a stored process server or workspace server, if one is not already defined.

4. Define a stored process by using SAS Management Console.

Creating XMLA Web Services
If you want to invoke a stored process using the XMLA Web service, you must use
XMLA Web Service as a keyword and Stream as the stored process output type
when defining the stored process. On the client side, perform the following steps to use
XMLA Web services:

1. Locate the Web Service Description Language (WSDL) file. You can access the
WSDL for a SAS BI Web Service by appending '?WSDL' onto the service endpoint.

2. Write the code for the client application that uses either the Discover method or the
Execute method to call the Web service.

3. Run the code.

For XMLA Web services, the SAS code that implements the Web service, the metadata,
and the client code that calls the Web service must all be synchronized. The following
table shows how to synchronize these items:

Creating SAS BI Web Services 3

Table 1.1 Items to Synchronize

Item SAS Program Metadata Client Code

Name The name of the file
that contains the SAS
code.

Associates a SAS
Stored Process with
the name of the file
containing the SAS
program.
Alternatively, in SAS
9.3, the SAS program
can be included
directly in metadata.

<StoredProcess
name=
'MyStoredProcess'>

Input Data Reads XML from the
fileref.

libname instream
xml;

The name of the
fileref, which must
match the name of
the data source. In
this case, the name of
the fileref is instream.

<Stream
name='instream'
XML input stream
 provided by client...
</Stream>

Input Parameters Macros.

&tablename

The parameter name
is specified in the
metadata. Parameters
are validated for
proper typing, but
they are treated as
strings on the server
regardless of the type
that is specified in the
metadata.

<Parameter
name='tablename'>
value</Parameter>

Output Data Writes output to the
_WEBOUT fileref as
XML.

libname _WEBOUT
xml xmlmeta=
&_XMLSCHEMA;

Designates the output
as 'Streaming'.

Uses the XML that is
returned.

Creating Generated Web Services
Follow these steps to use generated Web services:

1. Generate a new Web service:

a. In SAS Management Console, select a set of stored processes and then select
Actions ð Deploy As Web Service to generate a new Web service that can be
used to call the selected stored processes.

b. In the Web Service Maker URL field of the Deploy as Web Service wizard,
type the endpoint URL or select an existing URL. The user who performs this
action should belong to the SAS BI Web Services Users metadata group so that
the new Web service can be stored in metadata. The new Web service will
contain one operation for each stored process that you selected.

c. Upon successful deployment, a message displays that tells you the endpoint URL
for the newly deployed Web service.

4 Chapter 1 • Overview of SAS BI Web Services

T I P You can use your operating system's keyboard shortcut to copy the URL
(for example, on Windows, press control + C).

2. Create clients to call the Web service. Many Web service programming frameworks
have utilities to generate client code that can invoke your SAS Web services.
Typically, these frameworks will use a Web Service Description Language (WSDL)
file to generate these client files. You can access the WSDL of a SAS Web service
by appending ?WSDL or .wsdl to the URL of your SAS Web service.

A Web service can be created with multiple operations in it. Each operation corresponds
to a stored process, and has the same name as the stored process, unless there is a
naming conflict. If the name of the stored process conflicts with another name, then a
new operation name is created.

Accessing the Web Service Endpoint for a Stored Process
Any SAS Stored Process that exists in your SAS Metadata Server can be invoked using
SAS BI Web Services. This is a convenient alternative to generating Web services when
you need to invoke a single stored process. The endpoint URLs for stored processes are
not stored anywhere. You can compute the endpoint URL easily by using the type of
transport desired and the path of the stored process. See “Accessing SOAP Endpoints for
Stored Processes and Generated Web Services” on page 28 for more information about
accessing SOAP endpoints for stored processes. See “Accessing RESTful JSON and
XML Web Service Endpoints” on page 54 for more information about accessing REST
endpoints for stored processes.

Differences between Web Service Types

Differences between XMLA and Structured Web Services
The major differences between XMLA Web services and structured Web services are:

• Consumption capabilities. Structured Web services have a WSDL that is customized
for each stored process that is in the service. This enables client application
developers to create proxies that can create and read the XML documents that are
exchanged with the service. XMLA services are described in the Discover call, so
proxies must be manually created by the developer for calling the service.

• Attachments. XMLA Web services can process XML only. Structured Web Services
can read and write binary information by using attachments when using the SOAP
protocol and endpoints. For example, this means you can return graphs that are
generated by ODS by using structured Web Services and SOAP.

• Output parameters. The only allowed output from XMLA is the _WEBOUT stream.
Structured Web Services can return output parameters, the _WEBOUT stream,
packages, and data targets.

• Deployment. To enable a stored process for XMLA execution, you must add the
XMLA Web Service keyword to the stored process definition in metadata. By
comparison, structured Web service access is available for all stored processes
automatically by using a RESTful URL mapped to the metadata location of the
stored process. Also, you can create new structured Web services by grouping stored
processes by using the Deploy as Web Service wizard in the Folder view of SAS
Management Console.

Differences between Web Service Types 5

Differences among XML, JSON, and SOAP Invocations
Structured Web services can be invoked using XML, JSON, and SOAP messages.
Certain features and functionality are available only when using a particular message
format. Here are the main differences between the three message formats:

• Input and output types. XML and SOAP messages support all stored process input
and output types including prompts, XML data sources and targets, generic data
sources and targets, data tables, output parameters, streams, and packages. JSON
messages only support simple prompt types (ones that can be represented with a
string) and output parameters.

• Endpoint addresses. The plain XML, JSON, and SOAP versions of a structured Web
service are available at three different endpoint URLs.

• Description files. Only SOAP Web services expose a WSDL file that strictly defines
the inputs and outputs and the endpoints for the Web service. You can use this
description file to create plain XML message requests for use with the XML
endpoint. JSON services donʼt have a file that describes their input messages, but an
input message can be formed by specifying prompt name/value pairs in JSON.

• Message format. SOAP and plain XML services both use XML to convey invocation
and result information. However, namespaces might be omitted from plain XML
invocations. JSON services use the Javascript Simple Object Notation format for
messages.

Overview of Security for Web Services
A default installation of SAS BI Web Services for Java is not highly secure. The default
security mechanism is SAS authentication. All requests and responses are sent as clear-
Text. If users want to authenticate as a specific user, then they can send a user name and
password as clear-Text as part of the WS-Security headers for SOAP services or as
HTTP basic authentication headers when using RESTful Web services (plain XML and
JSON). Authentication is performed by authenticating client credentials at the SAS
Metadata Server. Whenever user names and passwords must be sent as clear-Text, SSL
should be enabled to provide transport layer security.

You can configure an anonymous user account to use for Web service invocations when
credentials are not provided. The anonymous account is configured during software
configuration using the SAS Deployment Wizard. Anonymous users cannot use the Web
Service Maker; credentials must always be provided to use the Web Service Maker.

SAS BI Web Services can be secured by using Web authentication. This provides a way
for SAS BI Web Services to identify the calling subject as authenticated by the
underlying Java application server. This authentication mechanism requires HTTP
transport-level security to be enabled.

Note: Web authentication can be used with both XMLA Web services and structured
Web services but cannot be used with the Web Service Maker Web service when
invoked by SAS Management Console clients because they use SAS one-time
passwords.

Consult with your administrator to determine how Web services are configured at your
site and how you can invoke them. For more information about setting up Web service
security, see the SAS Intelligence Platform: Web Application Administration Guide.

6 Chapter 1 • Overview of SAS BI Web Services

Understanding Error Codes
Errors generally fall into one of five categories, and are assigned the appropriate error
code for that category. The following table describes these error codes:

Table 1.2 Error Codes

Error Code Description

1000 Specifies an invalid user name or password (the client application
might want to re-prompt the user for credentials).

2000 Specifies a client error (the client application might want to pass
in different parameters). This error might occur for one of the
following reasons:

• invalid prompt value

• required parameter is missing

• invalid request against schema

• invalid stored process name (for XMLA Web services only)

• no ReadMetadata permission for the stored process

3000 Specifies a SAS error. This error is generated when the stored
process generates a SYSCC macro variable that is not listed in the
AcceptableSysccList configuration option. An additional attribute
is added to indicate the actual error number that SYSCC was set
to. The SYSMSG string is also included in the message.

4000 Specifies a configuration error. This indicates a problem that the
administrator of the service should be notified about. The
administrator should be able to examine logs on the service to
determine the cause of this error. This error might occur for one of
the following reasons:

• invalid default credentials for the anonymous user

• invalid trusted credentials

• metadata server or stored process server is unreachable

• invalid configuration file

5000 Specifies a time-out error. This error occurs if the user configures
SAS BI Web Services with a stored process time-out and the
execution of a stored process exceeds this time-out.

Note: Before SAS 9.2, XMLA returned an error code of 99 for almost all errors.

The following code is an example of a generated SOAP fault that has an error code of
4000:

<SOAP-ENV:Fault>
 <faultcode>Server</faultcode>
 <faultstring>The XML for Analysis provider encountered an error</faultstring>
 <faultactor>XML for Analysis Provider>XML for Analysis Provider</faultactor>

Understanding Error Codes 7

 <detail>
 <sas:Fault code="4000">
 <sas:Exception message="The configured credentials are invalid.">
 <sas:Exception message="The config file contains invalid metadata
 credentials."/>
 <sas:Exception message="The user 'anon' is unknown.">
 <sas:Exception message="'anon' is not defined in metadata."/>
 </sas:Exception>
 </sas:Exception>
 </sas:Fault>
 </detail>
</SOAP-ENV:Fault>

Migrating SAS BI Web Services for .NET to SAS
BI Web Services for Java

SAS 9.3 BI Web Services no longer includes a .NET version. The benefit of Web
services is that the technology of the server does not matter to the client. Because of
differences in the underlying technologies between previous .NET and Java versions of
SAS BI Web Services, the format for input and output messages differed significantly
between the two products. This meant that clients created for one version were typically
not compatible with the other version. To encourage interoperability and further
innovation in SAS BI Web Services, SAS 9.3 does not include a .NET version.

SAS 9.3 BI Web Services for Java is fully backwards compatible with both the Java
and .NET versions of SAS 9.2 BI Web Services. When you perform a migration using
the SAS Migration Utility and the SAS Deployment Wizard from SAS 9.2 to SAS 9.3,
any generated Web services are also migrated. If the generated Web service being
migrated was created with SAS 9.2 BI Web Services for .NET, the migrated SAS 9.3
version is fully compatible with clients that were created for the SAS 9.2 .NET version.
The migration process sets a flag on the generated Web service metadata that Web
services can use when generating and displaying the WSDL and processing a Web
service invocation. You need to modify only the endpoint of the generated Web service
in the client code to point to the new endpoint in the migrated system. You can retrieve
the new endpoint of the migrated service by using the SAS Configuration Manager or by
locating the Web service in /System/Services in SAS Management Console.

If you regenerate a Web service that was migrated from a .NET installation, then the
Web service is no longer compatible with clients that were previously created. You can
force .NET backwards compatibility by passing the dotnetMode=true query
parameter when retrieving WSDLs and invoking Web services. For example, to retrieve
a .NET-backwards-compatible WSDL file, use a URL similar to http://
host:port/SASBIWS/services/yourServiceName?
wsdl&dotnetMode=true. To invoke the Web service, send requests to the endpoint
http://host:port/SASBIWS/services/yourServiceName?
dotnetMode=true.

8 Chapter 1 • Overview of SAS BI Web Services

Chapter 2

Writing SAS BI Web Services
Using XMLA

Writing SAS Programs for XMLA Web Services . 9

Discover Method . 11
Overview of the Discover Method . 11
RequestType . 11
Restrictions . 14
Properties . 14
Result . 16

Execute Method . 16
Overview of the Execute Method . 16
Command . 16
Properties . 17
Result . 18

Sample PROC MEANS Using SAS BI Web Services . 18
Sample Overview . 18
Write the Stored Process . 18
Define the Metadata . 19
Invoke the Stored Process . 21

Writing SAS Programs for XMLA Web Services
To use the Web service to call your SAS code, you must configure your SAS code as a
stored process. A stored process is a SAS program that is stored on a server and can be
executed by requesting applications. Any stored process can be deployed as a generated
Web service. However, stored processes that are used with XMLA Web services need to
conform to rules that enable the Web service to receive data from the client and return
data to the client.

You can author a stored process manually by using SAS or a text editor to write the code
and then registering the program through SAS Management Console. Alternatively, you
can use a program such as SAS Enterprise Guide or another SAS code generator to
author a stored process using the point-and-click method. Use the following
modifications to make a stored process that can be used with SAS BI Web Services.
Keep in mind that XMLA Web services can return XML data only; no attachments can
be returned.

Note: XMLA Web services in SAS 9.3 will work only with SAS 9.3 stored process
metadata and SAS 9.3 Stored Process Servers.

9

The following list explains unique details about stored processes that are used with
XMLA Web services:

• The data that is returned by the stored process must be XML. Web service stored
processes produce streaming results, which means that the SAS program writes
output to _WEBOUT, typically by using the following LIBNAME statement:

libname _WEBOUT xml xmlmeta=&_XMLSCHEMA;

• For XMLA Web services, the %STPBEGIN or %STPEND macros are not used in
the stored processes. These macros set up Output Delivery System (ODS) statements
for the stored process, but XMLA Web services do not use ODS.

• The _XMLSCHEMA macro is unique to XMLA Web services. This macro is passed
to the SAS program when it is invoked from the Web service. The _XMLSCHEMA
macro is set to one of three values depending on the Content property that gets
passed to the Execute method. The possible values for _XMLSCHEMA are Schema,
SchemaData (which is the default), Data, or None. For example, the following code
causes SAS to write both the XML schema and the data into the libref _WEBOUT:

libname _WEBOUT xml xmlmeta=SchemaData;

A libref uses a fileref of the same name when a source is not specified in the
LIBNAME statement. For example, the following code causes the libref, called
_WEBOUT, to read from the fileref called _WEBOUT:

libname _WEBOUT xml xmlmeta=_XMLSCHEMA;

For XMLA Web services, SAS defines the filerefs for the _WEBOUT output stream
as well as for any input streams before invoking the SAS code.

Note: Applications should not try to write multiple data sets into a library when a
schema is being created.

• Data sources are defined when you are registering the stored process metadata. There
are three types of data sources:

• Generic streams, which are most similar to the input streams that were used
before SAS 9.2.

• XML streams, which can be described with or without a schema. If a schema is
provided for an XML stream, then that schema is inserted in the WSDL for the
service. If no schema is provided, then xs:any is inserted in the WSDL. Having
a schema defined makes it easier for client applications to call a service. The
SAS code needs to be written to create XML that is valid according to the
schema that is defined in the metadata.

• Data tables, which are new for SAS 9.3 and describe tabular input and output.
Data tables cannot be used with XMLA.

The following example code displays a stored process that is used as a Web service:

libname instream xml;
libname _WEBOUT xml xmlmeta=&_XMLSCHEMA;

proc means data=instream.&tablename
 output out=_WEBOUT.mean;
run;

The first LIBNAME statement in the sample code defines the data source. This code
corresponds to the definition of the data source in the Stored Process Properties dialog
box in SAS Management Console. The fileref of the data source is instream. In this
example, the data source provides the data to run PROC MEANS against.

10 Chapter 2 • Writing SAS BI Web Services Using XMLA

The second LIBNAME statement in the sample code defines the output for the stored
process as streaming output, or _WEBOUT. In the Stored Process Properties dialog box,
Stream is specified as the type of output on the Execution tab of the Stored Process
Properties dialog box.

The &tablename declaration in the sample code defines a parameter called tablename.
In the Stored Process Properties dialog box, this parameter is specified through the New
Prompt dialog box, and can be modified using the Edit Prompt dialog box. In this
example, tablename is a text parameter that specifies the name of the table to run PROC
MEANS against.

Note: The dialog boxes mentioned in the previous example are available from both the
Stored Process Properties dialog box and the New Stored Process wizard, which are
both part of SAS Management Console. For more information about using SAS
Management Console to define metadata for stored processes, see the product Help.

Discover Method

Overview of the Discover Method
The Discover method retrieves information, such as stored process metadata or a list of
available data sources, from the SAS Metadata Repository. The Discover method returns
a list of all the stored processes that have the keyword "XMLA Web Service" on the
SAS Metadata Server. The SAS Stored Process Server is not invoked to service the
Discover call.

Here is the syntax for the Discover method:

Discover (
 [in] RequestType As EnumString,
 [in] Restrictions As Restrictions,
 [in] Properties As Properties,
 [out] Result As Rowset)

RequestType

Overview of RequestType
RequestType is a required parameter for the Discover method. The value of
RequestType is an enumeration value that corresponds to a return rowset. The
RequestType parameter specifies the type of information to be returned by the Discover
request.

There are two main request types that are normally used with SAS BI Web Services:
DISCOVER_DATASOURCES and STOREDPROCESS_PARAMETERS.
DISCOVER_DATASOURCES and STOREDPROCESS_PARAMETERS both return a
list of the stored processes that can be invoked. DISCOVER_DATASOURCES is a
standard XMLA request type that returns a list of available data sources for the server or
Web service so that you can select a data source with which to connect. The information
that is returned by the DISCOVER_DATASOURCES request type includes the
following information:

• the name and a description of the data source

• a URL to connect to the data source, the name, and data type of the provider

Discover Method 11

• the type of security mode that the data source uses, as well as any additional
information that is needed to connect to the data source

STOREDPROCESS_PARAMETERS is a request type that is specific to SAS. This
request type returns a list of all the available stored processes along with a list of the
parameters that are specified in each stored process.

Other request types that might be useful with SAS BI Web Services are
DISCOVER_PROPERTIES and DISCOVER_SCHEMA_ROWSETS.
DISCOVER_SCHEMA_ROWSETS returns a list of all the available request types along
with their enumeration values and other information. For more information about what
the DISCOVER_PROPERTIES request type returns, see “Properties” on page 14.

Note: Although the SAS XMLA Stored Process provider supports the
DISCOVER_KEYWORDS,DISCOVER_LITERALS, and
DISCOVER_ENUMERATORS request types, these request types are not useful for
calling stored processes.

DISCOVER_DATASOURCES
The SAS BI Web Service returns one data source for each stored process that has been
defined in the metadata for use with Web services.

For each returned stored process, the returned rowset contains:

DataSourceName
specifies the name of the stored process, as specified in SAS Management Console.
For example,

/Samples/Stored Processes/
 Sample: MEANS Procedure Web Service

DataSourceDescription
specifies the description of the stored process, as specified in SAS Management
Console. For example,

(PROC MEANS Stored Process that can be invoked by
 the SAS BI Web Services for Java middle tier.)

URL
specifies the URL to invoke the XMLA methods. This is usually the same as the
URL that is used to invoke this Discover method. For example,

http://host:port/SASBIWS/services/XMLA

DataSourceInfo
specifies which data source to use. The SAS Stored Process Server data source is
"Provider=SASSPS;".

ProviderName
specifies the provider behind the data source. For the SAS Stored Process Server,
this is the SAS XML for Analysis Stored Process Provider.

ProviderType
specifies the type of provider that is behind the data source. The Stored Process
Service supports only Tabular Data Provider.

AuthenticationMode
specifies the authentication required for the given data source (that is, indicates
whether a user name and password are required). SAS BI Web Services for Java
always return "Authenticated," meaning that you are required to authenticate to the
SAS Metadata Repository whether you pass in credentials or use only default
credentials that are configured by the administrator.

12 Chapter 2 • Writing SAS BI Web Services Using XMLA

STOREDPROCESS_PARAMETERS
STOREDPROCESS_PARAMETERS is a custom request type that is used by the SAS
Stored Process Service provider only. It returns metadata describing the parameters that
are necessary to call the stored process. A stream parameter is always a required
parameter and it never has a default. This does not mean that you are required to have a
stream parameter for each stored process, but it means that any stream parameters that
are defined for the stored process must be provided when the stored process is called
using the Execute method.

For each returned stored process, the returned rowset contains:

StoredProcessName
specifies the name of the stored process.

Parameters
specifies a container that includes all of the parameters for the stored process.

Parameter
specifies a container that includes all of the details for a stored process parameter.

Name
specifies the name of the stored process parameter.

Description
specifies the description of the stored process parameter.

Type
specifies the parameter type. The possible parameter types for XMLA Web services
are string, multi-line text, Boolean, integer, float, color, time, timestamp, and date.
(XMLA Web services do not support advanced prompt types such as data source,
data source item, OLAP member, data library, ranges, and prompts with multiple
value types.) Note that all parameters are passed to SAS as macro variables, so the
SAS program does not know the parameter type that is specified in the metadata. For
more information about how to format parameter values, see “Using Prompts with
Generated Web Services” on page 31.

Required
specifies whether the stored process parameter is required.

Default
specifies a default value for the stored process parameter.

Streams
specifies a container that includes all of the data sources for the stored process.

Stream
specifies a container that includes all of the details for a stored process data source.

The following is an example of a STOREDPROCESS_PARAMETERS response for a
stored process that takes a single string and a single stream as input:

<row xmlns="urn:schemas-sas-com:xml-analysis:rowset">
 <StoredProcessName>
 /BIP Tree/copyintoout</StoredProcessName>
 <Parameters>
 <Parameter>
 <Name>inputname</Name>
 <Description>A simple string that we are
 passing as a parameter.</Description>
 <Required>true</Required>
 <Default />
 <Type>String</Type>

Discover Method 13

 </Parameter>
 </Parameters>
 <Streams>
 <Stream>
 <Name>instream</Name>
 <Description>This stream does allow
 multi-pass reads, so you do not have to
 use an XMLMap.</Description>
 </Stream>
 </Streams>
</row>

Restrictions
You can use the Restrictions parameter to filter which results get returned from a call to
the Discover method. The restriction name specifies a column in a rowset that you
restrict. The restriction value specifies which data to restrict in the column. Use the
DISCOVER_SCHEMA_ROWSETS request type to get restriction information about the
rowsets that are available in each request type. The DISCOVER_SCHEMA_ROWSETS
request type returns a list of all the request types that are supported by the provider,
along with restriction information and descriptions for each request type.

The Restrictions parameter is required in the Discover method, but it can be empty.
Invalid values for restrictions are ignored.

The following RestrictionList element restricts a call to Discover
STOREDPROCESS_PARAMETERS based on the name of the stored process:

<RestrictionList
 xmlns="urn:schemas-microsoft-com:xml-analysis">
 <StoredProcessName>
 /Samples/Stored Processes/
 Sample: MEANS Procedure Web Service
 </StoredProcessName>
</RestrictionList>

Properties
The Properties parameter enables you to specify properties of the Discover method, such
as the return format of the result set or the time-out value.

Use the DISCOVER_PROPERTIES request type to get information about properties
that are available for each request type and the values that are associated with those
properties. The DISCOVER_PROPERTIES request type returns information about both
standard and provider-specific properties. The returned information includes the name,
description, data type, access, and current value of each property. The information also
shows whether each property is required.

The following table contains a list of properties and property information, including
sample values, that the DISCOVER_PROPERTIES request type returns. The value of
PropertyType for each of these properties is string.

14 Chapter 2 • Writing SAS BI Web Services Using XMLA

Table 2.1 Values for the Properties Parameter

PropertyName PropertyDescription PropertyAccessType Value

Content Specifies the content of
the XML result: None,
Schema, Data, or Both.

ReadWrite SchemaData

UserName Specifies the user name
to use for metadata
authentication.

ReadWrite

Password Specifies the password
to use for metadata
authentication.

Write

Domain Specifies the domain to
use for metadata
authentication.

ReadWrite

ProviderName Specifies the name of
the XML for Analysis
provider.

Read SAS XML for Analysis
StoredProcess Provider

ProviderVersion Specifies the version of
the XML for Analysis
provider.

Read 1.0

Format Specifies the format of
the XML result:
Tabular or
Multidimensional.

Read Tabular

DataSourceInfo Specifies the
identifying information
that is required to
retrieve data from a
data source.

ReadWrite Provider=SASSPS

You can list properties in any order. The Properties parameter is required in the Discover
method. The only call to the Discover method that can have empty properties is
DISCOVER_DATASOURCES. All other request types require at least DataSourceInfo
to be specified, such as:

<PropertyList
 xmlns="urn:schemas-microsoft-com:xml-analysis">
 <DataSourceInfo>
 Provider=SASSPS
 </DataSourceInfo>
</PropertyList>

To cause a call to Discover to execute under a specific user's identity, a UserName and
Password property can be included in the PropertyList element, such as:

<PropertyList xmlns="urn:schemas-microsoft-com:xml-analysis">
 <DataSourceInfo>
 Provider=SASSPS
 </DataSourceInfo>

Discover Method 15

 <UserName>username</UserName>
 <Password>password</Password>
</PropertyList>

If you choose to include the UserName or Password properties, it is important to ensure
that access to your Web service is secure and encrypted. For more information, see the
SAS Intelligence Platform: Web Application Administration Guide.

Result
The Result parameter is required. This parameter specifies the result set that the provider
returns. The information that is returned can vary according to which values are used in
the RequestType, Restrictions, and Properties parameters.

Execute Method

Overview of the Execute Method
Client applications of the Web service call the Execute method to run a SAS Stored
Process.

When an application calls the Execute method, the Web service performs the following
actions:

• receives the call and validates the SOAP request against the WSDL.

• validates the command against the command schema.

• searches in the SAS Metadata Server to find the SAS server to connect to that can
service the request. If the user name and password are provided in the Properties
parameter, then they are used to connect to the SAS Metadata Server. The credentials
to use when connecting to the SAS application server are obtained from the
metadata.

• invokes the SAS code that represents the stored process on the SAS application
server.

• checks the value of the SYSCC macro in SAS. If the SYSCC macro has a nonzero
value, then the Web service throws a SOAP fault and includes the value of SYSMSG
in the fault.

• returns all data that was written to _WEBOUT.

Here is the syntax for the Execute method:

Execute (
 [in] Command As Command,
 [in] Properties As Properties,
 [out] Result As Resultset)

Command
The Execute method takes the Command and Properties parameters as input. Both of
these parameters are in XML.

The following code shows the command passed to the Execute method:

16 Chapter 2 • Writing SAS BI Web Services Using XMLA

<StoredProcess name="MyStoredProcess">
 <Stream name="instream">
 <TABLE>
 <Class>
 <Name>Alfred</Name>
 <Sex>M</Sex>
 <Age>14</Age>
 <Height>69</Height>
 <Weight>112.5</Weight>
 </Class>
 <Class>
 <Name>Alice</Name>
 <Sex>F</Sex>
 <Age>13</Age>
 <Height>56.5</Height>
 <Weight>84</Weight>
 </Class>
 ...
 </TABLE>
 </Stream>
 <Parameter name="inputname">myName</Parameter>
</StoredProcess>

When the previous code is passed to the Execute method, the SAS code has a macro
defined whose name corresponds to the String parameter:

%LET inputname=myName

The SAS code also has a fileref assigned that corresponds to the name of the Stream
parameter:

The SAS program should write output to the pre-assigned fileref _WEBOUT. Most
applications do this by using the XML LIBNAME engine, as follows:

libname instream xml;
libname _WEBOUT xml xmlmeta=&_XMLSCHEMA;

proc copy in=instream out=_WEBOUT;
run;

libname instream clear;
libname _WEBOUT clear;

Properties
The Properties parameter enables you to specify properties of the Execute method.
Properties describe how to invoke the Command parameter. Calling applications specify
the SAS Stored Process Service Provider to be used in DataSourceInfo, as shown in the
following example:

<PropertyList>
 <DataSourceInfo>
 Provider=SASSPS;
 </DataSourceInfo>
</PropertyList>

Use the DISCOVER_PROPERTIES request type in the Discover method to get
information about properties that are available for each request type and the values that
are associated with those properties. The DISCOVER_PROPERTIES request type

Execute Method 17

returns information about both standard and provider-specific properties. The returned
information includes the name, description, data type, access, and current value of each
property. The information also shows whether each property is required.

You can list properties in any order. The Properties parameter is required in the Discover
method, but it can be empty. The Properties parameter must be specified for the Execute
method, and must include at least the DataSourceInfo property.

Note: After you have selected a data source from the DISCOVER_DATASOURCES
rowset, set the DataSourceInfo property in the Properties parameter, which is sent to
the server using the Command parameter by the Execute method. Do not attempt to
write your own value for the DataSourceInfo property. Use a value only from the
DISCOVER_DATASOURCES rowset.

To cause the execute method to run under a specific user's identity, a UserName and
Password property can be included in the PropertyList element, such as:

<PropertyList xmlns="urn:schemas-microsoft-com:xml-analysis">
 <DataSourceInfo>
 Provider=SASSPS
 </DataSourceInfo>
 <UserName>username</UserName>
 <Password>password</Password>
</PropertyList>

If you choose to include the UserName or Password properties, it is important to ensure
that access to your Web service is secure and encrypted. For more information, see the
SAS Intelligence Platform: Web Application Administration Guide.

Result
The Result parameter is required. This parameter specifies the result set that the provider
returns. The information that is returned can vary according to which values are used in
the Command and Properties parameters.

Sample PROC MEANS Using SAS BI Web
Services

Sample Overview
This sample shows how to write, define, and invoke a sample stored process that can be
used with SAS BI Web Services. This example is for an XMLA Web service. You can
access other sample Web services in the samples database at support.sas.com.

Write the Stored Process
The following SAS code is a sample stored process called stpwsmea.sas. This
program is installed with SAS Integration Technologies; by default it is located in
<SASHOME>\SASFoundation\9.3\inttech\sample.

%put &tablename

libname _WEBOUT xml xmlmeta = &_XMLSCHEMA;
libname instream xml;

18 Chapter 2 • Writing SAS BI Web Services Using XMLA

proc means data=instream.&tablename
 output out=_WEBOUT.mean;
run;

libname _WEBOUT clear;
libname instream clear;

Define the Metadata
The stored process must be defined on a SAS Metadata Server that is used by SAS BI
Web Services in order to determine how and where to run the stored process. Stored
process metadata is defined by using SAS Management Console. The tables in this
section show the values for each field in the New Stored Process wizard in SAS
Management Console.

Note: If you have previously installed the SAS Stored Process sample metadata as part
of the SAS Deployment Wizard or the Web Infrastructure Platform installation, then
you might not need to re-create the metadata for the "Sample: MEANS Procedure
Web Service" sample stored process. The sample metadata should already be
available from the /Products/SAS Intelligence Platform/Samples
folder. If you do not have the sample metadata, you can define the metadata for the
stored process on your SAS Metadata Server by performing the following steps.

1. Open SAS Management Console and connect to the appropriate metadata server.

2. From the SAS Management Console navigation tree, select the folder under which
you would like to create the new stored process. (If you would like to create a new
folder, you can select the location in the navigation tree in which you want to add the
new folder, and then select Actions ð New ð Folder from the menu bar to open the
New Folder wizard. Follow the wizard instructions to create the new folder.)

3. After you select the folder in which you want to add a new stored process, select
Actions ð New ð Stored Process from the menu bar. The New Stored Process
wizard displays.

4. On the first page of the New Stored Process wizard, enter the following values in
their corresponding fields for the sample Web service:

Table 2.2 Field Values for the New Stored Process Wizard

Field Value

Name Sample: MEANS Procedure Web Service

Keywords XMLA Web Service

Note: To add the keyword, click Add to open the Add Keyword dialog box, and
then enter the name of the keyword. Click OK. Adding a description and roles
for the stored process are optional.

5. Click Next.

6. Enter the following values in their corresponding fields for the sample Web service:

Sample PROC MEANS Using SAS BI Web Services 19

Table 2.3 Values for the Sample Web Service

Field Value

Application server SASApp

Server type Stored process server only

Source code location and execution Allow execution on selected application
server only

Store source code on application server

Source code repository <SASHOME>\SASFoundation\9.3\inttech
\sample

Source code file stpwsmea.sas

Results Stream

Click Next.

7. Click New Prompt to add an input parameter to the stored process.

8. On the General tab, enter the following values in their corresponding fields for the
sample Web service:

Table 2.4 Values for the Prompt

Field Value

Name tablename

Displayed text tablename

9. Select the Requires a non-blank value check box. Entering a description is
optional.

10. On the Prompt Type and Values tab, enter the following values in their
corresponding fields for the sample Web service:

Table 2.5 Values for the Prompt

Field Value

Prompt type Text

Method for populating prompt User-entered value

Number of values Single value

Text type Single line

Default value InData

20 Chapter 2 • Writing SAS BI Web Services Using XMLA

11. Click Next.

12. Click New to open the New Data Source dialog box, where you must define the data
source.

a. Enter the following values in their corresponding fields for the sample Web
service:

Table 2.6 Values for the New Data Source

Field Value

Type XML Data Source

Label instream

Fileref instream

Expected content type text/xml

b. You must also select the Allow rewinding stream check box in the New Data
Source dialog box. Otherwise, an XMLMap would need to be specified on the
XML LIBNAME statement to define the XML schema for instream.

c. Click OK to save the data source definition.

13. Review your stored process information, and click Finish to define the metadata for
the stored process.

Invoke the Stored Process

SOAP Request
The stored process that we just created can be invoked by SAS BI Web Services for Java
middle-tier clients. A Web service client invokes the middle-tier Web service with an
Execute() command. The SOAP request body, or client code, follows:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:sas="urn:schemas-microsoft-com:xml-analysis">
 <soapenv:Header/>
 <soapenv:Body>
 <sas:Execute>
 <sas:Command>
 <StoredProcess name="/Products/SAS Intelligence Platform/Samples/
 Sample: MEANS Procedure Web Service">
 <Parameter name="tablename">InData</Parameter>
 <Stream name="instream">
 <Table>
 <InData>
 <Column1>1</Column1>
 <Column2>20</Column2>
 <Column3>99</Column3>
 </InData>
 <InData>
 <Column1>50</Column1>
 <Column2>200</Column2>

Sample PROC MEANS Using SAS BI Web Services 21

 <Column3>9999</Column3>
 </InData>
 <InData>
 <Column1>100</Column1>
 <Column2>2000</Column2>
 <Column3>1000000</Column3>
 </InData>
 </Table>
 </Stream>
 </StoredProcess>
 </sas:Command>
 <sas:Properties>
 <PropertyList>
 <DataSourceInfo>Provider=SASSPS;</DataSourceInfo>
 </PropertyList>
 </sas:Properties>
 </sas:Execute>
 </soapenv:Body>
</soapenv:Envelope>

SOAP Response
After you run the client code, the resulting SOAP response body is as follows:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
 <soapenv:Body>
 <n:ExecuteResponse xmlns:n="urn:schemas-microsoft-com:xml-analysis">
 <n:return>
 <TABLE>
 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="TABLE">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="MEAN" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="MEAN">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="_TYPE_" minOccurs="0" type="xs:double"/>
 <xs:element name="_FREQ_" minOccurs="0" type="xs:double"/>
 <xs:element name="_STAT_" minOccurs="0">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:maxLength value="8"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="COLUMN3" minOccurs="0" type="xs:double"/>
 <xs:element name="COLUMN2" minOccurs="0" type="xs:double"/>
 <xs:element name="COLUMN1" minOccurs="0" type="xs:double"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:schema>
 <MEAN>

22 Chapter 2 • Writing SAS BI Web Services Using XMLA

 <_TYPE_>0</_TYPE_>
 <_FREQ_>3</_FREQ_>
 <_STAT_>N</_STAT_>
 <COLUMN3>3</COLUMN3>
 <COLUMN2>3</COLUMN2>
 <COLUMN1>3</COLUMN1>
 </MEAN>
 <MEAN>
 <_TYPE_>0</_TYPE_>
 <_FREQ_>3</_FREQ_>
 <_STAT_>MIN</_STAT_>
 <COLUMN3>99</COLUMN3>
 <COLUMN2>20</COLUMN2>
 <COLUMN1>1</COLUMN1>
 </MEAN>
 <MEAN>
 <_TYPE_>0</_TYPE_>
 <_FREQ_>3</_FREQ_>
 <_STAT_>MAX</_STAT_>
 <COLUMN3>1000000</COLUMN3>
 <COLUMN2>2000</COLUMN2>
 <COLUMN1>100</COLUMN1>
 </MEAN>
 <MEAN>
 <_TYPE_>0</_TYPE_>
 <_FREQ_>3</_FREQ_>
 <_STAT_>MEAN</_STAT_>
 <COLUMN3>336699.333</COLUMN3>
 <COLUMN2>740</COLUMN2>
 <COLUMN1>50.3333333</COLUMN1>
 </MEAN>
 <MEAN>
 <_TYPE_>0</_TYPE_>
 <_FREQ_>3</_FREQ_>
 <_STAT_>STD</_STAT_>
 <COLUMN3>574456.555</COLUMN3>
 <COLUMN2>1094.89726</COLUMN2>
 <COLUMN1>49.5008417</COLUMN1>
 </MEAN>
 </TABLE>
 </n:return>
 </n:ExecuteResponse>
 </soapenv:Body>
</soapenv:Envelope>

Sample PROC MEANS Using SAS BI Web Services 23

24 Chapter 2 • Writing SAS BI Web Services Using XMLA

Chapter 3

Using Structured Web Services

What Are Structured Web Services? . 25

Writing SAS Programs for Structured Web Services . 26
Consuming Input in SAS Programs . 26
Retrieving Output Values from the SAS Program . 27

Accessing SOAP Endpoints for Stored Processes and Generated Web Services . . 28
SOAP Endpoints for Stored Processes . 28
SOAP Endpoints for Generated Web Services . 28

Using Attachments with Web Services . 29

Using Prompts with Generated Web Services . 31

Sample WSDLs . 40
Sample Parameters . 40
Generated WSDL for Java . 43

What Are Structured Web Services?
In SAS 9.3, all stored processes are available individually for execution using SAS BI
Web Services without any action required on your part. You no longer have to run the
Deploy as Web Service wizard in SAS Management Console. For every stored process,
you can obtain a description of the structure of input and output Web service messages
that can be used to invoke the stored process. The document that describes this structure
is called a Web Service Description Language (WSDL) file. SAS BI Web Services
automatically exposes a WSDL file for each and every stored process in your system.
These WSDL files use XML to include detailed information about the inputs and outputs
of each stored process using XML schema descriptions. Also, the WSDL file includes
the URLs of endpoints to use to invoke these stored processes by using the SOAP
protocol over HTTP. Typically, you use these WSDL files to automatically generate
code in your client framework that can be used to invoke the Web services. Structured
Web services are all SAS BI Web Services that can expose a WSDL file that describes
their inputs and outputs. Structured Web services are all non-XMLA SAS BI Web
Services.

Having all the type information in the WSDL is better suited to most client applications,
and also makes things simpler for you. Making the WSDL more specific to the actual
parameters instead of having a generic interface enables you to simplify the request
XML. Making the WSDL more specific also makes it easier to consume the Web service
with standard Web service client applications such as BizTalk, InfoPath, Word,

25

SharePoint, Excel, AJAX, Oracle WebLogic, and WebSphere, or in general any
framework that can generate proxies from WSDL and schema.

In addition to being able to access stored processes directly from a Web service
endpoint, you can also group multiple stored processes together into a single Web
service. These Web services are called generated Web services. You might choose to use
the grouping mechanism because it might reduce the amount of generated client code in
your application. Many Web service client frameworks produce a proxy object for each
Web service, and grouping stored processes into a single Web service could reduce the
number of generated proxy objects to one.

All structured Web services support SOAP over HTTP and RESTful invocation using
JSON and plain XML. Depending on the message format - SOAP, JSON, or plain XML
- different features of structured Web services are available for you to use. SOAP is a
recognized enterprise format with many existing standards that describe how to interact
with Web services of this type. SAS BI Web Services support WS-Security for securing
messages and the WS-I Attachments Profile for attaching binary content to request and
response messages when using the SOAP transport. SOAP endpoints also expose a
WSDL file that describes the inputs and outputs of the request and response messages,
respectively. This enables you to use client frameworks to generate proxies that invoke
these Web services and reduces the amount of code that you have to write to integrate
with SAS Stored Processes.

Starting in SAS 9.3, SAS BI Web Services also expose all structured Web services as
RESTful resources that can be invoked by using either JSON or plain XML inputs and
outputs. JSON is a popular message format typically used by AJAX Web applications
because JSON is a native data representation in JavaScript. However, JSON can be used
from any client. Plain XML is an ideal message format for situations where SOAP
libraries are not available or the complexity and features of SOAP are not desired. When
using plain XML to communicate with SAS BI Web Services, use the same XML format
as you would use with SOAP, but SOAP headers, SOAP elements, and namespaces can
all be omitted.

See “Creating SAS BI Web Services” on page 3 for more information about creating and
accessing Structured Web services.

Writing SAS Programs for Structured Web
Services

In general, SAS programs for structured Web services can use all the functionality
supported by SAS Stored Processes.

Consuming Input in SAS Programs
SAS BI Web Services can provide input to your SAS programs by using filerefs and
macro variables. Filerefs enable you to stream arbitrary content such as raw XML or
binary files from your Web service client to be used in your SAS code. Filerefs can be
associated to librefs if the content that you send (such as XML) can be read by a SAS
LIBNAME engine. The stored process engine automatically assigns filerefs for your
stored process data sources so you do not need to explicitly include a FILENAME
statement in your SAS code. For example, the following SAS program snippet simply
reads from the instream fileref and prints the contents to the SAS log:

data _null_;
 infile instream;

26 Chapter 3 • Using Structured Web Services

 INPUT;
 PUT _INFILE_;
run;

No other SAS code is needed in this program; you have only to define a data source
named instream in your stored process definition. See “Using Attachments with Web
Services” on page 29 for more information about how to define your stored processes
so that you can supply input data to your SAS programs.

You can include macro variables in your SAS program, and SAS BI Web Services set
these macro variables based on the parameters that you supply during Web service
invocation. For example, you can use this simple SAS program as a stored process to
add two numbers together:

%let sum = %sysevalf(&num1 + &num2);

Define prompts with the stored process metadata to enable the passing of parameters to
macro variables. The prompting framework provides additional information about the
type of input macro variable and allows for additional validation before execution. See
“Using Prompts with Generated Web Services” on page 31 for more information about
defining prompts.

Retrieving Output Values from the SAS Program
You can use filerefs and macro variables as output just like you can with input. Output
filerefs are automatically assigned by the stored process engine if the SAS code writes to
the fileref. Expanding on the previous example, the following SAS program snippet
copies from an input fileref to an output fileref:

data _null_;
 infile instream;
 file otstream;

 INPUT;
 PUT _INFILE_;
run;

Define the input data source instream and the output data target outstream in the stored
process metadata. See “Using Attachments with Web Services” on page 29 for more
information about how to define your stored processes so that you can retrieve output
data from your SAS programs.

In the following example, the value of the Sum macro variable is automatically retrieved
by the stored process engine when you define an output parameter in the stored process
metadata:

%let sum = %sysevalf(&num1 + &num2);

Output parameters are similar to prompts, but there are fewer types of output parameters.

Note: When using the JSON message format, you are limited to prompts that have a
simple string representation for input and you can retrieve values only from stored
process output parameters. You cannot supply any stored process data sources when
invoking SAS BI Web Services using JSON. If your stored process outputs data
targets, packages, or streams to _WEBOUT, you cannot access these resources when
using JSON. Remember this when you author SAS programs that you intend to use
with JSON.

Writing SAS Programs for Structured Web Services 27

Accessing SOAP Endpoints for Stored Processes
and Generated Web Services

Every structured Web service can be invoked by using SOAP. The full range of stored
process input and output types are supported when using SOAP, as are attachments and
WS-Security headers.

SOAP Endpoints for Stored Processes
To access the SOAP endpoint for a particular stored process, use the following pattern:
http://host:port/SASBIWS/services/stored_process_path. Replace
host and port with the host name and port number where your SAS middle tier and SAS
BI Web Services are running. If you do not know the host and port of your middle tier,
you can find it by using the Configuration Manager plug-in for SAS Management
Console or by asking your SAS administrator. Replace stored_process_path with the full
metadata path of the stored process that you want to access. If there are any special
characters that appear in the stored process name or path, you must URL encode those
special characters (many Web service frameworks do this automatically). For example,
replace any spaces in the path or name with the value %20.

For example, if your SAS middle tier is hosted on my.company.com on port 8080 and
you want to access the endpoint for the stored process named Sample: Hello World
that is stored in the metadata folder /Products/SAS Intelligence Platform/
Samples, construct the following URL: http://my.company.com:8080/
SASBIWS/services/Products/SAS%20Intelligence%20Platform/
Samples/Sample%3A%20Hello%20World. You can access the WSDL files for
these SOAP endpoints by appending ?WSDL to the endpoint URL (for example,
http://my.company.com:8080/SASBIWS/services/Products/SAS
%20Intelligence%20Platform/Samples/Sample%3A%20Hello%20World?
WSDL).

Note: By default, WSDLs are cached. The WSDL that is returned for the first request is
also returned for all subsequent requests until you reset the WSDL cache. You can
clear the cache by using the WsdlCache MBean, by reloading the SAS BI Web
Services WAR file, or by restarting the application server. When the cache is
cleared, it is cleared for all Web services and stored processes. You can reload a
WSDL for an individual service or stored process by specifying reload=true as a
query parameter when accessing the WSDL (for example, http://localhost/
SASBIWS/services/myService?wsdl&reload=true).

SOAP Endpoints for Generated Web Services
When generating Web services using the Deploy as Web Service wizard in SAS
Management console, the endpoint URL of the new service is shown after the wizard
completes. This URL will be of the form http://host:port/SASBIWS/
services/serviceName. You can find the URL of a generated Web service
endpoint at any time by using the Configuration Manager in SAS Management Console.

28 Chapter 3 • Using Structured Web Services

Using Attachments with Web Services
Streaming attachments can be defined in metadata as data sources (input attachments)
and data targets (output attachments). Three types of streaming attachments are
available:

XML stream
specifies an attachment that is in-lined in the payload of the request or response as
XML. You can also specify a schema for this data. The XML LIBNAME engine can
generate schemas, and you can use the XML Mapper to map existing schema to the
data. See the SAS XML LIBNAME Engine: User's Guide for more information. The
schema is included in the generated WSDL for SOAP endpoints.

Note: You can specify single streaming output the same way you do with the
XMLA Web service by selecting Stream as the result capability. However,
using data targets provides more flexibility because you can provide the name of
the attachment as well as provide a schema that matches your expected data.

generic stream
specifies an out-of-band binary attachment that is included with the request or
response in one of the following ways:

• If the attachment data is small, it can be included directly in the payload and
encoded as Base64 binary data. This is the only means available for supplying
attachments when using the plain XML message format.

• If the attachment data is not small, then it is included out-of-band from the
payload as a MIME multi-part related attachment where it is referenced from the
payload via MTOM XOP/Include or SOAP with Attachments references
(swaRef) when using the SOAP message format. When using RESTful access to
BI Web Services, individual data output streams can be retrieved as stand-alone
resources. For more information, see “Supported Types of Input and Output for
XML and JSON Messages” on page 51.

Note: With MTOM attachments, you can set the AttachmentOptimizedThreshold
configuration setting to control when generic streams are Base64 encoded or
optimized as XOP/Include attachments.

data table
specifies that the input or output represents tabular data that is consumed in your
SAS program by a LIBNAME engine.

Data tables are a new feature in SAS 9.3 Stored Processes. They can remove the
need to write LIBNAME statements in your stored process code and enable that code
to be more flexible and reusable. You can specify a template table in the stored
process data table definition. A template table points to a table that is registered in
metadata. When a stored process has a template for a source data table, that table's
structure is examined in order to generate very specific input schema automatically
for the SOAP endpoint's WSDL file. The generated schema describes precisely what
columns clients need to supply for each row of input data in a <ClientTable>
element. Clients can choose to supply a LIBNAME and MEMBERNAME pair in a
<ServerTable> element for a source data table. The stored process engine then
automatically assigns this LIBNAME for you.

Target data tables are very similar to source data tables but they return tabular data to
the client. If you specify that a target data table is a <ServerTable> when
invoking a Web service, then the output that is sent to that target in your SAS code is

Using Attachments with Web Services 29

automatically stored in the LIBNAME and MEMBERNAME that you specify in the
<ServerTable> element. If you specify that a target data table is a
<ClientTable> when invoking a Web service, then the output that is sent to that
target in your SAS code is sent back to the Web service client. Also, if you specify a
template for a target data table, then the generated schema for that Web service
precisely describes the structure of the tabular output XML returned from the Web
service in a <ClientTable>. If you use a template with a target data table and
specify that the output is a <ServerTable> when invoking the service, then the
output that is sent to that target in your SAS code is automatically written to the
specified template table. See the SAS Stored Processes: Developer's Guide for more
information about writing SAS programs that use data tables.

The following code is an example of a schema definition for a Web service that expects
one generic (binary) stream as an output response:

<element name="stpAllParm1Response">
 <complexType>
 <sequence>
 <element name="stpAllParm1Result">
 <complexType>
 <sequence>
 <element maxOccurs="1" minOccurs="0" name="Streams">
 <complexType>
 <sequence>
 <element maxOccurs="1" minOccurs="0" name="myAttachment">
 <complexType>
 <sequence>
 <element name="Value" type="base64Binary"/>
 </sequence>
 <attribute name="contentType" type="string"/>
 </complexType>
 </element>
 </sequence>
 </complexType>
 </element>
 </sequence>
 </complexType>
 </element>
 </sequence>
 </complexType>
</element>

In this generated schema, myAttachment is the name of the element that represents the
output attachment. This name is defined by the user in metadata. This element is a
container for the actual value of that attachment. The content type of the attachment can
be returned as an attribute to further clarify the content of the data within the attachment.

Package type output is also supported. This type of output produces one or more
attachments and packages them together as a single entity. To enable this type of output,
select Package as the result capability for the stored process. The SAS code needs to
produce packages to take advantage of this feature. There are several ways to produce
packages in SAS code, including ODS and the Publishing Framework. See the SAS
Stored Processes: Developer's Guide for more information about using packages in your
stored processes.

Attachment definitions in metadata provide a means to establish a contract between all
parties involved in a Web service request. SAS BI Web Services generates a WSDL and
schema based on metadata definitions that provide a contract between the client and

30 Chapter 3 • Using Structured Web Services

Web service. The Web service enforces that all required attachments are sent in the
request. The SAS code that executes on the SAS server must be written in accordance to
the metadata definitions that it is representing. Otherwise, problems might occur (for
example, not reading the correct stream) resulting in SAS errors. If a SAS error occurs,
the Web service returns a SOAP fault to the client when using SOAP endpoints or an
HTTP error when using plain XML or JSON in RESTful invocations.

Using Prompts with Generated Web Services
When defining stored process parameters, the prompt type definitions are mapped to
Web service schema. These schema mappings appear in the WSDL files for SOAP
endpoints, but the type mappings still apply for other endpoints. You should use the
same input XML for the plain XML endpoints as you do for the SOAP endpoints,
however you can omit the namespace prefixes and declarations for the plain XML
endpoints. See “Supported Types of Input and Output for XML and JSON Messages” on
page 51 for more information about using prompts with these endpoint types.

The mapping of stored process prompt types to XML schema types is as follows:

Table 3.1 How Prompt Types Map to Web Service Schema

Prompt Type Parameter Type in Generated WSDL

Text, Date, Time, Color, Data source, File or
directory, Data library

xs:string

Numeric xs:int or xs:double

Ranges have lowerBound and
upperBound elements

xs:type (where type is the appropriate value,
such as int or dateTime, from this table)

xs:string (for lowerBound and
upperBound elements)

Timestamp xs:dateTime

Data source item has path and itemName
elements

xs:string (for path and itemName
elements)

OLAP member has label and
uniqueName elements

xs:string (for label and
uniqueName elements)

The xs: prefix in these values is an abbreviation for the namespace that is being used.
This particular abbreviation stands for the standard XML schema namespace, http://
www.w3.org/2001/XMLSchema. For more information about the XML schema, see
http://www.w3.org/2001/XMLSchema.

For generated Web services, the WSDL that is generated uses facets and restrictions that
are based on prompt constraints. Values are validated against the constraints that are
defined in metadata.

The following table explains how to format values for the various prompt types:

Using Prompts with Generated Web Services 31

Table 3.2 Guidelines for Entering Prompt Values (U.S. English Locale)

Prompt Type Guidelines Examples

Text Enter any character value. Blank spaces and
nonprintable characters can be used, but the
value cannot consist completely of these
characters. Trailing blanks are stored as part of
the value and are included when the value is
validated against the minimum and maximum
length requirements.

• you are here

• eighty-five

• Bob

Numeric Enter a standard numeric value.

• If you are working with an integer prompt,
then do not use values with decimal places.
If you use a value with zeros after the
decimal point (for example, 1.00) for an
integer prompt, then the zeros and the
decimal point will be removed before the
value is stored (for example, 1.00 will be
stored as 1).

• For prompts that allow floating-point values,
the unformatted prompt value can contain up
to 15 significant digits. Values with more
than 15 significant digits of precision are
truncated. Note that formatted values can
have more than 15 significant digits.

• 1.25

• 6000

• 2222.444

32 Chapter 3 • Using Structured Web Services

Prompt Type Guidelines Examples

Date For dates of type Day, enter values in one of the
following formats:

• ddmmmyyyy

• ddmonth-nameyyyy (Java only)

• mm/dd/yy<yy>

• mm.dd.yy<yy>

• mm-dd-yy<yy>

• mmm/dd/yy<yy>

• mmm.dd.yy<yy>

• mmm-dd-yy<yy>

• mmm dd, yyyy (Java only)

• month-name/dd/yy<yy> (Java only)

• month-name.dd.yy<yy> (Java only)

• month-name-dd-yy<yy> (Java only)

• month-name dd, yyyy

• day-of-week, mmm dd, yy (Java only)

• day-of-week, mmm dd, yyyy (Java only)

• day-of-week, month-name dd, yy (Java only)

• day-of-week, month-name dd, yyyy

• yyyy/mm/dd (Java only)

• yyyy.mm.dd (Java only)

• yyyy-mm-dd (Java only)

• yyyy.mmm.dd (Java only)

• yyyy-mmm-dd (Java only)

• yyyy.month-name.dd (Java only)

• yyyy-month-name-dd (Java only)

Here is an explanation of the syntax:

day-of-week
specifies either the first three letters of the
day of the week or the full name of the day
of the week. This value is not case sensitive.

dd
specifies a one-digit or two-digit integer that
represents the day of the month.

mm
specifies a one-digit or two-digit integer that
represents the month of the year.

mmm or month-name
specifies the first three letters of the full
name of the month, or the full name of the
month, respectively. This value is not case
sensitive.

yy or yyyy
specifies a two-digit or four-digit integer that
represents the year. To refer to a year that is
more than 80 years in the past or 20 years in
the future, use four digits. Valid values for a
four-digit year range from 1600 to 2400.

• 4APR1860

• 14January1918

• 12/14/45

• 02.15.1956

• 1–1–60

• Oct/02/08

• JUL.20.13

• MAY-13–1924

• Oct 05, 2006

• February/10/00

• March.1.2004

• DECEMBER-25–08

• SEPTEMBER 20, 2010

• FRI, Jan 3, 20

• Tuesday, Jan 15, 2008

• Monday, January 16, 40

• FRIDAY, JANUARY 04, 2008

• 2041/5/13

• 2050.07.25

• 2100–1–1

• 2009.NOV.02

• 2400–Aug-8

• 2101.December.31

• 1919–APRIL-20

Using Prompts with Generated Web Services 33

Prompt Type Guidelines Examples

Date (cont’d.) For dates of type Week, enter values in one of
the following formats:

• Www yy

• Www yyyy (Java only)

• Weekww yyyy

Here is an explanation of the syntax:

ww
specifies a one-digit or two-digit integer that
represents the week of the year. Valid values
range from 1 to 52.

yy or yyyy
specifies a two-digit or four-digit integer that
represents the year. To refer to a year that is
more than 80 years in the past or 20 years in
the future, use four digits. Valid values for a
four-digit year range from 1600 to 2400.

• W1 08

• W52 1910

• Week 20 2020

• Week 5 2048

For dates of type Month, enter values in one of
the following formats:

• mm/yy<yy>

• mm.yy<yy>

• mm-yy<yy>

• mmm yy<yy> (Java only)

• mmm/yy<yy>

• mmm.yy<yy>

• mmm-yy<yy>

• month-name yy (Java only)

• month-name yyyy

• month-name/yy<yy> (Java only)

• month-name.yy<yy> (Java only)

• month-name-yy<yy> (Java only)

Here is an explanation of the syntax:

mm
specifies a one-digit or two-digit integer that
represents the month of the year.

mmm or month-name
specifies the first three letters of the full name
of the month, or the full name of the month,
respectively. This value is not case sensitive.

yy or yyyy
specifies a two-digit or four-digit integer that
represents the year. To refer to a year that is
more than 80 years in the past or 20 years in
the future, use four digits. Valid values for a
four-digit year range from 1600 to 2400.

• 12/1828

• 06.65

• 7–76

• Jul 08

• JUN/2010

• SEP.20

• Oct-2050

• August 20

• OCTOBER 1975

• MARCH/1970

• May.13

• November-18

34 Chapter 3 • Using Structured Web Services

Prompt Type Guidelines Examples

Date (cont’d.) For dates of type Quarter, enter values in the
following format:

• quarter-name quarter yy<yy>

Here is an explanation of the syntax:

quarter-name
specifies the quarter of the year. Valid
values are 1st, 2nd, 3rd, and 4th.

yy or yyyy
specifies a two-digit or four-digit integer that
represents the year. To refer to a year that is
more than 80 years in the past or 20 years in
the future, use four digits. Valid values for a
four-digit year range from 1600 to 2400.

• 1st quarter 1900

• 2nd quarter 50

• 3rd quarter 12

• 4th quarter 2060

For dates of type Year, enter values in one of the
following formats:

• yy (Java only)

• yyyy

Here is an explanation of the syntax:

yy or yyyy
specifies a two-digit or four-digit integer that
represents the year. To refer to a year that is
more than 80 years in the past or 20 years in
the future, use four digits. Valid values for a
four-digit year range from 1600 to 2400.

• 1895

• 86

• 08

• 2035

Using Prompts with Generated Web Services 35

Prompt Type Guidelines Examples

Time Enter time values in the following format:

• hh:mm<:ss> <AM | PM>

Here is an explanation of the syntax:

hh
specifies a one-digit or two-digit integer that
represents the hour of the day. Valid values
range from 0 to 24.

mm
specifies a one-digit or two-digit integer that
represents the minute of the hour. Valid
values range from 0 to 59.

ss (optional)
specifies a one-digit or two-digit integer that
represents the second of the minute. Valid
values range from 0 to 59. If this value is not
specified, then the value defaults to 00
seconds.

AM or PM (optional)
specifies either the time period 00:01 to
12:00 noon (AM) or the time period 12:01 to
12:00 midnight (PM). If this value is not
specified and you are using the 12-hour
system for specifying time, then the value
defaults to AM. Do not specify AM or PM if
you are using the 24-hour system for
specifying time.

• 1:1

• 1:01 AM

• 13:1:1

• 01:01:01 PM

• 22:05

36 Chapter 3 • Using Structured Web Services

Prompt Type Guidelines Examples

Timestamp Enter timestamp values in the following format:

• yyyy-mm-ddThh:mm:ss

Here is an explanation of the syntax:

yyyy
specifies a four-digit integer that represents
the year. Valid values for a four-digit year
range from 1600 to 2400.

mm
specifies a one-digit or two-digit integer that
represents the month of the year.

dd
specifies a one-digit or two-digit integer that
represents the day of the month.

hh
specifies a one-digit or two-digit integer that
represents the hour of the day. Valid values
range from 0 to 24.

mm
specifies a one-digit or two-digit integer that
represents the minute of the hour. Valid
values range from 0 to 59.

ss
specifies a one-digit or two-digit integer that
represents the second of the minute. Valid
values range from 0 to 59.

• 2012-11-23T15:30:32

• 2008-09-09T01:01:01

Color Enter color values in one of the following
formats:

• CXrrggbb

• 0xrrggbb

• #rrggbb

Here is an explanation of the syntax:

rr
specifies the red component.

gg
specifies the green component.

bb
specifies the blue component.

Each component should be specified as a
hexadecimal value that ranges from 00 to FF,
where lower values are darker and higher values
are brighter.

Bright red

• CXFF0000

• 0xFF0000

• #FF0000

Black

• CX000000

• 0x000000

• #000000

White

• CXFFFFFF

• 0xFFFFFF

• #FFFFFF

Using Prompts with Generated Web Services 37

Prompt Type Guidelines Examples

Data source Enter the name and location of a data source in
the following format:

• /folder-name-1/<.../folder-name-n/>data-
source-name(type)

Here is an explanation of the syntax:

/folder-name-1/<.../folder-name-n/>
specifies the location of the data source.

data-source-name
specifies the name of the data source.

type
is the type of data source. The following
values are valid unless otherwise noted:
Table, InformationMap, and Cube.
Use InformationMap for specifying
either relational or OLAP information maps.

• /Shared Data/Tables/
OrionStar/Customers(Table)

• /Users/MarcelDupree/My
Folder/My Information
Map(InformationMap)

• /MyCustomRepository/More
Data/Order_Facts(Table)

File or directory Enter the name and location of a file or
directory in the following format:

• directory-specification<filename>

Here is an explanation of the syntax:

directory-specification
specifies the location of the file or directory
in the file system of a SAS server.

filename
specifies the name of the file. This value is
required only if the prompt is a file prompt.
Depending on the operating environment
that the SAS server runs in, you might need
to put a forward slash (/) or a backslash (\)
between the directory specification and the
name of the file.

• C:\Documents and Settings
\All Users\Documents
\myfile.txt

Data library Enter the name and location of a data library in
the following format:

• /folder-name-1/<.../folder-name-n/>library-
name(Library)

Here is an explanation of the syntax:

/folder-name-1/<.../folder-name-n/>
specifies the location of the library.

library-name
specifies the name of the library.

• /Data/Libraries/Customer
Data Library(Library)

• /MyCustomRepository/More
Data/OracleData(Library)

38 Chapter 3 • Using Structured Web Services

Prompt Type Guidelines Examples

Data source item For the path element, enter the path for a data
source item in the following format:

• /folder-name-1/<.../folder-name-n/>data-
source-name(type)

Here is an explanation of the syntax:

/folder-name-1/<.../folder-name-n/>
specifies the location of the data source.

data-source-name
specifies the name of the data source.

type
is the type of data source. The following
values are valid unless otherwise noted:
Table or InformationMap. Use
InformationMap for specifying either
relational or OLAP information maps.

For the itemName element, enter the name for
the data source item in the following format:

• item-name

Here is an explanation of the syntax:

item-name
specifies the name of the data source item.
This is the name of a column in a table or a
data item in an information map.

path

• /Shared Data/Tables/
MYDATA(Table)

itemName

• Year

OLAP member For the uniqueName element, enter the name of
the OLAP member.

For the label element, enter the label for the
OLAP member.

uniqueName

• PRICEAVG

label

• Average Price

Note: An anonymous user cannot launch workspace servers. Dynamic prompt
validation requires use of workspace servers if the user has been defined with an
internal account. Thus, internal anonymous users will not be able to use all stored
processes.

Prompt definitions in metadata provide a means to establish a contract between all
parties that are involved in a Web service request. SAS BI Web Services generate a
WSDL and schema based on metadata definitions that provide a contract between the
client and generated Web service. Mature client programming tools can help assist
clients in formulating valid SOAP requests. Web service endpoints also validate client
input values via the SAS prompting framework. The SAS code that executes on the SAS
server must be written in accordance to the metadata definitions that it represents.
Otherwise, problems occur (for example, reading the wrong input parameter or
expecting a different type) that result in SAS errors. If a SAS error occurs, then the
generated Web service returns a SOAP fault to the client for SOAP endpoints or HTTP
errors for JSON and plain XML endpoints.

Using Prompts with Generated Web Services 39

Sample WSDLs

Sample Parameters
The following table contains names, prompt types, and restrictions for sample
parameters for a stored process.

Table 3.3 Sample Stored Process Parameters

Prompt Name Prompt Type Restrictions

top_level Text Single value

fixed Text Read-only values

Single value

Default value: fixed
default

simple_string Text Single value

invisible Text Hide from user

Single value

Default value: hidden
val

default Text Single value

Default value: def val

static_list Text Multiple ordered values

max_length Text Single value

Maximum length: 6

mult_entry Text Multiple values

Maximum value count: 5

text_range Text range Default range from: aaa

Default range to: zzz

req_string Text Requires a non-blank value

Single value

simple_int Numeric (integer) Single value

Allows only integer values

40 Chapter 3 • Using Structured Web Services

Prompt Name Prompt Type Restrictions

fixed_int Numeric (integer) Read-only values

Single value

Allows only integer values

Default value: 12345

def_int Numeric (integer) Single value

Allows only integer values

Default value: 12345

int_list Numeric (integer) Multiple ordered values

Allows only integer values

int_mult Numeric (integer) Requires a non-blank value

Multiple values

Allows only integer values

Minimum value count: 1

Maximum value count: 5

lim_int Numeric (integer) Single value

Allows only integer values

Minimum value allowed: 1

Maximum value allowed: 99

req_int Numeric (integer) Requires a non-blank value

Single value

Allows only integer values

Default value: 9999

simple_float Numeric (double) Single value

def_float Numeric (double) Single value

Minimum number of decimal
places displayed: 1

Maximum number of decimal
places displayed:3

Minimum value allowed:
1.0

Maximum value allowed:
100.0

Default value: 99.99

Sample WSDLs 41

Prompt Name Prompt Type Restrictions

float_list Numeric (double) Multiple values

Minimum number of decimal
places displayed: 1

Maximum number of decimal
places displayed: 3

float_mult Numeric (double) Multiple values

Maximum number of decimal
places displayed: 4

Maximum value count: 5

Maximum value allowed:
999999.0

lim_float Numeric (double) Single value

Minimum value allowed:
10.0

Maximum value allowed:
20.0

req_float Numeric (double) Requires a non-blank value

Single value

Default value: 99.0

simple_color Color

def_color Color Default value: CXFF0000

fixed_color Color Read-only values

Default value: CX0000FF

req_color Color Requires a non-blank value

Default value: CXFFFF00

simple_date Date Single value

def_date Date Single value

Default value: Today

date_list Date Multiple values

Minimum value allowed:
October 01, 2007

Maximum value allowed: N
days from now (200)

date_range Date range Minimum value allowed:
October 01, 2007

Maximum value allowed: N
days from now (300)

42 Chapter 3 • Using Structured Web Services

Prompt Name Prompt Type Restrictions

req_date Date Requires a non-blank value

Single value

Include special values:
Missing values

Default value: Week 50
2007

simple_time Time

fixed_time Time Read-only values

Default value: Current
hour

def_time Time Minimum value allowed: N
hours ago (1)

Maximum value allowed: N
hours from now (1)

Default value: Current
hour

timerange Time range Default range type: Custom

Default range from: N
hours ago (10)

Default range to: N hours
from now (1)

file1 File or directory

data_source Data source Default value: /Stored
Processes/
CARS(Table)

data_source_item Data source item Single value

Default value: Make
[Make] [/Stored
Processes/CARS]

data_library Data library Default value library: /
Stored Processes/
WsmSASHelp(Library)

Default value libref: myref

olap_member OLAP member Single value

Generated WSDL for Java
If a Web service is generated for a stored process with these sample parameters, the
following WSDL is generated for Java:

Sample WSDLs 43

<types>
 <schema elementFormDefault="qualified" targetNamespace=
 "http://tempuri.org/AllPromptTypes"
 xmlns="http://www.w3.org/2001/XMLSchema" xmlns:tns=
 "http://tempuri.org/AllPromptTypes">
 <annotation>
 <documentation>SAS BI Web Services generated schema</documentation>
 </annotation>
 <element name="stpAllParm1">
 <complexType>
 <sequence>
 <element name="parameters" type="tns:stpAllParm1Parameters"/>
 </sequence>
 </complexType>
 </element>
 <complexType name="stpAllParm1Parameters">
 <sequence>
 <element maxOccurs="1" minOccurs="0" name="top_level" type="string"/>
 <element maxOccurs="1" minOccurs="0" name="simple_string" type="string"/>
 <element default="def val" maxOccurs="1" minOccurs="0" name="default"
 type="string"/>
 <element maxOccurs="1" minOccurs="0" name="static_list">
 <complexType>
 <sequence>
 <element maxOccurs="unbounded" minOccurs="0" name="Item"
 type="string"/>
 </sequence>
 </complexType>
 </element>
 <element maxOccurs="1" minOccurs="0" name="max_length">
 <simpleType>
 <restriction base="string">
 <maxLength value="6"/>
 </restriction>
 </simpleType>
 </element>
 <element maxOccurs="1" minOccurs="0" name="mult_entry">
 <complexType>
 <sequence>
 <element maxOccurs="5" minOccurs="0" name="Item" type="string"/>
 </sequence>
 </complexType>
 </element>
 <element maxOccurs="1" minOccurs="0" name="text_range">
 <complexType>
 <sequence>
 <element name="LowerBound" type="string"/>
 <element name="UpperBound" type="string"/>
 </sequence>
 </complexType>
 </element>
 <element maxOccurs="1" minOccurs="1" name="req_string" type="string"/>
 <element maxOccurs="1" minOccurs="0" name="simple_int" type="int"/>
 <element default="12345" maxOccurs="1" minOccurs="0" name="def_int"
 type="int"/>
 <element maxOccurs="1" minOccurs="0" name="int_list">

44 Chapter 3 • Using Structured Web Services

 <complexType>
 <sequence>
 <element maxOccurs="unbounded" minOccurs="0" name="Item"
 type="int"/>
 </sequence>
 </complexType>
 </element>
 <element maxOccurs="1" minOccurs="1" name="int_mult">
 <complexType>
 <sequence>
 <element maxOccurs="5" minOccurs="1" name="Item" type="int"/>
 </sequence>
 </complexType>
 </element>
 <element maxOccurs="1" minOccurs="0" name="lim_int">
 <simpleType>
 <restriction base="int">
 <minInclusive value="1"/>
 <maxInclusive value="99"/>
 </restriction>
 </simpleType>
 </element>
 <element default="9999" maxOccurs="1" minOccurs="1" name="req_int"
 type="int"/>
 <element maxOccurs="1" minOccurs="0" name="simple_float" type="double"/>
 <element default="99.99" maxOccurs="1" minOccurs="0" name="def_float">
 <simpleType>
 <restriction base="double">
 <minInclusive value="1.0"/>
 <maxInclusive value="100.0"/>
 </restriction>
 </simpleType>
 </element>
 <element maxOccurs="1" minOccurs="0" name="float_list">
 <complexType>
 <sequence>
 <element maxOccurs="unbounded" minOccurs="0" name="Item"
 type="double"/>
 </sequence>
 </complexType>
 </element>
 <element maxOccurs="1" minOccurs="0" name="float_mult">
 <complexType>
 <sequence>
 <element maxOccurs="5" minOccurs="0" name="Item">
 <simpleType>
 <restriction base="double">
 <maxInclusive value="999999.0"/>
 </restriction>
 </simpleType>
 </element>
 </sequence>
 </complexType>
 </element>
 <element maxOccurs="1" minOccurs="0" name="lim_float">
 <simpleType>

Sample WSDLs 45

 <restriction base="double">
 <minInclusive value="10.0"/>
 <maxInclusive value="20.0"/>
 </restriction>
 </simpleType>
 </element>
 <element default="99.0" maxOccurs="1" minOccurs="1" name="req_float"
 type="double"/>
 <element maxOccurs="1" minOccurs="0" name="simple_color" type="string"/>
 <element default="cxff0000" maxOccurs="1" minOccurs="0" name="def_color"
 type="string"/>
 <element default="cxffff00" maxOccurs="1" minOccurs="1" name="req_color"
 type="string"/>
 <element maxOccurs="1" minOccurs="0" name="simple_date" type="string"/>
 <element default="D0D" maxOccurs="1" minOccurs="0" name="def_date"
 type="string"/>
 <element maxOccurs="1" minOccurs="0" name="date_list">
 <complexType>
 <sequence>
 <element maxOccurs="unbounded" minOccurs="0" name="Item">
 <simpleType>
 <restriction base="string">
 <enumeration value="October 05, 2007"/>
 <enumeration value="October 31, 2007"/>
 </restriction>
 </simpleType>
 </element>
 </sequence>
 </complexType>
 </element>
 <element maxOccurs="1" minOccurs="0" name="date_range">
 <complexType>
 <sequence>
 <element name="LowerBound" type="string"/>
 <element name="UpperBound" type="string"/>
 </sequence>
 </complexType>
 </element>
 <element default="Week 50 2007" maxOccurs="1" minOccurs="1"
 name="req_date" nillable="true">
 <complexType>
 <simpleContent>
 <extension base="string">
 <attribute name="missing">
 <simpleType>
 <restriction base="string">
 <pattern value="[_.A-Z]"/>
 </restriction>
 </simpleType>
 </attribute>
 </extension>
 </simpleContent>
 </complexType>
 </element>
 <element maxOccurs="1" minOccurs="0" name="simple_time" type="string"/>
 <element default="H0H" maxOccurs="1" minOccurs="0" name="def_time"

46 Chapter 3 • Using Structured Web Services

 type="string"/>
 <element maxOccurs="1" minOccurs="0" name="timerange">
 <complexType>
 <sequence>
 <element name="LowerBound" type="string"/>
 <element name="UpperBound" type="string"/>
 </sequence>
 </complexType>
 </element>
 <element maxOccurs="1" minOccurs="0" name="file1" type="string"/>
 <element maxOccurs="1" minOccurs="0" name="data_source" type="string"/>
 <element maxOccurs="1" minOccurs="0" name="data_source_item">
 <complexType>
 <sequence>
 <element maxOccurs="unbounded" name="DataSourceItem">
 <complexType>
 <sequence>
 <element maxOccurs="1" minOccurs="1" name="Path"
 type="string"/>
 <element maxOccurs="1" minOccurs="1" name="ItemName"
 type="string"/>
 </sequence>
 </complexType>
 </element>
 </sequence>
 </complexType>
 </element>
 <element maxOccurs="1" minOccurs="0" name="data_library" type="string"/>
 <element maxOccurs="1" minOccurs="0" name="olap_member">
 <complexType>
 <sequence>
 <element maxOccurs="unbounded" name="OlapMember">
 <complexType>
 <sequence>
 <element maxOccurs="1" minOccurs="1" name="UniqueName"
 type="string"/>
 <element maxOccurs="1" minOccurs="0" name="Label"
 type="string"/>
 </sequence>
 </complexType>
 </element>
 </sequence>
 </complexType>
 </element>
 </sequence>
 </complexType>
 <element name="stpAllParm1Response">
 <complexType>
 <sequence>
 <element name="stpAllParm1Result">
 <complexType>
 <sequence>
 <element maxOccurs="1" minOccurs="0" name="Streams">
 <complexType>
 <sequence>
 <element maxOccurs="1" minOccurs="0" name="_WEBOUT">

Sample WSDLs 47

 <complexType>
 <sequence>
 <element name="Value" type="base64Binary"/>
 </sequence>
 <attribute name="contentType" type="string"/>
 </complexType>
 </element>
 </sequence>
 </complexType>
 </element>
 </sequence>
 </complexType>
 </element>
 </sequence>
 </complexType>
 </element>
 </schema>
 </types>

48 Chapter 3 • Using Structured Web Services

Chapter 4

Using JSON and Plain XML with
RESTful Web Services

What Are REST and JSON? . 49
REST . 49
RESTful Message Formats . 50

Supported Types of Input and Output for XML and JSON Messages 51
Supported Input and Output for XML Messages . 51
Supported Input and Output for JSON Messages . 52

Accessing RESTful JSON and XML Web Service Endpoints 54
Accessing RESTful Web Service Endpoints . 54
Accessing RESTful JSON Web Service Endpoints . 55

Invoking RESTful Web Services . 55

What Are REST and JSON?

REST
Starting in SAS 9.3, SAS BI Web Services also exposes all structured Web services as
RESTful resources that can be invoked using either JSON or plain XML inputs and
outputs. REST stands for Representational State Transfer and describes a pattern for
interacting with content on remote systems, typically using HTTP. REST describes a
way that you can access and modify existing content and also how to add content to a
system. RESTful HTTP Web services use the standard set of HTTP verbs to indicate the
action the user wants to perform. For example, if you wanted to retrieve a value from a
RESTful HTTP Web service, you would use the HTTP verb GET. If you wanted to send
some data to a RESTful HTTP Web service, you would use the HTTP verb POST.
Because REST is an architectural concept and not a standard, there are no set rules for
how a client and service should use the set of HTTP verbs, so it is ultimately up to each
service to decide how to implement a RESTful architecture. SAS BI Web Services
expects clients to use GET when invoking stored processes that require no input and
POST when invoking stored processes that require prompt or stream input.
Conceptually, you can think of stored processes that require no input as a resource that
you simply want to retrieve, and that is why you use GET. Conversely, stored processes
that need input require that you POST that input to the resource.

In addition to using standard HTTP verbs, RESTful HTTP Web services emphasize the
representation of resources in the form of URLs. Therefore, instead of exposing multiple
operations and resources through a single endpoint as SOAP services typically do,
RESTful Web services delineate resources by making them available at different URLs.

49

This means that you can access all the results of a stored process invocation at a URL
with a suffix such as/rest/storedProcesses/path/to/stored/process, but
you can also access specific output resources at URLs with a suffix such as/rest/
storedProcesses/path/to/stored/process/parameters/
myOutputParameter and /rest/storedProcesses/path/to/stored/
process/streams/myOutputStream. SAS BI Web Services treat output
parameters, output streams (also known as data targets), and packages as distinct
resources that can be retrieved individually and separately from any other output. Note
that even though you can request a distinct output resource, every time you do so the
stored process is executed and all results are retrieved by SAS BI Web Services. This
means that requesting specific resources will not make execution any quicker or more
efficient in this version of the release (but it makes the client code simpler). When you
request a distinct output resource using a RESTful URL, only that specific resource is
returned to your client. For example, if your stored process writes a PDF to a data target
and you request that specific output stream resource using a RESTful URL, then the data
returned to the client is the actual PDF binary contents and the HTTP response includes
the proper HTTP content type headers. For more information about the output resources
available from RESTful Web services and information about how to access RESTful
Web services, see “Accessing RESTful JSON and XML Web Service Endpoints” on
page 54.

REST does not prescribe a specific message format to use during HTTP resource
exchanges. It is up to the RESTful Web service to choose which formats are supported.
XML and JavaScript Object Notation (JSON) are two of the most popular formats used
by RESTful Web services. SAS BI Web Services supports both of these message
formats.

RESTful Message Formats

XML
The format of input and output XML messages when using RESTful SAS BI Web
Service endpoints mimics the SOAP format for a given stored process or generated Web
service. The only differences are:

• None of the SOAP XML elements should be present in requests or responses.

• Namespaces are optional in requests. If they are used in the request, then they are
used in the response. If they are used with the REST endpoint for a generated Web
service, then they must match the namespace of the generated Web service.
Generally, it is advisable to avoid using namespaces for the plain XML message
format.

• Binary content is Base64 encoded and inlined.

The similarities between the plain XML format and the SOAP message format make it
easier to write client code if there are no tools that can automatically generate client
stubs.

JSON
JSON is a simple text-based message format that is often used with RESTful Web
services. Like XML, it is designed to be readable, and this can help when debugging and
testing. JSON is derived from JavaScript, and therefore is very popular as a data format
in Web applications. Because JSON has extensive support in JavaScript, it is often used
in AJAX Web applications for creating rich, dynamic user experiences that incorporate
remote data and service execution. However, JSON can be read and written by many
programming languages.

50 Chapter 4 • Using JSON and Plain XML with RESTful Web Services

JSON has only a limited set of basic, built-in data types. Therefore, SAS BI Web
Services supports only simple prompt types and output parameters when using JSON.

Supported Types of Input and Output for XML and
JSON Messages

When using the JSON and XML message formats with RESTful Web service endpoints,
the type and format of inputs and outputs you can use is limited compared to the features
of SOAP endpoints. Stored processes can accept two types of input: prompts and data
sources. They can produce three types of output: output parameters, data targets, and
packages. Prompts enable you to supply simple parameters for stored process execution.
The SAS prompting framework enables you to create prompt definitions that describe
the type and format of your stored process's input parameters. When you invoke a Web
service, the prompting framework validates the values that you supplied for the stored
process prompts. The prompting framework translates these values into a macro variable
that can be used in your stored process. Data sources enable you to supply arbitrary
streams of data to your stored process to be processed. These data streams can be text
such as XML or raw binary content. The data that you supply in a data source is
streamed to a fileref in your stored process. Output parameters contain the values from
macro variables from your stored process after it is finished running. This enables you to
return simple values from your stored process. Data targets are like data sources in that
they are streams of arbitrary data. However, data targets are produced by the stored
process. Stored processes can use the SAS Publishing Framework to create a package
during stored process execution. A package is a collection of assets that can be returned
to the stored process client (in the case of SAS BI Web Services, the client is the Web
service client). Packages can contain binary and textual data and are a convenient way to
package complex reports that contain multiple images and text or HTML content
produced by SAS. If a stored process returns a package, that package can be returned to
the Web service client as a list of entries and the contents of those entries.

Supported Input and Output for XML Messages
When using RESTful XML SAS BI Web Services endpoints, all types of input and
output are supported. You should send XML requests using the same format as for
SOAP messages. Always omit SOAP elements from requests to the RESTful XML
endpoints, and you can also omit namespaces.

Supported Types of Input and Output for XML and JSON Messages 51

Table 4.1 SOAP Message Versus Plain XML Message

SOAP Message Plain XML Message

<soapenv:Envelope
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:biw="http://www.sas.com/xml/namespace/biwebservices">
 <soapenv:Header/>
 <soapenv:Body>
 <biw:addfloats>
 <biw:parameters>
 <biw:num1>2.3</biw:num1>
 <biw:num2>4.2</biw:num2>
 </biw:parameters>
 </biw:addfloats>
 </soapenv:Body>
</soapenv:Envelope>

<addfloats>
 <parameters>
 <num1>2.3</num1>
 <num2>4.2</num2>
 </parameters>
</addfloats>

The other difference between SOAP and plain XML messages is how binary content is
handled. Data sources, data targets, and packages can all contain binary data. SOAP
endpoints use WS-* standards to handle binary content. Specifically, SOAP can use
attachments to include the binary content out-of-band of the SOAP envelope (but still
within the same HTTP request or response) using multi-part responses. Plain XML
messages contain Base64-encoded data inline in the XML request or response. This is
less efficient than SOAP attachments because serializing the binary content to Base64
takes extra processing time and also bloats the size of the binary data compared to its
original size. Therefore, avoid using plain XML messages when using multiple large
binary resources.

If you need to retrieve only a single output resource (binary or otherwise), you can
access the specific output resource that you need by using the appropriate resource suffix
on your Web service endpoint URL. When accessing a single binary output resource
with resource suffixes, the binary data is not transcoded to Base64 data. See “Accessing
RESTful JSON and XML Web Service Endpoints” on page 54 for more information
about how to access these resources using suffixes.

Supported Input and Output for JSON Messages
Because JSON supports only a limited number of native data types, JSON SAS BI Web
Service endpoints accept only simple values for stored process prompts and can return
only results from output parameters (not data targets or packages). The JSON SAS BI
Web Service endpoints support prompt values that are supplied using application/x-
www-form-urlencoded encoding in the HTTP request body. You must use HTTP POST
when supplying values to JSON endpoints. You can use HTTP GET when your stored
process does not require any input. For example, a JSON invocation of a stored process
that adds two numbers, num1 and num2, might look like the following:

52 Chapter 4 • Using JSON and Plain XML with RESTful Web Services

Table 4.2 JSON Invocation of a Stored Process

Request Response

num1=2.0&num2=3.5 {
 "outputParameters":
 {
 "Sum": "5.5"
 }
}

Be sure to specify the Content-type HTTP header as application/x-www-form-
urlencoded when you use POST. The following table lists supported prompt types for
JSON messages (note that no multi-value prompt types, including ranges and selections,
are supported when using JSON):

Table 4.3 Supported Prompt Types for JSON Messages

Prompt Type Supported Notes

Text yes

Numeric yes

Color yes Supports hexadecimal values
only.

Date yes Supply a text value that
matches the date type in the
prompt definition.

Time yes

File yes

Data source yes

Data library yes Supply this in the form
libraryPath ::
libref. For example, /
Products/SAS
Intelligence
Platform/Samples/
STP
Samples(Library) ::
stpsamp is a valid data
library value.

Supported Types of Input and Output for XML and JSON Messages 53

Prompt Type Supported Notes

Data source item yes Supply this in the form
dataSourceLocation
::
dataSourceType ::
columnName ::
columnLabel ::
columnType.

OLAP member yes

Ranges no

Multi-value prompts no

Accessing RESTful JSON and XML Web Service
Endpoints

In SAS 9.3, all structured SAS BI Web Services expose a JSON, XML, and SOAP
endpoint. This is true whether the Web service represents a single stored process or is a
generated Web service. The URL for each of these endpoints depends on the location
and type of Web service. For more information about accessing SOAP endpoints, see
“Accessing SOAP Endpoints for Stored Processes and Generated Web Services” on
page 28.

Accessing RESTful Web Service Endpoints
RESTful plain XML endpoints are available from the server resource /SASBIWS/
rest/. When accessing endpoints for stored processes, append the SAS folder path for
the stored process to the resource /SASBIWS/rest/storedProcesses/ (for
example, /SASBIWS/rest/storedProcesses/stored/process/path).
Generated Web services have a unique name and contain either a single or multiple
named stored processes. To access the RESTful plain XML endpoint for generated Web
services, append the generated Web service name to the resource /SASBIWS/rest/
(for example, /SASBIWS/rest/generatedServiceName). Because generated Web
services can contain multiple stored processes, you need to identify which stored process
that you want to invoke. You can do this in one of two ways:

• Use the stored process name as the payload root in your request message (assuming
that the message is an HTTP POST). In this case, the input XML is very similar to
the SOAP input XML.

• Append the stored process name (omitting any spaces) to the resource /SASBIWS/
rest/generatedServiceName (for example, /SASBIWS/rest/
generatedServiceName/storedProcessName).

For both generated and stored process Web services, you can tell SAS BI Web Services
that you are interested only in a single specific aspect of the stored process output. You
can do this by accessing the Web service at a specific URL. When you do this, the Web
service returns only that specific output resource. Output parameters, output streams
(also called data targets), and packages are all supported output resources.

54 Chapter 4 • Using JSON and Plain XML with RESTful Web Services

To access a specific output parameter, append the resource /parameters/
parameterName to the RESTful URL for your Web service, replacing parameterName
with the name of the actual parameter. When you access the /parameters/ resource
of a RESTful Web service, the HTTP response body contains only the string value of
that parameter and no additional XML.

To access a specific output stream, append the resource /streams/streamName to
the RESTful URL for your Web service, replacing streamName with the name of the
actual stream. When you access the /streams/ resource of a RESTful Web service,
the HTTP response is the exact output that your stored process sends to that stream and
the HTTP response headers include an appropriate content type if it is available.

A stored process can produce an output package during execution that can contain any
number of entries. You can access an individual entry within a package by appending the
resource /packages/entryNum to the RESTful URL for your Web service, replacing
entryNum with the index of the package entry. Entries in packages are not always
named, so you must use the package entry index. The index starts at 0 for the first entry
in the package.

You cannot access more than one output resource at a time by appending multiple /
parameters/, /streams/, and /packages/ resources. You can use only one at a
time. You use this URL resource form whether invoking a service with an HTTP GET
(when no input parameters or streams are required) or HTTP POST (when sending input
prompt values or stream values). See “Invoking RESTful Web Services” on page 55
for examples that use various output parameter resources.

Accessing RESTful JSON Web Service Endpoints
JSON Web service endpoints are available from the server resource /SASBIWS/json/.
When accessing endpoints for stored processes, append the SAS folder path for the
stored process to the resource /SASBIWS/json/storedProcesses/ (for example, /
SASBIWS/json/storedProcesses/stored/process/path). Generated Web
services have a unique name and contain either a single or multiple named stored
processes. To access the JSON endpoint for a generated Web service, append the
generated Web service name and the stored process name to the resource /SASBIWS/
json/ (for example, /SASBIWS/json/generatedServiceName/
storedProcessName). JSON endpoints do not support output resource specifications,
so the response is always JSON data.

Invoking RESTful Web Services
RESTful SAS BI Web Services are invoked by sending messages of a particular format
to a Web service endpoint in the SAS middle tier. You send request messages to
different endpoints depending on which response format you prefer. See “Accessing
RESTful JSON and XML Web Service Endpoints” on page 54 for more information
about how to determine where to send your Web service requests.

When you invoke a RESTful SAS BI Web service, the HTTP headers that you send are
important. The Content-type HTTP header tells SAS BI Web Services what type of
content you are sending when you perform an HTTP POST. If you are invoking a JSON
endpoint, then your Content-type must be set as application/x-www-form-
urlencoded and your content must be encoded using this format. If you are invoking
an XML endpoint, then your Content-type must be set to application/xml and your
content must be XML. The HTTP Accept header tells SAS BI Web Services what type
of content your client can accept as output. The Accept header must be set to

Invoking RESTful Web Services 55

application/json for JSON endpoints and can be set to application/xml for
XML endpoints (this header is not required for XML endpoints). When retrieving binary
output resources from an XML endpoint, you can follow normal HTTP procedures for
other HTTP headers such as Content-length, Host, and HTTP method.

56 Chapter 4 • Using JSON and Plain XML with RESTful Web Services

Ta
bl

e
4.

4
S

O
A

P
, R

E
S

Tf
ul

 X
M

L,
 a

nd
 R

E
S

Tf
ul

 J
S

O
N

 U
sa

ge

St
or

ed
 p

ro
ce

ss
 (n

o
in

pu
t r

eq
ui

re
d)

 /
p
r
o
g
r
a
m
s
/
t
i
m
e
A
n
d
D
a
t
e

St
or

ed
 p

ro
ce

ss
 (i

np
ut

 re
qu

ire
d)

 /
p
r
o
g
r
a
m
s
/

a
d
d
f
l
o
a
t
s

G
en

er
at

ed
 W

eb
 s

er
vi

ce
 a

dd
flo

at
sW

S
co

nt
ai

ns

st
or

ed
 p

ro
ce

ss
 /
p
r
o
g
r
a
m
s
/
a
d
d
f
l
o
a
t
s

SO
A

P
U

sa
ge

SO
A

P
en

dp
oi

nt
h
t
t
p
:
/
/
h
o
s
t
:
p
o
r
t
/
S
A
S
B
I
W
S
/

s
e
r
v
i
c
e
s
/
p
r
o
g
r
a
m
s
/
t
i
m
e
A
n
d
D
a
t
e

h
t
t
p
:
/
/
h
o
s
t
:
p
o
r
t
/
S
A
S
B
I
W
S
/

s
e
r
v
i
c
e
s
/
p
r
o
g
r
a
m
s
/
a
d
d
f
l
o
a
t
s

h
t
t
p
:
/
/
h
o
s
t
:
p
o
r
t
/
S
A
S
B
I
W
S
/

s
e
r
v
i
c
e
s
/
a
d
d
f
l
o
a
t
s
W
S

W
SD

L
lo

ca
tio

n
h
t
t
p
:
/
/
h
o
s
t
:
p
o
r
t
/
S
A
S
B
I
W
S
/

s
e
r
v
i
c
e
s
/
p
r
o
g
r
a
m
s
/
t
i
m
e
A
n
d
D
a
t
e
?

w
s
d
l

h
t
t
p
:
/
/
h
o
s
t
:
p
o
r
t
/
S
A
S
B
I
W
S
/

s
e
r
v
i
c
e
s
/
p
r
o
g
r
a
m
s
/
a
d
d
f
l
o
a
t
s
?

w
s
d
l

 o
r h
t
t
p
:
/
/
h
o
s
t
:
p
o
r
t
/
S
A
S
B
I
W
S
/

s
e
r
v
i
c
e
s
/
p
r
o
g
r
a
m
s
/

a
d
d
f
l
o
a
t
s
.
w
s
d
l

h
t
t
p
:
/
/
h
o
s
t
:
p
o
r
t
/
S
A
S
B
I
W
S
/

s
e
r
v
i
c
e
s
/
a
d
d
f
l
o
a
t
s
W
S
?
w
s
d
l

 o
r

h
t
t
p
:
/
/
h
o
s
t
:
p
o
r
t
/
S
A
S
B
I
W
S
/

s
e
r
v
i
c
e
s
/
a
d
d
f
l
o
a
t
s
W
S
.
w
s
d
l

Invoking RESTful Web Services 57

St
or

ed
 p

ro
ce

ss
 (n

o
in

pu
t r

eq
ui

re
d)

 /
p
r
o
g
r
a
m
s
/
t
i
m
e
A
n
d
D
a
t
e

St
or

ed
 p

ro
ce

ss
 (i

np
ut

 re
qu

ire
d)

 /
p
r
o
g
r
a
m
s
/

a
d
d
f
l
o
a
t
s

G
en

er
at

ed
 W

eb
 s

er
vi

ce
 a

dd
flo

at
sW

S
co

nt
ai

ns

st
or

ed
 p

ro
ce

ss
 /
p
r
o
g
r
a
m
s
/
a
d
d
f
l
o
a
t
s

Sa
m

pl
e

SO
A

P
re

qu
es

t
PO
ST
 h
tt
p:
//
ho
st
:p
or

t/
SA
SB

IW
S/

se
rv

ic
es

/

 p
ro
gr
am
s/
ti
me
An

dD
at
e

HT
TP
/1
.1

Co
nt
en
t-
Ty
pe
:
te
xt

/x
ml
;

ch
ar
se

t=
UT

F-
8

SO
AP
Ac
ti
on
:

 “
ht
tp
:/
/w
ww
.s
as

.c
om
/x

ml
/n
am

es
pa

ce
/

 b
iw
eb
se
rv
ic
es
/t

im
eA
nd

Da
te
”

Ho
st
:
ho
st
:p

or
t

<s
oa
pe
nv
:E
nv
el
op
e

xm
ln
s:
so
ap
en
v=
"h
tt

p:
//
sc

he
ma
s.

xm
ls

oa
p.

or
g/

 s
oa
p/
en
ve
lo
pe
/"

xm
ln
s:
bi
w=
"h
tt
p:
//

ww
w.
sa

s.
co
m/

xm
l/

 n
am
es
pa
ce
/b
iw
eb

se
rv
ic

es
">

 <
so
ap
en
v:
He
ad
er

/>

 <
so
ap
en
v:
Bo
dy
>

<b
iw
:t
im
eA
nd

Da
te
>

 <
bi
w:
pa
ra

me
te
rs

 /
>

</
bi
w:
ti
me
An

dD
at
e>

 <
/s
oa
pe
nv
:B
od
y>

</
so
ap
en
v:
En
ve
lo
pe

>

PO
ST
 h
tt

p:
//
ho

st
:p

or
t/

SA
SB

IW
S/

se
rv

ic
es

/

 p
ro
gr

am
s/
ad
df

lo
at

s
HT

TP
/1
.1

Co

nt
en
t-

Ty
pe
:
te

xt
/x

ml
;

ch
ar
se

t=
UT

F-
8

SO
AP
Ac
ti

on
:

 “
ht
tp

:/
/w
ww
.s

as
.c

om
/x

ml
/n
am

es
pa

ce
/

 b
iw
eb

se
rv
ic
es

/a
dd

fl
oa

ts
”

Ho
st
:

ho
st
:p
or
t

<s
oa
pe
nv

:E
nv
el
op

e
xm

ln
s:
so

ap
en
v=
"h

tt
p:

//
sc

he
ma
s.

xm
ls

oa
p.

or
g/

 s
oa
p/

en
ve
lo
pe

/"

xm
ln
s:
bi

w=
"h
tt
p:

//
ww

w.
sa

s.
co
m/

xm
l/

 n
am
es

pa
ce
/b
iw

eb
se

rv
ic

es
">

 <
so
ap

en
v:
He
ad

er
/>

 <
so
ap

en
v:
Bo
dy

>

<b

iw
:a
dd
fl

oa
ts

>

 <
bi
w:
pa

ra
me

te
rs

>

<b
iw

:n
um

1>
2.

3<
/b
iw

:n
um

1>

<b
iw

:n
um

2>
4.

2<
/b
iw

:n
um

2>

 <
/b
iw
:p

ar
am

et
er

s>

</

bi
w:
ad
df

lo
at

s>

 <
/s
oa

pe
nv
:B
od

y>
</

so
ap
en

v:
En
ve
lo

pe
>

PO
ST

 h
tt

p:
//

ho
st
:p

or
t/
SA

SB
IW

S/
se

rv
ic

es
/

 a

dd
fl

oa
ts
WS

HT

TP
/1
.1

Co

nt
en
t-

Ty
pe
:

te
xt

/x
ml

;
ch

ar
se

t=
UT

F-
8

SO
AP

Ac
ti

on
:

 “

ht
tp

:/
/t
em

pu
ri

.o
rg

/a
dd

fl
oa

ts
WS

/

 a
dd
fl

oa
ts
”

Ho
st

:
ho

st
:p

or
t

<s
oa

pe
nv

:E
nv
el

op
e

xm
ln

s:
so

ap
en
v=

"h
tt

p:
//

sc
he

ma
s.

xm
ls

oa
p.

or
g/

 s

oa
p/

en
ve
lo

pe
/"

xm

ln
s:
ad

d=
"h
tt

p:
//

te
mp

ur
i.

or
g/

 a

dd
fl

oa
ts
WS

">

 <
so
ap

en
v:
He

ad
er

/>

 <
so
ap

en
v:
Bo

dy
>

<a

dd
:a
dd

fl
oa

ts
>

 <
ad
d:

pa
ra

me
te

rs
>

<a

dd
:n

um
1>

2.
3<

/a
dd

:n
um

1>

<a

dd
:n

um
2>

4.
2<

/a
dd

:n
um

2>

 <
/a
dd

:p
ar

am
et

er
s>

</

ad
d:
ad

df
lo

at
s>

 <

/s
oa

pe
nv
:B

od
y>

</
so

ap
en

v:
En
ve

lo
pe

>

58 Chapter 4 • Using JSON and Plain XML with RESTful Web Services

St
or

ed
 p

ro
ce

ss
 (n

o
in

pu
t r

eq
ui

re
d)

 /
p
r
o
g
r
a
m
s
/
t
i
m
e
A
n
d
D
a
t
e

St
or

ed
 p

ro
ce

ss
 (i

np
ut

 re
qu

ire
d)

 /
p
r
o
g
r
a
m
s
/

a
d
d
f
l
o
a
t
s

G
en

er
at

ed
 W

eb
 s

er
vi

ce
 a

dd
flo

at
sW

S
co

nt
ai

ns

st
or

ed
 p

ro
ce

ss
 /
p
r
o
g
r
a
m
s
/
a
d
d
f
l
o
a
t
s

Sa
m

pl
e

SO
A

P
re

sp
on

se
HT
TP
/1
.1
 2
00
 O
K

SO
AP
Ac
ti
on
:
""

Ac
ce
pt
:
te
xt
/x
ml

Co
nt
en
t-
Ty
pe
:
te
xt

/x
ml
;c

ha
rs
et

=U
TF

-8
Tr
an
sf
er
-E
nc
od
in
g:

 c
hu
nk

ed

<s
oa
pe
nv
:E
nv
el
op
e

xm
ln
s:
so
ap
en
v=
"h
tt

p:
//
sc

he
ma
s.

xm
ls

oa
p.

or
g/

 s
oa
p/
en
ve
lo
pe
/"

>

 <
so
ap
en
v:
Bo
dy
>

<n
:t
im
eA
nd
Da

te
Re
sp

on
se

xm
ln
s:
n=
"h
tt
p:
//
ww

w.
sa
s.

co
m/
xm

l/
na

me
sp

ac
e/

 b
iw
eb
se
rv
ic
es
">

 <
n:
ti
me
An

dD
at
eR

es
ul
t>

<n
:P
ar

am
et
er

s>

 <
n:

ti
me
>1

3:
24
:2

0<
/n

:t
im

e>

 <
n:

da
te
>0

6M
ar
20

11
</

n:
da

te
>

</
n:
Pa

ra
me
te

rs
>

 <
/n
:t
im
eA

nd
Da
te

Re
su
lt

>

</
n:
ti
me
An
dD

at
eR
es

po
ns
e>

 <
/s
oa
pe
nv
:B
od
y>

</
so
ap
en
v:
En
ve
lo
pe

>

HT
TP
/1
.1

 2
00
 O
K

SO
AP
Ac
ti

on
:
""

Ac
ce
pt
:

te
xt
/x
ml

Co
nt
en
t-

Ty
pe
:
te

xt
/x

ml
;c

ha
rs
et

=U
TF

-8
Tr

an
sf
er

-E
nc
od
in

g:
 c

hu
nk

ed

<s
oa
pe
nv

:E
nv
el
op

e
xm

ln
s:
so

ap
en
v=
"h

tt
p:

//
sc

he
ma
s.

xm
ls

oa
p.

or
g/

 s
oa
p/

en
ve
lo
pe

/"
>

 <
so
ap

en
v:
Bo
dy

>

<n

:a
dd
fl
oa

ts
Re

sp
on

se

xm
ln
s:
n=

"h
tt
p:
//

ww
w.

sa
s.

co
m/
xm

l/
na

me
sp

ac
e/

 b
iw
eb

se
rv
ic
es

">

 <
n:
ad
df

lo
at

sR
es

ul
t>

<n
:P

ar
am

et
er

s>

 <

n:
Su

m>
6.

5<
/n
:S

um
>

</
n:

Pa
ra

me
te

rs
>

 <
/n
:a
dd

fl
oa

ts
Re

su
lt
>

</

n:
ad
df
lo

at
sR

es
po

ns
e>

 <
/s
oa

pe
nv
:B
od

y>
</

so
ap
en

v:
En
ve
lo

pe
>

HT
TP

/1
.1

 2
00
 O

K
SO

AP
Ac
ti

on
:
""

Ac
ce

pt
:

te
xt
/x

ml
Co

nt
en
t-

Ty
pe
:

te
xt

/x
ml

;c
ha

rs
et

=U
TF

-8
Tr

an
sf
er

-E
nc
od

in
g:

 c
hu

nk
ed

<s
oa

pe
nv

:E
nv
el

op
e

xm
ln

s:
so

ap
en
v=

"h
tt

p:
//

sc
he

ma
s.

xm
ls

oa
p.

or
g/

 s

oa
p/

en
ve
lo

pe
/"

>

 <
so
ap

en
v:
Bo

dy
>

<n

:a
dd
fl

oa
ts

Re
sp

on
se

xm

ln
s:
n=

"h
tt
p:

//
te

mp
ur

i.
or

g/
ad

df
lo

at
sW

S"
>

 <
n:
ad

df
lo

at
sR

es
ul

t>

<n

:P
ar

am
et

er
s>

 <
n:

Su
m>

6.
5<

/n
:S

um
>

</

n:
Pa

ra
me

te
rs

>

 <
/n
:a

dd
fl

oa
ts

Re
su

lt
>

</

n:
ad
df

lo
at

sR
es

po
ns

e>

 <
/s
oa

pe
nv
:B

od
y>

</
so

ap
en

v:
En
ve

lo
pe

>

R
ES

Tf
ul

 X
M

L
U

sa
ge

R
ES

Tf
ul

 X
M

L
en

dp
oi

nt
h
t
t
p
:
/
/
h
o
s
t
:
p
o
r
t
/
S
A
S
B
I
W
S
/
r
e
s
t
/

s
t
o
r
e
d
P
r
o
c
e
s
s
e
s
/
p
r
o
g
r
a
m
s
/

t
i
m
e
A
n
d
D
a
t
e

h
t
t
p
:
/
/
h
o
s
t
:
p
o
r
t
/
S
A
S
B
I
W
S
/
r
e
s
t
/

s
t
o
r
e
d
P
r
o
c
e
s
s
e
s
/
p
r
o
g
r
a
m
s
/

a
d
d
f
l
o
a
t
s

h
t
t
p
:
/
/
h
o
s
t
:
p
o
r
t
/
S
A
S
B
I
W
S
/
r
e
s
t
/

a
d
d
f
l
o
a
t
s
W
S
/
a
d
d
f
l
o
a
t
s

Invoking RESTful Web Services 59

St
or

ed
 p

ro
ce

ss
 (n

o
in

pu
t r

eq
ui

re
d)

 /
p
r
o
g
r
a
m
s
/
t
i
m
e
A
n
d
D
a
t
e

St
or

ed
 p

ro
ce

ss
 (i

np
ut

 re
qu

ire
d)

 /
p
r
o
g
r
a
m
s
/

a
d
d
f
l
o
a
t
s

G
en

er
at

ed
 W

eb
 s

er
vi

ce
 a

dd
flo

at
sW

S
co

nt
ai

ns

st
or

ed
 p

ro
ce

ss
 /
p
r
o
g
r
a
m
s
/
a
d
d
f
l
o
a
t
s

Sa
m

pl
e

R
ES

Tf
ul

 X
M

L
re

qu
es

t
GE
T
ht
tp
:/
/h

os
t:
po

rt
/S

AS
BI

WS
/r
es

t/

 s
to
re
dP
ro
ce
ss
es

/p
ro
gr

am
s/
ti

me
An

dD
at

e
HT
TP
/1
.1

Ac
ce
pt
:
ap
pl
ic
at
io

n/
xm
l

Ho
st
:
ho
st
:p

or
t

PO
ST
 h
tt

p:
//
ho

st
:p

or
t/

SA
SB

IW
S/

re
st

/

 s
to
re

dP
ro
ce
ss

es
/p

ro
gr

am
s/
ad

df
lo

at
s

HT
TP
/1
.1

Ac
ce
pt
:

ap
pl
ic
at

io
n/

xm
l

Co
nt
en
t-

Ty
pe
:
ap

pl
ic

at
io

n/
xm
l

Us
er
-A
ge

nt
:
Ja
ka

rt
a

Co
mm

on
s-
Ht

tp
Cl

ie
nt

/3
.1

Ho
st
:

ho
st
:p
or
t

<a
dd
fl
oa

ts
>

 <
pa
ra

me
te
rs
>

<n

um
1>
2.
3<

/n
um

1>

<n

um
2>
4.
2<

/n
um

2>

 <
/p
ar

am
et
er
s>

</
ad
df
lo

at
s>

PO
ST

 h
tt

p:
//

ho
st
:p

or
t/
SA

SB
IW

S/
re

st
/

 a

dd
fl

oa
ts
WS

/a
dd

fl
oa

ts
 H

TT
P/

1.
1

Ac
ce

pt
:

ap
pl
ic

at
io

n/
xm

l
Co

nt
en
t-

Ty
pe
:

ap
pl

ic
at

io
n/

xm
l

Ho
st

:
ho

st
:p

or
t

<a
dd

fl
oa

ts
 x
ml

ns
="

ht
tp

:/
/t

em
pu

ri
.o

rg
/

 a

dd
fl

oa
ts
WS

">

 <
pa
ra

me
te
rs

>

<n

um
1>
2.

3<
/n

um
1>

<n

um
2>
4.

2<
/n

um
2>

 <

/p
ar

am
et
er

s>
</

ad
df
lo

at
s>

Sa
m

pl
e

R
ES

Tf
ul

 X
M

L
re

sp
on

se
HT
TP
/1
.1
 2
00
 O
K

Co
nt
en
t-
Ty
pe
:
te
xt

/x
ml

Tr
an
sf
er
-E
nc
od
in
g:

 c
hu
nk

ed

<t
im
eA
nd
Da
te
Re
sp
on

se
>

 <
ti
me
An
dD
at
eR
es

ul
t>

<P
ar
am
et
er
s>

 <
ti
me
>1
3:

24
:2
0<

/t
im
e>

 <
da
te
>0
6M

ar
20
11

</
da
te

>

</
Pa
ra
me
te
rs

>

 <
/t
im
eA
nd
Da
te
Re

su
lt
>

</
ti
me
An
dD
at
eR
es
po

ns
e>

HT
TP
/1
.1

 2
00
 O
K

Co
nt
en
t-

Ty
pe
:
te

xt
/x

ml
Tr

an
sf
er

-E
nc
od
in

g:
 c

hu
nk

ed

<a
dd
fl
oa

ts
Re
sp
on

se
>

 <
ad
df

lo
at
sR
es

ul
t>

<P

ar
am
et
er

s>

 <
Su
m>
6.

5<
/S

um
>

</

Pa
ra
me
te

rs
>

 <
/a
dd

fl
oa
ts
Re

su
lt

>
</

ad
df
lo

at
sR
es
po

ns
e>

HT
TP

/1
.1

 2
00
 O

K
Co

nt
en
t-

Ty
pe
:

te
xt

/x
ml

Tr
an

sf
er

-E
nc
od

in
g:

 c
hu

nk
ed

<n
:a

dd
fl

oa
ts
Re

sp
on

se

xm
ln

s:
n=

"h
tt
p:

//
te

mp
ur

i.
or

g/
ad

df
lo

at
sW

S"
>

 <

n:
ad

df
lo
at

sR
es

ul
t>

<n

:P
ar
am

et
er

s>

 <
n:
Su

m>
6.

5<
/n

:S
um

>

</

n:
Pa
ra

me
te

rs
>

 <

/n
:a

dd
fl
oa

ts
Re

su
lt

>
</

n:
ad
df

lo
at
sR

es
po

ns
e>

R
ES

Tf
ul

 JS
O

N
 U

sa
ge

R
ES

Tf
ul

 JS
O

N
 e

nd
po

in
t

h
t
t
p
:
/
/
h
o
s
t
:
p
o
r
t
/
S
A
S
B
I
W
S
/
j
s
o
n
/

s
t
o
r
e
d
P
r
o
c
e
s
s
e
s
/
p
r
o
g
r
a
m
s
/

t
i
m
e
A
n
d
D
a
t
e

h
t
t
p
:
/
/
h
o
s
t
:
p
o
r
t
/
S
A
S
B
I
W
S
/
j
s
o
n
/

s
t
o
r
e
d
P
r
o
c
e
s
s
e
s
/
p
r
o
g
r
a
m
s
/

a
d
d
f
l
o
a
t
s

h
t
t
p
:
/
/
h
o
s
t
:
p
o
r
t
/
S
A
S
B
I
W
S
/
j
s
o
n
/

a
d
d
f
l
o
a
t
s
W
S
/
a
d
d
f
l
o
a
t
s

60 Chapter 4 • Using JSON and Plain XML with RESTful Web Services

St
or

ed
 p

ro
ce

ss
 (n

o
in

pu
t r

eq
ui

re
d)

 /
p
r
o
g
r
a
m
s
/
t
i
m
e
A
n
d
D
a
t
e

St
or

ed
 p

ro
ce

ss
 (i

np
ut

 re
qu

ire
d)

 /
p
r
o
g
r
a
m
s
/

a
d
d
f
l
o
a
t
s

G
en

er
at

ed
 W

eb
 s

er
vi

ce
 a

dd
flo

at
sW

S
co

nt
ai

ns

st
or

ed
 p

ro
ce

ss
 /
p
r
o
g
r
a
m
s
/
a
d
d
f
l
o
a
t
s

Sa
m

pl
e

R
ES

Tf
ul

 JS
O

N
 re

qu
es

t
GE
T
ht
tp
:/
/h

os
t:
po

rt
/S

AS
BI

WS
/j
so

n/

 s
to
re
dP
ro
ce
ss
es

/p
ro
gr

am
s/
ti

me
An

dD
at

e
HT
TP
/1
.1

Ac
ce
pt
:
ap
pl
ic
at
io

n/
js
on

Ho
st
:
ho
st
:p

or
t

PO
ST
 h
tt

p:
//
ho

st
:p

or
t/

SA
SB

IW
S/

js
on

/

 s
to
re

dP
ro
ce
ss

es
/p

ro
gr

am
s/
ad

df
lo

at
s

HT
TP
/1
.1

Ac
ce
pt
:

ap
pl
ic
at

io
n/

js
on

Co
nt
en
t-

Ty
pe
:

 a
pp
li

ca
ti
on
/x

-w
ww

-f
or

m-
ur
le

nc
od

ed
Ho

st
:

ho
st
:p
or
t

nu
m1
=2
.3

&n
um
2=
4.

2

PO
ST

 h
tt

p:
//

ho
st
:p

or
t/
SA

SB
IW

S/
js

on
/

 a

dd
fl

oa
ts
WS

/a
dd

fl
oa

ts

HT
TP

/1
.1

Ac
ce

pt
:

ap
pl
ic

at
io

n/
js

on
Co

nt
en
t-

Ty
pe
:

 a

pp
li

ca
ti
on

/x
-w

ww
-f

or
m-

ur
le

nc
od

ed
Ho

st
:
ho

st
:p

or
t

nu
m1

=2
.3

&n
um
2=

4.
2

Sa
m

pl
e

R
ES

Tf
ul

 JS
O

N

re
sp

on
se

HT
TP
/1
.1
 2
00
 O
K

Co
nt
en
t-
Ty
pe
:
ap
pl

ic
at
io

n/
js
on

Tr
an
sf
er
-E
nc
od
in
g:

 c
hu
nk

ed

{"
ou
tp
ut
Pa
ra
me
te
rs

":
{"
da

te
":
"0

6M
ar

20
11

",

 "
ti
me
":
"1
3:
24
:2

0"
}}

HT
TP
/1
.1

 2
00
 O
K

Co
nt
en
t-

Ty
pe
:
ap

pl
ic

at
io

n/
js
on

Tr
an
sf
er

-E
nc
od
in

g:
 c

hu
nk

ed

{"
ou
tp
ut

Pa
ra
me
te

rs
":

{"
Su

m"
:"
6.

5"
}}

HT
TP

/1
.1

 2
00
 O

K
Co

nt
en
t-

Ty
pe
:

ap
pl

ic
at

io
n/

js
on

Tr
an

sf
er

-E
nc
od

in
g:

 c
hu

nk
ed

{"
ou

tp
ut

Pa
ra
me

te
rs

":
{"

Su
m"

:"
6.

5"
}}

Invoking RESTful Web Services 61

Ta
bl

e
4.

5
R

E
S

Tf
ul

 O
ut

pu
t R

es
ou

rc
e

A
cc

es
s

St
or

ed
 p

ro
ce

ss
 (n

o
in

pu
t r

eq
ui

re
d)

 /
p
r
o
g
r
a
m
s
/
o
u
t
p
u
t
T
e
s
t

St
or

ed
 p

ro
ce

ss
 (i

np
ut

 re
qu

ire
d)

 /
p
r
o
g
r
a
m
s
/

i
o
T
e
s
t

G
en

er
at

ed
 W

eb
 s

er
vi

ce
 o

ut
pu

tT
es

tW
S

co
nt

ai
ns

st

or
ed

 p
ro

ce
ss

 /
p
r
o
g
r
a
m
s
/
o
u
t
p
u
t
T
e
s
t

O
rig

in
al

 R
ES

Tf
ul

 U
R

L
h
t
t
p
:
/
/
h
o
s
t
:
p
o
r
t
/
S
A
S
B
I
W
S
/
r
e
s
t
/

s
t
o
r
e
d
P
r
o
c
e
s
s
e
s
/
p
r
o
g
r
a
m
s
/

o
u
t
p
u
t
T
e
s
t

h
t
t
p
:
/
/
h
o
s
t
:
p
o
r
t
/
S
A
S
B
I
W
S
/
r
e
s
t
/

s
t
o
r
e
d
P
r
o
c
e
s
s
e
s
/
p
r
o
g
r
a
m
s
/

i
o
T
e
s
t

h
t
t
p
:
/
/
h
o
s
t
:
p
o
r
t
/
S
A
S
B
I
W
S
/
r
e
s
t
/

s
t
o
r
e
d
P
r
o
c
e
s
s
e
s
/
o
u
t
p
u
t
T
e
s
t
W
S
/

o
u
t
p
u
t
T
e
s
t

A
cc

es
si

ng
 a

n
ou

tp
ut

 p
ar

am
et

er
 n

am
ed

 r
e
s
u
l
t

 th
at

 re
tu

rn
s a

 v
al

ue
 s
u
c
c
e
s
s

En
dp

oi
nt

h
t
t
p
:
/
/
h
o
s
t
:
p
o
r
t
/
S
A
S
B
I
W
S
/
r
e
s
t
/

s
t
o
r
e
d
P
r
o
c
e
s
s
e
s
/
p
r
o
g
r
a
m
s
/

o
u
t
p
u
t
T
e
s
t
/
p
a
r
a
m
e
t
e
r
s
/
r
e
s
u
l
t

h
t
t
p
:
/
/
h
o
s
t
:
p
o
r
t
/
S
A
S
B
I
W
S
/
r
e
s
t
/

s
t
o
r
e
d
P
r
o
c
e
s
s
e
s
/
p
r
o
g
r
a
m
s
/

i
o
T
e
s
t
/
p
a
r
a
m
e
t
e
r
s
/
r
e
s
u
l
t

h
t
t
p
:
/
/
h
o
s
t
:
p
o
r
t
/
S
A
S
B
I
W
S
/
r
e
s
t
/

o
u
t
p
u
t
T
e
s
t
W
S
/
o
u
t
p
u
t
T
e
s
t
/

p
a
r
a
m
e
t
e
r
s
/
r
e
s
u
l
t

Sa
m

pl
e

re
qu

es
t

GE
T
ht
tp
:/
/h

os
t:
po
rt
/S

AS
BI

WS
/r
es

t/

 s
to
re
dP
ro
ce
ss

es
/p
ro

gr
am
s/

ou
tp

ut
Te

st
/

 p
ar
am
et
er
s/
re

su
lt

HT
TP
/1
.1

Ho
st
:
ho
st
:p

or
t

PO
ST
 h

tt
p:
//

ho
st
:p
or
t/

SA
SB

IW
S/

re
st

/

 s
to

re
dP
ro

ce
ss
es

/p
ro

gr
am

s/
ou

tp
ut

Te
st

/

 p
ar

am
et
er

s/
re
su

lt
HT

TP
/1

.1
Ho

st
:

ho
st
:p
or
t

<o
ut
pu

tT
es
t>

 <
sa

mp
le
In

pu
t>

Fo
o

 <
/s

am
pl
eI

np
ut
>

</
ou
tp

ut
Te
st

>

GE
T

ht
tp

:/
/h

os
t:
po

rt
/S

AS
BI
WS

/r
es
t/

 o

ut
pu

tT
es
tW

S/
ou

tp
ut

Te
st
/p

ar
am

et
er
s/

 r

es
ul

t
HT

TP
/1
.1

Ho
st

:
ho

st
:p

or
t

Sa
m

pl
e

re
sp

on
se

HT
TP
/1
.1
 2
00
 O
K

Co
nt
en
t-
Ty
pe
:
te

xt
/p
la

in
;c
ha

rs
et

=I
SO

-8
85
9-
1

Co
nt
en
t-
Le
ng
th
:

7

su
cc
es
s

A
cc

es
si

ng
 a

 d
at

a
ta

rg
et

 n
am

ed
 s
t
r
O
u
t

 th
at

 re
tu

rn
s X

M
L

62 Chapter 4 • Using JSON and Plain XML with RESTful Web Services

St
or

ed
 p

ro
ce

ss
 (n

o
in

pu
t r

eq
ui

re
d)

 /
p
r
o
g
r
a
m
s
/
o
u
t
p
u
t
T
e
s
t

St
or

ed
 p

ro
ce

ss
 (i

np
ut

 re
qu

ire
d)

 /
p
r
o
g
r
a
m
s
/

i
o
T
e
s
t

G
en

er
at

ed
 W

eb
 s

er
vi

ce
 o

ut
pu

tT
es

tW
S

co
nt

ai
ns

st

or
ed

 p
ro

ce
ss

 /
p
r
o
g
r
a
m
s
/
o
u
t
p
u
t
T
e
s
t

En
dp

oi
nt

h
t
t
p
:
/
/
h
o
s
t
:
p
o
r
t
/
S
A
S
B
I
W
S
/
r
e
s
t
/

s
t
o
r
e
d
P
r
o
c
e
s
s
e
s
/
p
r
o
g
r
a
m
s
/

o
u
t
p
u
t
T
e
s
t
/
s
t
r
e
a
m
s
/
s
t
r
O
u
t

h
t
t
p
:
/
/
h
o
s
t
:
p
o
r
t
/
S
A
S
B
I
W
S
/
r
e
s
t
/

s
t
o
r
e
d
P
r
o
c
e
s
s
e
s
/
p
r
o
g
r
a
m
s
/

i
o
T
e
s
t
/
s
t
r
e
a
m
s
/
s
t
r
O
u
t

h
t
t
p
:
/
/
h
o
s
t
:
p
o
r
t
/
S
A
S
B
I
W
S
/
r
e
s
t
/

o
u
t
p
u
t
T
e
s
t
W
S
/
o
u
t
p
u
t
T
e
s
t
/

s
t
r
e
a
m
s
/
s
t
r
O
u
t

Sa
m

pl
e

re
sp

on
se

HT
TP
/1
.1
 2
00
 O
K

Co
nt
en
t-
Ty
pe
:
te

xt
/x
ml

;c
ha
rs

et
=u

tf
-8

<s
tr
ea
mO
ut
pu
t>
co

nt
en
ts

</
st
re

am
Ou

tp
ut

>

A
cc

es
si

ng
 a

 d
at

a
ta

rg
et

 n
am

ed
 p
d
f
O
u
t

 th
at

 re
tu

rn
s a

 P
D

F
(b

in
ar

y
da

ta
)

En
dp

oi
nt

h
t
t
p
:
/
/
h
o
s
t
:
p
o
r
t
/
S
A
S
B
I
W
S
/
r
e
s
t
/

s
t
o
r
e
d
P
r
o
c
e
s
s
e
s
/
p
r
o
g
r
a
m
s
/

o
u
t
p
u
t
T
e
s
t
/
s
t
r
e
a
m
s
/
p
d
f
O
u
t

h
t
t
p
:
/
/
h
o
s
t
:
p
o
r
t
/
S
A
S
B
I
W
S
/
r
e
s
t
/

s
t
o
r
e
d
P
r
o
c
e
s
s
e
s
/
p
r
o
g
r
a
m
s
/

i
o
T
e
s
t
/
s
t
r
e
a
m
s
/
p
d
f
O
u
t

h
t
t
p
:
/
/
h
o
s
t
:
p
o
r
t
/
S
A
S
B
I
W
S
/
r
e
s
t
/

o
u
t
p
u
t
T
e
s
t
W
S
/
o
u
t
p
u
t
T
e
s
t
/

s
t
r
e
a
m
s
/
p
d
f
O
u
t

Sa
m

pl
e

re
sp

on
se

HT
TP
/1
.1
 2
00
 O
K

Co
nt
en
t-
Ty
pe
:
ap

pl
ic
at

io
n/
pd

f

%P
DF
-1
.3

%Ä
åò
åë
§ó
 Ð
ÄÆ

4
0
ob
j

<<
 /
Le
ng
th
 5
 0
 R

 /
Fi
lt

er
 /
Fl

at
eD

ec
od

e
>>

st
re
am

x›
ÝŽ
7…
ïû
)x
…

A
cc

es
si

ng
 th

e
th

ird
 e

nt
ry

 in
 p

ac
ka

ge
 o

ut
pu

t w
hi

ch
 is

 a
 P

D
F

fil
e

En
dp

oi
nt

h
t
t
p
:
/
/
h
o
s
t
:
p
o
r
t
/
S
A
S
B
I
W
S
/
r
e
s
t
/

s
t
o
r
e
d
P
r
o
c
e
s
s
e
s
/
p
r
o
g
r
a
m
s
/

o
u
t
p
u
t
T
e
s
t
/
p
a
c
k
a
g
e
s
/
2

h
t
t
p
:
/
/
h
o
s
t
:
p
o
r
t
/
S
A
S
B
I
W
S
/
r
e
s
t
/

s
t
o
r
e
d
P
r
o
c
e
s
s
e
s
/
p
r
o
g
r
a
m
s
/

i
o
T
e
s
t
/
p
a
c
k
a
g
e
s
/
2

h
t
t
p
:
/
/
h
o
s
t
:
p
o
r
t
/
S
A
S
B
I
W
S
/
r
e
s
t
/

o
u
t
p
u
t
T
e
s
t
W
S
/
o
u
t
p
u
t
T
e
s
t
/

p
a
c
k
a
g
e
s
/
2

Invoking RESTful Web Services 63

St
or

ed
 p

ro
ce

ss
 (n

o
in

pu
t r

eq
ui

re
d)

 /
p
r
o
g
r
a
m
s
/
o
u
t
p
u
t
T
e
s
t

St
or

ed
 p

ro
ce

ss
 (i

np
ut

 re
qu

ire
d)

 /
p
r
o
g
r
a
m
s
/

i
o
T
e
s
t

G
en

er
at

ed
 W

eb
 s

er
vi

ce
 o

ut
pu

tT
es

tW
S

co
nt

ai
ns

st

or
ed

 p
ro

ce
ss

 /
p
r
o
g
r
a
m
s
/
o
u
t
p
u
t
T
e
s
t

Sa
m

pl
e

re
sp

on
se

HT
TP
/1
.1
 2
00
 O
K

Co
nt
en
t-
Ty
pe
:
ap

pl
ic
at

io
n/
pd

f

%P
DF
-1
.3

%Ä
åò
åë
§ó
 Ð
ÄÆ

4
0
ob
j

<<
 /
Le
ng
th
 5
 0
 R

 /
Fi
lt

er
 /
Fl

at
eD

ec
od

e
>>

st
re
am

x›
ÝŽ
7…
ïû
)x
…

64 Chapter 4 • Using JSON and Plain XML with RESTful Web Services

Index

Special Characters
_WEBOUT 10
_XMLSCHEMA macro 10
%STPBEGIN macro 10
%STPEND macro 10

A
attachments 29
authentication 6

C
Command parameter

Execute method 16

D
data sources 10

RequestType parameter and 11
data tables 29
data targets 29
DISCOVER_DATASOURCES request

type 12
Discover method 11

Properties parameter 14
RequestType parameter 11
Restrictions parameter 14
Result parameter 16
syntax 11

E
error codes 7
Execute method 16

Command parameter 16
Properties parameter 17
Result parameter 18
syntax 16

G
generated Web services

prerequisites for using 4
prompts with 31

generic streams 10, 29

J
Java

sample generated WSDL for 43

M
MEANS procedure 18
metadata definitions 19

O
ODS 10

P
prompts 31
Properties parameter

Discover method 14
Execute method 17

R
RequestType parameter

Discover method 11
Restrictions parameter

Discover method 14
Result parameter

Discover method 16
Execute method 18

S
SAS code

configuring as stored process 9

65

SAS Metadata Repository
retrieving information from 11

SAS programs
writing for XMLA Web services 9

security 6
stored processes

configuring SAS code as 9
invoking 21
running 16
sample MEANS procedure 18
structured Web services and 25
writing 18

STOREDPROCESS_PARAMETERS
request type 13

structured Web services 25
versus XMLA Web services 5

synchronization 3

W
Web Service Description Language File

See WSDLs

Web services 1
See also structured Web services
See also XMLA Web services
attachments with 29
creating 3
prerequisites for using 3

WSDLs 25
attachments and 29
prompts and 31
sample generated WSDL for Java 43
sample parameters 40
structured Web services versus XMLA

5

X
XML streams 10, 29
XMLA Web services 3

synchronizing items 3
versus structured Web services 5
writing SAS programs for 9

66 Index

	Contents
	What's New in SAS 9.3 BI Web Services
	Overview
	General Enhancements
	SAS Stored Process Enhancements
	Transport Type Additions

	Overview of SAS BI Web Services
	What Are SAS BI Web Services?
	Creating SAS BI Web Services
	Prerequisites
	Creating XMLA Web Services
	Creating Generated Web Services
	Accessing the Web Service Endpoint for a Stored Process

	Differences between Web Service Types
	Differences between XMLA and Structured Web Services
	Differences among XML, JSON, and SOAP Invocations

	Overview of Security for Web Services
	Understanding Error Codes
	Migrating SAS BI Web Services for .NET to SAS BI Web Services
for Java

	Writing SAS BI Web Services Using XMLA
	Writing SAS Programs for XMLA Web Services
	Discover Method
	Overview of the Discover Method
	RequestType
	Restrictions
	Properties
	Result

	Execute Method
	Overview of the Execute Method
	Command
	Properties
	Result

	Sample PROC MEANS Using SAS BI Web Services
	Sample Overview
	Write the Stored Process
	Define the Metadata
	Invoke the Stored Process

	Using Structured Web Services
	What Are Structured Web Services?
	Writing SAS Programs for Structured Web Services
	Consuming Input in SAS Programs
	Retrieving Output Values from the SAS Program

	Accessing SOAP Endpoints for Stored Processes and Generated
Web Services
	SOAP Endpoints for Stored Processes
	SOAP Endpoints for Generated Web Services

	Using Attachments with Web Services
	Using Prompts with Generated Web Services
	Sample WSDLs
	Sample Parameters
	Generated WSDL for Java

	Using JSON and Plain XML with RESTful Web Services
	What Are REST and JSON?
	REST
	RESTful Message Formats

	Supported Types of Input and Output for XML and JSON Messages
	Supported Input and Output for XML Messages
	Supported Input and Output for JSON Messages

	Accessing RESTful JSON and XML Web Service Endpoints
	Accessing RESTful Web Service Endpoints
	Accessing RESTful JSON Web Service Endpoints

	Invoking RESTful Web Services

	Index

