Introduction to Regression Procedures


References

  • Allen, D. M. (1971). “Mean Square Error of Prediction as a Criterion for Selecting Variables.” Technometrics 13:469–475.

  • Allen, D. M., and Cady, F. B. (1982). Analyzing Experimental Data by Regression. Belmont, CA: Lifetime Learning Publications.

  • Belsley, D. A., Kuh, E., and Welsch, R. E. (1980). Regression Diagnostics: Identifying Influential Data and Sources of Collinearity. New York: John Wiley & Sons.

  • Bock, R. D. (1975). Multivariate Statistical Methods in Behavioral Research. New York: McGraw-Hill.

  • Box, G. E. P. (1966). “The Use and Abuse of Regression.” Technometrics 8:625–629.

  • Box, G. E. P., and Cox, D. R. (1964). “An Analysis of Transformations.” Journal of the Royal Statistical Society, Series B 26:211–234.

  • Cleveland, W. S., Devlin, S. J., and Grosse, E. (1988). “Regression by Local Fitting.” Journal of Econometrics 37:87–114.

  • Cook, R. D. (1977). “Detection of Influential Observations in Linear Regression.” Technometrics 19:15–18.

  • Cook, R. D. (1979). “Influential Observations in Linear Regression.” Journal of the American Statistical Association 74:169–174.

  • Daniel, C., and Wood, F. S. (1999). Fitting Equations to Data: Computer Analysis of Multifactor Data. 2nd ed. New York: John Wiley & Sons.

  • Darlington, R. B. (1968). “Multiple Regression in Psychological Research and Practice.” Psychological Bulletin 69:161–182.

  • Davis, A. W. (1970). “Differential Equation of Hotelling’s Generalized $T^2$.” Annals of Statistics 39:815–832.

  • Davis, A. W. (1972). “On the Marginal Distributions of the Latent Roots of the Multivariate Beta Matrix.” Biometrika 43:1664–1670.

  • Davis, A. W. (1979). “On the Differential Equation for Meijer’s $G_{p,p}^{p,0}$ Function, and Further Tables of Wilks’s Likelihood Ratio Criterion.” Biometrika 66:519–531.

  • Davis, A. W. (1980). “Further Tabulation of Hotelling’s Generalized $T^2$.” Communications in Statistics—Simulation and Computation 9:321–336.

  • Draper, N. R., and Smith, H. (1998). Applied Regression Analysis. 3rd ed. New York: John Wiley & Sons.

  • Durbin, J., and Watson, G. S. (1951). “Testing for Serial Correlation in Least Squares Regression.” Biometrika 37:409–428.

  • Efron, B., Hastie, T. J., Johnstone, I. M., and Tibshirani, R. (2004). “Least Angle Regression (with Discussion).” Annals of Statistics 32:407–499.

  • Eilers, P. H. C., and Marx, B. D. (1996). “Flexible Smoothing with B-Splines and Penalties.” Statistical Science 11:89–121. With discussion.

  • Freund, R. J., and Littell, R. C. (1986). SAS System for Regression. 1986 ed. Cary, NC: SAS Institute Inc.

  • Freund, R. J., Littell, R. C., and Spector, P. C. (1991). SAS System for Linear Models. Cary, NC: SAS Institute Inc.

  • Friedman, J. H. (1991). “Multivariate Adaptive Regression Splines.” Annals of Statistics 19:1–67.

  • Gentleman, W. M. (1972). Basic Procedures for Large, Sparse, or Weighted Least Squares Problems. Technical Report CSRR-2068, University of Waterloo, Ontario.

  • Gentleman, W. M. (1973). “Least Squares Computations by Givens Transformations without Square Roots.” Journal of the Institute of Mathematics and Its Applications 12:329–336.

  • Goodnight, J. H. (1979). “A Tutorial on the Sweep Operator.” American Statistician 33:149–158.

  • Hawkins, D. M. (1980). “A Note on Fitting a Regression with No Intercept Term.” American Statistician 34:233.

  • Hosmer, D. W., Jr., and Lemeshow, S. (1989). Applied Logistic Regression. New York: John Wiley & Sons.

  • Huber, P. J. (1973). “Robust Regression: Asymptotics, Conjectures, and Monte Carlo.” Annals of Statistics 1:799–821.

  • Johnston, J., and DiNardo, J. (1997). Econometric Methods. 4th ed. New York: McGraw-Hill.

  • Kennedy, W. J., Jr., and Gentle, J. E. (1980). Statistical Computing. New York: Marcel Dekker.

  • Kvalseth, T. O. (1985). “Cautionary Note about $R^2$.” American Statistician 39:279–285.

  • Lee, Y. (1972). “Some Results on the Distribution of Wilks’ Likelihood Ratio Criterion.” Biometrika 95:649.

  • Mallows, C. L. (1973). “Some Comments on $C_ p$.” Technometrics 15:661–675.

  • Mardia, K. V., Kent, J. T., and Bibby, J. M. (1979). Multivariate Analysis. London: Academic Press.

  • Morrison, D. F. (2004). Multivariate Statistical Methods. 4th ed. New York: Duxbury Press.

  • Mosteller, F., and Tukey, J. W. (1977). Data Analysis and Regression. Reading, MA: Addison-Wesley.

  • Muller, K. E. (1998). “A New F Approximation for the Pillai-Bartlett Trace under $H_0$.” Journal of Computational and Graphical Statistics 7:131–137.

  • Neter, J., and Wasserman, W. (1974). Applied Linear Statistical Models. Homewood, IL: Irwin.

  • Pillai, K. C. S. (1960). Statistical Table for Tests of Multivariate Hypotheses. Manila: University of Philippines Statistical Center.

  • Pillai, K. C. S., and Flury, B. N. (1984). “Percentage Points of the Largest Characteristic Root of the Multivariate Beta Matrix.” Communications in Statistics—Theory and Methods 13:2199–2237.

  • Pindyck, R. S., and Rubinfeld, D. L. (1981). Econometric Models and Econometric Forecasts. 2nd ed. New York: McGraw-Hill.

  • Rao, C. R. (1973). Linear Statistical Inference and Its Applications. 2nd ed. New York: John Wiley & Sons.

  • Rawlings, J. O. (1988). Applied Regression Analysis: A Research Tool. Pacific Grove, CA: Wadsworth & Brooks/Cole Advanced Books & Software.

  • Rousseeuw, P. J. (1984). “Least Median of Squares Regression.” Journal of the American Statistical Association 79:871–880.

  • Rousseeuw, P. J., and Yohai, V. (1984). “Robust Regression by Means of S-Estimators.” In Robust and Nonlinear Time Series Analysis, edited by J. Franke, W. Härdle, and R. D. Martin, 256–274. Vol. 26 of Lecture Notes in Statistics. Berlin: Springer-Verlag.

  • Tibshirani, R. (1996). “Regression Shrinkage and Selection via the Lasso.” Journal of the Royal Statistical Society, Series B 58:267–288.

  • Timm, N. H. (2002). Applied Multivariate Analysis. New York: Springer.

  • Weisberg, S. (1985). Applied Linear Regression. 2nd ed. New York: John Wiley & Sons.

  • Weisberg, S. (2005). Applied Linear Regression. 3rd ed. New York: John Wiley & Sons.

  • Yohai, V. J. (1987). “High Breakdown Point and High Efficiency Robust Estimates for Regression.” Annals of Statistics 15:642–656.

  • Younger, M. S. (1979). Handbook for Linear Regression. North Scituate, MA: Duxbury Press.