Random Variation in a Model


Negative Binomial

The probability mass function of the negative binomial distribution is

\[ p(x) = \frac{(n + x - 1)!}{x!(n - 1)!}p^{n}(1 - p)^{x} \]

for $x \in \{ 0, 1, \dots \} $.

Parameters:

n

is a positive integer $\ge $ 1 which represents the number

 

of successes in a series of independent Bernoulli trials.

$p \in (0, 1)$

is the probability of success on each trial.

Table B.4 shows how the negative binomial distribution parameter names are specified in Simulation Studio (specifically, in the Numeric Source block). The negative binomial distribution is not available with the Distribution option in JMP.

Table B.4: Negative Binomial Distribution Parameter Names

 

Simulation Studio

JMP

n

N

p

Probability


The following examples show (case-sensitive) string values that can be used as Numeric Source block DataStreamDescription factor values or InStreamPolicy port values. In these examples, the distribution and parameter names in the string value are the names that are used in the Theoretical option in the Numeric Source Block Properties dialog box (including any spaces or hyphens). Quotation marks are not required around the string value, and you can specify only the parameters that need to be updated (as demonstrated in the second example).

  • class == Negative Binomial;N == 5;Probability == 0.5

  • Probability == 0.3