Canonical discriminant analysis is equivalent to canonical correlation analysis between the quantitative variables and a set of dummy variables coded from the class variable. In the following notation, the dummy variables are denoted by and the quantitative variables are denoted by . The total sample covariance matrix for the and variables is
When c is the number of groups, is the number of observations in group t, and is the sample covariance matrix for the variables in group t, the within-class pooled covariance matrix for the variables is
The canonical correlations, , are the square roots of the eigenvalues, , of the following matrix. The corresponding eigenvectors are .
Let be the matrix that contains the eigenvectors that correspond to nonzero eigenvalues as columns. The raw canonical coefficients are calculated as follows:
The pooled within-class standardized canonical coefficients are
The total sample standardized canonical coefficients are
Let be the matrix that contains the centered variables as columns. The canonical scores can be calculated by any of the following:
For the multivariate tests based on ,
where n is the total number of observations.