Introduction to Mixed Modeling Procedures |
Burdick, R. K., Borror, C. M., and Montgomery, D. C. (2005), Design and Analysis of Gauge R& R Studies: Making Decisions with Confidence Intervals in Random and Mixed ANOVA Models, Alexandria, VA: SIAM (Society for Industrial and Applied Mathematics).
Davidian, M. and Giltinan, D.M. (1995), Nonlinear Models for Repeated Measurement Data, New York: Chapman & Hall.
Demidenko, E. (2004), Mixed Models: Theory and Applications, New York: John Wiley.
Diggle, P. J., Liang, K.-Y., and Zeger, S. L. (1994), Analysis of Longitudinal Data, Oxford, UK: Oxford University Press.
Laird, N. M. and Ware, J. H. (1982), "Random-Effects Models for Longitudinal Data," Biometrics, 38, 963–974.
Liang, K. Y. and Zeger, S. L. (1986), "Longitudinal Data Analysis Using Generalized Linear Models," Biometrika, 73, 13–22.
Littell, R. C., Milliken, G. A., Stroup, W. W., Wolfinger, R. D., and Schabenberger, O. (2006), SAS for Mixed Models, Second Edition, Cary, NC: SAS Institute Inc.
Milliken, G. A. and Johnson, D. E. (1992), Analysis of Messy Data, Volume 1: Designed Experiments, New York: Chapman & Hall.
Molenberghs, G. and Verbeke, G. (2005), Models for Discrete Longitudinal Data, New York: Springer.
Verbeke, G. and Molenberghs, G., eds. (1997), Linear Mixed Models in Practice: A SAS-Oriented Approach, New York: Springer.
Verbeke, G. and Molenberghs, G. (2000), Linear Mixed Models for Longitudinal Data, New York: Springer.
Vonesh, E. F. and Chinchilli, V. M. (1997), Linear and Nonlinear Models for the Analysis of Repeated Measurements, New York: Marcel Dekker.
Zeger, S. L. and Liang, K.-Y. (1986), "Longitudinal Data Analysis for Discrete and Continuous Outcomes," Biometrics, 42, 121–130.
Copyright © SAS Institute, Inc. All Rights Reserved.