Erlang

The Erlang distribution is a special case of the gamma distribution. The density function of the Erlang distribution is

\[  f(x) = \frac{1}{(k - 1)!}\lambda ^{-k}x^{k - 1}e^{-\frac{x}{\lambda }}  \]

where $x \ge 0$.

Parameters:

$\lambda $

is a real number > 0.

$k$

is an integer $\ge $ 1.

If $X_1, X_2, \dots , X_ k$ are independent exponential random variables with mean $\lambda $, then $X_1 + X_2 + \dots + X_ k$ has the $k$-Erlang distribution.