I ——
6sas

SAS’ Simulation
Studio 12.3

User’s Guide

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2013. SAS® Simulation Studio 12.3: User’s Guide.
Cary, NC: SAS Institute Inc.

SAS® Simulation Studio 12.3: User’s Guide
Copyright © 2013, SAS Institute Inc., Cary, NC, USA
All rights reserved. Produced in the United States of America.

For a hard-copy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or
by any means, electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS
Institute Inc.

For a web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at the time
you acquire this publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the publisher is
illegal and punishable by law. Please purchase only authorized electronic editions and do not participate in or encourage electronic
piracy of copyrighted materials. Your support of others’ rights is appreciated.

U.S. Government Restricted Rights Notice: Use, duplication, or disclosure of this software and related documentation by the
U.S. government is subject to the Agreement with SAS Institute and the restrictions set forth in FAR 52.227-19, Commercial
Computer Software—Restricted Rights (June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
July 2013

SAS provides a complete selection of books and electronic products to help customers use SAS® software to its fullest potential.
For more information about our e-books, e-learning products, CDs, and hard-copy books, visit support.sas.com/bookstore or
call 1-800-727-3228.

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in
the USA and other countries. ® indicates USA registration.

Other brand and product names are registered trademarks or trademarks of their respective companies.

Contents

Chapter 1.
Chapter 2.
Chapter 3.
Chapter 4.
Chapter 5.
Chapter 6.
Chapter 7.
Chapter 8.
Chapter 9.
Chapter 10.
Chapter 11.
Chapter 12.
Chapter 13.

Appendix A.
Appendix B.
Appendix C.
Appendix D.
Appendix E.

Appendix F.

Index

What’s New in SAS/OR 12.1, 12.2, and 12.3
Overview of SAS Simulation Studio
Introduction to SAS Simulation Studio
Simulation Models
Experiments
Blocks .
Compound and Submodel Blocks
Entities .
Resources . .
Model Debugging and Verlﬁcatlon .
Block Templates
Data Input, Collection, and Analys1s
Batch Execution
Templates .
Random Variation in a Model .
Design of Experiments
Input Analysis .
Examples of Simulation Studlo Models
Expressions

11
25
37
47
59
65
75
79
101
109
113
123
125
205
221
231
239
273

279

v

Credits

Documentation
Writing Hong Chen, Emily Lada, Phillip Meanor, Edward P.
Hughes, Ben Jeffcoat
Editing Anne Baxter

Documentation Support Tim Arnold, Melanie Gratton, Daniel Underwood

Technical Review Edward P. Hughes

Software

Simulation Studio Hong Chen, Phillip Meanor, Emily Lada, Ben Jeffcoat

Support Groups

Software Testing Emily Lada, Yu-Min Lin, Anup Mokashi, Bengt Pederson

Technical Support Tonya Chapman

vi

Chapter 1
What's New in SAS/OR 12.1, 12.2, and 12.3

Contents

OVEIVIEW o ot e e e e e
Highlights of Enhancements in SAS/OR 12.3
Highlights of Enhancements in SAS/OR 12.1

The CLP Procedure e

The DTREE, GANTT, and NETDRAW Procedures

Supporting Technologies for Optimization

PROC OPTMODEL: Nonlinear Optimization

Linear Optimization with PROC OPTMODEL and PROCOPTLP

Mixed Integer Linear Optimization with PROC OPTMODEL and PROC OPTMILP

The Decomposition Algorithm L

Setting the Cutting Plane Strategy

Conflict Search e

PROC OPTMILP: Option Tuning i

PROC OPTMODEL: The SUBMIT Block

Network Optimization with PROC OPTNET

SAS Simulation Studio 12.1

RN NN N AR R W W WD -

Overview

SAS/OR 12.1 delivers a broad range of new capabilities and enhanced features, encompassing optimization,
constraint programming, and discrete-event simulation. SAS/OR 12.1 enhancements significantly improve
performance and expand your tool set for building, analyzing, and solving operations research models.

In previous years, SAS/OR software was updated only with new releases of Base SAS software, but this is no
longer the case. This means that SAS/OR software can be released to customers when enhancements are
ready, and the goal is to update SAS/OR every 12 to 18 months. To mark this newfound independence, the
release numbering scheme for SAS/OR changed starting with SAS/OR 12.1. This new numbering scheme
will be maintained when new versions of Base SAS and SAS/OR are shipped at the same time.

SAS/OR 12.2 is a maintenance release that does not contain any new features. SAS/OR 12.3 is another
maintenance release that includes two new features that are now production, as described in the next section.

2 4 Chapter 1: What's New in SAS/OR 12.1, 12.2, and 12.3

Highlights of Enhancements in SAS/OR 12.3

In SAS/OR 12.3, two important distributed-computing features become production: the option tuner for the
OPTMILP procedure and the nonlinear optimization multistart algorithm for the NLP solver. The option
tuner helps determine the most productive combinations of option settings for the OPTMILP procedure, and
the NLP multistart algorithm is instrumental in addressing nonconvex nonlinear optimization problems.

SAS/OR 12.3 also adds the OPTLSO procedure, which performs parallel hybrid derivative-free optimization
for optimization problems in which any or all of the functions involved can be nonsmooth, discontinuous, or
computationally expensive to evaluate directly. The OPTLSO procedure permits both continuous and integer

decision variables, and can operate in single-machine mode or distributed mode.

NOTE: Distributed mode requires SAS High-Performance Optimization.

Highlights of Enhancements in SAS/OR 12.1
Highlights of the SAS/OR enhancements include the following:

» multithreading is used to improve performance in these three areas:

* concurrent solve capability (experimental) for linear programming (LP) and nonlinear programming

PROC OPTMODEL problem generation
multistart for nonlinear optimization

option tuning for mixed integer linear optimization

(NLP)

* improvements to all simplex LP algorithms and mixed integer linear programming (MILP) solver

* new decomposition (DECOMP) algorithm for LP and MILP

* new option for controlling MILP cutting plane strategy

* new conflict search capability for MILP solver

* option tuning for PROC OPTMILP

* new procedure, PROC OPTNET, for network optimization and analysis

* new SUBMIT block for invoking SAS code within PROC OPTMODEL

* SAS Simulation Studio improvements:

one-click connection of remote blocks in large models
autoscrolling for navigating large models

new search capability for block types and label content

alternative Experiment window configuration for large experiments
selective animation capability

new submodel component (experimental)

The CLP Procedure 4+ 3

The CLP Procedure

In SAS/OR 12.1, the CLP procedure adds two classes of constraints that expand its capabilities and can
accelerate its solution process. The LEXICO statement imposes a lexicographic ordering between pairs of
variable lists. Lexicographic order is essentially analogous to alphabetical order but expands the concept to
include numeric values. One vector (list) of values is lexicographically less than another if the corresponding
elements are equal up to a certain point and immediately after that point the next element of the first vector
is numerically less than the second. Lexicographic ordering can be useful in eliminating certain types of
symmetry that can arise among solutions to constraint satisfaction problems (CSPs). Imposing a lexicographic
ordering eliminates many of the mutually symmetric solutions, reducing the number of permissible solutions
to the problem and in turn shortening the solution process.

Another constraint class that is added to PROC CLP for SAS/OR 12.1 is the bin-packing constraint, imposed
via the PACK statement. A bin-packing constraint directs that a specified number of items must be placed
into a specified number of bins, subject to the capacities (expressed in numbers of items) of the bins. The
PACK statement provides a compact way to express such constraints, which can often be useful components
of larger CSPs or optimization problems.

The DTREE, GANTT, and NETDRAW Procedures

In SAS/OR 12.1 the DTREE, GANTT, and NETDRAW procedures each add procedure-specific graph styles
that control fonts, line colors, bar and node fill colors, and background images.

Supporting Technologies for Optimization

The underlying improvements in optimization in SAS/OR 12.1 are chiefly related to multithreading, which
denotes the use of multiple computational cores to enable computations to be executed in parallel rather than
serially. Multithreading can provide dramatic performance improvements for optimization because these
underlying computations are performed many times in the course of an optimization process.

The underlying linear algebra operations for the linear, quadratic, and nonlinear interior point optimization
algorithms are now multithreaded. The LP, QP, and NLP solvers can be used by PROC OPTMODEL, PROC
OPTLP, and PROC OPTQP in SAS/OR. For nonlinear optimization with PROC OPTMODEL, the evaluation
of nonlinear functions is multithreaded for improved performance.

Finally, the process of creating an optimization model from PROC OPTMODEL statements has been
multithreaded. PROC OPTMODEL contains powerful declarative and programming statements and is adept
at enabling data-driven definition of optimization models, with the result that a rather small section of PROC
OPTMODEL code can create a very large optimization model when it is executed. Multithreading can
dramatically shorten the time that is needed to create an optimization model.

In SAS/OR 12.1 you can use the NTHREADS= option in the PERFORMANCE statement in PROC OPT-
MODEL and other SAS/OR optimization procedures to specify the number of cores to be used. Otherwise,
SAS detects the number of cores available and uses them.

4 4 Chapter 1: What's New in SAS/OR 12.1, 12.2, and 12.3

PROC OPTMODEL: Nonlinear Optimization

The nonlinear optimization solver that PROC OPTMODEL uses builds on the introduction of multithreading
for its two most significant improvements in SAS/OR 12.1. First, in addition to the nonlinear solver
options ALGORITHM=ACTIVESET and ALGORITHM=INTERIORPOINT, SAS/OR 12.1 introduces
the ALGORITHM=CONCURRENT option (experimental), with which you can invoke both the active
set and interior point algorithms for the specified problem, running in parallel on separate threads. The
solution process terminates when either of the algorithms terminates. For repeated solves of a number of
similarly structured problems or simply for problems for which the best algorithm isn’t readily apparent,
ALGORITHM=CONCURRENT should prove useful and illuminating.

Second, multithreading is central to the nonlinear optimization solver’s enhanced multistart capability, which
now takes advantage of multiple threads to execute optimizations from multiple starting points in parallel. The
multistart capability is essential for problems that feature nonconvex nonlinear functions in either or both of
the objective and the constraints because such problems might have multiple locally optimal points. Starting
optimization from several different starting points helps to overcome this difficulty, and multithreading this
process helps to ensure that the overall optimization process runs as fast as possible.

Linear Optimization with PROC OPTMODEL and PROC OPTLP

Extensive improvements to the primal and dual simplex linear optimization algorithms produce better
performance and better integration with the crossover algorithm, which converts solutions that are found
by the interior point algorithm into more usable basic optimal solutions. The crossover algorithm itself has
undergone extensive enhancements that improve its speed and stability.

Paralleling developments in nonlinear optimization, SAS/OR 12.1 linear optimization introduces a concurrent
algorithm, invoked with the ALGORITHM=CONCURRENT option, in the SOLVE WITH LP statement for
PROC OPTMODEL or in the PROC OPTLP statement. The concurrent LP algorithm runs a selection of
linear optimization algorithms in parallel on different threads, with settings to suit the problem at hand. The
optimization process terminates when the first algorithm identifies an optimal solution. As with nonlinear
optimization, the concurrent LP algorithm has the potential to produce significant reductions in the time
needed to solve challenging problems and to provide insights that are useful when you solve a large number
of similarly structured problems.

Mixed Integer Linear Optimization with PROC OPTMODEL and
PROC OPTMILP

Mixed integer linear optimization in SAS/OR 12.1 builds on and extends the advances in linear optimization.
Overall, solver speed has increased by over 50% (on a library of test problems) compared to SAS/OR 9.3. The
branch-and-bound algorithm has approximately doubled its ability to evaluate and solve component linear
optimization problems (which are referred to as nodes in the branch-and-bound tree). These improvements
have significantly reduced solution time for difficult problems.

The Decomposition Algorithm 4 5

The Decomposition Algorithm

The most fundamental change to both linear and mixed integer linear optimization in SAS/OR 12.1 is the
addition of the decomposition (DECOMP) algorithm, which is invoked with a specialized set of options in
the SOLVE WITH LP and SOLVE WITH MILP statements for PROC OPTMODEL or in the DECOMP
statement for PROC OPTLP and PROC OPTMILP. For many linear and mixed integer linear optimization
problems, most of the constraints apply only to a small set of decision variables. Typically there are many
such sets of constraints, complemented by a small set of linking constraints that apply to all or most of
the decision variables. Optimization problems with these characteristics are said to have a “block-angular”
structure, because it is easy to arrange the rows of the constraint matrix so that the nonzero values, which
correspond to the local sets of constraints, appear as blocks along the main diagonal.

The DECOMP algorithm exploits this structure, decomposing the overall optimization problem into a set
of component problems that can be solved in parallel on separate computational threads. The algorithm
repeatedly solves these component problems and then cycles back to the overall problem to update key
information that is used the next time the component problems are solved. This process repeats until it
produces a solution to the complete problem, with the linking constraints present. The combination of
parallelized solving of the component problems and the iterative coordination with the solution of the overall
problem can greatly reduce solution time for problems that were formerly regarded as too time-consuming to
solve practically.

To use the DECOMP algorithm, you must either manually or automatically identify the blocks of the
constraint matrix that correspond to component problems. The METHOD= option controls the means by
which blocks are identified. METHOD=USER enables you to specify the blocks yourself, using the .block
suffix to declare blocks. This is by far the most common method of defining blocks. If your problem has a
significant or dominant network structure, you can use METHOD=NETWORK to identify the blocks in the
problem automatically. Finally, if no linking constraints are present in your problem, then METHOD=AUTO
identifies the blocks automatically.

The DECOMP algorithm uses a number of detailed options that specify how the solution processes for the
component problems and the overall problem are configured and how they coordinate with each other. You
can also specify the number of computational threads to make available for processing component problems
and the level of detail in the information to appear in the SAS log. Options specific to the linear and mixed
integer linear solvers that are used by the DECOMP algorithm are largely identical to those for the respective
solvers.

Setting the Cutting Plane Strategy

Cutting planes are a major component of the mixed integer linear optimization solver, accelerating its progress
by removing fractional (not integer feasible) solutions. SAS/OR 12.1 adds the CUTSTRATEGY= option in
the PROC OPTMILP statement and in the SOLVE WITH MILP statement for PROC OPTMODEL, enabling
you to determine the aggressiveness of your overall cutting plane strategy. This option complements the
individual cut class controls (CUTCLQUE=, CUTGOMORY=, CUTMIR=, and so on), with which you can
enable or disable certain cut types, and the ALLCUTS= option, which enables or disables all cutting planes.
In contrast, the CUTSTRATEGY= option controls cuts at a higher level, creating a profile for cutting plane
use. As the cut strategy becomes more aggressive, more effort is directed toward creating cutting planes and

6 4 Chapter 1: What's New in SAS/OR 12.1, 12.2, and 12.3

more cutting planes are applied. The available values of the CUTSTRATEGY= option are AUTOMATIC,
BASIC, MODERATE, and AGGRESSIVE,; the default is AUTOMATIC. The precise cutting plane strategy
that corresponds to each of these settings can vary from problem to problem, because the strategy is also
tuned to suit the problem at hand.

Conflict Search

Another means of accelerating the solution process for mixed integer linear optimization takes information
from infeasible linear optimization problems that are encountered during an initial exploratory phase of
the branch-and-bound process. This information is analyzed and ultimately is used to help the branch-and-
bound process avoid combinations of decision variable values that are known to lead to infeasibility. This
approach, known as conflict analysis or conflict search, influences presolve operations on branch-and-bound
nodes, cutting planes, computation of decision variable bounds, and branching. Although the approach is
complex, its application in SAS/OR 12.1 is straightforward. The CONFLICTSEARCH= option in the PROC
OPTMILP statement or the SOLVE WITH MILP statement in PROC OPTMODEL enables you to specify
the level of conflict search to be performed. The available values for the CONFLICTSEARCH= option are
NONE, AUTOMATIC, MODERATE, and AGGRESSIVE. A more aggressive search strategy explores more
branch-and-bound nodes initially before the branch-and-bound algorithm is restarted with information from
infeasible nodes included. The default value is AUTOMATIC, which enables the solver to choose the search
strategy.

PROC OPTMILP: Option Tuning

The final SAS/OR 12.1 improvement to the mixed integer linear optimization solver is option tuning, which
helps you determine the best option settings for PROC OPTMILP. There are many options and settings
available, including controls on the presolve process, branching, heuristics, and cutting planes. The TUNER
statement enables you to investigate the effects of the many possible combinations of option settings on
solver performance and determine which should perform best. The PROBLEMS= option enables you
to submit several problems for tuning at once. The OPTIONMODE= option specifies the options to be
tuned. OPTIONMODE=USER indicates that you will supply a set of options and initial values via the
OPTIONVALUES= data set, OPTIONMODE=AUTO (the default) tunes a small set of predetermined options,
and OPTIONMODE=FULL tunes a much more extensive option set.

Option tuning starts by using an initial set of option values to solve the problem. The problem is solved
repeatedly with different option values, with a local search algorithm to guide the choices. When the tuning
process terminates, the best option values are output to a data set specified by the SUMMARY= option.
You can control the amount of time used by this process by specifying the MAXTIME= option. You can
multithread this process by using the NTHREADS= option in the PERFORMANCE statement for PROC
OPTMILP, permitting analyses of various settings to occur simultaneously.

PROC OPTMODEL: The SUBMIT Block 4+ 7

PROC OPTMODEL: The SUBMIT Block

In SAS/OR 12.1, PROC OPTMODEL adds the ability to execute other SAS code nested inside PROC
OPTMODEL syntax. This code is executed immediately after the preceding PROC OPTMODEL syntax
and before the syntax that follows. Thus you can use the SUBMIT block to, for example, invoke other SAS
procedures to perform analyses, to display results, or for other purposes, as an integral part of the process of
creating and solving an optimization model with PROC OPTMODEL. This addition makes it even easier to
integrate the operation of PROC OPTMODEL with other SAS capabilities.

To create a SUBMIT block, use a SUBMIT statement (which must appear on a line by itself) followed by the
SAS code to be executed, and terminate the SUBMIT block with an ENDSUBMIT statement (which also
must appear on a line by itself). The SUBMIT statement enables you to pass PROC OPTMODEL parameters,
constants, and evaluated expressions to the SAS code as macro variables.

Network Optimization with PROC OPTNET

PROC OPTNET, new in SAS/OR 12.1, provides several algorithms for investigating the characteristics of
networks and solving network-oriented optimization problems. A network, sometimes referred to as a graph,
consists of a set of nodes that are connected by a set of arcs, edges, or links. There are many applications of
network structures in real-world problems, including supply chain analysis, communications, transportation,
and utilities problems. PROC OPTNET addresses the following classes of network problems:

* biconnected components

* maximal cliques

* connected components

* cycle detection

* weighted matching

* minimum-cost network flow
* minimum cut

* minimum spanning tree

* shortest path

* transitive closure

* traveling salesman

PROC OPTNET syntax provides a dedicated statement for each problem class in the preceding list.

The formats of PROC OPTNET input data sets are designed to fit network-structured data, easing the process
of specifying network-oriented problems. The underlying algorithms are highly efficient and can successfully

8 4 Chapter 1: What's New in SAS/OR 12.1, 12.2, and 12.3

address problems of varying levels of detail and scale. PROC OPTNET is a logical destination for users
who are migrating from some of the legacy optimization procedures in SAS/OR. Former users of PROC
NETFLOW can turn to PROC OPTNET to solve shortest-path and minimum-cost network flow problems,
and former users of PROC ASSIGN can instead use the LINEAR_ASSIGNMENT statement in PROC
OPTNET to solve assignment problems.

SAS Simulation Studio 12.1

SAS Simulation Studio 12.1, a component of SAS/OR 12.1 for Windows environments, adds several features
that improve your ability to build, explore, and work with large, complex discrete-event simulation models.
Large models present a number of challenges to a graphical user interface such as that of SAS Simulation
Studio. Connection of model components, navigation within a model, identification of objects or areas of
interest, and management of different levels of modeling are all tasks that can become more difficult as the
model size grows significantly beyond what can be displayed on one screen. An indirect effect of model
growth is an increased number of factors and responses that are needed to parameterize and investigate the
performance of the system being modeled.

Improvements in SAS Simulation Studio 12.1 address each of these issues. In SAS Simulation Studio, you
connect blocks by dragging the cursor to create links between output and input ports on regular blocks and
Connector blocks. SAS Simulation Studio 12.1 automatically scrolls the display of the Model window as
you drag the link that is being created from its origin to its destination, thus enabling you to create a link
between two blocks that are located far apart (additionally you can connect any two blocks by clicking on
the OutEntity port of the first block and then clicking on the InEntity port of the second block). Automatic
scrolling also enables you to navigate a large model more easily. To move to a new area in the Model window,
you can simply hold down the left mouse button and drag the visible region of the model to the desired area.
This works for simple navigation and for moving a block to a new, remote location in the model.

SAS Simulation Studio 12.1 also enables you to search among the blocks in a model and identify the blocks
that have a specified type, a certain character string in their label, or both. From the listing of identified
blocks, you can open the Properties dialog box for each identified block and edit its settings. Thus, if you
can identify a set of blocks that need similar updates, then you can make these updates without manually
searching through the model for qualifying blocks and editing them individually. For very large models, this
capability not only makes the update process easier but also makes it more thorough because you can identify
qualifying blocks centrally.

When you design experiments for large simulation models, you often need a large number of factors to
parameterize the model and a large number of responses to track system performance in sufficient detail.
This was a challenge prior to SAS Simulation Studio 12.1 because the Experiment window displayed factors
and responses in the header row of a table, with design points and their replications’ results displayed in the
rows below. A very large number of factors and responses did not fit on one screen in this display scheme,
and you had to scroll across the Experiment window to view all of them.

SAS Simulation Studio 12.1 provides you with two alternative configurations for the Experiment window.
The Design Matrix tab presents the tabular layout described earlier. The Design Point tab presents each
design point in its own display. Factors and responses (summarized over replications) are displayed in
separate tables, each with the factor or response names appearing in one column and the respective values in
a second column. This layout enables a large number of factors and responses to be displayed. Response
values for each replication of the design point can be displayed in a separate window.

SAS Simulation Studio 12.1 4 9

SAS Simulation Studio 12.1 enhances its multilevel model management features by introducing the submodel
component (experimental). Like the compound block, the submodel encapsulates a group of SAS Simulation
Studio blocks and their connections, but the submodel outpaces the compound block in some important ways.
The submodel, when expanded, opens in its own window. This means a submodel in its collapsed form
can be placed close to other blocks in the Model window without requiring space for its expanded form (as
is needed for compound blocks). The most important property of the submodel is its ability to be copied
and instantiated in several locations simultaneously, whether in the same model, in different models in the
same project, or in different projects. Each such instance is a direct reference to the original submodel, not a
disconnected copy. Thus you can edit the submodel by editing any of its instances; changes that are made to
any instance are propagated to all current and future instances of the submodel. This feature enables you to
maintain consistency across your models and projects.

Finally, SAS Simulation Studio 12.1 introduces powerful new animation controls that should prove highly
useful in debugging simulation models. In the past, animation could be switched on or off and its speed
controlled, but these choices were made for the entire model. If you needed to animate a particular segment
of the model, perhaps during a specific time span for the simulation clock, you had to focus your attention
on that area and pay special attention when the time period of interest arrived. In SAS Simulation Studio
12.1 you can select both the area of the model to animate (by selecting a block or a compound block) and the
time period over which animation should occur (by specifying the start and end times for animation). You
can also control simulation speed for each such selection. Multiple selections are supported so that you can
choose to animate several areas of the model, each during its defined time period and at its chosen speed.

10

Chapter 2
Overview of SAS Simulation Studio

Contents
What Is Simulation? 11
What Is SAS Simulation Studio? L 12
A Simple M/M/1 Queueing Model L 13
Runningthe Model 15
Collecting StatistiCs i e e 16
Repair Shop Example 17
Compound Blocks e 18
Model Logic e 19
CollectingData 21

What Is Simulation?

Simulation is a very broad term that is applied across many fields and industries. In its most general sense,
simulation is the process of building or designing a model that mimics the behavior of a particular real-life
system. These models can be either physical or logical. Examples of physical models include flight simulators,
wind tunnels, and earthquake simulators. This document focuses on logical models, which can usually be
represented by computer programs.

For some systems governed by logical and mathematical relationships, you can use traditional mathematical
techniques such as queueing theory and differential equations to derive an analytical solution. For these
systems, obtaining an exact answer is a benefit. However, you often need to make simplifying assumptions
about the system being studied in order to obtain an analytical model; this simplification brings to the
forefront the question of model validity. You can build a simple model of a complex system, but that does not
necessarily mean that the model is valid.

Many real-world systems are composed of not only extremely complicated and intricate mathematical and
logical relationships, but also a significant random component. For these systems, you simply might not
be able to derive an analytical model. Instead, you can use a computer to build a model of the system and
numerically generate data that you can use to foster a better understanding of the behavior of the real-world
system. Part of the art of designing a computer simulation model is deciding which aspects of the real-life
system are necessary to include in the model so that the data generated by the model can be used to make
effective decisions.

One of the main advantages of computer simulation is the ability to model extremely complex systems that
ordinarily would be impossible to model using traditional analytical techniques. On the other hand, the data
generated by a computer simulation model is not exact and, to complicate matters even further, the output
is random if any of the model’s inputs is random. This randomness makes it more difficult to analyze the

12 4 Chapter 2: Overview of SAS Simulation Studio

output from computer simulations, and often advanced statistical methods are required to formulate valid
conclusions about the behavior of the system.

The field of computer-based simulation is itself very broad and includes a number of different classes of
modeling techniques. This document focuses primarily on discrete-event modeling methods in which the
state of the model is dynamic and the state of the model changes only at countable, distinct points in time.
For example, the operation of an emergency room at a hospital over a 24-hour period can be modeled using
discrete-event simulation techniques. A state change in this example can be triggered by the arrival of a new
patient or the departure of a nurse for a meal break. Each state change occurs at a distinct point in time, and
the simulation model operates by scheduling these events and proceeds by advancing the simulation time to
the next event or state change.

The popularity of simulation as a tool for design and analysis has grown over recent years, especially with
the advancement of computing technology. Part of simulation’s popularity is also due to the numerous and
diverse areas where it can be applied. Some areas where discrete-event simulation has been successfully used
include manufacturing, telecommunications, transportation, military, and health care.

What Is SAS Simulation Studio?

SAS Simulation Studio is a SAS application that uses discrete-event simulation to model and analyze systems.
Simulation Studio is based on the Java programming language and provides the following user interfaces:

* a graphical user interface that requires no programming and provides all the tools for building,
executing, and analyzing discrete-event simulation models

* a programmatic interface that enables you to run models in batch mode

Although having a comprehensive set of modeling tools is an important quality in a simulation package,
having advanced analysis tools is arguably just as important. As mentioned in the previous section, analyzing
output from discrete-event simulations often requires advanced statistical methods. Simulation Studio is
designed to interact with both SAS software and IMP® software so that you can conduct sophisticated
statistical analyses of your results. Data generated by the model can be saved as a SAS data set or JMP table
for later analysis, or alternatively you can use a SAS block included in the basic template of modeling blocks
to execute SAS or JMP code directly from Simulation Studio.

Simulation Studio includes a state-of-the-art Experiment window that gives you an organized way to
investigate the effects of different parameters on your model output in addition to a place to record results.
For a discrete-event simulation model in general, you might be interested in conducting the following types
of experiments:

* a sensitivity analysis in which you vary a parameter in the model and you examine the effect on some
recorded response. For example, you might be interested in the effect on customer waiting times of
hiring an additional cashier at a store.

* a comparison of two or more systems. For example, given two different factory floor layout options,
you might want to determine which one yields a higher throughput.

A Simple M/M/1 Queueing Model 4 13

* an experimental design for a system that has flexibility in how several different parameters can be
set. You might want to use an experimental design (such as a full factorial) to efficiently organize the
testing of different parameter combinations and then study the effect on one or more results.

The Simulation Studio Experiment window can be used to conduct all these different types of simulation
experiments. It can interface with JMP software to generate experimental designs and then seamlessly pass
the simulated results from the design back to the JMP program for analysis. Simulation Studio is also
designed to support multiple models and experiments in a single project so that you can define factors and
responses once and use them for all models in the project. This is especially useful when you compare two or
more systems.

No matter how advanced the available output analysis tools, they are essentially useless if you have not
correctly estimated the inputs to the model. Input analysis is another important aspect of building a simulation
model. In Simulation Studio input analysis can be facilitated by using JMP distribution estimation capabilities.

Simulation Studio is a flexible discrete-event simulation tool designed to provide the necessary modeling and
analysis tools for both novice and advanced simulation users. Furthermore, Simulation Studio attempts to
avoid being simply a black box that takes model inputs and mysteriously produces model outputs. Rather, it
includes features that enable you to customize your models and tailor Simulation Studio to meet your specific
needs.

A Simple M/M/1 Queueing Model

To illustrate some of the basic concepts involved in building models in Simulation Studio, consider a model
of a simple banking system with one teller. Assume that customers arrive at the bank at a rate of 10 per hour
(so that the interarrival time between customers is a sample from the exponential distribution with a mean of
6 minutes). Customers wait in a single line on a first-come, first-served basis. Also assume that the teller
has a service rate of 12 customers per hour (so that the service time for each customer is a sample from the
exponential distribution with a mean of 5 minutes). This simple banking system is an example of an M/M/1
queueing system.

For a queueing system such as this one, the following statistics might be of interest:

* average time a customer waits in line
* length of the queue

* number of customers served in one day

14 4 Chapter 2: Overview of SAS Simulation Studio

Figure 2.1 An M/M/1 Queueing Model

% model1

Interarrival Time Senvice Time
Y

SR

Svp
L
O
Arriving Customers FIF,
Y

ooo F

Mumber Seniced

%n P— = X 16.81..

Current Queue Length Average Waiting Time

Figure 2.1 shows a Simulation Studio model of the banking system. All the blocks used in this example can
be found in the basic template of blocks provided by Simulation Studio. (The labels of blocks in Figure 2.1
have been changed from their default labels to reflect their role in this model. The default labels match the
block type.) Customer arrivals to the bank are modeled using an Entity Generator block ¥ labeled Arriving
Customers in Figure 2.1. The Entity Generator block has an input value port for the interarrival time. (See
“Ports” on page 39 for more information about ports.) The Numeric Source block 4 labeled InterArrival
Time generates a sample from the exponential distribution (representing the next interarrival time) and the
Entity Generator block pulls that value through the InterArrivalTime port.

Figure 2.2 shows the dialog box for the Interarrival Time block. Since time in Simulation Studio is
dimensionless, you can use hours or minutes or any other time unit in any Simulation Studio model, as long
as you use the same units consistently throughout the model.

Running the Model 4 15

Figure 2.2 Numeric Source Block Dialog Box

Block Properties for Interarrival Time x|

i Numeric Data Source | Overview |

i® Theoretical ' Fitted (' Data Driven

Type: |Exponential -

Parameters

Mean : |E |

Random Stream Seed: |EI |

Apply Close

When the entity that represents a customer leaves the Arriving Customers Entity Generator block, it is pushed
to the FIFO Queue block sfi. The movement of the entity down the link does not advance the simulation
clock. If the queue has a limited capacity and is full when the entity arrives, the entity is pushed out the
Entity Generator block’s OutBalk port. If the queue is not full, the FIFO Queue block attempts to push the
entity to the Server block X labeled Teller. If the Teller is available, it accepts the entity; otherwise, the
entity waits in the queue. When the Teller becomes available, it requests an entity from the queue.

When the entity arrives at the Teller block &£, a service time is sampled from the second Numeric Source
block (labeled Service Time) and pulled by the Teller through the InServiceTime port. After the entity
completes its service, it is pushed out to the Disposer block ¢ where it leaves the system. The Teller then
requests another entity from the queue.

Running the Model

Figure 2.3 shows the Experiment window for this model. A single experimental design point, called point1,
has the number of replications set to 1 and the length of the simulation set to 540 minutes (one banking day).

16 4 Chapter 2: Overview of SAS Simulation Studio

Figure 2.3 M/M/1 Queueing Model: One Design Point

Semice Time

N7
L
]
Arriving Customers FIF,
ey

ooo E

Mumber Serviced

) ot [toat.

[m[m[a g
Current Queue Length Average Waiting Time

[iZ experiment0 o @ B
FPointMame StartTime EndTime Replicates
paoint 1 1

To display the simulation clock, select Run»Show»Simulation Clock from the Simulation Studio menu.
To turn on the animation, click the Animation button & . To run this model, click the Start button ¥ .
To pause the model, click the Pause button Il To restart the model, click the Start button again. When
the model finishes running, only the Reset button @ is active. You must click the Reset button before you
make changes to the experiment window or rerun the model.

Collecting Statistics

You can use a Number Holder block & to collect and display statistics such as minimum, maximum, sum,
and mean as the model is running. In Figure 2.3, a Number Holder block (labeled Average Waiting Time) is
connected to the OutWait port on the FIFO Queue block. (Although the ports on a block are not labeled in
Figure 2.3, when you rest your mouse pointer on a port, a tooltip displays the port name.)

Double-clicking any block in a model opens the properties dialog box for that block. Figure 2.4 shows the
dialog box for this Number Holder block. As each entity leaves the queue, its wait time is pushed into the
Number Holder block, whose Display field is set to Mean. The Number Holder then recomputes the average
waiting time and displays the new value. In this example, the average waiting time for customers computed
over one banking day is 16.81 minutes.

Repair Shop Example 4 17

Figure 2.4 Number Holder Block Properties
|

[Attributes | save |/D1.renriew |

Values

Current: [2.002138063447269 |

Default: |0 |
Display: |Mean |V‘
Propagation: To Downstream From Upstream

Data Collection

[] Collect Data Capacity: | 100,000

Close

A second Number Holder block (labeled Current Queue Length), with the Display field set to Value, is
connected to the OutLength port on the FIFO Queue block. Each time an entity enters or leaves the queue,
the new queue length is pushed to the Current Queue Length Number Holder block and the updated queue
length is displayed. Number Holder blocks can display only averages for observation-based statistics, such as
waiting time. For time-dependent statistics such as queue length, Number Holder blocks should be used only
to display the minimum, maximum, sum, or current value. In Figure 2.3, the final queue length is 2.

Finally, there is a third Number Holder block (labeled Number Serviced), with the Display field set to Value,
connected to the OutCount port on the Disposer block <. Each time an entity leaves the system, the
Number Serviced Number Holder block updates its value and displays the current number of entities serviced.
In this example, the number of customers served by the end of one day is 88.

Repair Shop Example

This section discusses a more complicated model to demonstrate some of the additional features and
capabilities of Simulation Studio, including compound blocks, branching based on probability, and using the
various plotting blocks to monitor the status of the model as it is running.

Suppose parts arrive at a repair shop at a rate of four per hour. Upon arrival, a part is taken to the service desk
where it is inspected. The time it takes a person to inspect the part is uniformly distributed between 5 and
15 minutes. The service desk can repair 35% of the parts. The rest require more complicated repairs and
must be sent to the repair station. At the repair station, the part is worked on by a repairman. The time it
takes a repairman to diagnose and fix the problem is uniformly distributed with a minimum of 10 minutes
and a maximum of 45 minutes. With a probability of 0.09, a repairman cannot fix the part, and it is sent to
the scrap area. Otherwise, the repaired part is sent on to a quality control manager who inspects the part to
determine whether it has been repaired properly. The quality control manager sends 10% of the repaired

18 4 Chapter 2: Overview of SAS Simulation Studio

parts back to the repair center for further repairs. The rest of the parts that pass inspection are sent on to
the part pickup area. The time it takes a quality control manager to inspect a part is uniformly distributed
between 6 and 18 minutes. Two people work at the service desk, and two people work at the repair desk.
Assume the travel time for parts between all stations is 1 minute. The shop is open from 9:00 a.m. to 6:00
p.m., Monday through Friday. The simulation is run for one work week (45 hours).

Compound Blocks

Figure 2.5 shows the completed repair shop model. This model contains several yellow blocks labeled
Arrivals, Delay, and Chance; these are compound blocks. If you double-click the yellow compound block
labeled Arrivals, you see that it is made up of two blocks: a Numeric Source block and an Entity Generator
block. (See Figure 2.6.) Compound blocks are a handy way to organize and streamline your model by
collapsing groups of blocks into one block. Compound blocks are also useful in situations where you have the
same logic repeated more than once because they can be saved to a template and later reused. For example,
double-clicking a Chance compound block reveals that it is made up of three blocks. (See Figure 2.7.) By
combining them into one compound block and saving it to a template, you can easily reuse this same logic at
other places in your model. See Chapter 7, “Compound and Submodel Blocks,” for more information about
creating and saving compound blocks.

Figure 2.5 Repair Shop Model

t» modelo ;3

[l

hiid
hiad
hALd E
Tvv Tv' Fixed
Chance 2 Delay 3 I
L, I
o
Arrivals Delay 1 = i]lllﬁﬁ
i ﬂulﬁﬁa or OE0 Quality Contral
ﬁ? boag] QualityGontrola
Al [EE] Repair Men Saranee Rewark
oo Servide Desk RepairDeske
SeniceDeskQ Fixed Early i
5% v
T @ a5
i i eo0... e
ooo j- WaitingTime QC
#Available 1 (b, F
oo
16 #5crapped

ooo
#Fixed Early .

o

T T T
Quality Contral Repair Men Service Desk o 200 400
BlockName Time

Model Logic 4 19

Figure 2.6 Arrivals Compound Block

Figure 2.7 Chance Compound Block

<+—£

oy

e

(o

—d

00
moog]

> oy

Model Logic

Entities that represent the parts are created in the Arrivals compound block and are pushed to a Delay
compound block where they are held for one minute, representing the travel time between stations. Next they
are pushed to the Service DeskQ Queue block where they wait for the next available associate at the service
desk. After service is completed at the service desk, the entity is pushed to a Chance compound block, which
is used to model branching based on probability (in particular, to model that 35% of the parts are repaired at
the service desk while the rest are sent on to the repair station).

If you right-click the Switch block inside the first Chance compound block to open the properties dialog box,
you see that two cases are defined: one named FurtherRepair and one named Fixed. (See Figure 2.8.) The
Port option indicates that the switch value comes through the InSwitchValue port. After the two cases have
been defined, two additional entity output ports are dynamically created on the Switch block to allow routing
of entities based on the switch value. The InSwitchValue port is connected to a Formula block.

20 4 Chapter 2: Overview of SAS Simulation Studio

Figure 2.8 Switch Block Properties

£ Block Properties for Switch x|

[Cases | Overview |

Name Value
FurtherRepair 1 Add
Fixed 1]
Remove
Switch Value
Source: _’ Entity ® Port
Entity Attribute:

Apply Close

Figure 2.9 shows the properties dialog box for the Formula block. After you add one input variable named
runif of type Number, the Formula block dynamically creates an input port labeled runif. Connected to the
runif input port is a Numeric Source block. This Numeric Source block generates a sample from the uniform
distribution with a minimum of 0 and a maximum of 1. After the value for runif is pulled by the Formula
block, the expression cond (runif>0.35,1, 0) is evaluated as follows: If runif is greater than 0.35, then
the value 1 is returned and pushed out of the Formula block and into the Switch block. Otherwise, the value
0 is returned and pushed out. The Switch block then receives either the value of 1 or O and uses the value to
determine which output port the entity should use to leave the Switch block.

Collecting Data 4 21

Figure 2.9 Formula Block Properties

Block Properties for Formula x|

fFonmla r Overview |

Input Variables

Name Type Source Add
runif Number Port

[] To Acquire Port Values Only When Needed

Expression

| »

cond(runif=0.35,1,0)

4

Result Type: @ NHumber ' String ' Boolean

Close

If a part is fixed at the service desk, it leaves the system. Otherwise, it is pushed on to the second Delay
compound block where it is held for one minute. It then waits in the repair desk queue for the next available
repairman. After being serviced by a repairman, the part is pushed into the second Chance block. Here the
expression cond (runif>0.09,1,0) is evaluated so that with probability 0.09 the part cannot be fixed and is
scrapped (that is, the entity leaves the system). Parts that are fixed move on to the third Delay compound block
where they wait for one minute and then are pushed into the quality control queue. After being inspected
by the quality control manager, the condition cond (runif>0.10,1, 0) is evaluated so that with probability
0.10 the part does not pass the quality control inspection and is sent back (via the Connector labeled Rework)
to the Repair Desk queue. Parts that do pass the quality control inspection leave the system.

Collecting Data

Several blocks in Simulation Studio can be used to collect data. One of these blocks used in the repair shop
model is the Server Stats Collector block . This block can be placed anywhere in the model window
because entities do not flow through it. Figure 2.10 shows the properties dialog box for the Server Stats
Collector block. A list of all blocks that implement the ServerStats interface in the model is shown, and you
can select the ones for which you want to collect statistics. The data collected for each replication can be
saved to a file as a SAS data set or JMP table or passed to one of the Simulation Studio plotting blocks.

22 4 Chapter 2: Overview of SAS Simulation Studio

Figure 2.10 Server Stats Block Properties

£ Block Properties for Server Stats Collector x|

[Attributes | Save | Overview |

Server Stat Generators |

3 model0 Add
W service Desk
M Repair Men r—

M Quality Control

Updates

Continuous Collection Now

Apphy Close

In the repair shop model, a Bar Chart block is connected to the OutData port of the Server Stats Collector
block. Figure 2.11 shows the properties dialog box for the Bar Chart block, which requests a bar chart of the
average utilization for each of the three servers in the model. After the model is run, the bar chart shows that
the average utilization at the quality control station is significantly higher than at the repair or service desks.

(See Figure 2.5.)

Figure 2.11 Bar Chart Block Properties

Block Properties for Bar Chart

[Attributes | Overview |

Collecting Data 4 23

Variables
X: |BlockName -
Frequency
) By Count ‘® By Variable
Variable: | AvgUtil
Apply Close

To further investigate the severity of the bottleneck at the quality control station, you can connect a Number
Holder block (labeled WaitingTimeQC) to the OutWait port on the quality control queue. Then you can pass
the waiting time values to a Scatter Plot block by connecting the OutCollected port of the Number Holder
block to the InData port of the Scatter Plot block. For the plots to display correctly, the Collect Data check
box in the Number Holder Block properties dialog box must be selected. (See Figure 2.4.) As the model runs,
you see that the waiting time at the quality control station continues to increase. Appendix E, “Examples of
Simulation Studio Models,” revisits this repair shop model.

24

Chapter 3
Introduction to SAS Simulation Studio

Contents
Simulation Studio Graphical User Interface 25
Installing and Starting Simulation Studio L. 26
Installing Simulation Studio 26
Starting Simulation Studioo oo 27
Configuring Simulation Studio 27
Launching Local SAS and JMP Servers 28
Using aRemote SAS Server 28
Simulation Studio Menu and Toolbar, 29
Block Template Display Area 30
Simulation Studio Projects L 31
Project Explorer e e 31
Project Window 32
Log, Trace, and Animation Tabs 35
Project Status Bar 35

Simulation Studio Graphical User Interface

As mentioned in Chapter 2, “Overview of SAS Simulation Studio,” Simulation Studio provides a graphical
user interface (GUI) and a batch interface. Initially, most users typically use the Simulation Studio GUI to
build and execute simulation models. This chapter provides a high-level overview of Simulation Studio from
the GUI perspective and discusses the major components of the application framework. The batch interface
is detailed in Chapter 13, “Batch Execution.”

26 4 Chapter 3: Introduction to SAS Simulation Studio

Figure 3.1 Simulation Studio Application Framework

i

File Template Run Analyze Tools Help

Projects

Project Explorer
Standard —H Template List
Entity Generator [— .
Template Palette Project Desktop

Walue Generator

Disposer

[=]
=
@
c
@

Block Template Display Area

B

Modifier

7T Extractor

=l

aka | Switch

Qoo

1]

/ Project Status Bar

When you start the Simulation Studio application, the graphical user interface opens on your computer screen
as shown in Figure 3.1. This window consists of six main areas: menu, toolbar, block template display area,
project explorer, project desktop, and project status bar. The following sections provide details about each of
these areas, as well as how to launch the application.

no open project

Installing and Starting Simulation Studio

Installing Simulation Studio

The installation program for Simulation Studio asks where you want to install the software on your computer.
The default location is \Program Files\SASHome\SASSimulationStudio\12.1. If you choose
the default location, the installation software loads the software and adds an entry for Simulation Studio to
the Start menu.

Simulation Studio requires you to have a valid version of either the SAS/OR® or IMP software or both
installed on your computer. It also needs to know the location of SASHome on your system. This information

Starting Simulation Studio 4 27

is part of the Simulation Studio configuration data and must be supplied to Simulation Studio for the
application to launch.

Starting Simulation Studio

To start Simulation Studio, you can either double-click the Simulation Studio desktop icon or select the
Simulation Studio entry from the Start menu (Start»-Programs» SAS» Simulation Studio 12.1.)

Configuring Simulation Studio

When you attempt to launch the Simulation Studio application for the first time, it has not yet acquired the
configuration data it needs. The message “SAS Simulation Studio configuration data not specified” appears
because at this point Simulation Studio does not know where to look for SAS or JMP software on your
machine. Then Simulation Studio displays the SAS Simulation Studio Configuration dialog box for you
to enter the necessary information. (See Figure 3.2.) In the box SASHOME Path, enter the directory for
SASHome. A common default path for this location is \Program Files\SASHome.

If you have both SAS and JMP software installed, you can select either SAS Data Set or JMP Data Table
for your default data format. (This format information is used for reading and writing data when the filename
extension is not provided with an input or output filename.)

SAS Simulation Studio communicates with SAS Workspace Servers to process the input and output requests
of SAS data sets in data streaming and collecting blocks, such as the Numeric Source and Bucket blocks. It
also supports the submission of SAS programs to the SAS Workspace Servers from the SAS Program block.
Currently, you can use up to two SAS Workspace Servers:

* One server can reside on the local machine where Simulation Studio is installed and running.

* Another SAS server can be on a remote machine and used as a remote server. In the Host Name
field, specify either the host name or the Internet Protocol (IP) address of the remote server. In the
Port Number field, specify the TCP/IP port number for the remote SAS Workspace Server session
on the remote server. Simulation Studio uses this port number to access the services provided by the
remote SAS Workspace Server. Select either Unix or Windows for the Host System Type of the
remote server. In the Default File Path field, specify the default file input and output root directory or
folder path for the data input and output requests. Use the appropriate UNIX or Windows path format
convention when specifying the path and make it consistent with the specified Host System Type of
the remote server.

28 4 Chapter 3: Introduction to SAS Simulation Studio

Figure 3.2 Configuration Dialog Box

B 545 Simulation Studio Configuration |

Required SA% Product Installation Location

SASHOME Path: COProgram Files\SASHome

Default Data Format

® SAS Data Set) JMP Data Table

Remote SAS Workspace Server

Host Name: | Port Humber: | |

Host System Type: & Unix) Windows

Default File Path; | |

Cancel

Launching Local SAS and JMP Servers

If you want to save data, submit SAS code (probably through a SAS program block in your simulation model),
or interact with JMP software locally during a Simulation Studio session, you need to have the Simulation
Studio SAS server or JMP server (or both) running locally on your computer. You must launch these
servers manually. The server script is installed in the 1aunchSASServer directory under your Simulation
Studio installation directory. To launch the SAS server, double-click the file SAS_Sim_Server.bat inthe
launchSASServer directory. You might need to edit the files SAS_Sim_Server.bat and Sim Obj_
Spawn.cfg in the launchSASServer directory to reflect the location of the sas.exe on your machine.
The process for launching the Simulation Studio JMP server is similar except that you open and run the JMP
script file named JMP_Sim_Server.JSL. (Use the Run Script menu option from a JMP window.)

Using a Remote SAS Server

All data streaming blocks, such as the Numeric Source and Observation Source blocks, have the option
Load From Remote SAS Workspace Server. When this option is checked, data are read from the specified
location on the remote SAS workspace server. All data collecting blocks, such as the Number Holder and
Bucket blocks, have the option Submit to Remote SAS Workspace Server. Selecting this option saves
any collected data to a location on a remote SAS workspace server. The option Submit to Remote SAS
Workspace Server is also available in the SAS Program block. When this option is checked, the specified
SAS program on the local machine is executed on the remote SAS workspace server.

The options Submit to Remote SAS Workspace Server and Load From Remote SAS Workspace Server
can be set in the block properties dialog box for a specific block. Also, right-clicking on a model name in the
Project Explorer and choosing the option Remote Service Host opens a dialog box where you can select
the blocks in the model for which the Submit to Remote SAS Workspace Server and Load From Remote
SAS Workspace Server options should be checked. If any block in a model has either of these options
checked, then the Remote SAS Workspace Server Login dialog box appears after the model execution

Simulation Studio Menu and Toolbar 4 29

begins. In this dialog box, you specify logon credentials necessary to access the remote SAS workspace
Sserver.

Simulation Studio Menu and Toolbar

The main Simulation Studio menu consists of six items: File, Template, Run, Analyze, Tools, and Help.
Use the File menu (shown in Figure 3.3) to open, create, close, and save projects, models, and experiments in
Simulation Studio. When you open or create a new project, Simulation Studio opens a new project window
in the Project Desktop area of the GUI and updates the Project Explorer accordingly. If this is a new project,
a new (empty) model and experiment are also created. When an existing project is opened, all models and
experiments in that project are opened and entries are created for them in the Project Explorer.

Figure 3.3 File Menu

File | Template Run Analyze
Cipen v Project...

Hiw F Kaodel..
Close Experiment...
Save

Savels...

A Simulation Studio template stores information about a collection of Simulation Studio blocks. Template
details are provided in Chapter 11, “Block Templates.” Use the Template menu to open, create, close, and
save Simulation Studio templates. Opening a template adds the template name to the Template list box in the
Block Template Display area of the application. You can use this list box to determine which template palette
is visible in the Block Template Display area of the application. Select Template» Close to remove the
current template name from the Template list box and also remove the associated blocks from the Template
palette. Select Save or SaveAs to save the current template to disk storage. More details about templates are
provided in Chapter 11, “Block Templates.”

The Run menu (Figure 3.4) controls much of the model execution and animation. Many of the controls are
also found in the toolbar. The functionality associated with model execution controls (Start, Pause, and so
on) is discussed in Chapter 4, “Simulation Models.” Select Show to enable or disable the simulation clock
and replication count displays for the current model. When visible, the clock and replication count appear in
the upper right corner of an individual Project window.

30 4 Chapter 3: Introduction to SAS Simulation Studio

Figure 3.4 Run Menu

- Fun | Anabze Tools

O Animate

Shio ¥ L Simulation Clock
! Replication Coumt

To access the JMP distribution-fitting platform, select Analyzew Fit Distribution. To open the configuration
dialog box (Figure 3.2), select Tools» Configuration.

The toolbar (Figure 3.5) provides quick access to most of the functionality in the Run menu. The animation
icon B acts as a toggle switch for turning execution animation on and off. Clicking an icon in the toolbar
invokes the functionality associated with that icon. The remaining toolbar icons are discussed in Chapter 4,
“Simulation Models.”

Figure 3.5 Toolbar

g

Block Template Display Area

The Block Template Display area (Figure 3.6) consists of two components. The Template list box contains the
names of all the templates currently loaded into Simulation Studio. The selection displayed in the Template
list box represents the currently active template. In Figure 3.6 the template labeled Standard is active. The
area immediately below the list box, called the Template Palette area, displays the templates for the individual
blocks contained in the currently active template.

You can change the format of the displayed items in the Template Palette area by using the pop-up menu
available on the Block Template Display area background. Display options include Large Icons, Small
Icons, List, Text Only, and Icons Only. You can also use this pop-up menu to view specific information
about an individual block. Selecting Block Info from the pop-up menu opens a dialog box to display
information about the corresponding block. This information includes the block name, class path, icon, and
tooltip associated with the block. Menu options are also available via the pop-up menu to remove blocks
from and import blocks to the template.

When you rest the pointer on an individual block icon in the Template Palette, a tooltip appears that contains
a brief description of the block. The Template Palette area is your source for blocks when you are using
the Simulation Studio GUI to build your simulation model. To add blocks to your simulation model, drag
template icons from the Template Palette into a Model window. This process creates an instance of the
associated block in your model. Templates are discussed in detail in Chapter 11, “Block Templates.”

Simulation Studio Projects 4 31

Figure 3.6 Template Display Area

Standard v
- . —~
\r Entity Generator —
55 Value Generator

Disposer

Il

Queue

Delay

Server

Modifier

Extractor

Q
@b o | Switch —
Q

Simulation Studio Projects

A project in Simulation Studio (ideally) contains models and experiments that are in some way associated
with each other and helps to provide organizational structure to all of your models and experiments. A project
must contain at least one model and experiment, but there is no limit to how many models and experiments
can be in a project. Any number of projects can be loaded into Simulation Studio at one time. In addition
to organizing models and experiments, projects provide storage for factor and response definitions that can
be shared across models and experiments in that project. Factors and responses are discussed in Chapter 5,
“Experiments.”

Project Explorer

The Project Explorer (located on the top left side of the GUI in Figure 3.1) uses a tree structure to display
the projects, associated models, and experiments that are currently loaded into the application. Figure 3.7
shows a Project Explorer with two projects loaded: crane and repairshopDOE, each with one model and one
experiment.

32 4 Chapter 3: Introduction to SAS Simulation Studio

Figure 3.7 Sample Project Explorer

Projects
¢ 50 crane
T mndein
12 experimentl
2 52y repairshopDOE
= miodeln
[experimentl

Selecting a project, model, or experiment name listed in the Project Explorer hierarchy causes the windows
associated with that item to activate and pop to the top in the Project window. The activated model and
experiment names are shown in bold. Up to one model and one experiment in a project can be activated.

Context-sensitive pop-up menus are available on the items displayed in the Project Explorer. You can
right-click a project to open a dialog box to edit factors and responses associated with the project and also
to change the base directory location where any simulation results are stored. You can right-click a model
to open the Anchors dialog box to associate block parameters in a model to project factors and responses
and also to set flags in blocks for automatically saving results. You can right-click an experiment to open
a dialog box to include factors and responses. Factors, responses, and anchors are detailed in Chapter 5,
“Experiments.”

Project Window

Each project loaded into Simulation Studio has a Project window associated with it in the Project Desktop
area of the GUI. A newly created Project window is displayed in Figure 3.8. Each Project window has a
desktop area at the top and a tabbed window at the bottom. The Project Desktop area contains any Model
windows and Experiment windows associated with the project. When a new Project window is first created,
it has one (empty) Model window, one Experiment window, and at the bottom of the frame, Log, Trace, and
Animation tabs. Project windows can be minimized as needed using controls on the Project window frame.
To open the Factor and Response definition dialog boxes, right-click on the background of a Project window.
See Chapter 5, “Experiments,” for details about factors and responses.

Figure 3.8 Sample Project Window

Project Window 4 33

1™ project :

% model

12 experiment0

FPointHame StartTime

EndTime

Replicates

point 1

1

[Log |] Trace | & Animation

Level | Cescription

Model Window

Each model in a project has a Model window associated with it. You use this window to graphically construct
and display a simulation model. You drag a block from the Template Palette into a Model window to create
an instance of the block associated with that template in your model. You connect the blocks in your model
by creating links between ports on the various blocks. You can right-click or double-click an individual
block to open a dialog box where you can modify parameters associated with the block. Interacting with
blocks and models is discussed in detail in Chapter 4, “Simulation Models.” Closing a Model window
deletes the window and removes the model entry from the Project Explorer. NOTE: Modified models are not
automatically saved upon closing. You will however be prompted and asked whether you want to save the
model before it is closed. Figure 3.9 displays a sample Model window that contains a simple M/M/1 model.

34 4 Chapter 3: Introduction to SAS Simulation Studio

Figure 3.9 Sample Model Window

Senvice Time

£]

A

T

S
Tl EA T’
i

v

[WE mn|

o Teller
FIF, ele

N | IE

Mumber Seniced

Average Waiting Time

oo
Current Queue Length

Experiment Window

You use Experiment windows to control the initialization and running of simulation models. Each experiment
in a project has an Experiment window in the Project window. By default, each Experiment window contains
columns for controlling the start and end times of a simulation run (or design point) along with a column for
designating how many times you want to repeat this run. An experiment must have at least one design point
in order to run an associated simulation model.

You can use an Experiment window to control initialization of block parameters before running a simulation
model. Any factor or response defined on the project can be included in an experiment. Using this and other
features of experiments is discussed in Chapter 5, “Experiments.”

As with a Model window, closing an Experiment window deletes the window and removes the experiment
entry from the Project Explorer. Figure 3.10 shows a sample Experiment window including a factor labeled
maxentities and a response labeled Number Serviced. To modify the content of an Experiment window,
right-click on the background of the Experiment window and select the appropriate item from the pop-up
menu.

Log, Trace, and Animation Tabs 4 35

Figure 3.10 Sample Experiment Window

[. =1
[experimento oo [
Pointame | StariTime | EndTime | maxentifles Feplicales _Murnber Serdced
point 1| | o) 50| 1 & |
point 2| | =) 200] 1
point 3| | =) 200] 1
point 4| 0| a0 50| 1
point 5| | o) 200| 1
point 6| ol =a)| 50| 1
point 7| 0l o 50| 1
point & 0| | 200| 1

Log, Trace, and Animation Tabs

Each Project window also contains a Log, Trace, and Animation window in a tabbed format along the bottom
of the Project window frame. (See Figure 3.8.) The Log tab displays log messages from either the currently
running or most recently run model. Each log message has a Severity Level associated with it along with the
source and simulation time of the message. If you click on a message in the log, the block in the model that
generated the message will be highlighted.

The Tracer feature must be enabled for trace messages to appear in the Trace tab. You enable the Tracer
feature by using a pop-up menu available on the Trace tab background. Trace messages are generated by
individual blocks during the execution of a model and are intended to provide details about events and
execution flow within the blocks.

The Animation tab provides options for controlling the simulation animation as a model runs. You can
enable animation for different regions of the model, as well as adjust the animation speed, start time, and end
time for each selected region.

Additional details about the log, trace, and animation facilities in Simulation Studio are provided in Chapter 10,
“Model Debugging and Verification.”

Project Status Bar

The Project Status bar, located at the bottom of the GUI, displays the path name of the currently active
project.

36

Chapter 4
Simulation Models

Contents
Overview of Models e 37
Blocks L e 37
Connector Blocks L 38
Ports e 39
Entities and Values L 40
BuildingaModel 42
RunningaModel e 42
SearchingaModel 43
Saving aProject 45
Opening a Project, Model, or Experiment 45

Overview of Models

In Simulation Studio, the term model means an abstraction or representation of a system that you want to
investigate or study. Most models represent a simplified version of the real system, but they still must capture
the essence of the system under investigation to be useful. In Simulation Studio, models are composed of
blocks, and blocks communicate with each other through ports. In the Simulation Studio GUI, blocks are said
to be connected if a port on one block has a link to a port on another block, creating a path for information to
flow between them. A model in Simulation Studio is usually a series of blocks arranged or connected in a
configuration that represents the system under investigation.

This chapter provides an overview of blocks, ports, and the types of information that flow between them. The
details about each of these subjects is provided in later chapters. This chapter also discusses how to use the
Simulation Studio GUI to build, run, and save a simulation model.

Blocks

In Simulation Studio, blocks are the most fundamental units used to build a simulation model. Each block
usually encapsulates some well-defined and specialized functionality. Communication between blocks is
accomplished through the ports defined on the individual blocks. In the Simulation Studio GUI, you manually
create a link between the ports on blocks to provide a path for information to flow when the simulation is
running.

38 4 Chapter 4: Simulation Models

Simulation Studio provides a default collection of basic blocks for model construction. These blocks appear
in, and can be accessed through, the Standard template of the application. The details about these individual
blocks is provided in Appendix A, “Templates.” Each block has a pop-up menu associated with it that you
can open by right-clicking the block in the Model window. This menu looks similar to the one displayed in
Figure 4.1.

Figure 4.1 Sample Block Menu

Havigation k .
. Block Properties... .
. Toggle Labeal

Eclit Labsd...

Delete

SO .

Copy

This menu provides various functionalities, including access to the block properties dialog box. The properties
dialog box displays any individual parameters for the block along with a block functionality overview page.
You can also open a block’s properties dialog box by double-clicking the block.

In addition to the basic blocks provided by Simulation Studio, you can create compound blocks by aggregating
a series of blocks, or you can create your own basic blocks. The details about these subjects are covered in
later chapters.

Connector Blocks

Often in a simulation model, blocks that are far apart in the model window need to be connected by a link.
Creating a link between ports on these blocks usually results in a link that traverses over many other blocks
and links. This can be visually distracting and potentially confusing when you interpret model functionality.
You can remedy this problem by using the Connector block.

Links between Connector blocks are invisible by default; therefore, you can use Connector blocks to reduce
visual link clutter. To show all inter-Connector links in the model, select Navigation»Show Connector
Links from the pop-up menu on either an individual block or a Model window. Selecting Navigation»Show
Connector Links again hides all inter-Connector links.

You can view a list of all input (or output) connections by right-clicking on the input (or output) port of a
Connector block to open the Port Connections dialog box. If you click on a row in the Port Connections
dialog box that represents a connection with another Connector block, then the link is displayed in the model.
You can also remove links or change the order of the links in the Port Connections dialog box.

To create an inter-Connector link:

1. Place a separate Connector block adjacent to each of the blocks in the model that you want to directly
link.

Ports 4 39

2. Create a link from the appropriate port on each block to the adjacent Connector block.

3. Create a link between the two Connector blocks. When the link is created, it briefly flashes and then
disappears.

As discussed in the following section, each block port has a type associated with it: either value (Number,
String, and so on) or entity. When you create a Connector block, you are asked whether you want a value or
entity Connector block. The ports on an entity-type Connector block are red, and the ports on a value-type
Connector block are blue. Links between entity-type Connector blocks are displayed red when they are
visible, and links between value-type Connector blocks are displayed blue when they are visible.

Ports

Ports represent the basic interface to blocks. Blocks usually have multiple ports. Depending on the
functionality of the block, a block can have static ports (the same ports are always available for this type
of block) or dynamic ports (ports can be dynamically created or deleted based on various properties of the
block). An example of a block with static ports is the Entity Generator block used to create entities. (See
Figure 4.2.) This block always has an InterArrivalTime, BatchSize, Signal, OutEntity, and OutBalk port.

Figure 4.2 Entity Generator Block with Five Static Ports

Batchiize
Interd rrivalTime 2 l: Signal

\O- OutEntity
\O-CatBalk

The Modifier block has static ports and optional dynamic ports. You use a Modifier block (Figure 4.3) to
assign attributes to an entity that flows through a model. The number of ports available on the Modifier
block is dependent on the number of attributes you have decided to set using that block. In Figure 4.3, three
attributes are assigned using this Modifier block, so the block’s icon displays three dynamic attribute input
ports along with the Modifier block’s standard static input and (two) output entity ports.

Figure 4.3 Modifier Block with Three Dynamic Attribute Ports

Attribute Input Ports
T

00 - DutEntity
O~ CutBalk

40 4 Chapter 4: Simulation Models

Blocks have two types of ports: value ports and entity ports. The ports are color-coded with value ports
displayed in blue and entity ports in red. Value ports are always located on the top and bottom of the block
icon, and entity ports are displayed on the right and left sides of the block icon. In general, values are
data-oriented information such as numbers, character strings, observation objects, and data model objects,
while entities represent special objects that flow through the model during a simulation, potentially carrying
additional information or properties along with them.

Each value port can either be an input value port or an output value port. Similarly, entity ports can be input
or output ports. An input port is used to get information into the block, and an output port is either used by
the block to push information out or used by another block to pull information from the block. Input ports
are drawn as triangles on the perimeter of a block, and output ports are represented by squares. In Figure 4.2,
the InterArrivalTime port represents an input value port and the OutEntity port is an output entity port. When
you first rest the pointer over a port, a tooltip with a brief label for the port appears. The ports for each block
are described on the Overview tab in the block’s properties dialog box.

Each port has associated with it a Port Connections dialog box that is accessed by right-clicking the port. The
Port Connections dialog box shows a list of all ports (and associated blocks) connected to the selected port.
(See Figure 4.4.) The Order column in the dialog box indicates the priority of each port that is connected
to the selected port. The order in which the ports appear in the dialog box is the order in which they are
activated when the selected port needs to communicate with another port. The order can be changed by
selecting a row in the Port Connections dialog box and then clicking the Up or Down arrow button to move
the selected row in the list. Connections can also be deleted by selecting a row in the dialog box and clicking
the Delete button located under the arrow buttons.

Figure 4.4 Port Connections Dialog Box

"—_‘ Port Connections il
Order Connected Block | Connected Port Direction
0 Senver 1 INEntity QuT
1 Server 2 INEntity CUT
2 Server 3 INEntity CUT

Close

Entities and Values

Two general types of information are communicated between blocks: values and entities. Values can be
numbers, strings, Boolean values, observation objects, or data model objects. Data model objects can be used
to store SAS data sets and JMP tables in a simulation model during a simulation run, and they are also used

Entities and Values 4 41

to store data created within a simulation model run. Observation objects contain a row of information from a
data model, SAS data set, or JMP table. Number and string values in Simulation Studio are often associated
with state information or properties on blocks, whereas data model and observation object values contain
a collection of related data values. Value ports are used to access or set value information associated with
blocks.

As an example, the Queue block has a numeric property called capacity that represents the maximum number
of entities the queue can hold at one time. Although you can use the properties dialog box of a Queue to set
its capacity, you can also connect the InCapacity port (as shown in Figure 4.5) to a numeric output port of
another block that sends out a numeric value while the simulation is running. The Queue block also has a
numeric value output port called OutLength. Every time the number of entities in the queue changes, the
length of the queue is pushed out its OutLength port. It is also possible to query the length of the queue via a
connection to the OutLength port.

Figure 4.5 Queue Block

InFenegeWait InCapacitj.r InPreempt
T | fDutEnm;,r

_ TTT T~ ChutHEenege
InEntitsy — Ir§ Iﬁb o0— CutPreempt
i g--.. CutResource

I:|I:II:|

e 'HHDutEa]lc:
Cutlength OuwtWait OutHoldings

Although most values are simply numbers or strings, as mentioned previously, values can also be Java objects
such as an observation object or data model object. Some blocks collect information or statistics and store
the data in a custom Java object called a data model object. This data model object can be shared with other
blocks. An example of this functionality is the Number Holder block. The Number Holder block provides
an option to store data values that pass through the block in a data model object, and the Number Holder
block has an output port called OutCollected to provide access to this data model object. For example, you
might be interested in displaying the values being collected in the Number Holder block while the simulation
is running, so you could connect the Dataln input port (of value type Object) of a Histogram block to the
OutCollected port of the Number Holder block. The Histogram block would then display a representation of
the data passing through the Number Holder block when the simulation is running.

The second type of information passed between blocks is called an entity. Entities are special objects in
Simulation Studio and have a unique role in this discrete-event simulation application. Although value
information tends to flow between two blocks and is immediately consumed, entities usually flow through
the model and have a much longer life span. Entities can have properties or attributes assigned to them, and
these properties might be modified during the simulation execution. Blocks can use property information
assigned to entities in their internal processing and logic to affect simulation execution.

Consider the simple M/M/1 example presented in Chapter 2, “Overview of SAS Simulation Studio.” Suppose
this example represents customers waiting to check out at a cashier, and the entities that flow through the
model represent customers. You could modify this model to assign a property to the customers (entities) to
represent how many items the customer is purchasing and then use this information to determine how long it
takes the customer to check out at the cashier.

Additional information about entities and their role in Simulation Studio is given in Chapter 8, “Entities.”

42 4 Chapter 4: Simulation Models

Building a Model

Using the Simulation Studio GUI to build a simulation model is straightforward. It consists of dragging icons
from the Template Palette window into a Model window and then creating links between the appropriate
ports on the various blocks in the model. (Of course, the hard part is actually determining the appropriate
composition of the model.)

To create an instance of a specific block in a Model window, you drag the appropriate icon or text in the
Template Palette window into the Model window to the location where you want the block to be created.
During the drag, a transparent icon is attached to the pointer. (You can always drag the new block instance
around in the Model window to move it to another position.) You can modify the properties on any block
in your model by using the properties dialog box associated with each block. You can open this dialog by
right-clicking the block and selecting the Block Properties menu item. Double-clicking the block icon also
causes the properties dialog box to open.

One-step undo and redo options are available immediately after you insert or delete a block. If you perform
another action after adding or deleting a block, such as forming a link, then the undo and redo options are no
longer available for that block. The options are available from the model pop-up menu, which you access
by right-clicking in the Model window. To remove the last block added to the model, select Undo Block
Insertion. To insert the block back into the model, select Redo Block Insertion. To insert a deleted block
back into the model, select Undo Block Deletion.

After you have blocks in your Model window, you can begin to create links between the ports on the various
blocks to enable the flow of values and entities between blocks. To create a link, position the pointer over a
port that you want to be an endpoint of the link and hold down the left mouse button. (Note that the port
size enlarges when the pointer is over it, indicating port selection.) A rubber-band line appears that connects
the selected port with the pointer. While holding down the left mouse button, move the pointer until it is
positioned over the port you want to connect to and then release the left mouse button. If the port types
associated with the two selected ports are compatible, a link is created between them.

Simulation Studio also offers a two-click method for creating links that is especially useful when the blocks
you want to connect are far apart in the model. You can use the two-click method to create a link by moving
the pointer until it is positioned over the first port to connect and then clicking the left mouse button. Move
the pointer until it is positioned over the compatible port that you want to connect to (scrolling the Model
window if necessary), and then click the left mouse button again to form the link. If you hold down the CTRL
key while performing the second click, then you can continue to click on other input ports to form additional
links.

One-step undo and redo options are available for the most recent link insertion or deletion action. These
options are available from the Model window pop-up menu, which you access by right-clicking in the Model
window. To remove the last link formed from the model, select Undo Link Connection. To insert a deleted
link back into the model, select Redo Link Connection.

Running a Model

Before you can run your simulation model, you must have an active model and an active experiment, and
the active experiment must have at least one design point selected or highlighted in the Experiment window.

Searching a Model 4 43

(For more information about experiments, see Chapter 5, “Experiments.”) Although a project can have
multiple models and experiments associated with it and multiple windows visible in the Project window, only
one model and one experiment are considered active at any particular time. The active model and active
experiment are identified by bold text for their names in the Project Explorer window. To activate a model or
experiment, you can either select the name in the Project Explorer window or select the window associated
with the model or experiment in the Project window.

After you have a valid model and experiment selected (that is, active), you can use any of the following
methods to start the simulation running. You can select the ¥ icon on the toolbar or select Runp-Start
from the main menu. You can also select the M icon on the toolbar or select Run»Augment. (See
Chapter 5, “Experiments,” for additional information about augment run.)

Simulation Studio attempts to synchronize the active model and active experiment, initializes the model by
using the experiment, and begins running the simulation. If this process is successful, the active model and
experiment transition into the running state, and their labels are displayed using a red font in the Project
Explorer.

You can stop or pause a running simulation at any point by selecting either the Il icon on the toolbar or
Runp-Pause from the main menu. While the simulation model is running, only the Il Pause and @&
Reset icons are selectable on the toolbar. When the simulation has finished running, the Il Pause icon is
not selectable. NOTE: The simulation clock might not be advancing and no animation might be visible, but
the simulation engine might still be processing data.

During the early stages of developing and validating your simulation model, it is often useful to employ the
animation feature in Simulation Studio. Animation can be switched on and off using the & toolbar icon or
by selecting the Animate option on the Run menu. When animation is activated, the flow of information
is graphically depicted in the Model window, with value movement visualized with blue icons and entity
movement with red icons. These blue and red icons are shown traversing the various links in the model.
Although animation slows the execution of the model, it can provide valuable insight when debugging your
model or demonstrating the mechanics of your model to others. You can control the animation speed using
the slider control located next to the & toolbar icon.

Another option is the ability to display the simulation clock and replication count while the simulation is
running. These values can provide you valuable feedback on the status and progress of your model execution.
Controls for these options are provided under the Run»Show menu.

Finally, selecting the @ icon or Run»Reset reinitializes the states of the simulation clock and random
number stream, and also invokes any reset method on any blocks in the active model.

Searching a Model

Simulation Studio includes a search feature that you can use to locate blocks, compound blocks, or submodels
in a particular model that satisfy specified criteria. You can open the Search dialog box, shown in Figure 4.6,
by pressing CTRL-F when the Model window is active. If you click anywhere outside the Search dialog box,
then the Search dialog box automatically closes. You can press CTRL-F to open it again.

44 4 Chapter 4: Simulation Models

Figure 4.6 Sample Search Dialog Box
0 =)

Search String {all or part of the block name):

| | [] Case Sensitive

@ Simple Block) Compound Block ' Submodel

Type: |m| Types | - |

Search Results

ServiceDeskQ =[] Auto-Sync Forward
Service Desk

nServiceTime L Sync Forward
Fixed Early
RepairDeskQ —
Repair Men
InRepairTime
Scrapped
QualityControlQ
Quality Control
Fized

INQCTime
#Fixed Earhy

4]

[] Show Properties

In the Search dialog box, you can specify a whole or partial block label name in the Search String box. This
search string is used at the label-matching phase of the search process to select any blocks that have a label
that matches the specified string. Select the Case Sensitive check box to indicate that the search should find
only blocks with a label that matches the specified case-sensitive string. If the Search String box is blank,
then the block label is not used during the search.

The Search For section of the dialog box enables you to select one of three categories of blocks to search:
simple block, compound block, or submodel. If you select the Simple Block option, then you can specify
the type of simple block (Entity Generator, Delay, Formula, and so on) in the Type list. Select All Types
to indicate that the search should be applied to all simple block types. If you select the Compound Block
option, then the Type list is not available.

After you select a block category and specify a search string (if necessary), click Search to execute the search
process. When the search is complete, the Search Results box is populated with a list of block labels that
satisfy the specified search criteria. You can then select block labels that are listed in the Search Results
box to locate the corresponding block in your model. If the Show Properties check box is selected when
you execute a search, then the Block Properties dialog box for a selected block in the Search Results field
automatically appears, and you can inspect or edit the block properties as needed. If the Auto Sync Forward
check box is selected when you execute a search, then the Model window scrolls to display the selected block
in the Search Results field. If the block is one or more levels deep inside a collapsed compound block, then
the compound blocks are automatically expanded to show the selected block.

If the Auto Sync Forward check box is not selected, then you can click Sync Forward to manually scroll
the Model window until the selected block is displayed. If you click Sync Forward and the selected block
is inside a collapsed compound block, then the compound block is automatically expanded to display the
selected block. You can then click Sync Backward to automatically undo the sync forward operation and
restore the collapsed status of the selected block’s parent compound block.

Saving a Project 4 45

Saving a Project

Saving models, experiments, and factor/response definitions is currently done on a project basis. That is, only
entire projects can be saved. All models, experiments, and factor and response definitions that are associated
with a project are saved when a project is saved. To save a project, select File»-Save or File»-SaveAs from
the main menu. A File dialog box opens where you select the folder or directory location in which to save
the project.

Opening a Project, Model, or Experiment

Although you can save only an entire project, Simulation Studio enables you to open an individual project,
model, or experiment.

Opening a project results in opening all models and experiments associated with that project. To open a
project, model, or experiment, select File from the main menu. There are options to open a project, model,
or experiment. When you open a project, a new entry is created in the Project Explorer tree for that project
along with subentries for any models and experiments that reside in that particular project.

When you open an individual model or experiment, that item is included in the currently active project and a
new leaf is created in the Project Explorer under the appropriate project node.

46

Chapter 5
Experiments

Contents

Overview of Experiments 47
Factors, Responses, and Anchors L 47
Experiment Window e 53

DesignPoints 55

Replicate Rows e 56
Running an Experiment L 57
AugmentRun 58
Saving and Loading Design Data 58

Overview of Experiments

The concept of an experiment can have a variety of meanings or connotations in different contexts and fields
of study. In Simulation Studio, an experiment provides a facility to automate the initialization and running of
simulation models and also to record measures from a simulation run. That is, you can use an experiment to
set parameters on blocks in your model before you run the model (without manually editing the individual
blocks) and also to extract and record measures from blocks at the end of each simulation run. This feature
provides you with a powerful facility to automate running a wide range of simulation scenarios and the
capability to conduct full design of experiment testing.

Factors, Responses, and Anchors

In keeping with traditional design of experiments terminology, the term factor describes a variable or
parameter that is manipulated or changed for each experimental design point. The term response refers
to a measure that is recorded for each experimental run. In Simulation Studio, factors and responses are
defined on a project basis. You use the Factors and Responses dialog boxes (Figure 5.1 and Figure 5.2,
respectively) to define factors and responses for a specific Simulation Studio project. To open a Factors or
Responses dialog box, right-click the Project window background (or right-click the project name in the
Project Explorer) and select Factors or Responses.

48 4 Chapter 5: Experiments

Figure 5.1 Factors Dialog Box

i X
Factors Details
Name
Label Remove
Role type]
Value type | ‘ ‘
Values
Default value
| OK | l Cancel |
Figure 5.2 Responses Dialog Box
E X
Responses Details
Name
Label Remove
Goal | ‘ ‘
Values

o
=

Cancel l

The process of creating factor and response definitions essentially creates a factor and response database
for the project. This database facilitates the reuse of these definitions across experiments and models. Any
factor or response defined on a project can be included in any experiment in the project. To include a factor
and response in (or remove it from) an experiment, right-click in an Experiment window and select Factor
Inclusion or Response Inclusion from the pop-up menu shown in Figure 5.3. In the resulting dialog box,
select or clear the factor or response as desired.

Factors, Responses, and Anchors 4 49

Figure 5.3 Experiment Menu

Properties ...

Factor Inclusion ...
Response Inclusion ...

Design Point Yiew ...

Add Design Point
Remove Design Point

Make Design
Anahze Results

Load Design ...

Save Design ...

¥ Auto Resize Columns

Figure 5.4 Factor Inclusion Dialog Box

x|
Factors Details
Included | Name
Name:
Tooltip:

Role type: CONTINUOUS
Value type: DOUBLE

Values:

Include all || Exclude all | Default value:

| oK || Cancel |

Simulation Studio must map the factors and responses included in an experiment to block parameters and
measures in the simulation model. This is accomplished using an anchor, which defines the link between a
factor or response defined on a project and an actual block parameter or measure in a specific model. It is
possible to link a single factor to multiple blocks in a model. Anchor information is used to associate factors
and responses in an experiment with simulation models in a particular project at run time.

To demonstrate the anchor definition process, consider the simple M/M/1 model depicted in Figure 5.5 for
simulating waiting in line for a bank teller to become available. To open the Anchor dialog box (Figure 5.6),
which defines both factor and response anchors, right-click in the Model window and select Anchors from
the pop-up menu. The Anchors dialog box presents separate tabs for displaying the factor anchors and the
response anchors. In Figure 5.6, no anchors have been defined on this model yet.

50 4 Chapter 5: Experiments

Figure 5.5 Simple Bank Teller Model

Interarrival Time SEWEEJ'""E
Yy =
=]

a4l

m} LIl
[m] Teller

Arriving Customers

L

ooo I

Mumber Senviced

i.r I%nlﬂ?u.u

Average Waiting Time

ooo
Current Queue Length

Figure 5.6 Sample Anchors Dialog Box

=
[]’ Factor Anchors r Response Anchors |
Factor | Black

| Candidate

Jii
:

"o [w JLgo]

Factors, Responses, and Anchors 4 51

The processes for creating response and factor anchors are completely analogous, so this section discusses
only creating response anchors. Click New on the Response Anchors tab in the Anchors dialog box to cause
the New Anchor dialog box for responses to be displayed. (See Figure 5.7.) The Responses list in the upper
right area of the New Anchor dialog box displays the names of all the responses defined on this project. In
this example the project has five defined responses. (Recall that factors and responses are defined on a project
basis.) When you select a response name in this list, the details associated with that response are displayed in
the Details table of the dialog box below the Responses list.

Figure 5.7 Sample New Anchor Dialog Box for Responses

x
Blocks Candidates Responses
3 model verageWaitTime
[y FIFO Queus MaximumWaitTime
[Teller AverageUtilization
[Disposer MaximumUtilization
[y Average Waiting Time NumberProcessed

D Mumber Serviced
D Current Gueue Lenagth

Add Response
Details
Candidate Response
Mame: AverageWaitTime -
Label: AverageWaitTime =
Goal type: Minimize =l

The Blocks area contains a hierarchical representation of the names of all blocks in the model that contain
potential response anchors. Selecting a block name causes the Candidates list to be populated with the
names of the possible response anchors associated with the selected block. In Figure 5.8 the block named
FIFO Queue is selected and all of its potential response anchors appear in the Candidates list. The details
for any item selected in the Candidates list are displayed in the Details table below the Candidates list.

52 4 Chapter 5: Experiments

To create an anchor link between a response anchor candidate from a block in your model to a response
defined in your project, select an item in the Candidates list and also an item in the Responses list. Then
click OK. This results in an entry being added to the Anchors dialog box. (See Figure 5.9.) You can edit or
remove an entry from this table by selecting the appropriate row in the table and then clicking either Edit or

Remove.

-

Figure 5.8 New FIFO Queue Response Anchor Dialog Box

Blocks Candidates Responses
3 model Average\Wait Average\WaitTime
D FIFO Queue MaximumWWait MaximumWaitTime
D Teller AveragelLength AveragelUtilization
[y Disposer MaximumLength MaximumUtilization
D Lverage Waiting Time BalkCount HumberProcessed
[y Mumber Senviced RenegeCount
D Current Gueue Lenagth
Add Response

s

Goal type:

Candidate Fesponse
Mame: Average\Wait AverageWaitTime -
Label: AverageWaitTime =
Match Target Minimize <l

P

Blobl

Blokl

cone

Figure 5.9 Populated Anchors Dialog Box

& ===
Factor Anchors | Response Anchors |
Respanse Black Candidate
AverageWaitTime FIFO Queue Averagelait Hew...

Rem

EE

Cox J[_aow][aoe |

Experiment Window 4 53

When you attempt to run a simulation model-experiment combination, Simulation Studio attempts to map
the factor and response anchors defined on the model to the factors and responses included in the experiment.
If a mismatch exists, Simulation Studio writes an error message to the Log window and stops the model
execution.

Experiment Window

Figure 5.10 shows a sample Experiment window. This table is sometimes referred to as the design matrix for
an experiment. All the information associated with an experiment is displayed in the design matrix. Each
row in the matrix is called a design point, and it can contain values for a label, execution controls, factor
settings, and responses measured during model execution. You can add or remove design points by using the
pop-up menu available on the Experiment window background.

Figure 5.10 Sample Experiment Window

—1
[experiment o o [
| PoinfMame | StariTime | EndTime | maxentiles | Replicales Mumber Seniced
poirt 1] 0 = 50 1 50
point 2| 0 | 200| 1
point 3| 0 x| 200| 1
point 4|] 2| 50| 1
point 5| 0 oo 200| 1
point & i} o 20 1
point 7l] o] ﬁl_'l. 1
point & 1] oo 200 1

The design matrix is initially populated with four default columns labeled PointName, StartTime, EndTime,
and Replicates. The PointName column assigns a label to the design point. Although a default value (pointN)
is generated for this field when the design point is created, you can edit this field to be any text you choose.
The StartTime and EndTime values control the execution start time and end time (on the simulation clock)
for an individual simulation run. The simulation clock begins running at the value displayed in the StartTime
field for the design point, and the simulation ends or stops when the simulation clock reaches the time entered
in the EndTime field. (Note that time has no unit in Simulation Studio.) The final default column in the
design matrix is labeled Replicates. The value contained in this field represents how many times you want to
run this particular design point. You can edit the default values for StartTime, EndTime, and Replicates by
selecting Properties from the Experiment window pop-up menu and modifying the values in the resulting
properties dialog box. The default values set in the properties dialog box are applied to new design points that
are subsequently added to the Experiment window. Changes to the default values for StartTime, EndTime,
and Replicates are not applied to existing design points. The StartTime, EndTime, and Replicates columns
each have a pop-up menu (available by right-clicking the column name) that has a menu item called Set
Value. Figure 5.11 shows the pop-up menu for the Replicates column.

54 4 Chapter 5: Experiments

Figure 5.11 Replicates Column Menu

[l experiment o' @ R
Fointkarme StarTime EndTime MumSerice MumRepair Mum@c Feplic ervice| AvgvaitRepair | AvgvwaitQoc
point 1 0 540 3 3 3 p ¢ Expand All - bosET 1T 299550235 0.0
paint 2 a 5410 1 1 1 b £ Collapse Al (284 GA.72038797. | 0.0307746785...
point 3 1] 540 1 1 2 | & Set Value 284...| 69.72038797... 0.0
paint 4 0 540 3 1 1 | T PH36..| TY15668674. | 0.030T7F48TE. .
paint 5 0 540 1 3 1 |] 1117941284, 1.020869336...| 5 664335655,
paint 6 a 540 3 2 2 |] 0.203342936... 13.58262941..| 0.008834369...
paint 7 a 5410 3 2 1 |] 0.2033425936... 13.42047784.. | 3.680138100..
paint & 1] 540 3 1 2 |] 0.203342936... 77.15668674... 0.0
paint 4 0 540 1 2 3 | X 1117951284 | 8165214823 . 0.0
point 10 0 540 2 3 2 [] 0966061792, 1.456620090...| 02537848445
paint 11 0 540 2 1 3 |] 0966061792, 76.39408210... 0.0
paint 12 a 540 2 2 1 |] 0.966061792... 13.00652977...| 3.709548060..

Selecting Set Value opens the Set Value: Replicates dialog box, which is shown in Figure 5.12. The New
Value text box enables you to specify a value for the number of replications. The All and Selected options
enable you to specify whether the new value should be applied to all design points or to just the selected
ones. The value that initially appears in the New Value field is the default replicates value, which is set in the
Experiment window properties dialog box. The Set Value: EndTime and Set Value: StartTime dialog boxes
have similar functionality to the the Set Value: Replicates dialog box.

Figure 5.12 Set Value: Replicates Dialog

Hew Value: ||5 |
Target Design Points

Al @ Selected

OK Cancel

Each replication of a design point uses the same factor settings. However, different random substreams
are used in each replication. Additional details about replicates are provided in Appendix C, “Design of
Experiments.”

Only the default columns in the design matrix are necessary to actually run a simulation model. Figure 5.10
shows a design matrix with one additional factor, maxentities, and one response, Number Serviced. Any
factors or responses defined on a project can be added to the design matrix by using the Factor Inclusion
or Response Inclusion dialog boxes, respectively. You can open these dialog boxes via menu entries in the
Experiment window pop-up menu. Figure 5.13 shows a sample Factor Inclusion dialog box. The names of
all the factors defined on the project are listed in the Factors list along with an individual check box for each
entry. In this example three factors have been defined on the project. When you select the factor name, the
details associated with that factor are displayed on the right side of the dialog box. The check box adjacent to
the factor name controls inclusion of the factor into the design matrix. In Figure 5.13 only the factor named
NumServers is included in the experiment. The Response Inclusion dialog box works analogously to the
Factor Inclusion dialog.

Design Points 4 55

Color coding in the column header of the design matrix indicates which role that column plays in the
experiment. The default columns have gray headers; any added factors are denoted by yellow background
headers; and a pink background header is used for response columns.

Figure 5.13 Sample Factor Inclusion Dialog Box

i ll
Factors e
Included Name |)
. QueueCapacity Name: NumsServers
[NumServers N
MaxEntities Tooltip: Number of Servers

Role type: CONTINUOUS
Value type: INTEGER

1

2

Values:

Default value: 1

Design Points

You can run an experiment with only one design point and only the default execution control parameters. In
fact, this is often the case when you are first building, debugging, and validating your model. However, after
you have confidence in your simulation model and you want to use it for investigating the process you are
trying to model, automating the manipulation of block parameters and running the corresponding simulations
becomes very important and useful.

After you have determined what factors and responses you want to include in your experiment, the next step
is to determine how many design points you need in your experiment and what values are assigned to the
individual cells in your design matrix. The factors you are manipulating, the number of levels in each of the
factors, the goals of the experiment, and so on, all contribute in determining the number of design points and
the contents of the individual cells in your design matrix. Options are available in the Experiment window
pop-up menu to add (and delete) design points to the design matrix. You can manually create new rows in the
matrix and then edit the individual cells to enter the desired parameter or factor values.

If you are interested in an automated approach to designing your experiment and possibly developing a
metamodel for your simulation model, Simulation Studio provides a link to the JMP design of experiments
capabilities. To access this functionality, select Make Design from the Experiment window pop-up menu.
The details about using JMP software to populate your design matrix and create a metamodel for your
simulation model are discussed in Appendix C, “Design of Experiments.”

If your experiment contains a large number of factors or responses, then you might need to scroll and possibly
expand the collapsed columns in the Experiment window to see the desired factor or response value. As an
alternative, the Experiment window provides a design point view that organizes the factors and responses in
rows rather than columns, thereby making it easier to access factor and response values.

56 4 Chapter 5: Experiments

To view a design point, select Design Point View from the Experiment window pop-up menu. A sample
design point view is shown in Figure 5.14. This view enables you to edit the parameters for one design point
at a time. You can switch the displayed design point by using the Index field. You can use the Value column
in the Factors area of the dialog box to change factor values. After a design point is run, the summary is
displayed for each response (by default, the mean) over all replications in the Responses area. You can view
individual replicate responses by clicking Replicate Values.

Figure 5.14 Experiment Window Design Point View

1iZ# experiment0
r Design Matrix |/ Design Point |

Index: 1 E Name: |p|:|int 1 | Start Time: |0 End Time: |540

Factors Responses

1

k
Marrne : Marne Summrnary

MumService “|MumFixed 206

FHumBepair §§ AvgiaitService 0.20334293659035454

]y g (] AvaitRepair 17225002004 F23232

S| Aveiaitc 0.0

AwglLtilService 024060720527 F9112

AvgLtiIR epair 0 4BE3TOTIBE0454T7RA

Ao 0178ETARA44332323

Replicate Count: :—1 Replicate Yalues ...

Replicate Rows

One of the default columns in the experiment design matrix is labeled Replicates. The value in this column
represents how many times you want to run the associated design point in this experiment. The default value
for the entire column is 1 replicate. To edit the default replicate value, right-click in the Experiment window
to open the properties dialog box. Each replication run for a given design point uses the same factor levels.
However, different random streams (if random streams are used in the model) are used for each replicate.

If the number of replicates for a given design point is greater than 1 (and you have included responses in
your experiment), a small blue triangle precedes the replication value in the design matrix replication cell.
Clicking this triangle causes the replication rows to be expanded or collapsed in the matrix. Figure 5.15 and
Figure 5.16 show the different display states.

Figure 5.15 Replicate Rows Collapsed

[experimentl oo &
PointName StarTime EndTime Faclorl | Replicates Responsel
point 1] = o p 5

0| x

[=]
B

point 2

Running an Experiment 4 57

Figure 5.16 Replicate Rows Expanded

(# exporimentd o o [
PoimName | StarTime EndTime | Faclord Replicates Responset
point 1] 0| &) 0| w5 |
i
2-
3-
- . - . 5-
paint 2 0 e 0 X!

The factor level values are not displayed for each of the replicate rows—only the replication number and any
measured response values are displayed. If a design point has replicate rows and it is in a collapsed state,
the value displayed for any response value is a summary statistic calculated from all the values collected for
that design point for that response. The average value is displayed by default. You can change the summary
statistic displayed by right-clicking the appropriate response column heading in the Experiment window and
selecting from the statistics available. (See Figure 5.17.)

Figure 5.17 Response Summary Menu

Summanry * '® fverage

) Minimum

= Maximum

Running an Experiment

After you have created and populated the design points in your Experiment window, you are ready to run
your simulation model. (You must have identified the active experiment, and it must have at least one valid
design point.) You can select one or more design points to automatically run in sequence. You can select
a collection of design points either by dragging the pointer over the desired design points or by using the
Control or Shift key in combination with clicking to perform standard extended selection of design points.
Selected design points are highlighted in the design matrix.

You can start running the selected design points in any of the following ways. You can select the P icon on
the toolbar or select Runp-Start from the main menu. You can also select the M icon from the toolbar or
the Runp» Augment from the main menu. (Augment run is discussed in more detail in the following section.)

Selected design points are run in the order in which they appear in the design matrix. The currently running
design point is indicated by a red font in the design matrix. You can pause or suspend a simulation run
by selecting the Il icon on the toolbar or by selecting Run»Pause from the main menu. To restart the
simulation execution, simply select the P icon or Runp-Start again.

58 4 Chapter 5: Experiments

Consider the following when you run an experiment:

* It is often useful to display the simulation clock and replication count to monitor the progress of the
experiment. Use the options under the Run»-Show menu to display these values.

* Random number streams (substreams) advance with each replication of a design point but reset when
moving on to the next design point.

* Messages can be written to the Log window while the simulation is running. Messages with a SEVERE
level are displayed on the GUI in addition to being written to the log.

Augment Run

Suppose you have created an experiment, run it, and then decide you need additional design points or more
replicates for individual design points. After you have modified your experiment to reflect these needs, you
can select the Runp-Start from the main menu (or use the corresponding toolbar option) to run the simulation
again. Simulation Studio clears any previous results and proceeds to run or rerun every selected design point
and replication in the experiment. If no design points are selected, all points in the entire experiment are
rerun.

Alternatively, you can manually select the design points you need to run or rerun and then select Runp-Start
or use the corresponding toolbar option. This second approach also has limitations because you cannot select
replications within an individual design point.

Simulation Studio provides another alternative, called augment run, to facilitate this simulation scenario.
When you select the M icon from the toolbar or select Run» Augment from the main menu, Simulation
Studio attempts to run any design points and replication rows that have not been previously run in the
experiment. This unique approach provides you an option for incrementally expanding your design matrix
results.

Saving and Loading Design Data

Options are available on the Experiment window pop-up menu (Figure 5.3) to save and load experiment
design data. Selecting Save Design from the pop-up menu opens a File Chooser dialog box where you
select or type the filename to which you want to save the data. The data in the experiment design matrix
are saved to either a SAS data set or JMP data table, depending on your configuration data settings or the
filename extension specified. Unlike the data displayed in the Experiment window, all individual replicate
rows are completely populated with all the factor values along with the response values. Any rows that
contain summary information for replication rows are not included in the saved data. The resulting saved
data are in a format that can be passed to SAS procedures or JMP routines.

You can also load saved experiment data into a Simulation Studio Experiment window. Selecting Load
Design from the Experiment window pop-up menu opens a File Chooser dialog box where you enter the
filename for the previously saved data. Simulation Studio attempts to load the data into an Experiment
window. From there, you can select Analyze Results from the Experiment window pop-up menu to pass the
data back to a JMP routine for design of experiments analysis (if the experiment has factors included).

Chapter 6
Blocks

Contents
Overview of Blocks e 59
Block Labels e e 59
Block Pop-up Menu and Dialog Boxes 60
Navigation o oo e 60
Managing Anchors L 61
Managing Block Properties 62
SavingaBlock Instance 63
RankValue e e e 64

Overview of Blocks

The block represents the fundamental component of Simulation Studio simulation models. All blocks in
the base template are either directly or indirectly derived from a base block class. The base block class
implements the message handling protocols and defines how blocks communicate with each other through
ports. Each block is responsible for creating any ports it needs to perform the functionality required by the
block. From a GUI perspective, ports completely define the interface to most blocks. Port management and
related port message handling are two vital functions required of all blocks.

For the most part, blocks communicate with other blocks by using links between ports. When using the
Simulation Studio GUI, you can create a link from an output port only to an input port of compatible type. If
you have multiple links on a given port, logic in the port determines which connections are used and in what
order. The default behavior is to use the connections in the order in which they were created.

Block Labels

A default label is generated for each instance of a block. If only one instance of a particular block appears in
a model, the block name is used as the default label. Otherwise, an integer is appended to the default label to
indicate how many instances of the block have previously been created in the model. The block label is used
to identify individual blocks in any lists or dialogs. The label can be displayed next to the block icon in the
Model window, but by default, a block label is not visible.

60 4 Chapter 6: Blocks

Block Pop-up Menu and Dialog Boxes

Each block has a pop-up menu and several dialog boxes associated with it. The pop-up menu is shown in
Figure 6.1. Selecting Delete removes the corresponding block from the model. Selecting Toggle Label
shows or hides the block’s label. You can modify a block’s label by selecting Edit Label and using the
controls in the resulting dialog box to change the label text, specify whether the label is visible or not, and
reposition the label around the block icon. Selecting Copy from the pop-up menu creates a copy of the
associated block (or compound block) in the clipboard. When the clipboard contains information, a Paste
menu item is available on the block and model window pop-up menus. Selecting Paste creates a copy of the
clipboard’s contents into any model window (when the content is appropriate for a simulation model).

Figure 6.1 Sample Block Menu

Havigation ' |
[rocnors. Ty |
Block Properties...

. Toggle Labeal
Edit Labs...
Dol
Save .
Copy

The three of the four remaining pop-up menu items, Anchors, Block Properties, and Save, all produce their
own dialog boxes when selected. The fourth item, Navigation, provides several submenu items.

Navigation

The Navigation menu item on the block pop-up menu has three submenu items associated with it: Show
Snapshot, Track Animation, and Show Connector Links. The features associated with these items are
particularly useful when working with large simulation models. Selecting Show Snapshot creates a new
window that displays a scaled version of the entire model in the currently active model window. This new
window is referred to as the Snapshot window. The portion of the model visible in the original model window
is highlighted in the Snapshot window. You can drag the highlighted region in the Snapshot window to reveal
other regions of the model in the associated model window.

When you run a large simulation model, it is possible that the area of the model where the animation is
occurring is not visible in the model window. You can select Track Animation to enable the model window
to scroll (when the simulation is running with animation turned on) to ensure that the part of the model
currently being animated is always visible.

By default, the links between Connector blocks are invisible. You can select Show Connector Links from
the Navigation submenu to display all connector links in the model.

Managing Anchors 4 61

Managing Anchors

As mentioned in Chapter 5, “Experiments,” anchors are used in association with experiments. Each project
has a collection of factors and responses defined on it, and each experiment in that project might include any
of these factors and responses. Simulation Studio must know how to map the factors and responses in an
experiment to block parameters in the simulation model under investigation. This is accomplished through
anchors. The Anchors dialog box (Figure 6.2) shows all factor and response anchors defined on the model.
Use the New, Edit, and Remove buttons in this dialog box to manipulate the entries in these tables.

Figure 6.2 Sample Anchors Dialog Box

x|
Factor Anchors [Response Anchors |
| Factor Block Candidate |
\MaxEntities [Sampler [MaxEntities | New...
|QueueCapacity |FIFO Queue [Capacity
Close

Clicking New opens the New Anchor dialog box (Figure 6.3) where you can associate block parameters in
your model to factor and response definitions in the project. Selecting a block label in the model tree on the
left side of the New Anchor dialog box causes the names of any factor (or response) parameter candidates
associated with the block to be displayed in the center Candidates list. To match a parameter with a project
factor (or response), you must select both the parameter name in the Candidates list and the project factor
name in the Factors list, and then click OK. A new entry is then created in the Anchors dialog box. The
anchors are matched to the experiment factors and responses when you attempt to run an experiment.

62 4 Chapter 6: Blocks

Figure 6.3 New Anchor Dialog Box

x|
Blocks Candidates Factors
[modeld QueueCapacity
D Sampler NumServers
[y FIFo Queue MaxEntities
D Server
D Disposer
Details
Candidate Factor
Name: -
Tooltip: =
Rale type: =
OK l ‘ Cancel |

Managing Block Properties

Selecting Block Properties from the block pop-up menu opens a tabbed dialog box, usually with at least two
tabs. (You can also open the Block Properties dialog box for a block by double-clicking the block.) One tab
is labeled Overview, and it contains a brief description of the block along with information about any block
parameters. The other tabs usually provide controls for manipulating or editing block parameters. Figure 6.4
shows the parameter controls for an Entity Generator block. If the block supports the saving of data, another

tab labeled Save is available with options related to saving data.

Saving a Block Instance 4 63

Figure 6.4 Entity Generator Block Properties

i Block Properties for Entity Generator

[Attributes | EntityType | Overview |

Limits

Mazimum Humber of Entities:

Mazimum Number of Batches:

Timing

Start Time: [0

End Time:

First Entity Creation

To Schedule the Creation of Next Entity

Infinite

i® At Start Time ' At First Interarrival Time 0 After Signal Arrival

Infinite

Infinite

Apply

Close

Saving a Block Instance

Selecting Save from the block pop-up menu opens a dialog box that provides options for saving the instance
of the block to disk for reuse with a template. This dialog is essentially a file selection control for choosing
the filename for saving the block. By default, blocks are saved into the Resources\blocks folder and the
default filename extension .b1lk is automatically added to the saved block name for the default filename.

64 4 Chapter 6: Blocks

RankValue

Some blocks in Simulation Studio schedule events in the application’s event queue. For example, an Entity
Generator block schedules when to generate its next entity, and a Server block schedules when service will
be completed for an entity it is holding. Events are placed in the event queue based on the time the event
is scheduled to occur. It is possible for different blocks to schedule events to occur at exactly the same
simulation time, resulting in an event scheduling tie.

If an event is put in the event queue with the same scheduled time as an event already in the event queue, the
relative order in which those events actually occur is unpredictable, although reproducible. To address this
potential event timing issue, some blocks provide a RankValue property or factor. The RankValue property
of a block is an integer value that can be used to resolve ties for events that are scheduled in the application’s
event queue. For events scheduled to occur at the same simulation time, the event associated with a higher
RankValue value is given precedence over an event with a lower RankValue value. You can set the RankValue
property of a specific block in your model at run time by including it as a factor in an Experiment window
and assigning the desired value in the Experiment window. (See Chapter 5, “Experiments,” for details about
experiments and factors.)

The following blocks support a RankValue property: Delay, Entity Generator, Queue, Server, and Resource
Scheduler. Most blocks use the value O for their default RankValue value. The Resource Scheduler block,
however, uses the largest positive integer value in the system to have the highest priority available.

Chapter 7
Compound and Submodel Blocks

Contents

Overview of Compound and Submodel Blocks 65
Assembling and Disassembling a Compound Block, 65
Collapsing and Expanding a Compound Block 67
Labeling and Saving a Compound Block 67
Tunnels 67
Submodel Blocks e 70

CreatingaSubmodel 70

Viewing and Editing a Submodel o L 72

Overview of Compound and Submodel Blocks

Simulation models can become very large, possibly incorporating hundreds of blocks. Simulation Studio
enables you to assemble blocks into larger aggregates by using compound and submodel blocks. These
blocks encourage hierarchical model building and information hiding, and they facilitate component reuse.
For very large and complicated models, compound and submodel blocks can also greatly reduce the visual
complexity of the model.

Assembling and Disassembling a Compound Block

Figure 7.1 shows a small model that contains a compound block which encapsulates a Numeric Source and
Server block. Figure 7.2 displays the same model, this time with the compound block collapsed.

66 4 Chapter 7: Compound and Submodel Blocks

Figure 7.1 Sample Compound Block

Simple Compound Block

Figure 7.2 Sample Compound Block—Collapsed

$* modelt

T

o

oo Simple Compound Block

To create or assemble blocks into a compound block:

1. With the pointer positioned in the appropriate Model window, hold down the Shift + Ctrl keys while
simultaneously holding down the left mouse button and sweep out a rectangular area in the Model
window encompassing the blocks you want to assemble into a compound block. When you release the

Collapsing and Expanding a Compound Block 4 67

mouse button and Shift + Ctrl keys, a red rectangle appears in the Model window replacing the sweep
rectangle. All the blocks entirely within the rectangle also have a red highlight or selection box around
them.

2. Right-click within this red rectangle, and select Assemble Compound. Selecting this menu item
creates a new compound block that contains all the highlighted blocks.

To disassemble a compound block, right-click a compound block and select Disassemble Compound from
the resulting pop-up menu.

Collapsing and Expanding a Compound Block

To hide the contents of a compound block, double-click the compound block. This causes the visual
representation of the compound block to be replaced with a small yellow square similar in size to a basic
block icon. This is sometimes referred to as a collapsed compound block.

To expand a collapsed compound block to its original size, double-click the collapsed compound block.

Labeling and Saving a Compound Block

As with basic blocks, you can edit the label associated with a compound block and switch between displaying
and hiding it. It is often useful to give a compound block a descriptive, concise label that reflects its
functionality or usage. Since the contents of a compound block are usually not visible, a good label can be
particularly helpful for understanding its functionality in a simulation model.

The procedure for saving a compound block to disk and also for adding it to a template for reuse is identical
to the procedure described in Chapter 6, “Blocks,” for basic blocks. The default filename extension for a
saved compound block is . cblk and the default save folder is Resources\block.

Tunnels

Usually when you create a compound block you have some specific functionality you want your group of
blocks to perform, and you connect them in a very specific manner. You also know which blocks require
inputs from outside of the compound block and which blocks pass output from the compound block. That is,
you know which ports you are going to use as input ports and which ports you are going to use as output
ports for the compound block to make it function as designed. Additional connections could potentially alter
the desired functionality of your compound block in unpredictable ways.

Simulation Studio provides a feature called a runnel to facilitate input and output for a compound block.
You can think of tunnels as special ports for a compound block. Blocks (and their ports) located outside the
compound block that need to send information to the compound block connect to input tunnels defined on
the compound block. Similarly, blocks expecting information from the compound block connect to its output
tunnels. Blocks internal to the compound block that need connections outside the compound block also

68 4 Chapter 7: Compound and Submodel Blocks

connect through tunnels. You add or remove tunnels for a compound block using the Add/Remove Tunnels
dialog box (Figure 7.3) available through the pop-up menu on a compound block. This dialog box provides
options for creating various types of ports on a compound block. You can also edit the default name given to
a tunnel to something more meaningful for your compound block. The name cannot contain spaces.

Figure 7.3 Tunnels Dialog Box

% Add/Remove Tunnels x|
Name Value Type Role | Add In Tunnel ‘
TO Entity In
| Add Out Tunnel ‘
| Remove ‘
| OK l ‘ Cancel ‘

Figure 7.4 depicts a compound block with an input entity tunnel, an output entity tunnel, and an input value
tunnel. The placement of the various tunnel types around the compound block is automatic and is analogous
to that of ports on basic blocks. The graphic used to depict a tunnel is a combination of the graphics used for
an input port and output port because the tunnel serves both functions depending on whether your perspective
is from inside the compound block or outside it.

Figure 7.4 Compound Block with Tunnels

vy
| ﬂ[lﬁrl;

N}

i

n =i

1S

If you collapse the compound block, as shown in Figure 7.5, the compound block appears much the same as

Tunnels 4 69

a basic block. A compound block can be treated essentially as a “black box” in terms of functionality.

Figure 7.5 Collapsed Compound Block with Tunnels

If a compound block is disassembled, the tunnels turn into Connector blocks so that no functionality is lost in
the simulation model. Figure 7.6 shows the result of disassembling the compound block in Figure 7.5.

Figure 7.6 Result of Disassembling a Compound Block with Tunnels

70 4 Chapter 7: Compound and Submodel Blocks

Submodel Blocks

Like a compound block, a submodel block can be used for hierarchical simulation modeling and for facilitating
component reuse. The key difference between a submodel block and a compound block is that the contents
of a compound block are embedded in the model when it is created. Although a compound block can be
saved and reused in the same model or different models, each instance of the compound block must be edited
separately if changes need to be made. All instances of a compound block, whether in the same model or
different models, are independent from each other. On the other hand, a submodel block provides a linkage to
its contents from the simulation model. The definition of the submodel contents can be stored as a compound
block file (with file extension .cblk) and modified independently. When the content definition is changed, all
instances of the submodel, whether in the same model or different models, contain the changes.

Creating a Submodel

There are two ways to create a submodel block in a model:

* You can convert an existing compound block to a submodel block by selecting Convert to Submodel
from the compound block pop-up menu (available by right-clicking on a compound block), as shown
in Figure 7.7. If the compound block to be converted does not have tunnels defined, then all input and
output connections to the compound block are converted into tunnels automatically after the submodel
is created.

Creating a Submodel 4 71

Figure 7.7 Converting a Compound Block to a Submodel Block

‘F X

Navigation 4

Anchors...

| T
Block Properties... E_u
oog

Toggle Label MNumber Served
Edit Label...

Delete
Save ...
Copy

Undo Link Connection

Disassemble Compound
Tunnels...

Comvert To Submodel

* You can drag the submodel block icon from the Advanced template and drop it into a Model window.
Then you right-click on the submodel block to open its Block Properties dialog box and specify the
path of a previously saved compound block (.cblk file), as shown in Figure 7.8.

As with basic blocks, you right-click on a submodel block and select Edit Label to edit the submodel label
and toggle between displaying and hiding the label.

72 4 Chapter 7: Compound and Submodel Blocks

Figure 7.8 Submodel Block Properties Dialog Box
(2] =)

[Attributes | Overview |

Submodel Path: |ires0urces‘tblocks‘tqueued.cblk || jimi |

Close

Viewing and Editing a Submodel

You can double-click a submodel block to view its contents in a separate submodel window. Figure 7.9 shows
a model with one submodel block and the submodel window open.

The Instance option in the submodel window enables you to view (but not edit) the contents of a submodel.
If you have a submodel window open and you double-click on another submodel block that is linked to the
same, already open submodel, then both instances are displayed in the same submodel window. You can click
the up and down arrows in the dialog box to the right of the Instance option to view the instances. The label
associated with each submodel instance is displayed. The Instance option is especially useful for viewing

the animation as the model runs. The Instance option prevents you from having to open a separate window
for each submodel instance.

The Definition option in the submodel window enables you to edit the contents of a submodel. You can
drag blocks into the submodel, connect blocks, delete blocks, and perform any other modeling action that
you would perform in the regular Model window. To save an edited submodel block, right-click on the
submodel and select Save. The default filename extension for a saved submodel block is .cblk. When the
edited submodel definition is saved, all instances of that submodel in the currently opened simulation model
automatically refresh to reflect the new, updated definition.

Viewing and Editing a Submodel 4 73

Figure 7.9 A Submodel Block and the Submodel Window

2 modelo

:

ooo |
Mumber Served

i Definition ® Instance 15 modell.Sub Model

74

Chapter 8
Entities

Contents
Overview of Entities L 75
Entity Types o o o e e e e 75
Creating Entities e e e 76
Disposing of Entities 76
Entity Attributes L e e 77
Entity Groups o e e e e e 77

Overview of Entities

Entities are discrete objects that can traverse a simulation model or network. They can be used to represent
physical or conceptual items in your model such as cars in a traffic model, telephone calls in a telecommuni-
cations system, customers in a retail environment, and so on. You can use various Simulation Studio blocks
to assign attributes to entities as they flow through your simulation model and use other blocks to read entity
attributes and act on them.

When you have the animation feature turned on in Simulation Studio, you can view the movement of entities
through your simulation model while it is executing. If the Tracer is enabled, entity information is also
displayed on the Trace tab in Simulation Studio.

Entity Types

All of the examples in this document so far have used the default regular entity type. If you do not specify an
EntityType in the Entity Generator block, then the default regular entity type is used.

The Entity Types dialog box shown in Figure 8.1 enables you to add attributes to the default entity types, and
it also enables you to create new entity types. Entity types can be defined at the model level. To open the
Entity Types dialog box, right-click the model name in the Project Explorer and then select Entity Types.

76 4 Chapter 8: Entities

Figure 8.1 Entity Types Dialog Box

"—_‘ Entity Types .

x|
permi [Name: [perui |

DefaultResourceEntity £
Primary usage: |RegularEntity |'| Remove Type
| attribute fields:
Marme ValueType Initialvalue Editahle
L] MNurnber L]
“| [BirthTime [Number L

Add Field

| OK | | Cancel |

User-created entity types can be either regular entities or resource entities. Both regular and resource entities
can be processed using any of the blocks provided in the basic modeling template. Resource entities, however,
also have capabilities that are used by the blocks provided in the resource modeling template.

Unless otherwise specified, the term entity refers generically to either a regular entity or resource entity.

Creating Entities

The default basic modeling template provided with Simulation Studio contains two blocks capable of
generating entities: the ¥ Entity Generator block and the '@ Clone block. These blocks are described
in Appendix A, “Templates.” Entity Generator blocks are usually the primary source of entities in your
simulation models. You can specify the quantity and type of entities you want your Entity Generator blocks
to generate. If more than one entity is being generated, you need to have a connection to the Entity Generator
block’s InterArrivalTime input port so the Entity Generator can determine when to schedule the next entity
creation event. Multiple entities can be created at each entity creation event by using the BatchSize input
port on the Entity Generator block. (See the Entity Generator details in Appendix A, “Templates.”) There
is no limit on the number of Entity Generator blocks you can have in your simulation model, and the
limit on the number of entities of a given type you can generate is the Java programming language value
Integer MAX_VALUE.

Disposing of Entities

Although it is possible to generate an almost endless number of entities, each entity has associated memory
costs. It is important to let Simulation Studio know when you are finished with an entity so that it can
efficiently manage any memory issues related to entities. In a simulation model, you indicate you are finished

Entity Attributes 4 77

using an entity by routing it to a Disposer block ~ «¢. When an entity enters a Disposer block, it is marked as
free and reduces memory allocation costs at run time in the application.

Entity Attributes

Entities can have attributes associated with them. Attribute names must be unique, are case sensitive, and
cannot contain spaces or blanks. Attribute values can be strings, numbers, or Java objects.

Each entity has two default attributes named Id and BirthTime. The Id value is a unique integer assigned (in
sequence) when the entity is created, and the BirthTime value is the simulation clock time when the entity
was created. You can add additional default attributes (along with their default values) to an entity type by
using the Entity Types dialog box at design time. (See Figure 8.1.) Each new entity created of that type
automatically has all the attributes defined on that entity type as shown in the Entity Types dialog box.

The @ Modifier block in your simulation model can also be used to add or modify entity attributes at
simulation time. Other blocks are provided in Simulation Studio to read entity attribute values and use this
information in their processing. Individual blocks are discussed in Appendix A, “Templates.”

As a simple example of using entity attributes, consider the scenario where you want to model an electronics
repair shop. Your entities could represent customers coming into the repair shop. You could assign attributes
to each of these customers to represent (i) what type of equipment the customer needs to have repaired; (ii)
an indicator of the severity of the problem; and (iii) warranty information. You could then use these attributes
to route customer entities to different technicians in the shop depending on the values of the attributes. You
could use the severity attribute to calculate a time-to-repair value.

Attributes are intended to give your entities unique characteristics that you can use to make your simulation
model more representative of the system that you are investigating.

Entity Groups

Simulation Studio implements an object named entity group that is a collection of entity references. An entity
reference contains information that uniquely identifies a particular entity. Therefore, an entity group holds
information about a collection of entities, but not the actual entities themselves. Entity groups add another
level of modeling sophistication to your simulation modeling environment.

Most holding-type blocks, such as the Queue, Server, and Delay blocks, provide an OutHoldings output
port that you can use to pull an entity group that contains references to the entities currently held by the
block. Other Simulation Studio blocks can use this information to inspect the contents of a holding block and
then act on that information, possibly preempting specific entities from the holding block. Some blocks (the
Queue and Server blocks, for example) have an InPreempt input port that accepts an entity group as input.
These blocks compare the entity references in the incoming entity group to the entities currently being held
by the block and preempt any matches.

The Entity Group Holder block can be used to create a new entity group (with characteristics specific to your
model needs) that can then be used by other blocks in your model. The Gate and Seize blocks also make use
of entity groups. See Appendix A, “Templates,” for details about these and other blocks that use entity group
objects.

78

Chapter 9
Resources

Contents
Overview of Resources e 79
An M/M/1 Queuing Model That Uses Resources 80
Common Resource Usage Pattern 85
Creating Resource Entities 86
Storing Resource Entities oL oL 86
Locating Resource Entities 87
Allocating Resource Entities L o 87
Using Resource Entities L o 88
Deallocating Resource Entities 88
Disposing Resource Entities L 89
A Second Resources Example Lo oL 89
Additional Resource Functionality 94
Merging and Splitting Resource Entities 94
Collecting Resource Entity Statistics 96
Scheduling Resource Entity Adjustments 96
Preempting Resource Entities oo 99

Overview of Resources

Depending on the context in which it is used, the term resource can have many different meanings. The
dictionary defines a resource as a source of supply, support, or aid that can be readily drawn on when needed.
Examples of resources include a laborer used to assemble a machine, an operating room required by a patient,
or a truck needed to transport supplies. In some simulation packages, a resource is considered a supply
of items; in other simulation packages, resources are entities that provide a service to other items in the
simulation model. In some models the available resources might be unlimited, while in other models the
number of units of a resource might be limited, or fixed. The number of available resource units can vary
throughout a simulation run and can be governed by a schedule. The availability of resources can affect the
flow of entities during a simulation run.

In Simulation Studio, resources are special objects that provide services or materials to entities. Often
the availability of resources facilitates the flow of other entities in the system during the simulation, and a
shortage of resources could restrain the flow of these entities.

Systems modeled in Simulation Studio can use two kinds of resource objects: stationary resources and mobile
resources. Some entity holding blocks (such as the Queue, Server, and Delay blocks) represent stationary
resources in a simulation model. These are static and created at model building time. Mobile resources,

80 4 Chapter 9: Resources

which are dynamic and created during the experimental run of the simulation model, are the resource objects
that flow in the model. Mobile resources are defined as a special type of entity and possess all the capability
and attributes of regular entities. They can be processed and managed by the facilities and blocks for the
regular entity objects in many parts of a simulation model. The resource entity and related subjects are the
main focus of this chapter. Unless stated otherwise, the term resource refers to a resource entity.

Like other entities, resource entities are objects that can carry attributes. All resource entities in Simulation
Studio have a predefined entity attribute named ResourceUnits which represents the capacity, or number of
units, of the resource. While the ResourceUnits attribute has special uses for resource entities, it can also be
used as an ordinary numeric entity attribute for modeling purposes. In addition to the ResourceUnits attribute,
each resource entity also has run-time state information (such as resource state and seizing status) that is used
by the simulation system to perform resource management during the run. From a user’s point of view, the
resource state can be either Functional or Nonfunctional (such as Failed, Maintenance, or Offline).

An M/M/1 Queuing Model That Uses Resources

In Chapter 2, “Overview of SAS Simulation Studio,” an M/M/1 queueing system was used to model a
simple banking system with one teller to illustrate some of the basic concepts involved in building models
in Simulation Studio. In this section the same system is modeled with the resource facilities provided by
Simulation Studio. In this modeling scenario, the bank teller is the resource required by the customers. These
two examples demonstrate the conceptual difference between a stationary resource and a mobile resource.
All blocks used in these models can be found in the Standard and Resource templates provided in Simulation
Studio.

To summarize the modeling requirements for this banking system, these models assume that customers
arrive at the bank at a rate of 10 per hour (so that the interarrival time between customers is a sample from
the exponential distribution with a mean of 6 minutes). Customers wait in a single line on a first-come,
first-served basis. The models also assume that the teller has a service rate of 12 customers per hour (so that
the service time for each customer is a sample from the exponential distribution with a mean of 5 minutes).

Figure 9.1 shows the original version of the model from Chapter 2, “Overview of SAS Simulation Studio.”
The bank teller (represented by the Server block) is a stationary resource in the original model and is created
during the model building phase. As a stationary resource, the bank teller never flows or moves throughout
the model. A customer arrives at the bank teller, the bank teller services the customer, and the customer
moves on—in this case exiting the system.

An M/M/1 Queuing Model That Uses Resources 4 81

Figure 9.1 An M/M/1 Queueing Model

Senvice Time

b

[

Arriving Customers FIE

UL E

Mumber Serviced

) ot [teat-

|| e .
Current Queue Length Average Waiting Time

Figure 9.2 shows the same system modeled by using resources. The following description of the model
highlights the functionality of the model and does not describe all of the details for the individual blocks
used in the model. See Appendix A, “Templates,” for more information about the individual blocks.

The customer arrival process is the same as in the original model—an Entity Generator block creates
customers and sends them to a FIFO Queue block to wait for service. In this second model, however, the
bank teller is modeled as a mobile resource. Mobile resources are special entity objects; therefore, they must
be created at run time. For this model, a new resource entity type named BankTellers is created by using
the Entity Types dialog box. (See Chapter 8, “Entities,” for information about creating new entity types.)
Figure 9.3 shows the attributes associated with the BankTellers resource entity type.

82 4 Chapter 9: Resources

Figure 9.2 An M/M/1 Queueing Model That Uses Resources

po

Interarrival Time

ST

T Create T

Tl &

Teller Pool Senice Time

Yy

]

Yy

¥y b
?DE'——_"ﬂmﬁﬂ +f\§3"3 g EE
O Seize Teller
Arriving Customers E E Haold Teller
L, F 4=
ooo Eo IX 16.81...
Current Queue Length Average Waiting Time

Figure 9.3 BankTellers Entity Type

N
LN
Release Teller T
Y

h 4

GRF

FB
ooo

Mumhber Senviced

|

| . | Remove Type

é Entity Types ...

Default Name: |ElankTeIIers

DefaultResourceEntity 2

ankTellers Primary usage: |Resource Entity
2| Attribute fields:
Marme WalueType Initialvalue Edt_able
L] Murnber L
*| [BirthTirne Murmber []
§§ Fesourcellnits (Mumber 1 []
| Add Field || Delete Field |

| 0K | | Cancel |

An M/M/1 Queuing Model That Uses Resources 4 83

In the Block Properties dialog box for the Entity Generator block labeled "Create Teller," the BankTellers
entity is selected from the drop-down list in the Name field of the EntityTypes tab, as shown in Figure 9.4.

Figure 9.4 EntityTypes Tab in Block Properties for Create Teller Dialog Box

i Block Properties for Create Teller x|
[Attributes | EntityType | Overview |
Hame: |BankTeIIers |v|
Fields:
MHame Type Initialvalue

Idl Humber

BirthTime Humber

Resourcelinits Humber 1

Apply Close

You can also change the default attribute values for the BankTeller entity type in the EntityTypes tab.

In the Attributes tab of the Block Properties for Create Teller dialog box, you set the Maximum Number
of Entities field value to 1, since the model requires only one bank teller. (See Figure 9.5.) The bank teller
resource must be created before the simulation clock begins to advance. Therefore, you need to set the Start
Time property to 0 and also select the At Start Time option in the First Entity Creation area. As soon as
the bank teller resource entity is created, it is sent to a Resource Pool block (Teller Pool) to wait until it is
needed by a customer.

84 4 Chapter 9: Resources

Figure 9.5 Block Properties for Create Teller Dialog Box

i Block Properties for Create Teller X|

[Attributes | EntityType | Overview |

Limits

Mazimum Humber of Entities: |1 | [| Infinite

Mazimum Number of Batches: Infinite

Timing

Start Time: |0 |

End Time: Infinite

First Entity Creation

i® At Start Time ' At First Interarrival Time 0 After Signal Arrival

[] To Schedule the Creation of Hext Entity

Close

In this example, a Seize block (Seize Teller), Resource Pool block (Teller Pool), Delay block (Hold Teller),
and Release block (Release Teller) work together to mimic the functionality of the Server block (Teller) in
the original model. When a customer entity arrives at the FIFO Queue block, the FIFO Queue block notifies
the Seize Teller block that a customer is waiting. The Seize Teller block then checks whether the bank teller
resource entity is available in the Teller Pool block. If it is not available, the customer entity stays in the
queue. If the bank teller resource is available, the Seize Teller block accepts the customer entity from the
Queue block, pulls the bank teller resource entity from the Teller Pool block, and attaches it to the customer
entity. The customer entity is then sent to the Hold Teller block where the customer entity (along with the
bank teller resource entity) resides until its service is completed, and then it is routed on to the Release Teller
block. The Release Teller block then extracts the bank teller resource entity from the customer entity and
sends the customer entity to the Disposer block to exit the model. The bank teller resource entity is routed
back to the Teller Pool block.

A quick inspection of the values in the NumberHolder blocks in both models at the end of a simulation run
reveals that both the original model and the new resource model produce the same results.

Common Resource Usage Pattern 4 85

Why would you use this modeling paradigm over the simpler model depicted in the original bank teller model
that made use of the Server block? Some modeling capabilities that mobile resources offer over stationary
resources include:

* seizing multiple resources simultaneously

* preempting resources

* releasing partial resources

* routing resources to various locations

* keeping statistics on select resources with specific attributes
In general, mobile resources offer more modeling flexibility and options, at a cost of additional modeling
complexity and possibly run-time performance.

The resource-based banking system model is also an example of a closed system where resources are reused
throughout the model execution. In some models of open systems, such as one where the resources are parts
used to assemble a larger component, the resources leave the system as part of the larger component and the
resource inventory potentially needs to be replenished during the simulation execution.

Common Resource Usage Pattern

We propose a common resource usage pattern to describe various usages of resource entities in Simulation
Studio. This common usage pattern for resource entities consists of the following fundamental steps:

1. Creating,

2. Storing,

3. Locating,

4. Allocating,

5. Using,

6. Deallocating, and

7. Disposing.
Each of these steps might use one or more Simulation Studio blocks. In addition to all of the regular modeling
blocks, there are six resource-specific blocks available in Simulation Studio: the Seize, Release, Resource
Pool, Resource Scheduler, Resource Agenda, and Resource Stats Collector blocks. These six blocks, together

with the other regular blocks, provide all of the powerful resource management capabilities in Simulation
Studio.

The following sections provide a high level overview of each step in the common usage pattern for resource
entities. See Appendix A, “Templates,” for additional information about the individual blocks mentioned in
each of these sections .

86 4 Chapter 9: Resources

Creating Resource Entities

Resource entities can be generated by an Entity Generator block as regular entities are. The Name field in
the EntityType tab in the block properties dialog box for an Entity Generator block lists all the entity types
defined by Simulation Studio and also those defined by the user on the simulation model under investigation.
(See Figure 9.4.) The list includes DefaultResourceEntity type for resource entities by default. Choose this
entity type and set the desired initial units count to direct the Entity Generator to create default resource
entities accordingly. The resource state of all new resource entities is Functional. The default ResourceUnits
value is 1.0, but it can be changed to any nonnegative value.

New types of resource entities can be defined by the Entity Types dialog box associated with each model and
later used by Entity Generator blocks. See Chapter 8, “Entities,” for more information about this topic.

Resource entities can also be created by the Resource Pool and Release blocks as a result of splitting other
resource entities. Sometimes it is convenient to create a small number of resource entities, each with a large
unit value, and store these resource entities in a Resource Pool block with the merging/splitting units option
enabled. When a request for a small number of resource units is made, the Resource Pool splits the desired
amount of units from the large resource units and creates new resource entities of the original types to satisfy
the request.

Similarly, a Release block can split units from a resource entity and allocate the split units to a newly created
resource entity (of the same type) that is then released. Additional information about merging and splitting of
resources is provided later in this chapter.

Although resource entities can also be cloned with the Clone block, it is usually not recommended. The
Clone block clones the attributes from the original entity, but it might ignore other run-time information, for
example, the resource state and seize/unseize status that is set by the resource management blocks.

Note that creating resource entities with the Entity Generator and Clone blocks affects the total resource
capacity, but doing so with the Resource Pool and Release block does not.

Storing Resource Entities

After a resource entity is created, it must be sent to a Resource Pool block for storage before it can be seized
and allocated to meet resource demands. The Resource Pool block performs resource management tasks for
resource entities. These tasks include maintaining seize/unseize status, processing resource requests, and
merging or splitting resource units.

A resource entity is considered unseized if it resides in a resource pool; it is considered seized if it leaves the
pool and is not directly held by any other resource pool. A newly created resource entity is also considered
unseized before it enters a Resource Pool block.

Occasionally, a common Queue block might be used to hold resource entities, if the resource management
tasks performed by a Resource Pool block are not needed. However, this approach should be used discreetly
because resource management capabilities are not provided by Queue blocks.

Locating Resource Entities 4 87

Locating Resource Entities

Resources are usually stored in resource storage blocks, such as Resource Pool blocks. Resources need to be
located, requested, and allocated to serve other entities. Locating resources is also essential for other resource
operations, including scheduling, statistics collection, and preemption. For example, the resources of interest
need to be identified so their statistics can be collected during simulation.

Simulation Studio primarily uses attribute-based rules to locate resource entities. An attribute rule is a
Boolean expression that the attributes of the targeted resource entities must satisfy. Run-time resource
information, such as resource state and seize/unseize status, is also used to locate and identify resource
entities.

The resource needs or constraints of an entity that enters a Seize block (referred to as a controlling entity) can
be specified as attribute rules in the Seize block. A Seize block provides an input resource entity port for each
resource need or constraint. The input resource ports of a Seize block can be connected with resource storage
blocks, such as a Resource Pool block. During a simulation run, the Seize block uses the links to its input
resource ports to locate and request resource entities from resource storage blocks to satisfy the resource
needs that are associated with its input resource ports.

It is also possible to locate resource entities by their object references. Resource entities can flow through an
Entity Group Holder to form a resource entity group, which holds a group of references to these resource
entities. The entity group and its subgroups can be queried later for locating and requesting the corresponding
resource entity objects.

In some situations, it is also feasible to use multiple dedicated resource storage blocks for resources with
specific characteristics. The resources are routed to the appropriate storage blocks by routing blocks, such as
the Entity Filter and Switch blocks.

Allocating Resource Entities

After locating the resources in the Resource Pool blocks, the Seize block requests the resources. The Resource
Pool blocks process the requests and allocate the resources to the Seize block. In Resource Pool blocks, only
the currently functional resources participate in the allocation process.

The Resource Pool block delivers resource entities for allocation. If the pool has its merging/splitting units
option disabled, the requested resource entities are delivered without alteration, even when the delivered
resources have more units than requested. If the option is enabled, the resource pool delivers the new resource
entities after the splitting process. The delivered resource entities contain the exact amount of units requested.
The merging and splitting feature of the Resource Pool block is discussed in more detail in the section
“Merging and Splitting Resource Entities” on page 94.

To decrease the likelihood of resource deadlock, the Seize block in Simulation Studio does not support partial
allocation. All resource constraints must be satisfied before resources are actually allocated to a controlling
entity. Otherwise, the Seize block does not accept the request to take the controlling entity, and the controlling
entity must wait (perhaps in a queue) for all required resources to become available.

The Batch block can also be used to seize resources. For example, if all resource entities have the same
capacity and are of the same type (and deadlock is not a concern), the Batch block can be used to allocate
resources to a carrier entity as the resources become available. This approach enables the Batch block to

88 4 Chapter 9: Resources

hold a carrier entity with a partially completed allocation when there is a resource shortage and then wait for
the additional resource entities to arrive. For this kind of usage, the batch carrier entity used by the Batch
block performs the same role as the controlling entity does for a Seize block, and the entities batched with the
carrier entity are resource entities. When a Batch block is used, resources do not all need to be available at the
same time. The resource entities can be allocated or batched as they become available, one after another. See
the description of the Batch block in Appendix A, “Templates,” for additional information about its usage.

The modeling constraints and requirements of the particular system being simulated determine whether a
Seize block or Batch block is appropriate for allocating resource entities. The Batch block offers a more
simplistic approach, but it also provides fewer options than the Seize block provides.

Using Resource Entities

After the resource entities have been allocated to a controlling entity (or in the case of a Batch block, a carrier
entity), the controlling entity typically continues flowing through the model to represent some behavior of the
system under investigation. In the simplest case, as in the previous banking system example, the controlling
entity might move on to a Delay block for a period of time and then be routed to a Release block to have the
resource entity. However, if you are modeling a more complicated system, such as an emergency room, it is
not hard to imagine resource entities staying with a controlling entity as it flows through various parts of
the model. When a patient enters an emergency room, the patient might be assigned a nurse, a doctor, and a
surgery room, and then go into surgery for some time period. After the surgery, the doctor and surgery room
might be released from the patient, but the nurse might stay with the patient and a recovery room might be
added as a resource entity.

In a manufacturing example, parts could be modeled as resources and they could be continually added to
the controlling entity as it progresses down the virtual assembly line. In this case, the controlling entity will
never release the part entities since they are essentially consumed to build the final product.

Deallocating Resource Entities

Resources seized by controlling entities can be released (deallocated) by using the Release block. Resource
constraints can be defined on the Release block to locate targeted resource entities within the controlling entity
to be released. The Release block provides an output resource entity port for each constraint defined. For each
controlling entity that enters the Release block during a simulation run, the user-defined resource constraints
are used to locate and deallocate the targeted resources among the resources held by the controlling entity.
The deallocated resources flow out the appropriate output resource ports.

Disposing Resource Entities 4 89

Analogous to the seize process in Simulation Studio, releasing resources is treated as a special entity
unbatching operation. Therefore, the Unbatch block can also be used to release resources if (i) the deallocation
process does not require partial resources to be released from the controlling entity (no manipulation of
resource units); or (ii) the model logic does not require different types of resource entities to flow to different
locations (no multiple output ports). The released resource entities from an Unbatch block flow out the same
output port, one after another.

Released resources can be routed to any block in the model as dictated by the system logic. In an emergency
room example, after the doctor resource is released, he may be required to complete paperwork before
seeing the next patient. In this case, the released doctor resource entity could be routed to a Delay block
(representing the paperwork completion time) and then back to a Resource Pool block, signifying that it is
available to be seized by another patient entity.

Disposing Resource Entities

Like regular entities, resource entities can be disposed by the Disposer block. With the merging/splitting
units option enabled, the Resource Pool block disposes a newly arrived resource entity if the pool can merge
the units of this resource with a compatible resource entity in the pool. Merging and splitting in a Resource
Pool block is discussed in more detail in the section “Merging and Splitting Resource Entities” on page 94.

Resource entities that are attached to a controlling entity (or carrier entity) that enters a Disposer block are
disposed along with the controlling entity.

Disposing resource entities with a Disposer block affects the total resource capacity available in the model.
However, the automatic disposal of resource entities by the Resource Pool and Release blocks (when the
merging/splitting option is used) does not.

A Second Resources Example

The resource facilities in Simulation Studio provide more advanced functionality than demonstrated in the
previous simple banking system example. To illustrate some of this additional functionality, the previous
bank system model has been extended by using other resource related blocks. The basic premise remains the
same for this model—customers arrive at the bank and wait to be served by a bank teller. However, in this
new model there are three bank tellers, not all of which are available during the entire simulation run. This
model also collects utilization statistics for the bank teller resource entities.

Figure 9.6 shows the new model. The most obvious difference between this resource model and the previous
one is the addition of the Resource Agenda, Resource Scheduler, and Resource Stats Collector blocks. The
not-so-obvious difference is the creation, storage, and allocation approach used here for the three bank teller
resources.

90 4 Chapter 9: Resources

Figure 9.6 Resources Model That Uses Scheduling

Resource Stats Collector Resource Agenda

= vy
"

e
|

v
L,

oo oo
Interarrival Time Tvv Teller Pool Senice Time

- o AL "
/EI ?E_+ /EI Resource Scheduler
Tv' Create Teller i

S v LA d E(a v

- > E—» ¥ Y

?D ﬂﬂlﬁE +@3_’ X Release Teller I
EY
[[m[m]

&

h J

[NEENT

; oo
Seize Teller
Arriving Customers F 8 Hold Teller

o

Iil ﬁ |1| 2.410.. Mumber Senviced
ooo ooo X
Current Queue Length Average Waiting Time

There are two options for creating the three bank teller resources. Recall the EntityTypes tab on the Create
Teller block properties dialog box which displays the BankTellers resource entity type. (See Figure 9.5.) All
resource entities have an attribute named ResourceUnits. The default value for ResourceUnits is 1. This
model requires three bank teller resources. So the options are either to create three BankTeller resource
entity objects, each with a ResourceUnits value of 1, or to create one BankTeller resource entity object with a
ResourceUnits value of 3. To demonstrate additional resource features of Simulation Studio, this model uses

the latter approach.

The Create Teller block generates one BankTeller resource entity object and passes it to the Teller Pool
block just as in the previous model. This time the resource entity object has 3 ResourceUnits associated
with it instead of 1. To make efficient use of the ResourceUnits in the BankTeller resource entity object, it is
necessary to use the Resource Pool block’s merging and splitting resource entities capabilities. Selecting the
Merge/Split resource units among resource entities of same type check box in the Block Properties for
Teller Pool dialog box (see Figure 9.7) enables the block to look at the ResourceUnits attribute of its held
resource entities and possibly subdivide a resource entity into two resource entities, one of which matches
the needs of an incoming resource request. In this example the Seize Teller block requests a BankTeller
resource entity with one ResourceUnit. With the merge/split option selected, the Teller Pool block can take
a BankTeller resource entity with a ResourceUnits value of 3 and create a new BankTeller resource entity
object with a ResourceUnits value of 1 and decrease the ResourceUnits value of the existing BankTeller
resource entity (already in the pool) to 2. The new BankTeller resource entity object (with a ResourceUnits

value of 1) is sent to the Seize Teller block to satisfy its request.

Similarly, when the BankTeller resource entity object returns to the Teller Pool block, its ResourceUnits can
be merged with a BankTeller resource entity already in the pool and the incoming BankTeller resource entity

object is disposed.

A Second Resources Example 4 91

Figure 9.7 Teller Pool Block Properties Dialog Box
x|

[i’ Units rResourceQueue r Overview |

Merge | split resource units among resource entities of same types

Key Entity Attribute Fields for Merging Units
For Specified Type:

Resource Entity Type | Key Aftribute Field Add

For Unspecified Types:
@ No key fields) All adjustable fields ("ResourcelUnits" excluded)

Close

For this model, all three bank tellers might not be available during the entire simulation—maybe they take a
staggered lunch break. The previous model used a total simulation time of 9 hours (540 minutes). Assume
for this model that for the first 4 hours (240 minutes) of the work day all three bank tellers are available. For
the next hour two of the tellers go on lunch break and when they return the third teller takes an hour lunch
break. When the third teller returns from lunch break, all three tellers are available for the remainder of the
work day.

A Resource Agenda block and a Resource Scheduler block are used together to implement the scheduling
functionality in this model. A Resource Agenda block is used to create a list of resource adjustment actions
(collectively known as a resource agenda) to be performed during the simulation run. The resource agenda
information is passed to a Resource Scheduler block to arrange and perform the resource adjustment actions
on specific resource entities. The resource agenda for this model is shown in Figure 9.8. Each row or entry in
the agenda represents a resource adjustment action and consists of three pieces of information: Duration,
Value, and Value Type. A complete description of each of these fields is available in the Resource Agenda
block description in Appendix A, “Templates.” For this model these entries are used to represent the changes
in the number of bank tellers available throughout the simulation period.

92 4 Chapter 9: Resources

Figure 9.8 Resource Agenda Block Properties Dialog Box

Z_Block Properties for Resource Agenda [|
| Agenda | Overview |

1D: |agenda |
Entries
Duration Yalue Yalue Type Add
240 3|UNITE
B0 1UNITS Remove
all 2{UNITS
180 3|UNITS

Close

The Resource Scheduler block receives the resource agenda at the beginning of the simulation run through its
InAgenda input value port, and the scheduler performs the sequence of resource adjustments on a specified
group of targeted resource entities. The block properties dialog box associated with the Resource Scheduler
block in this model is shown in Figure 9.9. Each row in the Appointments table is called an appointment.
The details for using the Resource Scheduler block can be found in Appendix A, “Templates.” Only the
Start Time, Agenda. and Search Targets By fields are discussed here. The Start Time field specifies the
simulation time to activate the associated agenda. The Agenda field supplies the name of the incoming
agenda to use for this appointment. (Multiple Resource Agenda blocks can be linked to the same Resource
Scheduler block, each sending a named agenda to the scheduler.) The Entity Type field under Search
Targets By indicates which resource entities the associated agenda in the appointment applies to. For this
model the agenda created in the Resource Agenda block is activated at a Start Time of O (when the simulation
run begins) and is applied to the BankTellers resource entity objects in the model. The Immediate Actions
options selected here indicate that resource entities that are in a seized state are not preempted. (For additional
discussion on preemption, see the section “Preempting Resource Entities” on page 99.)

A Second Resources Example 4 93

Figure 9.9 Resource Scheduler Block Properties Dialog Box

i Block Properties for Resource Scheduler ll
(Bppoi | Overview |
- T Immediate Actions Search Targets By
3 0 ;
i Agenda Adjust Resources Advance) '
Time Repeat Ty — E— Agenda Entity Tyne Aftribute Rule
0jagenda 1 1 BankTellars
| Add || Remove |
| aoy || cwse |

The final new block added to this resource model is the Resource Stats Collector block. As you might
expect, this block is used to collect statistics on resource entities during a simulation run. The Resource Stats
Collector requires a minimum of two pieces of information: the resource entities you want to collect statistics
on and the statistics you want to collect. The Resource Stats Collector block properties dialog box provides
separate tabs for you to enter this information. The Groups tab is used to identify the targeted resource
entities for statistics collection. (See Figure 9.10.) In this case instances of the BankTellers Entity Type have
been targeted. The Statistics tab is used to specify the details on the individual statistics you want to collect.
(See Figure 9.11.) Values in the Statistics column are selected from a list that contains the names of the
resource statistics available in Simulation Studio. The details for all the columns in this table can be found in
the Resource Stats Collector block overview in Appendix A, “Templates.”

Figure 9.10 Groups Tab in Resource Stats Collector Block Properties Dialog Box

Ix

i Block Properties for Resource Stats Collector
[Groups | statistics | save | Ovenvew |

Marme | Entity Types \ Attrihute Rule Add
Statistics_BankTellers |BankTellers |

sy || close

94 4 Chapter 9: Resources

Figure 9.11 Statistics Tab in Resource Stats Collector Block Properties Dialog Box

4 Block Properties for Resource Stats Collector X

[Groups | Statistics | Save | Overview |

Mame Statistics Seized State Attribute Rule Add
Utilization TimeAvarage true
Idle Timefverage falze Remove

Close

The Resource Stats Collector block provides an option to have the statistics saved to a file at the end of each
run (that option was selected for this example). You can also attach a plot block to the OutData outport of the
Resource Stats Collector block to display the statistics during the simulation run.

This example provides a glimpse into the modeling capabilities and potential applications of the Resource
Agenda, Resource Scheduler and Resource Stats Collector blocks in simulation models. Although these
blocks are more sophisticated than many of the previously demonstrated blocks, they also provide powerful
and flexible modeling functionality.

Additional Resource Functionality

This example demonstrates more advanced features available for resource entities in Simulation Studio
including the following:

1. merging and splitting
2. statistics

3. scheduling adjustments

Each of these topics is discussed in further detail in the following sections, along with the notion of resource
preemption.

Merging and Splitting Resource Entities

The Resource Pool and Release blocks provide a unique capability referred to as resource entity merging and
splitting. All resource entities have a numeric ResourceUnits attribute which can be assigned a nonnegative
value. The value contained in this attribute represents the capacity or available units that are associated with

Merging and Splitting Resource Entities 4 95

the individual resource entity object. The default value for the ResourceUnits attribute is 1. Therefore by
default, each new resource entity that is created represents one unit of that particular resource.

The Teller Pool block in the previous example used the merging/splitting feature of the Resource Pool block.
When the merging/splitting option is selected in a Resource Pool block, mini-pools of entities based on a
user defined criteria are kept. A common criteria is to merge and split the resource entities based on resource
entity type. Merging and splitting helps reduce the number of resource entity objects needed in a model
during a simulation run. Figure 9.7 shows the Block Properties for Teller Pool dialog box.

If you want to use the merging/splitting feature of a Resource Pool block, you have to specify the criteria
to use for grouping the resource entities in the pool. The simplest approach is to select the Merge/Split
resource units among resource entities of same type check box in the Resource Pool block properties
dialog box. This uses the resource entity type as the grouping criteria. You can also specify more definitive
grouping criteria by using the Key Entity Attribute Fields section of the dialog box.

With the merging/splitting option enabled on a Resource Pool block, the first resource entity for any defined
group that enters the block remains in the block for the duration of the simulation run. It effectively becomes
the mini-pool for that group. Any other resource entities that enter the Resource Pool block and are a match
for the criteria for that group are merged with the first resource entity of that group. That is, the value of the
ResourceUnits attribute of the resource entity just coming into the Resource Pool is added to the value of
the ResourceUnits attribute of the existing, matching resource entity, and the incoming resource entity is
disposed.

When a resource request comes into the Resource Pool block, the block looks for a resource entity in its
possession with the matching criteria. If it finds a matching resource entity, it then looks at the ResourceUnits
attribute on the matching resource to see whether sufficient units are available to fill the request. If enough
units are available, the Resource Pool block creates a new resource entity from the matching resource
entity, populates its ResourceUnits value with the requested number of units, and decreases the value of the
ResourceUnits in the original resource entity accordingly. (The original resource entity might end up with a
ResourceUnits value of 0.)

Although the Release block does not have (or need) any resource entity merging capabilities, it does provide
an option for splitting resource entities. When the Splittable option is selected on a Release block, you
can deallocate or release some of the ResourceUnits associated with an incoming resource entity. Fields
are available in the Release Block Properties dialog box for defining the criteria to use for releasing and
splitting resource entities. If the Splittable option is selected and an incoming resource entity meets the
Splittable criteria you have defined on the Release block, the Release block looks for the ResourceUnits
attribute value on the incoming resource entity and compares it to the value you specified to be deallocated
from the resource entity. If the value to be deallocated is less than the value of units available in the incoming
resource entity, the Release block creates a new resource entity from the incoming resource entity, populates
its ResourceUnits value with the specified number of units, and decreases the value of the ResourceUnits in
the incoming resource entity accordingly. The newly created resource entity then flows out the appropriate
Release block output port. The original resource entity, with its ResourceUnits now decreased, flows out of
the Release block with the controlling entity.

When the simulation model does not have the merging and splitting options enabled in its Resource Pool and
Release blocks, the model is sometimes referred to as an object-based resource model. When the merging or
splitting options in either of these types of blocks are enabled, the model is called a unit-based resource model.
The Resource Pool and Release blocks provide special options that take advantage of the ResourceUnits
attribute in a resource entities for unit-based models.

Additional details about the Resource Pool and Release blocks can be found in Appendix A, “Templates.”

96 4 Chapter 9: Resources

Collecting Resource Entity Statistics

Resource entities are usually scattered throughout the modeled system during a simulation run. For example,
some might be stored in resource storage blocks, others allocated to and held by controlling entities, and
some might be in service or delayed in a Server or Delay block. A Resource Stats Collector block can
organize resource entities of interest into resource groups, and it can calculate and report capacity utilization
statistics for a group. For each resource group, resource constraints can be defined on the Resource Stats
Collector block to locate and monitor the group’s targeted resource entities during a simulation run. Several
types of standard capacity utilization statistics (such as time average) can be chosen to be collected for all
resource groups. Each chosen statistic can also be assigned with its own resource constraints to further limit
the computation to a subset of a resource group. For example, you could decide to collect a statistic on a
particular resource entity type that has an attribute set to a specific value. Suppose you create a resource
entity type called DoctorEntity to represent doctors in a medical simulation, and one of the attributes you
define on this DoctorEntity entity type is named specialty. Valid values for this specialty attribute might be
cardiologist, neurologist, and ENT. You could use the Resource Stats Collector block to calculate statistics
for all instances of the DoctorEntity resource entity that have a specialty attribute value of “neurologist.” To
accomplish this, you could define a Group for neurologists and then use it to calculate your statistics without
using an Attribute Rule on your statistics definition. Alternatively, you could define a Group for all doctors
and use an Attribute Rule on the statistics definition to constrain the statistics calculation to neurologists.

The Resource Stats Collector block reports its results as a data table, with each group as a data row and each
column containing statistics.

Scheduling Resource Entity Adjustments

Resources often undergo routine adjustments or changes, and the effects of such adjustments often last for a
limited period of time. Examples are a truck in routine maintenance, a worker on lunch break, and adding
salespeople for a weekend or a holiday shopping season.

The scheduling of a resource adjustment often needs to address the following issues:

* what kind of adjustment to make—either capacity or state change
* what resources to adjust—locate the targeted resources

* when to adjust

* how long to adjust

» whether the adjustment is preemptive (disruptive)

* where and how the adjustment takes place—in resource pools (unseized) or in other entity holding
blocks (seized)

* how to proceed to the next related adjustment, if any—temporally constrained or not

* whether to repeat this adjustment in the future—repeatable or not

Scheduling Resource Entity Adjustments 4 97

In Simulation Studio, resource scheduling is supported by the Resource Agenda and Resource Scheduler
blocks together. The Resource Agenda block is used to address the first issue listed above and the Resource
Scheduler block addresses the other issues.

Resource adjustments are often related and happen in an orderly fashion. In Simulation Studio, related
adjustment actions can be grouped together. A special type of value object called a Resource Agenda defines
a sequence of related resource adjustment actions based on a relative simulation time starting at time zero.
Each resource adjustment action includes a change to either the resource capacity value or the resource state
value in targeted resource entities over certain time period; it is defined as a resource agenda entry. The
Resource Agenda block provides a resource agenda to describe what kind of resource adjustments to make
during a simulation run.

The Resource Scheduler block accepts and stores resource agenda objects during a simulation run. This block
also accepts scheduling requests to perform resource adjustments. The resource agendas are later activated
and processed by the Resource Scheduler block as specified by scheduling requests. Such a request tells
the Resource Scheduler about the resource agenda to use for resource adjustments and how to deal with the
second through last issues in the preceding list. After a resource agenda is activated, its entries are activated
and processed sequentially. A scheduling request is fulfilled when all entries in the specified resource agenda
are processed and all associated resource adjustments are actually completed.

There are two ways to provide a request to the Resource Scheduler block: statically or dynamically. A static
request can be entered at the design or modeling time as an appointment by using the Appointments tab of
the Resource Scheduler block properties dialog box. (See Figure 9.9.) At simulation time, appointments are
processed as the initial requests by the Resource Scheduler block.

After an unrepeatable request is processed and all associated adjustments are completed, the request is
discarded by the Resource Scheduler block. If a request is repeatable, the Resource Scheduler block sends
a resource schedule entity out the OutRequest port to represent the request to be used again later. If the
request is an appointment, the Resource Scheduler block creates the resource schedule entity based on the
appointment. Later, these resource schedule entities can be submitted to a Resource Scheduler block through
its InRequest port as dynamic requests. Before being submitted back to the Resource Scheduler block, these
resource schedule entities can be processed (delayed, modified, counted, stored, and so on) to simulate
complicated scheduling situations.

Sometimes, the contents of the resource agenda entries in a resource agenda are fixed and can be specified
completely at the design time. Yet at other times, the duration or capacity changes of some adjustment
action are not fixed or cannot be specified in the corresponding resource agenda entries at the design time.
For example, the downtime or duration of a machine failure is not fixed but follows a certain statistical
distribution (such as a normal distribution). In Simulation Studio, the numeric contents (such as duration,
units, and units offset) of a resource agenda entry can be left unspecified or blank. Such an agenda entry
is called a dynamic agenda entry. The Resource Agenda block populates the unspecified values by pulling
these values dynamically though the InDuration or InValue input ports during the simulation. The desired
values can be created through submodels that are connected to these input ports.

The rule of the “immediate actions” in a scheduling request enables the Resource Scheduler block to address
the fourth through sixth issues in the preceding list. When a resource agenda entry is activated, the Resource
Scheduler block performs the appropriate immediate actions as specified by the rule without any delay. The
resource entities are usually either unseized in resource storage blocks or seized by controlling entities.
The seized resources are busy and in use. The unseized and functional resources are free to be allocated
upon requested. Usually, the seized resource entities are not adjusted before they become unseized and free.
Otherwise, the resource adjustment is preemptive if it decreases the capacity or switches to a nonfunctional

98 4 Chapter 9: Resources

state. When the state value of unseized resources is changed to nonfunctional, these resources cannot
participate in resource allocation until they become functional again. Therefore, the adjustment is disruptive
to these resources.

Currently, when permitted by the specification of a resource adjustment request, the Resource Scheduler
block uses several heuristics to process the request. For an increase of capacity, the Resource Scheduler block
divides the increased units evenly among targets it deems suitable. For a decrease of capacity, the block
tries to decrease as much capacity as possible from a first targeted resource before moving to the next target,
and so on. In general, the Resource Scheduler block always attempts to finish processing a resource agenda
entry in less simulation time without preemptive changes. For capacity changes, the Resource Scheduler
block adjusts the currently unseized resources first. This “unseized first” heuristic decreases the waiting
time for the seized resources to become unseized and avoids unnecessary preemptive adjustments. When the
merging/splitting units option is enabled on a Resource Pool block, the first entrant of compatible resource
entities always remains inside the Resource Pool block even when its resource capacity reaches zero after
splittings. Therefore, the “unseized first” heuristic might result in capacity changes to the resource entities
in the Resource Pool blocks being more likely than elsewhere, which makes it easier to model inventory
replenishment situations in some simulations.

Usually the entries in a resource agenda are related, and a succeeding entry cannot be processed unless the
preceding entries are finished. For this kind of temporally constrained situation, the Resource Scheduler
block should not advance the agenda to process its next entry if the current entry is not completed. The actual
simulation time period to finish the whole resource agenda can be much longer than the sum of the original
duration values specified in the agenda entries. Choose the option to advance the agenda to the next entry
if the resource agenda entries in the agenda are not temporally constrained, which might result in a shorter
processing time for the resource agenda.

Choose to adjust the currently unseized resources immediately if the adjustment is intended to change free
resources without any delay. This is useful in many modeling situations. Examples include increasing
inventory levels immediately at all inactive warehouses, or putting all trucks currently in the garage under
routine maintenance.

If you choose not to adjust currently unseized resource immediately, the Resource Scheduler block adjusts
these resource later, after all the currently seized resources become unseized. This is useful in the situation
where all or most of the resources need to be gathered before they can be adjusted at the same time collectively.

Choose to adjust the currently seized resources immediately if adjustment is preemptive and the seized
resources need to be deallocated from their current controlling entities for further processing or different
allocation.

For more information about the functionality of the Resource Agenda and Resource Scheduler blocks, see
Appendix A, “Templates.”

Preempting Resource Entities 4 99

Preempting Resource Entities

In Simulation Studio, the stationary resources (including most of the entity holding blocks, such as the Queue,
Server, and Delay blocks) support two common types of resource preemptions: priority-based and scheduled.

Priority-based preemption is primarily for preempting stationary resources, which are the entity holding
blocks such as the Queue, Server, and Delay blocks. The entity that wants to enter such a holding block
is considered a consumer of the static resource represented by that block. Allocation of static resources is
usually about accepting entering entities into the holding blocks to take up space in the blocks. Preemption
of static resources forces out some entities currently in holding blocks to give spaces to some other entities.
The selected holding blocks (Queue, Server, and Delay) provide an InPreempt input port that accepts an
EntityGroup object as input. These blocks compare the entity references in the EntityGroup to the entities
currently held by the block and preempt any matches. This type of preemption is often triggered by the
higher priority of the new entities attempting to enter these blocks.

Scheduled preemption is primarily for preempting mobile resources, which are resource entities, and is based
on a resource adjustment agenda. Sometimes, the allocated and seized resource entities need to be preempted
from their current controlling entities so that these resource entities can be re-allocated to other controlling
entities if necessary. This type of preemption can be triggered by the preemptive resource adjustments that
are arranged and processed by a Resource Scheduler block. Most entity holding blocks, including the Queue,
Server, and Delay blocks, provide OutPreempt and OutResource output ports. If a resource entity allocated
to a controlling entity that is currently held in a holding block is adjusted preemptively, the holding block
attempts to force the controlling entity out of the block’s OutPreempt port and the resource entity out of
the OutResource port. If the OutPreempt port is not connected, the controlling entity remains in the entity
holding block. If the OutResource port is not connected, the adjusted resource entity remains allocated to its
controlling entity.

The post-preemption processing of preempted entities and resources is often highly specific to the application.
For example, when a job is preempted from a service, some applications might resume the job to finish its
remaining service time, some might restart the job from beginning, some other applications might simply
scrap the job, and so on. The modeling facilities provided by Simulation Studio make it possible to construct
suitable solutions to handle these situations.

Additional examples that demonstrate preemption and other resource modeling techniques are provided in
Appendix E, “Examples of Simulation Studio Models.”

100

Chapter 10
Model Debugging and Verification

Contents
Overview of Debugging and Verification Tools 101
LogTab 101
Trace Tab 102
Tracing Configuration L 103
Animation Tab L 107

Overview of Debugging and Verification Tools

The Log, Trace, and Animation tabs (which can be expanded at the bottom of the Project window) provide
feedback and debugging capabilities during the execution of a simulation model. Both the application
and individual blocks can post model execution state, event, and error information to the Log and Trace
tabs while the model is running. The Log tab contains messages of varying severity levels about potential
configuration and execution state anomalies. The Trace tab (if the Tracer is enabled) displays simulation
clock timestamps and state information for individual blocks as execution progresses. You can customize
the content of the Trace tab to filter out unwanted trace messages. The Animation tab enables you to select
which regions of the model to animate during model execution. You can also specify the animation speed,
start time, and end time for each selected region.

Log Tab

Messages can be posted to the Log tab by both the application framework and the individual blocks. Each
message consists of four components: level, description, source, and time.

The value in the Level column represents the severity of the log message; possible values are SEVERE,
WARNING, and INFO. A SEVERE log message indicates that a major problem has been encountered with
the simulation model, and execution is terminated.

Figure 10.1 displays a SEVERE log message from an Entity Generator block. To function properly, an Entity
Generator block requires a connection to its InterArrivalTime input port from which it can pull numeric
values. That connection appears to be missing in this example.

102 4 Chapter 10: Model Debugging and Verification

Figure 10.1 Sample Log Tab

e T B T T B T T B T T B T T S B T T S B e T T B S T T B e S T S B T e,

f [] Log r [Z] Trace r B Animation |
Level Description Source Time
SEWVERE Entity Generator{241 has na inter-arrival time cannections Entity Generatar

A WARNING message usually suggests that a condition has occurred that warrants further investigation.
An example of such a condition might be a block receiving a negative number when it was expecting a
nonnegative value. An INFO message simply contains information but does not indicate a potential problem.

The Time column in the Log tab displays the (simulation clock) time when the message was logged. Some
messages, such as the one in the SEVERE log message example in Figure 10.1, can be logged before the
model execution actually begins; therefore the Time value is empty for these messages.

The Description column contains the message text, and the Source column displays the label of the block that
generated the message. Clicking an entry in the Log window causes the associated block to be highlighted in
the Model window. The Log tab pop-up menu contains an option called Auto Sync with Model, which is
turned on by default so that the Model window will scroll (if necessary) to display the highlighted block that
is associated with an entry in the Source column.

Trace Tab

Trace messages provide details about state changes, events, and execution flow within individual blocks; they
are useful for debugging and verifying your simulation models. The Tracer must be enabled before any trace
messages are generated. You can enable the Tracer by using the pop-up menu available on the Trace tab
background.

The following types of entries are displayed on the Trace tab:

* simulation clock timestamps (displayed in black)
* entity information (displayed in red)

* value information (displayed in blue)

When the Tracer is enabled, a timestamp is posted to the Trace tab every time the simulation clock advances.
All other trace messages are generated by the individual blocks. Each block is responsible for the content of
its trace messages and for determining when to generate trace messages. Clicking on a message in the Trace
window causes the associated block to be highlighted in the Model window. The Trace tab pop-up menu
contains an option called Auto Sync with Model, which when enabled causes the model window to scroll
(if necessary) to display the highlighted block that is associated with an entry in the Trace window.

Tracing Configuration 4 103

Although it is possible (and likely) for any simulation model execution to generate a considerable volume of
trace messages, the Trace tab has a limited size buffer associated with it to store the messages. Therefore,
only the most recent trace messages are retained in the trace buffer after the buffer is full. Figure 10.2 shows

a sample Trace tab.

Figure 10.2 Sample Trace Tab

[Log Trace r & Animation |

Mumeric Source: Sampling, walue = 2.1895 [Double] 1~
Entity Generator: Created entity(3l) [Default] =
Jueue: Added entity(3l) [Default]
Fimulation time: 24,467412692756955
Mumeric Source: Sampling, walue = 2,112 [Double]
Entity Generator: Created entity(32) [Default]
Jueue: Added entity(32) [Default]
Fimulation time: Z25.055453494354535
Server: Femowed entity(21) [Default]
Disposzer: Diszposed entity(Z1) [Default]
Jueue: Femowed entity(22) [Default]
JeEvVer: Added entity(Z2) [Default]
Mumeric Sourcez: Sampling, walue = 0,844 [Double]
Fimulation time: Z5.93195791259892 |
Server: Pemowved entity(22) [Default] -

Tracing Configuration

You can control the amount of information that is displayed on the Trace tab by using the Tracing Configura-
tion dialog box. To open the Tracing Configuration dialog box, right-click on the Trace tab background and

select Tracer Configuration.

You can use the Tracing Configuration dialog box to filter trace messages according to various criteria: the
blocks that generate trace messages, the entities that are mentioned in trace messages, and the simulation
clock time of trace messages. You can combine more than one of these criteria to further refine the number
of trace messages that appear on the Trace tab. Changes made in the Tracing Configuration dialog box apply
only to the model that is active when you open the Tracing Configuration dialog box. These settings last only
while Simulation Studio is open. They are not saved when you close Simulation Studio.

Figure 10.3 shows a sample Tracing Configuration dialog box.

104 4 Chapter 10: Model Debugging and Verification

Figure 10.3 Tracing Configuration Dialog Box

g Tracing Configuration For projectd Experiments Using ﬂ

| Configuration | Overview |

Blocks

Showe All Block Tracing Block Tracing...

Entities

Showe All Entity Tracing Entity Tracing...

Simulation Time

Start: Zero
End: Infinity

phy Close

5

The following sections appear in the Tracing Configuration dialog box:

* Blocks
* Entities
* Simulation Time
By default, all trace messages that are generated during simulation execution appear on the Trace tab.

Therefore, when you open the Tracing Configuration dialog box for the first time, the default options are
selected to show all block tracing, show all entity tracing, and show tracing for all simulation times.

If you clear the Show All Block Tracing check box, the Block Tracing button becomes enabled. Click
Block Tracing to open the Block Tracing dialog box. Figure 10.4 shows a sample Block Tracing dialog box.

Tracing Configuration 4 105

Figure 10.4 Block Tracing Dialog Box

i Block Tracing El
Select The Blocks To Show Tracing For
] model0 =
9 || Extractor Blocks =
[| Extractar —
Extractar
[| Bstractarz
¢ || Modifier Blocks
Modifier
todifier]
o= [_| Connector Blocks
7 [_| Release Blocks
Release
Releasel
[|Releasez -
OK Cancel

In this dialog box, select the blocks for which you want to see trace messages and click OK. For trace
messages that are generated by blocks, only trace messages generated by the selected blocks are displayed on
the Trace tab. If you want to display trace messages generated by all blocks, simply check the Show All

Block Tracing check box in the Tracing Configuration dialog box.

If you clear the Show All Entity Tracing check box, the Entity Tracing button becomes enabled. Click
Entity Tracing to open the Entity Tracing dialog box. Figure 10.5 shows a sample Entity Tracing dialog

box.

106 4 Chapter 10: Model Debugging and Verification

Figure 10.5 Entity Tracing Dialog Box

% Entity Tracing il
Select The Entity Types And Id Ranges To Show Tracing For
Entity Type First I Last Id
[| Default
[| DefaultResourceEntity
BankTellers 1 |20
OK Cancel

In this dialog box, select the entity types for which you want to see trace messages. Also, you can specify
arange of Id numbers for each selected entity type, which causes only trace messages for entities with Id
numbers in the specified range to be displayed on the Trace tab. Click OK to apply the settings and close the
Entity Tracing dialog box. For trace messages regarding entities, only trace messages regarding the selected
entity types and Id ranges are displayed on the Trace tab. If you want to display trace messages regarding all
entities, simply check the Show All Entity Tracing check box in the Tracing Configuration dialog box.

To show trace messages only for a specified range of simulation clock time, you can specify a start time, an
end time, or both. To specify a start time, clear the Zero check box in the Tracing Configuration dialog box
and enter a positive integer value in the Start field. Trace messages that are generated before the specified
start time are not displayed on the Trace tab. To specify an end time, clear the Infinity check box and enter a
positive integer value in the End field. Trace messages that are generated after the specified end time are not
displayed on the Trace tab.

The settings in the Blocks, Entities, and Simulation Time sections of the Tracing Configuration dialog box
combine to determine what is ultimately displayed on the Trace tab. For example, if you select to show
tracing for only the Entity Generator A block, select to show tracing for only the Default entity type, and
select to show tracing for only time 10 to 20 on the simulation clock, then the Trace tab displays only
messages that are generated by block Entity Generator A. Furthermore, if this block generates messages for
entity types other than Default, they are not displayed. Lastly, no trace messages are displayed before time
10 or after time 20, regardless of the block that generated the trace message or the entity type that is referred
to by the trace message.

Animation Tab 4+ 107

Animation Tab

Animation can be a useful tool for verifying that your model is operating as intended. The Animation tab
provides options for controlling the animation as a model runs; a sample is shown in Figure 10.6. The Region
column in the Animation tab displays a hierarchical tree of all the compound and submodel blocks in the
current active model. You can use the Region and Enabled columns together to select which parts of the
model to animate during model execution. For a nested group of compound or submodel blocks, you can
select the block name at the highest level to turn on or off the animation for all blocks in the nested group.
Similarly, you can select the model name at the topmost level in the Region column to either turn on or off
the animation for all compound and submodel blocks in the model. If there are no compound or submodel
blocks in the model, then the Region column displays only the model name. Before you run a model and
view the animation, you must enable animation either by clicking the animation icon & on the Simulation
Studio toolbar or by selecting Animate from the Run menu.

Figure 10.6 Sample Animation Tab

Log | [Z] Trace rﬁ Animation |

Region | Enahled Speed | StariTime | EndTime
¢ 3 madeln ! . = o
[} Hang Ups) o o
W[completed Calls [} O o
[Route Call . O g
1[0y Manage Phone Lines O "} o o
[call Arrival J 0 a0

You can move the sliders in the Speed column to set the animation speed for each region of the model. To
reset all sliders to the default speed, right-click on the Speed column and select Reset All: Speed. The
default animation speed is set by using the slider on the Simulation Studio toolbar.

You specify animation time intervals for each region of the model in the StartTime and EndTime columns.
Figure 10.6 indicates that the compound block labeled Call Arrival will be animated from time O to time 50.
You can reset all start times to the default value by right-clicking the StartTime column header and selecting
Reset All: StartTime. Similarly, you can reset all animation end times to the default value by right-clicking
the EndTime column header and selecting Reset All: EndTime.

Clicking an entry on the Animation tab causes the associated block to be highlighted in the Model window.
The Animation tab pop-up menu contains an option called Auto Sync with Model, which when enabled
causes the model window to scroll (if necessary) to display the highlighted block that is associated with an
entry on the Animation tab.

108

Chapter 11
Block Templates

Contents
Overview of Block Templates 109
Using the Template Menu L 110
Using the Template Palette Pop-upMenu 110
Template Document Format L 111

Overview of Block Templates

Simulation Studio templates provide a facility for managing the blocks you use to build your simulation
models, and the Simulation Studio template palette offers a visual representation of template content. A
Simulation Studio template contains information about a collection of blocks. This information is stored as
an XML document. There is no limit on the number of templates you can load into Simulation Studio. The
content of any loaded template can be viewed in the Template Palette area of the application. As discussed in
Chapter 4, “Simulation Models,” you drag an item from the Simulation Studio palette into a Model window
to create an instance of the associated block in your simulation model.

When Simulation Studio starts, it automatically loads a series of default templates named Standard, Advanced,
Data and Display, Resource, and Output Analysis. These templates provide collections of blocks useful for
building queuing simulation models. These blocks include Entity Generators, Queues, Servers, and so on;
they are described in detail in Appendix A, “Templates.” These collections of blocks will continue to evolve
in succeeding Simulation Studio releases.

You can also create a custom template and save it to a data file for later use either by using selections described
in “Using the Template Palette Pop-up Menu” on page 110 to modify an existing template or by creating a
template XML document as described in ‘“Template Document Format” on page 111.

Although there are no constraints on the contents of a template (other than the element format described in
“Template Document Format” on page 111), you usually create a collection of blocks that have some theme in
common. For example, you might create a template with blocks for simulating a manufacturing environment,
or you might create a template with blocks specifically designed to address health care services simulation.

110 4 Chapter 11: Block Templates

Using the Template Menu

You use the Template menu to load an existing template that is saved on disk, create a new (empty) template,
or save a loaded (probably modified) template back to disk. To load an existing template into Simulation
Studio, select Open. This opens a File Selection dialog box where you choose the template filename and
then click Open. The chosen template is then loaded into the application, and the template name is added to
the Templates list box. Selecting a template name in the Templates list box causes the Template Palette area

of Simulation Studio to be populated with the items contained in the associated template. Only one template
is active at any time.

Using the Template Palette Pop-up Menu

A pop-up menu is available on the Template Palette window area background with options for various
palette display formats with various combinations of icons and labels. (See Figure 11.1.)

Figure 11.1 Template Palette Menu

® Large lcons
Small lcons
List
Texls
. lcons Oniy
Block Info...
R Block
Import Biock..,

In addition to the palette formatting options, this menu contains three other items: Block Info, Remove
Block, and Import Block. Select Block Info to view template information that is related to a particular item
displayed in the palette. Editing the values in the Block Info dialog box changes those values for all current
and future instances of the associated block in your models. Select Remove Block to delete an item from
the palette. Select Import Block to add a new entry to the currently visible template (that is, the template
displayed in the palette). Selecting Import Block opens a dialog box that contains fields where you enter
the same information found in the Block Info dialog box. (This is the same information found in a block
element entry in a template XML document.)

Template Document Format 4 111

Template Document Format

Figure 11.2 shows a simple template XML document that contains one block. The <block> element in
a template document represents a single item in the template. The <block> element attributes and child
elements are listed and described in the header in Figure 11.2. Only the name and type attributes are required
in each <block> element. The information in any <tabbed_page> child elements in a <block> element
represents the dialog pages that are associated with the Block Properties dialog box for each block.

Figure 11.2 Sample Template Document

<=

* A template contains blocks which may have the following attributes and
elements. The optional elements are markded with 'o'.

1. name: a key used to identify the block in the template
from the resource bundle.

type: the name of the Java block class or the compound node file
icon (o): an image for the block {(optional)
tooltip (o): the text string of tool tip (optional)
help {(o): a short on-line help {(optional)

(LAY N

A block without name or type would be ignored.

XK K K K Kk kK kK Kk X X

If necessary, a template can also contains separator element to
separate the blocks within the template into different groups.

*

-
<template name="basic">
<block name="Entity Generator"
ltvpe="com.=sas.analytics.sinulation.block.des.entitygenerator.EntityGenerator.class">
<icon>resources/imnages/32x32/entityGenerator.gif</icon>
<tooltip>Generates Entities</tooltip>

<tabbed_page name="Attributes"
type="com.sas.analytics.simulation.block.des . entitygenerator. EntityGeneratorittrPage"/>
<tabbed_page name="Overview"
type="com.sas.analytics.simulation.block.des.BlockHelpPage"/>
</block>
</template>

112

Chapter 12
Data Input, Collection, and Analysis

Contents
OVEIVIEW o it e e e e 113
Data Value Types o o e e e 113
Datalnput e 115
Data Collectionand Output 115
Block Data Storage 115
Experiment Window Data Storage 117
Data AnalysSis i e e e e 118
Output Analysis e e 118
Input Analysis L 122
References e 122
Overview

The subject matter of a simulation investigation or the sophistication of a model often dictates what type of
data need to be collected from each simulation run and the amount of data required to perform an appropriate
analysis. Furthermore, the accuracy of the simulation results depends on the suitability of the distributions that
are used as inputs to the model, making input analysis and distribution fitting one of the critical considerations
in the design and construction of a simulation model. Simulation Studio is integrated well with both SAS and
JMP to take advantage of the rich and powerful data processing and analysis capabilities that are available in
each package. This section provides an overview of the data management capabilities in Simulation Studio
and describes how Simulation Studio interacts with both SAS and JMP. Before interacting with SAS or JMP
from Simulation Studio, make sure the appropriate server has been launched. See the section “Launching
Local SAS and JMP Servers” on page 28 in Chapter 3, “Introduction to SAS Simulation Studio,” for details.

Data Value Types

As described in the section “Entities and Values” on page 40 in Chapter 4, “Simulation Models,” data values
in Simulation Studio can be numbers, character strings, Boolean values, data model objects, or observation
objects. A data model object can be viewed as an in-memory representation of a SAS data set or IMP
table during a simulation run. It contains information or values specified in rows, columns, and cells. An
observation object represents one row of a data model object. It can be viewed as the simulation-time
representation of a data observation from a SAS data set or a data row of a JMP table. The data model and
observation objects are used in Simulation Studio blocks to represent data for various access and collection

114 4 Chapter 12: Data Input, Collection, and Analysis

tasks. For example, you can use the Dataset Holder block from the Data and Display template as a holding
facility for a data model object, making it useful both for matrix computations and also for modeling scenarios
that require repeated access to a data set (look-up table) to perform a particular computation. During a
simulation run, you can access through user-defined output ports the contents of a data model object (such as
individual data cell values and observation objects) that is stored in a Dataset Holder block and you can pass
the queried results to other blocks in the model.

Figure 12.1 is a model of a machining center where parts are processed at four different stations in a particular
sequence that is based on part type. In this example, a Dataset Holder block with one user-defined output
port (located at the bottom right of the Dataset Holder block) is used to hold the machining sequence data set,
which is displayed by using a Table block (located at the bottom left of Figure 12.1). The data set value that
is pulled from the bottom right output port is a particular cell value based on part type; it indicates the next
station in the processing sequence. In this example, the Dataset Holder block holds a data set that is used
repeatedly by all entities. An alternative is to store the information in the machining sequence data set as
entity attributes, but that would result in the same data being stored multiple times. A complete description
of this Machining Center example can be found in the section “Machining Center Model” on page 267 in
Appendix E, “Examples of Simulation Studio Models.”

Figure 12.1 Machining Center Model

antel o= |
Get Updated Row, Column Indices vr
Read Dataset ’E‘ T
=
Increment Column
== = |l
E25] |Dataset Holder zr:a—» ECE,_.
. i MmO
i a8 df |
Station 1: Milling Station 2: Turning j]
a3 E‘ Si11

[
vy i Total Number Out

Madifier2

Parts Depart
Parts Arrive

Station 3 : Drilling Station 4 : Chamfering

Parts are routed to next Station or to Departure

achining Sequence at Stations for parts according to PartType

PartType Stopl | Stop2 | Stopd | Stopd | Stop5 | EndRoute
1

3 2
1

e b
e o o
FS Y
— o e e

2 3

The functionality of a Dataset Holder block can be viewed as analogous to that of a Number Holder block
with the To Downstream and From Upstream propagation options turned off. Whereas the Number Holder
block holds a single numeric value, the Dataset Holder block can hold a collection of related numeric or
character data values in the form of a data set.

Data Input 4 115

Data Input

The Simulation Studio blocks that can be used to input data to a model are the Numeric Source, Text Source,
and Observation Source blocks. In general, three levels of data can be retrieved: a single value, a single
row, and an entire data set. The Numeric Source and Text Source blocks provide a stream of single data
values by reading a column of data from a SAS data set or JMP table, and the Observation Source block
provides a stream of data observation (row) objects from a SAS data set or JMP table. For example, you
can use the Observation Source block to read a row of data from a data set and either assign the entire row
as entity attributes or assign a subset of the data cell values in the row as attributes. This is demonstrated
in the example “Using the Observation Source Block to Set Entity Attributes” on page 269 in Appendix E,
“Examples of Simulation Studio Models.” Entity objects in Simulation Studio are tightly integrated with data
management schemes, and the Observation Source block provides a straightforward method for creating
entities with specific attributes based on input data.

The Observation Source block can also be used to read in an entire SAS data set or JMP table, as shown in
the machining example in Figure 12.1. An Observation Source block (labeled Read Dataset) is used to read
in the entire machining sequence data set. The data model that represents that data set is passed from the
OutData port of the Observation Source block to the InData port of the Dataset Holder block, where it is held
until needed.

Data Collection and Output

Data that are generated by a Simulation Studio model can be collected and saved either through the Experiment
window or through a dedicated data collection block. The following sections describe how to use these data
collection methods.

Block Data Storage

Eight blocks can accumulate data and store it as a data model object: the Bucket, Dataset Writer, Number
Holder, Probe, Queue Stats Collector, Resource Stats Collector, Server Stats Collector, and Stats Collector
blocks. For more information about the functionality of these blocks and the types of information they can
collect, see Appendix A, “Templates.” A data model from a particular data collection block can be accessed
by other blocks via the OutData or OutCollected port. For example, you can connect a plot or table block to
the OutData port of a Queue Stats Collector block to visually display the queue statistics (such as average
waiting time) while the simulation model is running.

At the end of a run, you can save the contents of a data model from any data collection block as a SAS data
set or as a JMP table. Furthermore, dedicated Boolean ports enable you to collect event-driven data. For
example, you can save the contents of a data model object at any point during a simulation run by connecting
to the InData port on a Dataset Writer block. The data saving operation is triggered by a Boolean signal that
is sent to the InSaveNow port on a Dataset Writer block from another block in the model. See the section
“Using the Dataset Writer Block to Save Data during a Run” on page 270 in Appendix E, “Examples of
Simulation Studio Models,” for an example that uses the Dataset Writer block to save data during a run.
Some of the data collection blocks, such as the Number Holder, Bucket, Probe, and Stats Collector, also have

116 4 Chapter 12: Data Input, Collection, and Analysis

a data clearing port. When a 'true' Boolean signal is received at the data clearing port, all data collected
by the block up to that time during the simulation run are cleared. The data clearing port facilitates collecting
and saving data that correspond to specific periods during the simulation run.

Simulation Studio saves the data that are collected by blocks on a project basis and uses a hierarchical
approach to data storage. For each project, you can specify the root directory name for any data collection
results by selecting Results from the project pop-up menu in the Project Explorer window. Selecting Results
opens the Results dialog box, where you enter the name of the root directory to be used for storing model
execution results. See Figure 12.2.

Figure 12.2 Results Dialog Box
Directory : |prnjectslexampleswucCaIICentenresults| |

Owerwrite existing results if any

Cancel

You can supply the filename associated with an individual block’s data storage by using the individual
block’s Block Properties dialog box. If you do not provide a filename, a default filename is generated
automatically. To store any results, Simulation Studio creates a hierarchical directory structure that is based
on the hierarchical structure of the model. This structure reflects any nesting of blocks due to the use of
compound blocks.

You can also collect data by selecting Auto Save Results in the model pop-up menu in the Project Explorer
window. (See Figure 12.3.)

Figure 12.3 Model Menu

Close
R

Anchors ...

Auto Save Results ...
Remote Service Host ...
Entity Types ...

Experiment Window Data Storage 4 117

All blocks that are capable of collecting and saving data provide an option to automatically save any collected
data at the end of each simulation run. This option is usually set in the Block Properties dialog box for each
individual block. If you have many blocks that are collecting data in your model or the collection blocks
are nested in compound blocks, it might take a considerable amount of effort to open all the individual
dialog boxes and make the appropriate selections. Using a hierarchical format, the Auto Save Results dialog
box displays all the blocks in the model that have data collection capabilities. (See Figure 12.4.) In the
Auto Save Results dialog box, you can set the automatic save option for any of these blocks by selecting its
corresponding check box without having to open the individual block dialog boxes.

Figure 12.4 Auto Save Results Dialog Box
x|
| fudo Save Resulis ...
¥ ¥ [modeld
_1[7Y Birth Time
v [age
U1 Humber Hobder2
v [oueve Stats Collector
U1} server Stats Collector
¢ v] Compourd

¥ | 7 Bucket

Close

:

Experiment Window Data Storage

The Simulation Studio Experiment window provides another option for collecting data on simulation runs.
Recall from Chapter 5, “Experiments,” that experiments are composed of factors and responses; factors
are set before running an experiment, and responses are values extracted from the model at the end of a
simulation run. Another means of collecting and saving simulation data is to select Save Design from the
Experiment window pop-up menu to save the experiment to a file. You can save Experiment window data as
either a SAS data set or a JMP table for analysis purposes.

To systematically study the effect of specific input parameters on the simulation model output, you can create
an experimental design in JMP, run the experiment in Simulation Studio, and select Analyze Results from
the Experiment window pop-up menu to pass the entire contents of the Experiment window directly back
to JMP for analysis. For example, you can use the simulated results to estimate a statistical model, which

118 4 Chapter 12: Data Input, Collection, and Analysis

in turn you can use to determine optimal levels of the factors so that a particular response is maximized or
minimized. See Appendix C, “Design of Experiments,” for details.

Data Analysis

As discussed in the following sections, Simulation Studio can compute basic summary statistics for data that
are collected during a simulation run. In addition, there is a state-of-the-art block for computing statistically
valid confidence intervals for responses that are generated from a steady-state simulation. Simulation Studio
is also integrated with both SAS and JMP so that you can customize your input and output data analysis
needs.

Output Analysis

Each block that collects data provides an output port (labeled OutData or OutCollected for the Number
Holder block) that other blocks can use to access its data model object. The plot blocks (Histogram and
Scatterplot, for example) are the usual recipients of these data; these blocks can provide real-time data
analysis while the simulation is running. Typically, however, you also want to use SAS or JMP software to
analyze the data that you have saved to data sets during a simulation run. The following sections provide an
overview of output analysis options that are available within Simulation Studio, including the process for
computing statistics for time-dependent and time-independent data, analysis techniques for terminating and
steady-state simulations, and the use of the SAS block for data analysis and report generation.

Classification of Statistics

Data that are collected during a simulation run can be used to estimate the parameters (such as the mean
and variance) of the underlying population from which the data are sampled. For example, consider the
population of waiting times for a particular queue. The waiting time data that are collected during a simulation
run represent a sample from the population that consists of all possible waiting times. When you estimate
population parameters from sample data, you need to consider two classifications of statistics:

* For observation-based statistics, the data collected and used to estimate parameters are time-
independent so that there is interest only in the observed value and not in when it was collected.
Waiting-time data are an example of a time-independent sample, and the average waiting time is an
example of an observation-based statistic. The following formula can be used to compute the average
waiting time: X = Z;-':l xi/n, where x1, X2, ..., xp, are the set of n observed waiting times.

Output Analysis 4 119

* For time-persistent statistics, the data collected are time-dependent and it is necessary to record both
the values and the time periods for which each value persisted. Queue length data are an example of a
time-dependent sample, and the average queue length is an example of a time-persistent statistic. To
compute the average queue length X7, the following formula is used: X7 = fOT x(t)dt/ T, where T is
the total time period observed and x (¢) is the number in the queue at time 7. The average queue length
is a weighted average of the possible queue lengths, where the weights are the amount of time that a
particular queue length value is observed. Another example of a time-dependent sample is the number
of busy cashiers in a store, and the average utilization of the cashiers is an example of a time-persistent
statistic.

You can use the data collection blocks described in the section “Block Data Storage” on page 115 to collect
both time-dependent and time-independent data and, in some cases, to compute statistics. The Bucket block
collects data—namely, the specified attributes of all entities that pass through the block along with the time
that the attributes were recorded. However, the Bucket block does not compute statistics for those data. The
Queue Stats and Server Stats Collector blocks collect data that are related to specific Queue or Server blocks
in the model and automatically compute summary statistics such as average queue length, average waiting
time, and average utilization. The Resource Stats Collector block can compute user-defined, time-persistent
statistics for specific groups of resource entities. The Stats Collector block can compute statistics for any
time-dependent or time-independent data that are generated by a model. For example, as shown in the
simple bank system example in Figure 12.5, you can use a Number Holder block (labeled NumberInSystem)
connected to a Stats Collector block to record data about the total number of customers in a bank. Each
time the value in the Number Holder block is updated, that value and the current time are stored by the Stats
Collector block. At the end of the run, the Stats Collector block computes the user-defined time-average
number in the system, as displayed in the table labeled NumberInSystem Statistics.

Although you can use the Number Holder block to collect time-independent data and compute observation-
based statistics (such as mean, minimum, and maximum), you should not use the Number Holder
block to compute statistics for time-dependent data. In Figure 12.5, a Number Holder block labeled
Non-WeightedAvgQueueLength is connected to the OutLength port of the FIFO Queue block and the Dis-
play option in the Number Holder block is set to Mean. The average queue length computed by the Number
Holder block is not time-weighted. The correct time-weighted average queue length is computed by con-
necting a Stats Collector block to the OutLength port of the FIFO Queue block. This mean value, in the
table labeled Time-Weighted Average Queue Length in Figure 12.5, matches the value AvgQLength that is
computed by the Queue Stats Collector block, as displayed in the table labeled Queue Stats Collector Results.

120 4 Chapter 12: Data Input, Collection, and Analysis

Figure 12.5 Stats Collector Block Example

% model1

— MumherinSystem Statistics

vy
\. Name Mean Numberof... Mlnlmum Maxlmum

MNumberinSystem 3747331 178

ooo
Number Serviced

iStats Collector

Time-Weighted Average Queue Length

""" Hame Mean
'

Queuelength 2.798991 |

Queue Stats Collector Results

Time BlockName Blnckld InCuunt OutCnum BaIkCnum RenegeC... |QLen ||| AquLength MaxQLen.. | AvgWait | MaxWait

S40FIFO Queue 16.81358 4519075

Terminating and Steady-State Simulations

For some systems, a clear and logical time determines the duration of the simulation run. For example, a
doctor’s office might be open from 8:00 a.m. until 5:00 p.m. Monday through Friday. If you are interested
in estimating the average time that a patient waits to see a doctor, then you can run the simulation for nine
hours, which corresponds to the length of one day. This type of simulation is called a terminating simulation.
On the other hand, some systems have no clear end time. For example, you might be interested in estimating
the long-run average throughput for a manufacturing facility that operates 12 hours a day, with the work
in process carried over to the next day. This type of simulation is called a nonterminating (steady-state)
simulation. In general, you are interested in the long-run behavior of the system while it is operating normally.
Let X; :i = 1,2,... denote a stochastic process that represents the sequence of outputs that are generated
by a single run of a steady-state simulation. For example, the random variable X; might represent the time in
the system (cycle time) for the ith piece of work to complete all its processing in a simulation of a production
facility. If the simulation is in steady-state operation, then the random variables X; have the same steady-state
cumulative distribution function Fy (x) = Pr(X; < x) for all real x and fori = 1,2,....

Typically the data for a particular output process that are collected during a single terminating or steady-state
simulation run are neither independent nor identically distributed (iid); therefore, classic statistical methods
(such as those for computing point and confidence interval estimators) are not applicable. For example, in the
bank system model in Figure 12.5, the individual observed waiting times for customers xj, X2, . .. that are
collected during a single simulation run are nonstationary and autocorrelated. Since the requirement of iid

Output Analysis 4 121

observations is violated, you should not use the data x1, x5, . .. from a single simulation run to compute, for
example, a confidence interval for the average waiting time at the bank.

For a terminating simulation, suppose that you run k independent replications of the same simulation model
so that each replication uses the same initial conditions and a different set of random numbers. Furthermore,
you define a response or performance measure, such as the average waiting time, so that for each replication a
single value is collected. Then the observed k responses are iid and classic statistical methods can be applied
to analyze the data. For example, suppose k replications of the bank system model are run and the average
customer waiting time X ; is computed for each replication j. A statistically valid point estimate of the mean
waiting time in the bank system can then be computed as le —1Xj/k.

For terminating simulations, the Experiment window provides the most straightforward method for collecting
data and computing basic statistics for defined responses. By default, the Experiment window reports the
average response over all replications for each design point. But you can also display the standard deviation,
minimum value, or maximum value by right-clicking the column heading for a particular response and
selecting the Summary menu item. Furthermore, by default each random stream in the model advances to its
next substream at the start of a new replication. This guarantees that different random numbers are used for
each replication. Alternatively, you can run multiple replications of a model, use the various data collection
blocks to collect data for each replication, and then use SAS or JMP to analyze the data.

As in the case of a terminating simulation, the observations x1, X2, ... from a single long run of a nonter-
minating simulation are usually correlated. Furthermore, it is usually impossible to start a simulation in
steady-state operation. Thus, it is necessary to decide how long the warm-up period should be so that for each
simulation output that is generated after the end of the warm-up period, the corresponding expected value is
sufficiently close to the steady-state mean. If observations that are generated before the end of the warm-up
period are included in the analysis, then any computed point estimator (such as for the steady-state mean)
might be biased. You could use a replication/deletion approach to analyze data from a steady-state simulation,
similar to the replication method used in the terminating simulation case. You would first make k replications
of the simulation, each of length n, and delete the first / observations from each replication. You would
then compute the truncated sample mean for each replication as > ;—; g Xxji/n—1lforj=1.2,... k. By
deleting those observations at the beginning of the simulation runs, you eliminate the initial bias due to the
model’s initial conditions. The replication/deletion method is simple to understand and implement. However,
it is computationally inefficient because it requires the deletion of a total of / x k observations. In addition, it
can be difficult to determine how large the warm-up period / should be.

An alternate method to replication/deletion for analyzing data from a steady-state simulation is to make one
long simulation run of length n and apply a batch means approach. The Steady State block in Simulation
Studio provides an automated batch means method for producing a statistically valid confidence interval
estimator for a steady-state mean response in a nonterminating simulation model where the delivered
confidence interval satisfies a user-specified precision requirement. The procedure is based on the method of
spaced batch means and has an algorithm built in to automatically detect the end of the warm-up period and
to address the correlation that exists between observations. For more information about the specific batch
means method used by the Steady State block, see Lada, Steiger, and Wilson (2008). For more information
about using the Steady State block specifically, see Appendix A, “Templates.”

Using the SAS Program Block

The SAS Program block enables you to execute a SAS program or JMP script at any point during a simulation
run. This enables you to analyze simulation-generated data automatically either at the end of a run (see the
example “Using the SAS Program Block to Analyze Simulation Results” on page 264) or during a run by

122 4 Chapter 12: Data Input, Collection, and Analysis

sending a signal to the InSubmitCode port of the SAS Program block. For example, in a simulation model of
an inventory system it might be necessary, based on the current state of the system, to update a production
plan data set. If the number of backlogged orders exceeds a certain level, a SAS Program block can be
signaled to execute a program that generates a new production plan data set that is used to set production
levels downstream in the model.

Input Analysis

The accuracy of the analysis of any output generated by a simulation model is highly dependent on the
appropriateness of the inputs that are used to drive the simulation model. Often, data are available and you
want to use those data to estimate the parameters of a theoretical distribution and then sample from that fitted
distribution to generate inputs to your model. In this case, you can use the Fitted option in the Numeric
Source block to access the JMP automatic distribution-fitting procedure. After you specify a value for rile
path and click the Fit Distribution button in a Numeric Source block, JMP automatically fits a series of
distributions to the specified data and ranks the results. Either you can select the best fit that is suggested
by JMP or you can investigate other distributions and use the analysis options available in JMP to make a
distribution choice. After you select a distribution, the parameters for that distribution are automatically
passed back to the Numeric Source block. See Appendix D, “Input Analysis,” for details.

In addition to selecting a theoretical distribution to generate inputs to a model, the Numeric Source block
also enables you to generate samples from discrete and continuous empirical distributions, which can be
especially useful when it is difficult to find an appropriate theoretical distribution that accurately represents
the data. Finally, you can also use the Numeric Source block to specify a nonhomogeneous Poisson process
that is based on either count data or rate data. Simulation Studio uses the count data or rate data to generate a
time-dependent arrival process for a specified time interval that can be used as an input to a model. For more
information about using empirical distributions and nonhomogeneous Poisson processes, see Appendix B,
“Random Variation in a Model.”

References

Lada, E. K., Steiger, N. M., and Wilson, J. R. (2008), “SBatch: A Spaced Batch Means Procedure for
Steady-State Simulation Analysis,” Journal of Simulation, 2, 170-185.

Chapter 13
Batch Execution

Contents
Overview of Batch Execution 123
Command Line Interface 123
Log MesSSages v v v v i i e e e e e e e e e e e e 124

Overview of Batch Execution

Everything in this document so far has focused on using the Simulation Studio GUI to construct and run
simulation models. You build your simulation model in the Model window, create your experiment, and then
save and run your simulation model. To rerun a saved model, you reload it into a project (along with an
associated experiment) and start the model execution process.

Simulation Studio provides an alternative method for running saved models and experiments that does not in-
volve using the GUI. Simulation Studio provides a command line executable program named simstudio_batch
that enables you to run models in batch mode.

Command Line Interface

You can use the simstudio_batch program to run simulation models from a Microsoft Windows command
prompt. The simstudio_batch routine accepts three command line arguments: -m, -e, and -d. The -m
argument specifies the pathname for a Simulation Studio model you want to execute, and the -e argument
specifies the experiment pathname. Both the -m and -e arguments are required. The optional -d argument
specifies the pathname of the location where you want to save the contents of the Simulation Studio
Experiment window.

To invoke Simulation Studio in batch mode, open a Microsoft Windows command prompt and naviage to the
location of the executable simstudio_batch. (The current default installation location is \Program Files\
SASHome\SASSimulationStudio\<release_number>.)

A sample command line for executing a model-experiment pair where INSTALI_DIR is the installation
location looks like this:

C:\INSTALL_DIR> simstudio_batch -m projects\MyProject\MyModel.simmdl -e projects\
MyProject\MyExperiment .simexp —-d projects\MyProject\experiment.sas7bdat

Any data collected during the simulation execution is saved in a hierarchical results directory created in the
directory where the simstudio_batch program was launched.

124 4 Chapter 13: Batch Execution

Log Messages

Any log messages generated during the execution of a model are directed to the command prompt window.

Appendix A
Templates

Contents
Overview of Templates 126
Overview of the Standard Template 126
Entity Generator Block L 127
Value Generator Block 129
Disposer Block 130
Queue Block e e 131
Delay Block e 135
Server Block e 136
Modifier Block e 138
Extractor Block e 139
SwitchBlock e 140
Selector Block e 142
Number Holder Block 143
String Holder Block 145
Numeric Source Block 146
Text Source Block e 152
Counter Block e 154
Time Now Block e 155
Overview of the Advanced Template 156
BatchBlock e 156
Unbatch Block e 158
Clone Block e 159
Gate Block e 160
Valve Block e e e 161
FormulaBlock e 163
SAS Program Block 164
Entity Filter Block 165
Entity Group Holder Block 166
Stopper Block 169
Overview of the Data and Display Template 170
Bucket Block e 170
Probe Block e 172
Observation Source Block L 174
Stats Collector Block e 175
Queue Stats Collector Block 177

126 4 Appendix A: Templates

Server Stats Collector Block 179
Resource Stats Collector Block 181
Dataset Holder Block 184
Dataset Writer Block e 185
Histogram Block e 187
BarChart Block e 188
Scatter Plot Block 189
Box PlotBlock e 190
Table Block e 191
Comment Block e 191
Overview of the Resource Template 192
Seize Block e 192
Release Block e 194
Resource Pool Block 195
Resource Scheduler Block 197
Resource AgendaBlock 201
Overview of the Output Analysis Template 203
Steady State Block L 203
References e 204

Overview of Templates

Simulation Studio templates provide collections of blocks you can use to build simulation models. The
following sections are overviews of the blocks provided in the various Simulation Studio templates. Each
block description includes a brief summary of what the block does along with a description of the fixed ports
for the block and the controls in the block’s properties dialog box. Also included are the Factor and Response
candidates associated with each block for use with the design-of-experiment features in Simulation Studio.

Overview of the Standard Template

The Simulation Studio Standard template provides a fundamental collection of the blocks that are most
commonly used to build simulation models.

Entity Generator Block 4 127

Entity Generator Block

Batchiize
InterserivalTime — | — Bignal

VEI ChatEntity
O-CatBalk

Description

The Entity Generator block generates entities. You can control when the entities are created, the total number
of entities created, and how many entities are created simultaneously.

After an entity is created, the Entity Generator block attempts to send the new entity out the OutEntity port.
If this fails, it then tries to push the entity out the OutBalk port. If this also fails, the entity is destroyed and a
message is sent to the Tracer.

Multiple entities can be generated every time an entity creation event occurs in an Entity Generator block.
The number of entities to create at an entity creation event is referred to as the batch size. When the Entity
Generator block is preparing to schedule an entity creation event, it attempts to pull a value from its BatchSize
port and associate this value with the entity creation event. (If nothing is connected to the BatchSize port,
it uses a default batch size of 1.) When the entity creation event occurs in the Entity Generator block, the
Entity Generator block creates the number of entities specified by the associated batch size value (within the
constraints of the maximum limits described in the next paragraph). All entities are sent out individually
either through the OutEntity port or the OutBalk port.

You can specify the maximum number of entities that the Entity Generator block can generate in addition to
the maximum number of batches. The Entity Generator block stops creating entities whenever either of these
limits is reached. Fields are also provided to set the start and end time (in terms of the simulation clock) for
controlling the duration of operation of the block.

The Boolean Signal port can be used to initiate entity creation as well. When a true value arrives at the Signal
port, the Entity Generator block pulls values from its InterArrivalTime and BatchSize ports and schedules an
entity creation event.

You can use the Entity Types dialog box to specify the types of entities the Entity Generator block can create.
To open the Entity Types dialog box, right-click in the Project Explorer window and select Entity Types.
You can enter default values for any of the editable entity attribute fields (indicated by a check in the Editable
column) in the Entity Types dialog box.

Fixed Ports
InterArrivalTime Input numeric port for how long to wait before the next entity creation event.
BatchSize Input integer port for how many entities to create at the next entity creation event.
Signal Input Boolean port that schedules an entity creation event (when true is passed in).
OutEntity Output entity port for entities that can be accepted by a downstream block.

OutBalk Output entity port for entities that cannot leave using the OutEntity port.

128 4 Appendix A: Templates

Attributes Dialog Box Controls

Limits

Timing

First Entity Creation

The Maximum Number of Entities field specifies the maximum number
of entities this Entity Generator block is permitted to generate. Selecting
the Infinite check box supersedes the value of the Maximum Number of
Entities field. Similarly, the Maximum Number of Batches field spec-
ifies the maximum number of batches of entities this Entity Generator
block is permitted to generate. Selecting the Infinite check box super-
sedes the value of the Maximum Number of Batches field. By default,
both Infinite check boxes are checked. If both the Maximum Number
of Entities field and the Maximum Number of Batches field contain
valid values, the Entity Generator block stops creating new entities as
soon as either of the criteria has been met.

The Start Time field designates the simulation time at which the first
entity is generated by this Entity Generator block. This value must be
greater than or equal to 0. The default Start Time is 0. Similarly, the
End Time field specifies the simulation time when no more entities can
be generated by the Entity Generator block. The End Time must be
greater than or equal to the Start Time. Selecting the Infinite check box
supersedes the value of the End Time field.

Specifies when the first entity is created by the Entity Generator block.
Select At Start Time to cause the first entity to be created at the time
specified in the Start Time field. This is the default selection. If you se-
lect At First Interarrival Time, then at Start Time the Entity Generator
block pulls the first interarrival time value from the InterArrivalTime port
and schedules the first entity to be created at that time. The pulled value
determines how long the Entity Generator block waits before generating
the first entity. (Whenever the interarrival time value is not a number, the
simulation terminates. If the value is a number less than 0, the Entity
Generator block logs a warning and uses a value of 0.) If you select
After Signal Arrival, the Entity Generator block waits until a true value
arrives at the Signal port before scheduling the first entity creation.

To Schedule the Creation of Next Entity If you check this check box, after the Entity Generator block

has created a new entity and pushed it downstream it automatically pulls
a value from its InterArrivalTime port and uses this value to schedule the
generation of the next entity creation. If you clear this check box, future
entity creation events can be scheduled only by using the Signal port. By
default, this check box is checked.

Value Generator Block 4 129

EntityType Dialog Box Controls

Name Specifies the name of the EntityType used for entity creation.

Fields Displays the default attributes associated with the selected EntityType.
You can set the default value for editable entity attributes directly in the
table.

Candidates for Design of Experiments

Factors StartTime (double), EndTime (double), MaxEntities (integer), MaxBatches (integer),
RankValue (double)
Responses None

Value Generator Block

InterValueTime 4 - InWValue

v

)4

n
CatWalue

Description

The Value Generator block generates numeric, text, or Boolean values. The Value Generator block pulls a
value from its InterValueTime port to determine how long it waits before generating the next value. (If the
intervalue time value is not a number, the simulation terminates. If the value is less than 0, the Value Generator
block logs a warning and uses a value of 0.) After the Value Generator block has a valid intervalue time
value, it pulls a value from its InValue port and passes it out the OutValue port. If there are no connections to
the InValue port, the value specified in the Default Value field is passed out the OutValue port.

You can specify the maximum number of values the Value Generator block can generate, the default value
generated, and the start and end times (in terms of the simulation clock) for controlling the operation of the
block. You can also specify when the first value is created.

Fixed Ports

InterValueTime Input numeric port for how long to wait before the next value creation event.
InValue Input value port for the next value to create.

OutValue Output value port for the created values.

130 4 Appendix A: Templates

Properties Dialog Box Controls

Values

Timing

First Value

The Maximum Number of Values field specifies the maximum number
of values the Value Generator block is permitted to generate. Selecting
the Infinite check box supersedes the value in the Maximum Number
of Values field. The Value Type field specifies the type of value that the
Value Generator block generates. The Default Value field specifies the
value to use when the InValue port has no connections.

The Start Time field designates the simulation time at which the first
value is generated by the Value Generator block. This value must be
greater than 0. Similarly, the End Time field specifies the simulation
time when no more values can be generated by the Value Generator
block. This must be greater than or equal to the Start Time. Selecting
the Infinite check box supersedes the value in the End Time field.

Determines when the first value is created by the Value Generator block.
Select Start Time to cause the first value to be created at the time
specified in the Start Time field. If you select First Intervalue Time,
then at the Start Time the Value Generator block pulls the first intervalue
time value from the InterValueTime port and schedules the first value to
be created at that time.

Candidates for Design of Experiments

Factors

Responses

StartTime (double), EndTime (double), MaxValues (integer)

None

Disposer Block

Description

..............

The Disposer block disposes of entities after they are no longer needed in the model, reducing memory usage.
Each simulation model should have at least one Disposer block. A count of the number of entities that have
entered the disposer is kept in the block. If there are connections to the block’s OutCount port, the count is
pushed out the port every time its value changes.

Queue Block 4 131

Fixed Ports
InEntity Input entity port for entities to be disposed.
OutCount Output integer port for the number of entities that have been disposed.

Candidates for Design of Experiments

Factors None

Responses OutCount (integer)

Queue Block

InRenegeWait InCapacity InPreempt
B | ;’”:; CutEntity
I ey [:l]_]_tRE_'ﬂE ge
InEntity —p ;ﬂﬂm U: CutPreempt

e CutResoutce

| e CutBalk
Catlength OuwtWait CutHoldings

Description

The Queue block is used for transient storage of entities. Three types of queueing policies are available for a
Queue block: FIFO, LIFO, and Priority.

When a request to send (or push) an entity arrives at a Queue block, the Queue block determines whether it
has room to store the entity. If its buffer is full, the Queue block rejects the request to have the entity sent to
it. If space is available in its buffer, the Queue block responds that it can accept the entity.

When an entity arrives at a Queue block that uses a FIFO or LIFO queueing policy, the entity is stored at the
appropriate end of the buffer. For Queue blocks that use a Priority policy, the Queue block extracts the priority
value from an attribute defined for the entity and uses that value to determine where to place the entity in the
buffer. The Queue block then sequentially notifies each block connected to its OutEntity port to ask whether
it is ready to receive an entity. The Queue block selects an entity (based on the queueing policy—FIFO, LIFO,
or Priority) to send out through the OutEntity port to the first downstream block that responds affirmatively.
(Entities can also be pulled out through the Queue block’s OutEntity port by a downstream block. In this
case the Queue block also selects the entity to release according to the queueing policy.)

When a Queue block’s buffer is no longer full (due to an entity leaving the Queue block or the Queue block’s
capacity being increased), the Queue block attempts to pull entities from upstream through the InEntity port
until it is at capacity or no entities are available to pull.

If the Queue block’s reneging option is activated (by selecting the Reneging option in the properties dialog
box), then after an entity enters the Queue block, the Queue block attempts to pull a numeric value from its
InRenegeWait port. If the Queue block pulls a nonnegative number from the port, it schedules a time for
the entity to exit the Queue block via the OutRenege port if the entity is still in the Queue block’s buffer at

132 4 Appendix A: Templates

that time. Otherwise no time for reneging is scheduled. If there is no connection to the OutRenege port, no
reneging occurs.

Any time an entity enters or exits the Queue block, the Queue block pushes the value of its buffer’s length
(the number of entities being held by the Queue block) to the OutLength port. Any time an entity exits the
Queue block via its OutEntity port, the Queue block pushes a value that represents how long that entity
waited in the buffer to the OutWait port.

An integer value can be pushed through the InCapacity port to set the capacity for the Queue block (the
size of its buffer). Valid incoming values for this port are integers in the range of 0 to 2,147,483,647. If the
capacity of a Queue block is reduced dynamically during the simulation run, any excess entities are removed
from the Queue block (according to the queueing policy being used) and are sent out the OutBalk port. If
there are no connections to the OutBalk port, the entities are destroyed.

Holding Block Preemption

Entities in Simulation Studio are hierarchical. That is, entities can hold other entities. The term controlling
entity denotes an entity that holds other entities, and the term root entity denotes an entity that is not held by
another entity. Each entity held by another entity has one root entity associated with it. The root entity for
any held entity is found by traversing up the entity hierarchy from the held entity.

Entities being held by a Queue block can be preempted either by input to the block’s InPreempt port or by a
scheduled resource entity event. In order for a root entity that is held by a Queue block to be preempted, the
OutPreempt port (or OutBalk port) must have at least one link attached to it. Similarly, for a resource entity
that is held by a controlling entity that is in turn held by the Queue block to be preempted, the OutResource
port (or OutBalk port) must have at least one link connected to it.

The Queue block’s InPreempt port accepts an Entity Group object as input. (An Entity Group is a collection
of references to entities.) When an Entity Group object is pushed to a Queue block’s InPreempt port, the
Queue block iterates through the Entity Group collection looking for matches to root entities held by the
Queue block. For any matched entity, the Queue block first tries to push that entity out its OutPreempt port.
If this push is not successful, the block attempts to push the entity out the OutBalk port. If this also fails, the
entity continues to be held by the Queue block until either it exits out the OutEntity port or it is preempted
again.

The Queue block, like all entity holding blocks, detects potential preemptive changes (such as those scheduled
by a Resource Scheduler block) to resource entities it holds (either directly or indirectly through a controlling
entity).

If the number of units associated with a held resource entity decreases or the state of a held resource entity
becomes nonfunctional, the Queue block attempts to preempt that resource entity. If the resource entity
identified for preemption is a root entity, then the Queue block follows the same protocol for pushing an
entity out its OutPreempt port that the InPreempt port uses. If the resource entity is part of a controlling entity,
the Queue block removes the resource entity from the controlling entity and attempts to push the associated
root entity out the OutPreempt port. The Queue block then attempts to push the preempted resource entity
out its OutResource port, or if that fails, out its OutBalk port. If there is a connection to the Queue block’s
OutResource port and the Queue block cannot push the resource entity out either the OutResource or OutBalk
port, the resource entity is disposed.

The Queue block also provides an OutHoldings port that other blocks can use to pull an Entity Group object
that contains a collection of references to entities held by the Queue block.

Fixed Ports

InEntity
OutEntity
OutRenege

OutPreempt

OutResource

OutBalk
InRenegeWait

InCapacity

InPreempt

OutLength
OutWait

OutHoldings

Capacity

Reneging

Queueing Policy

Queue Block 4+ 133

Input entity port for entities to be added to the Queue block.
Output entity port for entities that can be accepted by a downstream block.

Output entity port for entities that are reneged and can be accepted by a downstream
block.

Output entity port for root entities that are preempted and can be accepted by a downstream
block.

Output entity port for resource entities held by controlling entities that are preempted and
can be accepted by a downstream block.

Output entity port for entities that cannot leave using the other output entity ports.

Numeric input value port that sets the amount of time to wait before an entering entity is
reneged.

Numeric input value port that dynamically sets the capacity of the Queue block.

Entity Group input port that causes the Queue block to preempt any root entities it is
holding that match entities in the incoming Entity Group.

Numeric output value port for the number of root entities held in the Queue block’s buffer.

Numeric output value port for the amount of time an exiting entity waited in the Queue
block’s buffer.

Entity Group output port from which a group of entity references can be pulled, represent-
ing the entities in the Queue block’s buffer.

Properties Dialog Box Controls

Specifies the maximum number of entities the Queue block is permitted to store in its
buffer. Valid values for this field are integers in the range from 0 to 2,147,483,647.
Selecting the Infinite check box supersedes any Capacity value.

Selecting this check box activates the Queue block’s automatic reneging functionality.

Selecting a policy type in the Type list box specifies the queueing policy that is used
by this Queue block in determining the order in which entities leave the Queue block.
Some policies have additional parameters that can be specified when the policy is selected
from the list box. The FIFO policy has no parameters and uses a first-in-first-out policy
for determining the order of entities leaving the Queue block. The LIFO policy has no
parameters and uses a last-in-first-out policy for determining the order of entities leaving
the Queue block. The Priority policy allows entities to exit the Queue block based on
entity priority. It has the following parameters:

Entity Attribute Type Specifies the type of the attribute (Number or String) used to
extract the priority value from an entity.

Default Priority Number If Entity Attribute Type is Number, this field specifies the
numeric priority value to use for an entity when the Queue block
cannot extract a valid priority value from the specified Entity Attribute.

134 4 Appendix A: Templates

Default Priority String If Entity Attribute Type is String, this field specifies the string
priority value to use for an entity when the Queue block cannot extract
a valid priority value from the specified Entity Attribute.

Entity Attribute Specifies the name of the attribute to use when extracting the priority
value from an entity.

Priority Order Specifies whether higher values or lower values are interpreted to have
a higher priority.

Tie Breaking Policy Specifies the algorithm to use for placing entities in the Queue
block’s buffer when entities have the same priority value. Algorithm
options include FIFO, LIFO, and Random (for random placement).

Random Stream Seed If the Tie Breaking Policy is Random, this field specifies the
random number generator seed.

Candidates for Design of Experiments

Factors

Responses

Capacity (integer), RankValue (double), QueueingPolicy (text)

The format for specifying the value of the QueueingPolicy factor is as follows:
Type==policyType;Entity Attribute Type==attributeType;Default Priority Number==
priorityNumber;Default Priority String==priorityString;Entity Attribute==
attributeName;Priority Order==priorityOrder;Tie Breaking Policy==tieBreakingPolicy;
Random Stream Seed==seed

where:

policyType is FIFO, LIFO, Priority, or the fully-qualified Java class name of a
queueing policy class.

attributeType is Number or String.

priorityNumber is a decimal number.
priorityString is a string value.
attributeName is the name of an entity attribute.

priorityOrder is one of the following: Highest Value Has Highest Priority, Lowest
Value Has Highest Priority.

tieBreakingPolicy is one of the following: FIFO, LIFO, Random.
seed is an integer number.
Each name==value parameter within the factor value is optional. If it is not specified,

it is assigned the value specified in the properties dialog box if possible; otherwise it is
assigned a default value.

AverageWait (double), MaximumWait (double), AverageLength (double), Maximum-
Length (integer), BalkCount (integer), RenegeCount (integer)

Delay Block 4+ 135

Delay Block

InDelay InPreempt

| | .
- ____,.DutEnt:l.t}.f

: 8 CutPreempt
InEntity —» Z 8 CutResoutce

oo ChatBalk
1
ChatHumberHeld CutHoldings

Description

The Delay block delays the progression of an entity through a simulation model. When an entity enters a
Delay block via its InEntity port, the Delay block pulls a value (the delay time) from its InDelay port. If the
delay time value is not a number, the simulation terminates. If the value is less than 0, the Delay block logs a
warning and uses a value of 0. The Delay block holds the entity for the duration of the delay time and then
releases it through its OutEntity port. If the push through the OutEntity port fails, the Delay block attempts to
push the entity out the OutBalk port. If this is not successful, the entity is destroyed and a message is posted
to the Tracer.

Holding Block Preemption

Entities in Simulation Studio are hierarchical. That is, entities can hold other entities. The term controlling
entity denotes an entity that holds other entities, and the term root entity denotes an entity that is not held by
another entity. Each entity held by another entity has one root entity associated with it. The root entity for
any held entity is found by traversing up the entity hierarchy from the held entity.

Entities being held by a Delay block can be preempted either by input to the block’s InPreempt port or by a
scheduled resource entity event. In order for a root entity that is held by a Delay block to be preempted, the
OutPreempt port (or OutBalk port) must have at least one link attached to it. Similarly, for a resource entity
that is held by a controlling entity that is in turn held by the Delay block to be preempted, the OutResource
port (or OutBalk port) must have at least one link connected to it.

The Delay block’s InPreempt port accepts an Entity Group object as input. (An Entity Group is a collection
of references to entities.) When an Entity Group object is pushed to a Delay block’s InPreempt port, the
Delay block iterates through the Entity Group collection looking for matches to root entities held by the
Delay block. For any matched entity, the Delay block first tries to push that entity out its OutPreempt port. If
this push is not successful, the block attempts to push the entity out the OutBalk port. If this also fails, the
entity continues to be held by the Delay block until either it exits out the OutEntity port or it is preempted
again.

The Delay block, like all entity holding blocks, detects potential preemptive changes (such as those scheduled
by a Resource Scheduler block) to resource entities it holds (either directly or indirectly through a controlling
entity).

If the number of units associated with a held resource entity decreases or the state of a held resource entity
becomes nonfunctional, the Delay block attempts to preempt that resource entity. If the resource entity
identified for preemption is a root entity, then the Delay block follows the same protocol for pushing an entity

136 4 Appendix A: Templates

out its OutPreempt port that the InPreempt port uses. If the resource entity is part of a controlling entity,
the Delay block removes the resource entity from the controlling entity and attempts to push the associated
root entity out the OutPreempt port. The Delay block then attempts to push the preempted resource entity
out its OutResource port, or if that fails, out its OutBalk port. If there is a connection to the Delay block’s
OutResource port and the Delay block cannot push the resource entity out either the OutResource or OutBalk
port, the resource entity is disposed.

The Delay block also provides an OutHoldings port that other blocks can use to pull an Entity Group object
that contains a collection of references to entities held by the Delay block.

Fixed Ports

InEntity
OutEntity
OutPreempt

OutResource

OutBalk
InDelay
InPreempt

OutHoldings

Input entity port for entities to be added to the Delay block.
Output entity port for entities that can be accepted by a downstream block.

Output entity port for root entities that are preempted and can be accepted by a downstream
block.

Output entity port for resource entities held by controlling entities that are preempted and
can be accepted by a downstream block.

Output entity port for entities that cannot leave using the other output entity ports.
Input numeric port for how long the Delay block should delay the next entity.

Entity Group input port that causes the Delay block to preempt any root entities it is
holding that match entities in the incoming Entity Group.

Entity Group output port from which a group of entity references can be pulled, represent-
ing the entities held by the Delay block.

Candidates for Design of Experiments

Factors

Responses

RankValue (double)

None

Server Block

InZerviceTime InCapacity InPreempt

ywv . CutEntity

Ent; o7 B CutPreempt
InEntity—» E-”lﬁ'E: CuutResoutce

]

oooog CutBallk

CwtlUtilization ™ / %~ OutHoldings
Chatdowatlable CutlumberBusy

Server Block 4 137

Description

The Server block models a resource used by an entity for a specified period of time. An entity can enter a
Server block only when the Server block is not busy. A Server block is deemed busy if all of its capacity is
being used to service entities. After an entity enters the Server block, the Server block pulls a value from
its InServiceTime port. If the service time value is not a number, the simulation terminates. If the value is
less than 0, the Server block logs a warning and uses a value of 0. The entity is held for the duration of the
service time and then released out the OutEntity port.

The InCapacity port can be used to set the capacity for a Server block. This value represents the number of
entities the Server can service simultaneously. Valid incoming values for this port are integers in the range of
0to 2,147,483,647. During simulation execution, an integer value can be pushed through the InCapacity port
to dynamically change the capacity. If the value from the port is less than the currently busy capacity, the
capacity reduction request will be deferred and accommodated as entities finish service and leave the Server
block. Entities will not be balked or preempted in this case.

Holding Block Preemption

Entities in Simulation Studio are hierarchical. That is, entities can hold other entities. The term controlling
entity denotes an entity that holds other entities, and the term root entity denotes an entity that is not held by
another entity. Each entity held by another entity has one root entity associated with it. The root entity for
any held entity is found by traversing up the entity hierarchy from the held entity.

Entities being held by a Server block can be preempted either by input to the block’s InPreempt port or by a
scheduled resource entity event. In order for a root entity that is held by a Server block to be preempted, the
OutPreempt port (or OutBalk port) must have at least one link attached to it. Similarly, for a resource entity
that is held by a controlling entity that is in turn held by the Server block to be preempted, the OutResource
port (or OutBalk port) must have at least one link connected to it.

The Server block’s InPreempt port accepts an Entity Group object as input. (An Entity Group is a collection
of references to entities.) When an Entity Group object is pushed to a Server block’s InPreempt port, the
Server block iterates through the Entity Group collection looking for matches to root entities held by the
Server block. For any matched entity, the Server block first tries to push that entity out its OutPreempt port.
If this push is not successful, the block attempts to push the entity out the OutBalk port. If this also fails, the
entity continues to be held by the Server block until either it exits out the OutEntity port or it is preempted
again.

The Server block, like all entity holding blocks, detects potential preemptive changes (such as those scheduled
by a Resource Scheduler block) to resource entities it holds (either directly or indirectly through a controlling
entity).

If the number of units associated with a held resource entity decreases or the state of a held resource entity
becomes nonfunctional, the Server block attempts to preempt that resource entity. If the resource entity
identified for preemption is a root entity, then the Server block follows the same protocol for pushing an
entity out its OutPreempt port that the InPreempt port uses. If the resource entity is part of a controlling entity,
the Server block removes the resource entity from the controlling entity and attempts to push the associated
root entity out the OutPreempt port. The Server block then attempts to push the preempted resource entity
out its OutResource port, or if that fails, out its OutBalk port. If there is a connection to the Server block’s
OutResource port and the Server block cannot push the resource entity out either the OutResource or OutBalk
port, the resource entity is disposed.

138 4 Appendix A: Templates

The Server block also provides an OutHoldings port that other blocks can use to pull an Entity Group object
that contains a collection of references to entities held by the Server block.

Fixed Ports

InEntity
OutEntity
OutPreempt

OutResource

OutBalk
InServiceTime
InCapacity

InPreempt

OutUtilization
OutAvailable

Input entity port for entities to enter the Server block.
Output entity port for entities that can be accepted by a downstream block.

Output entity port for root entities that are preempted and can be accepted by a downstream
block.

Output entity port for resource entities held by controlling entities that are preempted and
can be accepted by a downstream block.

Output entity port for entities that cannot leave using the other output entity ports.
Input numeric port for how long the next entity should remain in the Server block.
Input integer port for the number of entities the Server block can service simultaneously.

Entity Group input port that causes the Server block to preempt any root entities it is
holding that match entities in the incoming Entity Group.

Output numeric port for the current utilization of the Server block’s capacity.

Output integer port for the Server block’s capacity that is not currently busy.

OutNumberBusy Output integer port for the Server block’s capacity that is currently busy.

OutHoldings

Entity Group output port from which a group of entity references can be pulled, represent-
ing the entities held by the Server block.

Properties Dialog Box Controls

Values

The Capacity field specifies the capacity of the Server block.

Candidates for Design of Experiments

Factors

Responses

RankValue (double), Capacity (integer)
AvgUtilization (double), MaxUltilization (double)

Modifier Block

..............

..............

Extractor Block 4 139

Description

The Modifier block assigns attributes to an entity as it passes through the block. Each attribute has an input
value port associated with it. When an entity enters the block, values are pulled from the input value ports
and assigned to the associated attributes in the entity. If there is no connection to an input value port, the
Modifier block assigns the default value specified for the attribute.

Fixed Ports
InEntity Input entity port for entities to enter the Modifier block.
OutEntity Output entity port for entities that can be accepted by a downstream block.
OutBalk Output entity port for entities that cannot leave using the OutEntity port.

Properties Dialog Box Controls

Add Adds a new attribute with a default Name, Type, and Default value to the Attribute table.
You can change the Name, Type, and Default value of the attribute directly in the table.
The attribute names in the Modifier block’s Attribute table must be unique. You can
change the attribute Type through a drop-down box on the cell in the table. (An attribute
Type cannot be changed in the table after the Apply button is clicked. If you want to
change an attribute Type after Apply has been clicked, you must remove the attribute,
add it again, and then modify the Type of the newly added attribute before clicking Apply

again.)
Remove Deletes the selected attribute from the Attribute table.
Apply Updates all attributes in the Modifier block as specified in the Attribute table, and creates

or deletes value ports as needed.

Candidates for Design of Experiments

Factors None

Responses None

Extractor Block

140 4 Appendix A: Templates

Description

The Extractor block extracts attribute values from an entity as it passes through the block. Each attribute has
an output value port associated with it. When an entity enters the block, entity attribute values are retrieved
from the entity and pushed to their respective output value ports.

You can also connect an Extractor block’s output value port to an input value port of another block without
any connections to the Extractor block’s InEntity port. For example, you can connect an output value port of
an Extractor block to the InServiceTime port of a Server block. After an entity enters the Server block, it is
passed to the Extractor block (via the InServiceTime port) to extract the appropriate entity attribute value to
be used for the InServiceTime value.

Fixed Ports
InEntity Input entity port for entities to enter the Extractor block.
OutEntity Output entity port for entities to exit the Extractor block.

Properties Dialog Box Controls

Add Adds a new attribute with a default Name and Type to the Attribute table. You can
change the Name and Type of the attribute directly in the table. The attribute names in
the Extractor block’s Attribute table must be unique. You can change the attribute Type
through a drop-down box on the cell in the table. (An attribute Type cannot be changed in
the table after the Apply button is clicked. If you want to change an attribute Type after
Apply has been clicked, you must remove the attribute, add it again, and then modify the
Type of the newly added attribute before clicking Apply again.)

Remove Deletes the selected attribute from the Attribute table.

Apply Updates all attributes in the Extractor block as specified in the Attribute table, and creates
or deletes value ports as needed.

Candidates for Design of Experiments

Factors None

Responses None

Switch Block

InSwitlchTJ alue

- [olo- OutDefault
InEntity hinjEU-DutEalk

Switch Block 4 141

Description

The Switch block directs the flow of an entity through a simulation model. You define switch cases on the
Switch block. The case names must be unique, and each switch case must have an integer value (called the
switch value) associated with it. When an entity enters a Switch block, the block calculates the switch value
to be used for the entity. Depending on the Switch block configuration, the block either attempts to extract
the switch value from an attribute in the entity or pulls it from the InSwitchValue port. After the switch value
is acquired, the Switch block searches the cases in its Cases table until it finds a case with the same switch
value. The entity is then pushed out the entity out port associated with the matching case. If a match is not
found, the entity is sent out the OutDefault port.

Fixed Ports
InEntity Input entity port for entities to enter the Switch block.
OutDefault Output entity port for entities that do not match a switch case defined for the Switch block.
OutBalk Output entity port for entities that cannot leave using the other output entity ports.

InSwitchValue Input integer port for the switch value to be used for the next entity, if the Switch block is
configured to obtain the switch value from this port rather than from an entity attribute.

Properties Dialog Box Controls

Add Adds a new switch case to the Cases table with a default Name and Value. You can edit
the Name and Value of the switch case directly in the table. The case names and values
used by a Switch block must be unique.

Remove Deletes the selected switch case from the Cases table.

Switch Value If you select the Port option, the Switch block pulls the switch value from the InSwitch-
Value port. If you select the Entity option, you must also supply the name of an attribute
in the Entity Attribute field. The Switch block attempts to extract the switch value from
the appropriate attribute on the entity.

Apply All values in the Cases table are saved to the Switch block and any entity output ports are
created or deleted as needed.

Candidates for Design of Experiments

Factors None

Responses None

142 4 Appendix A: Templates

Selector Block

InCazeValue
-

IrDefault -» §w

O- CutEntity
0= OutBallk

Description

The Selector block selects and outputs entities from one of its input entity ports based on its case values.
Each input entity port is associated with a unique case value. Every time the block receives a request from
downstream to output an entity, the InCaseValue input value port checks the current case value to determine
which input entity port to use to fetch an entity. Similarly, when an entity from upstream attempts to enter the
block through one of the input entity ports, the InCaseValue input value port checks the current case value to
verify that its value matches with the input entity port.

By default, the Selector block provides one input entity port named InDefault. You can create additional
input entity ports in the properties dialog box by adding new cases to the Cases table. Each entry in the
table specifies the case’s Name and Value. At experiment run time, the Value is compared to the current
InCaseValue. If the two match, the corresponding input entity port is active. If the current case value from
the InCaseValue port does not match any case value in the Cases table, an entity is allowed only to enter or
be pulled through the InDefault input entity port.

The case names and values must be unique within each Selector block.

Fixed Ports
InDefault Input entity port that allows entities to enter the block if the value pulled from the
InCaseValue input value port does not match any cases in the Selector block.
OutEntity Output entity port for entities to leave.
OutBalk Output entity port for entities to leave that cannot leave using the OutEntity port.
InCaseValue Numeric input value port used to determine which of the input entity ports allows entities

to enter.

Properties Dialog Box Controls

Add Adds a new case to the Cases table with a default Name and Value. The Name and Value
can be edited directly in the table.

Remove Deletes the selected case from the Cases table.

Apply All values in the Cases table are saved to the Selector block, and any input entity ports

are created or deleted as needed.

Number Holder Block 4 143

Candidates for Design of Experiments

Factors None

Responses None

Number Holder Block

CatData E“? I?_ ChatZollected
ChatDisplayed

Description

The Number Holder block is used to display a number that represents some user-defined state information.
Values can be pushed to or pulled from a Number Holder block via its InData and OutData ports. A Number
Holder block will automatically attempt to push any value received at its InData port out its OutData port.
Similarly, when a request comes in to pull a value from the OutData port, a Number Holder block will, by
default, attempt to pull a value from upstream using its InData port. The user can modify this default behavior
using the Propagation controls on a Number Holder block.

By default a Number Holder block will display the last value to enter through its InData port, however options
are available to display the minimum value, maximum value, mean value, sum of all values, or a count of
how many values have entered the block.

The Number Holder block provides the capability of storing values that enter it using its data collection
facility. This data can be saved to a SAS data set or JMP table. Values (along with time stamps) are stored
in a DataModel object and the DataModel object can be accessed through the block’s OutCollected port.
Display blocks, such as the Histogram block, are often connected to a Number Holder block’s OutCollected
port to visualize the data. Any block using a DataModel object is automatically notified when the data in the
DataModel object is modified.

If data collection is enabled, the InClearData port is also enabled on the Number Holder block. When a true
Boolean value arrives at the InClearData port, it will be used as a signal to clear all the data collected by the
Number Holder block up to that time during the simulation execution. If the InClearData port receives a false
value, the signal will be ignored and data will not be cleared.

Attributes Dialog Controls

Current The last value to enter the Number Holder block. The value entered here will be
displayed in the block (if the Display option is set to Value) until a new value
enters the block.

Default The Default Value is used to initialize the Current Value in the Number Holder
block when it is created or when the block is reset.

144 4 Appendix A: Templates

Display

Propagation

Data Collection

Save Dialog Controls

Automatic Save

Save Now

Location

Base File Name

The drop-down box associated with the Display option controls what value is
displayed on the Number Holder block. Options include the current Value,
Minimum, Maximum, or Mean value, the Sum of all values, or the Count of
how many values have entered the block.

The To Downstream check box is used to control propagation of values sent
to the InData port of a Number Holder block. If this check box is selected any
values entering the InData port will be automatically sent out the OutData port.
Otherwise the value propagation will stop at the Number Holder block. If the
From Upstream check box is selected any attempt to pull a value from the
OutData port of a Number Holder block will result in the Number Holder block
attempting to pull a value from block(s) connected to its InData port.

The Collect Data check box is used to turn data collection on or off. The value
entered in the Capacity field determines how many values are saved in the
DataModel object. If the capacity is exceeded, a warning message is logged and
values are overwritten in the DataModel object.

Turns on or off automatic saving of any collected data at the end of each design
point replication run. If automatic saving is turned on, data are saved to a file
with the base file name specified in the Base File Name field. Simulation Studio
automatically determines the pathname of the folder for this file based on the
pathname of the folder containing your saved project. If the Submit to Remote
SAS Workspace Server option is selected, then any collected data are saved to
a file on a remote SAS server. Simulation Studio automatically determines the
pathname of the folder for this file on the remote SAS server using the Default
File Path specified in the Simulation Studio Configuration dialog box.

Forces the Number Holder block to attempt an immediate save of any collected
data. Data are saved to the same location as when automatic saving is turned on.

Displays the pathname of the folder for the file in which to save any collected
data.

Specifies the base file name for the SAS data set or JMP table that is used to save
any collected data. This name will be the prefix of the actual file name. The zero-
based index of the design point and the zero-based index of the replication number
will be added as suffixes to the file name, separated by underscore characters. For
example, the data for the first replication of the first design point will be saved in
a file named BaseFileName_0_0, and the data for the second replication of the first
design point will be saved in a file named BaseFileName_0_1.

Candidates for Design of Experiments

Factors DefaultValue (double)

Responses Value (double), MeanValue (double), SumOfValues (double), Minimum Value (double),
MaximumValue (double), Count (integer)

String Holder Block 4 145

String Holder Block

..............

CutCollected

Description

The String Holder block displays a string that represents state information that you define. Values can be
pushed to or pulled from a String Holder block via its InData and OutData ports. The String Holder block
displays the last value to enter through its InData port and automatically attempts to push any value that is
received at its InData port out its OutData port. Similarly, when a request comes in to pull a value from the
OutData port, a String Holder block, by default, attempts to pull a value from upstream using its InData port.
You can use the Propagation controls on a String Holder block to modify this default behavior.

The data collection facility of the String Holder block enables you to store values that enter the block. Data
can be saved to a SAS data set or JMP table. Values (along with timestamps) are stored in a DataModel
object, and the DataModel object can be accessed through the block’s OutCollected port. Any block that uses
a DataModel object is automatically notified when the data in the DataModel object are modified.

If data collection is enabled, the InClearData port is also enabled on the String Holder block. When a true
Boolean value arrives at the InClearData port, it is used as a signal to clear all the data collected by the String
Holder block up to that time during the simulation execution. If the InClearData port receives a false value,
the signal is ignored and data are not cleared.

Properties Dialog Box Controls

Current Displays the last value to enter the String Holder block. The value entered here is
displayed in the block until a new value enters the block.

Default Specifies the current value for the String Holder block when the block is initial-
ized.

Propagation The To Downstream check box controls propagation of values sent to the InData

port of a String Holder block. If this check box is selected, any values that enter
the InData port are automatically sent out the OutData port. Otherwise, the value
propagation stops at the String Holder block. If the From Upstream check box
is selected, any attempt to pull a value from the OutData port of a String Holder
block results in the String Holder block attempting to pull a value from one or
more blocks that are connected to its InData port.

Data Collection The Collect Data check box turns data collection on or off. The value entered
in the Capacity field determines how many values are saved in the DataModel
object. If the capacity is exceeded, a warning message is logged and values are
overwritten in the DataModel object.

146 4 Appendix A: Templates

Save Dialog Controls

Automatic Save

Save Now

Location

Base File Name

Turns on or off automatic saving of any collected data at the end of each design
point replication run. If automatic saving is turned on, data are saved to a file with
the base filename that is specified in the Base File Name field. Simulation Studio
automatically determines the pathname of the folder for this file based on the
pathname of the folder that contains your saved project. If the Submit to Remote
SAS Workspace Server option is selected, then any collected data are saved to
a file on a remote SAS server. Simulation Studio automatically determines the
pathname of the folder for this file on the remote SAS server by using the Default
File Path specified in the Simulation Studio Configuration dialog box.

Forces the String Holder block to attempt an immediate save of any collected
data. Data are saved to the same location as when automatic saving is turned on.

Displays the pathname of the folder for the file in which to save any collected
data.

Specifies the base filename for the SAS data set or JMP table that is used to save
any collected data. This name will be the prefix of the actual filename. The zero-
based index of the design point and the zero-based index of the replication number
will be added as suffixes to the file name, separated by underscore characters. For
example, the data for the first replication of the first design point will be saved in
a file named BaseFileName_0_0, and the data for the second replication of the first
design point will be saved in a file named BaseFileName _0_1.

Candidates for Design of Experiments

Factors DefaultValue (text)

Responses Value (text)

Numeric Source Block

Description

[nEtreamP olicy
InUpdate+ | rInDataPolicy

v

Kk
(|

li:h.J,’r,‘i:F alue

The Numeric Source block provides a source of random variation using pseudo-random number generators.
This block can also read numbers from a SAS data set or JMP data table.

A collection of discrete and continuous distributions are available, or you can provide the file path for the
SAS data set or JMP data table along with the numeric variable column name.

Numeric Source Block 4 147

The data provided by the Numeric Source block can be viewed as a stream of numbers, and the numbers
are pulled from the stream one after another during a simulation. For example, each time a value is pulled
from the OutValue port of a Numeric Source block, the block outputs a number from its current data stream
by generating a sample from its related distribution or by reading a value from the data set, whichever is
appropriate. If the last observation is reached when reading from a data set, the process resets to the beginning
of the column.

The Numeric Source block provides three types of data streams: Theoretical, Fitted, and Data Driven. The
Theoretical data streams include a collection of theoretical discrete and continuous distributions. The Fitted
data streams are these same distributions that can be fitted using an input data variable (column) in a SAS
data set or JMP data table. After the parameters of the distributions are estimated, the input data set is not
needed during a simulation run. The Data Driven data streams require an input data set and include options
such as empirical distributions and nonhomogeneous Poisson processes, in addition to the numeric SAS data
column.

Fixed Ports

InUpdate Input Boolean value port that signals an update of input data and stream parameter
specifications. The new specifications are pulled from the InStreamPolicy or InDataPolicy
ports (or both) if these ports are connected. A false Boolean value is ignored.

InStreamPolicy Input string value port from which the new stream parameter specifications are pulled
after an update signal is received. The format for specifying the value for the Theoretical
data streams is as follows:
class==dataStreamClass;attribute 1==attribute 1 Value;...; attributeN==attributeNValue;
Random Stream Seed==seedValue
where:

dataStreamClass is the fully-qualified Java class name of a data stream type.

attribute 1 is the name of the first parameter associated with the specified data
stream type.

attribute1Value is the value of the first parameter associated with the specified data
stream type.

attributeN is the name of the last parameter associated with the specified data
stream type.

attributeNValue is the value of the last parameter associated with the specified data
stream type.

seedValue is the value of the random stream seed, with integer values in the range
of 0 to the Java Long. MAX_VALUE.

For example, possible values for a string input value might be as follows:

class==com.sas.analytics.simulation.datastream.distribution. Exponential;Mean==
10;Random Stream Seed==100

class==com.sas.analytics.simulation.datastream.distribution.Gamma;Scale==5;
Shape==3.2

148 4 Appendix A: Templates

OutValue

Dynamic Ports

InDataPolicy

If you want to keep the same distribution but alter one or more parameter settings for the
distribution, you only need to supply the information that is required for the parameter
that you want to change. For example, if you are using a normal distribution and you want
to change the mean value that is associated with the distribution, possible values for the
string input value might be as follows:

Mean==1.2
Mean==10

The format for specifying the value for the Data Driven data streams is as follows:
Lazy Loading==BooleanValue;Random Stream Seed==seedValue
where:

BooleanValue is either true or false.

seedValue is the value of the random stream seed, with integer values in the range
of 0 to the Java.Long. MAX_VALUE. The SAS Data Column type
does not have the Random Stream Seed option.

Output number port for the numeric values to be pulled.

Input string value port from which the new input data specifications are pulled after an
update signal is received. This port is available only for the Data Driven data streams.
The format for specifying the value is as follows:

attribute 1==attribute 1 Value; attribute2==attribute2Value;...; attributeN==attributeN Value
where:

attribute 1 is the name of the first parameter associated with the specified Data
Driven Type.

attribute1Value is the value of the first parameter associated with the specified Data
Driven Type.

attributeN is the name of the last parameter associated with the specified Data
Driven Type.

attributeNValue is the value of the last parameter associated with the specified Data
Driven Type.

For example, possible values for a string input value for the Discrete Empirical Data
Driven Type might be as follows:

File Path==C:\SimStudio\projects\discempl.sas7bdat;X==age;Y=pmf
X=group2;Y=prob2

Numeric Source Block 4 149

Dialog Box Controls
Specify the type of data stream to be provided by this Numeric Source block.

When the Theoretical type is selected, the following dialog box controls are available:

Type From the list, select the distribution to sample from. The Parameters section will be
updated to reflect the distribution.

Stream Parameters This area provides fields for modifying the parameter values associated with the
selected distribution. Each distribution has a Random Stream Seed entry field. Although
Simulation Studio automatically assigns a different seed for each source of randomness,
you can use this field to specify the seed value. Valid values for this field are integers in
the range of O to the Java Long. MAX_VALUE.

Reset Sampling at Update This option can be used to reset the random substream for the current replica-
tion during a simulation run. If selected, this option resets the random substream back to
the beginning when a true Boolean value is received at the InUpdate port. By default,
this option is not selected.

When the Fitted option is selected, the following dialog box controls are available:

Input Data This area provides fields to specify the file path of input SAS data set or JMP data table
and the variable (column) name for distribution fitting. Click Fit Distribution to send the
fitting request to the JMP program to perform the fitting. If you do not provide the file
path or variable name, you can provide these directly using the JMP user interface before
the fitting operation proceeds. The fitting results can be sent back from the JMP program
to update the rest of the dialog box contents, including the associated distribution Type
and Stream Parameters controls described below. You can also use these controls to edit
the parameters.

Type From the list, select the distribution to sample from. The Parameters section will be
updated to reflect the distribution.

Stream Parameters This area provides fields for displaying and modifying the parameter values associated
with the selected distribution. Each distribution has a Random Stream Seed entry field.
Although Simulation Studio automatically assigns a different seed for each source of
randomness, you can use this field to specify the seed value. Valid values for this field are
integers in the range of O to the Java Long. MAX_VALUE.

Reset Sampling at Update This option can be used to reset the random substream for the current replica-
tion during a simulation run. If selected, this option resets the random substream back to
the beginning when a true Boolean value is received at the InUpdate port. By default,
this option is not selected.

When the Data Driven option is selected, the following dialog box controls are available:

Type From the list, select the distribution or data stream to sample from. The following Input
Data and Stream Parameters section will be updated to reflect the selection.

Input Data This area provides fields to specify the file path of an input SAS data set or JMP data table
and the variable or column names. The Load from Remote SAS Workspace Server
checkbox indicates that the input SAS data set file is to be loaded from the remote SAS
Workspace Server host specified in the Configuration dialog box.

150 4 Appendix A: Templates

Stream Parameters This area provides fields for modifying the parameter values that are associated with

the selected distribution or data stream. The Discrete Empirical, Empirical, NHPP Count,
and NHPP Rate type have a Random Stream Seed entry field. Although Simulation
Studio automatically assigns a different seed for each source of randomness, you can use
this field to specify the seed value. Valid values for this field are integers in the range of 0
to the Java Long. MAX_VALUE.

All Data Driven types have the Lazy Loading Boolean field. If the Lazy Loading field
is false, the input data set file has to be loaded at the start of simulation. Otherwise, the
data file is loaded only when its contents are needed during simulation.

Reset Sampling at Update For the SAS Data Column type value, this option resets the current data set

back to the first observation when a true Boolean value is received at the InUpdate port.
If the InDataPolicy port is also connected and a new data set is specified, then the new
data set starts at the beginning with the first observation if the Reset Sampling at Update
option is selected. For the Discrete Empirical, Empirical, NHPP Count, and NHPP Rate
type values, this option, if selected, resets the random substream for the current replication
back to the beginning when a true Boolean value is received at the InUpdate port.

Candidates for Design of Experiments

Factors

DataStreamDescription(text), InputDataPolicy(text), ResetStreamAtUpdate(Boolean)
When the Theoretical option is selected, the format for specifying the value of the
DataStreamDescription factor is as follows:

class==dataStreamClass;attribute 1==attribute 1 Value;...;attributeN==attributeNValue;
Random Stream Seed==seedValue

where:

dataStreamClass is the fully-qualified Java class name of a data stream type.

attribute1 is the name of the first parameter associated with the specified data
stream type.

attribute1Value is the value of the first parameter associated with the specified data
stream type.

attributeN is the name of the last parameter associated with the specified data
stream type.

attributeNValue is the value of the last parameter associated with the specified data
stream type.

seedValue is the value of the random stream seed, with valid integer values in the
range of O to the Java Long. MAX_VALUE.

For example, possible values for a DataStreamDescription factor might be as follows:

class==com.sas.analytics.simulation.datastream.distribution.Exponential;Mean==
class==com.sas.analytics.simulation.datastream.distribution.Normal;Mean==1;Std

Dev==

If you want to keep the same distribution but alter one or more parameter settings for the
distribution, you only need to supply the information that is required for the parameter

Numeric Source Block 4 151

that you want to change. For example, if you are using an exponential distribution and
you want to change the mean value associated with the distribution, possible values for
the DataStreamDescription factor might be as follows:

Mean==

Mean==4.5

When the Data Driven option is selected, the format for specifying the value of the
DataStreamDescription factor is as follows:

Lazy Loading==BooleanValue;Random Stream Seed==seedValue

where:

BooleanValue is either true or false.

seedValue is the value of the random stream seed, with integer values in the range
of 0 to the Java.Long. MAX_VALUE. The SAS Data Column type
does not have the Random Stream Seed option.

When the Data Driven option is selected, the format for specifying the value of the
InputDataPolicy factor is as follows:
attribute 1==attribute 1 Value;attribute2==attribute2Value;...;attributeN==attributeNValue

where:

attribute1 is the name of the first parameter associated with the specified Data
Driven Type.

attribute1Value is the value of the first parameter associated with the specified Data
Driven Type.

attributeN is the name of the last parameter associated with the specified Data
Driven Type.

attributeNValue is the value of the last parameter associated with the specified Data
Driven Type.

For example, possible values for the InputDataPolicy factor for the SAS Data Column
Data Driven type might be as follows:

File Path==C:\SimStudio\projects\datal.sas7bdat;Variable
Name==age

Variable Name==cost

Responses None

152 4 Appendix A: Templates

Text Source Block

Description

InBtre amP olicy
InUpdate- | rInDataPolicy

el i

=
]

li:h.;’rﬁ:F alue

The Text Source block reads strings from a SAS data set. You supply the file path for the SAS data set or
JMP data table along with the text variable column name. Each time a value is pulled from the OutValue port
of a Text Source block, the block reads a value from the data set. If the last observation in the data set is
reached, the process resets to the beginning of the column.

Fixed Ports

InUpdate

InStreamPolicy

InDataPolicy

OutValue

Input Boolean value port that signals an update of input data and stream parameter
specifications. The new specifications are pulled from the InStreamPolicy or InDataPolicy
ports (or both) if these ports are connected. A false Boolean value is ignored.

Input string value port that allows new stream parameter specifications to come in when
an update signal is received. The format for specifying the value is as follows:

Lazy Loading==BooleanValue

where BooleanValue is either true or false.

Input string value port from which the new input data specifications are pulled when an
update signal is received. The format for specifying the value is as follows:
class==dataStreamClass;File Path==filePathValue;Variable Name==variableNameValue
where:

dataStreamClass is com.sas.analytics.simulation.datastream.file. SASTextDataColumn or
the fully-qualified Java class name of another text data stream type.

filePathValue is the pathname for the SAS data set or JMP table.

variableNameValue is the column name from the SAS data set or JMP table.

It is not necessary to specify all arguments for the input string value. For example, if you

want to continue sampling from the same data set but change the column from the data set,

then you can specify a string for the InputDataPolicy port that contains only the Variable
Name==variableName Value option.

Output string value port for text values to be pulled.

Text Source Block 4 153

Dialog Box Controls

Input Data This area provides fields for modifying the input data specifications associated with the
Text Source block. The File Path field specifies the absolute or relative file path for the
input SAS data set or JMP data table file. The Variable Name field identifies the variable
or column name in input data file. The Load from Remote SAS Workspace Server
checkbox indicates whether the input SAS data set file is to be loaded from the remote
SAS Workspace Server host.

Stream Parameters This area provides fields for modifying the stream parameter specifications that
control how the stream of text values from the Text Source block is prepared. The field
Lazy Loading is Boolean. If the Lazy Loading field is false, the input data set file has
to be loaded at the start of simulation. Otherwise, the data file is loaded only when its
contents are needed during simulation.

Reset Sampling at Update This option resets the current data set back to the first observation when a true
Boolean value is received at the InUpdate port. If the InDataPolicy port is also connected
and a new data set is specified, then the new data set starts at the beginning with the first
observation if the Reset Sampling at Update option is selected.

Candidates for Design of Experiments

Factors DataStreamDescription (text), InputDataPolicy (text), ResetStreamAtUpdate (Boolean)
The format for specifying the value of the InputDataPolicy factor is as follows:
class==dataStreamCilass;File Path==filePathValue;Variable Name==variableNameValue
where:

dataStreamClass is com.sas.analytics.simulation.datastream.file. SASTextDataColumn or
the fully-qualified Java class name of another text data stream type.

filePathValue is the pathname for the SAS data set or JMP table.

variableNameValue is the column name from the SAS data set or JMP table.

The format for specifying the value of the DataStreamDescription factor is as follows:

Lazy Loading==BooleanValue
where BooleanValue is either true or false.

Responses None

154 4 Appendix A: Templates

Counter Block

|
ChatC ount

Description

The Counter block counts the number of entities that pass through it. If the OutCount value port has any
connections to it, the Counter block pushes its count value to the port every time it changes.

After an entity enters the Counter block, the block determines whether any block downstream of the Counter
block’s OutEntity port can accept the entity before pushing the entity out the OutEntity port. If this acceptance
fails, the entity is either pushed out the OutBalk port or destroyed if there are no connections to the OutBalk
port.

Fixed Ports
InEntity Input entity port for entities to enter the Counter block.
OutEntity Output entity port for entities that can be accepted by a downstream block.
OutBalk Output entity port for entities that cannot leave using the OutEntity port.
OutCount Output integer port for the number of entities that have passed through the Counter block.

Candidates for Design of Experiments

Factors None

Responses Count (integer)

Time Now Block 4 155

Time Now Block

(5

ooo o
CuatWValue - | EOutREeplicationlndex
ChatFomtlndex

Description

The Time Now block can be used to access the current simulation time while the model is running. This is
accomplished by pulling a value from the OutValue port on the Time Now block. The indices of the current
design point and replication for the current simulation experiment are also provided.

Fixed Ports
OutValue Output number port that can be pulled for the current simulation clock time. (NOTE: The
clock value is not pushed out from the port automatically.)
PointIndex Output number port for the 1-based index of the current design point during the run of a

simulation experiment.

ReplicateIndex Output number port for the 1-based index of the current replication within the current
design point during the run of a simulation experiment.

Candidates for Design of Experiments

Factors None

Responses None

156 4 Appendix A: Templates

Overview of the Advanced Template

The Simulation Studio Advanced template provides a collection of blocks used to build more complex
simulation models.

Batch Block

InSignal InBatchSize
1 1

v

Inarrier —p ﬁ O- Ot attier
InEntity -» 0= CatBalk

Description

The Batch block groups entities so that they flow together through a simulation model. Entities arrive at a
Batch block individually through its InEntity input entity port. The Batch block holds the entities until the
number of entities it is holding reaches the value specified in the Batch block’s batch size parameter. At this
point, the Batch block attaches the held entities to a carrier entity that carries the group of entities through
the simulation model, and attempts to send the carrier entity out through the OutCarrier output entity port.
Downstream in the simulation model, an Unbatch block can be used to separate the individual entities from
the batch carrier.

If nothing is attached to the InCarrier input entity port, a Default entity is created and used as the carrier
entity whenever a batch of entities is ready to be sent out through the OutCarrier port. If there is a connection
to the InCarrier port, the entities that arrive at that port are used as the carriers. If there is a connection to
the InCarrier port, the Batch block waits until it has both a carrier entity and a complete batch of entities
before it attempts to send the carrier entity out through the OutCarrier port. The Batch block can hold only a
single carrier and a single batch of entities at any given time. Therefore, if there is a connection to the Batch
block’s InCarrier port and the Batch block is holding a carrier entity but is not holding a complete batch of
entities, the Batch block does not accept another carrier entity through its InCarrier port. Similarly, if there is
a connection to the Batch block’s InCarrier port and the Batch block is holding a complete batch of entities
but is not holding a carrier entity, the Batch block does not accept another entity through its InEntity port.

The InSignal input value port is used to force the Batch block to send out a carrier regardless of the number
of entities it is holding. If a true value arrives at the InSignal port, the Batch block attempts to attach any
entities it is holding to a carrier entity and send the carrier entity out through the OutCarrier port. In this case
the carrier might not hold any entities or it might hold a smaller number of entities than the batch size. If
there is a connection to the InCarrier port and a true value arrives at the InSignal port but the Batch block is
not holding a carrier, the signal is ignored. A false signal arriving at the InSignal port is always ignored since
it signifies that no action needs to be taken.

An integer value can be pushed through the InBatchSize port to set the batch size for the Batch block. If the
batch size is decreased while the Batch block is holding more entities than the new batch size, the existing

Batch Block 4+ 157

entities are batched together according to the new batch size, and the Batch block attempts to send a carrier
entity out through its OutCarrier port for each smaller batch of entities. If there is a connection to the Batch
block’s InCarrier port, the Batch block waits for a carrier to arrive before sending out each smaller batch of

entities.
Fixed Ports

InEntity Input entity port for entities that are batched together.

InCarrier Input entity port for entities used as carriers for entity batches.

OutCarrier Output entity port for carriers (containing batches of entities) that can be accepted by a
downstream block.

OutBalk Output entity port for carriers (containing batches of entities) that cannot leave using the
OutCarrier port.

InSignal Boolean input port that forces the Batch block to send out a carrier (if one is available) that
contains any entities being held by the Batch block. The carrier can be empty (containing
no entities).

InBatchSize Numeric input port that dynamically sets the batch size of the Batch block.

Properties Dialog Box Controls

Batch Size Specifies the number of entities the Batch block stores in its buffer before attempting to
send out those entities on a carrier. Valid values for this field are integers in the range
from O to 2,147,483,647. Selecting the Infinite check box supersedes any value entered.
If the Infinite check box is selected, a connection should be made to the InSignal port
of the Batch block to determine when the Batch block should attempt to release a carrier
containing a batch of entities.

Queueing Policy Specifies the queueing policy for the queue used internally by the Batch block. See the
Queueing Policy control in the section “Queue Block™ on page 131 for details.

Candidates for Design of Experiments

Factors QueueingPolicy (text)
See the Queueing Policy design-of-experiment factor in the section “Queue Block™ on page 131
for details.

Responses None

158 4 Appendix A: Templates

Unbatch Block

Description

O~ CDutarrier

InCatrier —p 0- OutEntity
O~ OutCarrierBalk
~OutEntityBalk

The Unbatch block is used to separate individual entities from a batch carrier entity. Carrier entities (populated
with a group of zero or more entities by a Batch block) arrive at an Unbatch block through its InCarrier input
entity port. The Unbatch block first separates individual entities from the carrier entity. Then it attempts
to send the carrier entity (which might or might not be empty depending on whether the Unbatch block
separated all of the individual entities from the carrier) out its OutCarrier output entity port. It also attempts
to send each of the separated individual entities (if any) out its OutEntity port.

Fixed Ports

InCarrier
OutCarrier

OutEntity

OutCarrierBalk
OutEntityBalk

Input entity port for carrier entities that contain a batch of zero or more entities.
Output entity port for a carrier to leave that can be accepted by a downstream block.

Output entity port for each of the individual entities separated from the carrier to leave
that can be accepted by a downstream block.

Output entity port for a carrier to leave that cannot leave using the OutCarrier port.

Output entity port for each of the individual entities separated from the carrier to leave
that cannot leave using the OutEntity port.

Properties Dialog Box Controls

Identify Candidate Entities Use these fields to define the criteria for selecting possible entities to be

separated from the carrier. The Unbatch block considers separating from the carrier only
entities that satisfy all of the criteria specified in this section.

For Primary Usage, you can select to have entities of either type Regular Entity or
Resource Entity separated from the carrier.

For Entity Type (optional), you can specify the name of a particular entity type for entities
to be separated from the carrier.

For Attribute Rule (optional), you can specify a Boolean expression that involves attribute
values for entities to be separated from the carrier. For more information about how to
write the Boolean expression, see Appendix F, “Expressions.”

If you select Resource Entity for Primary Usage, then you can specify a Resource
State (optional) for entities to be separated from the carrier. Valid values are Functional,
Failed, Maintenance, and Offlined.

Clone Block 4 159

Unbatch Entities among Candidates Use these fields to specify which entities meeting the criteria speci-
fied in the Identify Candidate Entities section should be separated from the carrier.
Begin At specifies where in the buffer of entities to begin separating them from the carrier
and attempting to send them out through the OutEntity port. First means to start with the
first entity in the buffer and then proceed with the following entities in order, stopping
if the end of the buffer is reached. Last means to start with the last entity in the buffer
and then proceed backwards through the entities, stopping if the beginning of the buffer
is reached. Middle means to start with the entity at the index specified in the entry field
and then proceed with the following entities in order, stopping if the end of the buffer is
reached.

Count specifies a maximum number of entities to separate from the carrier. Checking All
causes any Count value to be ignored. If All is checked and Begin At is set to First or
Last, all of the entities that meet the criteria in the Identify Candidate Entities section
are separated from the carrier. If All is checked and Begin At is set to Middle, all of the
entities except the ones before the specified middle index are separated from the carrier.

Candidates for Design of Experiments

Factors None

Responses None

Clone Block

MumnCloniesF etF ort
|
w
- - iDutEntit:
InFntity - - ¥
Y Jo-owpak

Description

The Clone block creates clones of entities that pass through it. A clone is a new entity with the same type
and all of the same attributes as the original entity. When an entity enters a Clone block, the block first
determines whether anything is connected to its NumClonesPerPort port. If it finds a connection, the Clone
block attempts to pull a value from the NumClonesPerPort port. This value represents the number of clones
of the original entity that the Clone block generates for each clone output port. If this value is greater than 1,
multiple clones flow sequentially out of each clone output port.

If there are no connections to the NumClonesPerPort port, the Clone block uses the value specified in its
ClonesPerPort properties dialog box field for the number of clones to generate per clone output port.

You can set the number of clone output ports in the properties dialog box. If no clone output ports exist, the
new clone entities are pushed through the OutEntity port. The original entity is always the first entity to

160 4% Appendix A: Templates

exit the Clone block, and it exits via the OutEntity port. If the original entity or a clone cannot be accepted
downstream, it flows out through the OutBalk port.

Fixed Ports

InEntity Input entity port for entities to enter the Clone block.

OutEntity Output entity port for the input entity if it can be accepted by a downstream block. If there
are no clone output ports, clone entities that can be accepted by a downstream block also
go out through this port.

OutBalk Output entity port for any entities that cannot be accepted by a downstream block.

NumClonesPerPort Input integer port for the number of clone entities for the clone block to generate for
each clone output port.

Properties Dialog Box Controls

Clones Per Port Specifies how many clones are generated for each clone output port. This value
is used only if there are no connections to the NumClonesPerPort port.

Cloning Ports Specifies how many clone output ports are available on this block.

Candidates for Design of Experiments

Factors ClonesPerPort (integer)
Responses None
Gate Block

InFntity -» :f;]: O- OutEntity

Description

The Gate block provides a facility to pull and push multiple values every time an entity passes through the
block. For each action defined on a Gate block, an input value port and an output value port is created on
the block. When an entity enters a Gate block, the block steps through its list of actions, first pulling from
the input value port associated with the action and then pushing the value retrieved to the output value port
associated with the action. If there is no connection to an input value port, the Gate block uses the default
value associated with that action.

Valve Block 4+ 161

Fixed Ports
InEntity Input entity port for entities to enter the Gate block.
OutEntity Output entity port for entities to exit the Gate block.

Properties Dialog Box Controls

Add Adds a new action with a default Name, Type, and Default value to the Actions table.
You can change the Name, Type, and Default value of the action directly in the table.
The action names in the Gate block’s Actions table must be unique. You can change the
action Type through a drop-down box on the cell in the table. (An action Type cannot be
changed in the table after the Apply button is clicked. If you want to change an action
Type after Apply has been clicked, you must remove the action, add it again, and then
modify the Type of the newly added action before clicking Apply again.)

Remove Deletes the selected action from the Actions table.

Apply Updates all actions in the Gate block as specified in the Actions table, and creates or
deletes input and output value ports as needed.

Candidates for Design of Experiments

Factors None
Responses None
Valve Block
InSignal InFlowTrigger
- ¥
InFntity —p| =] 15— ChatEntity
v+ |67 btk
0
ChuatOpened
Description

The Valve block controls the flow of entities through a simulation model. If the Valve block is closed, an
entity cannot flow through the Valve block. If the Valve block is opened, its behavior depends on which flow
directions are enabled:

¢ If the Push To Downstream option is enabled, a block connected to the InEntity port can push entities
through the Valve block to a block connected to the OutEntity port. If disabled, pushing is not allowed
through the Valve block.

162 4 Appendix A: Templates

* If the Pull From Upstream option is enabled, a block connected to the OutEntity port can pull entities
through the Valve block from a block connected to the InEntity port. If disabled, pulling through the
Valve block is not allowed.

Fixed Ports
InEntity Input entity port for entering entities.
OutEntity Output entity port for entities to leave that can be accepted by a downstream block.
OutBalk Output entity port for entities to leave that cannot leave using the OutEntity port.
InSignal Boolean input port that allows the Valve block to be dynamically opened (true) or closed

(false).

InFlowTrigger Boolean input port that (by passing in true) can trigger the flow of entities through the
Valve block. The flow of entities is still subject to the settings specified in the Flow
Directions section of the Valve block’s properties dialog box and whether the Valve block
is opened or closed. An input value of false is ignored.

OutOpened Boolean output port that pushes out whether the Valve block is opened (true) or closed
(false) each time the Valve block changes state between opened and closed.

Properties Dialog Box Controls

Initial State Specifies whether the Valve block is Opened or Closed when the model starts executing.

Flow Directions Specifies the flow directions supported by the Valve block: Push To Downstream and
Pull From Upstream can be enabled or disabled independently.

Candidates for Design of Experiments

Factors None

Responses None

Formula Block 4 163

Formula Block

|
ChatWalue

Description

The Formula block can evaluate an expression based on state or model information. You create variables to
be used in the expression (called input variables) and you formulate them into an expression that is evaluated
every time a value is pulled from the Formula block’s OutValue port. The expression is also evaluated and
pushed out of the Formula block’s OutValue port every time input is pushed into one of the Formula block’s
input value ports. The value associated with an input variable can come either from an entity attribute or
from an input value port. If the source for an input variable is designated to be a port, an input value port is
created on the block and is associated with the appropriate input variable. Whenever a value is requested
from a Formula block, or new input arrives at a Formula block, the Formula block first determines which
values associated with its input variables need to be acquired (based on the setting for the To Acquire Port
Values Only When Needed properties dialog box option), and then attempts to evaluate its expression. The
result of this evaluation leaves through the OutValue port.

Fixed Ports

OutValue Output value port for the result of evaluating the Formula block’s expression.

Properties Dialog Box Controls

Add Adds a new input variable with a default Name, Type, and Source to the Input
Variables table. You can edit the Name, Type, and Source of the variable directly
in the table. The variable names listed in the Formula block’s Input Variables
table must be unique. You can change the Type through a drop-down box on the
cell in the table. (A variable Type cannot be changed in the table after the Apply
button is clicked. If you want to change a variable Type after Apply has been
clicked, you must remove the variable, add it again, and then modify the Type of
the newly added variable before clicking Apply again.)

Remove Deletes the selected variable from the Input Variables table.

To Acquire Port Values Only When Needed If this option is turned off, the Formula block always ac-
quires values for all of its input variables. If this option is turned on, the Formula
block acquires only the values for its input variables that are required in order to
determine the result of the expression.

Expression Contains the expression to be evaluated for the Formula block. Any variables
used in the expression must be defined in the Input Variables table. In addition

164 4 Appendix A: Templates

Expression Result

Apply

to the expressions listed in Appendix F, “Expressions,” the Formula block also
supports a dot (.) operator. When there is an input variable of type Observation,
the dot operator can be used to access the values of the observation’s member
variables. For example, suppose an observation input variable named Record
has member variables Name and GPA (so that the observation Record is a row
from a data set with columns Name and GPA). The expression Record.Name will
return the value of Name for the current observation. Similarly, the following
expression will return a string that depends on the value of GPA:

cond(Record.GPA < 60.0, "Fail", "Pass")

Identifies the value type that results from evaluating the expression. The selected
option generates the appropriate output port type for the Formula block.

Validates the expression and saves the input variables, the expression, and the
expression result. Input value ports are created or deleted and the type of the
output value port is set as needed.

Candidates for Design of Experiments

Factors None

Responses None

SAS Program Block

Description

[rderverData
InJueueData 2 l: InSubmitCode

i

The SAS Program block can be used to execute a SAS program or a JMP script. Optionally, the InQueueData
and InServerData ports can be used to generate custom SAS reports based on the output of a Queue Stats
Collector or Server Stats Collector block, respectively.

Fixed Ports

InQueueData Input data port for the pathname of a folder that contains the output data set of a Queue
Stats Collector block. This port is typically connected to the ResultLocation output data
port of a Queue Stats Collector block. A SAS program can use the Queue library reference
name (libref) to access the Queue Stats Collector data set location. This port is ignored
for JMP scripts.

Entity Filter Block 4 165

InServerData Input data port for the pathname of a folder that contains the output data set of a Server
Stats Collector block. This port is typically connected to the OutResultLocation output
data port of a Server Stats Collector block. A SAS program can use the Server library
reference name (libref) to access the Server Stats Collector data set location. This port is
ignored for JMP scripts.

InSubmitCode Input Boolean data port that starts the execution of the SAS program or JMP script if the
value true is passed in. For example, a Value Generator block that produces Boolean data
can have its OutValue port connected to a SAS Program block’s InSubmitCode port.

Properties Dialog Box Controls

SAS Code Path Specifies the pathname of the SAS program or JMP script to be executed.

Auto Submit If selected, causes the SAS program or JMP script to automatically execute at
the end of each design point replication run. If the Submit to Remote SAS
Workspace Server option is selected, then the SAS program or JMP script will
execute on the remote SAS workspace server host specified in the Simulation
Studio Configuration dialog box.

Candidates for Design of Experiments

Factors None

Responses None

Entity Filter Block

InEntits — 2a D_,DutPassed
¥ S B~ QuiFailed

Description

The Entity Filter block routes incoming entities to one of two output paths: one for entities that pass the filter
criteria and another for entities that do not.

When an entity arrives at the InEntity port of an Entity Filter block, the Entity Filter block tests the entity
against a set of filter criteria including primary usage, entity type, attribute rule, and (if the primary usage is
resource entity) resource state. If any filter criterion does not have a value, that criterion is ignored. If the
entity matches all of the specified criteria, the entity is sent out the OutPassed output entity port. Otherwise,
the entity is sent out the OutFailed output entity port.

166 4 Appendix A: Templates

Fixed Ports
InEntity Input entity port for entering entities.
OutPassed Output entity port for entities that meet the Entity Filter block’s criteria.
OutFailed Output entity port for entities that do not meet the Entity Filter block’s criteria.

Properties Dialog Box Controls

Primary Usage Selects whether an entity must be a Regular Entity or a Resource Entity in
order to meet the filter criteria.

Entity Type (optional) Specifies the name of a particular entity type that an entity must have
in order to meet the filter criteria.

Attribute Rule (optional) Specifies a Boolean expression that involves attribute values of an entity
that must evaluate to true in order to meet the filter criteria. For more information
about how to write the Boolean expression, see Appendix F, “Expressions.”

Resource State If you select Resource Entity for Primary Usage, then you can specify a Re-
source State (optional) that a resource entity must have in order to meet the filter
criteria. Valid values are Functional, Failed, Maintenance, and Offlined.

Candidates for Design of Experiments

Factors None

Responses None

Entity Group Holder Block

InTpdate
InGroup— | —InClear

e e

itrr_ s, [B0a9 - OutEntityr
InEntity-p B83H - iBalk

Description

The Entity Group Holder block serves as a holding facility for an entity group, which is a collection of entity
references. Rather than holding each actual entity in an entity group, an entity reference (which is information
that uniquely identifies a particular entity) is held.

The Entity Group Holder block stores only references to entities that pass a set of filter criteria defined in the
properties dialog box. When a single entity enters the block through the InEntity port and passes the input
filter criteria, a single entity reference for the entity is added to the Entity Group Holder block. When a group
of entity references arrives through the InGroup port, those entity references that pass the input filter criteria

Entity Group Holder Block 4 167

can either replace any existing entity references being held by the block or be merged with the existing
group of entity references (combining the new and existing entity references but not storing duplicate entity
references), depending on how the Entity Group Holder block is configured in the properties dialog box.

OutSubgroup ports can be configured for the Entity Group Holder block that allow a group of entity
references to be pulled from the block, based on a set of output filter criteria. When a pull request arrives at
an OutSubgroup port, the Entity Group Holder block applies the output filter criteria associated with that
port to the group of entities it is currently holding. The resulting entity group is then passed out through the
OutSubgroup port.

Fixed Ports

InEntity Input entity port for entering entities. An entity reference for the entity is added to the
Entity Group Holder block’s set of entity references if the entity passes the input filter
criteria.

OutEntity Output entity port for entities to leave that can be accepted by a downstream block.

OutBalk Output entity port for entities to leave that cannot leave using the OutEntity port.

InGroup Input data port for an incoming entity group. For entities in the incoming entity group
that pass the input filter criteria, entity references for those entities either replace any
existing entity references being held by the block or are merged with the existing group
of entity references, depending on the setting of Handling of Input Entity Group in the
properties dialog box.

InUpdate Input Boolean port that, if true is passed in, forces the EntityGroup block to pull an entity
group from the first (zero ordered) link connected to its InGroup port.

InClear Input Boolean port that, if true is passed in, clears the Entity Group Holder block’s set of

entity references.

Properties Dialog Box Controls

Input Filter These fields define the criteria for selecting the incoming entity references to be
stored by the Entity Group Holder block.
For Primary Usage, select to have references to either entity type Regular En-
tity or Resource Entity stored by the Entity Group Holder block.
For Entity Type (optional), you can restrict the Entity Group Holder block to
store only references to entities of a particular entity type.
For Attribute Rule (optional), you can restrict the Entity Group Holder block to
store only references to entities that satisfy a Boolean expression that involves
entity attribute values. For more information about how to write the Boolean
expression, see Appendix F, “Expressions.”
If you select Resource Entity for Primary Usage, then you can specify a Re-
source State (optional) that entities must have in order to be stored by the Entity
Group Holder block. Valid values are Functional, Failed, Maintenance, and
Offlined.

Handling of Input Entity Group Select Override the current group to make the Entity Group Holder
block replace its current entity group with a new entity group whenever an entity
group arrives through the InGroup port.

168 4 Appendix A: Templates

Query Outputs

Select Merge with the current group to make the Entity Group Holder block
add any nonduplicate entity references to its current entity group whenever an
entity group arrives through the InGroup port.

For entities that arrive through the InEntity port, an entity reference is always
merged with the current group if the entity passes the input filter criteria.

The Query Outputs table defines the entity group output ports for the Entity
Group Holder block. Each output port has an associated name and set of filter
criteria that determine which entity references are included in the entity group
to be pulled from the port. Click Add Query to add a new row to the Query
Outputs table that represents a new entity group output port. The column values
for the new row can be edited directly in the table:

* Port Name uniquely names the entity group output port for the Entity
Group Holder block.

* Key Attribute (optional) sets the name of the key attribute in the group of
entity references. In order for an entity reference in the group to match this
filter criterion, the referenced entity must have an attribute by this name,
and the attribute value must be equal to the value of an attribute by the same
name that is defined on an entity that enters an input entity port of another
block that the entity group output port is connected to. In other words, an
entity attribute name/value pair for an entity that enters some other block
is used as a key to search the holdings of the Entity Group Holder block
in order to determine which entity references can be included in the entity
group to be pulled from the port by the other block.

» Entity Type (optional) restricts the port to allow only references to entities
of a particular entity type to be included in the entity group to be pulled
from the port.

* Attribute Rule (optional) restricts the port to allow only references to
entities that satisfy a Boolean expression for entity attribute values to be
included in the entity group to be pulled from the port. For more information
about how to write the Boolean expression, see Appendix F, “Expressions.”

» Offset (optional) specifies an index into the group of references being held
by the Entity Group Holder block. The entity references that are selected to
exit through the output port begin at this index, and any entity references that
occur prior to this index are not included in the output entity group. A value
of 0 or 1 is equivalent to a blank value, causing the first entity reference
to be selected first. A negative value is an index that starts at the end of
the entity references. For example, an index of —1 causes the last entity
reference to be selected first. A negative value causes entity references to be
selected by traversing backwards through the list of entity references. If the
absolute value of the offset is larger than the number of entity references
that satisfy the criteria, an empty entity group exits the port. The ordering
of the entity references within the Entity Group Holder block reflects the
ordering of the holding block that originally generated the entity references.

¢ Maximum Count (optional) specifies a maximum number of entity refer-
ences that can be included in the entity group that exits the port.

Stopper Block 4 169

Click Remove Query to remove the selected row from the Query Outputs table,
indicating that the corresponding entity group output ports should be removed.

Apply Saves all information to the Entity Group Holder block, creating or removing
entity group output ports as needed.

Candidates for Design of Experiments

Factors None

Responses None

Stopper Block

InSignal
|

-

D

o0
ChatWarnTume- SOutEtopTime

Description

The Stopper block outputs the simulation stop time when a simulation replication ends normally. It can also
be used to stop the current simulation replication with an input stopping signal.

In many simulation applications, the actual end time of the simulation replication is often not known ahead
of time. However, certain processing steps (such as data collection and special-purposed computation) might
need to occur right before the end of the simulation. To facilitate the modeling of this type of simulation
task, the Stopper block also warns about the upcoming end of a simulation replication. When the end of the
simulation replication is near, the number output port OutWarnTime delivers the current simulation time of
the warning. This value can then be converted to a Boolean signal (for example) to trigger data collection
before the actual end of the simulation.

If the simulation ends abnormally, either because of errors or user interference, the Stopper block does not
provide the stop or warning time values.

Fixed Ports

InSignal Input Boolean port that stops the current simulation replication with a true input value. A
false input value is ignored.

OutWarnTime Output number port for the simulation time when a warning of simulation ending occurs.

OutStopTime Output number port for the simulation time when the current replication ends.

170 4 Appendix A: Templates

Overview of the Data and Display Template

The Simulation Studio Data and Display template provides a collection of blocks used to collect and display
data in simulation models.

Bucket Block

[nClearD ata
-

InEntity -k @ O-OnatEntity
75
CatData OutlatestAge

Description

The Bucket block is used to extract and store entity attribute values from entities that enter the block.
Attributes to be extracted from the entity are identified in the Bucket block’s Attributes Table. When an
entity enters the block, entity attribute values are retrieved from the entity and stored in a DataModel object
during simulation. The age of the entity is calculated and pushed to the bucket’s OutLatestAge port.

The DataModel object can be accessed through the block’s OutData port. Display blocks, such as the
Histogram block, are often connected to a Bucket block’s OutData port to visualize the data. Any block using
a DataModel is automatically notified when the data in the DataModel is modified.

The user identifies attributes to be extracted from the entity using one of the attribute collecting options
described in the Dialog Controls section below.

The user can limit the number of observations stored in a Bucket block through its Capacity control. If the
capacity is exceeded, a warning will be logged and observations will be overwritten.

The Bucket block provides the capability of saving values it extracts to a SAS data set or JMP table. Saving
options are available on the Save Dialog.

When a true Boolean value arrives at the InClearData port, it will be used as a signal to clear all the data
collected by the Bucket block up to that time during the simulation execution. If the InClearData port receives
a false value, the signal will be ignored and data will not be cleared.

Dialog Controls
Specify the attributes to be extracted from the incoming entity.

The Bucket block provides two options for collecting entity attributes. With the Collect Selected Entity
Attributes option selected, the associated attribute table and editing buttons are enabled. The user identifies
attributes to be extracted from the entity by selecting the Add button beside the attribute table. This results in
a new attribute entry (with a default name) being added to the Attributes Table. The Name and Type of the

Bucket Block 4 171

attribute can be edited directly in the table. The attribute names listed in the Bucket block’s Attributes Table
must be unique. The attribute type can be changed through a drop-down box on the Type table cell. Attributes
can be deleted from the Attributes Table by selecting the attribute row in the table and then selecting the
Remove button. Selecting the Apply button causes all entries in the Attributes Table to be pushed to the
Bucket block.

When the Collect All Entity Attributes option is selected, all attributes (except the internal entity ID) will
be extracted from the incoming entities.

Add adds a new attribute to the Attributes table.
Remove deletes an attribute that has been selected from the Attributes table.
Capacity controls how many observations the Bucket block stores.

Save Dialog Controls

Automatic Save Turns on or off automatic saving of any collected data at the end of each design
point replication run. If automatic saving is turned on, data are saved to a file
with the base file name specified in the Base File Name field. Simulation Studio
automatically determines the pathname of the folder for this file based on the
pathname of the folder containing your saved project. If the Submit to Remote
SAS Workspace Server option is selected, then any collected data are saved to
a file on a remote SAS server. Simulation Studio automatically determines the
pathname of the folder for this file on the remote SAS server by using the Default
File Path specified in the Simulation Studio Configuration dialog box.

Save Now Forces the Bucket block to attempt an immediate save of any collected data. Data
are saved to the same location as when automatic saving is turned on.

Location Displays the pathname of the folder for the file in which to save any collected
data.
Base File Name Specifies the base file name for the SAS data set or JMP table that is used to save

any collected data. This name will be the prefix of the actual file name. The zero-
based index of the design point and the zero-based index of the replication number
will be added as suffixes to the file name, separated by underscore characters. For
example, the data for the first replication of the first design point will be saved in
a file named BaseFileName_0_0, and the data for the second replication of the first
design point will be saved in a file named BaseFileName_0_1.

Candidates for Design of Experiments

Factors Capacity (integer)

Responses None

172 4 Appendix A: Templates

Probe Block

Ir3ignal
InClearData 4 | — InFPolllnterral

v

e

n
CatDiata

Description

The Probe block pulls and stores other block state information values at specified time intervals. Attributes to
be pulled from other blocks are named in the Probe block’s Attributes Table. The names are arbitrary but
must be unique within each Probe block. When values are pulled from other block ports, they are stored in a
SimDataModel. The SimDataModel can be accessed through the block’s OutData port. Display blocks, such
as the Histogram block, are often connected to a Probe block’s OutData port to visualize the data. Any block
that also uses a SimDataModel is automatically notified when the data in the SimDataModel is modified.

You create attribute entries in the Probe block’s Attributes Table by clicking the Add button on the properties
dialog box Attributes page. This results in a new attribute entry (with a default name and type) being added
to the Attributes Table. You can edit the Name and Type of the attribute directly in the table. The attribute
names listed in the Probe block’s Attributes Table must be unique. You can change the attribute type through
a drop-down list in the Type table cell. You can delete attributes from the Attributes Table by selecting the
attribute row in the table and then clicking the Remove button. Clicking the Apply button causes all entries
in the Attributes Table to be pushed to the Probe block and any input value ports to be created or deleted as
needed.

Each attribute in the Probe block’s Attributes Table has an input value port associated with it. At the specified
time interval, the Probe block attempts to pull values from each of its attribute input ports and store those
values in its SimDataModel instance. The frequency with which the Probe block pulls values is controlled
through its Poll Interval options. You can decide to pull at a constant interval by selecting the Constant
option and entering a valid value in the Interval field. You can also have the Probe block pull a value
from its InPollInterval port to determine when the next attributes pull should be scheduled. In this case,
you must select the Port option and attach a valid numeric source (such as a Numeric Source block) to the
InPollInterval port.

You can limit the number of observations stored in a Probe block through its Capacity control. If the capacity
is exceeded, a warning is logged and observations are overwritten.

The Probe block can save values that it extracts to a SAS data set or JMP table. Saving options are available
on the Save dialog box.

When a true Boolean value arrives at the InClearData port, it is used as a signal to clear all the data that have
been collected by the Probe block up to that time during the simulation execution. If the InClearData port
receives a false value, the signal is ignored and data are not cleared. When a true Boolean value arrives at the
InSignal port, the Probe block attempts to pull values from each of its attribute input ports and store those
values in its SimDataModel instance. If the InSignal port receives a false value, the signal is ignored.

Dialog Controls
Add
Remove
Capacity
Poll Interval

Probe Block 4+ 173

Adds a new attribute to the Attributes Table.
Deletes an attribute that has been selected from the Attributes Table.
Controls how many observations the Probe block stores.

Selecting the Constant option and entering a valid value in the Interval field causes the
Probe block to pull at a constant time interval. Selecting the Port option causes the Probe
block to pull a value from the InPolllnterval port to determine its next sampling time.

Save Dialog Controls

Automatic Save

Save Now

Location

Base File Name

Turns on or off automatic saving of any collected data at the end of each design
point replication run. If automatic saving is turned on, data are saved to a file
with the base filename specified in the Base File Name field. Simulation Studio
automatically determines the pathname of the folder for this file based on the
pathname of the folder that contains your saved project. If the Submit to Remote
SAS Workspace Server option is selected, then any collected data are saved to
a file on a remote SAS server. Simulation Studio automatically determines the
pathname of the folder for this file on the remote SAS server by using the Default
File Path specified in the Simulation Studio Configuration dialog box.

Forces the Probe block to attempt an immediate save of any collected data. Data
are saved to the same location as when automatic saving is turned on.

Displays the pathname of the folder for the file in which to save any collected
data.

Specifies the base filename for the SAS data set or JMP table that is used to save
any collected data. This name will be the prefix of the actual filename. The zero-
based index of the design point and the zero-based index of the replication number
will be added as suffixes to the filename, separated by underscore characters. For
example, the data for the first replication of the first design point will be saved in
a file named BaseFileName_0_0, and the data for the second replication of the first
design point will be saved in a file named BaseFileName_0_1.

Candidates for Design of Experiments

Factors

Responses

Capacity (integer), PollingInterval (double)

None

174 4 Appendix A: Templates

Observation Source Block

Description

IndtreamPolicy

..............

[m]
CatiOhzervation 4 L OatData

The Observation Source block provides a stream of data observation (row) objects from a SAS data set or
JMP table. Each time an observation object is pulled from the OutObservation port, the block pulls a new
observation of the data set. If you reach the last observation from the data set, the process resets to the
beginning of the data set.

Fixed Ports

InUpdate

InStreamPolicy

InDataPolicy

OutObservation

OutData

Input Boolean value port that signals an update of input data and stream parameter
specifications. The new specifications are pulled from the InStreamPolicy or InDataPolicy
ports (or both) if these ports are connected. A false Boolean value is ignored.

Input string value port from which the new stream parameter specifications are pulled
when an update signal is received. The format for specifying the value is as follows:
Lazy Loading == BooleanValue

where BooleanValue is true or false.

Input string value port from which the new input data specifications are pulled when an
update signal is received. The format for specifying the value is as follows:

File Path == filePathValue

where filePathValue is the pathname for the SAS data set or JMP table.

Output observation object port for observations to be pulled.

Output data model port for accessing the data model object that holds the contents of the
input data set.

Dialog Box Controls

Input Data

This area provides fields for modifying the input data specifications associated with the
Observation Source block. The File Path field specifies the absolute or relative file
path for the input SAS data set or JMP data table file. The Load from Remote SAS
Workspace Server checkbox indicates that the input SAS data set file is to be loaded
from the remote SAS Workspace Server host.

Stream Parameters This area provides fields for modifying the stream parameter specifications that

control how the stream of observations from the Observation Source block is prepared.
The field Lazy Loading is Boolean. If the Lazy Loading field is false, then the input

Stats Collector Block 4 175

data set file has to be loaded at the start of simulation. Otherwise, the data file is loaded
only when its contents are needed during simulation.

Reset Sampling at Update This option resets the current data set back to the first observation when a true
Boolean value is received at the InUpdate port. If the InDataPolicy port is also connected
and a new data set is specified, then the new data set starts at the beginning with the first
observation if the Reset Sampling at Update option is selected.

Candidates for Design of Experiments

Factors DataStreamDescription (text), InputDataPolicy (text), ResetStreamAtUpdate (Boolean)
The format for specifying the value of the InputDataPolicy factor is as follows:
File Path==filePathValue
where filePathValue is the pathname for the SAS data set or JMP table. The format for
specifying the value of the DataStreamDescription factor is as follows:
Lazy Loading==BooleanValue
where BooleanValue is either true or false.

Responses None

Stats Collector Block

In3ignal
InClearData —, L —

............. -

Inpatl

..............

O
Chatstatistics 4 & InputlChat

Description

The Stats Collector block is used to calculate simple statistics on its incoming input data. You can define
as many data inputs on the block as needed using the Inputs table in the dialog box. A new input port
is created for each row in the Inputs table. You select which statistics you want to compute using the
Statistics Selection hierarchy provided on the Properties tab. The Stats Collector block creates an output
SimDataModel to hold the computed statistics with one row for each input and one column for each selected
statistic. This SimDataModel can be accessed through the block’s OutStatistics port.

In the Inputs table you can choose to have the statistics associated with an input entry computed as time-
weighted statistics by checking the Time Persistent check box in the corresponding table entry. You can
store the individual data values associated with a specific input port in a SimDataModel for later access by
selecting the DataModel Port option in an Inputs table entry. An individual output port is created for each
DataModel Port selection.

You choose the statistics you want to be computed from the Statistics Selection hierarchy. By default, the
Stats Collector block calculates the statistics at the end of each design point replication run. You can use

176 4 Appendix A: Templates

the InSignal port to force a statistics calculation during a simulation run. You can also use the InClearData
port to clear all accumulated data at any point during the simulation run. Both of these ports expect Boolean

values as inputs.

The Stats Collector block can store the statistics it calculates using its data collection facility. This data can
be saved to a SAS data set or JMP table and can also be passed to other Simulation Studio blocks. Values are
stored in a SimDataModel, and you can access the SimDataModel through the block’s OutStatistics port.

Properties Dialog Controls

Add

Remove

Apply

Adds a new input entry to the Inputs table.
Deletes an input entry that has been selected from the Inputs table.

All entries in the Inputs table are pushed to the Stats Collector block, and input ports
(and output ports) are created or deleted as needed. Statistic selections are pushed to the
Stats Collector block.

Save Dialog Controls

Automatic Save Turns on or off automatic saving of any collected data at the end of each design point

Save Now

Location

Base File Name

replication run. If automatic saving is turned on, data are saved to a file with the base file
name specified in the Base File Name field. Simulation Studio automatically determines
the pathname of the folder for this file based on the pathname of the folder that contains
your saved project. If the Submit to Remote SAS Workspace Server option is selected,
any collected statistics are saved to a file on a remote SAS server. Simulation Studio
automatically determines the pathname of the folder for this file on the remote SAS server
by using the Default File Path specified in the Simulation Studio Configuration dialog
box.

Forces the Stats Collector block to attempt an immediate save of any collected data. Data
are saved to the same location as when automatic saving is turned on.

Displays the pathname of the folder for the file in which to save any collected data.

Specifies the base file name for the SAS data set or JMP table that is used to save any
collected data. This name will be the prefix of the actual file name. The zero-based index
of the design point and the zero-based index of the replication number will be added as
suffixes to the file name, separated by underscore characters. For example, the data for the
first replication of the first design point will be saved in a file named BaseFileName_0_0,
and the data for the second replication of the first design point will be saved in a file
named BaseFileName 0 1.

Queue Stats Collector Block 4 177

Queue Stats Collector Block

s
EdX

OO
CatDiata 4 L ResultLocation

Description

The Queue Stats Collector block accumulates statistics generated by blocks in your model that implement the
QueueStatsGenerator interface. In the properties dialog box associated with the Queue Stats Collector block,
you can select from a list of available (QueueStatsGenerator) blocks the ones from which you want to collect
statistics.

By default, statistics are gathered from the selected blocks at the end of each design point replication run.
Options are provided to collect statistics on a continuous basis (whenever the statistics change) or to force an
instantaneous update of the statistics.

The Queue Stats Collector block uses its data collection facility to store values it collects. The statistics can
be saved to a SAS data set or JMP table. The statistics are stored in a SimDataModel, which can be accessed
through the block’s OutData port. To visualize the statistics, you can connect a display block (such as the Bar
Chart block) to the OutData port. Any block connected to the OutData port is automatically notified when
the statistics in the SimDataModel are modified.

Fixed Ports

OutData Output port for the latest updated SimDataModel that contains the statistics held by the
Queue Stats Collector block.

ResultLocation Output text port for the pathname of a folder that contains the output data set, if the Queue
Stats Collector block is configured to save its statistics.

Attributes Dialog Box Controls

Add Adds the selected blocks to the list of blocks from which to collect statistics.
Remove Removes the selected blocks from the list of blocks from which to collect statistics.
Continuous Collection Turns on or off statistics collection whenever a monitored block changes state.

Now Forces the Queue Stats Collector block to attempt an immediate collection of any statistics.

Save Dialog Box Controls

178 4 Appendix A: Templates

Automatic Save

Save Now

Location

Base File Name

Turns on or off automatic saving of any collected statistics at the end of each
design point replication run. If automatic saving is turned on, statistics are saved
to a file with the base filename specified in the Base File Name field. Simulation
Studio automatically determines the pathname of the folder for this file based
on the pathname of the folder that contains your saved project. If the Submit
to Remote SAS Workspace Server option is selected, any collected statistics
are saved to a file on a remote SAS server. Simulation Studio automatically
determines the pathname of the folder for this file on the remote SAS server by
using the Default File Path specified in the Simulation Studio Configuration
dialog box.

Forces the Queue Stats Collector block to attempt an immediate save of any
collected statistics. Statistics are saved to the same location as when automatic
saving is turned on.

Displays the pathname of the folder for the file in which to save any collected
statistics.

Specifies the base filename for the SAS data set or JMP table that is used to
save any collected statistics. This name is the prefix of the actual filename. The
zero-based index of the design point and the zero-based index of the replication
number are added as suffixes to the filename, separated by underscore characters.
For example, the statistics for the first replication of the first design point are saved
in a file named BaseFileName_0_0, and the statistics for the second replication of
the first design point are saved in a file named BaseFileName_0_1.

Candidates for Design of Experiments

Factors

Responses

None

None

Server Stats Collector Block 4 179

Server Stats Collector Block

§<|]

gooo:
Frer

]|
rO M

O
|

CatDlata CatEesultLocation

Description

The Server Stats Collector block accumulates statistics generated by blocks in your model that implement the
ServerStatsGenerator interface. In the properties dialog box associated with the Server Stats Collector block,
you can select from a list of available (ServerStatsGenerator) blocks the ones from which you want to collect
statistics.

By default, statistics are gathered from the selected blocks at the end of each design point replication run.
Options are provided to collect statistics on a continuous basis (whenever the statistics change) or to force an
instantaneous update of the statistics.

The Server Stats Collector block uses its data collection facility to store statistics it collects. The statistics can
be saved to a SAS data set or JMP table. The statistics are stored in a SimDataModel, which can be accessed
through the block’s OutData port. To visualize the statistics, you can connect a display block (such as the Bar
Chart block) to the OutData port. Any block connected to the OutData port is automatically notified when
the statistics in the SimDataModel are modified.

Fixed Ports

OutData Output port for the latest updated SimDataModel that contains the statistics held by the
Server Stats Collector block.

OutResultLocation Output text port for the pathname of a folder that contains the output data set, if the
Server Stats Collector block is configured to save its statistics.

Attributes Dialog Box Controls

Add Adds the selected blocks to the list of blocks from which to collect statistics.
Remove Removes the selected blocks from the list of blocks from which to collect statistics.
Continuous Collection Turns on or off statistics collection whenever a monitored block changes state.

Now Forces the Server Stats Collector block to attempt an immediate collection of any statistics.

Save Dialog Box Controls

180 4+ Appendix A: Templates

Automatic Save

Save Now

Location

Base File Name

Turns on or off automatic saving of any collected statistics at the end of each
design point replication run. If automatic saving is turned on, statistics are saved
to a file with the base filename specified in the Base File Name field. Simulation
Studio automatically determines the pathname of the folder for this file based
on the pathname of the folder that contains your saved project. If the Submit
to Remote SAS Workspace Server option is selected, any collected statistics
are saved to a file on a remote SAS server. Simulation Studio automatically
determines the pathname of the folder for this file on the remote SAS server by
using the Default File Path specified in the Simulation Studio Configuration
dialog box.

Forces the Server Stats Collector block to attempt an immediate save of any
collected statistics. Statistics are saved to the same location as when automatic
saving is turned on.

Displays the pathname of the folder for the file in which to save any collected
statistics.

Specifies the base filename for the SAS data set or JMP table that is used to
save any collected statistics. This name is the prefix of the actual filename. The
zero-based index of the design point and the zero-based index of the replication
number are added as suffixes to the filename, separated by underscore characters.
For example, the statistics for the first replication of the first design point are saved
in a file named BaseFileName_0_0, and the statistics for the second replication of
the first design point are saved in a file named BaseFileName_0_1.

Candidates for Design of Experiments

Factors

Responses

None

None

Resource Stats Collector Block 4 181

Resource Stats Collector Block

G
n
ChatData

Description

The Resource Stats Collector block accumulates statistics about resource entities in your model. In the
properties dialog box associated with the Resource Stats Collector block, you specify the resources for which
you want to collect statistics and the types of statistics you want to collect. Statistics are gathered on a
continuous basis (whenever the statistics change).

You can use the Resource Stats Collector block to capture valuable information about the behavior of your
resources when your experiment executes. This information might help you discover unintended behavior
of your resources or provide insight that helps you fine-tune the behavior of resources in your model. The
Resource Stats Collector block is very flexible and enables you to define groups of resources based on both
resource entity type and Boolean rules about resource attribute values. Within each group of resources you
define, you can collect statistics such as the average, current, minimum, or maximum proportion of resources
in the group that meet certain criteria. Possible criteria include whether the resources in the group are seized,
whether the resources in the group are in a particular resource state, and whether the attribute values of the
resources in the group satisfy a particular Boolean expression.

The Resource Stats Collector block uses its data collection facility to store values it collects. The statistics
can be saved to a SAS data set or JMP table. The statistics are stored in a SimDataModel, which can be
accessed through the block’s OutData port. To visualize the statistics, you can connect a display block (such
as the Bar Chart block) to the OutData port. Any block connected to the OutData port is automatically
notified when the statistics in the SimDataModel are modified.

Fixed Ports

OutData Output port for the latest updated SimDataModel that contains the statistics held by the
Resource Stats Collector block.

Groups Dialog Box Controls

Use the Groups table to define the groups (collections of resource entities) for which you want to collect
statistics. Each group is represented by a single row in the Groups table. For each group, you can set criteria
(columns in the Groups table) to restrict the resources included in the group.

Add Defines a new group for which to collect statistics. Each group represents one
observation (row) in the collected data. A group has the following properties:
Name, Entity Types, and Attribute Rule. You can edit each property directly
in the Groups table.

182 4 Appendix A: Templates

* Name specifies a name for the group of resource entities. This name appears
as the first variable in the observation, with the title GroupName.

» Entity Types (optional) restricts the group to include only those resource
entities that have a particular entity type.

* Attribute Rule (optional) restricts the group to include only those resource
entities that satisfy the specified Boolean expression for their attributes.
For more information about how to write the Boolean expression, see
Appendix F, “Expressions.”

If Entity Types and Attribute Rule are left blank, all resource entities in your
model are included in the group.

Remove Removes the selected groups from the collected data.

Statistics Dialog Box Controls

Use the Statistics table to name and define the statistics to be gathered for the defined groups. Each statistic
is represented by a single row in the Statistics table. For each statistic, you set properties (columns in the
Statistics table) that define the rules for how the statistic is calculated.

Add Defines a new statistic in the collected data. Each statistic represents one variable
(column) in the collected data. A statistic has the following properties: Name,
Statistics, Seized, State, and Attribute Rule. You can edit each property directly
in the Statistics table.

* Name specifies the name of the statistic in the SimDataModel.

* Statistics specifies how to calculate the statistic for each defined resource
entity group:

TimeAverage is the proportion (a number between zero and one) over
time of the resource units in the group that meet the criteria for the
statistic.

Current is the current proportion of resource units in the group that
meet the criteria for the statistic. At the end of a design point replication,
it holds the proportion of resource units in the group that meet the
criteria for the statistic when the design point replication ends.

Min is the minimum proportion over time of the resource units in the
group that meet the criteria for the statistic.

Max is the maximum proportion over time of the resource units in the
group that meet the criteria for the statistic.

Count is the current number of resource units in the group that meet
the criteria for the statistic. At the end of a design point replication, it
holds the number of resource units in the group that meet the criteria
for the statistic when the design point replication ends.

Seized, State, and Attribute Rule are the resource criteria used in calculating
the statistic. A resource unit must meet all of the specified criteria in order to be
included in the statistic.

Resource Stats Collector Block 4 183

» For the Seized criterion, false means a resource unit is available in a resource
pool, true means a resource unit is not available in a resource pool, and an
empty value means a resource unit can be either seized or unseized.

» For the State criterion, you can specify that a resource must have a particular
state. Valid values are Functional, Failed, Maintenance, and Offlined. An
empty value means a resource can be in any state.

* For the Attribute Rule criterion, you can specify that a resource’s attribute
values satisfy a Boolean expression. For more information about how to
write the Boolean expression, see Appendix F, “Expressions.” An empty
value means a resource’s attributes can have any values.

Remove Removes the selected statistics from the collected data.

Save Dialog Box Controls

Automatic Save Turns on or off automatic saving of any collected statistics at the end of each
design point replication run. If automatic saving is turned on, statistics are saved
to a file with the base filename specified in the Base File Name field. Simulation
Studio automatically determines the pathname of the folder for this file based
on the pathname of the folder that contains your saved project. If the Submit
to Remote SAS Workspace Server option is selected, any collected statistics
are saved to a file on a remote SAS server. Simulation Studio automatically
determines the pathname of the folder for this file on the remote SAS server by
using the Default File Path specified in the Simulation Studio Configuration
dialog box.

Save Now Forces the Resource Stats Collector block to attempt an immediate save of any
collected statistics. Statistics are saved to the same location as when automatic
saving is turned on.

Location Displays the pathname of the folder for the file in which to save any collected
statistics.
Base File Name Specifies the base filename for the SAS data set or JMP table that is used to

save any collected statistics. This name is the prefix of the actual filename. The
zero-based index of the design point and the zero-based index of the replication
number are added as suffixes to the filename, separated by underscore characters.
For example, the statistics for the first replication of the first design point are saved
in a file named BaseFileName_0 0, and the statistics for the second replication of
the first design point are saved in a file named BaseFileName_0_1.

Candidates for Design of Experiments

Factors None

Responses None

184 4 Appendix A: Templates

Dataset Holder Block

InlTpdateld u:n.:-'—| InFowr

InData gl Mo It olumnn

Description

The Dataset Holder block serves as a holding facility for a data model object, whose contents resemble those
of a SAS data set or JMP data table. During a simulation run, the data contents (including data cell values
and observation objects) can be pulled through query output ports.

Custom query output ports can be configured for the Dataset Holder block to allow either the data cell values
or the observation objects to be pulled from the block, based on a set of output query criteria. When a pull
request arrives at an output port, the Dataset Holder block applies the output query criteria associated with
that port to the data contents it is currently holding. The resulting value or observation object is then passed
out the output port.

The Dataset Holder block also supports dynamic located queries with dynamic row or column index values
(or both) that are not prespecified. When a dynamic query output is pulled and its output processing is
activated at simulation time, the needed index values are pulled dynamically through the InRow or InColumn
port (or both).

Fixed Ports
InData Input data port for the entering data model object.
OutData Output data port for accessing the data model object held in the Dataset Holder block.

InUpdateNow Input Boolean port that forces the Dataset Holder block to pull a data model object from
the first (zero-ordered) link connected to its InData port when a value of true is passed in.

InRow Input number port for dynamically providing the row index, if needed, of a leaving query
output object.

InColumn Input number port for dynamically providing the column index, if needed, of a leaving
query output object.

Dialog Box Controls

Query Outputs The Query Outputs table defines the value or observation query output ports for the
Dataset Holder block. Each output port has an associated name and set of query criteria
that determine the result of the query to be pulled from the port. Click Add Query to add
a new row to the Query Outputs table that represents a new output port. The column
values for the new row can be edited directly in the table.

Dataset Writer Block 4 185

* Port Name uniquely names the query output port for the Dataset Holder block.

» Target Type specifies the value type for the query outputs to be pulled from the
port.

* Row Index optionally specifies the observation (row) index of the query output to
be pulled from the port. If the observation index is not specified, the index can be
pulled from the InRow port dynamically every time the output port is pulled.

* Column Index specifies the variable (column) index of the query output to be pulled
from the port. If the variable index is not specified, its actual value can be pulled
from the InColumn port dynamically every time the output port is pulled.

Click Remove Query to remove the selected rows from the Query Outputs table, indi-
cating that the corresponding query output ports should be removed.

Apply Saves all information to the Dataset Holder block, creating or removing query output
ports as needed.

Dataset Writer Block

InSaswell 0w

..............

Description

The Dataset Writer block saves the contents of a data model object as either a SAS data set or JMP data table
during a simulation run.

The data saving operation is triggered by a saving signal to the InSaveNow port. The data model to output
can be pushed into the Dataset Writer block through the InData port before the saving signal arrives.

When a true Boolean value arrives at the InSaveNow port, it is used as a signal to save the contents of the
data model object that is currently provided to the Dataset Writer block. If the data model has never been
provided before the saving signal arrives, the Dataset Writer block attempts to pull a data model to save after
receiving the saving signal.

If the InSaveNow port receives a false value, the signal is ignored and data are not saved.

The output file location can be specified statically before simulation using the Save dialog box. It can also be
dynamically generated and pushed into the Dataset Writer block during simulation through the InPolicy port.

186 4 Appendix A: Templates

Fixed Ports

InData

InSaveNow

InPolicy

Input data port for an entering data model object.

Input Boolean port for saving the current data model to an output file. If the data model is
not available yet, the Dataset Writer block pulls a data model object from the first link
that connects to the InData port before saving.

Input string port for dynamically providing the output file location, if needed, for the
current data model object.

Save Dialog Box Controls

Automatic Save Turns on or off the automatic saving of any data in the existing data model at the end

Save Now

Location

Base File Name

of each design point replication run. If automatic saving is turned on, data are saved to
a file with the base filename specified in the Base File Name field. Simulation Studio
automatically determines the pathname of the folder for this file based on the pathname of
the folder that contains your saved project. If the Submit to Remote SAS Workspace
Server option is selected, any collected data are saved to a file on a remote SAS server.
Simulation Studio automatically determines the pathname of the folder for this file on
the remote SAS server by using the Default File Path specified in the Simulation Studio
Configuration dialog box.

Forces the Dataset Writer block to immediately attempt to save any data in the existing
data model. Data are saved to the same location as when automatic saving is turned on.

Displays the pathname for the file in which to save any data in the existing data model.

Specifies the base filename for the SAS data set or JMP table that is used to save any data
in the existing data model.

If the saving operation is triggered by a saving signal during a simulation replication
run, this name or the filename from InPolicy port is the actual filename. At the end of
the replication, if the Automatic Save option is enabled, this name is the prefix of the
actual filename. The zero-based index of the design point and the zero-based index of
the replication number are added as suffixes to the filename, separated by underscore
characters. For example, the data for the first replication of the first design point is saved
in a file named BaseFileName 0_0, and the data for the second replication of the first
design point is saved in a file named BaseFileName_0_1.

Histogram Block 4 187

Histogram Block

In.l:llata

-

i

Description

The Histogram block creates a visual estimate of the distribution of data from a discrete or continuous variable.
The range of the variable is divided into a certain number of subintervals (bins). The height of the bar in each
bin is proportional to the number of data points that have values in that bin. The Histogram block expects
a SimDataModel as input via its InData port. Some examples of blocks that can produce SimDataModels
as output are the Bucket, Number Holder, and the Stats Collector blocks. You must supply the name of the
variable from the SimDataModel to be used to construct the histogram bins or bars. Context-sensitive pop-up

menus are available on the plot for manipulating various aspects of the plot such as axis scaling; right-click
on the histogram display to access these menus.

Fixed Ports

InData Input data port for a SimDataModel to enter the block.

Properties Dialog Box Controls

Name Specifies the name of the variable from the SimDataModel to use to create the histogram.

Candidates for Design of Experiments

Factors None

Responses None

188 4 Appendix A: Templates

Bar Chart Block

In[llata

w

lall

Description

The Bar Chart block graphically depicts the distribution of data from a discrete variable. The height of each
bar represents the frequency, which is either the number of data points in each category or the sum of the
attribute values of a particular attribute in each category. The Bar Chart block expects a SimDataModel
as input via its InData port. Some examples of blocks that can produce SimDataModels as output are the
Bucket, Number Holder, and the Stats Collector blocks. You must supply the names of the X and Frequency
(optional) variables from the SimDataModel to be used to construct the bar chart display. Context-sensitive
pop-up menus are available on the plot for manipulating various aspects of the plot such as axis scaling;
right-click on the bar chart display to access these menus.

Fixed Ports

InData Input data port for a SimDataModel to enter the block.

Properties Dialog Box Controls

Variables X specifies the name of the variable from the SimDataModel used to categorize data
on the X axis. Frequency specifies the value to show on the Y axis for each category.
You can choose By Count to calculate frequency as the total number of items in each
category. Alternatively, you can choose By Variable to calculate frequency as the sum of
a particular Variable for all items in each category.

Candidates for Design of Experiments

Factors None

Responses None

Scatter Plot Block 4 189

Scatter Plot Block

In[llata

o

=
u

] L]

Description

A Scatter Plot block displays a graphical representation of the relationship between two variables. The Scatter
Plot block expects a SimDataModel as input via its InData port. Some examples of blocks that can produce
SimDataModels as output are the Bucket, Number Holder, and the Stats Collector blocks. You must supply
the names of the X and Y variables from the SimDataModel to be used to construct the scatter plot display.
Context-sensitive pop-up menus are available on the plot for manipulating various aspects of the plot such as
axis scaling; right-click on the scatter plot display to access these menus.

Fixed Ports

InData Input data port for a SimDataModel to enter the block.

Properties Dialog Box Controls

Variables Specifies the names of the X and Y variables from the SimDataModel to use to create the
scatter plot.

Candidates for Design of Experiments

Factors None

Responses None

190 4 Appendix A: Templates

Box Plot Block

Description

The Box Plot block is a schematic summary of the distribution of data from a continuous numeric variable.
The central line in a box plot indicates the median of the data, and the bottom and top of the box indicate
the first and third quartiles (that is, the 25th and 75th percentiles). Extending from the box are whiskers that
represent data that are a certain distance from the median. Beyond the whiskers are outliers—observations
that are relatively far from the median.

The Box Plot block expects a SimDataModel as input via its InData port. Some examples of blocks that
can produce SimDataModels as output are the Bucket, Number Holder, and the Stats Collector blocks. You
must supply the name of the Y variable from the SimDataModel to be used to construct the box plot display.
Optionally you can also provide the name of a variable to be used as a group variable for producing individual
box plots for each unique category found in the group variable. Context-sensitive pop-up menus are available
on the plot for manipulating various aspects of the plot such as axis scaling; right-click on the scatter plot
display to access these menus.

Fixed Ports

InData Input data port for a SimDataModel to enter the block.

Properties Dialog Box Controls

Variables Specifies the name of the Y variable from the SimDataModel to use to create the box plot.
Optionally you can select the Use Groups option and provide the name of the Group
variable from the SimDataModel to use to create multiple box plots.

Candidates for Design of Experiments

Factors None

Responses None

Comment Block 4+ 191

Table Block

In[llata

Description

The Table block displays a tabular representation of a data model. The Table block expects a SimDataModel
as input via its InData port. Some examples of blocks that can produce SimDataModels as output are the
Bucket, Number Holder, and the various Stats Collector blocks.

Fixed Ports

InData Input data port for a SimDataModel to enter the block.

Candidates for Design of Experiments

Factors None

Responses None

Comment Block

B

Description

The comment block is used to hold text comments that describe the model or a portion of the model. This
block is for visual purposes only and has no effect on running the model.

To enter or edit the comment, first click on the icon in the upper left corner in order to activate the comment
block. Then click in the editor area to activate the editor.

The comment can contain multiple lines of text, and it can be resized by clicking and dragging any edge or
corner while the comment is active for editing.
Candidates for Design of Experiments

Factors None

Responses None

192 4 Appendix A: Templates

Overview of the Resource Template

The Simulation Studio Resource template provides a collection of blocks used to manipulate resources in a
simulation model.

Seize Block

InFocuzedRezources

b

InEntity -p|3g/0- OvtEntity

Description

The Seize block obtains resource entities from resource holding blocks (for example, Resource Pool blocks)
and allocates them to a controlling entity. The controlling entity must have acquired all the required resources
before it can pass through the Seize block.

The required resources are specified by one or more resource constraints. Each resource constraint is defined
in the Seize block’s Constraints properties dialog box table and associated with an input resource entity
port on the block. The input resource ports are meant to be connected to resource holding blocks. When
a controlling entity attempts to enter a Seize block, the resource constraints associated with all resource
ports are checked for availability. If all needed resources are available, they are pulled from the resource
input ports and allocated to the controlling entity. If any of the resource constraints cannot be satisfied, the
controlling entity is not allowed to enter the block.

The Input Variables table can be used to define variables that can be used in the Constraints table.

The InFocusedResources port, if connected, can be used to provide a reference group of resource entities as
the initial set of the resources to be examined and seized from resource input ports. If no qualified resources
are found among these focused resources to satisfy a resource constraint, the Seize block attempts to look for
other resources to seize from the resource holder blocks connected to the input resource entity ports.

Fixed Ports
InEntity Input entity port for entering controlling entities.
OutEntity Output entity port for exiting controlling entities.

InFocusedResources Input entity group port for pulling the references of a group of resource entities to
be used as initial resource entity candidates to seize from the resource input ports.

Seize Block 4 193

Input Variables Dialog Box Controls

The Input Variables dialog box enables you to specify the table entries for input variables. Variables defined
in the Input Variables table can be used to define constraints in the Constraints table.

Add Adds a new input variable (with a default name) to the Input Variables table and creates
a new input value port on the Seize block. Each field of an input variable can be edited
directly in the table.

* The Name field of the entry specifies the name of the variable and the name of its
associated input port. You can use the input port during the simulation execution to
dynamically assign a value to the input variable. For example, an Extractor block
could be connected to the input port to extract an attribute from the controlling entity
to be used as the value of the input variable.

* The ValueType field specifies the input variable value type. The type can be number,
string, or Boolean.

e The optional Default Value field specifies the value that will be used in the case

where there is no connection to the input port associated with the variable.

Remove Deletes an input variable that has been selected from the Input Variables table.

Constraints Dialog Box Controls

The Constraints dialog box enables you to specify the table entries for input resource entity ports and
associated resource constraints.

Add Adds a new resource port (with default values for its fields) to the Constraints table. Each
field can be edited directly in the table.

* The PortName field of the entry is the name of the input resource entity port to use
when attempting to seize a resource entity for use by a controlling entity.

» The Units field specifies the desired amount of resource units in the resource to be
seized using the port. Its default value is 1. If the Units field is left blank, a numeric
port is created, from which the Seize block dynamically pulls the units value for the
current controlling entity during simulation.

* The Separable flag indicates whether the needed resource units can be provided by
two or more resource entities jointly.

» The optional Attributes field can be used to specify a Boolean expression based on
the attributes in the targeted resource entities. For more information about how to
write the Boolean expression, see Appendix F, “Expressions.”

» The optional Entity Type field specifies the type of the resource entity to be seized.

The optional fields are available by clicking the down arrow next to the Constraints table.
Remove Deletes the selected resource ports from the Constraints table.

Apply All entries in the Constraints table are saved to the Seize block. Input value and resource
entity ports are created or deleted as needed.

194 4 Appendix A: Templates

Candidates for Design of Experiments

Factors None

Responses None

Release Block

InEntity -» E:,:E'] O- QutEntity

Description

The Release block releases resource entities from a controlling entity as the controlling entity passes through
the block.

The released resources are specified by one or more resource constraints. Each resource constraint is
associated with an output resource port defined in the ResourcePorts properties dialog box table. When a
controlling entity enters the block, the resource constraints associated with all resource ports are checked for
matches. If matched resources are found, they are released from the controlling entity and pushed through
the corresponding resource output ports. If a matched resource cannot flow out through the corresponding
output resource port, the resource remains with the controlling entity.

Fixed Ports
InEntity Input entity port for entering controlling entities.
OutEntity Output entity port for exiting controlling entities.

Properties Dialog Box Controls

Add port Adds a new resource port (with default values for its fields) to the ResourcePorts
table. Each field can be edited directly in the table.

* The PortName field of the entry is the name of the output resource entity
port to use to release a resource entity from a controlling entity.

* The Units field specifies the desired amount of resource units in the resource
to be released from the controlling entity. Its default value is blank, which
allows any resource that satisfies the other constraints to be released.

» The Splittable flag indicates whether the desired resource units can be
obtained by splitting a resource with more units than desired.

Resource Pool Block 4 195

* The Separable flag indicates whether the desired resource units can be
provided by two or more resource entities jointly.

* The optional Attributes field can be used to specify a Boolean expression
based on the attributes in the targeted resource entities. For more information
about how to write the Boolean expression, see Appendix F, “Expressions.”

» The optional Entity Type field specifies the type of the resource entity to
be released.

The optional fields are available by clicking the down arrow next to the Resour-
cePorts table.

Remove port Deletes the selected resource ports from the ResourcePorts table.

Apply All entries in the ResourcePorts table are saved to the Release block, and output
resource entity ports are created or deleted as needed.

Candidates for Design of Experiments

Factors None

Responses None

Resource Pool Block

InEntity-p %:3’ O- OutEntity
o
Chatlength

Description

The Resource Pool block accepts and maintains unseized resource entities. These resource entities can be
seized later by other blocks. The Resource Pool block also processes resource requests from other blocks (a
Seize block, for example) that can result in a distribution of unseized resource entities from the Resource
Pool block.

A resource entity is considered unseized if it resides in a resource pool. Once it leaves a resource pool (and
is not directly held by any other resource pool), it is treated as seized. Any newly created resource entity
(generated outside a resource pool) is also considered unseized, even if it has not yet entered a Resource Pool
block.

The Resource Pool block manages resource entities as objects. More than one type of resource entity can be
maintained by an individual resource pool. The number of resource entity objects in a Resource Pool block
can be monitored using its OutLength port. The Resource Pool block can also manage compatible resource
entities with its merging/splitting units option.

196 4 Appendix A: Templates

To process a resource request from another block, the Resource Pool block chooses resource entities (from
those it is maintaining) with enough units to satisfy the capacity needs of the request. Sometimes, resource
entities with more units than are requested are chosen and distributed.

When the merging/splitting units option is enabled, the Resource Pool block can split resource units held in a
resource entity currently in the resource pool into smaller units to satisfy a request and assign the smaller
units to new resource entities. The new resource entities created by the Resource Pool block have the same
entity type and attribute values as the existing resource entity, but are assigned the smaller resource units. The
new resource entities are then distributed out of the resource pool. The original resource entity remains in the
pool, even if its capacity reaches zero units after splitting. Similarly, when a resource entity enters the pool,
its units can be merged into a compatible resource entity currently in the pool. The newly arrived resource
entity is disposed and ceases to exist as an object in the simulation run. To be considered compatible resource
entities, the resource entities must first be of the same entity type; in addition, you can specify optional key
attribute fields to use for merging resources. Units merging between resource entities can take place only if
their entity types and all of their key attribute fields, if any, match.

Fixed Ports
InEntity Input entity port for entering resource entities.
OutEntity Output entity port for exiting resource entities
OutLength Output integer port for the number of resource entity objects currently in the pool.

Units Dialog Box Controls

Merge / split resource units among resource entities of same types Turns on or off optional merging
and splitting of resource units.

Key Entity Attribute Fields for Merging Units Specifies optional key attribute fields to use during the
units merging process when the merge/split units check box is checked.
There are two ways to specify key attribute fields for a resource entity type. For
specific entity types, the key field table can be used to list key fields for any
specific resource entity type. Each entry in the table contains a Resource Entity
Type value and the corresponding Key Attribute Field. The latter lists either
one attribute name or multiple comma-separated attribute names. You can create
a new entry by clicking Add beside the table. Entries can be deleted from the
table by selecting the entry rows in the table and then clicking Remove.
For any unspecified resource entity types, you can either choose the key attribute
fields to be All adjustable fields or use No key fields. In the latter case, different
resource entities are considered compatible for merging if and only if they are of
the same resource entity type. In the former case, all adjustable attribute fields
must match as well.

ResourceQueue Dialog Box Controls

Queueing Policy Specifies the queueing policy for the queue used internally by the Resource
Pool block. See the Queueing Policy control in the section “Queue Block™” on
page 131 for details.

Resource Scheduler Block 4 197

Candidates for Design of Experiments

Factors QueueingPolicy (text)
See the Queueing Policy design-of-experiment factor in the section “Queue Block™ on
page 131 for details.

Responses None

Resource Scheduler Block

In&genda
1

w
InRegquest -k @ E:gﬂg;&l{ue st

Description

The Resource Scheduler block arranges and performs sequences of resource adjustments over targeted
resource entities. The description of an adjustment sequence is specified in a resource agenda object received
through the InAgenda port from an agenda provider (for example, a Resource Agenda block). Using the
properties dialog box controls, an appointment with various scheduling options can be scheduled to request
the Resource Scheduler block to process a resource agenda. The Resource Scheduler block activates its
appointments and conducts the resource adjustment sequences in the corresponding resource agendas based
on the scheduling options during a simulation run.

When all the adjustment actions within the sequence of an activated appointment are conducted and the
resulting changes pass their respective duration periods, the current processing of the appointment by the
Resource Scheduler block is considered finished.

If needed, the Resource Scheduler block can activate multiple appointments and process their respective
sequences of resource adjustments at the same time.

In addition to the appointments scheduled through the properties dialog box controls, resource scheduling
entities can also be used to request a Resource Scheduler block to process resource agendas dynamically
through the InRequest port during a simulation run. These resource scheduling entities can be produced by
the same or other Resource Scheduler blocks at a different simulation time. See the To Repeat description in
the following section “Properties Dialog Box Controls” on page 198 for more information.

Fixed Ports
InAgenda Input object port to receive a resource agenda object.
InRequest Input entity port to receive resource scheduling entities to dynamically schedule resource

adjustments.

198 4 Appendix A: Templates

OutRequest
OutBalk

Output entity port for repeating resource scheduling entities to leave the block.

Output entity port for resource scheduling entities that cannot leave through the OutRe-

quest port.

Properties Dialog Box Controls

Add

Adds a new appointment entry (with default values) to the Appointments table.
The appointments in the table are used as the initial set of appointments to
be processed by the Resource Scheduler block during a simulation run. Each
appointment entry has the following fields:

Start Time specifies the time to activate the adjustment sequence listed in
the specified agenda.

Agenda specifies the identifier of the agenda to use for this appointment.

To Repeat specifies whether to repeat this appointment at a later time.
When the Resource Scheduler finishes an appointment marked as To Re-
peat, the block automatically reschedules the appointment with the current
simulation time as the new Start Time if the block’s OutRequest port is not
connected. Otherwise, the block sends a resource scheduling entity out its
OutRequest port for that repeating appointment. This entity can be sent to
the InRequest port of a Resource Scheduler block to repeat the appointment
at a different time.

The resource scheduling entity is a special type of entity, which is defined
and generated by the Resource Scheduler block. It has a numeric StartTime
attribute field and an object Agenda attribute field that can be adjusted
dynamically for complicated scheduling needs. If the StartTime value in
a newly arrived scheduling entity already passes the current simulation
time, the repeating appointment is activated immediately with the current
simulation time as the actual StartTime.

Immediate Actions contains three check boxes that specify the immediate
actions taken by the Resource Scheduler block when it processes a resource
agenda entry.

The Adjust Resources check boxes specify the adjustment types, which
consist of the following:

— Unseized indicates the immediate change to the targeted resource
entities if they are currently unseized.

— Seized indicates the immediate change to the targeted resource entities
if they are currently seized. This results in preemptive changes, which
might trigger preemptions in the holding blocks where the changed
resource entities reside.

The Advance Agenda check box specifies whether the Resource Scheduler
block moves to schedule the next agenda entry immediately.

The value of the Adjust Resources/Unseized, Adjust Resources/Seized,
and Advance Agenda check boxes results in eight different combina-
tions of values. Each combination is presented below as a triple of three
Boolean values, corresponding to the Adjust Resources/Unseized, Adjust

Resource Scheduler Block 4 199

Resources/Seized, and Advance Agenda check boxes, with T for true
(checked) and F for false (cleared). For example, the triple (T, F, F) rep-
resents Adjust Resources/Unseized = T, Adjust Resources/Seized = F,
and Advance Agenda = F. All the triple combinations and their effects on
resource adjustment during simulation are described as follows:

— (T, F, F) specifies to immediately adjust the unseized resource targets,
if any, and wait for the seized targets, if any, to become unseized. As
soon as a seized target becomes unseized, it is adjusted. The Resource
Scheduler block waits for all the seized and unseized targets, if any, to
be actually adjusted before moving on to process the next agenda entry.
This is the default combination for a new appointment entry.

— (T, F, T) specifies to immediately adjust the unseized resource targets,
if any, and wait for the seized targets, if any, to become unseized. As
soon as a seized target becomes unseized, it is adjusted. The Resource
Scheduler block moves on to process next agenda entry without waiting
for the adjustments to actually happen.

— (K, F, F) specifies that no unseized targets, if any, are adjusted until
all seized targets, if any, become unseized. Adjustments for seized
targets also do not happen until all seized targets become unseized.
That means adjustments are made to all targets at the same time once
there are no more seized targets. The Resource Scheduler block waits
for all the seized and unseized targets, if any, to be actually adjusted
before moving on to process the next agenda entry.

— (K, F, T) specifies that no unseized targets, if any, are adjusted until all
seized targets, if any, become unseized. Adjustments for seized targets
also does not happen until all seized targets become unseized. That
means adjustments are made to all targets at the same time once there
are no more seized targets. The Resource Scheduler block moves on
to process next agenda entry without waiting for the adjustments to
actually happen.

— (F, T, F) specifies that adjustments for unseized targets happen only
after all seized targets, if any, become unseized. Adjustments for
seized targets happen immediately and therefore are preemptive. The
Resource Scheduler block waits for all the seized and unseized targets
to be actually adjusted before moving on to process the next agenda
entry.

— (F, T, T) specifies that adjustments for unseized targets happen only
after all seized targets, if any, become unseized. Adjustments for
seized targets happen immediately and therefore are preemptive. The
Resource Scheduler block moves on to process next agenda entry
without waiting for the adjustments to actually happen.

— (T, T, F) specifies to immediately adjust the unseized and seized re-
source targets, if any. The Resource Scheduler block waits for all the
adjustments to complete before moving on to process the next agenda
entry, but the waiting does not actually occur because all targets are
adjusted immediately.

— (T, T, T) has the same effects as the above (T, T, F) combination.

200 4 Appendix A: Templates

The last four combinations are for preemptive adjustments of seized targets,
while the first four are not.

If the Advance Agenda option is not checked, the Resource Scheduler
block waits for seized or unseized targets, if any, to be actually adjusted
before moving on to process the next agenda entry. As a result, the time
between resource adjustments could be longer than the duration time speci-
fied in the resource agenda, and it could delay other succeeding adjustments.
Otherwise, it could result in a shorter time between actual resource adjust-
ments.

When the targets of a resource units adjustment action include both unseized
and seized resource entities, the unseized targets are usually assigned their
units allotment first.

» Search Targets By specifies the criteria to identify a collection of resource
entities as the adjustment targets of this appointment:
— Entity Type identifies the type of targeted resource entities to adjust.

— Attribute Rule specifies a filtering rule that the targeted resource
entities must satisfy. The rule is a Boolean expression that involves
attribute values of a candidate resource entity that must evaluate to
true for the entity to be considered as an adjustment target. For more
information about how to write the Boolean expression, see Appendix F,
“Expressions.”

Remove Deletes the selected appointment entries from the Appointments table.

Candidates for Design of Experiments

Factors RankValue (double)

Responses None

Resource Agenda Block 4 201

Resource Agenda Block

II'.IDU-I'E.'tiEII'iI. Ilﬂﬂ.F alue

.

=
E

O 0
1 |
Dutd genda OutCurrentEntsy

Description

The Resource Agenda block holds a resource agenda that describes and organizes a series of resource
adjustment actions sequentially.

An adjustment action is a change to either the resource units or the resource state of one or more targeted
resource entities. Each action is specified as a resource agenda entry, which lists the change type and value,
in a resource agenda. The entry also lists a duration value to indicate how long the new value is expected to
be effective starting from the change time. An agenda organizes its entries based on a relative starting time of
0. The agenda can be used and activated by a resource scheduling facility, such as a Resource Scheduler
block, to schedule resource adjustments with an absolute starting time during a simulation run. The targeted
resource entities are identified by the scheduling facility at simulation time.

The Resource Agenda block also supports dynamic entries with dynamic durations or adjustment values or
both that are not prespecified. When a dynamic entry is activated by a resource scheduling facility to become
the current entry at simulation time, the dynamic values are pulled dynamically through the InDuration port
or InValue port or both.

Fixed Ports
InDuration Input numeric port to pull the dynamic duration value, if needed, of the agenda entry
being activated.
InValue Input numeric port to pull the dynamic adjustment value, if needed, of the agenda entry
being activated.
OutAgenda Output object port to provide an instance of the resource agenda held in this block.

OutCurrentEntry Output integer port for the zero-based index of the entry being activated.

Properties Dialog Box Controls

ID Specifies a textual identifier for the agenda.

Entries Specifies the table of agenda entries.
You can create a new resource agenda entry by clicking Add beside the Entries
table. This results in a new agenda entry (with default values) being added to the
Entries table. You can edit the field values directly in the table:

* Duration specifies how long the result of the resource adjustment is ex-
pected to last.

202 4 Appendix A: Templates

* Value specifies the adjustment value.
* Value Type specifies the adjustment type, which is one of the following:

— UNITS indicates the adjustment of total resource units for targeted
resource entities. The adjustment value is the new units count, which is
a nonnegative number.

— UNITS_OFFSET indicates the adjustment of total resource units for
targeted resource entities by offsetting the current units. The adjustment
value is the units offset amount. A positive offset increases the units
count, and a negative offset decreases it. Because resource units should
never be negative, the maximum amount of units to decrease is the
existing units count.

— STATE indicates the adjustment of resource state for targeted resource
entities. The adjustment value is the new resource state, which can be
one of Functional, Failed, Maintenance, and Offlined.

To create a dynamic entry with a dynamic numeric value for duration or adjust-
ment value, erase the current contents of the Duration or Value field, leaving it
blank. If an agenda contains dynamic entries, it is recommended to limit its use
to only one resource scheduling facility to ease the modeling task of providing
the needed dynamic values. For the same reason, when your model uses the
transient entry index from the OutCurrentEntry port of a Resource Agenda block,
the modeling process might be easier if the agenda block provides its agenda to
only one resource scheduling facility.

You can delete agenda entries from the Entries table by selecting the entry rows
in the table and then clicking Remove.

Candidates for Design of Experiments

Factors

Responses

None

None

Steady State Block 4 203

Overview of the Output Analysis Template

The Simulation Studio Output Analysis template provides a collection of blocks used to analyze the output of
a simulation model.

Steady State Block

Ird:lilata

-

>

oo
ChitlowerLimt— | —CutWarmnUpTime
Ot pperLivt

Description

The Steady State block provides an automated procedure for producing a confidence interval estimator for
a steady-state mean response in a nonterminating simulation model. The procedure is based on spaced
batch means (see Lada, Steiger, and Wilson (2008)). You specify the precision and coverage-probability
requirements for the desired confidence interval. The Steady State block can be used for both time-dependent
and time-independent data.

The Steady State block requires a link to its InData port from which it can pull a data model at simulation
start-up time. If there are no connections to the InData port or the Steady State block cannot pull a data
model from its InData port, the block does not start. Using the properties dialog box, you specify the name
of the data model variable that contains the numeric values to use to construct a confidence interval. You
also use controls in the properties dialog box to set the desired relative precision of the half-width of the
confidence interval along with the coverage-probability parameter.

The Steady State block controls the length of the simulation run within the limits of the EndTime system
parameter specified in the current Experiment window. If the Steady State block fails to acquire sufficient data
needed to calculate the desired confidence interval before reaching the EndTime value of the experimental
design point, the simulation terminates and no confidence interval is output. If the block is successful in
calculating the desired confidence interval, it pushes the lower and upper limits of the confidence interval out
its OutLowerLimit and OutUpperLimit ports, respectively. If the EndTime value is infinity, then the model
runs until the Steady State block is able to deliver a confidence interval that satisfies the specified precision
requirement.

The Steady State block pushes the simulation time value associated with the last data value of the estimated
warm-up period out its OutWarmUpTime port at the point its algorithm detects this value.

Since the Steady State block controls the running of the simulation, only one Steady State block should be
used per model.

204 4 Appendix A: Templates

Fixed Ports

InData Input port for a SimDataModel.
OutLowerLimit Output numeric port for the lower limit of the confidence interval.
OutUpperLimit Output numeric port for the upper limit of the confidence interval.

OutWarmUpTime Output numeric port for the simulation clock time associated with the last data value
of the estimated warm-up period.

Properties Dialog Box Controls

Variable Name Specifies the name of the variable in the SimDataModel to be used for data values.

Desired Precision Specifies the desired relative half-width of the calculated confidence interval. For
example, a desired precision of 0.075 indicates that you want the final confidence
interval half-width to be within +/— 7.5% of the estimated mean.

Beta Specifies the coverage probability for the confidence interval. For example, a
Beta value of 0.05 indicates you want a 95% (1.0 — 0.05) confidence interval.

Candidates for Design of Experiments

Factors DesiredPrecision (double), PrecisionRelative (Boolean), Beta (double)
Responses LowerLimit (double), UpperLimit (double)
References

Lada, E. K., Steiger, N. M., and Wilson, J. R. (2008), “SBatch: A Spaced Batch Means Procedure for
Steady-State Simulation Analysis,” Journal of Simulation, 2, 170-185.

Appendix B

Random Variation in a Model

Contents
Overview of Random Variation, 206
Discrete Distributions L. e e 208
Binomial e 208
Discrete Uniform e e 208
GeOMeLtriC e e e e 209
Negative Binomial 209
Poisson e e e e 209
Continuous Distributions e e e e 210
Beta. e e 210
Chi-Square e 210
Erlang 210
Exponential 211
Gamma e e e e e 211
Johnson Bounded Distribution (JohnsonSB) 211
Johnson Lognormal Distribution (JohnsonSL) 212
Johnson Unbounded Distribution (JohnsonSU) 212
Lognormal e 213
Normal e e e e 213
Pearson Type V. L e 213
Pearson Type VI o 214
Triangular e e 214
Uniform o e e e e e 215
Weibull o e e 215
Empirical Distributions 215
Discrete. o e e e e 215
CONtiNUOUS v v o i vt e e e e e e e e e e e e e e e 216
Nonhomogeneous Poisson Process oo 217
Count-Based e 217
Rate-Based e 218
References e 219

206 4 Appendix B: Random Variation in a Model

Overview of Random Variation

Random and exogenous sources of variation play a central role in discrete- event simulation. Blocks such as
the Entity Generator, Value Generator, Server, and Delay blocks usually require a connection to a source of
variation. The principal sources of variation are the Numeric Source and Formula blocks. The functionality of
these blocks is described in Appendix A, “Templates,” but this section also provides a quick overview. Both
the Numeric Source and Formula blocks provide an OutValue output port to which other blocks can connect
to pull numeric values. The values produced by these blocks are dependent on their parameter settings.
Figure B.1 shows the Block Properties dialog box for a Numeric Source block with the default settings. The
Theoretical option is selected and the Type list box provides a list of the statistical distributions available
in Simulation Studio for sampling purposes. You select a distribution from the Type list and then supply
the desired parameters in the approripate fields for the distribution that you have chosen. (The details about
the distributions available in Simulation Studio are presented later in this appendix.) When a request for a
sample comes into the Numeric Source block, the block generates a value based on its parameter settings.

Figure B.1 Sample Numeric Source Block Dialog Box

Block Properties for Numeric Source x|

i Numeric Data Source | Overview |

i® Theoretical ' Fitted (' Data Driven

Type: |Exponential -

Parameters

Mean : |1 |

Random Stream Seed: |IZI |

Close

In the Numeric Source block properties, the Fitted option allows you to specify the location of a data set and
then JMP is used to automatically fit a theoretical distribution to the data. See Appendix D, “Input Analysis,”
for specific details on using the Fitted option.

The Data Driven option in the Numeric Source block properties has a Type list box that provides you with a

Overview of Random Variation 4 207

variety of methods for generating samples that are based on a specific data set. For example, the Discrete
Empirical and the Empirical options are especially useful when it is not possible to find a theoretical
distribution that fits the data accurately. Furthermore, the nonhomogeneous Poisson process options NHPP
Count and the NHPP Rate allow you to generate a time dependent arrival process that is based on either
count or rate data. Finally, the SAS Data Column option can be used to read values from a SAS data set or a
JMP data table that are then used directly as a source of input to a simulation model. When using this option
in the Numeric Source block, you must supply the file pathname along with the column or variable name in
the data set. (See Figure B.2.) Simulation Studio uses the filename extension to determine whether the file is
a SAS data set or JMP data table. If a filename extension is not specified, Simulation Studio assumes the file
is of the type (SAS data set or JMP table) specified in the Default Data Format section of the SAS Simulation
Configuration dialog box.

Figure B.2 Sample Numeric Source Block That Uses a SAS Data Set

Block Properties for Numeric Source x|

l/ Humeric Data Source |/ Overview |

i) Theoretical ' Fitted ® Data Driven

Type: |SAS Data Column |+

Input Data

Data Name: | | | ini |

Variable Name: | |

[] Load from Remote SAS Workspace Server

Parameters

Lazy Loading : |fa|se |

Reset At Updated: |[false |

Apply Close

Another way to introduce random variation into a simulation model is with a Formula block. Figure B.3
shows a sample Block Properties dialog box for the Formula block. You define input variables in the Input
Variables area and then use these variables to write an algebraic expression in the Expression area. The
values associated with the input variables can come either from ports on the Formula block or from attributes
defined on the incoming entity. You can formulate the expression to represent the source of variation that you
require. Each time a value is pulled from the Formula block, its expression is evaluated and the resulting
value is passed out the OutValue port. See the description of the Formula block in Appendix A, ‘“Templates,”
for additional details about this block.

208 4 Appendix B: Random Variation in a Model

Figure B.3 Sample Formula Block Dialog Box

l/Fonmla r Overview |

Input Variables
Mame Type Source Add
runif Mumber Port

Remove

Move Up

)|

Move Down

[] To Acquire Port Values Only When Needed

Expression

| »

cond{runif=0.35,1,0)

ll

Result Type: ® Number _ String ' Boolean

apply || close

Discrete Distributions

Binomial

The probability mass function of the binomial distribution is

p(x) = mpx(l -p)"*

forx €[0,1,...,n].

Parameters:

n is a positive integer that represents the number of independent Bernoulli trials.
p €[0,1] is the probability of success on each trial.

Discrete Uniform

The probability mass function of the discrete uniform distribution is

1
PO =5

forx e [i,i +1,...,j], wherei and j are integers withi < j.

Parameters:

i is a location parameter.
j —1 is ascale parameter.

Geometric 4+ 209

Geometric

The probability mass function of the geometric distribution is

p(x) = p(1—p)*!

forx € {1,2,...}.
Parameter:

p € (0,1) is the probability of success on each trial.

Negative Binomial

The probability mass function of the negative binomial distribution is

_(n+x—-1)!

p(x) ST p"(1—p)*

forx € {0,1,...}.

Parameters:

n is a positive integer > 1 which represents the number
of successes in a series of independent Bernoulli trials.
p € (0,1) is the probability of success on each trial.

Poisson

The probability mass function of the Poisson distribution is

e—kkx

p(x) = o

forx € {0,1,...}.
Parameter:

A is the mean, A > 0.

210 4 Appendix B: Random Variation in a Model

Continuous Distributions

Beta

The density function of the beta distribution is

I'(a + B)

“T@r PG —aep 1 a)* ' (b —x)P!

f(x)

fora < x < b. The gamma function I'(z) is defined for any real number z > 0 as

[e @]
l"(z)z/ > e dy
0

Parameters:
a is the minimum value, a < b.
b is the maximum value.

o > 0 is a shape parameter.
B > 0 isashape parameter.

Chi-Square
The chi-square distribution with k degrees of freedom is the same as the gamma distribution with & = % and
A =2
Parameter:

k is an integer > 1 which represents the degrees of freedom.

Erlang

The Erlang distribution is a special case of the gamma distribution. The density function of the Erlang
distribution is

where x > 0.

Parameters:
A is areal number > 0.
k is aninteger > 1.

If X1, X», ..., X are independent exponential random variables with mean A, then X1 + X, + --- + X}
has the k-Erlang distribution.

Exponential 4 211

Exponential

The density function of the exponential distribution is

1

_X
e A

f(x) =

>|

where x > 0.
Parameter:

A is the mean, A > 0.

Gamma

The density function of the gamma distribution is

X
A—axa—le—x

0 ="

where x > 0. The function I'(z) is defined in the section “Beta” on page 210.

Parameters:

o is the shape parameter, o > 0.
A s the scale parameter, A > 0.

Johnson Bounded Distribution (JohnsonSB)

The density function of the Johnson bounded distribution (JohnsonSB) is

o= (5 on (4] ()

where

g(y) =1In (%)
g0y = ﬁ

and x € [£,& + A].

Parameters:
d (delta) is a shape parameter, § > 0.
y (gamma) is a shape parameter.
& (xi) is the location parameter.

A (lambda) is the scale parameter, A > 0.

212 4 Appendix B: Random Variation in a Model

Johnson Lognormal Distribution (JohnsonSL)

The density function of the Johnson lognormal distribution (JohnsonSL) is

0=t (5o (5[(5)])

where
g(y) =1In(y)
g =5

and x € [§, 00).

Parameters:

4 (delta) is a shape parameter, § > 0.

y (gamma) is a shape parameter.

£ (xi) is the location parameter.

A (lambda) is the scale parameter, A = +1.

Johnson Unbounded Distribution (JohnsonSU)

The density function of the Johnson unbounded distribution (JohnsonSU) is

= (5o (3o (5]

where

g(y)=In [y + W]

/ _ 1
g = e

and x € (—o00, 00).
Parameters:

6 (delta) is a shape parameter, § > 0.
y (gamma) is a shape parameter.

& (xi) is the location parameter.

A (lambda) is the scale parameter, A > 0.

Lognormal 4 213

Lognormal

The density function of the lognormal distribution is

1 —(In(x) — p)?
J = x~2mo? exp(202)

where x > 0.

Parameters:

i is the mean of In(x) ~ Normal(j, 02).
o is the standard deviation of In(x) ~ Normal(u, %), o > 0.

Normal

The density function of the normal distribution is

—(x—w)?
e 202

J = 2rwo?

for all real values of x.

Parameters:

M is the mean, u € (—o0, 00).
o 1s the standard deviation, o > 0.

Pearson Type V

The Pearson Type V distribution has the same density function as the gamma distribution with shape parameter

« and scale parameter A = %

Parameters:

o is the shape parameter, o > 0.
B is the scale parameter, 8 > 0.

214 4 Appendix B: Random Variation in a Model

Pearson Type VI

The density function of the Pearson Type VI distribution is

()"

BG (a1, az) [1 " (%)]aﬁaz

fx) =
where x > 0 and

()T (a2)

Gy, a2) = T +)

The function I'(z) is defined in the section “Beta” on page 210.

Parameters:

o1 1s a shape parameter, o > 0.
o is a shape parameter, ap > 0.
B is ascale parameter, f > 0.

If X1 and X, are independent random variables with X; ~ Gamma(«y, 8) and X, ~ Gamma(ay, 1), then
Y =)X{—; ~ PearsonTypeVI(ay, oz, B).

Triangular

The density function of the triangular distribution is

G a<x=m

fx) =13 e
Tom—ay ™M <X <b

where a, b, and m are real numbers witha < m < b.

Parameters:

a is the minimum.
b is the maximum.
m is the mode.

Uniform 4 215

Uniform
The density function of the uniform distribution is

L a<x<bh

— b—a
Jx) 0 otherwise

where a and b are real numbers with a < b.

Parameters:

a is the minimum.
b is the maximum.

Weibull

The density function of the Weibull distribution is

f(x) = afp %x%! e~ (B

for x > 0.

Parameters:

o is the shape parameter, o > 0.
B is the scale parameter, 8 > 0.

Empirical Distributions

Discrete

The Discrete Empirical option under the Data Driven option of a Numeric Source block requires the

following input data, as shown in Figure B.4:

» Data Name: The location of the SAS data set or JMP table that contains the data to be used to specify

a discrete empirical distribution.

* X : Name of the column in the data set that contains the set of n possible discrete values x1, X2, ..., Xz,

ordered so that x; < xp < ... < Xp.

* Y : Name of the column in the data set that corresponds to the probability mass function values
p(x;) foreach x; : i = 1,2,..,nsothat y; = p(x;); > p—q p(xx) = 1;and 0 < p(x;) < 1 for

i=1,2,..n.

216 4 Appendix B: Random Variation in a Model

Figure B.4 Discrete Empirical Option for the Numeric Source Block

B slock Properties for Numetric Source x|

l/ Humeric Data Source |/ Cverview |

' Theoretical _ Fitted ® Data Driven

Type: |Discrete Empirical |«

Input Data

Data Name: | | | ini |

}{:| |

*r:l |

[] Load from Remote SAS Workspace Server

Parameters

Random Stream Seed: |0

phy Close

5

Continuous
The Empirical option under the Data Driven option of a Numeric Source block requires the following input
data:
* Data Name: The location of the SAS data set or JMP table that contains the data to be used to specify
a continuous empirical distribution.

* X : Name of the column in the data set that corresponds to the set of n ordered values x1, x2, ..., Xj.

* C : Name of the column in the data set that corresponds to the cumulative probability values
€1,€2,....,¢p s0that 0 < ¢; < 1forj = 1,2,...,n;¢; < cj4q1 for j = 1,2,...,n — 1; and

The probability density function is defined as

c1 if x = x3
Jx)=19 ¢j—cj1 ifxj1<x<x;,j=2,3,..,n
0 ifx <xjorx > xy,

Nonhomogeneous Poisson Process 4 217

If ¢; > 0, then the result is a mixed continuous-discrete distribution that returns x; with probability c;
and with probability 1 — ¢ a continuous random variate on (x1, x,] using linear interpolation. If a true
continuous distribution on [x1, x,] is desired, then specify ¢; = 0.

Nonhomogeneous Poisson Process

There are many systems in which the arrival rate of entities depends strongly on time (for example, arrivals
of patients at an emergency room and the arrival of calls at a customer service center). In Simulation Studio,
a nonhomogeneous Poisson process (NHPP) based on either count or rate data can be used to generate a
time-dependent arrival process on the time interval (0, S].

For either the count-based or rate-based case, a Numeric Source block with the NHPP option specified
under the Data Driven option can be connected to the InterArrival time port of an Entity Generator block.
In the Entity Generator block, the option At First Interarrival Time for First Entity Creation should be
selected to ensure that the first arrival time is an actual event time for the NHPP. If either the At Start Time
or After Signal Arrival option is selected, the first entity is generated at the start time specified in the Entity
Generator block or the signal time and is not an arrival (event) time generated from the specified NHPP.
However, all subsequent arrival times are generated from the NHPP.

Also, the start time of the NHPP might not correspond to the start time of the simulation. For example,
suppose an NHPP is defined on the time interval from noon to 2:00 p.m., but the simulation start time is 8:00
a.m. In this case, if the time unit is in hours, an extra subinterval from 8:00 a.m. to noon with count (or rate)
0 could be added so that the NHPP is defined on the time interval (0, 6]. No events are generated for the time
interval (0, 4] and the process effectively begins at simulation time 4 (which corresponds to noon).

After the simulation clock reaches time .S, the entity generator block associated with the NHPP shuts down
and no more entities are generated. If necessary, a signal can be sent to the Entity Generator block to generate
an entity at a specific time after S

Count-Based

A method described in Leemis (2004) is used for generating arrival times from an estimated NHPP. This
method uses event-time data that are given as counts that occur in disjoint subintervals (as opposed to the
event times themselves). For the NHPP Count option under the Data Driven option of a Numeric Source
block, the following inputs are required as shown in Figure B.5:

e Data Name: The location of the SAS data set or JMP table that contains the data to be used to estimate
a cumulative intensity (rate) function.

* X: Name of the column in the data set that specifies the subinterval cutoff points xg, X1, ..., Xm
so that the NHPP has an intensity function that is piecewise constant on each subinterval
(x0,x1], (x1, x2], ..., (Xm—1, Xm]. The subintervals do not necessarily have equal widths. The NHPP
is defined on the time interval (0, S] so that xo = 0, x,, = S, and m is the number of subintervals.
The time units must be consistent with the data. For example, if the interval of interest is from 1:00
p.m. to 5:30 p.m., then the interval (xq, x5;] is (0, 4.5] if the data are in hours or (0, 270] if the data are
in minutes.

218 4 Appendix B: Random Variation in a Model

¢ Counts: Name of the column in the data set where each value ¢y, c3, ..., ¢, is the total number of
observed events in each subinterval over all replications. Specifically, ¢ is the total number of observed
events in the subinterval (xg, x1]. The length of the Counts column should be one less than the length

of the X column.

* Number of Replications: The number of realizations of the observed process.

Figure B.5 NHPP Count Option for the Numeric Source Block

B slock Properties for Numetric Source

l/ Humeric Data Source |/ Cverview |

x|

|| ded |

_) Theoretical Fitted ® Data Driven
Type: HHPP Count
Input Data
Data Name: |
X: |
Counts: |

Parameters

[] Load from Remote SAS Workspace Server

Humber of Replications : |5

Random Stream Seed : |IZI

by

5

Close

Rate-Based

For the NHPP Rate option under the Data Driven option of a Numeric Source block, the following inputs

are required as shown in Figure B.6:

¢ Data Name: The location of the SAS data set or JMP table that contains the data to be used to estimate

a cumulative intensity (rate) function.

* X: Name of the column in the data set that specifies the subinterval cutoff points xg, X1, ...

’xm

so that the NHPP has an intensity function that is piecewise constant on each subinterval
(x0,x1], (x1, x2], ..., (Xm—1, Xm]. The subintervals do not necessarily have equal widths. The NHPP
is defined on the time interval (0, S] so that xo = 0, x,, = S, and m is the number of subintervals.
The time units must be consistent with the data. For example, if the interval of interest is from 1:00

References 4 219

p.m. to 5:30 p.m., then the interval (xq, X,] is (0, 4.5] if the data are in hours or (0, 270] if the data are
in minutes.

¢ Rates: Name of the column in the data set where each value ry, rs, ..., r;, 1s the estimated rate of
arrivals over each subinterval. Specifically, r; is the rate of arrivals over the subinterval (xg, x1]. The
length of the Rates column should be one less than the length of the X column. Furthermore, the units
of the rates r1, 2, ..., ', must be consistent with the rest of the simulation model. For example, if the
units used in the model are minutes, then the rates rq, 3, ..., r, must be specfied in number of arrivals
per minute.

Figure B.6 NHPP Rate Option for the Numeric Source Block

B slock Properties for Numetric Source x|

l/ Humeric Data Source |/ Cverview |

i) Theoretical _ Fitted ® Data Driven

Type: HWHPP Rate -

Input Data

Data Name: | | | ini |

}{:| |

Rates: | |

[] Load from Remote SAS Workspace Server

Parameters

Random Stream Seed: |0

phy Close

5

References

Leemis, L. M. (2004), “Nonparametric Estimation and Variate Generation for a Nonhomogeneous Poisson
Process from Event Count Data,” IIE Transactions, 36, 1155-1160.

220

Appendix C
Design of Experiments

Contents
Define Factors and Responses 221
Set Model Anchors e 222
Set Up the Experiment Window 224
Generate a Design Using JMP Software 225
Run the Experiment L 226
Analyze the Simulated Results L 227

This chapter uses the repair shop example in Chapter 2, “Overview of SAS Simulation Studio,” to demonstrate
how you can use JMP software to generate experimental designs for a Simulation Studio model. One of the
goals in that example is to ease the bottleneck at the quality control station. Suppose you have the option of
adding additional workers at the service desk, repair desk, and quality control station so that each station can
have one, two, or three workers. These are the factors of your experiment. The responses you could monitor
are the average utilizations at all three stations (to make sure workers are not idle or overworked), the number
of fixed parts, and the average waiting time at each of the three stations. Since you now have three factors,
each defined at three levels, you might want to generate an experimental design (such as a full or fractional
factorial design) to guide your simulation runs. This is a more efficient way to explore the effects of different
parameters on your model responses than just randomly selecting combinations of your factor values to try.
You can do this with the Simulation Studio Experiment window and JMP software.

Define Factors and Responses

To set up your experimental design, first define three factors for the project: NumQC, NumRepair, and
NumService to represent the number of workers at each of the three stations. See Chapter 5, “Experiments,”
for more details about factors. To define the factors, first right-click the project name in the project window
and select Factors to open the Factor Creation dialog box. Also define seven responses for the project by
right-clicking the project name again and selecting Responses to open the Response Creation dialog box.
Figure C.1 and Figure C.2 show the Factor Creation and Response Creation dialog boxes for the repair shop
model.

222 4 Appendix C: Design of Experiments

Figure C.1 Factor Creation Dialog Box

=
Factors Details
umac Name INUm@C |
NumRepair Label { j Remove
NumService
Roletype |CATEGORICAL | v \
Valuetype INTEGER v
Values 1
2

3

<[B

Default value {1

| ok | cancer |

Figure C.2 Response Creation Dialog Box

X
Responses Details
umFized Name INumFixed | -m
AvgUtilQC Label | | Remove
AvgWaitQC —
AvgUtilRepair Goal ’Maxlmlze | v ‘
AvgUtilService Values NaN
AvgWaitRepair E RE
AvgWaitService
A
v
OK || Cancel |

Set Model Anchors

After you have established the database of factors and responses for the project, you need to link each factor
and response to a specific block in the model. To do this, right-click in the Model window and select Anchors
to open the Anchors dialog box. Click New to open the New Anchor dialog box where you can link a block
in your model to your defined factor. For example, as shown in Figure C.3, the capacity of the Service Desk
block is linked to the factor NumService. The responses are linked to blocks in a similar fashion, as shown

Set Model Anchors 4 223

in Figure C.4. You can also define new factors and responses for the project directly from the New Anchor
window.

Figure C.3 Factor Anchors

New Anchor x|
Blocks Candidates Factors
=3 modeld |*| | |Capacity Num Service
D SeniceDeskQ RankValue HumRepair
[Senvce Dest] Nemac

D InServiceTime
D RepairDeskQ
D Repair Men

D InRepairTime
[y ualityCentrola
[y uality Contral —
[y InacTime
[#Fixed Early
[y #scrapped
[#Fixed

O Arrivale

Add Factor

4]

Candidate Factor

Mame: Capacity MumQc
Tooltip:
Role type: CONTINUOUS CATEGORICAL
Value type: INTEGER INTEGER
Default value: 1 1
Values: 0 1

i 2

3

Figure C.4 Response Anchors

Anchors x|

Factor Anchors | Response Anchors |

Response Block Candidate

MurnFixed #Fixed Value New...
AvgWaitService SeniceDeskQ AverageWait -
Avg\WaitRepair RepairDesk(AverageWait Edit...
AvgWaitQC QualityControlQ AverageWait
AvgUtilService Semvice Desk Avgltilization
AvgUtiIRepair Repair Men AvgUtilization
AvgUtilQc Quality Control AvgUtilization

apply || Close

224 4 Appendix C: Design of Experiments

Set Up the Experiment Window

After all factors and responses have been linked to blocks in the model, you need to include them in the
experiment. To include factors, right-click in the Experiment window and select Factor Inclusion. In the
Factor Inclusion dialog box, you can select the factors defined for your project that you want to include in the
experiment. See Figure C.5. Include responses in the experiment in similar fashion by right-clicking in the
Experiment window and selecting Response Inclusion. See Figure C.6.

The Experiment window with all factors and responses included is shown in Figure C.7. The end time for
all design points has been changed to 2700 minutes, and the number of replications has been changed to
5 by right-clicking in the Experiment window and selecting Properties. The Properties dialog box for the
Experiment window enables you to set default values for StartTime, EndTime, and Replicates. Each new
design point has the default values for these parameters.

Figure C.5 Including Factors in the Experiment

£ Factor Inclusion ... | 5
Factors Details
[Included | Name |)
I e — Num@Qc
v] NumRepair -
V] NumService Tooltip:

Role type: CATEGORICAL
Value type: INTEGER

1

2

3

Values:

Default value: -1

Ol ‘ | Cancel

Generate a Design Using JMP Software 4 225

Figure C.6 Including Responses in the Experiment

£ Response Inclusion ... 5'
Responses Details
Included Name |

v [NumFixed | Name: NumFixed
2 AvgULIQC
[v] AvgWaitQC
[v] AvgUtilRepair
V] AvgUtilService Label:
[v] AvgWaitRepair
v AvgWaitService Goal type: Maximize

NaN

NaN

Values:
| ox H Cancel |

Figure C.7 Experiment Window with Factors and Responses Included

[iZ experiment0 o' X

PointName 81anT|me‘ EndT\mel NumQC | NumRepair NumSerwce‘ Repl]caws] NumFixed | AvgUtilService ‘ AvgUtiIRepair | AvgUHIQC | AvgWaitService | AvaWaitRepair | AvgWaitQC
point 1] 0 2,700 1] 1] 1 »s |

Generate a Design Using JMP Software

Now you are ready to generate a JMP experimental design. First, ensure that the JMP server has been
launched. See Chapter 3, “Introduction to SAS Simulation Studio.” Then, right-click in the Experiment
window and select Make Design from the pop-up menu. To use the Make Design option, the Experiment
window must include at least one factor and one response. The default design created by the JMP custom
designer is automatically passed back to the Experiment window in Simulation Studio. You can alter the
JMP design by adding additional design points, replicates, or interaction terms. See the JMP documentation
for specific information about design of experiments. However, you must create all factors and responses in
Simulation Studio since they must be linked to specific model blocks. If you create new factors or responses
in the JMP program, they will not be passed back to Simulation Studio. If any changes are made to the JMP
design, you must click the Commit button in the JMP Simulation Studio DOE window to automatically pass
the new design back to Simulation Studio. Figure C.8 shows the JMP Simulation Studio DOE window with
the Commit button in the top left corner.

226 4 Appendix C: Design of Experiments

Figure C.8 JMP Simulation Studio DOE Window for the Repair Shop Model

Simulation Studio DOE -- repairshopDOE, experiment0 - |D|§]

| Commit | | Close ‘ =
¥| = Custom Design |

¥| Responses

| Add Response v‘ | Remove | ‘ Number of Responses...

Response Name Goal Lowvver Limit Upper Limit Importance

NumFixed Maximize

AyvgUtilac Maximize

AviWatQC Minimize

AvglUtiRepair Maximize

AvgUtiService Maximize

AvgWaitRepair Minimize

AvgWaitService Minimize

*| Factors
| Add Factor v] | Remove ‘ Add N Factors :
Name Role Changes Values

thNumac Categorical Easy 1 2 3
‘NumRepair Categorical Easy 1 2 3
th NumService Categorical Easy 1 2 3

’| Define Factor Constraints
} Model |
¥ Design

Run HumQC HumRepair HumService HumFixed AvgUtilQC AvgWaitQC AvgUtilRepair AvgUtilService AvgWaitRepair AvgWaitService
1 1 1 =) 5 5 5 2 2 2

W~ D ; s W N

9
10
11
12 3

} = Prediction Variance Profile |

¥ Fraction of Design Space Plot |

= NSO =S 0Ww
WN=NDNNONOW-=N
W= =2PNONW-= N =

¥ = Prediction Variance Surface |

¥ Relative Variance of Coefficients |

Ll

Run the Experiment

To run the experiment in Simulation Studio, highlight all the rows in the table by holding down the left mouse
button on the first design point and dragging the mouse to highlight all the remaining design points. Now
click the Play icon on the toolbar to run all replications of all the design points.

Figure C.9 shows the Experiment window after running all 12 design points. By default, the value reported
for each response is the average over all five replications. To view the minimum or maximum value over all
replications, right-click in the column header for a response and select Summary. The resulting dialog box
enables you to display the average, minimum, or maximum value for the selected response. You can view the
individual response values for each of the five replications for each design point by clicking the blue arrow

Analyze the Simulated Results 4 227

next to the number of replications within a design point. Figure C.10 shows the five replications for design
point 1. To hide the replication results, click the blue arrow again.

Figure C.9 Experiment Window Showing Simulated Results

[iZ experiment0 |
PointName |StarfTime| EndTime | NumQC | NumRepair | NumService | Replicates | NumFixed | AvgUtilService | AvgUtiIRepair | AvgUHIQC | AvgwWaitService | AvoWaitRepair | AvgwWaitQC

point 1 0] 2,700 1 1 3 PS5 55.8 22.777, 32.901 98.117 0.114] 1.682] 640.598

point 2 0] 2,700 3 2] 1 5 105.6 67.899 16.395 61.846 16.765 0 3.659

point 3 0 2,700 2 3 1 P 5 100.2 67.899 10.93 88.317 16.765 0 84.874

point 4 0] 2,700 2] 1 3 5 100.6 22.777, 32.901 88.508 0.114] 1.682] 97.37

point 5 0] 2,700 2] 1 1 5 100.2 67.899 32.79 88.317 16.765 0.234 84.641

point 6 0 2,700 3 1 2 P 5 105.8 34135 32.901 61.918 0.837 1.382 8.7

point 7 0] 2,700 2] 2] 2 5 100.4 34.135 16.473 88.472 0.837’ 0.021 97.977

point 8 0] 2,700 2] 2] 3 5 100.6 22.777, 16.468 88.515 0.114] 0.095 98.456

point 9 0 2,700 1 1 1 »5 55.8 67.899 32.79 98.117 16.765 0.234 621.012

point 10 0] 2,700 3 3 3 5 105.8 22.777, 10.978 61.941 0.114] 0.001 9.329

point 11 0] 2,700 1 g 2 5 55.8 34.135 10.982 98.117 0.837 0 641.409

point 12 0 2,700 1 2 1 »5 55.8 67.899 16.395 98.117 16.765 0 621.193

Figure C.10 Experiment Window Showing Results for All Five Replications of Design Point 1

[iZ experiment0 o X
PointName |StartTime| EndTime | NumQC | NumRepair | NumService | Re In:ates[NumFixed | AvgUtiIService | AvgUtiIRepair | AvgUHIQC | AvoWaitService | AvgWaitRepair | AvgWaitQC

point 1 0 2,700 1 1 w5 55.8. 22.777, 32.901 98.117 0.114] 1.68 640.598

1 55! 22105 35.83 99.325 0.023 1.389 6594.98

2 57 21.946 29.272| 99.318] 0.029; 1.253 539.067

3 57 19.992 31.828] 99.349; 0.079; 1.557 477.936

4 56! 21.037 29.027 98.142 0.116 1.68 615.932

5 54 28.806 38.549 94.453 0.326 2529 875.074

point 2 0 2,700 3 2 1 PS5 105.6; 67.899; 16.395] 61.846! 16.765] 0 3.659

point 3 0 2,700 2 3 1 PS5 100.2; 67.899; 10.93; 88.317] 16.765] 0 84.874

point 4 0 2,700 2 1 3 b5 100.6: 22.777! 32.801 88.508! 0114 1.682 97.37

point 5 0 2,700 2 1 1 b5 100.2 67.899 32.79 88.317 16.765 0.234 84.641

point 6 0 2,700 3 1 2 |) 105.8; 34.135] 32.901 61.918] 0.837; 1.382 8.7

point 7 0 2,700 2 2 2 PS5 100.4 34.135] 16.473] 88.472] 0.837; 0.021 97.977,

point 8 0 2,700 2 2 3 PS5 100.6; 22.777! 16.468] 88.515] 0114 0.095 98.456

point 9 0 2,700 1 1 1 PS5 55.8 67.899; 32.79 98.117] 16.765] 0.234) 621.012

point10 0 2,700 3 3 3 |) 105.8 22.777) 10.978 61.941 0114 0.001 9.329

point 11 0 2,700 1 3 2 PS5 55.8 34.135; 10.982] 98.117] 0.837; 0 641.409

point12 0 2,700 1 2 1 PS5 55.8 67.899; 16.395] 98.117] 16.765] 0 621.193

Analyze the Simulated Results

From the results in Figure C.9, design point 6 (which represents three workers at quality control, one worker
at the repair desk, and two workers at the service desk) seems to satisfy the goal of reducing the bottleneck at
the quality control station while providing a reasonable balance between the waiting time and the utilization at
all three stations. However, you can also use the JMP software to conduct a more formal statistical analysis of
the results. For example, you can estimate a statistical model (or metamodel) that can be used for prediction
purposes.

To pass the simulated results in the Experiment window back to the JMP GUI, right-click in the Experiment
window (be sure the Reset button has been pushed) and select the Analyze Results option. This automatically
creates a JMP data table with the results for all replications of all the design points. The Experiment window
must include at least one factor and one response in order to use the Analyze Results option. Note that the
JMP table for this experiment has 60 rows, one for each of the five replicates for each design point. See
Figure C.11.

To fit a model to the results, click Model and then Run Script in the JMP Simulation Studio DOE Analyzer
window to open the Model Specification window. See the JMP documentation for specific details about how
to estimate models.

228 4 Appendix C: Design of Experiments

Figure C.11 JMP Simulation Studio DOE Analyzer Window

h Simulation Studio DOE Analyzer -- repairshopDOE, experiment0 -|D|l|
~ Simulation Studio DOE [| 4"~ ® A
Design Custom Design (| =) HumQC i i HumFixed | AvgUtilQC | AugWaitQC | AvgUtilRepair | AvgUtilService AvgWaitRepair AvgWaitService
Criterion D Optimal 1 1 1 3 55 | 99.3253147 | 694.980202 | 35.8298955 221045282 1.38855829 0.0229385
(@Screening 2 1 1 3 57 | 99.318038 | 539.067104 | 29.2717206 21.9456802 1.25281953 0.02858481
%‘:m’e'mm_ besi 3 1 1 3 57 | 99.3489545 | 477.936266 | 31.8275119 19.9916155 1557273 0.07915209
®
ST 4 1 1 3 56| 981419379 | 615931534 | 200268162 | 21.0370515| 168048881 011574722
5 1 1 3 54 | 944526155 | 875073956 | 38.5490659 28.8060757 252864115 0.3257814
6 3 2 1 114 | 68.0817426 | 35457556 | 17.9149478 66.2110538 0 914545121
7 3 2 1 98 | 57.4233604 | 192676635 | 14.4513555 64.8309666 0 764456805
8 3 2 1 95 | 555992967 | 4. 15.8989029 59.5019504 0 712897199
= Columns (1010) 9 3 2 1 93 | 548875956 | 215952816 | 14.5134081 631111545 0 9.0793781
e NumaC 3 10 3 2 1 128 | 732377728 | 6.08259421 | 19.1959519 85840965 0 50.8254955
& oair 3K 1 3 1 2 114| 68182758 | 421513779 | 358208955 331567922 1.29893852 0.30636023
. NumService 3k 12 3 1 2 98 | 574915556 | 227376274 | 29.2717206 32813879 111025422 040545953 | _|
A NunFixed 3 13 3 1 2 95| 556620317 | 6.3499396 | 31.8275119 29.9383503 1.33227619 066476814
A pvgutiac 14 3 1 2 93 | 548875956 | 269429144 | 29.0268162 315555773 1.49030092 080129209
A AvgnaitaC ¥ 15 3 1 2 129 | 733642738 | 27.9646298 | 38.5490859 | 432091135 1.68000114 20091713
:z“wfgep?“'; 16 1 3 3 55| 99.3253147 | 696475393 | 11.9432985 221045282 0 0.0229385
4 vgUiSarvico ¥ 17 1 3 3 57| 99318038 | 540.046167 | 9.76506647 21.9456802 0 0.02858481
4 Av;NanSe:vbe* 18 1 3 3 57 | 99.3489545 | 479.028355 | 106588275 19.9916155 0 0.07915209
19 1 3 3 56| 981419379 | 617.48925 96756054 21.0370515 0.00215276 011574722
|SRows 20 1 3 3 54 | 944526155 | 878415043 | 12.8496886 288060757 0.00322857 0.3257814
Allrows 60 21 3 3 1 114 | 680817426 35457556 | 113432885 662110538 0 914545121
ief::“; e 22 3 3 1 98 | 57.4233604 | 1.92676635 9634237 64.8309666 0 7 64456805
X
i s 23 3 3 1 95 | 555992967 | 4. 10.5992685 59.5019504 0 712897199
L sbelled o 24 3 3 1 93 | 548875956 | 215952816 96756054 631111545 0 9.0793781
25 3 3 1 128 | 732377728 | 6.08259421 | 127973013 85.840965 0 50.8254955
2% 2 2 3 110 | 975352876 | 85832519 17.9149478 221045282 0.02966089 0.0229385
27 2 2 3 98 | 86.2269867 | 226465699 | 14.6475997 21.9456802 0 0028584/
28 2 2 3 94 | 824126442 | 491739217 | 15.9882413 19.9916155 0.13894408 007915209 | |
<« 2

From the JMP Simulation Studio DOE Analyzer window, you can also choose to augment the design. Select
the Run Script option from the Augment This Design menu (in the upper left corner of Figure C.11) to
open the JMP Augment Design window. See Figure C.12. See the JMP documentation for details about
using the JMP augment design feature. If you make any changes in the Augment Design window, you can
click Commit to pass the augmented design back to Simulation Studio. Figure C.13 shows the Experiment
window in Simulation Studio after selecting the JMP default augmented design. Six design points are added,
and one replication is added to design point 2.

You can run the new design points by highlighting all rows in the Experiment window and then clicking
Augment on the Run menu or the Augment icon on the toolbar. Only points with new or additional
replications (such as point 2) are run. For example, one additional run of point 2 is made, and then the new
points 13—18 are run. Notice that the design points in the Experiment window might now be in a different
order than they were before augmenting the design. For example, design point 1 in Figure C.10 is now design
point 4 in Figure C.13, but the results are the same.

Analyze the Simulated Results 4 229

Figure C.12 JMP Augment Design Window

D Simulation Studio DOE Analyzer -- repairshopDOE, experiment0- Augment Design

.280 87.44 0.0

~ |~ [

4. ! k I 1.38

i 9 114 0.00
777 978 I I 0.00

=]
=
vvivivvvvvvvwy
o
=

1.3
0.2

=3
e
E

o
=3
ES
=
&

1.38

230

Appendix D
Input Analysis

Contents
Overview of Input Analysis. 231
Use JMP Software for Automated Input Analysis 231
Use JMP Software for General Input Analysis 236

Overview of Input Analysis

When you build a simulation model of a system, part of the process is likely to include analyzing data in
various formats so that they can be used as inputs to drive the simulation model. This data might be in
the form of raw data sets that must be read directly by the simulation model or from which a statistical
distribution must be estimated and then sampled in the model. In any case, extreme care must be taken to
determine appropriate inputs for a simulation model because the accuracy of a model’s output data is directly
dependent on how accurately you estimate the inputs.

Use JMP Software for Automated Input Analysis

When data are available and you want to estimate a statistical distribution from them, you can use the JMP
distribution-fitting tool. To access the JMP distribution-fitting tool:

1. Make sure the JMP server has been launched. (See the section “Launching Local SAS and JMP
Servers” on page 28 in Chapter 3, “Introduction to SAS Simulation Studio,” for details.)

2. In a Simulation Studio model, open the Block Properties dialog box for a Numeric Source block. (See
Figure Figure D.1). Select the Fitted option on the Numeric Data Source tab.

3. In the Data Name field of the Input Data section, specify the pathname of the data set that you want to
fit a theoretical distribution to. The data could be a specific column from a SAS data set or JMP table
or it could be contained in a text file.

4. In the Column Name field, specify the name of the column in the data set that you want to fit. If the
data are contained in a text file, the column name should be the first entry.

5. Click Fit Distribution.

232 4 Appendix D: Input Analysis

Figure D.1 Numeric Source Block Fitted Option

B slock Properties for Numetric Source x|

l/ Humeric Data Source |/ Cverview |

i Theoretical ® Fitted (' Data Driven

Input Data

Data Name: | | | imd |

Column Name: | |

Fit Distribution

Type: |Exponential -

Parameters

Mean : |1 |

Random Stream Seed : |IZI |

phy Close

5

6. Simulation Studio displays a message to alert you that the JMP server is waiting for input. (See
Figure D.2).

Figure D.2 JMP Request Message

Message |

@ Request sent to JMP Simulation Server

OK

7. Click OK in this message box.

8. Change focus to your JMP window to view the distribution-fitting results in the Compare Distribu-
tions section of the Distribution for Simulation Studio-JMP window. (See Figure D.3). See the IMP
documentation for specific information about distribution fitting (specifically, the JMP Fit All option
is used by Simulation Studio to generate the distribution fitting results).

Use JMP Software for Automated Input Analysis 4 233

Figure D.3 Distribution for Simulation Studio - JMP Window

£3 Distribution For Simulation Studio - IMP 10l =l

Commit to Simulation Studiol

4|~ Distributions |

4 =lbvar |

0.9
0.8
0.7
0.6
0.5)
0.4}
0.3
0.2}
0.1

— Weibull{0.56084 2.44343)
— Johngon Suf-1.7e+6 5622472 -272825 870821)

| Quantiles |

2 Moments |
Mean 0.5037221
Std Dev 01626138
St Err Mean 0.0072723

Upper 95% Mean 0.5130102
Lowwer 95% Mean 0489434

M 500

4 Compare Distributions |

Humber of
Show Distribution Parameters -2*LogLikehihood AlCc
M wisibull 2 -405.46149 -401.43734
[T Estreme Value 2 -405.46149 -401.43734
[T Mormal 2 Migture A -407.53511 -397 413645
[T Mommal 2 -3098.43859 -394 41445
[T Mormal 3 Migture a -410.21595 -393.92267
[T Johnson 81 3 -398.89136 -392.842487
¥ Johnson Su 4 -398.81256 -390.73176
T Gamma 2 -376.22087 -37219672
[T LogMNormal 2 -333.81781 -329.749366
[T Glog 3 -333.81781 -327.76942
[T Exponential 1 4269477 316277404

|

[=IFitted 2 parameter Weibull |
I =IFitted Johnson Su |

~E Ty

9. In the Compare Distributions section, select the check box beside each distribution that you are
interested in viewing. Figure D.3 shows the Distribution for Simulation Studio - JMP window for
a data column labeled bvar. The first distribution in the list (Weibull) is the top-ranked fit. The
distribution Johnson Su is also checked. For each selected distribution, the corresponding density curve
is shown overlaid on a histogram of the data. The fitted parameters are also provided for each selected
distribution.

234 4 Appendix D: Input Analysis

10. After viewing the fits, click Commit to Simulation Studio at the top of the window. A dialog box
appears with a list of the selected distributions.

11. Click the distribution that you want to pass back to Simulation Studio to use in the model. Figure D.4
shows the Distribution Selection dialog box with the 2 parameter Weibull selected.

12. Click OK in this dialog box. The Type and Parameters fields of the Block Properties for Numeric
Source dialog box are populated with the appropriate information from the JMP distribution-fitting
tool.

Figure D.4 Distribution Selection Dialog Box

x|

Eelect a Fitted D|str|hut|u:|n

Ju:uhnan:un Eu

Ik,

If you select a distribution in JMP that is not currently supported in Simulation Studio, then you receive an
unsupported distribution error message.

The JMP Fit All option does not include bounded distributions (such as beta or Johnson bounded) in its
automated fitting algortihm. However, these bounded distributions can be fit using the Continuous Fit option
from the JMP menu that is associated with the current data set in the Distribution for Simulation Studio —
JMP window, as shown in Figure D.5. The parameters for fitted distributions that are obtained by using the
Continuous Fit option can still be automatically passed back to Simulation Studio by clicking the Commit
to Simulation Studio button.

Use JMP Software for Automated Input Analysis 4 235

Figure D.5 Continuous Fit Option

[Cummit to Simulation Studio|
£ =|Distributions |

4= bvar |
Display Options b
Histagrarn Options 3

Mormal Quantile Flok
Outlier Box Plak

Quantile Box Plak

Stem and Leaf

ZDF Plat

Test Mean

Test Skd Des

Confidence Inkeryal 3
q Prediction Inkerval
Tolerance Inkerval

Capability Analysis

Continuaus Fit b Marmal

Save b Lagharmal
500% median 0.49042 st
25.0% guarile 0.38421 weibull with threshold A
10.0% 0.38674 Extreme Yalue 1
2.5% 021125
0.5% 01318y Expaonential
0.0% minimurn 0.07537 Gamine

< Moments | -
e ooz | emddes »
Std Err Mean 0.0072723 Smooth Curve
Upper 95% Mean 05180102
Lower 95% Mean 0.483434 Johnson Su
M 500 Johnson sb
< Compare Distributions Johnson 1 |
Humb Glog

Show Distribution Pararmi ic
Weibull v Al 1
[T Esxtreme Value = S |
[mormal 2 Mixture & -407 635811 -397 413645
[T Mormal 2 -398.43858 -394 41445
1 Johnson s 3 -400.02754 -393.97914
[T MNormal 3 Midure a -410.21995 -393 92267
[C] Johnson Su 4 -398.89136 -390.810545
[T zamma 2 -3TE.2208Y -3T219672
]| Laogkaormal 2 -333.81781 -329.75366
[GLog 3 -333.81781 0 -32T.TE942
]| Exponential 1 M4 265477 IME.27T409

A|~|Fitted 2 parameter Weibull |
< Parameter Estimates [

Type Parameter Estimate Lower 95% Upper 95%
Srala NARNSAT N AARARAT N ATARN117

2H [~

236 4 Appendix D: Input Analysis

Use JMP Software for General Input Analysis

It is also possible to access the JMP distribution-fitting tool outside of a Numeric Source block. Unlike
the method described in the previous section, this method does not automatically pass fitted distribution
parameters back to Simulation Studio. To access the JMP distribution-fitting tool:

1. Make sure the JMP server has been launched. (See the section “Launching Local SAS and JMP
Servers” on page 28 in Chapter 3, “Introduction to SAS Simulation Studio,” for details.)
2. From the Simulation Studio menu, select Analyze »Fit Distribution, as shown in Figure D.6.
Figure D.6 Input Analysis Menu Entry
File Template Run | Analyze | Tools Help
i Fit Distribution [:%

3. Simulation Studio displays a message box to alert you that the JMP server is waiting for input from
you. See Figure D.2. Click OK in this message box.

4. Change focus to your JMP window, which shows the Open Data File dialog box.
5. In this dialog box, select the location of the data file that you want to analyze and click Open.

6. The JMP distribution-fitting tool opens. Select appropriate variables from your data set. Figure D.7
shows an example of this step for a data set that contains one variable labeled bvar.

Use JMP Software for General Input Analysis 4 237

Figure D.7 JMP Distribution Fitting Dialog

Distribution =] |

The distribution ofvalues in each colurmn

(Select Columns———— — Cast Selected Columns into Roles —

| ¥, Columns | |ﬁ bvar K

wieight || optional numeric Cancel
| optional numeric
e |

optional Remave

Recall

1
b
=
o5
poos

Help

7. Use the JMP distribution-fitting tool to estimate an appropriate statistical distribution for the data. See
the JMP documentation for specific information about fitting distributions to data.

8. From this point, the distribution fitting information from JMP can be used in a Simulation Studio
model. However, you must manually enter the fit information in Simulation Studio: In the Block
Properties for Numeric Source dialog box, select the entry for the distribution you want to use from the
Type field. Enter the parameters for that distribution into the appropriate fields in the dialog box.

Note: The JMP definition for some distributions might be different from the Simulation Studio definition, so
be careful when you map distribution parameters from a JMP distribution to a Simulation Studio distribution.
It is also possible that JMP software provides support for distributions that Simulation Studio does not, and
vice versa. The automated method for input analysis outlined in the previous section handles any required
parameter mappings for you and also does not allow you to select a distribution in JMP that is not supported
in Simulation Studio.

238

Appendix E
Examples of Simulation Studio Models

Contents
Overview of Simulation Studio Model Examples 239
A Simple M/M/1 Queueing Model Lo o 239
Routing to Shortest Queue 241
Reneging fromaQueue L 246
Repair ShopModel e 248
PERT Network Model e 250
Priority-Based Preemption of Service L o 253
A Model of an Incoming Call Center 256
Modeling Assembly Operation and Parts Inventory System 259
Using the SAS Program Block to Analyze Simulation Results 264
Machining Center Model e 267
Using the Observation Source Block to Set Entity Attributes 269
Using the Dataset Writer Block to Save DataduringaRun 270

Overview of Simulation Studio Model Examples

This chapter provides examples of several modeling structures and illustrates uses and combinations of
various blocks. The examples are meant only to show how you can use Simulation Studio to model various
applications. They are not meant to show how you would analyze or evaluate these models or identify optimal
parameterizations. The actual model construction process is not included in these example descriptions.

A Simple M/M/1 Queueing Model

Chapter 2, “Overview of SAS Simulation Studio,” first introduced this example, and it is discussed here
because of its wide applicability. An M/M/1 queueing model can be used to represent many different real-life
situations such as customers checking out at a supermarket, customers at a bank, and so on. This model
illustrates the basic concepts involved in building models in Simulation Studio, and it is a good starting point
for constructing more sophisticated models. In some ways this example is analogous to the “hello, world”
introductory example used to illustrate many programming languages.

240 4 Appendix E: Examples of Simulation Studio Models

Figure E.1 An M/M/1 Queueing Model

Senvice Time

b

[

Arriving Customers FIE

UL E

Mumber Serviced

) ot [teat-

|| e .
Current Queue Length Average Waiting Time

The details for building and running the M/M/1 queueing model depicted in Figure E.1 are provided in
Chapter 2, “Overview of SAS Simulation Studio”’; rather than repeating them here, this section provides
suggestions for experimenting with this model to familiarize yourself with various features and functionality
in Simulation Studio.

This model provides a good vehicle for acquainting yourself with the Log and Trace features in Simulation
Studio. If you delete the link between the blocks labeled Interarrival Time and Arriving Customers and
then attempt to run the model, a SEVERE level message is posted to the log with the description “Arriving
Customers has no inter-arrival time connections.” The model does not run because SEVERE log messages
always halt the execution of the simulation model.

Reconnect the Interarrival Time and Arriving Customer blocks and change the distribution associated with
the Interarrival Time block to one that is likely to produce negative numbers, such as the uniform distribution
with parameters min=—2 and max=2. When you run the model now, you see WARNING messages posted
to log with the message “Arriving Customers inter-arrival time value is negative; using 0.0 instead.” The
simulation continues to run after WARNING messages are posted.

If you enable the Tracer (Chapter 10, “Model Debugging and Verification) and then run the model, trace
messages are generated by the various blocks and displayed in the Trace window. Each line in the Trace
window contains the name of the block that creates the message and a short description of the event. An
example trace message here might be “Numeric Source: Sampling, value = 0.136.” The Tracer facility can
generate many, many trace messages. See the section “Tracing Configuration” on page 103 for details about
how to reduce the number of generated trace messages.

Routing to Shortest Queue 4 241

You can also use this model to practice defining factors, responses, and anchors and then use them to set up a
simple experiment. Details are found in Chapter 5, “Experiments.” For this example you can define a factor
for changing the capacity of the Teller block and a response for recording the average wait time at the Queue
block. After you create anchors between the new factor and response to the appropriate blocks in the model,
you can include the factor and response in an Experiment window. After the factor and response are included
in an Experiment window, you can create multiple design points with different values for the capacity factor,
run the experiment, and compare the results.

It is easy to extend this M/M/1 model to incorporate many other Simulation Studio blocks and features such
as data collection, plots, and so on to familiarize yourself with these capabilities so that you can apply them
later in more sophisticated models.

Routing to Shortest Queue

This example demonstrates how to use Switch and Formula blocks to route entities to the queue that has
the shortest length when multiple queues are available. It also uses the Queue Stats Collector block, the
Bucket block, and various Plot blocks to illustrate statistics collection and visualization. Entities are created
according to an exponential distribution with a mean of 1. Figure E.2 shows three queues in which entities
wait for a single server. Entities are routed to the queue with the shortest length. If all three queues have
the same length, the entity routes to Queuel. The time it takes for each entity to be served is sampled from
an exponential distribution with a mean of 1. The simulation is run for 5,000 time units, and the Entity
Generator block shuts down after 4,970 time units to make sure that entities are being pulled from all three
queues. (By default, the server checks Queuel first to determine whether any entities are waiting, and then
Queue?2, and then Queue3. Thus entities move out of Queue3 only if Queuel and Queue?2 are empty.)

Figure E.2 Routing Example

vy
mﬁﬁ

(mjm] YV

Queus E

%&7

Hr_ami

;@_gg

Queue2

w
=
=
Ex]

=

Entity Generator

1]I]ﬁl]>

[n[ala]
Tueue3

242 4 Appendix E: Examples of Simulation Studio Models

After the Entity Generator block creates an entity, the entity flows to the Switch block for routing to the
desired queue. When an entity arrives at the Switch block, the Switch block pulls a value from the Formula
block attached to the Switch block’s InData port. Figure E.3 shows the Formula block’s expression. The
Formula block pulls the queue length from each of the queues in the model and then returns a value of 1, 2,
or 3 (indicating the shortest queue) to the Switch block based on the comparison of the queue lengths.

Figure E.3 Routing Formula

Block Properties for Formula

| Formula | overview |

Input Variables
Name Type Source Add
q1length Mumber Port
q2length Mumber Fort Remove
q3length Mumber Port

Move Up

Move Down

fie) |

[] To Acquire Port Values Only When Needed

Expression

switch(g1length==g2length && gq1length==g3length, 1,
g2length==g1length && g2length==g3length, 2,
g3length==g1length && g3length==gZ2length, 3,0)

4

Result Type: @ NHumber ' String ' Boolean

Apply | | Close

The Switch block attempts to match the value returned by the Formula block with the cases defined on the
Switch block. (See Figure E.4.) The entity is then pushed out the port associated with the matched case.

Routing to Shortest Queue 4 243

Figure E.4 Routing Switch Cases

lock Properties for Switch

Overview |
MName Walue
yl1shorter 1 Add
g2shorter 2
g3shorter 3 Remove
Switch Value
Source: _ Entity # Port
Entity Attribute:
sy || Close

When the Server block becomes available, it attempts to pull an entity from a link connected to its InEntity
port. In this example, three links are connected to the Server block’s InEntity port. By convention in
Simulation Studio, the pull is attempted from the first link connected to the Server block’s InEntity port
during the model construction process. If this is unsuccessful, the Switch block attempts to pull from the
second link, and so on. In this example, the link from Queuel to the Server block was created first, followed
by the link from Queue? to the Server block, and finally from Queue3 to the Server block.

Figure E.5 shows the model in Figure E.2, extended to use the Queue Stats Collector block and the Bucket
block to collect statistics and data.

244 4 Appendix E: Examples of Simulation Studio Models

Figure E.5 Sample Routing Example Results

%= plots

5000

400 o
4000 +
300 —
5 3000

200 +

AvgWait

=
Z 2000
o

=
100 o 1000

T T — T
T T T
Queuet GusLe? Queue3 0.0019 B24.1165 12482310 1872.3455

BlockName Age

The Bucket block is configured to collect the age attribute of every entity that passes through it and store the
value in a SimDataModel. The SimDataModel is passed to a Histogram block where the user has selected to
display a histogram of the age variable from the incoming SimDataModel.

The Queue Stats Collector block in the model has been configured to collect data on all three queues. (See
Figure E.6.)

Routing to Shortest Queue 4 245

Figure E.6 Queue Stats Collector Dialog Box

Block Properties for Queue Stats Collector =l

[Attributes | save |/D1.renriew |

Queue Stat Generators
] plots

M Queue2

M Queuet

M Queues

Remove

Updates

Continuous Collection How

‘ Apply H Close

By default, the Queue Stats Collector block saves the following information for each queue it monitors:

Time time the statistic was recorded

BlockName name of the queue

Blockld numeric ID of the queue

InCount number of entities that enter the queue

OutCount number of entities that exit the queue via the OutEntity port
BalkCount number of entities that exit the queue via the OutBalk port
RenegeCount number of entities that exit the queue via the OutRenege port
QLength length of the queue at time Time

AvgQLength average length of the queue

MaxQLength maximum length of the queue

AvgWait average wait time in the queue

MaxWait maximum wait time in the queue

The data are saved in a SimDataModel that is accessible through the OutData port of the Queue Stats Collector
block. For this example the Queue Stats Collector block sends its SimDataModel to a Bar Chart block, where
the AvgQLength is displayed for each queue. (See Figure E.5.)

246 4 Appendix E: Examples of Simulation Studio Models

Reneging from a Queue

This model demonstrates the reneging feature of a Queue block along with the use of the Modifier, Extractor,
and Gate blocks. Two very different applications of the Extractor block are depicted in this example. A
special feature of the Number Holder block is also illustrated here.

This example models a queueing system in which customers arrive randomly over time with one server to
process customers. Individual customers wait in the queue for service on a first-in-first-out basis.

After waiting 5 minutes in the queue, a customer reneges (that is, leaves the queue and the system) if the
amount of time that customer requires for service is greater than 3.5. The goal is to estimate the average time
between customers who renege.

Figure E.7 Reneging Example

o8

Fl]l]l]l]l]l].l]

Renege Time

Pl

&'i i
L
E—~5HE—~ T

[aa] Lo Mumber Serviced
5-073425--- K Last R%ege Time

SemviceTime
Jo

0=
=

O
O

i Nid S
"CT <
T
AvgTimeBetweenRenegingEntities l,
O

L

Mumber Reneged

The arrival of customers is modeled by using an Entity Generator block with a Numeric Source block attached
to its InterArrivalTime port. In the Numeric Source block, an exponential distribution with a mean of 5 is
specified.

After entities are generated, they are sent to a Modifier block where an attribute called servicetime is assigned.
The servicetime for each entity is sampled from an exponential distribution with a mean of 4.651. (The
Extractor block immediately following the first Modifier block is used only to verify that the value is set in
the Modifier block; it serves no other purpose in this model.)

Next the entities are sent to the Queue block (FIFO policy). As each entity enters the queue, a renege
time is computed and assigned using a Formula block. Figure E.8 shows the properties dialog box for the
Formula block connected to the Queue block. In the Formula block, the servicetime attribute for the entity

Reneging from a Queue 4 247

is compared to the value 3.5. If the servicetime is greater than 3.5, then a renege time of 5 is returned.
Otherwise, a very large renege time (specifically, 5,000,000) is returned. For those entities with a servicetime
of 3.5 or less, their renege time is set sufficiently large to ensure that they wait until they can be serviced
and do not leave the queue. Note that the reneging option in the Queue block properties dialog box must be
selected for reneging to be used by the queue.

Figure E.8 Renege Time Formula Dialog Box

Block Properties for Formula |

[Formula | overview |

Input Variables

Mame Type Source Add
senicetime MNumber Entity

O

Expression

[»

5*(cond(semnvicetime=3.5,1,1000000))

4]

Result Type: ® Number) String ' Boolean

Close:

Entities that do not renege are processed in the Server block. The InServiceTime port of the Server block is
connected to an Extractor block. When an entity arrives at the Server block, the Server block passes the entity
to the Extractor block. The Extractor block extracts the servicetime attribute from the entity and passes the
value to the Server block for use as the server processing time. Note that use of the Extractor block here does
not require connections to its InEntity or OutEntity ports.

Entities that renege from the Queue block are sent out its OutRenege port, and the time at which they renege
is stored in the entity by using a Modifier block. In this Modifier block the entity attribute renegetime is
assigned the value Time Now. The entity is then sent to a Count block to determine whether it is the first
entity to renege. The value of Count is passed to a Switch block. If the entity is the first entity to renege, the
Switch block returns a value of 1 and the entity is sent to an Extractor block where the renegetime attribute
value is extracted and passed into the Number Holder block labeled Last Renege Time.

If the entity is not the first entity to renege, it is sent to a Gate block, and a Formula block computes the time
between reneging entities by subtracting the previous entity’s renegetime from the current entity’s renege-
time. The renegetime for the previous entity is stored in the Number Holder block labeled LastRenegeTime.
In order for this computation to work, the From Upstream option in the LastRenegeTime Number Holder
block properties dialog box must be cleared, as shown in Figure E.9. If the From Upstream option is selected,
then the Number Holder block pulls a value from upstream, which in this case means it pulls the value from
the Extractor block. If this happens, the value of the previous entity’s renegetime is replaced with the current
entity’s renegetime, resulting in a value of zero for the time between reneging customers.

248 4 Appendix E: Examples of Simulation Studio Models

Figure E.9 LastRenegeTime Number Holder Dialog Box

4. Block Properties for LastRenegeTime =l
| Attributes | save | Overview |

Values
Current: |IZI |
Default: [0 |
Display: |\!alue | hd ‘
Propagation: To Downstream [] From Upstream
Data Collection
[] Collect Data Capacity: 1,000

Close

After the time between reneging entities is computed, the value is passed from the Gate block to the Number
Holder block labeled AvgTimeBetweenRenegingEntities. The entity is then sent to the Extractor block. The
renegetime attribute for the entity is extracted and sent to the Number Holder block LastRenegeTime, to be
used when the next entity reneges from the system. The entity is then destroyed.

Repair Shop Model

Like the M/M/1 Queueing Model example discussed earlier, this model was also first introduced in Chapter 2,
“Overview of SAS Simulation Studio,” and the details and motivation for the model are found there. This
section presents an enhancement to the original Repair Shop Model, which is shown in Figure E.10 and
corresponds to modell in the project docRepairshop found in the \projects\examples directory where
Simulation Studio is installed.

Repair Shop Model 4 249

Figure E.10 The Repair Shop Model

5

Chance 2 Delay 3

5N74
E Quality Contral
I]Iﬁj:ﬂ> Qualny ontroIQ
Oo0 Repair Men SUHPPEG Reworl
RepairDeska

E

3
i

(e et %

SENICEDESK

_ﬂ
5
Z
E g
g
=
n
Aief—e&]

1 Wamnng eQC E
dlg- dp iy
#Fixed
#Ava\lable 'F #Scrapped
ooo ¥
o #Fixed Early
B =
iz
o
T 08
06 20
2] =]
= @
% 0.4 £ oo o
E TR o
0.2 B o oom ®
=]
0.0 ot o g l‘ 53 @ @ @
T T T
Quality Cortral Repair Men Service Desk o 200 400
BlockName Time

In this model,an attribute (named PartType) is added to the Part entities and is then used to dynamically
generate a service time for a particular Part entity at each of the Server blocks in the model. In Figure E.10, a
Modifier block has been added after the Arrivals compound block where the attribute PartType is assigned
to be a random sample from the discrete uniform distribution on the interval [1,3]. At the Service Desk
Server block, a Formula block is used to set the service time based on the value of PartType using the
following expression: switch(PartType==1,5,PartType==2,10,15). Similar expressions are used at the Repair
and Quality Control Server blocks so that the service time at each station is based on the value of PartType.

The Repair Shop model also provides an appropriately sized model for exploring the Simulation Studio
linkage with the JMP routines for design of experiments. Details for defining factor and responses for
the repair shop example and using JMP to generate a design are provided in Appendix C, “Design of
Experiments.”

250 4 Appendix E: Examples of Simulation Studio Models

PERT Network Model

This example is a program evaluation and review technique (PERT) network model of a repair and retrofit
project. All activity times are assumed to be triangularly distributed. The activities relate to power units,
instrumentation, and a new assembly, and they involve standard types of operations.

At the beginning of the project, three parallel activities can be performed: the disassembly of power units
and instrumentation (Activity 1), the installation of a new assembly (Activity 2), and the preparation for a
retrofit check (Activity 3). Cleaning, inspecting, and repairing the power units (Activity 4) and calibrating
the instrumentation (Activity 5) can be done only after the power units and instrumentation have been
disassembled. Thus, Activities 4 and 5 must follow Activity 1 in the network. Following the installation
of the new assembly (Activity 2) and after the instruments have been calibrated (Activity 5), a check of
interfaces (Activity 6) and a check of the new assembly (Activity 7) can be made. The retrofit check (Activity
9) can be made after the assembly is checked (Activity 7) and the preparation for the retrofit check (Activity
3) has been completed. The assembly and test of power units (Activity 8) can be performed following
the cleaning and maintenance of power units (Activity 4). The project is considered completed when all
nine activities are completed. Since Activities 6, 8, and 9 require the other activities to precede them, their
completion signifies the end of the project. The goal is to estimate the project completion time.

Figure E.11 PERT Network Model

* modelo i

Activity 4 Activity B

Activity 1 v E/B L To: Mode 3
Node 1

[m]
S\ Activity 5§
Activity 2
y To:

Go To: Mode 1

e

[

| 4

el

Project Start

To Mode 2

Activity 6
Activity 9

=
To Mode 3 PTo »ars
& ECE—’D D Go To: Mode 3

A
x| —
Node 1 [Activity 7
.i\/)
1 L
o
N4 To: Node 2
o

%3 T
Br %D PD.Z?SS...

. @
e e — i3k

Project Completion Time

PERT Network Model 4+ 251

This model uses a common compound block (which consists of a Numeric Source block and a Delay block)
to model the individual activities. Figure E.12 shows the structure of this compound block.

Figure E.12 PERT Model Activity Compound Block

Activity

B

/
&

As was mentioned earlier, a triangular distribution is associated with each Numeric Source block. The
distributional parameters for each of the activities are shown in Figure E.13.

Figure E.13 PERT Model Activity Table

Table of Activities
Activity # Min Max Mode
1 1 5 3
2 3 9 7]
3 10 19 13
4 3 12 9
5 1 a8 3
B B 16 9
7 4 13 7
B 3 9 B
9 1 a8 3

A Clone block is used to initiate parallel activities. When an entity enters a Clone block, the Clone block
makes copies of the original entity and sends them out its various ports, depending on the cloning directives
in Clone block. Figure E.14 shows the cloning directives for the first Clone block an entity encounters in this
model. This Clone block has two additional output ports and sends one cloned entity out each port. This
simulates the initiation of the disassembly of power units and instrumentation (Activity 1), the installation of
a new assembly (Activity 2), and the preparation for a retrofit check (Activity 3) from the initial entity.

252 4 Appendix E: Examples of Simulation Studio Models

Figure E.14 PERT Network Cloning Directives

4 Block Properties for Clone |

[Attributes | Overview |

Cloning Directives

Clones Per Port: |1 |

Cloning Ports: |2 |

phy Close

=

The combination of a Counter block with a Switch block is used in multiple places in the model. The Counter
block simply counts how many entities have flowed through it and makes this count available via its OutCount
port. Every time an entity enters a Switch block, the Switch block pulls the count value from its associated
Counter block and then routes the entity accordingly. Each Switch block is essentially waiting until N entities
have reached it (indicating completion of all preceding activities) before initiating the next activity in the
model.

Each execution of the simulation model results in one estimate of how long it might take to complete the
project. A large number of replications of the model execution are needed to produce enough data to construct
a valid estimate for project completion time.

Priority-Based Preemption of Service 4 253

Priority-Based Preemption of Service

This example illustrates how to use several of the more advanced Simulation Studio blocks (Gate, Clone,
Entity Group, Entity Filter) to model a system in which higher-priority customers can preempt lower-priority
customers who are already receiving service. The preempted customers do not leave the system but instead
wait for a server to become available again so that they can complete their service at a later time. Figure E.15
below depicts this model.

Figure E.15 Priority-Based Preemption Example

% model0 :

Queue and Service

Ijlw >|:|

T oo Number Served

NERAE, e
57 ull E_. | -

Priority 1 Arrivals TII /m

[m[eA

Queus I_Tangth
= Jo
; . - ;'—' LR]
Awer Units Avail. _.D g—»a—b%‘_ﬁ

T — Remaining Service Time

L
\ o

Priority 2 Arrivals

Preempted Customers

Preemption Logic

Entities are created by two distinct Entity Generator blocks—one for Priority 1 (lower priority) and one for
Priority 2 (higher priority). Five Priority 1 entities are created (arrive) at time zero and five Priority 2 entities
arrive one per time unit, starting at time 2. All entities are created from the entity type named Arrival, defined
for this model with additional attributes ServiceTime and Priority, as shown in Figure E.16. ServiceTime
for each entity is assigned a value of 10 units, and the Priority attribute is defined with a default value of 0
that is overwritten with 1 or 2 by the respective Entity Generator blocks.

254 4 Appendix E: Examples of Simulation Studio Models

Figure E.16 Entity Types Dialog Box for the Priority-Based Preemption Model

Default | Name: [arival |
DefaultResourceEntity 5
rrival §§ Primary usage: |Regu|arEntity |V| Remove Type

| Attribute fields:

Mame ValueType Initialvalue EdEbIe

2| |d Mumber L

2| [BirthTirne Murnber []

“| |ServiceTime |Mumber 10 v]

2| |Priarity Mumber v]

Add Field

The entities enter a Queue block (Priority queueing policy) and await service from one of three servers.
Priority 1 entities enter the Queue block immediately, but due to the fact that Priority 2 entities can preempt
Priority 1 entities, their path (through the Preemption Logic section of the model) is more complex. A Priority
2 entity first enters a Switch block that receives input on available servers in the Server block (via output
from the OutAvailable port on the Server block, fed through a Number Holder block for monitoring and then
via a Formula block that evaluates whether the number of available servers is zero or positive). If a server is
available, then the entity is routed to the Priority Queue block via a Connector; if no server is available, then
the model must check to see whether a Priority 1 entity is currently in service that can be preempted.

In this case, the Priority 2 entity is first sent through a Clone block, which creates an additional copy of
the entity. The original entity is routed to the Priority Queue block via the Connector, awaiting possible
preemption of a Priority 1 entity, while its clone is sent to a Gate block. The Gate block is designed to pull
and push values each time an entity passes through it. In this case, the Gate block pushes a true value to the
InUpate port of an Entity Group block, causing it to pull values to create a new entity group. This link is
made via Connectors for visual simplicity. This Entity Group block is intended to identify one Priority 1
entity in service that can be preempted. It pulls values from the OutHoldings port of the Server block, which
supplies data on entities currently in service, and selects one with Priority value less than 2, as shown in the
properties dialog box in Figure E.17.

Priority-Based Preemption of Service 4 255

Figure E.17 Properties Dialog Box for Entity Group Block

< Block Properties for Entity Group Holder
Builder Attributes | Overview |

Input Filter

Primary Usage: |Regu|ar Entity | = |

Entity Type: [|
Attribute Rule: | |

Resource State:

Handling of Input Entity Group

@ Override the current group) Merge with the current group
Query Outputs
Port Mame | Fey Attribute | Entity Type | Atribute Rule | Offset |Maximum Count
OutSubgroupt | | | Priority=2 | | 1
| Add Query | | Remove Query |
oy || close |

This dialog box specifies that the group be created from entities with a Priority value less than 2 (here, that is
equivalent to Priority=1) and that the group has a maximum count of 1. Thus the Entity Group block either
identifies a single Priority 1 entity currently in service that can be preempted or finds that none exists. In
either case, it sends its entity group (with either one member or none) back to the Gate block via a connection
between the OutSubgroupl port of the Entity Group block and the InServiceln port of the Gate block. The
Gate block then sends the entity group out its InServiceOut port to the InPreempt port of the Server block,
effectively telling the Server block which in-service entity (if any) it should preempt.

The InServiceln and InServiceOut ports on the Gate block are created by defining an attribute InService for
the Gate block with type Entity Group; the Signalln and SignalOut ports are created similarly by defining a
Boolean attribute Signal. The Signalln port is not needed in this model. The properties dialog box for the
Gate block is shown in Figure E.18. Note that the checked box in the Default column for Signal indicates
that its value is true by default—needed in order to signal the Entity Group block to attempt to find a Priority
1 entity to preempt.

256 4 Appendix E: Examples of Simulation Studio Models

Figure E.18 Defining InService and Signal Attributes for the Gate Block

Block Properties for Gate

Actions | Overview |

Mame Type Default
Signal Boolean
InService Entity Group null

Remowve

Close

When a Priority 1 entity is preempted from the server, it is sent via the OutPreempt port on the server to
a Count block (in the Preempted Customers Compound block) and then to a Modifier block where the
remaining service time is computed. Before an entity enters the Server block, the current time is saved in the
attribute EnterServTime. If an entity is preempted from service, the EnterServTime attribute is used by a
Formula block to compute the remaining service time, as shown in Figure XX. The preempted entity is then
routed to an Entity Filter block where the value of the attribute ServiceTime is checked. If the remaining
ServiceTime is greater than 0, the preempted entity is routed back to the queue. If the remaining ServiceTime
equals 0, the entity is routed to the Disposer block and leaves the system.

A Model of an Incoming Call Center

This example demonstrates the use of both regular entities and resource entities to model the operations and
performance of an incoming call center, in which a finite number of telephone lines are allocated among
callers who want to conduct one of two types of business. Several of the standard Simulation Studio blocks
are used along with some advanced blocks and some blocks specialized for resource entities. The model is
shown in Figure E.19. Callers choose whether to use the call center’s automated call routing system or to
speak with an operator. They also choose one of two activities: placing an order or speaking with customer
service. Calls might be lost initially due to a lack of open phone lines (the caller gets a busy signal) or when
a caller is forced to wait an excessive amount of time to speak with an operator or service representative.

A Model of an Incoming Call Center 4 257

Figure E.19 Incoming Call Center Model

$* modelo :

Manage Phone Lines

Freed Lines

SO
a4 %
E To Finish
Phone Lines ==
:

Automatic
b_ : 2o [
Open Lines e EE[I

XE To Finish

. F
Evv g -
ooo
Cust. Sve. . .
To Hang Up { WJ—EII:ID 1169

Complete Order

Tv‘a—+ 5 v Finish E%*? — 1
hd B(EaH e _
Operator Free Line Complete Cust. Sve.

Completed Calls

..ﬁ

[E[m[a]

JDJ Hang Up Order
2R | e o
Hang Up Operator 38

Free Line Hang Up Cust. Svc

oot
Busy Signal

Call Arrival

Free Line

Hang Ups

NOTE: Although the time units of the simulation clock in Simulation Studio do not denote any specific time
units, for the purposes of this model each time unit represents one second.

The Manage Phone Lines section of the model creates and maintains the resource entities in this model,
representing the available telephone lines in the call center. An Entity Generator block creates 15 Telephone
Line resource entities at time zero and routes them to the Resource Pool block labeled Phone Lines; the
Number Holder block attached to its OutLength port reports the current number of available lines.

In the Call Arrival section, incoming calls are created as regular entities. Calls arrive via an Entity Generator
block according to an exponential distribution with mean 30. Each entity is created as a member of an entity
type named Caller, with an attribute named Choice that is used to designate the type of business that the
caller wishes to conduct. A second attribute, Operator, specifies whether the caller wishes to speak with an
operator or use the automated routing system solely.

These Caller entities proceed immediately to a Seize block, which attempts to allocate one Telephone Line
resource entity to the Caller entity. If no telephone lines are available, the caller receives a busy signal and
hangs up; this is modeled by the Caller entity exiting its Entity Generator block via the OutBalk port to a
Disposer block. A Number Holder blocks tallies these calls.

If a Telephone Line is allocated, the Caller entity moves next to the Route Call section of the model. A Delay
block simulates the time (5 seconds) taken by the initial dialogue of the automated answering system, and the
Caller entity moves next to a Modifier block that randomly assigns values to the Choice attribute (1=place
order, 2=customer service) and the Operator attribute (O=use automated system, 1=speak with operator). An
Entity Filter block checks the value of the Operator attribute, and routes the Caller entity accordingly. The
properties dialog box for this Entity Filter block, shown in Figure E.20, show that it simply checks whether
the value of Operator is equal to zero.

258 4 Appendix E: Examples of Simulation Studio Models

Figure E.20 Properties Dialog Box for Entity Filter

£ Block Properties for Entity Filter
[Rule | Overview |

Primary Usage: |Regular Entity -

Entity Type: | |
Attribute Rule: |Operatn r==0 |

phy Close

5

If the caller prefers to speak with an operator (the value of the Operator attribute is not zero), the Caller
entity is routed to the lower section of the model, which consists chiefly of a Queue block (FIFO queueing
policy) and a Server block (capacity 2, indicating two operators on staff). The Caller entity might renege from
this queue, indicating a hang-up by a caller who has been waiting too long to speak with an operator. The
distribution of the renege time is uniformly distributed from 75 to 120; this indicates that each caller waits at
this point between 75 and 120 seconds before hanging up. Service time with an operator is exponentially
distributed with mean 45 seconds.

If the caller hangs up while awaiting an operator, the Caller entity passes out the OutRenege port of the
Queue block to a Release block that frees up the Telephone Line resource entity, sending it back to the Phone
Lines Resource Pool block via a Connector. The Caller entity proceeds to a disposer, is counted, and exits
the system.

Modeling Assembly Operation and Parts Inventory System 4 259

If the caller completes service with the operator, the Caller entity moves next to the Operator Switch block,
which routes the Caller entity according to the value of the Choice attribute. An identical Switch block,
labeled Automatic, is encountered by Caller entities that exit the Entity Filter block with an Operator
attribute value of zero. These two Switch blocks could easily be combined but are modeled separately for the
sake of clarity.

The Switch blocks route Caller entities to either the Order queue or the Cust. Sve. queue, both located in
the upper right corner of the model. The model is identical in each case, except for differences in renege
time and service time distribution parameters. For each, the Caller entity might renege (the caller might hang
up) and if so is routed (via a Connector) to the Hang Ups section of the model. Otherwise the Caller entity
eventually proceeds to the corresponding Server block (capacity 4 for Order and 3 for Cust. Svc.) and then is
routed (via a Connector) to the Completed Calls section of the model.

In both the Hang Ups section and the Completed Calls section the treatment of the Caller entity is identical.
First, a Release block releases the Telephone Line resource entity back to the Phone Lines Resource Pool
block. Next, a Switch block routes the Caller entity to a specific Disposer block and Number Holder block
based on the value of the Cheoice attribute; this enables hang ups and completed calls according to the type of
service desired or provided.

The model is run for 86,400 seconds, equal to 24 hours of continuous operation of the call center. Tracking
of the number of busy signals, hang ups, and completed calls in each category can provide invaluable
information about the performance of the call center under varying conditions. This model can be made even
more useful by specifying key controls (number of lines, staffing levels, service times, and so on) as factors
and key performance indicators (the aforementioned counts, staff utilization, queue lengths, and so on) as
responses so that experimental design can be used to create a number of different scenarios for which the
simulation can be run and the results tracked.

Modeling Assembly Operation and Parts Inventory System

This example shows how regular entities and resource entities, along with both standard and resource-oriented
Simulation Studio blocks, can be used to model an assembly system and an associated parts inventory system.
Each order (subassembly) arrives with a need for a given number of each of two parts. The parts needed are
withdrawn from inventory and the assembly operation is executed; the completed order leaves the system.
The part inventories are checked and replenished on a periodic basis. If the needed parts for an order are
not immediately available, then the order must await inventory replenishment before it can proceed to the
assembly operation. The model of this system is shown in Figure E.21.

260 4 Appendix E: Examples of Simulation Studio Models

Figure E.21 Assembly and Parts Inventory Model

% model0 :

Fart Requirements

Part1 Part2
2 Read Part Reqgs.

X~ —

A hl
Order Arrival ‘/'? ssemule 5
L 1_5
= E“__"_:I.513ﬁ...
=1 F OrderCompletionTime

oo
#WaitingOrders

Part! Inventory Part2 Inventory

Part1 ReorderLevel

ipdw

Part2RearderLevel Part2

v v
Check I'mrentonr '?'Dﬁ ‘?‘D |ﬁ Eo

Entities that represent orders are created by the Entity Generator block labeled Order Arrival. Next, a Modifier
block creates attributes NumPartl and NumPart2, which correspond to the quantities of Partl and Part2
needed, for each order, drawing values from the Numeric Source blocks in the Part Requirements compound
block. The order then proceeds to a Queue block (FIFO policy) where it waits until its needed parts are
available. The length of the queue is monitored.

Following the Queue block is a Seize block that executes the procurement of needed parts. For this Seize
block two resource ports, Partl and Part2, were created as shown in the properties dialog box in Figure E.22.
Each defined resource port for a Seize block creates a resource entity input port through which units of the
corresponding resource entity enter the Seize block and are given to the requesting entity (the order). Because
the Units column for each port is left blank, additional input ports called Partl_units and Part2_units are
created so that the Seize block can pull the needed units of each resource for the current requesting entity. In
this model, an Extractor block supplies the values of the NumPart1 and NumPart?2 attributes to be used for
the number of units for Part]l and Part2, respectively.

Modeling Assembly Operation and Parts Inventory System 4 261

Figure E.22 Properties Dialog Box for Seize Block

Block Properties for Seize
ResourcePorts I Overview

Input Variables

Mame | Value Type | Default Value Add

x|
[asa |

Constraints

Port Name Units Separable

Part1
Part2

L1l
=[]

remove the selected resource port

| Add H_‘Remove

| Apply H Close ‘

The order proceeds next to a Delay block that models the time needed for assembly (distributed uniformly
between 30 and 60). Once assembly is complete, a Release block releases the previously seized units of the
resource entities Part] and Part2. In this case, since the parts are consumed during the assembly operation,
they are routed to a Disposer block upon release. If the resource entities represented nondisposable resources,
then they would be routed back to their respective resource pools or elsewhere in the model upon release.

Finally, the order proceeds to a Bucket block, which records the current age (time in the model) of each entity
and (via a connection to the Bucket block’s OutLatestAge port) passes the information to a Number Holder
block for reporting and possible data collection. The order entity then exits the system via a Disposer block.

In the lower half of the model are two areas (expanded compound blocks) labeled Part1 Inventory and Part 2
Inventory. These sections of the model simulate inventory management and replenishment for the two parts.
The functionality for both parts is identical; so this example focuses on Partl. Inventory is checked every 180
time units and, if the inventory of Part1 is below the Partl reorder level, an order equal to the Part1 reorder
level is placed.

262 4 Appendix E: Examples of Simulation Studio Models

In order to simulate this inventory policy, a Number Holder block supplies a constant value of 180 as the
InterValue Time for a Value Generator block. Thus, every 180 time units the Value Generator block pulls
a Boolean value through its InValue port from a Formula Block that compares the current Partl inventory
level to its reorder level. The formula produces a true value (indicating the need for inventory replenishment)
if inventory is under the reorder level and a false value otherwise. The details are shown in the properties
dialog box for the Formula Block in Figure E.23.

Figure E.23 Comparing Current Inventory to Reorder Level in the Formula Block

Block Properties for Check Partl Inv.

[Formula | overview |

Input Variables
Mame Type Source Add
Fart1ReorderLevel Mumber Fort
Part1Level Number Fort Remove

Move Up

Hee) |

Move Down

[] To Acquire Port Values Only When Needed

Expression

[»

Part1Level = Part1ReorderLevel

1]

Result Type: ' Number _' String ® Boolean

Apply | | Close

Modeling Assembly Operation and Parts Inventory System 4 263

This Boolean value flows out the OutValue port of the Value Generator block to the Signal input port of
an Entity Generator block that represents inventory replenishment; if the value is true, it signals the Entity
Generator block to produce entities according to its configuration—to replenish the Partl inventory. The
BatchSize input port of the Entity Generator is connected to the Number Holder block that holds the reorder
level (10) for Partl, and the InterArrivalTime input port is attached to a Number Holder block that holds the
value zero. Collectively, this means that upon receiving a true value from the Value Generator block, the
Entity Generator block creates 10 Partl resource entities immediately, sending them to the Part]l Resource
Pool block. This completes the inventory replenishment operation, and all units of Partl are available to be
given to requesting order entities via the Seize block.

The reorder levels for Part]l and Part2 are declared as factors, and the order completion time is declared
as a response; these factors and responses are included in the Experiment window. Three design points,
with varying reorder levels for Part]l and Part2, are run for 10,080 time units, equal to one week if each
time unit corresponds to one minute. Details about creating factors and responses and including them in the
Experiment window are provided in Appendix C, “Design of Experiments.”

Each design point is run for ten replications and the results are recorded. The Experiment window for this
model is shown in Figure E.24. The first design point is expanded to show all ten replications.

Figure E.24 Experiment Window for Assembly and Inventory Model

(i experiment ‘= X
Fointthame | StarTime | EndTime | Partl ReorderLevel | Part2ReorderLevel| Replicates QrderCampletionTime
point 1 0 10,080 10 g w 10 233.65490071 84986

1 283547650701 67 326

2 138.549809059388192

3 299.1723762801471

4 254 0304254608822

a TH.352977451280203

& 542.652208430582725

7 299.8518514447468

3 T2 TRTT4807TA47E

9 119.37934084912577

10 240.3739847054563

point 2 0 10,080 10 a b 10 T2E3164547935524
point 3 0 10,080 10 10 b0 T1.98462703450374

264 4 Appendix E: Examples of Simulation Studio Models

Using the SAS Program Block to Analyze Simulation Results

This very simple model illustrates the use of the SAS Program block to receive data from a run of the
simulation model, analyze the data using SAS procedures, and produce SAS graphical output from the
analyses. Note that although a SAS program is used in this example, the SAS Program block can also be
used with a program written in JMP Script. This model simulates an M/M/1 system; arrivals and service
times are exponentially distributed and there is a single server. The model is shown in Figure E.25.

Figure E.25 M/M/1 Model with a SAS Program Block

b

o

| (|}
Arrivals Guele

Queue Stats Server Stats
I &
B FEg

og O

Analyze Results

Two additional blocks gather data from the model: a Queue Stats Collector block and a Server Stats Collector
block. The Queue Stats Collector block can collect data from every Queue block in the model, and the Server
Stats Collector block can do the same for every Server block. For this model there is only one Queue block
and one Server block, and so the properties dialog box for the Queue Stats Collector block lists only one
possible source of data, as shown in Figure E.26.

Using the SAS Program Block to Analyze Simulation Results 4 265

Figure E.26 Properties Dialog Box for Queue Stats Collector Block

£ Block Properties for Queue Stats
[Attributes | Save | Overview |

Cueue Stat Generators

St
M Queus

Updates

["] Continuous Collection

| sy || close

The remaining block in the model is the SAS Program block labeled Analyze Results, which pulls data from
the Queue Stats Collector and Server Stats Collector blocks via its InQueueData and InServerData input
ports, respectively. The SAS Program block then runs the SAS program specified in the SAS Code Path
field of its properties dialog box, as shown in Figure E.27.

266 4 Appendix E: Examples of Simulation Studio Models

Figure E.27 Properties Dialog Box for SAS Program Block

Block Properties for Analyze Results |
Attributes I Overview

SAS Code Path:

amslexamplesﬁ.dncrﬂhﬂS.&S\generatereportmm1.sas|| ,ﬂ, |
Auto Submit:

[] Submit to Remote SAS Workspace Server

Close

The SAS program generatereportmml . sas uses the Base SAS MEANS and UNIVARIATE procedures
to analyze the waiting times and length for the queue and the utilization of the single server. It produces
output in HTML format, excerpts of which are shown in Figure E.28 and Figure E.29. In order to generate
data for these analyses, the model is run for 50 replications of 10,000 time units each.

Figure E.28 PROC MEANS Output for M/M/1 Model

Queue Statistics Over All Replications

The MEANS Procedure

BlockName N Obs Variable Mean Std Dev Minimum Maximum

Queue 50 AvgQLength | 3.2164040 0.3390747 2.6030158 4.2613799
MaxQLength || 29.2800000 7.0190412 20.0000000 56.0000000
AvgWait 32110029 03290056 26171484 41807029
MaxWait 253736926 55577984 18.3473203 443458727

Server Statistics Over All Replications

The MEANS Procedure

BlockName N Obs Variable Mean Std Dev Minimum Maximum

Server 50 AvgUtil 08023242 00098741 07852575 0.8357475
MaxUtil 1.0000000 0 1.0000000 1.0000000

Machining Center Model 4 267

Figure E.29 PROC UNIVARIATE Analysis of Queue Waiting Times for M/M/1 Model

The UNIVARIATE Procedure
Variable: AvgQLength

Queue Length

BlockName=Queue

Mean 3216404
Std Deviation 0.338075

Percent

1 2.4 27 30 33 36 39 42 4.5 4.8
AvgQLength

Machining Center Model

This example demonstrates how you can use the Observation Source and Dataset Holder blocks to read in
and store a SAS data set or JMP table that is used repeatedly by all entities. In Figure E.30, five different
types of parts arrive at a machining center for processing at four different stations: milling (station 1), turning
(station 2), drilling (station 3), and chamfering (station 4).

Figure E.30 Machining Center Model

» machiningCenter =7

Get Updated Row, Column Indices

Read Dataset ’D =
-
Increment Calumn E f Tvv
F::21 |Dataset Halder ECE—’ EEE—FE E m®
I ooo [almja] I
D Station 1: Milling Station 2 Turning E"T

L
¥y Total Number Out

Modifier2

arts Arrive _ E_’E—EEE EEE!—DE—’E

Station 3 : Drilling Station 4 : Chamfering
Parts are routed to next Station or to Departure
achining Sequence at Stations for parts according to PartType

PartType | Stopl | Stop2 | Stop3 | Stopd | Stop5 | EndRoute
1

Parts Depart

1 3 2 4

2 1 2 4 3 2
3 1 4 2 1

4 3 4 2

8 2 4 1 2 3

268 4 Appendix E: Examples of Simulation Studio Models

The interarrival time of parts to the center has an exponential distribution with a mean of 2 minutes. Each
part that arrives has an equal probability of being one of the five types; each part type follows a different
machining sequence. For example, parts of Type 1 visit the stations in the following order: chamfering,
turning, drilling, and milling. Parts of Type 2 visit the station in the following order: milling, turning,
chamfering, drilling, and turning (they visit the turning station twice).

Each of the four stations can work on one part at a time, and a queue in front of each station holds waiting
parts. At each station, part-processing times are exponentially distributed with a mean of 1 minute (for
milling), 1.5 minutes (for turning), 1.6 minutes (for drilling), and 1.8 minutes (for chamfering).

The entities in this model are the parts. You define an entity type called Parts, which includes Row and
Column attributes. After each Parts entity is generated, it is sent to a Modifier block where the value of the
Row attribute is randomly assigned from the discrete uniform distribution on O to 4. This determines the part
type (because the row attribute is used to access a specific row in a data set, the values must be between 0 and
4, rather than between 1 and 5). The initial value of the Column attribute is set to 1 in the Entity Types dialog
box.

An Observation Source block reads in the entire machining sequence data set, and the data model that
represents that data set is passed from the OutData port of the Observation Source block to the InData port of
the Dataset Holder block where it is held until needed. You can display the machining sequence data set in
the top left of Figure E.30 by connecting the OutData port of the Dataset Holder block to the InData port of a
Table block. Each row in the data set represents the machining sequence for a particular part type. The end of
the machining sequence is indicated with a missing value “.” in the sequence data set. In the Dataset Holder
block, one query output called NextStation is created. The value to be returned by this query (Target Type) is
of type Number. Because the default values for the Row Index and Column Index fields are blank, the row
and column values are entity-dependent and are pulled from the InRow and InColumn ports of the Dataset

Holder block.

When a Parts entity flows into the Switch block, it is routed either to one of the four stations for processing
or to the Parts Depart compound block (signaling that it has completed its machining sequence). The
InSwitchValue port of the Switch block is connected to an output port of the DataSetHolder block called
NextStation. When machining at any station is complete, the Parts entity attribute Column is incremented
by 1 (see the Formula block labeled IncrementColumn). The Extractor block uses this updated value to
determine the next station in the sequence by passing the Row and updated Column attribute values as inputs
to the InRow and InColumn ports of the Dataset Holder block.

The value NextStation is then passed to the Switch block to route the entity to the correct station. When
machining is complete, the value extracted from the DataSet Holder block is “.”. When “.” is passed to
the Switch block, the entity is forced to be routed out the OutDefault port of the Switch block because the
value “.” does not match any of the defined case values. The completed parts are routed to the Parts Depart
compound block, which computes the total number of parts processed.

In this example, the Dataset Holder block is used to hold a data set that is used repeatedly by all entities. An
alternative is to store the information in the machining sequence data set as attributes on the entities, but that
would result in the same data being stored multiple times.

Using the Observation Source Block to Set Entity Attributes 4 269

Using the Observation Source Block to Set Entity Attributes

This simple queueing example contains two models to demonstrate features of the Observation Source block
and how it can be used to quickly set multiple entity attributes in a Modifier block.

In mode10 in Figure E.31, you create entities and send them to a Modifier block where you set five attributes.

Figure E.31 Observation Source Block Example

[OSB&A

% modeld

N
i ’ED

Modifier

B
=
=

=5

e—fSd

o[[+—e| 3

Ij oo

attrib? AvgWait

O

%» model :

7 vv Tk

8 :
Obsenvafion Source vvy . <
\ 4 =

—F]E g ’ﬂmﬁa

: =] I
Modifier i
.%

Ij_ Iil I}? 77.4140.. = 1—9
oog

b

sl AugWait

270 4 Appendix E: Examples of Simulation Studio Models

Each attribute is read from a separate column in a SAS data set using Numeric Source and Text Source
blocks. After the attributes are set, the value of attrib2 is extracted and sent to a String Holder block. The
entity then waits in a queue for the Server to become available. The service time for each entity is the value
of the attribute attrib5. The value of attrib5 is extracted using an Extractor block, which is connected to
the InServiceTime port of the Server block. When an Extractor block is used in this way, it does not require
connections to its InEntity and OutEntity ports. After being serviced, the entity leaves the system.

modell in Figure E.31 is the same model as mode10 except that an Observation Source block is used to
read in the attribute values from the same data set as is used in mode10. In the Modifier block in model1,
you select An Observation Value Input for the Assigned from option and you select Full Assignment, as
shown in Figure E.32. This means that as each entity enters the Modifier block, an entire row from the SAS
data set is read in and each column is assigned as an attribute on the entity (using the column names in the
data set for the attribute names). This eliminates the need to use five separate Numeric Source and Text
Source blocks to read in the attribute values.

Figure E.32 Modifier Block Dialog Box

[Atiributes | Overview |

Assigned from:) Independent Value Inputs ® An Observation Value Input

® Full Assignment) Selected Assignment) Excluded Assignment

Allvariable values from an input Ohservation will be assigned as entity attributes

Using the Dataset Writer Block to Save Data during a Run

This simple queueing example demonstrates the Dataset Writer block functionality. In Figure E.33, the Entity
Generator block in the upper left corner creates entities every two minutes and sends them to a Queue block
where they wait for a server to become available. After being serviced, each entity passes through a Bucket
block where the attributes Time and Age are collected. Then the entity leaves the system.

Every five minutes, the Entity Generator block in the lower left creates an entity. The entity is sent to a Gate
block where first a Boolean signal (with value true) is sent to the InSaveNow port of the Dataset Writer block.

Using the Dataset Writer Block to Save Data during a Run 4 271

Once the true Boolean signal arrives at the InSaveNow port, it is used as a signal to save the contents of the
data model currently provided to the Dataset Writer block through the InData port. In this example, the InData
port is connected to the OutData port of the Bucket, so the information collected up to that point by the Bucket
is saved. Since the InPolicy port of the Dataset Writer block has a connection, the location of the saved data
is set dynamically. The following string expression is passed from the Formula block to the InPolicy port of
the Dataset Writer block to set the location: concat ("result",toString (timeNow()),".sas7bdat").
For example, the first data set saved is named result5.sas7bdat.

After the entity generated by the second Entity Generator block signals the Dataset Writer block to save the
Bucket data, another Boolean true signal is generated by the Gate block and sent to the InClearData port of
the Bucket. This signal clears all data that have been collected by the Bucket block up to that time during the
simulation execution. So the first data set saved by the Dataset Writer block contains the data collected by
the Bucket between time 0 and time 5, and similarly the second data set saved contains the data collected by
the Bucket between time 5 and time 10.

Figure E.33 Dataset Writer Block Example

%* modeld :

,j,'lgr_l
E_g‘

ao:

N o I]E |:|:|:|:| . .

ooo

ﬁ‘,] ﬂ Use Formula block to
dynamically setthe
location where the
data are saved.

el

Dataset Writer

Ir

T

ﬂ Create 1 entity every &
time units to signal the
Dataset Writer bloclk to
save the data from the
Bucket.

272

Appendix F
Expressions

Contents
Overview of EXpressions L 273
Operators e e 273
Functions 274
Examples 276

Overview of Expressions

Expressions are used in various places in Simulation Studio, both for writing equations to be evaluated (such
as the Expression field for a Formula block) and for writing Boolean criteria to apply to attribute values
(such as the Attribute Rule field for an Unbatch block, Entity Filter block, Entity Group Holder block,
Resource Stats Collector block, or Resource Scheduler block, or the Attributes field of a Seize block or
Release block). This appendix documents the operators and functions for Simulation Studio expressions.

Operators

The following Boolean operators can be used in an expression.
The syntax is operandl operator operand? or operator operand.

&& logical and (valid for two Boolean operands)
I logical or (valid for two Boolean operands)

! logical not (valid for one Boolean operand)

The following arithmetic operators can be used in an expression.
The syntax is operandl operator operand?2 or operator operand.

+ add (valid for two numeric operands)

- subtract (valid for one or two numeric operands)
* multiply (valid for two numeric operands)

/ divide (valid for two numeric operands)

%0 remainder (valid for two numeric operands)

274 4 Appendix F: Expressions

The following equality or inequality operators can be used in an expression.
The syntax is operandl operator operand?2.

equal to (valid for two numeric, Boolean, or text operands)
not equal to (valid for two numeric, Boolean, or text operands)
less than (valid for two numeric operands)

greater than (valid for two numeric operands)

<= less than or equal to (valid for two numeric operands)
>= greater than or equal to (valid for two numeric operands)
Functions

The following function requires no arguments and can be used in an expression.

timeNow()

returns the current simulation clock value.

The following arithmetic functions can be used in an expression.

abs(argl)
floor(argl)
ceil(argl)

round(argl,arg?)

min(argl,arg2,...)
max(argl,arg2,...)

power(argl,arg2)

sin(argl)
cos(argl)
tan(argl)
asin(argl)
acos(argl)
atan(argl)
sinh(argl)
cosh(argl)

returns the absolute value of a single numeric argument.
returns the largest integer that is less than or equal to a single numeric argument.

returns the smallest integer that is greater than or equal to a single numeric
argument.

returns the numeric argument arg/ rounded off to the specified precision arg2,
where arg2 > 0 rounds off argl up to arg2 decimal places to the left of the decimal
point; arg2 < 0 rounds off argl up to arg2 decimal places to the right of the
decimal point; and arg2=0 rounds off arg! to the closet integer.

returns the minimum value among two or more numeric arguments.
returns the maximum value among two or more numeric arguments.

returns the first numeric argument arg/ raised to the power of the second numeric
argument arg?2.

returns the trigonometric sine of a single numeric radians argument.

returns the trigonometric cosine of a single numeric radians argument.

returns the trigonometric tangent of a single numeric radians argument.

returns the trigonometric arc sine of a single numeric radians argument.
returns the trigonometric arc cosine of a single numeric radians argument.
returns the trigonometric arc tangent of a single numeric radians argument.
returns the trigonometric hyperbolic sine of a single numeric radians argument.

returns the trigonometric hyperbolic cosine of a single numeric radians argument.

Functions 4 275

tanh(argl) returns the trigonometric hyperbolic tangent of a single numeric radians argument.
log(argl) returns the base 10 logarithm of a single numeric argument.

In(argl) returns the natural logarithm of a single numeric argument.

exp(argl) returns e (Euler’s number) raised to the power of a single numeric argument.

The following string functions can be used in an expression.

concat(argl.,arg2,...) returns the concatenation of two or more string arguments.

substring(string,index,length) returns the substring of string starting at the specified zero-based index.
For length > 0, the substring starting at index is returned; for length < 0,
the substring ending at index is returned; if length is not specified, the
substring from index to the end of string is returned.

The following conversion functions can be used in an expression.

degrees(arg/) returns the degrees equivalent of a single numeric radians argument.
radians(argl) returns the radians equivalent of a single numeric degrees argument.
toString(argl) returns a string representation of a single argument.

toNumber(arg/) returns a numeric representation of a single argument (if possible).
toBoolean(arg/) returns the Boolean value false for a numeric argument with value O or a string

argument with value other than "true". Returns the Boolean value true for a
nonzero numeric argument or a string argument with value "true".

The following argument-index functions can be used in an expression.

minindex(argl,arg2,...) returns the zero-based index of the argument with the smallest value among two
Or more numeric arguments.

maxindex(argl,arg2,...) returns the zero-based index of the argument with the largest value among two or
more numeric arguments.

The following logical functions can be used in an expression.

cond has the following syntax: cond(Boolean expression, true return value, false
return value). The value returned by this function is determined by evaluating
the Boolean expression that is the first argument. If the Boolean expression
evaluates to true, the second argument is returned. Otherwise, the third argument
is returned.

switch has the following syntax: switch(Boolean expression 1, value 1, Boolean expres-
sion 2, value 2, ..., default value). The value returned by this function is the
value argument immediately following the first Boolean expression argument that
evaluates to true. The default value is returned if none of the Boolean expression
arguments evaluate to true.

276 4 Appendix F: Expressions

Examples

The following examples provide some sample expressions.

(AttributeA Il AttributeB) && (! AttributeC) This evaluates to true if the following two conditions are
both satisfied: either AttributeA or AttributeB is true, and AttributeC is false.

((Attribute + Attribute2 — Attribute3) * Attribute4 / Attribute5) % Attribute 6 Assuming the follow-

ing values:

* Attribute =1

* Attribute2 =2

e Attribute3 =1

e Attributed =5

* Attribute5 =2

* Attribute6 = 4
This evaluates to 1, because 1 +2 — 1 is 2, multiplied by 5 is 10, divided by 2 is 5, and the
remainder of 5 divided by 4 is 1.

Attribute2 == AttributeS Assuming the same values as the previous example, this evaluates to true,
because both Attribute2 and Attribute 5 have the same value, namely the value 2.

max(Attribute6,Attribute5,Attributed) Assuming the same values as the previous example, this evaluates
to 5, because Attribute4 has a value of 5, which is larger than the values of the other two
attributes.

maxindex(Attribute6,Attribute5,Attributed) Assuming the same values as the previous example, this
evaluates to 2, because Attribute4 has a value of 5, which is larger than the values of the
other two attributes, and the zero-based index of Attribute4 in the list of arguments is 2.
(Attribute6 has index 0 and Attribute5 has index 1.)

abs(floor(MyNum)) Assuming MyNum is —13.5, this evaluates to 14, because the floor of —13.5 is —14,
and the absolute value of —14 is 14.

concat(A,B,C) Assume the following values:

° A=||OneH
° B:HTWOH
e (C="Three"

This evaluates to "OneTwoThree".
substring(''Attributel'',2,4) evaluates to "trib".
substring(''Attributel'',2,-3) evaluates to "Att".

cond(X,Y,Z) Assume the following values:

e X=false
e Y=l

Examples 4 277

s 7Z=2

This evaluates to 2, because the Boolean expression in the first argument is false, so the
third argument is returned, which is 2.

switch(v1l,v2,v3,v4,v5) Assume the following values:

* vl=false
e v2=1

e v3=true
e v4=2

e v5=3

This evaluates to 2, because the first Boolean expression that evaluates to true is the third
argument, so the fourth argument is returned.

278

Index

distributions, see probability distributions, see
probability distributions, see probability
distributions

probability distributions
beta, 210
binomial, 208
chi-square, 210
continuous, 216
continuous distributions, 210
count-based, 217
discrete, 215
discrete distributions, 208
discrete uniform, 208
Erlang, 210
exponential, 211
gamma, 211
geometric, 209
Johnson bounded, 211
Johnson lognormal, 212
Johnson unbounded, 212
lognormal, 213
negative binomial, 209
normal, 213
Pearson type V, 213
Pearson type VI, 214
Poisson, 209
rate-based, 218
triangular, 214
uniform, 215
Weibull, 215

Your Turn

We welcome your feedback.

* If you have comments about this book, please send them to
yourturn@sas.com. Include the full title and page numbers (if applicable).

* If you have comments about the software, please send them to
suggest(@sas.com.

SAS Publishing Delivers!

Whether you are new to the work force or an experienced professional, you need to distinguish yourself in this rapidly
changing and competitive job market. SAS® Publishing provides you with a wide range of resources to help you set
yourself apart. Visit us online at support.sas.com/bookstore.

SAS’ Press

Need to learn the basics? Struggling with a programming problem? You’ll find the expert answers that you
need in example-rich books from SAS Press. Written by experienced SAS professionals from around the
world, SAS Press books deliver real-world insights on a broad range of topics for all skill levels.

support.sas.com/saspress

SAS° Documentation
To successfully implement applications using SAS software, companies in every industry and on every
continent all turn to the one source for accurate, timely, and reliable information: SAS documentation.
We currently produce the following types of reference documentation to improve your work experience:

¢ Online help that is built into the software.

e Tutorials that are integrated into the product.

¢ Reference documentation delivered in HTML and PDF - free on the Web.

« Hard-copy books.
ard-copy books support.sas.com/publishing

SAS° Publishing News
Subscribe to SAS Publishing News to receive up-to-date information about all new SAS titles, author

podcasts, and new Web site features via e-mail. Complete instructions on how to subscribe, as well as
access to past issues, are available at our Web site.

support.sas.com/spn

Ve .l
4
4 |

4 ..

f @l §
W \" 3]

\

=

1

’

THE
GSas | B
) | TO KNOW.,

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.
Other brand and product names are trademarks of their respective companies. © 2009 SAS Institute Inc. All rights reserved. 518177_1US.0109

	Contents
	Documentation
	Software
	Support Groups

	What's New in SAS/OR 12.1, 12.2, and 12.3
	Overview
	Highlights of Enhancements in SAS/OR 12.3
	Highlights of Enhancements in SAS/OR 12.1

	The CLP Procedure
	The DTREE, GANTT, and NETDRAW Procedures
	Supporting Technologies for Optimization
	PROC OPTMODEL: Nonlinear Optimization
	Linear Optimization with PROC OPTMODEL and PROC OPTLP
	Mixed Integer Linear Optimization with PROC OPTMODEL and PROC OPTMILP
	The Decomposition Algorithm
	Setting the Cutting Plane Strategy
	Conflict Search
	PROC OPTMILP: Option Tuning
	PROC OPTMODEL: The SUBMIT Block
	Network Optimization with PROC OPTNET
	SAS Simulation Studio 12.1

	Overview of SAS Simulation Studio
	What Is Simulation?
	What Is SAS Simulation Studio?
	A Simple M/M/1 Queueing Model
	Running the Model
	Collecting Statistics

	Repair Shop Example
	Compound Blocks
	Model Logic
	Collecting Data

	Introduction to SAS Simulation Studio
	Simulation Studio Graphical User Interface
	Installing and Starting Simulation Studio
	Installing Simulation Studio
	Starting Simulation Studio
	Configuring Simulation Studio
	Launching Local SAS and JMP Servers
	Using a Remote SAS Server

	Simulation Studio Menu and Toolbar
	Block Template Display Area
	Simulation Studio Projects
	Project Explorer
	Project Window
	Log, Trace, and Animation Tabs
	Project Status Bar

	Simulation Models
	Overview of Models
	Blocks
	Connector Blocks
	Ports
	Entities and Values
	Building a Model
	Running a Model
	Searching a Model
	Saving a Project
	Opening a Project, Model, or Experiment

	Experiments
	Overview of Experiments
	Factors, Responses, and Anchors
	Experiment Window
	Design Points
	Replicate Rows

	Running an Experiment
	Augment Run
	Saving and Loading Design Data

	Blocks
	Overview of Blocks
	Block Labels
	Block Pop-up Menu and Dialog Boxes
	Navigation
	Managing Anchors
	Managing Block Properties
	Saving a Block Instance

	RankValue

	Compound and Submodel Blocks
	Overview of Compound and Submodel Blocks
	Assembling and Disassembling a Compound Block
	Collapsing and Expanding a Compound Block
	Labeling and Saving a Compound Block
	Tunnels
	Submodel Blocks
	Creating a Submodel
	Viewing and Editing a Submodel

	Entities
	Overview of Entities
	Entity Types
	Creating Entities
	Disposing of Entities
	Entity Attributes
	Entity Groups

	Resources
	Overview of Resources
	An M/M/1 Queuing Model That Uses Resources
	Common Resource Usage Pattern
	Creating Resource Entities
	Storing Resource Entities
	Locating Resource Entities
	Allocating Resource Entities
	Using Resource Entities
	Deallocating Resource Entities
	Disposing Resource Entities

	A Second Resources Example
	Additional Resource Functionality
	Merging and Splitting Resource Entities
	Collecting Resource Entity Statistics
	Scheduling Resource Entity Adjustments
	Preempting Resource Entities

	Model Debugging and Verification
	Overview of Debugging and Verification Tools
	Log Tab
	Trace Tab
	Tracing Configuration
	Animation Tab

	Block Templates
	Overview of Block Templates
	Using the Template Menu
	Using the Template Palette Pop-up Menu
	Template Document Format

	Data Input, Collection, and Analysis
	Overview
	Data Value Types
	Data Input
	Data Collection and Output
	Block Data Storage
	Experiment Window Data Storage

	Data Analysis
	Output Analysis
	Input Analysis

	References

	Batch Execution
	Overview of Batch Execution
	Command Line Interface
	Log Messages

	Templates
	Overview of Templates
	Overview of the Standard Template
	Entity Generator Block
	Value Generator Block
	Disposer Block
	Queue Block
	Delay Block
	Server Block
	Modifier Block
	Extractor Block
	Switch Block
	Selector Block
	Number Holder Block
	String Holder Block
	Numeric Source Block
	Text Source Block
	Counter Block
	Time Now Block

	Overview of the Advanced Template
	Batch Block
	Unbatch Block
	Clone Block
	Gate Block
	Valve Block
	Formula Block
	SAS Program Block
	Entity Filter Block
	Entity Group Holder Block
	Stopper Block

	Overview of the Data and Display Template
	Bucket Block
	Probe Block
	Observation Source Block
	Stats Collector Block
	Queue Stats Collector Block
	Server Stats Collector Block
	Resource Stats Collector Block
	Dataset Holder Block
	Dataset Writer Block
	Histogram Block
	Bar Chart Block
	Scatter Plot Block
	Box Plot Block
	Table Block
	Comment Block

	Overview of the Resource Template
	Seize Block
	Release Block
	Resource Pool Block
	Resource Scheduler Block
	Resource Agenda Block

	Overview of the Output Analysis Template
	Steady State Block

	References

	Random Variation in a Model
	Overview of Random Variation
	Discrete Distributions
	Binomial
	Discrete Uniform
	Geometric
	Negative Binomial
	Poisson

	Continuous Distributions
	Beta
	Chi-Square
	Erlang
	Exponential
	Gamma
	Johnson Bounded Distribution (JohnsonSB)
	Johnson Lognormal Distribution (JohnsonSL)
	Johnson Unbounded Distribution (JohnsonSU)
	Lognormal
	Normal
	Pearson Type V
	Pearson Type VI
	Triangular
	Uniform
	Weibull

	Empirical Distributions
	Discrete
	Continuous

	Nonhomogeneous Poisson Process
	Count-Based
	Rate-Based

	References

	Design of Experiments
	Define Factors and Responses
	Set Model Anchors
	Set Up the Experiment Window
	Generate a Design Using JMP Software
	Run the Experiment
	Analyze the Simulated Results

	Input Analysis
	Overview of Input Analysis
	Use JMP Software for Automated Input Analysis
	Use JMP Software for General Input Analysis

	Examples of Simulation Studio Models
	Overview of Simulation Studio Model Examples
	A Simple M/M/1 Queueing Model
	Routing to Shortest Queue
	Reneging from a Queue
	Repair Shop Model
	PERT Network Model
	Priority-Based Preemption of Service
	A Model of an Incoming Call Center
	Modeling Assembly Operation and Parts Inventory System
	Using the SAS Program Block to Analyze Simulation Results
	Machining Center Model
	Using the Observation Source Block to Set Entity Attributes
	Using the Dataset Writer Block to Save Data during a Run

	Expressions
	Overview of Expressions
	Operators
	Functions
	Examples

	Index

