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Overview: MI Procedure

The MI procedure performs multiple imputation of missing data. Missing values are an issue in a
substantial number of statistical analyses. Most SAS statistical procedures exclude observations
with any missing variable values from the analysis. These observations are called incomplete cases.
Although analyzing only complete cases has the advantage of simplicity, the information contained
in the incomplete cases is lost. This approach also ignores possible systematic differences between
the complete cases and the incomplete cases, and the resulting inference might not be applicable to
the population of all cases, especially with a small number of complete cases.

Some SAS procedures use all the available cases in an analysis—that is, cases with useful information.
For example, the CORR procedure estimates a variable mean by using all cases with nonmissing
values for this variable, ignoring the possible missing values in other variables. PROC CORR also
estimates a correlation by using all cases with nonmissing values for this pair of variables. This
makes better use of the available data than using only the complete cases does, but the resulting
correlation matrix might not be positive definite.

Another strategy for handling missing data is single imputation, which substitutes a value for each
missing value. Standard statistical procedures for complete data analysis can then be used with the
filled-in data set. For example, each missing value can be imputed with the variable mean of the
complete cases, or it can be imputed with the mean conditional on observed values of other variables.
This approach treats missing values as if they were known in the complete-data analysis. However,
single imputation does not reflect the uncertainty about the predictions of the unknown missing
values, and the resulting estimated variances of the parameter estimates will be biased toward zero
(Rubin 1987, p. 13).

Instead of filling in a single value for each missing value, multiple imputation (Rubin 1976, 1987)
replaces each missing value with a set of plausible values that represent the uncertainty about the
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right value to impute. The multiply imputed data sets are then analyzed by using standard procedures
for complete data and combining the results from these analyses. No matter which complete-data
analysis is used, the process of combining results from different data sets is essentially the same.

Multiple imputation does not attempt to estimate each missing value through simulated values.
Instead, it draws a random sample of the missing values from its distribution. This process results in
valid statistical inferences that properly reflect the uncertainty due to missing values—for example,
confidence intervals with the correct probability coverage.

Multiple imputation inference involves three distinct phases:

1. The missing data are filled in m times to generate m complete data sets.

2. The m complete data sets are analyzed using standard statistical analyses.

3. The results from the m complete data sets are combined to produce inferential results.

The MI procedure creates multiply imputed data sets for incomplete multivariate data. It uses
methods that incorporate appropriate variability across the m imputations. The method of choice
depends on the patterns of missingness.

A data set with variables Y1, Y2, . . . , Yp (in that order) is said to have a monotone missing pattern
when the event that a variable Yj is missing for a particular individual implies that all subsequent
variables Yk , k > j , are missing for that individual.

For data sets with monotone missing patterns, either a parametric method that assumes multivariate
normality or a nonparametric method is appropriate to impute missing values for a continuous
variable. Parametric methods available include the regression method (Rubin 1987, pp. 166–167)
and the predictive mean matching method (Heitjan and Little 1991; Schenker and Taylor 1996). The
nonparametric method is the propensity score method (Rubin 1987, pp. 124, 158).

To impute missing values for a classification variable in data sets with monotone missing patterns,
you can use the logistic regression method when the classification variable has a binary or ordinal
response, and the discriminant function method when the classification variable has a binary or
nominal response.

For data sets with arbitrary missing patterns, a Markov chain Monte Carlo (MCMC) method (Schafer
1997) that assumes multivariate normality is used to impute all missing values or just enough missing
values for continuous variables to make the imputed data sets have monotone missing patterns. When
an imputed data set has a monotone missing pattern, methods for data sets with monotone missing
patterns can then be used to impute remaining missing values.

Once the m complete data sets are analyzed using standard SAS procedures, the MIANALYZE
procedure can be used to generate valid statistical inferences about these parameters by combining
results from the m analyses.

Often, as few as three to five imputations are adequate in multiple imputation (Rubin 1996, p. 480).
The relative efficiency of the small m imputation estimator is high for cases with little missing
information (Rubin 1987, p. 114). (Also see the section “Multiple Imputation Efficiency” on
page 4419.)

Multiple imputation inference assumes that the model (variables) you used to analyze the multiply
imputed data (the analyst’s model) is the same as the model used to impute missing values in multiple
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imputation (the imputer’s model). But in practice, the two models might not be the same. The
consequences for different scenarios (Schafer 1997, pp. 139–143) are discussed in the section
“Imputer’s Model Versus Analyst’s Model” on page 4420.

When an MCMC method is used to used to impute missing values, the trace (time series) and
autocorrelation function plots for parameters such as variable means and covariances can be displayed
to check for convergence of the MCMC method. See the section “Checking Convergence in MCMC”
on page 4412 for a detailed description of these plots. If the ODS GRAPHICS ON statement is
specified, these statistical graphics are created via the Output Delivery System (ODS). Otherwise,
the traditional graphics are created.

Getting Started: MI Procedure

Consider the following Fitness data set that has been altered to contain an arbitrary pattern of
missingness:

*----------------- Data on Physical Fitness -----------------*
| These measurements were made on men involved in a physical |
| fitness course at N.C. State University. |
| Only selected variables of |
| Oxygen (oxygen intake, ml per kg body weight per minute), |
| Runtime (time to run 1.5 miles in minutes), and |
| RunPulse (heart rate while running) are used. |
| Certain values were changed to missing for the analysis. |

*------------------------------------------------------------*;
data FitMiss;

input Oxygen RunTime RunPulse @@;
datalines;

44.609 11.37 178 45.313 10.07 185
54.297 8.65 156 59.571 . .
49.874 9.22 . 44.811 11.63 176
. 11.95 176 . 10.85 .

39.442 13.08 174 60.055 8.63 170
50.541 . . 37.388 14.03 186
44.754 11.12 176 47.273 . .
51.855 10.33 166 49.156 8.95 180
40.836 10.95 168 46.672 10.00 .
46.774 10.25 . 50.388 10.08 168
39.407 12.63 174 46.080 11.17 156
45.441 9.63 164 . 8.92 .
45.118 11.08 . 39.203 12.88 168
45.790 10.47 186 50.545 9.93 148
48.673 9.40 186 47.920 11.50 170
47.467 10.50 170
;

Suppose that the data are multivariate normally distributed and the missing data are missing at
random (MAR). That is, the probability that an observation is missing can depend on the observed
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variable values of the individual, but not on the missing variable values of the individual. See the
section “Statistical Assumptions for Multiple Imputation” on page 4395 for a detailed description of
the MAR assumption.

The following statements invoke the MI procedure and impute missing values for the FitMiss data
set:

proc mi data=FitMiss seed=501213 mu0=50 10 180 out=outmi;
var Oxygen RunTime RunPulse;

run;

The “Model Information” table in Figure 54.1 describes the method used in the multiple imputation
process. By default, the procedure uses the Markov chain Monte Carlo (MCMC) method with a
single chain to create five imputations. The posterior mode, the highest observed-data posterior
density, with a noninformative prior, is computed from the expectation-maximization (EM) algorithm
and is used as the starting value for the chain.

Figure 54.1 Model Information

The MI Procedure

Model Information

Data Set WORK.FITMISS
Method MCMC
Multiple Imputation Chain Single Chain
Initial Estimates for MCMC EM Posterior Mode
Start Starting Value
Prior Jeffreys
Number of Imputations 5
Number of Burn-in Iterations 200
Number of Iterations 100
Seed for random number generator 501213

The MI procedure takes 200 burn-in iterations before the first imputation and 100 iterations between
imputations. In a Markov chain, the information in the current iteration influences the state of the
next iteration. The burn-in iterations are iterations in the beginning of each chain that are used both
to eliminate the series of dependence on the starting value of the chain and to achieve the stationary
distribution. The between-imputation iterations in a single chain are used to eliminate the series of
dependence between the two imputations.

The “Missing Data Patterns” table in Figure 54.2 lists distinct missing data patterns with correspond-
ing frequencies and percents. Here, an “X” means that the variable is observed in the corresponding
group and a “.” means that the variable is missing. The table also displays group-specific variable
means. The MI procedure sorts the data into groups based on whether the analysis variables are
observed or missing. For a detailed description of missing data patterns, see the section “Missing
Data Patterns” on page 4396.
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Figure 54.2 Missing Data Patterns

Missing Data Patterns

Run Run
Group Oxygen Time Pulse Freq Percent

1 X X X 21 67.74
2 X X . 4 12.90
3 X . . 3 9.68
4 . X X 1 3.23
5 . X . 2 6.45

Missing Data Patterns

-----------------Group Means----------------
Group Oxygen RunTime RunPulse

1 46.353810 10.809524 171.666667
2 47.109500 10.137500 .
3 52.461667 . .
4 . 11.950000 176.000000
5 . 9.885000 .

After the completion of m imputations, the “Variance Information” table in Figure 54.3 displays
the between-imputation variance, within-imputation variance, and total variance for combining
complete-data inferences. It also displays the degrees of freedom for the total variance. The relative
increase in variance due to missing values, the fraction of missing information, and the relative
efficiency (in units of variance) for each variable are also displayed. A detailed description of these
statistics is provided in the section “Combining Inferences from Multiply Imputed Data Sets” on
page 4418.

Figure 54.3 Variance Information

Variance Information

-----------------Variance-----------------
Variable Between Within Total DF

Oxygen 0.056930 0.954041 1.022356 25.549
RunTime 0.000811 0.064496 0.065469 27.721
RunPulse 0.922032 3.269089 4.375528 15.753

Variance Information

Relative Fraction
Increase Missing Relative

Variable in Variance Information Efficiency

Oxygen 0.071606 0.068898 0.986408
RunTime 0.015084 0.014968 0.997015
RunPulse 0.338455 0.275664 0.947748
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The “Parameter Estimates” table in Figure 54.4 displays the estimated mean and standard error of the
mean for each variable. The inferences are based on the t distribution. The table also displays a 95%
confidence interval for the mean and a t statistic with the associated p-value for the hypothesis that
the population mean is equal to the value specified with the MU0= option. A detailed description of
these statistics is provided in the section “Combining Inferences from Multiply Imputed Data Sets”
on page 4418.

Figure 54.4 Parameter Estimates

Parameter Estimates

Variable Mean Std Error 95% Confidence Limits DF

Oxygen 47.094040 1.011116 45.0139 49.1742 25.549
RunTime 10.572073 0.255870 10.0477 11.0964 27.721
RunPulse 171.787793 2.091776 167.3478 176.2278 15.753

Parameter Estimates

t for H0:
Variable Minimum Maximum Mu0 Mean=Mu0 Pr > |t|

Oxygen 46.783898 47.395550 50.000000 -2.87 0.0081
RunTime 10.526392 10.599616 10.000000 2.24 0.0336
RunPulse 170.774818 173.122002 180.000000 -3.93 0.0012

In addition to the output tables, the procedure also creates a data set with imputed values. The
imputed data sets are stored in the outmi data set, with the index variable _Imputation_ indicating the
imputation numbers. The data set can now be analyzed using standard statistical procedures with
_Imputation_ as a BY variable.

The following statements list the first 10 observations of data set outmi:

proc print data=outmi (obs=10);
title 'First 10 Observations of the Imputed Data Set';

run;

The table in Figure 54.5 shows that the precision of the imputed values differs from the precision of
the observed values. You can use the ROUND= option to make the imputed values consistent with
the observed values.
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Figure 54.5 Imputed Data Set

First 10 Observations of the Imputed Data Set

Run
Obs _Imputation_ Oxygen RunTime Pulse

1 1 44.6090 11.3700 178.000
2 1 45.3130 10.0700 185.000
3 1 54.2970 8.6500 156.000
4 1 59.5710 8.0747 155.925
5 1 49.8740 9.2200 176.837
6 1 44.8110 11.6300 176.000
7 1 42.8857 11.9500 176.000
8 1 46.9992 10.8500 173.099
9 1 39.4420 13.0800 174.000
10 1 60.0550 8.6300 170.000

Syntax: MI Procedure

The following statements are available in PROC MI:

PROC MI < options > ;
BY variables ;
CLASS variables ;
EM < options > ;
FREQ variable ;
MCMC < options > ;
MONOTONE < options > ;
TRANSFORM transform ( variables < / options >) < . . . transform ( variables < / options >)

> ;
VAR variables ;

The BY statement specifies groups in which separate multiple imputation analyses are performed.

The CLASS statement lists the classification variables in the VAR statement. Classification variables
can be either character or numeric.

The EM statement uses the EM algorithm to compute the maximum likelihood estimate (MLE) of
the data with missing values, assuming a multivariate normal distribution for the data.

The FREQ statement specifies the variable that represents the frequency of occurrence for other
values in the observation.

The MCMC statement uses a Markov chain Monte Carlo method to impute values for a data set with
an arbitrary missing pattern, assuming a multivariate normal distribution for the data.

The MONOTONE statement specifies monotone methods to impute continuous and classification
variables for a data set with a monotone missing pattern. Note that you can use either an MCMC
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statement or a MONOTONE statement, but not both. When neither of these two statements is
specified, the MCMC method with its default options is used.

The TRANSFORM statement lists the variables to be transformed before the imputation process.
The imputed values of these transformed variables are reverse-transformed to the original forms
before the imputation.

The VAR statement lists the numeric variables to be analyzed. If you omit the VAR statement, all
numeric variables not listed in other statements are used.

The PROC MI statement is the only required statement for the MI procedure. The rest of this section
provides detailed syntax information for each of these statements, beginning with the PROC MI
statement. The remaining statements are presented in alphabetical order.

PROC MI Statement

PROC MI < options > ;

Table 54.1 summarizes the options available in the PROC MI statement.

Table 54.1 Summary of PROC MI Options

Option Description

Data Sets
DATA= Specifies the input data set
OUT= Specifies the output data set with imputed values

Imputation Details
NIMPUTE= Specifies the number of imputations
SEED= Specifies the seed to begin random number generator
ROUND= Specifies units to round imputed variable values
MAXIMUM= Specifies maximum values for imputed variable values
MINIMUM= Specifies minimum values for imputed variable values
MINMAXITER= Specifies the maximum number of iterations to impute values in the specified range
SINGULAR= Specifies the singularity criterion

Statistical Analysis
ALPHA= Specifies the level for the confidence interval, .1 � ˛/
MU0= Specifies means under the null hypothesis

Printed Output
NOPRINT Suppresses all displayed output
SIMPLE Displays univariate statistics and correlations
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The following options can be used in the PROC MI statement. They are listed in alphabetical order.

ALPHA=˛
specifies that confidence limits be constructed for the mean estimates with confidence level
100.1 � ˛/%, where 0 < ˛ < 1. The default is ALPHA=0.05.

DATA=SAS-data-set
names the SAS data set to be analyzed by PROC MI. By default, the procedure uses the most
recently created SAS data set.

MAXIMUM=numbers
specifies maximum values for imputed variables. When an intended imputed value is greater
than the maximum, PROC MI redraws another value for imputation. If only one number is
specified, that number is used for all variables. If more than one number is specified, you
must use a VAR statement, and the specified numbers must correspond to variables in the
VAR statement. The default number is a missing value, which indicates no restriction on the
maximum for the corresponding variable

The MAXIMUM= option is related to the MINIMUM= and ROUND= options, which are
used to make the imputed values more consistent with the observed variable values. These
options are applicable only if you use the MCMC method or the monotone regression method.

When specifying a maximum for the first variable only, you must also specify a missing value
after the maximum. Otherwise, the maximum is used for all variables.
For example, the “MAXIMUM= 100 .” option sets a maximum of 100 for the first analysis
variable only and no maximum for the remaining variables. The “MAXIMUM= . 100” option
sets a maximum of 100 for the second analysis variable only and no maximum for the other
variables.

MINIMUM=numbers
specifies the minimum values for imputed variables. When an intended imputed value is less
than the minimum, PROC MI redraws another value for imputation. If only one number is
specified, that number is used for all variables. If more than one number is specified, you
must use a VAR statement, and the specified numbers must correspond to variables in the
VAR statement. The default number is a missing value, which indicates no restriction on the
minimum for the corresponding variable

MINMAXITER=number
specifies the maximum number of iterations for imputed values to be in the specified range
when the option MINIMUM or MAXIMUM is also specified. The default is MINMAX-
ITER=100.

MU0=numbers

THETA0=numbers
specifies the parameter values �0 under the null hypothesis � D �0 for the population means
corresponding to the analysis variables. Each hypothesis is tested with a t test. If only one
number is specified, that number is used for all variables. If more than one number is specified,
you must use a VAR statement, and the specified numbers must correspond to variables in the
VAR statement. The default is MU0=0.
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If a variable is transformed as specified in a TRANSFORM statement, then the same transfor-
mation for that variable is also applied to its corresponding specified MU0= value in the t test.
If the parameter values �0 for a transformed variable are not specified, then a value of zero is
used for the resulting �0 after transformation.

NIMPUTE=number
specifies the number of imputations. The default is NIMPUTE=5. You can specify NIM-
PUTE=0 to skip the imputation. In this case, only tables of model information, missing
data patterns, descriptive statistics (SIMPLE option), and MLE from the EM algorithm (EM
statement) are displayed.

NOPRINT
suppresses the display of all output. Note that this option temporarily disables the Output
Delivery System (ODS); see Chapter 20, “Using the Output Delivery System,” for more
information.

OUT=SAS-data-set
creates an output SAS data set containing imputation results. The data set includes an index
variable, _Imputation_, to identify the imputation number. For each imputation, the data set
contains all variables in the input data set with missing values being replaced by the imputed
values. See the section “Output Data Sets” on page 4416 for a description of this data set.

ROUND=numbers
specifies the units to round variables in the imputation. If only one number is specified, that
number is used for all continuous variables. If more than one number is specified, you must use
a VAR statement, and the specified numbers must correspond to variables in the VAR statement.
When the classification variables are listed in the VAR statement, their corresponding roundoff
units are not used. The default number is a missing value, which indicates no rounding for
imputed variables.

When specifying a roundoff unit for the first variable only, you must also specify a missing
value after the roundoff unit. Otherwise, the roundoff unit is used for all variables. For example,
the option “ROUND= 10 .” sets a roundoff unit of 10 for the first analysis variable only and
no rounding for the remaining variables. The option “ROUND= . 10” sets a roundoff unit of
10 for the second analysis variable only and no rounding for other variables.

The ROUND= option sets the precision of imputed values. For example, with a roundoff unit
of 0.001, each value is rounded to the nearest multiple of 0.001. That is, each value has three
significant digits after the decimal point. See Example 54.3 for an illustration of this option.

SEED=number
specifies a positive integer to start the pseudo-random number generator. The default is a
value generated from reading the time of day from the computer’s clock. However, in order
to duplicate the results under identical situations, you must use the same value of the seed
explicitly in subsequent runs of the MI procedure.

The seed information is displayed in the “Model Information” table so that the results can be
reproduced by specifying this seed with the SEED= option. You need to specify the same seed
number in the future to reproduce the results.
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SIMPLE
displays simple descriptive univariate statistics and pairwise correlations from available
cases. For a detailed description of these statistics, see the section “Descriptive Statistics” on
page 4393.

SINGULAR=p
specifies the criterion for determining the singularity of a covariance matrix based on standard-
ized variables, where 0 < p < 1. The default is SINGULAR=1E�8.

Suppose that S is a covariance matrix and v is the number of variables in S. Based on
the spectral decomposition S D �ƒ� 0, where ƒ is a diagonal matrix of eigenvalues �j ,
j D 1; : : :, v, where �i � �j when i < j , and � is a matrix with the corresponding
orthonormal eigenvectors of S as columns, S is considered singular when an eigenvalue �j is
less than p N�, where the average N� D

Pv
kD1 �k=v.

BY Statement

BY variables ;

You can specify a BY statement with PROC MI to obtain separate analyses on observations in groups
that are defined by the BY variables. When a BY statement appears, the procedure expects the input
data set to be sorted in order of the BY variables. If you specify more than one BY statement, only
the last one specified is used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

� Sort the data by using the SORT procedure with a similar BY statement.

� Specify the NOTSORTED or DESCENDING option in the BY statement for the MI procedure.
The NOTSORTED option does not mean that the data are unsorted but rather that the data are
arranged in groups (according to values of the BY variables) and that these groups are not
necessarily in alphabetical or increasing numeric order.

� Create an index on the BY variables by using the DATASETS procedure (in Base SAS
software).

You can specify a BY statement with PROC MI to obtain separate analyses on observations in groups
defined by the BY variables. When a BY statement appears, the procedure expects the input data set
to be sorted in order of the BY variables.

If your input data set is not sorted in ascending order, use one of the following alternatives:

� Sort the data by using the SORT procedure with a similar BY statement.

� Specify the BY statement option NOTSORTED or DESCENDING in the BY statement for
the MI procedure. The NOTSORTED option does not mean that the data are unsorted but
rather that the data are arranged in groups (according to values of the BY variables) and that
these groups are not necessarily in alphabetical or increasing numeric order.
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� Create an index on the BY variables by using the DATASETS procedure.

For more information about the BY statement, see SAS Language Reference: Concepts. For more
information about the DATASETS procedure, see the Base SAS Procedures Guide.

For more information about BY-group processing, see the discussion in SAS Language Reference:
Concepts. For more information about the DATASETS procedure, see the discussion in the Base
SAS Procedures Guide.

CLASS Statement

CLASS variables ;

The CLASS statement specifies the classification variables in the VAR statement. Classification
variables can be either character or numeric. The CLASS statement must be used in conjunction
with the MONOTONE statement.

Classification levels are determined from the formatted values of the classification variables. See
“The FORMAT Procedure” in the Base SAS Procedures Guide for details.

EM Statement

EM < options > ;

The expectation-maximization (EM) algorithm is a technique for maximum likelihood estimation in
parametric models for incomplete data. The EM statement uses the EM algorithm to compute the
MLE for .�;†/, the means and covariance matrix, of a multivariate normal distribution from the
input data set with missing values. Either the means and covariances from complete cases or the
means and standard deviations from available cases can be used as the initial estimates for the EM
algorithm. You can also specify the correlations for the estimates from available cases.

You can also use the EM statement with the NIMPUTE=0 option in the PROC MI statement to
compute the EM estimates without multiple imputation, as shown in Example 54.1.

The following seven options are available with the EM statement:

CONVERGE=p

XCONV=p
sets the convergence criterion. The value must be between 0 and 1. The iterations are
considered to have converged when the change in the parameter estimates between iteration
steps is less than p for each parameter—that is, for each of the means and covariances. For
each parameter, the change is a relative change if the parameter is greater than 0.01 in absolute
value; otherwise, it is an absolute change. By default, CONVERGE=1E�4.
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INITIAL=CC | AC | AC(R=r )
sets the initial estimates for the EM algorithm. The INITIAL=CC option uses the means
and covariances from complete cases; the INITIAL=AC option uses the means and standard
deviations from available cases and the correlations are set to zero; and the INITIAL=AC(
R= r) option uses the means and standard deviations from available cases with correlation r ,
where �1=.p � 1/ < r < 1 and p is the number of variables to be analyzed. The default is
INITIAL=AC.

ITPRINT
prints the iteration history in the EM algorithm.

MAXITER=number
specifies the maximum number of iterations used in the EM algorithm. The default is MAX-
ITER=200.

OUT=SAS-data-set
creates an output SAS data set containing results from the EM algorithm. The data set contains
all variables in the input data set, with missing values being replaced by the expected values
from the EM algorithm. See the section “Output Data Sets” on page 4416 for a description of
this data set.

OUTEM=SAS-data-set
creates an output SAS data set of TYPE=COV containing the MLE of the parameter vector
.�;†/. These estimates are computed with the EM algorithm. See the section “Output Data
Sets” on page 4416 for a description of this output data set.

OUTITER < ( options ) > =SAS-data-set
creates an output SAS data set of TYPE=COV containing parameters for each iteration. The
data set includes a variable named _Iteration_ to identify the iteration number. The parameters
in the output data set depend on the options specified. You can specify the MEAN and COV
options to output the mean and covariance parameters. When no options are specified, the
output data set contains the mean parameters for each iteration. See the section “Output Data
Sets” on page 4416 for a description of this data set.

FREQ Statement

FREQ variable ;

If one variable in your input data set represents the frequency of occurrence of other values in the
observation, specify the variable name in a FREQ statement. PROC MI then treats the data set as if
each observation appears n times, where n is the value of the FREQ variable for the observation. If
the value of the FREQ variable is less than one, the observation is not used in the analysis. Only the
integer portion of the value is used. The total number of observations is considered to be equal to the
sum of the FREQ variable when PROC MI calculates significance probabilities.
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MCMC Statement

MCMC < options > ;

The MCMC statement specifies the details of the MCMC method for imputation.

Table 54.2 summarizes the options available for the MCMC statement.

Table 54.2 Summary of Options in MCMC

Option Description

Data Sets
INEST= Inputs parameter estimates for imputations
OUTEST= Outputs parameter estimates used in imputations
OUTITER= Outputs parameter estimates used in iterations

Imputation Details
IMPUTE= Specifies monotone or full imputation
CHAIN= Specifies single or multiple chain
NBITER= Specifies the number of burn-in iterations for each chain
NITER= Specifies the number of iterations between imputations in a chain
INITIAL= Specifies initial parameter estimates for MCMC
PRIOR= Specifies the prior parameter information
START= Specifies starting parameters

ODS Output Graphics
PLOTS=TRACE Displays trace plots
PLOTS=ACF Displays autocorrelation plots

Traditional Graphics
TIMEPLOT Displays trace plots
ACFPLOT Displays autocorrelation plots
GOUT= Specifies the graphics catalog name for saving graphics output

Printed Output
WLF Displays the worst linear function
DISPLAYINIT Displays initial parameter values for MCMC

The following options are available for the MCMC statement (in alphabetical order).

ACFPLOT < ( options < / display-options > ) >
displays the traditional autocorrelation function plots of parameters from iterations. The
ACFPLOT option is applicable only if the ODS GRAPHICS ON statement is not specified.

The available options are as follows.

COV < ( < variables > < variable1*variable2 > < . . . variable1*variable2 > ) >
displays plots of variances for variables in the list and covariances for pairs of variables
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in the list. When the option COV is specified without variables, variances for all
variables and covariances for all pairs of variables are used.

MEAN < ( variables ) >
displays plots of means for variables in the list. When the option MEAN is specified
without variables, all variables are used.

WLF
displays the plot for the worst linear function.

When the ACFPLOT is specified without the preceding options, the procedure displays plots
of means for all variables that are used.

The display options provide additional information for the autocorrelation function plots. The
available display options are as follows:

CCONF=color
specifies the color of the displayed confidence limits. The default is CCONF=BLACK.

CFRAME=color
specifies the color for filling the area enclosed by the axes and the frame. By default,
this area is not filled.

CNEEDLES=color
specifies the color of the vertical line segments (needles) that connect autocorrelations
to the reference line. The default is CNEEDLES=BLACK.

CREF=color
specifies the color of the displayed reference line. The default is CREF=BLACK.

CSYMBOL=color
specifies the color of the displayed data points. The default is CSYMBOL=BLACK.

HSYMBOL=number
specifies the height of data points in percentage screen units. The default is HSYM-
BOL=1.

LCONF=linetype
specifies the line type for the displayed confidence limits. The default is LCONF=1, a
solid line.

LOG
requests that the logarithmic transformations of parameters be used to compute the
autocorrelations; it is generally used for the variances of variables. When a parameter
has values less than or equal to zero, the corresponding plot is not created.

LREF=linetype
specifies the line type for the displayed reference line. The default is LREF=3, a dashed
line.

NAME=’string’
specifies a descriptive name, up to eight characters, that appears in the name field of the
PROC GREPLAY master menu. The default is NAME=’MI’.

NLAG=number
specifies the maximum lag of the series. The default is NLAG=20. The autocorrelations
at each lag are displayed in the graph.
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SYMBOL=value
specifies the symbol for data points in percentage screen units. The default is SYM-
BOL=STAR.

TITLE=’string’
specifies the title to be displayed in the autocorrelation function plots. The default is
TITLE=’Autocorrelation Plot’.

WCONF=number
specifies the width of the displayed confidence limits in percentage screen units. If you
specify the WCONF=0 option, the confidence limits are not displayed. The default is
WCONF=1.

WNEEDLES=number
specifies the width of the displayed needles that connect autocorrelations to the reference
line, in percentage screen units. If you specify the WNEEDLES=0 option, the needles
are not displayed. The default is WNEEDLES=1.

WREF=number
specifies the width of the displayed reference line in percentage screen units. If you
specify the WREF=0 option, the reference line is not displayed. The default is WREF=1.

For example, the following statement requests autocorrelation function plots for the
means and variances of the variable y1, respectively:

acfplot( mean( y1) cov(y1) /log);

Logarithmic transformations of both the means and variances are used in the plots. For a
detailed description of the autocorrelation function plot, see the section “Autocorrelation
Function Plot” on page 4414; see also Schafer (1997, pp. 120–126) and the SAS/ETS
User’s Guide.

CHAIN=SINGLE | MULTIPLE
specifies whether a single chain is used for all imputations or a separate chain is used for each
imputation. The default is CHAIN=SINGLE.

DISPLAYINIT
displays initial parameter values in the MCMC method for each imputation.

GOUT=graphics-catalog
specifies the graphics catalog for saving graphics output from PROC MI. The default is
WORK.GSEG. For more information, see “The GREPLAY Procedure” in SAS/GRAPH Soft-
ware: Reference.

IMPUTE=FULL | MONOTONE
specifies whether a full-data imputation is used for all missing values or a monotone-data
imputation is used for a subset of missing values to make the imputed data sets have a monotone
missing pattern. The default is IMPUTE=FULL. When IMPUTE=MONOTONE is specified,
the order in the VAR statement is used to complete the monotone pattern.

INEST=SAS-data-set
names a SAS data set of TYPE=EST containing parameter estimates for imputations. These
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estimates are used to impute values for observations in the DATA= data set. A detailed
description of the data set is provided in the section “Input Data Sets” on page 4414.

INITIAL=EM < (options) >

INITIAL=INPUT=SAS-data-set
specifies the initial mean and covariance estimates for the MCMC method. The default is
INITIAL=EM.

You can specify INITIAL=INPUT=SAS-data-set to read the initial estimates of the mean and
covariance matrix for each imputation from a SAS data set. See the section “Input Data Sets”
on page 4414 for a description of this data set.

With INITIAL=EM, PROC MI derives parameter estimates for a posterior mode, the highest
observed-data posterior density, from the EM algorithm. The MLE from the EM algorithm is
used to start the EM algorithm for the posterior mode, and the resulting EM estimates are used
to begin the MCMC method. The prior information specified in the PRIOR= option is also
used in the process to compute the posterior mode.

The following four options are available with INITIAL=EM:

BOOTSTRAP < =number >
requests bootstrap resampling, which uses a simple random sample with replacement
from the input data set for the initial estimate. You can explicitly specify the number of
observations in the random sample. Alternatively, you can implicitly specify the number
of observations in the random sample by specifying the proportion p; 0 < p <D 1, to
request Œnp� observations in the random sample, where n is the number of observations
in the data set and Œnp� is the integer part of np. This produces an overdispersed initial
estimate that provides different starting values for the MCMC method. If you specify
the BOOTSTRAP option without the number, p=0.75 is used by default.

CONVERGE=p

XCONV=p
sets the convergence criterion. The value must be between 0 and 1. The iterations are
considered to have converged when the change in the parameter estimates between
iteration steps is less than p for each parameter—that is, for each of the means and
covariances. For each parameter, the change is a relative change if the parameter is
greater than 0.01 in absolute value; otherwise, it is an absolute change. By default,
CONVERGE=1E�4.

ITPRINT
prints the iteration history in the EM algorithm for the posterior mode.

MAXITER=number
specifies the maximum number of iterations used in the EM algorithm. The default is
MAXITER=200.

NBITER=number
specifies the number of burn-in iterations before the first imputation in each chain. The default
is NBITER=200.
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NITER=number
specifies the number of iterations between imputations in a single chain. The default is
NITER=100.

OUTEST=SAS-data-set
creates an output SAS data set of TYPE=EST. The data set contains parameter estimates used
in each imputation. The data set also includes a variable named _Imputation_ to identify the
imputation number. See the section “Output Data Sets” on page 4416 for a description of this
data set.

OUTITER < ( options ) > =SAS-data-set
creates an output SAS data set of TYPE=COV containing parameters used in the imputation
step for each iteration. The data set includes variables named _Imputation_ and _Iteration_ to
identify the imputation number and iteration number.

The parameters in the output data set depend on the options specified. You can specify the
options MEAN, STD, COV, LR, LR_POST, and WLF to output parameters of means, standard
deviations, covariances, �2 log LR statistic, �2 log LR statistic of the posterior mode, and the
worst linear function, respectively. When no options are specified, the output data set contains
the mean parameters used in the imputation step for each iteration. See the section “Output
Data Sets” on page 4416 for a description of this data set.

PLOTS < ( LOG ) > < = plot-request >

PLOTS < ( LOG ) > < = ( plot-request < . . . plot-request > ) >
requests statistical graphics via the Output Delivery System (ODS). To request these graphs,
you must specify the ODS GRAPHICS ON statement in addition to the following options
in the MCMC statement. For more information about the ODS GRAPHICS statement, see
Chapter 21, “Statistical Graphics Using ODS.”

The global plot option LOG requests that the logarithmic transformations of parameters be
used. The plot request options include the following:

ACF < ( acf-options ) >
displays plots of the autocorrelation function of parameters from iterations. The default
is ACF( MEAN).

ALL
produces all appropriate plots.

NONE
suppresses all plots.

TRACE < ( trace-options ) >
displays trace plots of parameters from iterations. The default is TRACE( MEAN).

The available acf-options are as follows:

NLAG=n
specifies the maximum lag of the series. The default is NLAG=20. The autocorrelations
at each lag are displayed in the graph.
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COV < ( < variables > < variable1*variable2 > < ...variable1*variable2 > ) >

displays plots of variances for variables in the list and covariances for pairs of variables
in the list. When the option COV is specified without variables, variances for all
variables and covariances for all pairs of variables are used.

MEAN < ( variables ) >
displays plots of means for variables in the list. When the option MEAN is specified
without variables, all variables are used.

WLF
displays the plot for the worst linear function.

The available trace-options are as follows:

COV < ( < variables > < variable1*variable2 > < ...variable1*variable2 > ) >

displays plots of variances for variables in the list and covariances for pairs of variables
in the list. When the option COV is specified without variables, variances for all
variables and covariances for all pairs of variables are used.

MEAN < ( variables ) >
displays plots of means for variables in the list. When the option MEAN is specified
without variables, all variables are used.

WLF
displays the plot of the worst linear function.

PRIOR=name
specifies the prior information for the means and covariances. Valid values for name are as
follows:

JEFFREYS specifies a noninformative prior.

RIDGE=number specifies a ridge prior.

INPUT=SAS-data-set specifies a data set containing prior information.

For a detailed description of the prior information, see the section “Bayesian Estimation of
the Mean Vector and Covariance Matrix” on page 4406 and the section “Posterior Step” on
page 4407. If you do not specify the PRIOR= option, the default is PRIOR=JEFFREYS.

The PRIOR=INPUT= option specifies a TYPE=COV data set from which the prior information
of the mean vector and the covariance matrix is read. See the section “Input Data Sets” on
page 4414 for a description of this data set.

START=VALUE | DIST
specifies that the initial parameter estimates are used either as the starting value
(START=VALUE) or as the starting distribution (START=DIST) in the first imputation
step of each chain. If the IMPUTE=MONOTONE option is specified, then START=VALUE is
used in the procedure. The default is START=VALUE.
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TIMEPLOT < ( options < / display-options > ) >
displays the traditional trace (time series) plots of parameters from iterations. The TIMEPLOT
option is applicable only if the ODS GRAPHICS ON statement is not specified.

The available options are as follows:

COV < ( < variables > < variable1*variable2 > < . . . variable1*variable2 > ) >
displays plots of variances for variables in the list and covariances for pairs of variables
in the list. When the option COV is specified without variables, variances for all
variables and covariances for all pairs of variables are used.

MEAN < ( variables ) >
displays plots of means for variables in the list. When the option MEAN is specified
without variables, all variables are used.

WLF
displays the plot of the worst linear function.

When the TIMEPLOT is specified without the preceding options, the procedure displays plots
of means for all variables that are used.

The display options provide additional information for the trace plots. The available display
options are as follows:

CCONNECT=color
specifies the color of the line segments that connect data points in the trace plots. The
default is CCONNECT=BLACK.

CFRAME=color
specifies the color for filling the area enclosed by the axes and the frame. By default,
this area is not filled.

CSYMBOL=color
specifies the color of the data points to be displayed in the trace plots. The default is
CSYMBOL=BLACK.

HSYMBOL=number
specifies the height of data points in percentage screen units. The default is HSYM-
BOL=1.

LCONNECT=linetype
specifies the line type for the line segments that connect data points in the trace plots.
The default is LCONNECT=1, a solid line.

LOG
requests that the logarithmic transformations of parameters be used; it is generally used
for the variances of variables. When a parameter value is less than or equal to zero, the
value is not displayed in the corresponding plot.

NAME=’string’
specifies a descriptive name, up to eight characters, that appears in the name field of the
PROC GREPLAY master menu. The default is NAME=’MI’.
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SYMBOL=value
specifies the symbol for data points in percentage screen units. The default is SYM-
BOL=PLUS.

TITLE=’string’
specifies the title to be displayed in the trace plots. The default is TITLE=’Trace Plot’.

WCONNECT=number
specifies the width of the line segments that connect data points in the trace plots, in
percentage screen units. If you specify the WCONNECT=0 option, the data points are
not connected. The default is WCONNECT=1.

For a detailed description of the trace plot, see the section “Trace Plot” on page 4413 and
Schafer (1997, pp. 120–126).

WLF
displays the worst linear function of parameters. This scalar function of parameters � and† is
“worst” in the sense that its values from iterations converge most slowly among parameters. For
a detailed description of this statistic, see the section “Worst Linear Function of Parameters”
on page 4412.

MONOTONE Statement

MONOTONE < method < ( < imputed < = effects > > < / options > ) > > < . . . method < ( <
imputed < = effects > > < / options > ) > > ;

The MONOTONE statement specifies imputation methods for data sets with monotone missingness.
You must also specify a VAR statement, and the data set must have a monotone missing pattern with
variables ordered in the VAR list. When both MONOTONE and MCMC statements are specified,
the MONOTONE statement is not used.

For each method, you can specify the imputed variables and, optionally, a set of the effects to impute
these variables. Each effect is a variable or a combination of variables preceding the imputed variable
in the VAR statement. The syntax for specification of effects is the same as for the GLM procedure.
See Chapter 39, “The GLM Procedure,” for more information.

One general form of an effect involving several variables is

X1 � X2 � A � B � C . D E /

where A, B, C, D, and E are classification variables and X1 and X2 are continuous variables.

If no covariates are specified, then all preceding variables are used as the covariates. That is, each
preceding continuous variable is used as a regressor effect, and each preceding classification variable
is used as a main effect. For the discriminant function method, only the continuous variables can be
used as covariate effects.

When a method for continuous variables is specified without imputed variables, the method is used
for all continuous variables in the VAR statement that are not specified in other methods. Similarly,
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when a method for classification variables is specified without imputed variables, the method is used
for all classification variables in the VAR statement that are not specified in other methods.

When a MONOTONE statement is used without specifying any methods, the regression method is
used for all continuous variables and the discriminant function method is used for all classification
variables. The preceding variables of each imputed variable in the VAR statement are used as the
covariates.

With a MONOTONE statement, the variables are imputed sequentially in the order given by the VAR
statement. For a continuous variable, you can use a regression method, a regression predicted mean
matching method, or a propensity score method to impute missing values.

For a nominal classification variable, you can use a discriminant function method to impute missing
values without using the ordering of the class levels. For an ordinal classification variable, you can
use a logistic regression method to impute missing values by using the ordering of the class levels.
For a binary classification variable, either a discriminant function method or a logistic regression
method can be used.

Note that except for the regression method, all other methods impute values from the observed
observation values. You can specify the following methods in a MONOTONE statement.

DISCRIM < ( imputed < = effects > < = options > ) >
specifies the discriminant function method of classification variables. Only the continuous
variables are allowed as covariate effects. The available options are DETAILS, PCOV=, and
PRIOR=. The DETAILS option displays the group means and pooled covariance matrix
used in each imputation. The PCOV= option specifies the pooled covariance used in the
discriminant method. Valid values for the PCOV= option are as follows:

FIXED uses the observed-data pooled covariance matrix for each imputa-
tion.

POSTERIOR draws a pooled covariance matrix from its posterior distribution.

The default is PCOV=POSTERIOR. See the section “Discriminant Function Method for
Monotone Missing Data” on page 4401 for a detailed description of the method.

The PRIOR= option specifies the prior probabilities of group membership. Valid values for
the PRIOR= option are as follows:

EQUAL sets the prior probabilities equal for all groups.

PROPORTIONAL sets the prior probabilities proportion to the group sample sizes.

JEFFREYS < =c > specifies a noninformative prior, 0 < c < 1. If the number c is not
specified, JEFFREYS=0.5.

RIDGE < =d > specifies a ridge prior, d > 0. If the number d is not specified,
RIDGE=0.25.

The default is PRIOR=JEFFREYS. See the section “Discriminant Function Method for Mono-
tone Missing Data” on page 4401 for a detailed description of the method.
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LOGISTIC < ( imputed < = effects > < = options > ) >
specifies the logistic regression method of classification variables. The available options are
DETAILS, ORDER=, and DESCENDING. The DETAILS option displays the regression
coefficients in the logistic regression model used in each imputation.

When the imputed variable has more than two response levels, the ordinal logistic regression
method is used. The ORDER= option specifies the sorting order for the levels of the response
variable. Valid values for the ORDER= option are as follows:

DATA sorts by the order of appearance in the input data set.

FORMATTED sorts by their external formatted values.

FREQ sorts by the descending frequency counts.

INTERNAL sorts by the unformatted values.

By default, ORDER=FORMATTED.

The option DESCENDING reverses the sorting order for the levels of the response variables.

See the section “Logistic Regression Method for Monotone Missing Data” on page 4403 for a
detailed description of the method.

PROPENSITY < ( imputed < = effects > < = options > ) >
specifies the propensity scores method of variables. Each variable is either a classification
variable or a continuous variable. The available options are DETAILS and NGROUPS=.
The DETAILS option displays the regression coefficients in the logistic regression model for
propensity scores. The NGROUPS= option specifies the number of groups created based on
propensity scores. The default is NGROUPS=5.

See the section “Propensity Score Method for Monotone Missing Data” on page 4400 for a
detailed description of the method.

REG | REGRESSION < ( imputed < = effects > < = DETAILS > ) >
specifies the regression method of continuous variables. The DETAILS option displays the
regression coefficients in the regression model used in each imputation.

With a regression method, the MAXIMUM=, MINIMUM=, and ROUND= options can be
used to make the imputed values more consistent with the observed variable values.

See the section “Regression Method for Monotone Missing Data” on page 4398 for a detailed
description of the method.

REGPMM < ( imputed < = effects > < options > ) >
REGPREDMEANMATCH < ( imputed < = effects > < options > ) >

specifies the predictive mean matching method for continuous variables. This method is
similar to the regression method except that it imputes a value randomly from a set of observed
values whose predicted values are closest to the predicted value for the missing value from the
simulated regression model (Heitjan and Little 1991; Schenker and Taylor 1996).

The available options are DETAILS and K=. The DETAILS option displays the regression
coefficients in the regression model used in each imputation. The K= option specifies the
number of closest observations to be used in the selection. The default is K=5.
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See the section “Predictive Mean Matching Method for Monotone Missing Data” on page 4399
for a detailed description of the method.

With a MONOTONE statement, the missing values of a variable are imputed when the variable is
either explicitly specified in the method or implicitly specified when a method is specified without
imputed variables. These variables are imputed sequentially in the order specified in the VAR
statement. For example, the following MI procedure statements use the logistic regression method to
impute variable c1 from effects y1, y2, and y1 � y2 first, and then use the regression method to impute
variable y3 from effects y1, y2, and c1:

proc mi;
class c1;
var y1 y2 c1 y3;
monotone reg(y3= y1 y2 c1) logistic(c1= y1 y2 y1*y2);

run;

The variables y1 and y2 are not imputed since y1 is the leading variable in the VAR statement and y2
is not specified as an imputed variable in the MONOTONE statement.

TRANSFORM Statement

TRANSFORM transform ( variables < / options >) < . . . transform ( variables < / options >) > ;

The TRANSFORM statement lists the transformations and their associated variables to be trans-
formed. The options are transformation options that provide additional information for the transfor-
mation.

The MI procedure assumes that the data are from a multivariate normal distribution when either the
regression method or the MCMC method is used. When some variables in a data set are clearly non-
normal, it is useful to transform these variables to conform to the multivariate normality assumption.
With a TRANSFORM statement, variables are transformed before the imputation process, and these
transformed variable values are displayed in all of the results. When you specify an OUT= option,
the variable values are back-transformed to create the imputed data set.

The following transformations can be used in the TRANSFORM statement:

BOXCOX
specifies the Box-Cox transformation of variables. The variable Y is transformed to .YCc/��1

�
,

where c is a constant such that each value of YC c must be positive. If the specified constant
� D 0, the logarithmic transformation is used.

EXP
specifies the exponential transformation of variables. The variable Y is transformed to e.YCc/,
where c is a constant.

LOG
specifies the logarithmic transformation of variables. The variable Y is transformed to log.YC
c/, where c is a constant such that each value of YC c must be positive.
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LOGIT
specifies the logit transformation of variables. The variable Y is transformed to log. Y=c

1�Y=c /,
where the constant c > 0 and the values of Y=c must be between 0 and 1.

POWER
specifies the power transformation of variables. The variable Y is transformed to .YC c/�,
where c is a constant such that each value of YC c must be positive and the constant � ¤ 0.

The following options provide the constant c and � values in the transformations.

C=number
specifies the c value in the transformation. The default is c D 1 for logit transformation and
c D 0 for other transformations.

LAMBDA=number
specifies the � value in the power and Box-Cox transformations. You must specify the � value
for these two transformations.

For example, the following statement requests that variables log.y1/, a logarithmic transforma-
tion for the variable y1, and

p
y2C 1, a power transformation for the variable y2, be used in

the imputation:

transform log(y1) power(y2/c=1 lambda=.5);

If the MU0= option is used to specify a parameter value �0 for a transformed variable, the
same transformation for the variable is also applied to its corresponding MU0= value in the t
test. Otherwise, �0 D 0 is used for the transformed variable. See Example 54.10 for a usage
of the TRANSFORM statement.

VAR Statement

VAR variables ;

The VAR statement lists the variables to be analyzed. The variables can be either character or numeric.
If you omit the VAR statement, all continuous variables not mentioned in other statements are used.
The VAR statement is required if you specify a MONOTONE statement, an IMPUTE=MONOTONE
option in the MCMC statement, or more than one number in the MU0=, MAXIMUM=, MINIMUM=,
or ROUND= option.

The character variables are allowed only when they are specified as CLASS variables and the
MONOTONE statement is also specified.
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Details: MI Procedure

Descriptive Statistics

Suppose Y D .y1; y2; : : : ; yn/
0

is the .n�p/ matrix of complete data, which might not be fully
observed, n0 is the number of observations fully observed, and nj is the number of observations
with observed values for variable Yj .

With complete cases, the sample mean vector is

y D
1

n0

X
yi

and the CSSCP matrix isX
.yi � y/.yi � y/

0

where each summation is over the fully observed observations.

The sample covariance matrix is

S D
1

n0 � 1

X
.yi � y/.yi � y/

0

and is an unbiased estimate of the covariance matrix.

The correlation matrix R containing the Pearson product-moment correlations of the variables is
derived by scaling the corresponding covariance matrix:

R D D�1S D�1

where D is a diagonal matrix whose diagonal elements are the square roots of the diagonal elements
of S.

With available cases, the corrected sum of squares for variable Yj isX
.yj i � yj /

2

where yj D
1
nj

P
yj i is the sample mean and each summation is over observations with observed

values for variable Yj .

The variance is

s2jj D
1

nj � 1

X
.yj i � yj /

2

The correlations for available cases contain pairwise correlations for each pair of variables. Each
correlation is computed from all observations that have nonmissing values for the corresponding pair
of variables.
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EM Algorithm for Data with Missing Values

The EM algorithm (Dempster, Laird, and Rubin 1977) is a technique that finds maximum likelihood
estimates in parametric models for incomplete data. The books by Little and Rubin (2002), Schafer
(1997), and McLachlan and Krishnan (1997) provide a detailed description and applications of the
EM algorithm.

The EM algorithm is an iterative procedure that finds the MLE of the parameter vector by repeating
the following steps:

1. The expectation E-step
Given a set of parameter estimates, such as a mean vector and covariance matrix for a multivariate
normal distribution, the E-step calculates the conditional expectation of the complete-data log
likelihood given the observed data and the parameter estimates.

2. The maximization M-step
Given a complete-data log likelihood, the M-step finds the parameter estimates to maximize the
complete-data log likelihood from the E-step.

The two steps are iterated until the iterations converge.

In the EM process, the observed-data log likelihood is nondecreasing at each iteration. For multivari-
ate normal data, suppose there are G groups with distinct missing patterns. Then the observed-data
log likelihood being maximized can be expressed as

logL.� jYobs/ D
GX
gD1

logLg.�jYobs/

where logLg.�jYobs/ is the observed-data log likelihood from the gth group, and

logLg.�jYobs/ D �
ng

2
log j†g j �

1

2

X
ig

.yig � �g/0†g�1.yig � �g/

where ng is the number of observations in the gth group, the summation is over observations in
the gth group, yig is a vector of observed values corresponding to observed variables, �g is the
corresponding mean vector, and †g is the associated covariance matrix.

A sample covariance matrix is computed at each step of the EM algorithm. If the covariance matrix
is singular, the linearly dependent variables for the observed data are excluded from the likelihood
function. That is, for each observation with linear dependency among its observed variables, the
dependent variables are excluded from the likelihood function. Note that this can result in an
unexpected change in the likelihood between iterations prior to the final convergence.

See Schafer (1997, pp. 163–181) for a detailed description of the EM algorithm for multivariate
normal data.

PROC MI uses the means and standard deviations from available cases as the initial estimates for
the EM algorithm. The correlations are set to zero. These initial estimates provide a good starting
value with positive definite covariance matrix. For a discussion of suggested starting values for the
algorithm, see Schafer (1997, p. 169).
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You can specify the convergence criterion with the CONVERGE= option in the EM statement. The
iterations are considered to have converged when the maximum change in the parameter estimates
between iteration steps is less than the value specified. You can also specify the maximum number
of iterations used in the EM algorithm with the MAXITER= option.

The MI procedure displays tables of the initial parameter estimates used to begin the EM process and
the MLE parameter estimates derived from EM. You can also display the EM iteration history with
the ITPRINT option. PROC MI lists the iteration number, the likelihood �2 log L, and the parameter
values � at each iteration. You can also save the MLE derived from the EM algorithm in a SAS data
set by specifying the OUTEM= option.

Statistical Assumptions for Multiple Imputation

The MI procedure assumes that the data are from a continuous multivariate distribution and contain
missing values that can occur for any of the variables. It also assumes that the data are from a
multivariate normal distribution when either the regression method or the MCMC method is used.

Suppose Y is the n�p matrix of complete data, which is not fully observed, and denote the observed
part of Y by Yobs and the missing part by Ymis . The MI and MIANALYZE procedures assume that
the missing data are missing at random (MAR); that is, the probability that an observation is missing
can depend on Yobs , but not on Ymis (Rubin 1976; 1987, p. 53).

To be more precise, suppose that R is the n�p matrix of response indicators whose elements are
zero or one depending on whether the corresponding elements of Y are missing or observed. Then
the MAR assumption is that the distribution of R can depend on Yobs but not on Ymis:

pr.RjYobs; Ymis/ D pr.RjYobs/

For example, consider a trivariate data set with variables Y1 and Y2 fully observed, and a variable Y3
that has missing values. MAR assumes that the probability that Y3 is missing for an individual can
be related to the individual’s values of variables Y1 and Y2, but not to its value of Y3. On the other
hand, if a complete case and an incomplete case for Y3 with exactly the same values for variables Y1
and Y2 have systematically different values, then there exists a response bias for Y3, and MAR is
violated.

The MAR assumption is not the same as missing completely at random (MCAR), which is a special
case of MAR. Under the MCAR assumption, the missing data values are a simple random sample of
all data values; the missingness does not depend on the values of any variables in the data set.

Although the MAR assumption cannot be verified with the data and it can be questionable in some
situations, the assumption becomes more plausible as more variables are included in the imputation
model (Schafer 1997, pp. 27–28; van Buuren, Boshuizen, and Knook, 1999, p. 687).

Furthermore, the MI and MIANALYZE procedures assume that the parameters � of the data model
and the parameters � of the model for the missing-data indicators are distinct. That is, knowing the
values of � does not provide any additional information about �, and vice versa. If both the MAR
and distinctness assumptions are satisfied, the missing-data mechanism is said to be ignorable (Rubin
1987, pp. 50–54; Schafer 1997, pp. 10–11) .
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Missing Data Patterns

The MI procedure sorts the data into groups based on whether the analysis variables are observed or
missing. Note that the input data set does not need to be sorted in any order.

For example, with variables Y1, Y2, and Y3 (in that order) in a data set, up to eight groups of
observations can be formed from the data set. Figure 54.6 displays the eight groups of observations
and an unique missing pattern for each group:

Figure 54.6 Missing Data Patterns

Missing Data Patterns

Group Y1 Y2 Y3

1 X X X
2 X X .
3 X . X
4 X . .
5 . X X
6 . X .
7 . . X
8 . . .

Here, an “X” means that the variable is observed in the corresponding group and a “.” means that the
variable is missing.

The variable order is used to derive the order of the groups from the data set, and thus determines the
order of missing values in the data to be imputed. If you specify a different order of variables in the
VAR statement, then the results are different even if the other specifications remain the same.

A data set with variables Y1, Y2, . . . , Yp (in that order) is said to have a monotone missing pattern
when the event that a variable Yj is missing for a particular individual implies that all subsequent
variables Yk , k > j , are missing for that individual. Alternatively, when a variable Yj is observed
for a particular individual, it is assumed that all previous variables Yk , k < j , are also observed for
that individual.

For example, Figure 54.7 displays a data set of three variables with a monotone missing pattern.

Figure 54.7 Monotone Missing Patterns

Monotone Missing Data Patterns

Group Y1 Y2 Y3

1 X X X
2 X X .
3 X . .
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Figure 54.8 displays a data set of three variables with a non-monotone missing pattern.

Figure 54.8 Non-monotone Missing Patterns

Non-monotone Missing Data Patterns

Group Y1 Y2 Y3

1 X X X
2 X . X
3 . X .
4 . . X

A data set with an arbitrary missing pattern is a data set with either a monotone missing pattern or a
non-monotone missing pattern.

Imputation Methods

This section describes the methods for multiple imputation that are available in the MI procedure.
The method of choice depends on the pattern of missingness in the data and the type of the imputed
variable, as summarized in Table 54.3.

Table 54.3 Imputation Methods in PROC MI

Pattern of Type of Recommended Methods
Missingness Imputed Variable

Monotone Continuous � Regression
� Predicted mean matching
� Propensity score

Monotone Classification (Ordinal) � Logistic regression

Monotone Classification (Nominal) � Discriminant function method

Arbitrary Continuous �MCMC full-data imputation
�MCMC monotone-data imputation

To impute missing values for a continuous variable in data sets with monotone missing patterns,
you should use either a parametric method that assumes multivariate normality or a nonparametric
method that uses propensity scores (Rubin 1987, pp. 124, 158; Lavori, Dawson, and Shera 1995).
Parametric methods available include the regression method (Rubin 1987, pp. 166–167) and the
predictive mean matching method (Heitjan and Little 1991; Schenker and Taylor 1996).

To impute missing values for a classification variable in data sets with monotone missing patterns,
you should use the logistic regression method or the discriminant function method. Use the logistic
regression method when the classification variable has a binary or ordinal response, and use the
discriminant function method when the classification variable has a binary or nominal response.
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For continuous variables in data sets with arbitrary missing patterns, you can use the Markov chain
Monte Carlo (MCMC) method (Schafer 1997) to impute either all the missing values or just enough
missing values to make the imputed data sets have monotone missing patterns.

With a monotone missing data pattern, you have greater flexibility in your choice of imputation
models. In addition to the MCMC method, you can implement other methods, such as the regression
method, that do not use Markov chains. You can also specify a different set of covariates for each
imputed variable.

With an arbitrary missing data pattern, you can often use the MCMC method, which creates multiple
imputations by drawing simulations from a Bayesian predictive distribution for normal data. Another
way to handle a data set with an arbitrary missing data pattern is to use the MCMC approach to impute
just enough values to make the missing data pattern monotone. Then, you can use a more flexible
imputation method. This approach is described in the section “Producing Monotone Missingness
with the MCMC Method” on page 4409.

Note that all continuous variables are standardized before the imputation process and then are
transformed back to the original scale after the imputation process.

Although the regression and MCMC methods assume multivariate normality, inferences based on
multiple imputation can be robust to departures from multivariate normality if the amount of missing
information is not large, because the imputation model is effectively applied not to the entire data set
but only to its missing part (Schafer 1997, pp. 147–148).

You can also use a TRANSFORM statement to transform variables to conform to the multivariate
normality assumption. Variables are transformed before the imputation process and then are reverse-
transformed to create the imputed data set.

Li (1988) presents a theoretical argument for convergence of the MCMC method in the continuous
case and uses it to create imputations for incomplete multivariate continuous data. In practice,
however, it is not easy to check the convergence of a Markov chain, especially for a large number of
parameters. PROC MI generates statistics and plots that you can use to check for convergence of the
MCMC method. The details are described in the section “Checking Convergence in MCMC” on
page 4412.

Regression Method for Monotone Missing Data

The regression method is the default imputation method for continuous variables in a data set with a
monotone missing pattern.

In the regression method, a regression model is fitted for a continuous variable with the covariates
constructed from a set of effects. Based on the fitted regression model, a new regression model
is simulated from the posterior predictive distribution of the parameters and is used to impute the
missing values for each variable (Rubin 1987, pp. 166–167). That is, for a continuous variable Yj
with missing values, a model

Yj D ˇ0 C ˇ1X1 C ˇ2X2 C : : :C ˇk Xk
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is fitted using observations with observed values for the variable Yj and its covariates X1, X2, . . . ,
Xk .

The fitted model includes the regression parameter estimates Ǒ D . Ǒ0; Ǒ1; : : : ; Ǒk/ and the associated
covariance matrix O�2jVj , where Vj is the usual X0X inverse matrix derived from the intercept and
covariates X1, X2, . . . , Xk .

The following steps are used to generate imputed values for each imputation:

1. New parameters ˇ� D .ˇ�0; ˇ�1; : : : ; ˇ�.k// and �2
�j are drawn from the posterior predictive

distribution of the parameters. That is, they are simulated from . Ǒ0; Ǒ1; : : : ; Ǒk/, �2j , and Vj .
The variance is drawn as

�2�j D O�
2
j .nj � k � 1/=g

where g is a �2
nj�k�1

random variate and nj is the number of nonmissing observations for
Yj . The regression coefficients are drawn as

ˇ� D Ǒ C ��jV0hjZ

where V0
hj

is the upper triangular matrix in the Cholesky decomposition, Vj D V0
hj

Vhj , and
Z is a vector of k C 1 independent random normal variates.

2. The missing values are then replaced by

ˇ�0 C ˇ�1 x1 C ˇ�2 x2 C : : :C ˇ�.k/ xk C zi ��j

where x1; x2; : : : ; xk are the values of the covariates and zi is a simulated normal deviate.

Predictive Mean Matching Method for Monotone Missing Data

The predictive mean matching method is also an imputation method available for continuous variables.
It is similar to the regression method except that for each missing value, it imputes a value randomly
from a set of observed values whose predicted values are closest to the predicted value for the missing
value from the simulated regression model (Heitjan and Little 1991; Schenker and Taylor 1996).

Following the description of the model in the section “Regression Method for Monotone Missing
Data” on page 4398, the following steps are used to generate imputed values:

1. New parameters ˇ� D .ˇ�0; ˇ�1; : : : ; ˇ�.k// and �2
�j are drawn from the posterior predictive

distribution of the parameters. That is, they are simulated from . Ǒ0; Ǒ1; : : : ; Ǒk/, �2j , and Vj .
The variance is drawn as

�2�j D O�
2
j .nj � k � 1/=g

where g is a �2
nj�k�1

random variate and nj is the number of nonmissing observations for
Yj . The regression coefficients are drawn as

ˇ� D Ǒ C ��jV0hjZ
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where V0
hj

is the upper triangular matrix in the Cholesky decomposition, Vj D V0
hj

Vhj , and
Z is a vector of k C 1 independent random normal variates.

2. For each missing value, a predicted value

yi� D ˇ�0 C ˇ�1 x1 C ˇ�2 x2 C : : :C ˇ�.k/ xk

is computed with the covariate values x1; x2; : : : ; xk .

3. A set of k0 observations whose corresponding predicted values are closest to yi� is generated.
You can specify k0 with the K= option.

4. The missing value is then replaced by a value drawn randomly from these k0 observed values.

The predictive mean matching method requires the number of closest observations to be specified.
A smaller k0 tends to increase the correlation among the multiple imputations for the missing
observation and results in a higher variability of point estimators in repeated sampling. On the other
hand, a larger k0 tends to lessen the effect from the imputation model and results in biased estimators
(Schenker and Taylor 1996, p. 430).

The predictive mean matching method ensures that imputed values are plausible and might be more
appropriate than the regression method if the normality assumption is violated (Horton and Lipsitz
2001, p. 246).

Propensity Score Method for Monotone Missing Data

The propensity score method is another imputation method available for continuous variables when
the data set has a monotone missing pattern.

A propensity score is generally defined as the conditional probability of assignment to a particular
treatment given a vector of observed covariates (Rosenbaum and Rubin 1983). In the propensity
score method, for a variable with missing values, a propensity score is generated for each observation
to estimate the probability that the observation is missing. The observations are then grouped based
on these propensity scores, and an approximate Bayesian bootstrap imputation (Rubin 1987, p. 124)
is applied to each group (Lavori, Dawson, and Shera 1995).

The propensity score method uses the following steps to impute values for variable Yj with missing
values:

1. Create an indicator variable Rj with the value 0 for observations with missing Yj and 1
otherwise.

2. Fit a logistic regression model

logit.pj / D ˇ0 C ˇ1X1 C ˇ2X2 C : : :C ˇk Xk

where X1; X2; : : : ; Xk are covariates for Yj , pj D P r.Rj D 0jX1; X2; : : : ; Xk/, and
logit.p/ D log.p=.1 � p//:
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3. Create a propensity score for each observation to estimate the probability that it is missing.

4. Divide the observations into a fixed number of groups (typically assumed to be five) based on
these propensity scores.

5. Apply an approximate Bayesian bootstrap imputation to each group. In group k, suppose
that Yobs denotes the n1 observations with nonmissing Yj values and Ymis denotes the n0
observations with missing Yj . The approximate Bayesian bootstrap imputation first draws n1
observations randomly with replacement from Yobs to create a new data set Y �

obs
. This is a

nonparametric analog of drawing parameters from the posterior predictive distribution of the
parameters. The process then draws the n0 values for Ymis randomly with replacement from
Y �
obs

.

Steps 1 through 5 are repeated sequentially for each variable with missing values.

Note that the propensity score method was originally designed for a randomized experiment with
repeated measures on the response variables. The goal was to impute the missing values on the
response variables. The method uses only the covariate information that is associated with whether
the imputed variable values are missing. It does not use correlations among variables. It is effective
for inferences about the distributions of individual imputed variables, such as a univariate analysis,
but it is not appropriate for analyses involving relationship among variables, such as a regression
analysis (Schafer 1999, p. 11). It can also produce badly biased estimates of regression coefficients
when data on predictor variables are missing (Allison 2000).

Discriminant Function Method for Monotone Missing Data

The discriminant function method is the default imputation method for classification variables in a
data set with a monotone missing pattern.

For a nominal classification variable Yj with responses 1, . . . , g and a set of effects from its
preceding variables, if the covariates X1, X2, . . . , Xk associated with these effects within each group
are approximately multivariate normal and the within-group covariance matrices are approximately
equal, the discriminant function method (Brand 1999, pp. 95–96) can be used to impute missing
values for the variable Yj .

Denote the group-specific means for covariates X1, X2, . . . , Xk by

Xt D .X t1; X t2; : : : ; X tk/; t D 1; 2; : : : ; g

then the pooled covariance matrix is computed as

S D
1

n � g

gX
tD1

.nt � 1/St

where St is the within-group covariance matrix, nt is the group-specific sample size, and n DPg
tD1 nt is the total sample size.

In each imputation, new parameters of the group-specific means (m�t ), pooled covariance matrix
(S�), and prior probabilities of group membership (q�t ) can be drawn from their corresponding
posterior distributions (Schafer 1997, p. 356).
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Pooled Covariance Matrix and Group-Specific Means

For each imputation, the MI procedure uses either the fixed observed pooled covariance matrix
(PCOV=FIXED) or a drawn pooled covariance matrix (PCOV=POSTERIOR) from its posterior
distribution with a noninformative prior. That is,

†jX � W �1 . n � g; .n � g/S/

where W �1 is an inverted Wishart distribution.

The group-specific means are then drawn from their posterior distributions with a noninformative
prior

�t j.†;Xt / � N

�
Xt ;

1

nt
†

�

See the section “Bayesian Estimation of the Mean Vector and Covariance Matrix” on page 4406
for a complete description of the inverted Wishart distribution and posterior distributions that use a
noninformative prior.

Prior Probabilities of Group Membership

The prior probabilities are computed through the drawing of new group sample sizes. When the
total sample size n is considered fixed, the group sample sizes .n1; n2; : : : ; ng/ have a multinomial
distribution. New multinomial parameters (group sample sizes) can be drawn from their posterior
distribution by using a Dirichlet prior with parameters .˛1; ˛2; : : : ; ˛g/.

After the new sample sizes are drawn from the posterior distribution of .n1; n2; : : : ; ng/, the prior
probabilities q�t are computed proportionally to the drawn sample sizes.

See Schafer (1997, pp. 247–255) for a complete description of the Dirichlet prior.

Imputation Steps

The discriminant function method uses the following steps in each imputation to impute values for a
nominal classification variable Yj with g responses:

1. Draw a pooled covariance matrix S� from its posterior distribution if the PCOV=POSTERIOR
option is used.

2. For each group, draw group means m�t from the observed group mean Xt and either the
observed pooled covariance matrix (PCOV=FIXED) or the drawn pooled covariance matrix
S� (PCOV=POSTERIOR).
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3. For each group, compute or draw q�t , prior probabilities of group membership, based on the
PRIOR= option:

� PRIOR=EQUAL, q�t D 1=g, prior probabilities of group membership are all equal.

� PRIOR=PROPORTIONAL, q�t D nt=n, prior probabilities are proportional to their
group sample sizes.

� PRIOR=JEFFREYS=c, a noninformative Dirichlet prior with ˛t D c is used.

� PRIOR=RIDGE=d, a ridge prior is used with ˛t D d � nt=n for d � 1 and ˛t D d � nt
for d < 1.

4. With the group means m�t , the pooled covariance matrix S�, and the prior probabilities of
group membership q�t , the discriminant function method derives linear discriminant function
and computes the posterior probabilities of an observation belonging to each group

pt .x/ D
exp.�0:5D2t .x//Pg
uD1 exp.�0:5D2u.x//

where D2t .x/ D .x �m�t /0S�1� .x � m�t / � 2 log.q�t / is the generalized squared distance
from x to group t .

5. Draw a random uniform variate u, between 0 and 1, for each observation with missing group
value. With the posterior probabilities, p1.x/C p2.x/C : : : ;Cpg.x/ D 1, the discriminant
function method imputes Yj D 1 if the value of u is less than p1.x/, Yj D 2 if the value is
greater than or equal to p1.x/ but less than p1.x/C p2.x/, and so on.

Logistic Regression Method for Monotone Missing Data

The logistic regression method is another imputation method available for classification variables in
a data set with a monotone missing pattern.

In the logistic regression method, a logistic regression model is fitted for a classification variable
with a set of covariates constructed from the effects. For a binary classification variable, based on the
fitted regression model, a new logistic regression model is simulated from the posterior predictive
distribution of the parameters and is used to impute the missing values for each variable (Rubin 1987,
pp. 169–170).

For a binary variable Yj with responses 1 and 2, a logistic regression model is fitted using observations
with observed values for the imputed variable Yj and its covariates X1, X2, . . . , Xk:

logit.pj / D ˇ0 C ˇ1X1 C ˇ2X2 C : : :C ˇk Xk

where X1; X2; : : : ; Xk are covariates for Yj , pj D Pr.Rj D 1jX1; X2; : : : ; Xk/, and logit.p/ D
log.p=.1 � p//:

The fitted model includes the regression parameter estimates Ǒ D . Ǒ0; Ǒ1; : : : ; Ǒk/ and the associated
covariance matrix Vj .
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The following steps are used to generate imputed values for a binary variable Yj with responses 1
and 2:

1. New parameters ˇ� D .ˇ�0; ˇ�1; : : : ; ˇ�.k// are drawn from the posterior predictive distribu-
tion of the parameters.

ˇ� D Ǒ C V0hjZ

where V0
hj

is the upper triangular matrix in the Cholesky decomposition, Vj D V0
hj

Vhj , and
Z is a vector of k C 1 independent random normal variates.

2. For an observation with missing Yj and covariates x1; x2; : : : ; xk , compute the expected
probability that Yj D 1:

pj D
exp.�j /

1C exp.�j /

where �j D ˇ�0 C ˇ�1 x1 C ˇ�2 x2 C : : :C ˇ�.k/ xk .

3. Draw a random uniform variate, u, between 0 and 1. If the value of u is less than pj , impute
Yj D 1; otherwise impute Yj D 2.

The preceding logistic regression method can be extended to include the ordinal classification
variables with more than two levels of responses. The options ORDER= and DESCENDING can be
used to specify the sorting order for the levels of the imputed variables.

MCMC Method for Arbitrary Missing Data

The Markov chain Monte Carlo (MCMC) method originated in physics as a tool for exploring
equilibrium distributions of interacting molecules. In statistical applications, it is used to generate
pseudo-random draws from multidimensional and otherwise intractable probability distributions via
Markov chains. A Markov chain is a sequence of random variables in which the distribution of each
element depends only on the value of the previous element.

In MCMC simulation, one constructs a Markov chain long enough for the distribution of the elements
to stabilize to a stationary distribution, which is the distribution of interest. By repeatedly simulating
steps of the chain, the method simulates draws from the distribution of interest. See Schafer (1997)
for a detailed discussion of this method.

In Bayesian inference, information about unknown parameters is expressed in the form of a posterior
probability distribution. This posterior distribution is computed using Bayes’ theorem,

p.�jy/ D
p.yj�/p.�/R
p.yj�/p.�/d�

MCMC has been applied as a method for exploring posterior distributions in Bayesian inference.
That is, through MCMC, you can simulate the entire joint posterior distribution of the unknown
quantities and obtain simulation-based estimates of posterior parameters that are of interest.
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In many incomplete-data problems, the observed-data posterior p.�jYobs/ is intractable and cannot
easily be simulated. However, when Yobs is augmented by an estimated/simulated value of the
missing data Ymis , the complete-data posterior p.�jYobs; Ymis/ is much easier to simulate. Assum-
ing that the data are from a multivariate normal distribution, data augmentation can be applied to
Bayesian inference with missing data by repeating the following steps:

1. The imputation I-step
Given an estimated mean vector and covariance matrix, the I-step simulates the missing values
for each observation independently. That is, if you denote the variables with missing values for
observation i by Yi.mis/ and the variables with observed values by Yi.obs/, then the I-step draws
values for Yi.mis/ from a conditional distribution for Yi.mis/ given Yi.obs/.

2. The posterior P-step
Given a complete sample, the P-step simulates the posterior population mean vector and covariance
matrix. These new estimates are then used in the next I-step. Without prior information about the
parameters, a noninformative prior is used. You can also use other informative priors. For example,
a prior information about the covariance matrix can be helpful to stabilize the inference about the
mean vector for a near singular covariance matrix.

The two steps are iterated long enough for the results to be reliable for a multiply imputed data set
(Schafer 1997, p. 72). That is, with a current parameter estimate �.t/ at the t th iteration, the I-step
draws Y .tC1/mis from p.YmisjYobs;�

.t// and the P-step draws �.tC1/ from p.�jYobs; Y
.tC1/
mis /.

This creates a Markov chain .Y .1/mis;�
.1// , .Y .2/mis;�

.2// , . . . , which converges in distribution to
p.Ymis;�jYobs/. Assuming the iterates converge to a stationary distribution, the goal is to simulate
an approximately independent draw of the missing values from this distribution.

To validate the imputation results, you should repeat the process with different random number
generators and starting values based on different initial parameter estimates.

The next three sections provide details for the imputation step, Bayesian estimation of the mean
vector and covariance matrix, and the posterior step.

Imputation Step

In each iteration, starting with a given mean vector � and covariance matrix †, the imputation step
draws values for the missing data from the conditional distribution Ymis given Yobs .

Suppose � D
�
�01;�

0
2

�0 is the partitioned mean vector of two sets of variables, Yobs and Ymis ,
where �1 is the mean vector for variables Yobs and �2 is the mean vector for variables Ymis .

Also suppose

† D

�
†11 †12
†012 †22

�

is the partitioned covariance matrix for these variables, where †11 is the covariance matrix for
variables Yobs , †22 is the covariance matrix for variables Ymis , and †12 is the covariance matrix
between variables Yobs and variables Ymis .



4406 F Chapter 54: The MI Procedure

By using the sweep operator (Goodnight 1979) on the pivots of the †11 submatrix, the matrix
becomes�

†�111 †�111†12
�†012†

�1
11 †22:1

�

where †22:1 D †22 �†012†
�1
11†12 can be used to compute the conditional covariance matrix of

Ymis after controlling for Yobs .

For an observation with the preceding missing pattern, the conditional distribution of Ymis given
Yobs D y1 is a multivariate normal distribution with the mean vector

�2:1 D �2 C†
0
12†

�1
11 .y1 � �1/

and the conditional covariance matrix

†22:1 D †22 �†
0
12†

�1
11†12

Bayesian Estimation of the Mean Vector and Covariance Matrix

Suppose that Y D . y01; y
0
2; : : : ; y

0
n /
0 is an .n�p/ matrix made up of n .p�1/ independent vectors

yi , each of which has a multivariate normal distribution with mean zero and covariance matrix ƒ.
Then the SSCP matrix

A D Y0Y D
X
i

yiy0i

has a Wishart distribution W.n;ƒ/.

When each observation yi is distributed with a multivariate normal distribution with an unknown
mean �, then the CSSCP matrix

A D
X
i

.yi � y/.yi � y/0

has a Wishart distribution W.n � 1;ƒ/.

If A has a Wishart distribution W.n;ƒ/, then B D A�1 has an inverted Wishart distribution
W �1.n;‰/, where n is the degrees of freedom and ‰ D ƒ�1 is the precision matrix (Anderson
1984).

Note that, instead of using the parameter ‰ D ƒ�1 for the inverted Wishart distribution, Schafer
(1997) uses the parameter ƒ.

Suppose that each observation in the data matrix Y has a multivariate normal distribution with mean
� and covariance matrix†. Then with a prior inverted Wishart distribution for† and a prior normal
distribution for �

† � W �1 .m; ‰/

�j† � N

�
�0;

1

�
†

�
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where � > 0 is a fixed number.

The posterior distribution (Anderson 1984, p. 270; Schafer 1997, p. 152) is

†jY � W �1
�
nCm; .n � 1/SC‰ C

n�

nC �
.y � �0/.y � �0/0

�
�j.†;Y/ � N

�
1

nC �
.nyC ��0/;

1

nC �
†

�

where .n � 1/S is the CSSCP matrix.

Posterior Step

In each iteration, the posterior step simulates the posterior population mean vector � and covariance
matrix † from prior information for � and †, and the complete sample estimates.

You can specify the prior parameter information by using one of the following methods:

� PRIOR=JEFFREYS, which uses a noninformative prior

� PRIOR=INPUT=, which provides a prior information for † in the data set. Optionally, it also
provides a prior information for � in the data set.

� PRIOR=RIDGE=, which uses a ridge prior

The next four subsections provide details of the posterior step for different prior distributions.

1. A Noninformative Prior

Without prior information about the mean and covariance estimates, you can use a noninformative
prior by specifying the PRIOR=JEFFREYS option. The posterior distributions (Schafer 1997, p.
154) are

†.tC1/jY � W �1 . n � 1; .n � 1/S/

�.tC1/j.†.tC1/;Y/ � N

�
y;

1

n
†.tC1/

�

2. An Informative Prior for � and †

When prior information is available for the parameters � and †, you can provide it with a SAS data
set that you specify with the PRIOR=INPUT= option:

† � W �1
�
d�; d�S�

�
�j† � N

�
�0;

1

n0
†

�
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To obtain the prior distribution for †, PROC MI reads the matrix S� from observations in the data
set with _TYPE_=‘COV’, and it reads n� D d� C 1 from observations with _TYPE_=‘N’.

To obtain the prior distribution for �, PROC MI reads the mean vector �0 from observations with
_TYPE_=‘MEAN’, and it reads n0 from observations with _TYPE_=‘N_MEAN’. When there are no
observations with _TYPE_=‘N_MEAN’, PROC MI reads n0 from observations with _TYPE_=‘N’.

The resulting posterior distribution, as described in the section “Bayesian Estimation of the Mean
Vector and Covariance Matrix” on page 4406, is given by

†.tC1/jY � W �1
�
nC d�; .n � 1/SC d�S� C Sm

�
�.tC1/ j

�
†.tC1/;Y

�
� N

�
1

nC n0
.nyC n0�0/;

1

nC n0
†.tC1/

�

where

Sm D
nn0

nC n0
.y � �0/.y � �0/0

3. An Informative Prior for †

When the sample covariance matrix S is singular or near singular, prior information about † can
also be used without prior information about � to stabilize the inference about �. You can provide it
with a SAS data set that you specify with the PRIOR=INPUT= option.

To obtain the prior distribution for †, PROC MI reads the matrix S� from observations in the data
set with _TYPE_=‘COV’, and it reads n� from observations with _TYPE_=‘N’.

The resulting posterior distribution for .�;†/ (Schafer 1997, p. 156) is

†.tC1/jY � W �1
�
nC d�; .n � 1/SC d�S�

�
�.tC1/ j

�
†.tC1/;Y

�
� N

�
y;

1

n
†.tC1/

�

Note that if the PRIOR=INPUT= data set also contains observations with _TYPE_=‘MEAN’, then a
complete informative prior for both � and † will be used.

4. A Ridge Prior

A special case of the preceding adjustment is a ridge prior with S� = Diag .S/ (Schafer 1997, p. 156).
That is, S� is a diagonal matrix with diagonal elements equal to the corresponding elements in S.

You can request a ridge prior by using the PRIOR=RIDGE= option. You can explicitly specify the
number d� � 1 in the PRIOR=RIDGE=d� option. Or you can implicitly specify the number by
specifying the proportion p in the PRIOR=RIDGE=p option to request d� D .n � 1/p.
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The posterior is then given by

†.tC1/jY � W �1
�
nC d�; .n � 1/SC d�Diag.S/

�
�.tC1/

ˇ̌̌ �
†.tC1/;Y

�
� N

�
y;

1

n
†.tC1/

�

Producing Monotone Missingness with the MCMC Method

The monotone data MCMC method was first proposed by Li (1988), and Liu (1993) described the
algorithm. The method is useful especially when a data set is close to having a monotone missing
pattern. In this case, the method needs to impute only a few missing values to the data set to have a
monotone missing pattern in the imputed data set. Compared to a full data imputation that imputes
all missing values, the monotone data MCMC method imputes fewer missing values in each iteration
and achieves approximate stationarity in fewer iterations (Schafer 1997, p. 227).

You can request the monotone MCMC method by specifying the option IMPUTE=MONOTONE in
the MCMC statement. The “Missing Data Patterns” table now denotes the variables with missing
values by “.” or “O”. The value “.” means that the variable is missing and will be imputed, and the
value “O” means that the variable is missing and will not be imputed. The “Variance Information”
and “Parameter Estimates” tables are not created.

You must specify the variables in the VAR statement. The variable order in the list determines the
monotone missing pattern in the imputed data set. With a different order in the VAR list, the results
will be different because the monotone missing pattern to be constructed will be different.

Assuming that the data are from a multivariate normal distribution, then like the MCMC method, the
monotone MCMC method repeats the following steps:

1. The imputation I-step
Given an estimated mean vector and covariance matrix, the I-step simulates the missing values for
each observation independently. Only a subset of missing values are simulated to achieve a monotone
pattern of missingness.

2. The posterior P-step
Given a new sample with a monotone pattern of missingness, the P-step simulates the posterior
population mean vector and covariance matrix with a noninformative Jeffreys prior. These new
estimates are then used in the next I-step.

Imputation Step

The I-step is almost identical to the I-step described in the section “MCMC Method for Arbitrary
Missing Data” on page 4404 except that only a subset of missing values need to be simulated. To
state this precisely, denote the variables with observed values for observation i by Yi.obs/ and the
variables with missing values by Yi.mis/ D .Yi.m1/; Yi.m2//, where Yi.m1/ is a subset of the missing
variables that will cause a monotone missingness when their values are imputed. Then the I-step
draws values for Yi.m1/ from a conditional distribution for Yi.m1/ given Yi.obs/.
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Posterior Step

The P-step is different from the P-step described in the section “MCMC Method for Arbitrary
Missing Data” on page 4404. Instead of simulating the � and † parameters from the full imputed
data set, this P-step simulates the � and † parameters through simulated regression coefficients
from regression models based on the imputed data set with a monotone pattern of missingness. The
step is similar to the process described in the section “Regression Method for Monotone Missing
Data” on page 4398.

That is, for the variable Yj , a model

Yj D ˇ0 C ˇ1 Y1 C ˇ2 Y2 C : : :C ˇj�1 Yj�1

is fitted using nj nonmissing observations for variable Yj in the imputed data sets.

The fitted model consists of the regression parameter estimates Ǒ D . Ǒ0; Ǒ1; : : : ; Ǒj�1/ and the
associated covariance matrix O�2jVj , where Vj is the usual X0X inverse matrix from the intercept and
variables Y1; Y2; : : : ; Yj�1.

For each imputation, new parameters ˇ� D .ˇ�0; ˇ�1; : : : ; ˇ�.j�1// and �2
�j are drawn from the pos-

terior predictive distribution of the parameters. That is, they are simulated from . Ǒ0; Ǒ1; : : : ; Ǒj�1/,
�2j , and Vj . The variance is drawn as

�2�j D O�
2
j .nj � j /=g

where g is a �2nj�pCj�1 random variate and nj is the number of nonmissing observations for Yj .
The regression coefficients are drawn as

ˇ� D Ǒ C ��jV0hjZ

where V0
hj

is the upper triangular matrix in the Cholesky decomposition, Vj D V0
hj

Vhj , and Z is a
vector of j independent random normal variates.

These simulated values of ˇ� and �2
�j are then used to re-create the parameters � and †. For

a detailed description of how to produce monotone missingness with the MCMC method for a
multivariate normal data, see Schafer (1997, pp. 226–235).

MCMC Method Specifications

With the MCMC method, you can impute either all missing values (IMPUTE=FULL) or just
enough missing values to make the imputed data set have a monotone missing pattern (IM-
PUTE=MONOTONE). In the process, either a single chain for all imputations (CHAIN=SINGLE)
or a separate chain for each imputation (CHAIN=MULTIPLE) is used. The single chain might be
somewhat more precise for estimating a single quantity such as a posterior mean (Schafer 1997, p.
138). See Schafer (1997, pp. 137–138) for a discussion of single versus multiple chains.

You can specify the number of initial burn-in iterations before the first imputation with the NBITER=
option. This number is also used for subsequent chains for multiple chains. For a single chain, you
can also specify the number of iterations between imputations with the NITER= option.
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You can explicitly specify initial parameter values for the MCMC method with the INITIAL=INPUT=
data set option. Alternatively, you can use the EM algorithm to derive a set of initial parameter
values for MCMC with the option INITIAL=EM. These estimates are used as either the starting
value (START=VALUE) or the starting distribution (START=DIST) for the MCMC method. For
multiple chains, these estimates are used again as either the starting value (START=VALUE) or the
starting distribution (START=DIST) for the subsequent chains.

You can specify the prior parameter information in the PRIOR= option. You can use a noninformative
prior (PRIOR=JEFFREYS), a ridge prior (PRIOR=RIDGE), or an informative prior specified in a
data set (PRIOR=INPUT).

The parameter estimates used to generate imputed values in each imputation can be saved in a data
set with the OUTEST= option. Later, this data set can be read with the INEST= option to provide
the reference distribution for imputing missing values for a new data set.

By default, the MCMC method uses a single chain to produce five imputations. It completes 200
burn-in iterations before the first imputation and 100 iterations between imputations. The posterior
mode computed from the EM algorithm with a noninformative prior is used as the starting values for
the MCMC method.

INITIAL=EM Specifications

The EM algorithm is used to find the maximum likelihood estimates for incomplete data in the EM
statement. You can also use the EM algorithm to find a posterior mode, the parameter estimates that
maximize the observed-data posterior density. The resulting posterior mode provides a good starting
value for the MCMC method.

With the INITIAL=EM option, PROC MI uses the MLE of the parameter vector as the initial
estimates in the EM algorithm for the posterior mode. You can use the ITPRINT option within the
INITIAL=EM option to display the iteration history for the EM algorithm.

You can use the CONVERGE= option to specify the convergence criterion in deriving the EM
posterior mode. The iterations are considered to have converged when the maximum change
in the parameter estimates between iteration steps is less than the value specified. By default,
CONVERGE=1E�4.

You can also use the MAXITER= option to specify the maximum number of iterations of the EM
algorithm. By default, MAXITER=200.

With the BOOTSTRAP option, you can use overdispersed starting values for the MCMC method. In
this case, PROC MI applies the EM algorithm to a bootstrap sample, a simple random sample with
replacement from the input data set, to derive the initial estimates for each chain (Schafer 1997, p.
128).
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Checking Convergence in MCMC

The theoretical convergence of the MCMC method has been explored under various conditions, as
described in Schafer (1997, p. 70). However, in practice, verification of convergence is not a simple
matter.

The parameters used in the imputation step for each iteration can be saved in an output data set with
the OUTITER= option. These include the means, standard deviations, covariances, worst linear
function, and observed-data LR statistics. You can then monitor the convergence in a single chain by
displaying trace plots and autocorrelations for those parameter values (Schafer 1997, p. 120). The
trace and autocorrelation function plots for parameters such as variable means, covariances, and the
worst linear function can be displayed by specifying the TIMEPLOT and ACFPLOT option.

You can apply the EM algorithm to a bootstrap sample to obtain overdispersed starting values for
multiple chains (Gelman and Rubin 1992). This provides a conservative estimate of the number of
iterations needed before each imputation.

The next four subsections describe useful statistics and plots that can be used to check the convergence
of the MCMC method.

LR Statistics

You can save the observed-data likelihood ratio (LR) statistic in each iteration with the LR option in
the OUTITER= data set. The statistic is based on the observed-data likelihood with parameter values
used in the iteration and the observed-data maximum likelihood derived from the EM algorithm.

In each iteration, the LR statistic is given by

�2 log

 
f . O�i /

f . O�/

!
where f . O�/ is the observed-data maximum likelihood derived from the EM algorithm and f . O�i / is
the observed-data likelihood for O�i used in the iteration.

Similarly, you can also save the observed-data LR posterior mode statistic for each iteration with
the LR_POST option. This statistic is based on the observed-data posterior density with parameter
values used in each iteration and the observed-data posterior mode derived from the EM algorithm
for posterior mode.

For large samples, these LR statistics tends to be approximately �2 distributed with degrees of
freedom equal to the dimension of � (Schafer 1997, p. 131). For example, with a large number of
iterations, if the values of the LR statistic do not behave like a random sample from the described �2

distribution, then there is evidence that the MCMC method has not converged.

Worst Linear Function of Parameters

The worst linear function (WLF) of parameters (Schafer 1997, pp. 129–131) is a scalar function
of parameters � and † that is “worst” in the sense that its function values converge most slowly
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among parameters in the MCMC method. The convergence of this function is evidence that other
parameters are likely to converge as well.

For linear functions of parameters � D .�;†/, a worst linear function of � has the highest asymptotic
rate of missing information. The function can be derived from the iterative values of � near the
posterior mode in the EM algorithm. That is, an estimated worst linear function of � is

w.�/ D v0 .� � O�/

where O� is the posterior mode and the coefficients v D O�.�1/ � O� are the difference between the
estimated value of � one step prior to convergence and the converged value O� .

You can display the coefficients of the worst linear function, v, by specifying the WLF option in the
MCMC statement. You can save the function value from each iteration in an OUTITER= data set
by specifying the WLF option within the OUTITER option. You can also display the worst linear
function values from iterations in an autocorrelation plot or a trace plot by specifying WLF as an
ACFPLOT or TIMEPLOT option, respectively.

Note that when the observed-data posterior is nearly normal, the WLF is one of the slowest functions
to approach stationarity. When the posterior is not close to normal, other functions might take much
longer than the WLF to converge, as described in Schafer (1997, p. 130).

Trace Plot

A trace plot for a parameter � is a scatter plot of successive parameter estimates �i against the
iteration number i . The plot provides a simple way to examine the convergence behavior of the
estimation algorithm for � . Long-term trends in the plot indicate that successive iterations are highly
correlated and that the series of iterations has not converged.

You can display trace plots for worst linear function, variable means, variable variances, and
covariances of variables. You can also request logarithmic transformations for positive parameters in
the plots with the LOG option. When a parameter value is less than or equal to zero, the value is not
displayed in the corresponding plot.

By default, the MI procedure uses solid line segments to connect data points in a trace plot. You can
use the CCONNECT=, LCONNECT=, and WCONNECT= options to change the color, line type,
and width of the line segments, respectively. When WCONNECT=0 is specified, the data points are
not connected, and the procedure uses the plus sign (+) as the plot symbol to display the points with
a height of one (percentage screen unit) in a trace plot. You can use the SYMBOL=, CSYMBOL=,
and HSYMBOL= options to change the shape, color, and height of the plot symbol, respectively.

By default, the plot title “Trace Plot” is displayed in a trace plot. You can request another title by
using the TITLE= option in the TIMEPLOT option. When another title is also specified in a TITLE
statement, this title is displayed as the main title and the plot title is displayed as a subtitle in the plot.

You can use options in the GOPTIONS statement to change the color and height of the title. See the
chapter “The SAS/GRAPH Statements” in SAS/GRAPH Software: Reference for an illustration of
title options. See Example 54.8 for a usage of the trace plot.
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Autocorrelation Function Plot

To examine relationships of successive parameter estimates �, the autocorrelation function (ACF)
can be used. For a stationary series, �i ; i � 1, in trace data, the autocorrelation function at lag k is

�k D
Cov.�i ; �iCk/

Var.�i /

The sample kth order autocorrelation is computed as

rk D

Pn�k
iD1 .�i � �/.�iCk � �/Pn

iD1.�i � �/
2

You can display autocorrelation function plots for the worst linear function, variable means, variable
variances, and covariances of variables. You can also request logarithmic transformations for
parameters in the plots with the LOG option. When a parameter has values less than or equal to zero,
the corresponding plot is not created.

You specify the maximum number of lags of the series with the NLAG= option. The autocorrelations
at each lag less than or equal to the specified lag are displayed in the graph. In addition, the plot also
displays approximate 95% confidence limits for the autocorrelations. At lag k, the confidence limits
indicate a set of approximate 95% critical values for testing the hypothesis �j D 0; j � k:

By default, the MI procedure uses the star (*) as the plot symbol to display the points with a
height of one (percentage screen unit) in the plot, a solid line to display the reference line of zero
autocorrelation, vertical line segments to connect autocorrelations to the reference line, and a pair of
dashed lines to display approximately 95% confidence limits for the autocorrelations.

You can use the SYMBOL=, CSYMBOL=, and HSYMBOL= options to change the shape, color, and
height of the plot symbol, respectively, and the CNEEDLES= and WNEEDLES= options to change
the color and width of the needles, respectively. You can also use the LREF=, CREF=, and WREF=
options to change the line type, color, and width of the reference line, respectively. Similarly, you
can use the LCONF=, CCONF=, and WCONF= options to change the line type, color, and width of
the confidence limits, respectively.

By default, the plot title “Autocorrelation Plot” is displayed in a autocorrelation function plot. You
can request another title by using the TITLE= option within the ACFPLOT option. When another
title is also specified in a TITLE statement, this title is displayed as the main title and the plot title is
displayed as a subtitle in the plot.

You can use options in the GOPTIONS statement to change the color and height of the title. See the
chapter “The SAS/GRAPH Statements” in SAS/GRAPH Software: Reference for a description of
title options. See Example 54.8 for an illustration of the autocorrelation function plot.

Input Data Sets

You can specify the input data set with missing values by using the DATA= option in the PROC MI
statement. When an MCMC method is used, you can specify the data set containing the reference
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distribution information for imputation with the INEST= option, the data set containing initial
parameter estimates for the MCMC method with the INITIAL=INPUT= option, and the data set
containing information for the prior distribution with the PRIOR=INPUT= option in the MCMC
statement.

DATA=SAS-data-set

The input DATA= data set is an ordinary SAS data set containing multivariate data with missing
values.

INEST=SAS-data-set

The input INEST= data set is a TYPE=EST data set and contains a variable _Imputation_ to identify
the imputation number. For each imputation, PROC MI reads the point estimate from the observations
with _TYPE_=‘PARM’ or _TYPE_=‘PARMS’ and the associated covariances from the observations
with _TYPE_=‘COV’ or _TYPE_=‘COVB’. These estimates are used as the reference distribution to
impute values for observations in the DATA= data set. When the input INEST= data set also contains
observations with _TYPE_=‘SEED’, PROC MI reads the seed information for the random number
generator from these observations. Otherwise, the SEED= option provides the seed information.

INITIAL=INPUT=SAS-data-set

The input INITIAL=INPUT= data set is a TYPE=COV or CORR data set and provides initial
parameter estimates for the MCMC method. The covariances derived from the TYPE=COV/CORR
data set are divided by the number of observations to get the correct covariance matrix for the point
estimate (sample mean).

If TYPE=COV, PROC MI reads the number of observations from the observations with _TYPE_=‘N’,
the point estimate from the observations with _TYPE_=‘MEAN’, and the covariances from the
observations with _TYPE_=‘COV’.

If TYPE=CORR, PROC MI reads the number of observations from the observations with
_TYPE_=‘N’, the point estimate from the observations with _TYPE_=‘MEAN’, the correlations
from the observations with _TYPE_=‘CORR’, and the standard deviations from the observations with
_TYPE_=‘STD’.

PRIOR=INPUT=SAS-data-set

The input PRIOR=INPUT= data set is a TYPE=COV data set that provides information for the prior
distribution. You can use the data set to specify a prior distribution for † of the form

† � W �1
�
d�; d�S�

�
where d� D n� � 1 is the degrees of freedom. PROC MI reads the matrix S� from observations with
_TYPE_=‘COV’ and reads n� from observations with _TYPE_=‘N’.
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You can also use this data set to specify a prior distribution for � of the form

� � N

�
�0;

1

n0
†

�
PROC MI reads the mean vector �0 from observations with _TYPE_=‘MEAN’ and reads n0 from
observations with _TYPE_=‘N_MEAN’. When there are no observations with _TYPE_=‘N_MEAN’,
PROC MI reads n0 from observations with _TYPE_=‘N’.

Output Data Sets

You can specify the output data set of imputed values with the OUT= option in the PROC MI
statement. When an EM statement is used, you can specify the data set containing the original data
set with missing values being replaced by the expected values from the EM algorithm by using the
OUT= option in the EM statement. You can also specify the data set containing MLE computed with
the EM algorithm by using the OUTEM= option.

When an MCMC method is used, you can specify the data set containing parameter estimates used
in each imputation with the OUTEST= option in the MCMC statement, and you can specify the data
set containing parameters used in the imputation step for each iteration with the OUTITER option in
the MCMC statement.

OUT=SAS-data-set in the PROC MI statement

The OUT= data set contains all the variables in the original data set and a new variable named
_Imputation_ that identifies the imputation. For each imputation, the data set contains all variables in
the input DATA= data set with missing values being replaced by imputed values. Note that when the
NIMPUTE=1 option is specified, the variable _Imputation_ is not created.

OUT=SAS-data-set in an EM statement

The OUT= data set contains the original data set with missing values being replaced by expected
values from the EM algorithm.

OUTEM=SAS-data-set

The OUTEM= data set is a TYPE=COV data set and contains the MLE computed with the EM
algorithm. The observations with _TYPE_=‘MEAN’ contain the estimated mean and the observations
with _TYPE_=‘COV’ contain the estimated covariances.
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OUTEST=SAS-data-set

The OUTEST= data set is a TYPE=EST data set and contains parameter estimates used in each
imputation in the MCMC method. It also includes an index variable named _Imputation_, which
identifies the imputation.

The observations with _TYPE_=‘SEED’ contain the seed information for the random number genera-
tor. The observations with _TYPE_=‘PARM’ or _TYPE_=‘PARMS’ contain the point estimate, and
the observations with _TYPE_=‘COV’ or _TYPE_=‘COVB’ contain the associated covariances. These
estimates are used as the parameters of the reference distribution to impute values for observations in
the DATA= dataset.

Note that these estimates are the values used in the I-step before each imputation. These are not the
parameter values simulated from the P-step in the same iteration. See Example 54.9 for a usage of
this option.

OUTITER < ( options ) > =SAS-data-set in an EM statement

The OUTITER= data set in an EM statement is a TYPE=COV data set and contains parameters for
each iteration. It also includes a variable _Iteration_ that provides the iteration number.

The parameters in the output data set depend on the options specified. You can specify the MEAN
and COV options for OUTITER. With the MEAN option, the output data set contains the mean
parameters in observations with the variable _TYPE_=‘MEAN’. Similarly, with the MEAN option, the
output data set contains the covariance parameters in observations with the variable _TYPE_=‘COV’.
When no options are specified, the output data set contains the mean parameters for each iteration.

OUTITER < ( options ) > =SAS-data-set in an MCMC statement

The OUTITER= data set in an MCMC statement is a TYPE=COV data set and contains parameters
used in the imputation step for each iteration. It also includes variables named _Imputation_ and
_Iteration_, which provide the imputation number and iteration number.

The parameters in the output data set depend on the options specified. Table 54.4 summarizes the
options available for OUTITER and the corresponding values for the output variable _TYPE_.

Table 54.4 Summary of Options for OUTITER in an MCMC statement

Option Output Parameters _TYPE_

MEAN mean parameters MEAN
STD standard deviations STD
COV covariances COV
LR �2 log LR statistic LOG_LR
LR_POST �2 log LR statistic of the posterior mode LOG_POST
WLF worst linear function WLF
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When no options are specified, the output data set contains the mean parameters used in the imputation
step for each iteration. For a detailed description of the worst linear function and LR statistics, see
the section “Checking Convergence in MCMC” on page 4412.

Combining Inferences from Multiply Imputed Data Sets

With m imputations, m different sets of the point and variance estimates for a parameter Q can be
computed. Suppose OQi and OWi are the point and variance estimates from the i th imputed data set, i
= 1, 2, . . . , m. Then the combined point estimate for Q from multiple imputation is the average of
the m complete-data estimates:

Q D
1

m

mX
iD1

OQi

SupposeW is the within-imputation variance, which is the average of them complete-data estimates,

W D
1

m

mX
iD1

OWi

and B is the between-imputation variance

B D
1

m � 1

mX
iD1

. OQi �Q/
2

Then the variance estimate associated with Q is the total variance (Rubin 1987)

T D W C .1C
1

m
/B

The statistic .Q �Q/T �.1=2/ is approximately distributed as t with vm degrees of freedom (Rubin
1987), where

vm D .m � 1/

"
1C

W

.1Cm�1/B

#2

The degrees of freedom vm depend on m and the ratio

r D
.1Cm�1/B

W

The ratio r is called the relative increase in variance due to nonresponse (Rubin 1987). When there
is no missing information about Q, the values of r and B are both zero. With a large value of m or a
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small value of r , the degrees of freedom vm will be large and the distribution of .Q �Q/T �.1=2/

will be approximately normal.

Another useful statistic is the fraction of missing information about Q:

O� D
r C 2=.vm C 3/

r C 1

Both statistics r and � are helpful diagnostics for assessing how the missing data contribute to the
uncertainty about Q.

When the complete-data degrees of freedom v0 are small, and there is only a modest proportion
of missing data, the computed degrees of freedom, vm, can be much larger than v0, which is
inappropriate. For example, with m D 5 and r D 10%, the computed degrees of freedom vm D 484,
which is inappropriate for data sets with complete-data degrees of freedom less than 484.

Barnard and Rubin (1999) recommend the use of adjusted degrees of freedom

v�m D

�
1

vm
C

1

Ovobs

��1

where Ovobs D .1 � 
/ v0.v0 C 1/=.v0 C 3/ and 
 D .1Cm�1/B=T .

Note that the MI procedure uses the adjusted degrees of freedom, v�m, for inference.

Multiple Imputation Efficiency

The relative efficiency (RE) of using the finite m imputation estimator, rather than using an infinite
number for the fully efficient imputation, in units of variance, is approximately a function of m and
� (Rubin 1987, p. 114):

RE D

�
1C

�

m

��1
Table 54.5 shows relative efficiencies with different values of m and �.

Table 54.5 Relative Efficiencies
�

m 10% 20% 30% 50% 70%
3 0.9677 0.9375 0.9091 0.8571 0.8108
5 0.9804 0.9615 0.9434 0.9091 0.8772

10 0.9901 0.9804 0.9709 0.9524 0.9346
20 0.9950 0.9901 0.9852 0.9756 0.9662
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The table shows that for situations with little missing information, only a small number of imputations
are necessary. In practice, the number of imputations needed can be informally verified by replicating
sets ofm imputations and checking whether the estimates are stable between sets (Horton and Lipsitz
2001, p. 246).

Imputer’s Model Versus Analyst’s Model

Multiple imputation inference assumes that the model you used to analyze the multiply imputed data
(the analyst’s model) is the same as the model used to impute missing values in multiple imputation
(the imputer’s model). But in practice, the two models might not be the same (Schafer 1997, p. 139).

Schafer (1997, pp. 139–143) provides comprehensive coverage of this topic, and the following
example is based on his work.

Consider a trivariate data set with variables Y1 and Y2 fully observed, and a variable Y3 with missing
values. An imputer creates multiple imputations with the model Y3 D Y1 Y2. However, the analyst
can later use the simpler model Y3 D Y1. In this case, the analyst assumes more than the imputer.
That is, the analyst assumes there is no relationship between variables Y3 and Y2.

The effect of the discrepancy between the models depends on whether the analyst’s additional
assumption is true. If the assumption is true, the imputer’s model still applies. The inferences derived
from multiple imputations will still be valid, although they might be somewhat conservative because
they reflect the additional uncertainty of estimating the relationship between Y3 and Y2.

On the other hand, suppose that the analyst models Y3 D Y1, and there is a relationship between
variables Y3 and Y2. Then the model Y3 D Y1 will be biased and is inappropriate. Appropriate
results can be generated only from appropriate analyst models.

Another type of discrepancy occurs when the imputer assumes more than the analyst. For example,
suppose that an imputer creates multiple imputations with the model Y3 D Y1, but the analyst later
fits a model Y3 D Y1 Y2. When the assumption is true, the imputer’s model is a correct model and
the inferences still hold.

On the other hand, suppose there is a relationship between Y3 and Y2. Imputations created under the
incorrect assumption that there is no relationship between Y3 and Y2 will make the analyst’s estimate
of the relationship biased toward zero. Multiple imputations created under an incorrect model can
lead to incorrect conclusions.

Thus, generally you should include as many variables as you can when doing multiple imputation.
The precision you lose with included unimportant predictors is usually a relatively small price to pay
for the general validity of analyses of the resultant multiply imputed data set (Rubin 1996). But at
the same time, you need to keep the model building and fitting feasible (Barnard and Meng, 1999,
pp. 19–20).

To produce high-quality imputations for a particular variable, the imputation model should also
include variables that are potentially related to the imputed variable and variables that are potentially
related to the missingness of the imputed variable (Schafer 1997, p. 143).

Similar suggestions were also given by van Buuren, Boshuizen, and Knook (1999, p. 687). They



Parameter Simulation versus Multiple Imputation F 4421

recommend that the imputation model include three sets of covariates: variables in the analyst’s
model, variables associated with the missingness of the imputed variable, and variables correlated
with the imputed variable. They also recommend the removal of the covariates not in the analyst’s
model if they have too many missing values for observations with missing imputed variables.

Note that it is good practice to include a description of the imputer’s model with the multiply imputed
data set (Rubin 1996, p. 479). That way, the analysts will have information about the variables
involved in the imputation and which relationships among the variables have been implicitly set to
zero.

Parameter Simulation versus Multiple Imputation

As an alternative to multiple imputation, parameter simulation can also be used to analyze the data
for many incomplete-data problems. Although the MI procedure does not offer parameter simulation,
the trade-offs between the two methods (Schafer 1997, pp. 89–90, 135–136) are examined in this
section.

The parameter simulation method simulates random values of parameters from the observed-data
posterior distribution and makes simple inferences about these parameters (Schafer 1997, p. 89).
When a set of well-defined population parameters � are of interest, parameter simulation can be
used to directly examine and summarize simulated values of � . This usually requires a large number
of iterations, and involves calculating appropriate summaries of the resulting dependent sample of
the iterates of the � . If only a small set of parameters are involved, parameter simulation is suitable
(Schafer 1997).

Multiple imputation requires only a small number of imputations. Generating and storing a few
imputations can be more efficient than generating and storing a large number of iterations for
parameter simulation.

When fractions of missing information are low, methods that average over simulated values of the
missing data, as in multiple imputation, can be much more efficient than methods that average over
simulated values of � as in parameter simulation (Schafer 1997).

Summary of Issues in Multiple Imputation

This section summarizes issues that are encountered in applications of the MI procedure.

The MAR Assumption

The missing at random (MAR) assumption is needed for the imputation methods in the MI procedure.
Although this assumption cannot be verified with the data, it becomes more plausible as more
variables are included in the imputation model (Schafer 1997, pp. 27–28; van Buuren, Boshuizen,
and Knook 1999, p. 687).
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Number of Imputations

Based on the theory of multiple imputation, only a small number of imputations are needed for a
data set with little missing information (Rubin 1987, p. 114). The number of imputations can be
informally verified by replicating sets of m imputations and checking whether the estimates are
stable (Horton and Lipsitz 2001, p. 246).

Imputation Model

Generally you should include as many variables as you can in the imputation model (Rubin 1996),
At the same time, however, it is important to keep the number of variables in control, as discussed by
Barnard and Meng (1999, pp. 19–20). For the imputation of a particular variable, the model should
include variables in the complete-data model, variables that are correlated with the imputed variable,
and variables that are associated with the missingness of the imputed variable (Schafer 1997, p. 143;
van Buuren, Boshuizen, and Knook 1999, p. 687).

Multivariate Normality Assumption

Although the regression and MCMC methods assume multivariate normality, inferences based on
multiple imputation can be robust to departures from the multivariate normality if the amount of
missing information is not large (Schafer 1997, pp. 147–148).

You can use variable transformations to make the normality assumption more tenable. Variables are
transformed before the imputation process and then back-transformed to create imputed values.

Monotone Regression Method

With the multivariate normality assumption, either the regression method or the predictive mean
matching method can be used to impute continuous variables in data sets with monotone missing
patterns.

The predictive mean matching method ensures that imputed values are plausible and might be more
appropriate than the regression method if the normality assumption is violated (Horton and Lipsitz
2001, p. 246).

Monotone Propensity Score Method

The propensity score method can also be used to impute continuous variables in data sets with
monotone missing patterns.

The propensity score method does not use correlations among variables and is not appropriate for
analyses involving relationship among variables, such as a regression analysis (Schafer 1999, p. 11).
It can also produce badly biased estimates of regression coefficients when data on predictor variables
are missing (Allison 2000).
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MCMC Monotone-Data Imputation

The MCMC method is used to impute continuous variables in data sets with arbitrary missing
patterns, assuming a multivariate normal distribution for the data. It can also be used to impute just
enough missing values to make the imputed data sets have a monotone missing pattern. Then, a more
flexible monotone imputation method can be used for the remaining missing values.

Checking Convergence in MCMC

In an MCMC method, parameters are drawn after the MCMC is run long enough to converge to its
stationary distribution. In practice, however, it is not simple to verify the convergence of the process,
especially for a large number of parameters.

You can check for convergence by examining the observed-data likelihood ratio statistic and worst
linear function of the parameters in each iteration. You can also check for convergence by examining
a plot of autocorrelation function, as well as a trace plot of parameters (Schafer 1997, p. 120).

EM Estimates

The EM algorithm can be used to compute the MLE of the mean vector and covariance matrix of
the data with missing values, assuming a multivariate normal distribution for the data. However, the
covariance matrix associated with the estimate of the mean vector cannot be derived from the EM
algorithm.

In the MI procedure, you can use the EM algorithm to compute the posterior mode, which provides a
good starting value for the MCMC method (Schafer 1997, p. 169).

ODS Table Names

PROC MI assigns a name to each table it creates. You must use these names to reference tables
when using the Output Delivery System (ODS). These names are listed in Table 54.6. For more
information about ODS, see Chapter 20, “Using the Output Delivery System.”

Table 54.6 ODS Tables Produced by PROC MI

ODS Table Name Description Statement Option

Corr Pairwise correlations SIMPLE
EMEstimates EM (MLE) estimates EM
EMInitEstimates EM initial estimates EM
EMIterHistory EM (MLE) iteration EM ITPRINT

history
EMPostEstimates EM (posterior mode) MCMC INITIAL=EM

estimates
EMPostIterHistory EM (posterior mode) MCMC INITIAL=EM (ITPRINT)



4424 F Chapter 54: The MI Procedure

Table 54.6 continued

ODS Table Name Description Statement Option

iteration history
EMWLF Worst linear function MCMC WLF
MCMCInitEstimates MCMC initial estimates MCMC DISPLAYINIT
MissPattern Missing data patterns
ModelInfo Model information
MonoDiscrim Discriminant model MONOTONE DISCRIM (/DETAILS)

group means
MonoLogistic Logistic model MONOTONE LOGISTIC (/DETAILS)
MonoModel Multiple monotone models MONOTONE
MonoPropensity Propensity score model MONOTONE PROPENSITY (/DETAILS)

logistic function
MonoReg Regression model MONOTONE REG (/DETAILS)
MonoRegPMM Predicted mean matching MONOTONE REGPMM (/DETAILS)

model
ParameterEstimates Parameter estimates
Transform Variable transformations TRANSFORM
Univariate Univariate statistics SIMPLE
VarianceInfo Between, within, and

total variances

ODS Graphics

PROC MI assigns a name to each graph it creates using ODS. You can use these names to reference
the graphs when using ODS. The names are listed in Table 54.7.

To request these graphs, you must specify the ODS GRAPHICS ON statement in addition to the
options indicated in Table 54.7. For more information about the ODS GRAPHICS statement, see
Chapter 21, “Statistical Graphics Using ODS.”

Table 54.7 ODS Graphics Produced by PROC MI

ODS Graph Name Plot Description Statement Option

ACFPlot ACF plot MCMC PLOTS=ACF
TracePlot Trace plot MCMC PLOTS= TRACE
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Examples: MI Procedure

The Fish data described in the STEPDISC procedure are measurements of 159 fish of seven species
caught in Finland’s lake Laengelmavesi. For each fish, the length, height, and width are measured.
Three different length measurements are recorded: from the nose of the fish to the beginning of its
tail (Length1), from the nose to the notch of its tail (Length2), and from the nose to the end of its tail
(Length3). See Chapter 83, “The STEPDISC Procedure,” for more information.

The Fish1 data set is constructed from the Fish data set and contains only one species of the fish and
the three length measurements. Some values have been set to missing, and the resulting data set has
a monotone missing pattern in the variables Length1, Length2, and Length3. The Fish1 data set is used
in Example 54.2 with the propensity score method and in Example 54.3 with the regression method.

The Fish2 data set is also constructed from the Fish data set and contains two species of fish. Some
values have been set to missing, and the resulting data set has a monotone missing pattern in the
variables Length3, Height, Width, and Species. The Fish2 data set is used in Example 54.4 with the
logistic regression method and in Example 54.5 with the discriminant function method. Note that
some values of the variable Species have also been altered in the data set.

The FitMiss data set created in the section “Getting Started: MI Procedure” on page 4370 is used in
other examples. The following statements create the Fish1 data set:

/*----------- Fish of Species Bream ----------*/
data Fish1;

title 'Fish Measurement Data';
input Length1 Length2 Length3 @@;
datalines;

23.2 25.4 30.0 24.0 26.3 31.2 23.9 26.5 31.1
26.3 29.0 33.5 26.5 29.0 . 26.8 29.7 34.7
26.8 . . 27.6 30.0 35.0 27.6 30.0 35.1
28.5 30.7 36.2 28.4 31.0 36.2 28.7 . .
29.1 31.5 . 29.5 32.0 37.3 29.4 32.0 37.2
29.4 32.0 37.2 30.4 33.0 38.3 30.4 33.0 38.5
30.9 33.5 38.6 31.0 33.5 38.7 31.3 34.0 39.5
31.4 34.0 39.2 31.5 34.5 . 31.8 35.0 40.6
31.9 35.0 40.5 31.8 35.0 40.9 32.0 35.0 40.6
32.7 36.0 41.5 32.8 36.0 41.6 33.5 37.0 42.6
35.0 38.5 44.1 35.0 38.5 44.0 36.2 39.5 45.3
37.4 41.0 45.9 38.0 41.0 46.5
;

The Fish2 data set contains two of the seven species in the Fish data set. For each of the two species
(Bream and Roach), the length from the nose of the fish to the end of its tail, the height, and the width
of each fish are measured. The height and width are recorded as percentages of the length variable.

The following statements create the Fish2 data set:

/*-------- Fish of Species Bream and Roach --------*/
data Fish2 (drop=HtPct WidthPct);
title 'Fish Measurement Data';
input Species $ Length3 HtPct WidthPct @@;
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Height= HtPct*Length3/100;
Width= WidthPct*Length3/100;
datalines;
Gp1 30.0 38.4 13.4 Gp1 31.2 40.0 13.8 Gp1 31.1 39.8 15.1

. 33.5 38.0 . . 34.0 36.6 15.1 Gp1 34.7 39.2 14.2
Gp1 34.5 41.1 15.3 Gp1 35.0 36.2 13.4 Gp1 35.1 39.9 13.8

. 36.2 39.3 13.7 Gp1 36.2 39.4 14.1 . 36.2 39.7 13.3
Gp1 36.4 37.8 12.0 . 37.3 37.3 13.6 Gp1 37.2 40.2 13.9
Gp1 37.2 41.5 15.0 Gp1 38.3 38.8 13.8 Gp1 38.5 38.8 13.5
Gp1 38.6 40.5 13.3 Gp1 38.7 37.4 14.8 Gp1 39.5 38.3 14.1
Gp1 39.2 40.8 13.7 . 39.7 39.1 . Gp1 40.6 38.1 15.1
Gp1 40.5 40.1 13.8 Gp1 40.9 40.0 14.8 Gp1 40.6 40.3 15.0
Gp1 41.5 39.8 14.1 Gp2 41.6 40.6 14.9 Gp1 42.6 44.5 15.5
Gp1 44.1 40.9 14.3 Gp1 44.0 41.1 14.3 Gp1 45.3 41.4 14.9
Gp1 45.9 40.6 14.7 Gp1 46.5 37.9 13.7
Gp2 16.2 25.6 14.0 Gp2 20.3 26.1 13.9 Gp2 21.2 26.3 13.7
Gp2 22.2 25.3 14.3 Gp2 22.2 28.0 16.1 Gp2 22.8 28.4 14.7
Gp2 23.1 26.7 14.7 . 23.7 25.8 13.9 Gp2 24.7 23.5 15.2
Gp2 24.3 27.3 14.6 Gp2 25.3 27.8 15.1 Gp2 25.0 26.2 13.3
Gp2 25.0 25.6 15.2 Gp2 27.2 27.7 14.1 Gp2 26.7 25.9 13.6

. 26.8 27.6 15.4 Gp2 27.9 25.4 14.0 Gp2 29.2 30.4 15.4
Gp2 30.6 28.0 15.6 Gp2 35.0 27.1 15.3
;

Example 54.1: EM Algorithm for MLE

This example uses the EM algorithm to compute the maximum likelihood estimates for parameters
of multivariate normally distributed data with missing values. The following statements invoke the
MI procedure and request the EM algorithm to compute the MLE for .�;†/ of a multivariate normal
distribution from the input data set FitMiss:

proc mi data=FitMiss seed=1518971 simple nimpute=0;
em itprint outem=outem;
var Oxygen RunTime RunPulse;

run;

Note that when you specify the NIMPUTE=0 option, the missing values are not imputed.

The “Model Information” table in Output 54.1.1 describes the method and options used in the
procedure if a positive number is specified in the NIMPUTE= option.
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Output 54.1.1 Model Information

The MI Procedure

Model Information

Data Set WORK.FITMISS
Method MCMC
Multiple Imputation Chain Single Chain
Initial Estimates for MCMC EM Posterior Mode
Start Starting Value
Prior Jeffreys
Number of Imputations 0
Number of Burn-in Iterations 200
Number of Iterations 100
Seed for random number generator 1518971

The “Missing Data Patterns” table in Output 54.1.2 lists distinct missing data patterns with corre-
sponding frequencies and percents. Here, a value of “X” means that the variable is observed in the
corresponding group and a value of “.” means that the variable is missing. The table also displays
group-specific variable means.

Output 54.1.2 Missing Data Patterns

Missing Data Patterns

Run Run
Group Oxygen Time Pulse Freq Percent

1 X X X 21 67.74
2 X X . 4 12.90
3 X . . 3 9.68
4 . X X 1 3.23
5 . X . 2 6.45

Missing Data Patterns

-----------------Group Means----------------
Group Oxygen RunTime RunPulse

1 46.353810 10.809524 171.666667
2 47.109500 10.137500 .
3 52.461667 . .
4 . 11.950000 176.000000
5 . 9.885000 .

With the SIMPLE option, the procedure displays simple descriptive univariate statistics for available
cases in the “Univariate Statistics” table in Output 54.1.3 and correlations from pairwise available
cases in the “Pairwise Correlations” table in Output 54.1.4.
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Output 54.1.3 Univariate Statistics

Univariate Statistics

Variable N Mean Std Dev Minimum Maximum

Oxygen 28 47.11618 5.41305 37.38800 60.05500
RunTime 28 10.68821 1.37988 8.63000 14.03000
RunPulse 22 171.86364 10.14324 148.00000 186.00000

Univariate Statistics

---Missing Values--
Variable Count Percent

Oxygen 3 9.68
RunTime 3 9.68
RunPulse 9 29.03

Output 54.1.4 Pairwise Correlations

Pairwise Correlations

Oxygen RunTime RunPulse

Oxygen 1.000000000 -0.849118562 -0.343961742
RunTime -0.849118562 1.000000000 0.247258191
RunPulse -0.343961742 0.247258191 1.000000000

When you use the EM statement, the MI procedure displays the initial parameter estimates for the
EM algorithm in the “Initial Parameter Estimates for EM” table in Output 54.1.5.

Output 54.1.5 Initial Parameter Estimates for EM

Initial Parameter Estimates for EM

_TYPE_ _NAME_ Oxygen RunTime RunPulse

MEAN 47.116179 10.688214 171.863636
COV Oxygen 29.301078 0 0
COV RunTime 0 1.904067 0
COV RunPulse 0 0 102.885281

When you use the ITPRINT option in the EM statement, the “EM (MLE) Iteration History” table in
Output 54.1.6 displays the iteration history for the EM algorithm.
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Output 54.1.6 EM (MLE) Iteration History

EM (MLE) Iteration History

_Iteration_ -2 Log L Oxygen RunTime RunPulse

0 289.544782 47.116179 10.688214 171.863636
1 263.549489 47.116179 10.688214 171.863636
2 255.851312 47.139089 10.603506 171.538203
3 254.616428 47.122353 10.571685 171.426790
4 254.494971 47.111080 10.560585 171.398296
5 254.483973 47.106523 10.556768 171.389208
6 254.482920 47.104899 10.555485 171.385257
7 254.482813 47.104348 10.555062 171.383345
8 254.482801 47.104165 10.554923 171.382424
9 254.482800 47.104105 10.554878 171.381992
10 254.482800 47.104086 10.554864 171.381796
11 254.482800 47.104079 10.554859 171.381708
12 254.482800 47.104077 10.554858 171.381669

The “EM (MLE) Parameter Estimates” table in Output 54.1.7 displays the maximum likelihood
estimates for � and † of a multivariate normal distribution from the data set FitMiss.

Output 54.1.7 EM (MLE) Parameter Estimates

EM (MLE) Parameter Estimates

_TYPE_ _NAME_ Oxygen RunTime RunPulse

MEAN 47.104077 10.554858 171.381669
COV Oxygen 27.797931 -6.457975 -18.031298
COV RunTime -6.457975 2.015514 3.516287
COV RunPulse -18.031298 3.516287 97.766857

You can also output the EM (MLE) parameter estimates to an output data set with the OUTEM=
option. The following statements list the observations in the output data set outem:

proc print data=outem;
title 'EM Estimates';

run;

The output data set outem in Output 54.1.8 is a TYPE=COV data set. The observation with
_TYPE_=‘MEAN’ contains the MLE for the parameter �, and the observations with _TYPE_=‘COV’
contain the MLE for the parameter † of a multivariate normal distribution from the data set FitMiss.
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Output 54.1.8 EM Estimates

EM Estimates

Obs _TYPE_ _NAME_ Oxygen RunTime RunPulse

1 MEAN 47.1041 10.5549 171.382
2 COV Oxygen 27.7979 -6.4580 -18.031
3 COV RunTime -6.4580 2.0155 3.516
4 COV RunPulse -18.0313 3.5163 97.767

Example 54.2: Propensity Score Method

This example uses the propensity score method to impute missing values for variables in a data set
with a monotone missing pattern. The following statements invoke the MI procedure and request the
propensity score method. The resulting data set is named outex2.

proc mi data=Fish1 seed=899603 out=outex2;
monotone propensity;
var Length1 Length2 Length3;

run;

Note that the VAR statement is required and the data set must have a monotone missing pattern with
variables as ordered in the VAR statement.

The “Model Information” table in Output 54.2.1 describes the method and options used in the
multiple imputation process. By default, five imputations are created for the missing data.

Output 54.2.1 Model Information

The MI Procedure

Model Information

Data Set WORK.FISH1
Method Monotone
Number of Imputations 5
Seed for random number generator 899603

When monotone methods are used in the imputation, MONOTONE is displayed as the method. The
“Monotone Model Specification” table in Output 54.2.2 displays the detailed model specification. By
default, the observations are sorted into five groups based on their propensity scores.
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Output 54.2.2 Monotone Model Specification

Monotone Model Specification

Imputed
Method Variables

Propensity( Groups= 5) Length2 Length3

Without covariates specified for imputed variables Length2 and Length3, the variable Length1 is used
as the covariate for Length2, and the variables Length1 and Length2 are used as covariates for Length3.

The “Missing Data Patterns” table in Output 54.2.3 lists distinct missing data patterns with corre-
sponding frequencies and percents. Here, values of “X” and “.” indicate that the variable is observed
or missing, respectively, in the corresponding group. The table confirms a monotone missing pattern
for these three variables.

Output 54.2.3 Missing Data Patterns

Missing Data Patterns

Group Length1 Length2 Length3 Freq Percent

1 X X X 30 85.71
2 X X . 3 8.57
3 X . . 2 5.71

Missing Data Patterns

-----------------Group Means----------------
Group Length1 Length2 Length3

1 30.603333 33.436667 38.720000
2 29.033333 31.666667 .
3 27.750000 . .

For the imputation process, first, missing values of Length2 in group 3 are imputed using observed
values of Length1. Then the missing values of Length3 in group 2 are imputed using observed values
of Length1 and Length2. And finally, the missing values of Length3 in group 3 are imputed using
observed values of Length1 and imputed values of Length2.

After the completion of m imputations, the “Variance Information” table in Output 54.2.4 displays the
between-imputation variance, within-imputation variance, and total variance for combining complete-
data inferences. It also displays the degrees of freedom for the total variance. The relative increase
in variance due to missingness, the fraction of missing information, and the relative efficiency for
each variable are also displayed. A detailed description of these statistics is provided in the section
“Combining Inferences from Multiply Imputed Data Sets” on page 4418.
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Output 54.2.4 Variance Information

Variance Information

-----------------Variance-----------------
Variable Between Within Total DF

Length2 0.001500 0.465422 0.467223 32.034
Length3 0.049725 0.547434 0.607104 27.103

Variance Information

Relative Fraction
Increase Missing Relative

Variable in Variance Information Efficiency

Length2 0.003869 0.003861 0.999228
Length3 0.108999 0.102610 0.979891

The “Parameter Estimates” table in Output 54.2.5 displays the estimated mean and standard error of
the mean for each variable. The inferences are based on the t distributions. For each variable, the
table also displays a 95% mean confidence interval and a t statistic with the associated p-value for
the hypothesis that the population mean is equal to the value specified in the MU0= option, which is
zero by default.

Output 54.2.5 Parameter Estimates

Parameter Estimates

Variable Mean Std Error 95% Confidence Limits DF

Length2 33.006857 0.683537 31.61460 34.39912 32.034
Length3 38.361714 0.779169 36.76328 39.96015 27.103

Parameter Estimates

t for H0:
Variable Minimum Maximum Mu0 Mean=Mu0 Pr > |t|

Length2 32.957143 33.060000 0 48.29 <.0001
Length3 38.080000 38.545714 0 49.23 <.0001

The following statements list the first 10 observations of the data set outex2, as shown in Output 54.2.6.
The missing values are imputed from observed values with similar propensity scores.

proc print data=outex2(obs=10);
title 'First 10 Observations of the Imputed Data Set';

run;
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Output 54.2.6 Imputed Data Set

First 10 Observations of the Imputed Data Set

Obs _Imputation_ Length1 Length2 Length3

1 1 23.2 25.4 30.0
2 1 24.0 26.3 31.2
3 1 23.9 26.5 31.1
4 1 26.3 29.0 33.5
5 1 26.5 29.0 38.6
6 1 26.8 29.7 34.7
7 1 26.8 29.0 35.0
8 1 27.6 30.0 35.0
9 1 27.6 30.0 35.1

10 1 28.5 30.7 36.2

Example 54.3: Regression Method

This example uses the regression method to impute missing values for all variables in a data set with
a monotone missing pattern. The following statements invoke the MI procedure and request the
regression method for the variable Length2 and the predictive mean matching method for variable
Length3. The resulting data set is named outex3.

proc mi data=Fish1 round=.1 mu0= 0 35 45
seed=13951639 out=outex3;

monotone reg(Length2/ details)
regpmm(Length3= Length1 Length2 Length1*Length2/ details);

var Length1 Length2 Length3;
run;

The ROUND= option is used to round the imputed values to the same precision as observed values.
The values specified with the ROUND= option are matched with the variables Length1, Length2, and
Length3 in the order listed in the VAR statement. The MU0= option requests t tests for the hypotheses
that the population means corresponding to the variables in the VAR statement are Length2=35 and
Length3=45.

The “Missing Data Patterns” table lists distinct missing data patterns with corresponding frequencies
and percents. It is identical to the table in Output 54.2.3 in Example 54.2.
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The “Monotone Model Specification” table in Output 54.3.1 displays the model specification.

Output 54.3.1 Monotone Model Specification

The MI Procedure

Monotone Model Specification

Imputed
Method Variables

Regression Length2
Regression-PMM( K= 5) Length3

When you use the DETAILS option, the parameters estimated from the observed data and the
parameters used in each imputation are displayed in Output 54.3.2 and Output 54.3.3.

Output 54.3.2 Regression Model

Regression Models for Monotone Method

Imputed ----------------Imputation----------------
Variable Effect Obs-Data 1 2 3

Length2 Intercept -0.04249 -0.049184 -0.055470 -0.051346
Length2 Length1 0.98587 1.001934 0.995275 0.992294

Regression Models for Monotone Method

Imputed ---------Imputation---------
Variable Effect 4 5

Length2 Intercept -0.064193 -0.030719
Length2 Length1 0.983122 0.995883
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Output 54.3.3 Regression Predicted Mean Matching Model

Regression Models for Monotone Predicted Mean Matching Method

Imputed ---------------Imputation---------------
Variable Effect Obs Data 1 2 3

Length3 Intercept -0.01304 0.004134 -0.011417 -0.034177
Length3 Length1 -0.01332 0.025320 -0.037494 0.308765
Length3 Length2 0.98918 0.955510 1.025741 0.673374
Length3 Length1*Length2 -0.02521 -0.034964 -0.022017 -0.017919

Regression Models for Monotone Predicted Mean Matching Method

Imputed ---------Imputation---------
Variable Effect 4 5

Length3 Intercept -0.010532 0.004685
Length3 Length1 0.156606 -0.147118
Length3 Length2 0.828384 1.146440
Length3 Length1*Length2 -0.029335 -0.034671

After the completion of five imputations by default, the “Variance Information” table in Output 54.3.4
displays the between-imputation variance, within-imputation variance, and total variance for combin-
ing complete-data inferences. The relative increase in variance due to missingness, the fraction of
missing information, and the relative efficiency for each variable are also displayed. These statistics
are described in the section “Combining Inferences from Multiply Imputed Data Sets” on page 4418.

Output 54.3.4 Variance Information

Variance Information

-----------------Variance-----------------
Variable Between Within Total DF

Length2 0.000133 0.439512 0.439672 32.15
Length3 0.000386 0.486913 0.487376 32.131

Variance Information

Relative Fraction
Increase Missing Relative

Variable in Variance Information Efficiency

Length2 0.000363 0.000363 0.999927
Length3 0.000952 0.000951 0.999810
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The “Parameter Estimates” table in Output 54.3.5 displays a 95% mean confidence interval and a t
statistic with its associated p-value for each of the hypotheses requested with the MU0= option.

Output 54.3.5 Parameter Estimates

Parameter Estimates

Variable Mean Std Error 95% Confidence Limits DF

Length2 33.104571 0.663078 31.75417 34.45497 32.15
Length3 38.424571 0.698123 37.00277 39.84637 32.131

Parameter Estimates

t for H0:
Variable Minimum Maximum Mu0 Mean=Mu0 Pr > |t|

Length2 33.088571 33.117143 35.000000 -2.86 0.0074
Length3 38.397143 38.445714 45.000000 -9.42 <.0001

The following statements list the first 10 observations of the data set outex3 in Output 54.3.6. Note
that the imputed values of Length2 are rounded to the same precision as the observed values.

proc print data=outex3(obs=10);
title 'First 10 Observations of the Imputed Data Set';

run;

Output 54.3.6 Imputed Data Set

First 10 Observations of the Imputed Data Set

Obs _Imputation_ Length1 Length2 Length3

1 1 23.2 25.4 30.0
2 1 24.0 26.3 31.2
3 1 23.9 26.5 31.1
4 1 26.3 29.0 33.5
5 1 26.5 29.0 34.7
6 1 26.8 29.7 34.7
7 1 26.8 28.8 34.7
8 1 27.6 30.0 35.0
9 1 27.6 30.0 35.1

10 1 28.5 30.7 36.2

Example 54.4: Logistic Regression Method for CLASS Variables

This example uses logistic regression method to impute values for a binary variable in a data set with
a monotone missing pattern.
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In the following statements, the logistic regression method is used for the binary CLASS variable
Species:

proc mi data=Fish2 seed=1305417 out=outex4;
class Species;
monotone logistic( Species= Height Width Height*Width/ details);
var Height Width Species;

run;

The “Model Information” table in Output 54.4.1 describes the method and options used in the
multiple imputation process.

Output 54.4.1 Model Information

The MI Procedure

Model Information

Data Set WORK.FISH2
Method Monotone
Number of Imputations 5
Seed for random number generator 1305417

The “Monotone Model Specification” table in Output 54.4.2 describes methods and imputed variables
in the imputation model. The procedure uses the logistic regression method to impute the variable
Species in the model. Missing values in other variables are not imputed.

Output 54.4.2 Monotone Model Specification

Monotone Model Specification

Imputed
Method Variables

Logistic Regression Species

The “Missing Data Patterns” table in Output 54.4.3 lists distinct missing data patterns with cor-
responding frequencies and percents. The table confirms a monotone missing pattern for these
variables.

Output 54.4.3 Missing Data Patterns

Missing Data Patterns

--------Group Means-------
Group Height Width Species Freq Percent Height Width

1 X X X 47 85.45 12.097645 4.808204
2 X X . 6 10.91 11.411050 4.567050
3 X . . 2 3.64 14.126350 .
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When you use the DETAILS option, parameters estimated from the observed data and the parameters
used in each imputation are displayed in the “Logistic Models for Monotone Method” table in
Output 54.4.4.

Output 54.4.4 Logistic Regression Model

Logistic Models for Monotone Method

Imputed ---------------Imputation---------------
Variable Effect Obs-Data 1 2 3

Species Intercept 2.14183 1.240681 5.018482 5.509416
Species Height 9.08604 3.774512 11.322763 11.230355
Species Width -5.02065 0.674528 -6.245428 -5.785890
Species Height*Width -1.91634 -3.299450 -3.326538 -5.045058

Logistic Models for Monotone Method

Imputed ---------Imputation---------
Variable Effect 4 5

Species Intercept -1.325099 6.069734
Species Height 5.711366 12.766614
Species Width 2.394018 -9.689260
Species Height*Width -2.570333 -2.214031

The following statements list the first 10 observations of the data set outex4 in Output 54.4.5:

proc print data=outex4(obs=10);
title 'First 10 Observations of the Imputed Data Set';

run;

Output 54.4.5 Imputed Data Set

First 10 Observations of the Imputed Data Set

Obs _Imputation_ Species Length3 Height Width

1 1 Gp1 30.0 11.5200 4.0200
2 1 Gp1 31.2 12.4800 4.3056
3 1 Gp1 31.1 12.3778 4.6961
4 1 33.5 12.7300 .
5 1 Gp1 34.0 12.4440 5.1340
6 1 Gp1 34.7 13.6024 4.9274
7 1 Gp1 34.5 14.1795 5.2785
8 1 Gp1 35.0 12.6700 4.6900
9 1 Gp1 35.1 14.0049 4.8438

10 1 Gp1 36.2 14.2266 4.9594

Note that a missing value of the variable Species is not imputed if the corresponding covariates are
missing and not imputed, as shown by observation 4 in the table.
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Example 54.5: Discriminant Function Method for CLASS Variables

This example uses discriminant monotone methods to impute values of a CLASS variable from the
observed observation values in a data set with a monotone missing pattern.

The following statements impute the continuous variables Height and Width with the regression
method and the classification variable Species with the discriminant function method:

proc mi data=Fish2 seed=7545417 nimpute=3 out=outex5;
class Species;
monotone reg( Height Width)

discrim( Species= Length3 Height Width/ details);
var Length3 Height Width Species;

run;

The “Model Information” table in Output 54.5.1 describes the method and options used in the
multiple imputation process.

Output 54.5.1 Model Information

The MI Procedure

Model Information

Data Set WORK.FISH2
Method Monotone
Number of Imputations 3
Seed for random number generator 7545417

The “Monotone Model Specification” table in Output 54.5.2 describes methods and imputed variables
in the imputation model. The procedure uses the regression method to impute the variables Height
and Width, and uses the logistic regression method to impute the variable Species in the model.

Output 54.5.2 Monotone Model Specification

Monotone Model Specification

Imputed
Method Variables

Regression Height Width
Discriminant Function Species

The “Missing Data Patterns” table in Output 54.5.3 lists distinct missing data patterns with cor-
responding frequencies and percents. The table confirms a monotone missing pattern for these
variables.
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Output 54.5.3 Missing Data Patterns

Missing Data Patterns

Group Length3 Height Width Species Freq Percent

1 X X X X 47 85.45
2 X X X . 6 10.91
3 X X . . 2 3.64

Missing Data Patterns

-----------------Group Means----------------
Group Length3 Height Width

1 33.497872 12.097645 4.808204
2 32.366667 11.411050 4.567050
3 36.600000 14.126350 .

When you use the DETAILS option, the parameters estimated from the observed data and the
parameters used in each imputation are displayed in Output 54.5.4.

Output 54.5.4 Discriminant Model

Group Means for Monotone Discriminant Method

----------------Imputation----------------
Species Variable Obs-Data 1 2 3

Gp1 Length3 0.68104 0.766779 0.724277 0.577304
Gp1 Height 0.74011 0.809770 0.794103 0.671612
Gp1 Width 0.63865 0.700122 0.725179 0.579870
Gp2 Length3 -1.00022 -0.809466 -0.999101 -0.908734
Gp2 Height -1.09007 -0.965672 -1.089324 -1.024453
Gp2 Width -0.88135 -0.710969 -0.827099 -0.746598

The following statements list the first 10 observations of the data set outex5 in Output 54.5.5. Note
that all missing values of the variables Width and Species are imputed.

proc print data=outex5(obs=10);
title 'First 10 Observations of the Imputed Data Set';

run;
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Output 54.5.5 Imputed Data Set

First 10 Observations of the Imputed Data Set

Obs _Imputation_ Species Length3 Height Width

1 1 Gp1 30.0 11.5200 4.02000
2 1 Gp1 31.2 12.4800 4.30560
3 1 Gp1 31.1 12.3778 4.69610
4 1 Gp1 33.5 12.7300 4.67966
5 1 Gp2 34.0 12.4440 5.13400
6 1 Gp1 34.7 13.6024 4.92740
7 1 Gp1 34.5 14.1795 5.27850
8 1 Gp1 35.0 12.6700 4.69000
9 1 Gp1 35.1 14.0049 4.84380

10 1 Gp1 36.2 14.2266 4.95940

Example 54.6: MCMC Method

This example uses the MCMC method to impute missing values for a data set with an arbitrary
missing pattern. The following statements invoke the MI procedure and specify the MCMC method
with six imputations:

proc mi data=FitMiss seed=21355417 nimpute=6 mu0=50 10 180 ;
mcmc chain=multiple displayinit initial=em(itprint);
var Oxygen RunTime RunPulse;

run;

The “Model Information” table in Output 54.6.1 describes the method used in the multiple imputation
process. When you use the CHAIN=MULTIPLE option, the procedure uses multiple chains and
completes the default 200 burn-in iterations before each imputation. The 200 burn-in iterations are
used to make the iterations converge to the stationary distribution before the imputation.

Output 54.6.1 Model Information

The MI Procedure

Model Information

Data Set WORK.FITMISS
Method MCMC
Multiple Imputation Chain Multiple Chains
Initial Estimates for MCMC EM Posterior Mode
Start Starting Value
Prior Jeffreys
Number of Imputations 6
Number of Burn-in Iterations 200
Seed for random number generator 21355417
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By default, the procedure uses a noninformative Jeffreys prior to derive the posterior mode from the
EM algorithm as the starting values for the MCMC method.

The “Missing Data Patterns” table in Output 54.6.2 lists distinct missing data patterns with corre-
sponding statistics.

Output 54.6.2 Missing Data Patterns

Missing Data Patterns

Run Run
Group Oxygen Time Pulse Freq Percent

1 X X X 21 67.74
2 X X . 4 12.90
3 X . . 3 9.68
4 . X X 1 3.23
5 . X . 2 6.45

Missing Data Patterns

-----------------Group Means----------------
Group Oxygen RunTime RunPulse

1 46.353810 10.809524 171.666667
2 47.109500 10.137500 .
3 52.461667 . .
4 . 11.950000 176.000000
5 . 9.885000 .

When you use the ITPRINT option within the INITIAL=EM option, the procedure displays the “EM
(Posterior Mode) Iteration History” table in Output 54.6.3.
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Output 54.6.3 EM (Posterior Mode) Iteration History

EM (Posterior Mode) Iteration History

_Iteration_ -2 Log L -2 Log Posterior Oxygen RunTime

0 254.482800 282.909549 47.104077 10.554858
1 255.081168 282.051584 47.104077 10.554857
2 255.271408 282.017488 47.104077 10.554857
3 255.318622 282.015372 47.104002 10.554523
4 255.330259 282.015232 47.103861 10.554388
5 255.333161 282.015222 47.103797 10.554341
6 255.333896 282.015222 47.103774 10.554325
7 255.334085 282.015222 47.103766 10.554320

EM (Posterior Mode) Iteration History

_Iteration_ RunPulse

0 171.381669
1 171.381652
2 171.381644
3 171.381842
4 171.382053
5 171.382150
6 171.382185
7 171.382196

When you use the DISPLAYINIT option in the MCMC statement, the “Initial Parameter Estimates
for MCMC” table in Output 54.6.4 displays the starting mean and covariance estimates used in the
MCMC method. The same starting estimates are used in the MCMC method for multiple chains
because the EM algorithm is applied to the same data set in each chain. You can explicitly specify
different initial estimates for different imputations, or you can use the bootstrap method to generate
different parameter estimates from the EM algorithm for the MCMC method.

Output 54.6.4 Initial Parameter Estimates

Initial Parameter Estimates for MCMC

_TYPE_ _NAME_ Oxygen RunTime RunPulse

MEAN 47.103766 10.554320 171.382196
COV Oxygen 24.549967 -5.726112 -15.926036
COV RunTime -5.726112 1.781407 3.124798
COV RunPulse -15.926036 3.124798 83.164045

Output 54.6.5 and Output 54.6.6 display variance information and parameter estimates, respectively,
from the multiple imputation.
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Output 54.6.5 Variance Information

Variance Information

-----------------Variance-----------------
Variable Between Within Total DF

Oxygen 0.051560 0.928170 0.988323 25.958
RunTime 0.003979 0.070057 0.074699 25.902
RunPulse 4.118578 4.260631 9.065638 7.5938

Variance Information

Relative Fraction
Increase Missing Relative

Variable in Variance Information Efficiency

Oxygen 0.064809 0.062253 0.989731
RunTime 0.066262 0.063589 0.989513
RunPulse 1.127769 0.575218 0.912517

Output 54.6.6 Parameter Estimates

Parameter Estimates

Variable Mean Std Error 95% Confidence Limits DF

Oxygen 47.164819 0.994145 45.1212 49.2085 25.958
RunTime 10.549936 0.273312 9.9880 11.1118 25.902
RunPulse 170.969836 3.010920 163.9615 177.9782 7.5938

Parameter Estimates

t for H0:
Variable Minimum Maximum Mu0 Mean=Mu0 Pr > |t|

Oxygen 46.858020 47.363540 50.000000 -2.85 0.0084
RunTime 10.476886 10.659412 10.000000 2.01 0.0547
RunPulse 168.252615 172.894991 180.000000 -3.00 0.0182

Example 54.7: Producing Monotone Missingness with MCMC

This example uses the MCMC method to impute just enough missing values for a data set with an
arbitrary missing pattern so that each imputed data set has a monotone missing pattern based on the
order of variables in the VAR statement.

The following statements invoke the MI procedure and specify the IMPUTE=MONOTONE option
to create the imputed data set with a monotone missing pattern. You must specify a VAR statement
to provide the order of variables in order for the imputed data to achieve a monotone missing pattern.
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proc mi data=FitMiss seed=17655417 out=outex7;
mcmc impute=monotone;
var Oxygen RunTime RunPulse;

run;

The “Model Information” table in Output 54.7.1 describes the method used in the multiple imputation
process.

Output 54.7.1 Model Information

The MI Procedure

Model Information

Data Set WORK.FITMISS
Method Monotone-data MCMC
Multiple Imputation Chain Single Chain
Initial Estimates for MCMC EM Posterior Mode
Start Starting Value
Prior Jeffreys
Number of Imputations 5
Number of Burn-in Iterations 200
Number of Iterations 100
Seed for random number generator 17655417

The “Missing Data Patterns” table in Output 54.7.2 lists distinct missing data patterns with corre-
sponding statistics. Here, an “X” means that the variable is observed in the corresponding group, a “.”
means that the variable is missing and will be imputed to achieve the monotone missingness for the
imputed data set, and an “O” means that the variable is missing and will not be imputed. The table
also displays group-specific variable means.

Output 54.7.2 Missing Data Patterns

Missing Data Patterns

Run Run
Group Oxygen Time Pulse Freq Percent

1 X X X 21 67.74
2 X X O 4 12.90
3 X O O 3 9.68
4 . X X 1 3.23
5 . X O 2 6.45

Missing Data Patterns

-----------------Group Means----------------
Group Oxygen RunTime RunPulse

1 46.353810 10.809524 171.666667
2 47.109500 10.137500 .
3 52.461667 . .
4 . 11.950000 176.000000
5 . 9.885000 .
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As shown in the table in Output 54.7.2, the MI procedure needs to impute only three missing values
from group 4 and group 5 to achieve a monotone missing pattern for the imputed data set.

When you use the MCMC method to produce an imputed data set with a monotone missing pattern,
tables of variance information and parameter estimates are not created.

The following statements are used just to show the monotone missingness of the output data set
outex7:

proc mi data=outex7 nimpute=0;
var Oxygen RunTime RunPulse;

run;

The “Missing Data Patterns” table in Output 54.7.3 displays a monotone missing data pattern.

Output 54.7.3 Monotone Missing Data Patterns

The MI Procedure

Missing Data Patterns

Run Run
Group Oxygen Time Pulse Freq Percent

1 X X X 110 70.97
2 X X . 30 19.35
3 X . . 15 9.68

Missing Data Patterns

-----------------Group Means----------------
Group Oxygen RunTime RunPulse

1 46.152428 10.861364 171.863636
2 47.796038 10.053333 .
3 52.461667 . .

The following statements impute one value for each missing value in the monotone missingness data
set outex7:

proc mi data=outex7 nimpute=1 seed=51343672 out=outds;
monotone method=reg;
var Oxygen RunTime RunPulse;
by _Imputation_;

run;

You can then analyze these data sets by using other SAS procedures and combine these results by
using the MIANALYZE procedure. Note that the VAR statement is required with a MONOTONE
statement to provide the variable order for the monotone missing pattern.
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Example 54.8: Checking Convergence in MCMC

This example uses the MCMC method with a single chain. It also displays trace and autocorrelation
plots to check convergence for the single chain.

The following statements use the MCMC method to create an iteration plot for the successive
estimates of the mean of Oxygen. These statements also create an autocorrelation function plot for
the variable Oxygen.

ods graphics on;
proc mi data=FitMiss seed=42037921 nimpute=2;

mcmc plots=(trace(mean(Oxygen)) acf(mean(Oxygen)));
var Oxygen RunTime RunPulse;

run;
ods graphics off;

With the specified ODS GRAPHICS ON statement, the TRACE(MEAN(OXYGEN)) option in the
PLOTS= option displays the trace plot of means for the variable Oxygen, as shown in Output 54.8.1.
The dashed vertical lines indicate the imputed iterations—that is, the Oxygen values used in the
imputations. The plot shows no apparent trends for the variable Oxygen.

Output 54.8.1 Trace Plot for Oxygen
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The ACF(MEAN(OXYGEN)) option in the PLOTS= option displays the autocorrelation plot of
means for the variable Oxygen, as shown in Output 54.8.2. The autocorrelation function plot shows
no significant positive or negative autocorrelation.

Output 54.8.2 Autocorrelation Function Plot for Oxygen

You can also create plots for the worst linear function, the means of other variables, the variances of
variables, and the covariances between variables. Alternatively, you can use the OUTITER option to
save statistics such as the means, standard deviations, covariances, �2 log LR statistic, �2 log LR
statistic of the posterior mode, and worst linear function from each iteration in an output data set.
Then you can do a more in-depth trace (time series) analysis of the iterations with other procedures,
such as PROC AUTOREG and PROC ARIMA in the SAS/ETS User’s Guide.

For general information about the ODS GRAPHICS statement, see Chapter 21, “Statistical Graphics
Using ODS.” For specific information about the graphics available in the MI procedure, see the
section “ODS Graphics” on page 4424.
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Example 54.9: Saving and Using Parameters for MCMC

This example uses the MCMC method with multiple chains as specified in Example 54.6. It saves the
parameter values used for each imputation in an output data set of type EST called miest. This output
data set can then be used to impute missing values in other similar input data sets. The following
statements invoke the MI procedure and specify the MCMC method with multiple chains to create
three imputations:

proc mi data=FitMiss seed=21355417 nimpute=6 mu0=50 10 180;
mcmc chain=multiple initial=em outest=miest;
var Oxygen RunTime RunPulse;

run;

The following statements list the parameters used for the imputations in Output 54.9.1. Note that the
data set includes observations with _TYPE_=‘SEED’ containing the seed to start the next random
number generator.

proc print data=miest(obs=15);
title 'Parameters for the Imputations';

run;

Output 54.9.1 OUTEST Data Set

Parameters for the Imputations

Obs _Imputation_ _TYPE_ _NAME_ Oxygen RunTime RunPulse

1 1 SEED 825240167.00 825240167.00 825240167.00
2 1 PARM 46.77 10.47 169.41
3 1 COV Oxygen 30.59 -8.32 -50.99
4 1 COV RunTime -8.32 2.90 17.03
5 1 COV RunPulse -50.99 17.03 200.09
6 2 SEED 1895925872.00 1895925872.00 1895925872.00
7 2 PARM 47.41 10.37 173.34
8 2 COV Oxygen 22.35 -4.44 -21.18
9 2 COV RunTime -4.44 1.76 1.25

10 2 COV RunPulse -21.18 1.25 125.67
11 3 SEED 137653011.00 137653011.00 137653011.00
12 3 PARM 48.21 10.36 170.52
13 3 COV Oxygen 23.59 -5.25 -19.76
14 3 COV RunTime -5.25 1.66 5.00
15 3 COV RunPulse -19.76 5.00 110.99

The following statements invoke the MI procedure and use the INEST= option in the MCMC
statement:

proc mi data=FitMiss mu0=50 10 180;
mcmc inest=miest;
var Oxygen RunTime RunPulse;

run;
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The “Model Information” table in Output 54.9.2 describes the method used in the multiple impu-
tation process. The remaining tables for the example are identical to the tables in Output 54.6.2,
Output 54.6.4, Output 54.6.5, and Output 54.6.6 in Example 54.6.

Output 54.9.2 Model Information

The MI Procedure

Model Information

Data Set WORK.FITMISS
Method MCMC
INEST Data Set WORK.MIEST
Number of Imputations 6

Example 54.10: Transforming to Normality

This example applies the MCMC method to the FitMiss data set in which the variable Oxygen is
transformed. Assume that Oxygen is skewed and can be transformed to normality with a logarithmic
transformation. The following statements invoke the MI procedure and specify the transformation.
The TRANSFORM statement specifies the log transformation for Oxygen. Note that the values
displayed for Oxygen in all of the results correspond to transformed values.

proc mi data=FitMiss seed=32937921 mu0=50 10 180 out=outex10;
transform log(Oxygen);
mcmc chain=multiple displayinit;
var Oxygen RunTime RunPulse;

run;

The “Missing Data Patterns” table in Output 54.10.1 lists distinct missing data patterns with cor-
responding statistics for the FitMiss data. Note that the values of Oxygen shown in the tables are
transformed values.
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Output 54.10.1 Missing Data Patterns

The MI Procedure

Missing Data Patterns

Run Run
Group Oxygen Time Pulse Freq Percent

1 X X X 21 67.74
2 X X . 4 12.90
3 X . . 3 9.68
4 . X X 1 3.23
5 . X . 2 6.45

Transformed Variables: Oxygen

Missing Data Patterns

-----------------Group Means----------------
Group Oxygen RunTime RunPulse

1 3.829760 10.809524 171.666667
2 3.851813 10.137500 .
3 3.955298 . .
4 . 11.950000 176.000000
5 . 9.885000 .

Transformed Variables: Oxygen

The “Variable Transformations” table in Output 54.10.2 lists the variables that have been transformed.

Output 54.10.2 Variable Transformations

Variable Transformations

Variable _Transform_

Oxygen LOG
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The “Initial Parameter Estimates for MCMC” table in Output 54.10.3 displays the starting mean and
covariance estimates used in the MCMC method.

Output 54.10.3 Initial Parameter Estimates

Initial Parameter Estimates for MCMC

_TYPE_ _NAME_ Oxygen RunTime RunPulse

MEAN 3.846122 10.557605 171.382949
COV Oxygen 0.010827 -0.120891 -0.328772
COV RunTime -0.120891 1.744580 3.011180
COV RunPulse -0.328772 3.011180 82.747609

Transformed Variables: Oxygen

Output 54.10.4 displays variance information from the multiple imputation.

Output 54.10.4 Variance Information

Variance Information

-----------------Variance-----------------
Variable Between Within Total DF

* Oxygen 0.000016175 0.000401 0.000420 26.499
RunTime 0.001762 0.065421 0.067536 27.118
RunPulse 0.205979 3.116830 3.364004 25.222

* Transformed Variables

Variance Information

Relative Fraction
Increase Missing Relative

Variable in Variance Information Efficiency

* Oxygen 0.048454 0.047232 0.990642
RunTime 0.032318 0.031780 0.993684
RunPulse 0.079303 0.075967 0.985034

* Transformed Variables
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Output 54.10.5 displays parameter estimates from the multiple imputation. Note that the parameter
value of �0 has also been transformed using the logarithmic transformation.

Output 54.10.5 Parameter Estimates

Parameter Estimates

Variable Mean Std Error 95% Confidence Limits DF

* Oxygen 3.845175 0.020494 3.8031 3.8873 26.499
RunTime 10.560131 0.259876 10.0270 11.0932 27.118
RunPulse 171.802181 1.834122 168.0264 175.5779 25.222

* Transformed Variables

Parameter Estimates

t for H0:
Variable Minimum Maximum Mu0 Mean=Mu0 Pr > |t|

* Oxygen 3.838599 3.848456 3.912023 -3.26 0.0030
RunTime 10.493031 10.600498 10.000000 2.16 0.0402
RunPulse 171.251777 172.498626 180.000000 -4.47 0.0001

* Transformed Variables

The following statements list the first 10 observations of the data set outmi in Output 54.10.6. Note
that the values for Oxygen are in the original scale.

proc print data=outex10(obs=10);
title 'First 10 Observations of the Imputed Data Set';

run;

Output 54.10.6 Imputed Data Set in Original Scale

First 10 Observations of the Imputed Data Set

Run
Obs _Imputation_ Oxygen RunTime Pulse

1 1 44.6090 11.3700 178.000
2 1 45.3130 10.0700 185.000
3 1 54.2970 8.6500 156.000
4 1 59.5710 7.1440 167.012
5 1 49.8740 9.2200 170.092
6 1 44.8110 11.6300 176.000
7 1 38.5834 11.9500 176.000
8 1 43.7376 10.8500 158.851
9 1 39.4420 13.0800 174.000

10 1 60.0550 8.6300 170.000
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Note that the results in Output 54.10.6 can also be produced from the following statements without
using a TRANSFORM statement. A transformed value of log(50)=3.91202 is used in the MU0=
option.

data temp;
set FitMiss;
LogOxygen= log(Oxygen);

run;
proc mi data=temp seed=14337921 mu0=3.91202 10 180 out=outtemp;

mcmc chain=multiple displayinit;
var LogOxygen RunTime RunPulse;

run;
data outex10;

set outtemp;
Oxygen= exp(LogOxygen);

run;

Example 54.11: Multistage Imputation

This example uses two separate imputation procedures to complete the imputation process. In the
first case, the MI procedure statements use the MCMC method to impute just enough missing values
for a data set with an arbitrary missing pattern so that each imputed data set has a monotone missing
pattern. In the second case, the MI procedure statements use a MONOTONE statement to impute
missing values for data sets with monotone missing patterns.

The following statements are identical to those in Example 54.7. The statements invoke the MI
procedure and specify the IMPUTE=MONOTONE option to create the imputed data set with a
monotone missing pattern.

proc mi data=FitMiss seed=17655417 out=outex11;
mcmc impute=monotone;
var Oxygen RunTime RunPulse;

run;

The “Missing Data Patterns” table in Output 54.11.1 lists distinct missing data patterns with corre-
sponding statistics. Here, an “X” means that the variable is observed in the corresponding group, a “.”
means that the variable is missing and will be imputed to achieve the monotone missingness for the
imputed data set, and an “O” means that the variable is missing and will not be imputed. The table
also displays group-specific variable means.



Example 54.11: Multistage Imputation F 4455

Output 54.11.1 Missing Data Patterns

The MI Procedure

Missing Data Patterns

Run Run
Group Oxygen Time Pulse Freq Percent

1 X X X 21 67.74
2 X X O 4 12.90
3 X O O 3 9.68
4 . X X 1 3.23
5 . X O 2 6.45

Missing Data Patterns

-----------------Group Means----------------
Group Oxygen RunTime RunPulse

1 46.353810 10.809524 171.666667
2 47.109500 10.137500 .
3 52.461667 . .
4 . 11.950000 176.000000
5 . 9.885000 .

As shown in the table, the MI procedure needs to impute only three missing values from group 4 and
group 5 to achieve a monotone missing pattern for the imputed data set. When the MCMC method is
used to produce an imputed data set with a monotone missing pattern, tables of variance information
and parameter estimates are not created.

The following statements impute one value for each missing value in the monotone missingness data
set outex11:

proc mi data=outex11
nimpute=1 seed=51343672
out=outex11a;

monotone reg;
var Oxygen RunTime RunPulse;
by _Imputation_;

run;

You can then analyze these data sets by using other SAS procedures and combine these results by
using the MIANALYZE procedure. Note that the VAR statement is required with a MONOTONE
statement to provide the variable order for the monotone missing pattern.

The “Model Information” table in Output 54.11.2 shows that a monotone method is used to generate
imputed values in the first BY group.
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Output 54.11.2 Model Information

----------------------------- Imputation Number=1 ------------------------------

The MI Procedure

Model Information

Data Set WORK.OUTEX11
Method Monotone
Number of Imputations 1
Seed for random number generator 51343672

The “Monotone Model Specification” table in Output 54.11.3 describes methods and imputed
variables in the imputation model. The MI procedure uses the regression method to impute the
variables RunTime and RunPulse in the model.

Output 54.11.3 Monotone Model Specification

----------------------------- Imputation Number=1 ------------------------------

Monotone Model Specification

Imputed
Method Variables

Regression RunTime RunPulse

The “Missing Data Patterns” table in Output 54.11.4 lists distinct missing data patterns with corre-
sponding statistics. It shows a monotone missing pattern for the imputed data set.

Output 54.11.4 Missing Data Patterns

----------------------------- Imputation Number=1 ------------------------------

Missing Data Patterns

Run Run
Group Oxygen Time Pulse Freq Percent

1 X X X 22 70.97
2 X X . 6 19.35
3 X . . 3 9.68

Missing Data Patterns

-----------------Group Means----------------
Group Oxygen RunTime RunPulse

1 46.057479 10.861364 171.863636
2 46.745227 10.053333 .
3 52.461667 . .
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The following statements list the first 10 observations of the data set outex11a in Output 54.11.5:

proc print data=outex11a(obs=10);
title 'First 10 Observations of the Imputed Data Set';

run;

Output 54.11.5 Imputed Data Set

First 10 Observations of the Imputed Data Set

Run
Obs _Imputation_ Oxygen RunTime Pulse

1 1 44.6090 11.3700 178.000
2 1 45.3130 10.0700 185.000
3 1 54.2970 8.6500 156.000
4 1 59.5710 7.1569 169.914
5 1 49.8740 9.2200 159.315
6 1 44.8110 11.6300 176.000
7 1 39.8345 11.9500 176.000
8 1 45.3196 10.8500 151.252
9 1 39.4420 13.0800 174.000

10 1 60.0550 8.6300 170.000

This example presents an alternative to the full-data MCMC imputation, in which imputation of
only a few missing values is needed to achieve a monotone missing pattern for the imputed data set.
The example uses a monotone MCMC method that imputes fewer missing values in each iteration
and achieves approximate stationarity in fewer iterations (Schafer 1997, p. 227). The example also
demonstrates how to combine the monotone MCMC method with a method for monotone missing
data, which does not rely on iterations of steps.
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