Johnson Bounded Distribution (JohnsonSB)

The density function of the Johnson bounded distribution (JohnsonSB) is

\[  f(x) = \frac{\delta }{\lambda \sqrt {2\pi }}g’\left(\frac{x - \xi }{\lambda }\right)\mbox{exp}\left(-\frac{1}{2}\left[\gamma + \delta g\left(\frac{x - \xi }{\lambda }\right)\right]^2\right)  \]

where

\[  \begin{array}{l} g(y) = \mbox{ln}\left(\frac{y}{1 - y}\right)\\ g’(y) = \frac{1}{y(1 - y)} \end{array}  \]

and $x \in [\xi , \xi + \lambda ]$.

Parameters:

$\delta $ (delta)

is a shape parameter, $\delta > 0$.

$\gamma $ (gamma)

is a shape parameter.

$\xi $ (xi)

is the location parameter.

$\lambda $ (lambda)

is the scale parameter, $\lambda > 0$.