The SURVEYLOGISTIC Procedure

Cumulative Response Models

For a row vector of explanatory variables $\mb {x}$, the linear predictor

\[  \eta _ i= g(\mbox{Pr}(Y\leq i~ |~ \mb {x})) = \alpha _ i+\mb {x}\bbeta , \quad 1 \leq i \leq k  \]

is estimated by

\[  \hat{\eta }_ i=\hat{\alpha }_ i+\mb {x}\hat{\bbeta }  \]

where $\hat{\alpha }_ i$ and $\hat{\bbeta }$ are the MLEs of $\alpha _ i$ and $\bbeta $. The estimated standard error of ${\eta }_ i$ is $\hat{\sigma }({\hat{\eta }}_ i)$, which can be computed as the square root of the quadratic form $(1, {\mb {x}}^\prime ){\hat{\mb {V}}_\mb {b}}(1, \mb {x}^\prime )^\prime $, where $\hat{\mb {V}}_\mb {b}$ is the estimated covariance matrix of the parameter estimates. The asymptotic $100(1-\alpha )\% $ confidence interval for ${\eta }_{i}$ is given by

\[  \hat{\eta }_ i\pm z_{\alpha /2}\hat{\sigma }({\hat{\eta }}_ i)  \]

where $z_{\alpha /2}$ is the $100(1-\alpha /2)$ percentile point of a standard normal distribution.

The predicted value and the $100(1-\alpha )\% $ confidence limits for Pr$(Y\leq i~ |~ \mb {x})$ are obtained by back-transforming the corresponding measures for the linear predictor.

Link

Predicted Probability

$100(1-\alpha )$ Confidence Limits

LOGIT

$1/(1+e^{-\hat{\eta }_ i})$

$1/(1+e^{-\hat{\eta }_ i \pm z_{\alpha /2}\hat{\sigma }({\hat{\eta }}_ i)})$

PROBIT

$\Phi (\hat{\eta }_ i)$

$\Phi (\hat{\eta }_ i \pm z_{\alpha /2}\hat{\sigma }({\hat{\eta }}_ i))$

CLOGLOG

$1-e^{-e^{\hat{\eta }_ i}}$

$1-e^{-e^{\hat{\eta }_ i\pm z_{\alpha /2}\hat{\sigma }({\hat{\eta }}_ i)}}$