
Encryption in SAS® 9.4, Sixth
Edition

SAS® Documentation

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2016. Encryption in SAS® 9.4, Sixth Edition. Cary, NC: SAS
Institute Inc.

Encryption in SAS® 9.4, Sixth Edition

Copyright © 2016, SAS Institute Inc., Cary, NC, USA

All Rights Reserved. Produced in the United States of America.

For a hard copy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS Institute Inc.

For a web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at the time you acquire this
publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the publisher is illegal and
punishable by law. Please purchase only authorized electronic editions and do not participate in or encourage electronic piracy of copyrighted
materials. Your support of others' rights is appreciated.

U.S. Government License Rights; Restricted Rights: The Software and its documentation is commercial computer software developed at private
expense and is provided with RESTRICTED RIGHTS to the United States Government. Use, duplication, or disclosure of the Software by the
United States Government is subject to the license terms of this Agreement pursuant to, as applicable, FAR 12.212, DFAR 227.7202-1(a), DFAR
227.7202-3(a), and DFAR 227.7202-4, and, to the extent required under U.S. federal law, the minimum restricted rights as set out in FAR
52.227-19 (DEC 2007). If FAR 52.227-19 is applicable, this provision serves as notice under clause (c) thereof and no other notice is required to be
affixed to the Software or documentation. The Government’s rights in Software and documentation shall be only those set forth in this Agreement.

SAS Institute Inc., SAS Campus Drive, Cary, NC 27513-2414

November 2016

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other
countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

9.4-P1:secref

Contents

About This Book . v
What's New in Encryption in SAS 9.4 . xi
Accessibility . xv

PART 1 Encryption in SAS 9.4 1

Chapter 1 • Technologies for Encryption . 3
Overview of Encryption . 3
FIPS 140-2 Standards Compliance . 5
Providers of Encryption . 6
Encryption Algorithms . 17
Comparison of Encryption Technologies . 19
Encryption: Implementation . 20
Encryption: SAS Logging Facility . 20
Encrypting ODS Generated PDF Files . 21

Chapter 2 • SAS System Options for Encryption . 23
Dictionary . 23

Chapter 3 • SAS Environment Variables for Encryption . 43
Overview of Environment Variables . 43
Dictionary . 43

Chapter 4 • PWENCODE Procedure . 53
Overview: PWENCODE Procedure . 53
Concepts: PWENCODE Procedure . 53
Syntax: PWENCODE Procedure . 54
Examples: PWENCODE Procedure . 56

Chapter 5 • Encryption Technologies: Examples . 63
SAS Proprietary Encryption for SAS/SHARE: Example . 64
SAS/SECURE for SAS/CONNECT: Example . 64
TLS for a SAS/CONNECT UNIX Spawner: Example . 65
TLS for a SAS/CONNECT Windows Spawner: Example . 67
TLS on a z/OS Spawner on a SAS/CONNECT Server: Example 69
TLS for SAS/SHARE on UNIX: Example . 71
TLS for SAS/SHARE on Windows: Examples . 73
TLS for SAS/SHARE on z/OS: Example . 74
SSH Tunnel for SAS/CONNECT: Example . 75
SSH Tunnel for SAS/SHARE: Example . 76

PART 2 Installing and Configuring TLS and Certificates
77

Chapter 6 • Certificates Explained . 79
About Certificates . 79
Certificate File Formats . 80
Overview of Certificate Management Using the SAS Deployment Manager 82
Certificate Implementation: How TLS Client and Servers Negotiate 83
How SAS Validates Certificates between Clients and Servers . 83

Chapter 7 • Installing and Configuring TLS and Certificates on UNIX . 85
TLS on UNIX: System and Software Requirements . 85
Certificate Locations . 86
Preparation for Setting Up Digital Certificates . 87
Setting Up Digital Certificates Using OpenSSL . 87
Convert between PEM and DER File Formats Using OpenSSL 95
Manage Certificates in the Trusted CA Bundle Using the SAS

Deployment Manager . 96
Add Your Certificates to the SAS Private JRE . 101
How Clients and Servers Validate Certificates . 103
TLS on UNIX: Building FIPS 140-2 Capable OpenSSL . 103

Chapter 8 • Installing and Configuring TLS and Certificates on Windows 105
TLS on Windows: System and Software Requirements . 105
TLS on Windows: Setting Up Digital Certificates . 106
Add Your Certificates to the Windows CA Stores . 109
TLS on Windows: Converting between PEM and DER File Formats for TLS 116
Use the SAS Deployment Manager to Manage Certificates in the

Trusted CA Bundle . 116
TLS on Windows: Validating Certificates between Clients and Servers 116
TLS on Windows: FIPS 140-2 Capable OpenSSL . 117

Chapter 9 • Installing and Configuring TLS and Certificates on z/OS . 119
TLS on z/OS: System and Software Requirements . 119
TLS on z/OS: Setting Up Digital Certificates . 119
Use the SAS Deployment Manager to Manage Certificates in the

Trusted CA Bundle . 124

Chapter 10 • Troubleshooting . 125
Troubleshooting TLS . 125

Recommended Reading . 127
Glossary . 129
Index . 133

iv Contents

About This Book

Syntax Conventions for the SAS Language

Overview of Syntax Conventions for the SAS Language
SAS uses standard conventions in the documentation of syntax for SAS language
elements. These conventions enable you to easily identify the components of SAS
syntax. The conventions can be divided into these parts:

• syntax components

• style conventions

• special characters

• references to SAS libraries and external files

Syntax Components
The components of the syntax for most language elements include a keyword and
arguments. For some language elements, only a keyword is necessary. For other
language elements, the keyword is followed by an equal sign (=). The syntax for
arguments has multiple forms in order to demonstrate the syntax of multiple arguments,
with and without punctuation.

keyword
specifies the name of the SAS language element that you use when you write your
program. Keyword is a literal that is usually the first word in the syntax. In a CALL
routine, the first two words are keywords.

In these examples of SAS syntax, the keywords are bold:

CHAR (string, position)
CALL RANBIN (seed, n, p, x);
ALTER (alter-password)
BEST w.
REMOVE <data-set-name>

In this example, the first two words of the CALL routine are the keywords:

CALL RANBIN(seed, n, p, x)

The syntax of some SAS statements consists of a single keyword without arguments:

DO;

v

... SAS code ...
END;

Some system options require that one of two keyword values be specified:

DUPLEX | NODUPLEX

Some procedure statements have multiple keywords throughout the statement syntax:

CREATE <UNIQUE> INDEX index-name ON table-name (column-1 <,
column-2, …>)

argument
specifies a numeric or character constant, variable, or expression. Arguments follow
the keyword or an equal sign after the keyword. The arguments are used by SAS to
process the language element. Arguments can be required or optional. In the syntax,
optional arguments are enclosed in angle brackets (< >).

In this example, string and position follow the keyword CHAR. These arguments are
required arguments for the CHAR function:

CHAR (string, position)

Each argument has a value. In this example of SAS code, the argument string has a
value of 'summer', and the argument position has a value of 4:

x=char('summer', 4);

In this example, string and substring are required arguments, whereas modifiers and
startpos are optional.

FIND(string, substring <, modifiers> <, startpos>

argument(s)
specifies that one argument is required and that multiple arguments are allowed.
Separate arguments with a space. Punctuation, such as a comma (,) is not required
between arguments.

The MISSING statement is an example of this form of multiple arguments:

MISSING character(s);

<LITERAL_ARGUMENT> argument-1 <<LITERAL_ARGUMENT> argument-2 ... >
specifies that one argument is required and that a literal argument can be associated
with the argument. You can specify multiple literals and argument pairs. No
punctuation is required between the literal and argument pairs. The ellipsis (...)
indicates that additional literals and arguments are allowed.

The BY statement is an example of this argument:

BY <DESCENDING> variable-1 <<DESCENDING> variable-2 …>;

argument-1 <option(s)> <argument-2 <option(s)> ...>
specifies that one argument is required and that one or more options can be
associated with the argument. You can specify multiple arguments and associated
options. No punctuation is required between the argument and the option. The
ellipsis (...) indicates that additional arguments with an associated option are
allowed.

The FORMAT procedure PICTURE statement is an example of this form of multiple
arguments:

PICTURE name <(format-option(s))>
<value-range-set-1 <(picture-1-option(s))>
<value-range-set-2 <(picture-2-option(s))> …>>;

vi About This Book

argument-1=value-1 <argument-2=value-2 ...>
specifies that the argument must be assigned a value and that you can specify
multiple arguments. The ellipsis (...) indicates that additional arguments are allowed.
No punctuation is required between arguments.

The LABEL statement is an example of this form of multiple arguments:

LABEL variable-1=label-1 <variable-2=label-2 …>;

argument-1 <, argument-2, ...>
specifies that one argument is required and that you can specify multiple arguments
that are separated by a comma or other punctuation. The ellipsis (...) indicates a
continuation of the arguments, separated by a comma. Both forms are used in the
SAS documentation.

Here are examples of this form of multiple arguments:

AUTHPROVIDERDOMAIN (provider-1:domain-1 <, provider-2:domain-2, …>
INTO :macro-variable-specification-1 <, :macro-variable-specification-2, …>

Note: In most cases, example code in SAS documentation is written in lowercase with a
monospace font. You can use uppercase, lowercase, or mixed case in the code that
you write.

Style Conventions
The style conventions that are used in documenting SAS syntax include uppercase bold,
uppercase, and italic:

UPPERCASE BOLD
identifies SAS keywords such as the names of functions or statements. In this
example, the keyword ERROR is written in uppercase bold:

ERROR <message>;

UPPERCASE
identifies arguments that are literals.

In this example of the CMPMODEL= system option, the literals include BOTH,
CATALOG, and XML:

CMPMODEL=BOTH | CATALOG | XML |

italic
identifies arguments or values that you supply. Items in italic represent user-supplied
values that are either one of the following:

• nonliteral arguments. In this example of the LINK statement, the argument label
is a user-supplied value and therefore appears in italic:

LINK label;

• nonliteral values that are assigned to an argument.

In this example of the FORMAT statement, the argument DEFAULT is assigned
the variable default-format:

FORMAT variable(s) <format > <DEFAULT = default-format>;

Special Characters
The syntax of SAS language elements can contain the following special characters:

Syntax Conventions for the SAS Language vii

=
an equal sign identifies a value for a literal in some language elements such as
system options.

In this example of the MAPS system option, the equal sign sets the value of MAPS:

MAPS=location-of-maps

< >
angle brackets identify optional arguments. A required argument is not enclosed in
angle brackets.

In this example of the CAT function, at least one item is required:

CAT (item-1 <, item-2, …>)

|
a vertical bar indicates that you can choose one value from a group of values. Values
that are separated by the vertical bar are mutually exclusive.

In this example of the CMPMODEL= system option, you can choose only one of the
arguments:

CMPMODEL=BOTH | CATALOG | XML

...
an ellipsis indicates that the argument can be repeated. If an argument and the ellipsis
are enclosed in angle brackets, then the argument is optional. The repeated argument
must contain punctuation if it appears before or after the argument.

In this example of the CAT function, multiple item arguments are allowed, and they
must be separated by a comma:

CAT (item-1 <, item-2, …>)

'value' or "value"
indicates that an argument that is enclosed in single or double quotation marks must
have a value that is also enclosed in single or double quotation marks.

In this example of the FOOTNOTE statement, the argument text is enclosed in
quotation marks:

FOOTNOTE <n> <ods-format-options 'text' | "text">;

;
a semicolon indicates the end of a statement or CALL routine.

In this example, each statement ends with a semicolon:

data namegame;
 length color name $8;
 color = 'black';
 name = 'jack';
 game = trim(color) || name;
run;

References to SAS Libraries and External Files
Many SAS statements and other language elements refer to SAS libraries and external
files. You can choose whether to make the reference through a logical name (a libref or
fileref) or use the physical filename enclosed in quotation marks. If you use a logical
name, you typically have a choice of using a SAS statement (LIBNAME or
FILENAME) or the operating environment's control language to make the reference.

viii About This Book

Several methods of referring to SAS libraries and external files are available, and some
of these methods depend on your operating environment.

In the examples that use external files, SAS documentation uses the italicized phrase
file-specification. In the examples that use SAS libraries, SAS documentation uses the
italicized phrase SAS-library enclosed in quotation marks:

infile file-specification obs = 100;
libname libref 'SAS-library';

Syntax Conventions for the SAS Language ix

x About This Book

What's New in Encryption in SAS
9.4

Overview

Encryption in SAS is affected by the following changes and enhancements in SAS:

• SAS/SECURE is included with Base SAS, instead of being licensed and ordered
separately.

• The new encoding type SAS004 (uses AES encryption with 64-bit salt) provides
increased security for stored passwords.

• Increased security is provided for SAS data on disk.

• Enhanced logging features are introduced for encryption. These enhancements
include new loggers and better debugging and traceback features that are now part of
the SAS Logging Facility.

• Digital certificates can be imported to a central location on a Windows client or
server.

• In the first maintenance release for SAS 9.4, the default location for the Certificate
Authority (CA) trust list has changed for the UNIX and z/OS foundation servers.
This default location is specified by the SSLCALISTLOC= option.

• New environment variables SSL_CERT_DIR and SSLCACERTDIR can also be
used to point to the location of certificates. These environment variables are
supported on UNIX and support logging. The default location is specified by the
SSLCALISTLOC= system option.

Note: These environment variables are available through hot fixes in some
maintenance releases.

• Starting in the first maintenance release for SAS 9.4, Subject Alternative Names
(SAN) in TLS certificates are supported. Server Name Indications (SNI) in the TLS
handshake between clients and servers are also supported. These are supported on
UNIX and z/OS clients and servers.

• In the third maintenance release of SAS 9.4, CA certificates are now located in the
trustedcerts.pem file for UNIX and z/OS. The SSLCALISTLOC= option on UNIX
and z/OS now points to the trustedcerts.pem file by default.

• The SAS_SSL_MIN_PROTOCOL environment variable supported on UNIX,
Windows, and z/OS, and the SAS_SSL_CIPHER_LIST environment variable
supported on UNIX and z/OS have been added.

Note: These environment variables are available through hot fixes for some
maintenance releases.

xi

• In the third maintenance release of SAS 9.4, the SAS Deployment Manager is used
to automate the process of updating the CA certificates on all hosts at SAS
installation. The SAS Deployment Manager is used to manage the trusted Mozilla
CA bundle (provided by SAS) for all hosts. After SAS installation, you can use the
SAS Deployment Manager to add your own trusted certificates to this list.

• In the third maintenance release of SAS 9.4, information about setting up a FIPS-2
environment has been updated in the SAS Deployment Wizard.

• In the fourth maintenance release of SAS 9.4, the OpenSSL libraries provided by
SAS have been updated. For SAS 9.4 and all maintenance releases of SAS 9.4,
updated versions of OpenSSL are provided and updated through hot fixes for UNIX
and z/OS.

General Enhancements

• For software delivery purposes, SAS/SECURE is a product within the SAS System.
In SAS 9.4, SAS/SECURE is included with the Base SAS software. In prior releases,
SAS/SECURE was an add-on product that was licensed separately. This change
makes strong encryption available in all deployments (except where prohibited by
import restrictions).

• If you use SAS/SECURE, you can use a new encoding type for stored passwords,
SAS004 (uses AES encryption with 64-bit salt). The salt size was increased to 64
bits to comply with the minimum recommended salt size for PKCS #5 v2.0:
Password-Based Cryptography Standard, http://www.rsa.com/rsalabs/node.asp?
id=2127. See Chapter 1, “Technologies for Encryption,” on page 3 and Chapter 4,
“PWENCODE Procedure,” on page 53.

• If you use SAS/SECURE, you can use an industry standard algorithm (AES) to
encrypt SAS data on disk. For more information, see “ENCRYPT= Data Set Option”
in SAS Data Set Options: Reference and “SAS Data File Encryption” in SAS
Language Reference: Concepts.

• The SAS Logging Facility now supports full logging and debugging of the
SAS/CONNECT spawner operations. See “LOGCONFIGLOC= System Option” in
SAS Logging: Configuration and Programming Reference for detailed information.

• The SAS Logging Facility now supports full logging and debugging of encryption
activity. See “LOGCONFIGLOC= System Option” in SAS Logging: Configuration
and Programming Reference for system option information. For information about
security loggers, see “Encryption: SAS Logging Facility” on page 20.

• In the first maintenance release and the second maintenance release for SAS 9.4, for
TLS encryption, SAS sets the default location of the Certificate Authority (CA) trust
list to SAS-configuration-directory/levn/certs/cacert.pem for
UNIX and z/OS foundation servers. This default location is specified by the
SSLCALISTLOC= option in configuration files. For more information, see
“SSLCALISTLOC= System Option” on page 30.

• In the third maintenance release of SAS 9.4, trusted certificates are located in the
trustedcerts.pem file. The SSLCALISTLOC= system option points to the
trustedcerts.pem file by default. This file is located in <SASHome>/
SASSecurityCertificateFramework/1.1/cacerts/. The
SSLCALISTLOC= system option and new location are automatically added at SAS
installation.

xii What's New in Encryption in SAS 9.4

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=ledsoptsref&pubcode=69751&id=p1hwtxbozzzy4un11ldzgovfhcrf
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=ledsoptsref&pubcode=69751&id=p1hwtxbozzzy4un11ldzgovfhcrf
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n1s7u3pd71rgunn1xuexedikq90f
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n1s7u3pd71rgunn1xuexedikq90f
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=logug&pubcode=67485&id=n1jpa3bwfyjlv9n1tmqo4wbnwhra
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=logug&pubcode=67485&id=n1jpa3bwfyjlv9n1tmqo4wbnwhra
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=logug&pubcode=67485&id=n1jpa3bwfyjlv9n1tmqo4wbnwhra
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=logug&pubcode=67485&id=n1jpa3bwfyjlv9n1tmqo4wbnwhra

• Environment variables SSL_CERT_DIR and SSLCACERTDIR can also be used to
point to the location of certificates. These environment variables are supported on
UNIX and z/OS and support logging.

Note: These environment variables are available through hot fixes in some
maintenance releases.

For information, see “SSLCACERTDIR Environment Variable” on page 46 and
“SSL_CERT_DIR Environment Variable” on page 48.

• Starting in the first maintenance release for SAS 9.4, UNIX and z/OS clients and
servers now support Server Name Indication (SNI) and Subject Alternative Names
(SAN) in TLS. The client uses SNI in the TLS handshake to tell the server which
server name it is trying to connect to. SANs are used in TLS certificates. For
information, see “SSL_USE_SNI Environment Variable” on page 50.

• In the third maintenance release of SAS 9.4, two new environment variables are
available: SAS_SSL_MIN_PROTOCOL, supported on UNIX, Windows, and z/OS,
and SAS_SSL_CIPHER_LIST, supported on UNIX and z/OS. For more information,
see “SAS_SSL_MIN_PROTOCOL Environment Variable” on page 43 and
“SAS_SSL_CIPHER_LIST Environment Variable” on page 45.

• On a Windows server or client, the user can import digital certificates to a Machine
Store as well as to a Personal Store. See “TLS on Windows: Setting Up Digital
Certificates ” on page 106.

• In the third maintenance release of SAS 9.4, the SAS Deployment Manager can be
used to automate the process of updating the list of trusted CA Certificates. At
installation, a list of trusted CA certificates that are distributed by Mozilla is installed
and SAS products are automatically configured to use this. The SAS Deployment
Manager is used to manage the trusted CA bundle (provided by SAS) for all hosts.
The trustedcerts.pem and trustedcerts.jks files are both updated. On Windows, the
SAS Deployment Manager tasks manage the Java version of the trusted CA bundle,
on UNIX, the SAS Deployment Manager task updates the trustedcerts.pem and the
trustedcerts.jks files, and on z/OS, the SAS Deployment Manager tasks update the
trustedcerts.pem file.

See “Add Your Certificates to the Windows CA Stores” on page 109 , “Manage
Certificates in the Trusted CA Bundle Using the SAS Deployment Manager” on page
96 and, . For the specific details about these SAS Deployment Manager tasks, see
the SAS® Deployment Wizard and SAS® Deployment Manager 9.4: User's Guide.

• In the third maintenance release of SAS 9.4, information has been added about
setting the FIPS security settings on a Windows server. See “TLS on Windows: FIPS
140-2 Capable OpenSSL ” on page 117.

• In the third maintenance release of SAS 9.4, information about setting up a FIPS-2
environment on UNIX has been updated in the SAS Deployment Wizard. For
specific information, see SAS® Deployment Wizard and SAS® Deployment Manager
9.4: User's Guide. For information about FIPS in this document, see “FIPS 140-2
Standards Compliance” on page 5, “TLS: FIPS 140-2 Compliant Installation and
Configuration” on page 14, and “TLS on UNIX: Building FIPS 140-2 Capable
OpenSSL ” on page 103.

• In the fourth maintenance release of SAS 9.4, the OpenSSL libraries provided by
SAS have been updated. For SAS 9.4 and all maintenance releases of SAS 9.4,
updated versions of OpenSSL for UNIX and z/OS are provided and updated through
hot fixes. See the SAS Security Bulletin on OpenSSL for the most current
information about the versions of OpenSSL used in SAS products and about the
advisories under consideration.

General Enhancements xiii

http://mxr.mozilla.org/mozilla-central/source/security/nss/lib/ckfw/builtins/certdata.txt#4
http://support.sas.com/security/openssl-security-advisories.html

For a quick reference of the OpenSSL version supported for each version of SAS
Foundation, see Mapping Between SAS Version and OpenSSL Version.

Note: Windows versions of SAS support the TLS versions that Windows supports.

Documentation Enhancements

In the fourth maintenance release of SAS 9.4, we have moved information about
certificate management into this document and into the SAS 9.4 Intelligence Platform:
Security Administration Guide. The following topic information previously existed in the
SAS 9.4 Intelligence Platform Installation and Configuration Guide.

• See “Add Your Certificates to the SAS Private JRE” on page 101.

• See “Manage Certificates in the Trusted CA Bundle Using the SAS Deployment
Manager” on page 96.

• See “Overview of Certificate Management Using the SAS Deployment Manager” on
page 82.

xiv What's New in Encryption in SAS 9.4

http://support.sas.com/documentation/onlinedoc/secure/openssl/SAStoOpenSSLVersionTable.pdf

Accessibility

For information about the accessibility of this product, see Accessibility Features of the
Windowing Environment for SAS 9.4 at support.sas.com.

xv

http://support.sas.com/documentation/onlinedoc/base/9.4/en/accessibility/HTML/_toc.htm
http://support.sas.com/documentation/onlinedoc/base/9.4/en/accessibility/HTML/_toc.htm

xvi What's New in Encryption in SAS 9.4

Part 1

Encryption in SAS 9.4

Chapter 1
Technologies for Encryption . 3

Chapter 2
SAS System Options for Encryption . 23

Chapter 3
SAS Environment Variables for Encryption . 43

Chapter 4
PWENCODE Procedure . 53

Chapter 5
Encryption Technologies: Examples . 63

1

2

Chapter 1

Technologies for Encryption

Overview of Encryption . 3
Security Concepts . 3
Two Classes of Encryption Strength . 4
Two Contexts for Encryption Coverage . 4

FIPS 140-2 Standards Compliance . 5
Overview . 5
How SAS Implements FIPS . 5

Providers of Encryption . 6
SAS Proprietary Encryption . 6
SAS/SECURE . 8
Transport Layer Security (TLS) . 11
SSH (Secure Shell) . 15

Encryption Algorithms . 17

Comparison of Encryption Technologies . 19

Encryption: Implementation . 20

Encryption: SAS Logging Facility . 20

Encrypting ODS Generated PDF Files . 21

Overview of Encryption

Security Concepts
SAS provides strategies for protecting information that is associated with a SAS
deployment. Some components supporting this protection are based on third-party
components that are incorporated into the SAS product delivery, and some are SAS-
specific components. SAS provides products and third-party strategies for protecting
data and credentials (user IDs and passwords) that are exchanged in a networked
environment. Various security strategies are used to maintain data usability and data
confidentiality, as well as to validate the integrity of content. Various encryption,
hashing, and encoding algorithms are used by SAS to protect your data in transit or data
at rest.

3

encoding
Encoding transforms data into another format using a scheme that is publicly
available so that it can easily be reversed. It does not require a key. The only thing
required to decode it is the algorithm that was used to encode it.

Encoding obfuscates the data. Your data should be protected by other security
controls as well. Use file system permissions or other access control mechanisms.
Encoding does not provide data confidentiality.

Examples are SAS002, SAS003, and SAS004 encoding and SAS Proprietary 32-bit
fixed key encoding.

encryption
Encryption transforms data into another format in such a way that only specific
individual(s) can reverse the transformation. It uses a key that is kept secret, in
conjunction with the plaintext and the algorithm, in order to perform the encryption
operation. As such, the ciphertext, algorithm, and key are all required to return to the
plaintext. Example encryption algorithms are AES and RSA.

hashing
Hashes are commonly used to store passwords to prevent them from being viewed.
Hash algorithms are one way functions. They turn any amount of data into a fixed-
length "fingerprint" that cannot be reversed. If the input changes by even a tiny bit,
the resulting hash is completely different. When passwords are hashed, only the hash
is kept. To verify a password, you hash the password and check to see whether the
password matches the stored hash.

Examples are SHA-256 and 512 hashing algorithms.

salting
Salt is data used as an additional input to the encryption algorithm. When the salt is
being used, the first eight bytes of the encrypted data are reserved for the salt. The
salt value is generated at random when encrypting a file and read from the encrypted
file when it is decrypted.

Examples are AES with 16-bit salt (SAS003) and AES with 64-bit salt (SAS004).

Two Classes of Encryption Strength
Two classes of encryption strength are available:

• For compatibility with legacy systems, SASProprietary encoding is supported. These
methods are available in all deployments and are appropriate for preventing
accidental exposure of information. They have minimal impact on performance.

• For a higher level of security, it is recommended to use industry-standard encryption
and hashing algorithms. These methods provide stronger protection and are available
in all deployments, except where prohibited by import restrictions.

Note: Industry-standard algorithms are provided by SAS/SECURE. For details
about supported algorithms and availability, see, “Providers of Encryption” on
page 6.

SAS recommends that you use the strongest security standards available for your
environment.

Two Contexts for Encryption Coverage
SAS provides encryption in two contexts:

4 Chapter 1 • Technologies for Encryption

• Data-at-rest encryption protects data at rest. The emphasis is on protection of
passwords in configuration files and in the metadata repository, and on encryption of
SAS data sets.

• Data-in-motion encryption protects data in transit. The emphasis is on protection of
passwords and data in transit. You can also choose to protect all traffic in transit
between SAS servers and SAS desktop clients.

Note: To ensure that only FIPS-validated encryption algorithms are used, set the
ENCRYPTFIPS system option. See “ENCRYPTFIPS System Option” on page
23.

FIPS 140-2 Standards Compliance

Overview
FIPS 140-2 standards are supported for SAS/SECURE and Transport Layer Security
(TLS) encryption technologies. FIPS 140-2 is not a technology, but a definition of what
security mechanisms should do. FIPS 140-2 is the current version of the Federal
Information Processing Standardization 140 (FIPS 140) publication. FIPS 140-2 is a
standard that describes US Federal government requirements that IT products should
meet for Sensitive, but Unclassified (SBU) use.

The standard defines the security requirements that must be satisfied by a cryptographic
module used in a security system protecting unclassified information within IT systems.
FIPS 140-2 requires organizations that do business with a government agency or
department that requires the exchange of sensitive information, to ensure that they meet
the FIPS 140-2 security standards. In addition, the financial community increasingly
specifies FIPS 140-2 as a procurement requirement.

The National Institute of Standards and Technology (NIST) issued the FIPS 140
Publication Series to coordinate the requirements and standards for cryptography
modules that include both hardware and software components. Federal agencies and
departments can validate that the module in use is covered by an existing FIPS 140-1 or
FIPS 140-2 certificate. The certificate specifies the exact module name, hardware,
software, firmware, and applet version numbers. For more information, see FIPS PUB
140-2 SECURITY REQUIREMENTS FOR CRYPTOGRAPHIC MODULES.

There are four levels of security: from Level 1 (lowest) to Level 4 (highest). The security
requirements cover areas related to the secure design and implementation of a
cryptographic module. These areas include basic design and documentation, module
interfaces, authorized roles and services, physical security, software security, operating
system security, key management, cryptographic algorithms, electromagnetic
interference or electromagnetic compatibility (EMI/EMC), and self-testing.

For installation and configuration details about FIPS 140-2, see “SAS/SECURE FIPS
140-2 Compliant Installation and Configuration” on page 11, “TLS: FIPS 140-2
Compliant Installation and Configuration” on page 14, and “ENCRYPTFIPS System
Option” on page 23.

How SAS Implements FIPS
The ENCRYPTFIPS option is provided by SAS primarily as a mechanism to help ensure
that your SAS system is configured to leverage the encryption algorithms and cipher
suites specified by the FIPS 140-2 standard and that libraries will be validated for

FIPS 140-2 Standards Compliance 5

http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf

compliance when loaded. With this option enabled, SAS verifies that all of your SAS
servers have been configured to use the FIPS approved Advanced Encryption Standard
(AES) libraries or the TLS protocol. ENCRYPTFIPS makes sure IOM uses AES and
that SAS/CONNECT uses AES or SSL.

However, turning off the SAS system option ENCRYPTFIPS does not impact the ability
of SAS to use FIPS approved encryption algorithms available with SAS/SECURE, such
as the Advanced Encryption Standard (AES), nor does it prevent SAS from leveraging
strong FIPS approved cipher suites when acting as a TLS client.

If the ENCRYPTFIPS option is turned on, then SAS server-based TLS clients will
attempt to load a special subset of OpenSSL libraries, contained as part of the OpenSSL
FIPS Object Module. These libraries are not present by default and would need to be
downloaded and compiled in accordance with the specific instructions specified by the
FIPS standard. Therefore, turning on this option is not generally recommended, unless
absolutely required by a customer’s policy. See “TLS on UNIX: Building FIPS 140-2
Capable OpenSSL ” on page 103 for additional information.

Standard OpenSSL libraries are capable of providing strong AES level encryption.
However, only the FIPS OpenSSL Object Module libraries meet the FIPS standard. If
the ENCRYPTFIPS option is enabled and the libraries are not present, then the SAS
system produces an error when a SAS server needs to act as a TLS client and
communicate over HTTPS protocol.

Note: When the ENCRYPTFIPS option is turned on, SAS Internal Passwords are stored
using the SHA-256 hashing algorithm.

Providers of Encryption

SAS Proprietary Encryption

SAS Proprietary Encryption Overview
SAS Proprietary Encryption is licensed with Base SAS software and is available in all
deployments. It requires no additional SAS product licenses. The SAS Proprietary
algorithm is strong enough to protect your data from casual viewing. SAS/SECURE and
TLS provide a higher level of security.

There are two types of SAS Proprietary Encryption algorithms.

• A 32-bit rolling-key encryption algorithm that is used for SAS data set encryption
with passwords.

This encryption technique uses parts of the passwords that are stored in the SAS data
set as part of the 32-bit rolling key encoding of the data. This encryption provides a
medium level of security. Users must supply the appropriate passwords to authorize
their access to the data, but with the speed of today’s computers, it could be
subjected to a brute force attack on the 2,563,160,682,591 possible combinations of
valid password values, many of which must produce the same 32-bit key.

Note: SAS/SECURE and data set support of AES, which is also shipped with Base
SAS software, provides a higher level of security.

For detailed information, see “SAS Data File Encryption” in SAS Language
Reference: Concepts.

6 Chapter 1 • Technologies for Encryption

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n1s7u3pd71rgunn1xuexedikq90f
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n1s7u3pd71rgunn1xuexedikq90f

• A 32-bit fixed-key encoding used to protect passwords used for communications in
configuration files, passwords for login objects, login passwords, internal account
passwords, and so on.

This SAS Proprietary algorithm is strong enough to protect your data from casual
viewing. It provides a medium level of security. SAS/SECURE and TLS provide a
higher level of security.

Note: SAS recommends that you use the highest levels of security possible.

Data-in-motion passwords that use SASProprietary encoding are passwords in transit
in a logon attempt and general traffic between clients and servers. Depending on the
type of client or server, higher levels of password security can be used. For example,
TLS or AES can be used.

Data-at-rest passwords are secured in the following ways.

• Login passwords on-disk in the metadata can use SASProprietary (SAS002) or
AES (SAS003 or SAS004). By default, metadata stores passwords on login
objects with SAS003, but returns passwords using SAS002 by default.

• Internal account passwords on-disk in the metadata can use MD5 or SHA-256
hashing. By default, SHA256 is used.

Note: If SAS/SECURE is not present, MD5 is used. If MD5 hashing is specified
in the configuration file, it overrides the default SHA-256 hashing.

• Passwords on-disk in configuration files can use SASProprietary or AES. By
default, SASProprietary (SAS002) is used.

Note: Configuration file passwords can be upgraded to AES (SAS003 or SAS004).
SAS003 uses a 256-bit key plus 16-bit salt value to encode passwords. SAS004
uses a 256-bit key plus 64-bit salt value to encode passwords.

Refer to the SAS 9.4 Intelligence Platform: Security Administration Guide, “Encryption
for Data at Rest” and “Encryption for Data in Motion” chapters for detailed information.

SAS Proprietary Encryption System Requirements
SAS supports SAS Proprietary Encryption under these operating environments:

• UNIX

• Windows

• z/OS

SAS Proprietary Encryption Software Availability
SAS Proprietary Encryption is licensed with Base SAS software and is available in all
deployments. It requires no additional SAS product licenses.

SAS Proprietary Encryption Installation and Configuration
SAS Proprietary Encryption is part of Base SAS. Separate installation is not required.

Configure SAS Proprietary Encryption as follows:

• SAS Proprietary Encryption for SAS data sets is implemented with the ENCRYPT=
data set option set to YES. You can use the ENCRYPT= data set option only when
you are creating a SAS data file. You must also assign a password when encrypting a
data file with SAS Proprietary Encryption. At a minimum, you must specify the
READ= data set option or the PW= data set option at the same time you specify
ENCRYPT=YES. Because passwords are used in this encryption technique, you

Providers of Encryption 7

cannot change any password on an encrypted data set without re-creating the data
set.

Note: Beginning with the first maintenance release of 9.4, a metadata-bound library
administrator can require that all data files in the bound library be encrypted with
either AES or SAS Proprietary encryption. For more information, see “Requiring
Encryption for Metadata-Bound Data Sets” in Base SAS Procedures Guide and
SAS Guide to Metadata-Bound Libraries.

For detailed information, see “SAS Data File Encryption” in SAS Language
Reference: Concepts.

• SAS Proprietary Encryption for communications and networking is implemented by
setting system option NETENCRYPTALGORITHM=SASPROPRIETARY. The
NETENCRYPTALGORITHM= option must be set before the LIBNAME statement
establishes the connection to the server. On the server, you set the NETENCRYPT
option to specify that encryption is required by any client that accesses this server.
The NETENCRYPTALGORITHM= option specifies that the SASProprietary
algorithm be used for encryption of all data that is exchanged with connecting
clients.

For detailed information, see “NETENCRYPT System Option” on page 26 and
“NETENCRYPTALGORITHM System Option” on page 26.

For an example of configuring and using SAS Proprietary Encryption in your
environment, see “SAS Proprietary Encryption for SAS/SHARE: Example ” on page
64. For an example of configuring SAS Data File encryption using the SASProprietary
algorithm, see “SAS Data File Encryption” in SAS Language Reference: Concepts.

SAS/SECURE

SAS/SECURE Overview
SAS/SECURE software provides industry standard encryption capabilities in addition to
the SASProprietary algorithm.

On UNIX, Windows, and z/OS, SAS/SECURE supports the following encryption
algorithms:

• SASProprietary

• RC2

• RC4

• DES

• TripleDES

• AES

• SSL

Note: The algorithms listed above are supported by SAS/SECURE on Windows by
using the Microsoft Cryptographic API libraries that are included with the operating
system.

Refer to “Encryption Algorithms” on page 17 for more information about encryption
algorithms supported for use with SAS/SECURE.

SAS/SECURE provides encryption for the following:

• data in transit

8 Chapter 1 • Technologies for Encryption

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=proc&pubcode=69850&id=p14okeyw7r1vmyn1dvkct2ahel20&anchor=p16ij07e3sa1j3n0z412x3bxa1cn
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=proc&pubcode=69850&id=p14okeyw7r1vmyn1dvkct2ahel20&anchor=p16ij07e3sa1j3n0z412x3bxa1cn
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n1s7u3pd71rgunn1xuexedikq90f
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n1s7u3pd71rgunn1xuexedikq90f
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n1s7u3pd71rgunn1xuexedikq90f

SAS/SECURE enables you to provide stronger protection for data in transit than is
provided by SAS Proprietary Encryption. This affects communications among SAS
servers and between SAS servers, SAS desktop clients, and SAS web applications.

Refer to “NETENCRYPT System Option” on page 26 and
“NETENCRYPTALGORITHM System Option” on page 26 for details.

• stored login passwords

SAS/SECURE also enables you to provide stronger protection for stored login
passwords than is provided by SAS Proprietary encoding. By default, the stored
login passwords are stored using SAS002 encoding. With SAS/SECURE, you can
use SAS003 or SAS004 encoding methods, which use industry-standard algorithms
for stored passwords. The SAS003 encoding method uses AES with 16-bit salt and
the SAS004 encoding method uses AES with 64-bit salt. You can use the
PWENCODE procedure (specify the METHOD= option) to upgrade to stronger
encryption, AES (SAS003 or SAS004).

Refer to Chapter 4, “PWENCODE Procedure,” on page 53 for details.

• internal account passwords stored in the metadata repository

SAS/SECURE also enables you to provide stronger protection for internal account
passwords stored in the metadata repository. You should use a minimum of SHA-256
hashing.

CAUTION:
Passwords that are stored in SAS003 format, SAS004 format, or SHA-256
hashing become unusable and inaccessible if SAS/SECURE is unavailable.
If you choose to discontinue use of SAS/SECURE, you must revert stored
passwords to the less secure format before you discontinue using the
software.

• services that are part of the Federal Information Processing Standard (FIPS) 140-2
standard

You can instruct SAS/SECURE to use only services that are part of the Federal
Information Processing Standard (FIPS) 140-2 standard. When SAS system option
ENCRYPTFIPS is configured, SAS/SECURE uses only FIPS 140-2 validated
encryption and hashing algorithms from libraries that are validated when loaded.
AES is the encryption algorithm and SAS003 is the encoding format (for stored
passwords) used with FIPS 140-2 enabled SAS/SECURE software. The SHA-256
hashing algorithm is used with FIPS 140-2 enabled software for stored internal
account passwords in the metadata server.

Refer to “How SAS Implements FIPS” on page 5.“ENCRYPTFIPS System Option”
on page 23Also see and “SAS/SECURE FIPS 140-2 Compliant Installation and
Configuration” on page 11 for details.

• AES Encryption on Data Sets

AES encryption on SAS Data Files is available in SAS 9.4. AES produces a stronger
encryption by using a key value that can be up to 64 characters long. You specify
ENCRYPT=AES when creating a data set. Instead of passwords that are stored in the
data set (SAS Proprietary Encryption), AES uses a key value that is not stored in the
data set. You must use the ENCRYPTKEY= data set option when creating or
accessing an AES encrypted data set unless the metadata-bound library administrator
has securely recorded the encryption key in metadata to which the data set is bound.
You cannot change the ENCRYPTKEY= key value on an AES encrypted data set
without re-creating the data set.

Providers of Encryption 9

Note: Beginning with the first maintenance release of 9.4, a metadata-bound library
administrator can require that all data files in the bound library be encrypted with
either AES or SAS Proprietary encryption. For more information, see “Requiring
Encryption for Metadata-Bound Data Sets” in Base SAS Procedures Guide and
SAS Guide to Metadata-Bound Libraries.

For detailed information about AES Encryption on SAS Data Files, see “AES
Encryption” in SAS Language Reference: Concepts.

SAS/SECURE System Requirements
SAS supports SAS/SECURE under these operating environments:

• UNIX

• Windows

• z/OS

SAS/SECURE Software Availability
For software delivery purposes, SAS/SECURE is a product within the SAS System. In
SAS 9.4, SAS/SECURE is included with the Base SAS software. In prior releases,
SAS/SECURE was an add-on product that was licensed separately. This change makes
strong encryption available in all deployments (except where prohibited by import
restrictions).

SAS/SECURE Export Restrictions
For U.S. export purposes, SAS designates each product based on the encryption
algorithms and the product's functional capability. SAS/SECURE is available to most
commercial and government users inside and outside the U.S. However, some countries
(for example, Russia, China, and France) have import restrictions on products that
contain encryption, and the U.S. prohibits the export of encryption software to specific
embargoed or restricted destinations.

SAS/SECURE for UNIX, Windows, and z/OS includes the following encryption
algorithms:

• RC2 using up to 128-bit keys

• RC4 using up to 128-bit keys

• DES using up to 56-bit keys

• TripleDES using up to 168-bit keys

• AES using 256-bit keys

SAS/SECURE for Windows uses the encryption algorithms that are available in
Microsoft CryptoAPI. The level of the SAS/SECURE encryption algorithms under
Windows depends on the level of the encryption support in Microsoft CryptoAPI under
Windows.

Note: For AES, SAS does not use Windows libraries by default. It tries to use the RSA
libraries that are FIPS certified.

SAS/SECURE Installation and Configuration
SAS/SECURE is now installed and delivered on every installation. Whether
SAS/SECURE is used depends on the options that are set.

In SAS 9.4, SAS/SECURE is installed with the Base SAS software. However, the
default encryption is now SAS Proprietary Encryption.

10 Chapter 1 • Technologies for Encryption

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=proc&pubcode=69850&id=p14okeyw7r1vmyn1dvkct2ahel20&anchor=p16ij07e3sa1j3n0z412x3bxa1cn
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=proc&pubcode=69850&id=p14okeyw7r1vmyn1dvkct2ahel20&anchor=p16ij07e3sa1j3n0z412x3bxa1cn
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n1s7u3pd71rgunn1xuexedikq90f&anchor=n1o82uabmi8m8xn1krmlzw1q1tv4
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n1s7u3pd71rgunn1xuexedikq90f&anchor=n1o82uabmi8m8xn1krmlzw1q1tv4

To use the higher form of encryption provided by SAS/SECURE for communications
and networking, specify the NETENCRYPT system option and set the NETENCRALG=
system option to a value of RC2, RC4, DES, TRIPLEDES, AES, or SSL. Refer to
“NETENCRYPT System Option” on page 26 and “NETENCRYPTALGORITHM
System Option” on page 26.

For examples of configuring and using SAS/SECURE with SAS/CONNECT and
SAS/SHARE, see Chapter 5, “Encryption Technologies: Examples,” on page 63.

For detailed information about AES Encryption on SAS Data Files, see “AES
Encryption” in SAS Language Reference: Concepts.

SAS/SECURE FIPS 140-2 Compliant Installation and Configuration
To configure a FIPS 140-2 compliant system, you must use SAS/SECURE or TLS.
When using SAS/SECURE, specify SAS system options ENCRYPTFIPS and
NETENCRALG= (set to AES) for UNIX, z/OS, or Windows. When using TLS, specify
SAS system options ENCRYPTFIPS and NETENCRALG= (set to AES or SSL) for
UNIX, z/OS, or Windows. Therefore, you can connect only servers and clients that are
also configured with AES or SSL. Errors are generated when other encryption
algorithms are specified.

When ENCRYPTFIPS is specified, an INFO message is written at server start-up to
indicate that FIPS encryption is enabled.

In the FIPS 140-2 compliant mode, the SHA-256 hashing algorithm is used for stored
password protection. Therefore, you can connect only servers and clients that are
enabled for FIPS 140-2.

CAUTION:
In SAS 9.2, the password hash list was created using the MD5 hash algorithm. If
you are moving from SAS 9.2 to a higher version of SAS and configuring your
system to be FIPS 140-2 compliant, you need to clear all previously stored
passwords. When you reset the passwords, they use the SHA-256 hashing
algorithm.

See the following information for details about FIPS.

• “ENCRYPTFIPS System Option” on page 23

• “NETENCRYPTALGORITHM System Option” on page 26

• “FIPS 140-2 Standards Compliance” on page 5

• “TLS: FIPS 140-2 Compliant Installation and Configuration” on page 14

Transport Layer Security (TLS)

Transport Layer Security (TLS) Overview
Transport Layer Security (TLS) and its predecessor, Secure Sockets Layer (SSL), are
cryptographic protocols that are designed to provide communication security. TLS and
SSL are protocols that provide network data privacy, data integrity, and authentication.

Note: All discussion of TLS is also applicable to the predecessor protocol, Secure
Sockets Layer (SSL).

TLS uses X.509 certificates and hence asymmetric cryptography to assure the party with
whom they are communicating, and to exchange a symmetric key. As a consequence of
choosing X.509 certificates, certificate authorities and a public key infrastructure are
necessary to verify the relation between a certificate and its owner, as well as to

Providers of Encryption 11

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n1s7u3pd71rgunn1xuexedikq90f&anchor=n1o82uabmi8m8xn1krmlzw1q1tv4
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n1s7u3pd71rgunn1xuexedikq90f&anchor=n1o82uabmi8m8xn1krmlzw1q1tv4

generate, sign, and administer the validity of certificates. For more information about
client and server negotiations using certificates, refer to “Certificate Implementation:
How TLS Client and Servers Negotiate” on page 83.

In addition to providing encryption services, TLS performs client and server
authentication, and it uses message authentication codes to ensure data integrity. The
client requests a certificate from the server, which it validates against the public
certificate of the certificate authority used to sign the server certificate. The client then
verifies the identity of the server and negotiates with the server to select a cipher
(encryption method). The cipher that is selected is the first match between the ciphers
that are supported on both the client and the server. All subsequent data transfers for the
current request are then encrypted with the selected encryption method.

TLS Concepts
The following concepts are fundamental to understanding TLS:

Certificate Authorities (CAs)
Cryptography products provide security services by using digital certificates, public-
key cryptography, private-key cryptography, and digital signatures. Certificate
authorities (CAs) create and maintain digital certificates, which also help preserve
confidentiality.

Various commercial CAs, such as VeriSign and Thawte, provide competitive services
for the e-commerce market. You can also develop your own CA by using products
from companies such as RSA Security and Microsoft or from the Open-Source
Toolkit OpenSSL.

Note: z/OS provides the PACDCERT command and PKI Services for implementing
a CA.

Digital Signatures
A digital signature affixed to an electronic document or to a network data packet is
like a personal signature that concludes a hand-written letter or that validates a credit
card transaction. Digital signatures are a safeguard against fraud. A unique digital
signature results from using a private key to encrypt a message digest. A document
that contains a digital signature enables the receiver of the document to verify the
source of the document. Electronic documents are said to be verified if the receiver
knows where the document came from, who sent it, and when it was sent.

Another form of verification comes from Message Authentication Codes (MAC),
which ensure that a signed document has not been changed. A MAC is attached to a
document to indicate the document's authenticity. A document that contains a MAC
enables the receiver of the document (who also has the secret key) to know that the
document is authentic.

Digital Certificates
Digital certificates are electronic documents that ensure the binding of a public key
to an individual or an organization. Digital certificates provide protection from fraud.

Usually, a digital certificate contains a public key, a user's name, and an expiration
date. It also contains the name of the Certificate Authority (CA) that issued the
digital certificate and a digital signature that is generated by the CA. The CA's
validation of an individual or an organization allows that individual or organization
to be accepted at sites that trust the CA.

Public and Private Keys
Public-key cryptography uses a public and a private key pair. The public key can be
known by anyone, so anyone can send a confidential message. The private key is
confidential and known only to the owner of the key pair, so only the owner can read
the encrypted message. The public key is used primarily for encryption, but it can

12 Chapter 1 • Technologies for Encryption

also be used to verify digital signatures. The private key is used primarily for
decryption, but it can also be used to generate a digital signature.

Symmetric Key
In symmetric key encryption, the same key is used to encrypt and decrypt the
message. If two parties want to exchange encrypted messages securely, they must
both have a copy of the same symmetric key. Symmetric key cryptography is often
used for encrypting large amounts of data because it is computationally faster than
asymmetric cryptography. Typical algorithms include DES, TripleDES, RC2, RC4,
and AES.

Asymmetric Key
Asymmetric or public key encryption uses a pair of keys that have been derived
together through a complex mathematical process. One of the keys is made public,
typically by asking a CA to publish the public key in a certificate for the certificate-
holder (also called the subject). The private key is kept secret by the subject and
never revealed to anyone. The keys work together where one is used to perform the
inverse operation of the other: If the public key is used to encrypt data, only the
private key of the pair can decrypt it. If the private key is used to encrypt, the public
key must be used to decrypt. This relationship allows a public key encryption
scheme where anyone can obtain the public key for a subject and use it to encrypt
data that only the user with the private key can decrypt. This scheme also specifies
that when a subject encrypts data using its private key, anyone can decrypt the data
by using the corresponding public key. This scheme is the foundation for digital
signatures.

TLS System Requirements
SAS supports TLS under these operating environments:

• UNIX

• Windows

• z/OS

Note: The TLS software is included in the SAS installation software only for countries
that allow the importation of encryption software.

TLS Software Availability
In the fourth maintenance release of SAS 9.4, the OpenSSL libraries provided by SAS
have been updated. For SAS 9.4 and all maintenance releases of SAS 9.4, updated
versions of OpenSSL are provided and updated through hot fixes. See the SAS Security
Bulletin on OpenSSL for the most current information about the versions of OpenSSL
used in SAS products and about the advisories under consideration.

For a quick reference of the OpenSSL version supported for each version of SAS
Foundation, see Mapping Between SAS Version and OpenSSL Version.

The TLS version supported by default is now TLS 1.2.

Note: If you need to override the default protocol, you can set the
SAS_SSL_MIN_PROTOCOL= environment variable. For information, see
“SAS_SSL_MIN_PROTOCOL Environment Variable” on page 43.

OpenSSL is shipped with Base SAS for UNIX and z/OS. Windows versions of SAS
support the TLS versions that Windows supports.

SAS deployments on Windows, UNIX, and z/OS platforms can be configured to use
TLS. The implementation and file extensions, however, vary based on the operating
system.

Providers of Encryption 13

http://support.sas.com/security/openssl-security-advisories.html
http://support.sas.com/security/openssl-security-advisories.html
http://support.sas.com/documentation/onlinedoc/secure/openssl/SAStoOpenSSLVersionTable.pdf

• For Windows, SAS uses the SChannel library that comes with the Windows
operating system.

• SAS provides the libraries needed to run TLS on UNIX. To find the OpenSSL code
base version that is used to build the TLS libraries provided by SAS for each release,
see Mapping Between SAS Version and OpenSSL Version.

Note: Different operating systems require the use of different library file extensions.
For example, HPUX, Linux, and Solaris use libcrypto.so.1.0.0 and libssl.so.1.0.0.
AIX uses libcrypto.so and libssl.so. Refer to your operating system vendor
documentation when using the vendor’s OpenSSL libraries. There might be
additional procedures that need to be followed to make the libraries work
properly in your environment.

• SAS provides the libraries needed to run TLS on z/OS.

TLS Installation and Configuration
TLS for UNIX, z/OS, and Windows is shipped with Base SAS. No additional software
installation is required. For SAS 9.4 and all maintenance releases of SAS 9.4, updated
versions of OpenSSL are provided and updated through hot fixes. See OpenSSL Security
Advisories for the latest information about OpenSSL security advisories under
consideration for software fixes for SAS components.

In the third maintenance release of SAS 9.4, the SAS Deployment Manager used to
automate the process of adding and removing intermediate, root, or self-signed CA
certificates. At installation, a list of CA certificates that are distributed by Mozilla
software products is installed in the cacerts.pem and trustedcerts.pem files. The SAS
Deployment Manager is then used to add existing certificates to the Trusted CA Bundle
and to remove digital certificates from the Trusted CA Bundle.

In the third maintenance release of SAS 9.4, this new trusted certificate list is a file in X.
509 Base-64 encoded format and is named trustedcerts.pem. System option
SSLCALISTLOC= points to the location of this file, which is now <SASHome>/
SASSecurityCertificateFramework/1.1/cacerts/trustedcerts.pem.

The instructions that you use to configure TLS at your site depend on whether you use
UNIX, Windows, or z/OS. See the appropriate details:

• Chapter 7, “Installing and Configuring TLS and Certificates on UNIX,” on page 85

• Chapter 8, “Installing and Configuring TLS and Certificates on Windows,” on page
105

• Chapter 9, “Installing and Configuring TLS and Certificates on z/OS,” on page 119

For examples of configuring and using TLS in your environment, see Chapter 5,
“Encryption Technologies: Examples,” on page 63.

TLS: FIPS 140-2 Compliant Installation and Configuration
You can configure TLS to run in FIPS 140-2 compliant mode. The libraries supplied by
Windows are FIPS 140-2 compliant. The OpenSSL libraries shipped with SAS for
UNIX are not FIPS 140-2 compliant. However, you can compile a FIPS 140-2 compliant
version of OpenSSL and install it. For more information, see “TLS on UNIX: Building
FIPS 140-2 Capable OpenSSL ” on page 103 and “TLS on Windows: FIPS 140-2
Capable OpenSSL ” on page 117.

After compiling the FIPS compliant libraries, you will need to specify the
NETENCRALG= (set to AES or SSL) system option. You will then be able to run in
FIPS compliant mode and connect only servers and clients that are also configured with
FIPS.

14 Chapter 1 • Technologies for Encryption

http://support.sas.com/documentation/onlinedoc/secure/index.html
http://support.sas.com/security/openssl-security-advisories.html
http://support.sas.com/security/openssl-security-advisories.html

CAUTION:
Use ENCRYPTFIPS with caution. Turning on the ENCRYPTFIPS option is not
generally recommended for TLS, unless absolutely required by your site’s policy. If
the ENCRYPTFIPS option is turned on, the SAS server-based TLS clients will
attempt to load a special subset of OpenSSL libraries, contained as part of the
OpenSSL FIPS Object Module. Because these libraries are not present by default,
you must follow the process described in “TLS on UNIX: Building FIPS 140-2
Capable OpenSSL ” on page 103.

When ENCRYPTFIPS is specified, an INFO message is written at server start-up to
indicate that FIPS encryption is enabled.

Note: The TLS version shipped with SAS for z/OS is not FIPS 140-2 compliant.
However, you can use SAS/SECURE with AES to provide FIPS on z/OS.

See the following for more information about FIPS.

• “How SAS Implements FIPS” on page 5

• “NETENCRYPTALGORITHM System Option” on page 26

• “ENCRYPTFIPS System Option” on page 23

SSH (Secure Shell)

SSH (Secure Shell) Overview
SSH is an abbreviation for Secure Shell. SSH is a protocol that enables users to access a
remote computer via a secure connection. SSH is available through various commercial
products and as freeware. OpenSSH is a free version of the SSH protocol suite of
network connectivity tools.

Although SAS software does not directly support SSH functionality, you can use the
tunneling feature of SSH to enable data to flow between a SAS client and a SAS server.
Port forwarding is another term for tunneling. The SSH client and SSH server act as
agents between the SAS client and the SAS server, tunneling information via the SAS
client's port to the SAS server's port.

Only Windows and UNIX operating systems can access an OpenSSH server on another
UNIX system. To access an OpenSSH server, UNIX systems require OpenSSH software.

Windows systems require PuTTY software.

Currently, SAS supports the OpenSSH client and server that supports protocol level
SSH-2 in UNIX environments. Other third-party applications that support the SSH-2
protocol currently are untested. Therefore, SAS does not support these applications.

SAS also supports SSH on z/OS. The IBM Ported Tools for z/OS Program Product must
be installed for OpenSSH support. See IBM Ported Tools for z/OS - OpenSSH.

To understand the configuration options that are required for the OpenSSH and PuTTY
clients and the OpenSSH server, it is recommended that you have a copy of the book
SSH, The Secure Shell: The Definitive Guide by Daniel J. Barrett, Richard E. Silverman,
and Robert G. Byrnes. This book is an invaluable resource when you are configuring the
SSH applications, and it describes in detail topics that include public key authentication,
SSH agents, and SSHD host keys.

SSH System Requirements
SAS supports SSH in these operating environments:

Providers of Encryption 15

http://www-03.ibm.com/systems/z/os/zos/features/unix/ported/openssh/

• UNIX

• Windows

• z/OS

SSH Software Availability
OpenSSH supports SSH protocol versions 1.3, 1.5, and 2.0.

To build the OpenSSL software, refer to the following resources:

• www.openssh.com

• www.ssh.com

• SSH UNIX manual page

• IBM Ported Tools for z/OS - OpenSSH

• PuTTY Download Page

• Barrett, Daniel J., Richard E. Silverman, and Robert G. Byrnes. 2005. SSH, the
Secure Shell: The Definitive Guide. Sebastopol, CA: O'Reilly

• Configuring SSH Client Software in UNIX and Windows Environments for Use with
the SFTP Access Method in SAS 9.2, SAS 9.3, and SAS 9.4

SSH Tunneling Process
An inbound request from a SAS client to a SAS server is shown as follows:

Figure 1.1 SSH Tunneling Process

SAS Client SAS Server

SSH Server

4321

5555

Client Computer Server Computer

SSH Tunnel

SSH Client

1 3

2

1. The SAS client passes its request to the SSH client's port 5555.

2. The SSH client forwards the SAS client's request to the SSH server via an encrypted
tunnel.

3. The SSH server forwards the SAS client's request to the SAS server via port 4321.

Outbound, the SAS server's reply to the SAS client's request flows from the SAS server
to the SSH server. The SSH server forwards the reply to the SSH client, which passes it
to the SAS client.

SSH Tunneling: Process for Installation and Setup
SSH software must be installed on the client and server computers. Exact details about
installing SSH software at the client and the server depend on the particular brand and
version of the software that is used. See the installation instructions for your SSH
software.

16 Chapter 1 • Technologies for Encryption

http://www.openssh.com
http://www.ssh.com/
http://www-03.ibm.com/systems/z/os/zos/features/unix/ported/openssh/
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
http://support.sas.com/techsup/technote/ts800.pdf
http://support.sas.com/techsup/technote/ts800.pdf

The process for setting up an SSH tunnel consists of the following steps:

1. SSH tunneling software is installed on the client and server computers. Details about
tunnel configuration depend on the specific SSH product that is used.

• On UNIX, you use OpenSSH software to access your UNIX OpenSSH server.

• On Windows, you use PuTTY software to access your UNIX OpenSSH server.

• On z/OS, the IBM Ported Tools for z/OS Program Product must be installed for
OpenSSH support.

2. The SSH client is started as an agent between the SAS client and the SAS server.

3. The components of the tunnel are set up. The components are a listen port, a
destination computer, and a destination port. The SAS client accesses the listen port,
which is forwarded to the destination port on the destination computer. SSH
establishes an encrypted tunnel that indirectly connects the SAS client to the SAS
server.

For examples of setting up and using a tunnel, see “SSH Tunnel for SAS/CONNECT:
Example ” on page 75 and “SSH Tunnel for SAS/SHARE: Example ” on page 76.

Encryption Algorithms
The following encryption algorithms are provided with Base SAS:

SAS Proprietary for SAS data set encryption with passwords
is a cipher that uses parts of the passwords that are stored in the SAS data set as part
of the 32-bit rolling key encoding of the data. This encryption provides a medium
level of security. With the speed of today’s computers, it could be subjected to a
brute force attack on the 2,563,160,682,591 possible combinations of valid password
values, many of which must produce the same 32-bit key.

Note: This algorithm is not FIPS 140-2 compliant.

SAS Proprietary Encryption for communications
is a cipher that provides basic fixed encoding services under all operating
environments that are supported by SAS. The algorithm expands a single message to
approximately one-third by using 32-bit fixed encoding. This encoding is used for
passwords in configuration files, login passwords, internal account passwords, and so
on.

Note: This algorithm is not FIPS 140-2 compliant.

RC2
is a block cipher that encrypts data in blocks of 64 bits. A block cipher is an
encryption algorithm that divides a message into blocks and encrypts each block.
The RC2 key size ranges from 8 to 256 bits. SAS/SECURE uses a configurable key
size of 40 or 128 bits. (The NETENCRYPTKEYLEN system option is used to
configure the key length.) The RC2 algorithm expands a single message by a
maximum of 8 bytes. RC2 is an algorithm developed by RSA Data Security, Inc.

Note: This algorithm is not FIPS 140-2 compliant.

RC4
is a stream cipher. A stream cipher is an encryption algorithm that encrypts data one
byte at a time. The RC4 key size ranges from 8 to 2048 bits. SAS/SECURE uses a
configurable key size of 40 or 128 bits. (The NETENCRYPTKEYLEN system

Encryption Algorithms 17

option is used to configure the key length.) RC4 is an algorithm developed by RSA
Data Security, Inc.

Note: This algorithm is not FIPS 140-2 compliant.

DES (Data Encryption Standard)
is a block cipher that encrypts data in blocks of 64 bits by using a 56-bit key. The
algorithm expands a single message by a maximum of 8 bytes. DES was originally
developed by IBM but is now published as a U.S. Government Federal Information
Processing Standard (FIPS 46-3).

Note: This algorithm is not FIPS 140-2 compliant.

TripleDES
is a block cipher that encrypts data in blocks of 64 bits. TripleDES executes the DES
algorithm on a data block three times in succession by using a single 56-bit key. This
has the effect of encrypting the data by using a 168-bit key. TripleDES expands a
single message by a maximum of 8 bytes. TripleDES is defined in the American
National Standards Institute (ANSI) X9.52 specification.

Note: TripleDES is a FIPS 140-2 compliant encryption algorithm.

AES (Advanced Encryption Standard)
is a block cipher that encrypts data in blocks of 128 bits by using a 256-bit key. AES
expands a single message by a maximum of 16 bytes. Based on its DES predecessor,
AES has been adopted as the encryption standard by the U.S. Government. AES is
one of the most popular algorithms used in symmetric key cryptography. AES is
published as a U.S. Government Federal Information Processing Standard (FIPS
197).

Note: AES is a FIPS 140-2 compliant encryption algorithm.

RSA (Rivest-Shamir-Adleman)
RSA is a public-key (or assymetric-key) cryptography algorithm and is widely used
for secure data transmission. It is used for both encryption and authentication.
Encryption and decryption are carried out using two different keys, the public key
and the private key. A public-key system means the algorithm for encrypting a
message is publicly known but the algorithm to decrypt the message is only privately
known. In RSA, the public key is a large number that is a product of two primes, plus
a smaller number. The private key is a related number.

Note: RSA is a FIPS 140-2 compliant signing algorithm.

DSA (Digital Signature Algorithm)
The Digital Signature Algorithm (DSA) is a public-key (or assymetric-key)
cryptography algorithm. A digital signature is a mathematical scheme for
demonstrating the authenticity of a digital message or document. A DSA algorithm is
used to compute and verify digital signatures. Essentially, the DSA helps verify that
data has not been changed after it is signed, thus providing message integrity.

In 1994, the National Institute of Standards and Technology (NIST) issued a Federal
Information Processing Standard for digital signatures, known as the DSA or DSS.
This was adopted as FIPS 186 in 1993.

Note: DSA is a FIPS 140-2 compliant signing algorithm.

MD5 (Message Digest)
is a series of byte-oriented algorithms that produce a 128-bit hash value from an
arbitrary-length message. It is an algorithm used for hashing. It was developed by
Rivest.

Note: This algorithm is not FIPS 140-2 compliant.

18 Chapter 1 • Technologies for Encryption

SHA-1 (Secure Hash Algorithm)
produces a 160-bit (20-byte) hash value. A SHA-1 hash value is typically rendered
as a hexadecimal number, 40 digits long. This algorithm was developed by the U.S.
National Security Agency (NSA) and published in 2001 by the NIST as a U.S.
Federal Information Processing Standard (FIPS) PUB 180-1.

Note: SHA-1 is a FIPS 140-2 compliant hashing algorithm.

SHA-256 (Secure Hash Algorithm)
is essentially a 256-bit block cipher algorithm that encrypts the intermediate hash
value using the message block as key. SHA stands for Secure Hash Algorithm. This
algorithm was developed by the U.S. National Security Agency (NSA) and published
in 2001 by the NIST as a U.S. Federal Information Processing Standard (FIPS) PUB
180-4.

Note: SHA-256 is a FIPS 140-2 compliant hashing algorithm.

Comparison of Encryption Technologies
The following table compares the features of encryption technologies:

Table 1.1 Summary of SAS Proprietary, SAS/SECURE, TLS, and SSH Features

Features
SAS
Proprietary SAS/SECURE TLS SSH

Encryption and
authentication

Encryption only Encryption only Encryption
and
authentication

Encryption
only

Encryption level Medium High High High

Algorithms
supported

SAS Proprietary
fixed encoding

SAS Proprietary
32-bit rolling key
encoding

RC2, RC4,
DES,
TripleDES,
AES. Default is
SAS Proprietary

RC2, RC4,
DES,
TripleDES,
AES, and
others

Product
dependent

Installation required No (part of Base
SAS)

No (delivered
with Base SAS)

Delivered
with Base
SAS. You can
replace this
version.

Yes

Operating
environments
supported

UNIX

Windows

z/OS

UNIX

Windows

z/OS

UNIX

Windows

z/OS

UNIX

Windows

z/OS

SAS version support 8 and later 8 and later 9 and later 8.2 and later

Comparison of Encryption Technologies 19

Encryption: Implementation
The implementation of the installed encryption technology depends on the environment
that you work in. If you work in a SAS enterprise intelligence infrastructure, encryption
might be transparent to you because it has already been configured into your site's
overall security plan. After the encryption technology has been installed, the site system
administrator configures the encryption method (level of encryption) to be used in all
client/server data exchanges. All enterprise activity uses the chosen level of encryption,
by default.

If you work in a SAS session on a client computer that exchanges data with a SAS
server, specify SAS system options that implement encryption for the duration of the
SAS session. If you connect a SAS/CONNECT client to a spawner, specify encryption
options in the spawner start-up command. For details about SAS system options, see
Chapter 2, “SAS System Options for Encryption,” on page 23. For examples, see
Chapter 5, “Encryption Technologies: Examples,” on page 63.

Encryption: SAS Logging Facility
Security-related events are now logged as part of the system-wide logging facility. If the
LOGCONFIGLOC= system option is specified when SAS starts, logging is performed
by the SAS logging facility. The following table lists security-related loggers.

Note: The logging of the SAS Deployment Manager add and remove certificate tasks
for managing of the Trusted CA Bundle is located at <SASHOME>/InstallMisc/
InstallLogs/certframe*.

Table 1.2 Selected Security-Related Loggers

Logger SAS/SECURE Information

App.tk.eam Logs security information.

App.tk.eam.ssl Logs TLS encryption information including the
OpenSSL protocol and cipher suites being used.

App.tk.eam.sas Logs SAS Proprietary encryption information.

App.tk.eam.rsa Logs RC2, RC4, DES, DES3, and AES encryption
information.

App.tk.eam.rsa.pbe Enables or disables the password-based encryption
processing that creates a key.

App.tk.eam.rsa.capi Logs RC2, RC4, DES, and DES3 encryption
information for Windows C API.

App.tk.eam.rsa.cc Logs RC2, RC4, DES, DES3, and AES encryption
information for RSA BSAFE® Crypto-C.

20 Chapter 1 • Technologies for Encryption

Logger SAS/SECURE Information

App.tk.eam.rsa.ccme Logs AES encryption information for RSA BSAFE®
Crypto-C ME. This log is for FIPS.

App.tk.eam.rsa.icsf Logs AES encryption information for IBM Integrated
Cryptographic Service Facility (ICSF). This log is for
FIPS.

Note: On z/OS, if the SAS Logging Facility loggers App.tk.eam.ssl or App.tk.eam.rsa
are in DEBUG or TRACE levels, SAS writes the debug file to the location specified
by the TKELBOX_CRYPTO_DEBUG_LOG variable in the TKMVSENV file. If
the specified filename is not found in TKMVSENV, then SAS saves the file in
either /tmp/sas.rsabxdbg.<process_id>.log for RC2, RC4, DES, and
TRIPLEDES, or in /tmp/sas.sslbxdbg<process_id>.log for TLS.

See Also
For information, see “Overview of the SAS Logging Facility” in SAS Logging:
Configuration and Programming Reference

Encrypting ODS Generated PDF Files
You can use ODS to generate PDF output. When these PDF files are not password
protected, any user can use Acrobat to view and edit the PDF files. You can encrypt and
password-protect your PDF output files by specifying the PDFSECURITY= system
option. Valid security levels for the PDFSECURITY= option are NONE or HIGH. SAS
encrypts PDF documents using a 128-bit encryption algorithm. With
PDFSECURITY=HIGH, at least one password must be set using the PDFPASSWORD=
system option. A password is required to open a PDF file that has been generated with
ODS.

For more information, see “PDF Security” in SAS Output Delivery System: User’s Guide
and “Securing ODS-Generated PDF Files” in SAS Output Delivery System: User’s
Guide.

The following table lists the PDF system options that are available to restrict or allow
users' ability to access, assemble, copy, or modify ODS PDF files. Other SAS system
options control whether the user can fill in forms and set the print resolution. These
system options are documented in SAS System Options: Reference.

Table 1.3 PDF System Options

Task System Option

Specifies whether text and graphics from PDF
documents can be read by screen readers for the
visually impaired

PDFACCESS | NOPDFACCESS

Controls whether PDF documents can be
assembled

PDFASSEMBLY | NOPDFASSEMBLY

Encrypting ODS Generated PDF Files 21

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=logug&pubcode=67485&id=n09ixzwi752s0cn1m3tvrrhu84ry
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=logug&pubcode=67485&id=n09ixzwi752s0cn1m3tvrrhu84ry
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=odsug&pubcode=69832&id=p0ed1ivbk3a2kln1p6s4qxqxbr3t&anchor=n12o5mh6tuvs0fn0zycuh0u91cwn
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=odsug&pubcode=69832&id=n0mc4eolqoned0n16oy88mpj0e4g&anchor=n1ihdnahkqgthkn1g0r2n4zryel2
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=odsug&pubcode=69832&id=n0mc4eolqoned0n16oy88mpj0e4g&anchor=n1ihdnahkqgthkn1g0r2n4zryel2
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lesysoptsref&pubcode=69799&id=titlepage
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lesysoptsref&pubcode=69799&id=n17qb1ilnsg9pon1pn07hhlxu2p9
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lesysoptsref&pubcode=69799&id=p0asa0r6gw2gkwn15anx2nlv4zu5

Task System Option

Controls whether PDF document comments can
be modified

PDFCOMMENT | NOPDFCOMMENT

Controls whether the contents of a PDF
document can be changed

PDFCONTENT | NOPDFCONTENT

Controls whether text and graphics from a PDF
document can be copied

PDFCOPY | NOPDFCOPY

Controls whether PDF forms can be filled in PDFFILLIN | NOPDFFILLIN

Specifies the password to use to open a PDF
document and the password used by a PDF
document owner

PDFPASSWORD =

Controls the resolution used to print the PDF
document

PDFPRINT=

Controls the printing permissions for PDF
documents

PDFSECURITY=

Note: The SAS/SECURE software and TLS libraries are included in the SAS
installation software only for countries that allow the importation of encryption
software.

22 Chapter 1 • Technologies for Encryption

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lesysoptsref&pubcode=69799&id=p0fbeem2dn87p5n16xmxuk4bw2vs
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lesysoptsref&pubcode=69799&id=n1fwj90qdikbskn1go4oj8rssjuh
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lesysoptsref&pubcode=69799&id=p01hbseekw1dgan1rcc6bafkkxjm
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lesysoptsref&pubcode=69799&id=n0m0x3yhajru0un1v8k21ggsq14n
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lesysoptsref&pubcode=69799&id=n1e4a3l9txg8dwn1v2cnulv4yi6d
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lesysoptsref&pubcode=69799&id=p00xe4e4ot19xun1qxb2ilylx6gz
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lesysoptsref&pubcode=69799&id=p1i0j2ehq4sti6n1copl4x0y97ye

Chapter 2

SAS System Options for
Encryption

Dictionary . 23
ENCRYPTFIPS System Option . 23
NETENCRYPT System Option . 26
NETENCRYPTALGORITHM System Option . 26
NETENCRYPTKEYLEN= System Option . 29
SSLCALISTLOC= System Option . 30
SSLCERTISS= System Option . 32
SSLCERTLOC= System Option . 32
SSLCERTSERIAL= System Option . 33
SSLCERTSUBJ= System Option . 34
SSLCLIENTAUTH System Option . 35
SSLCRLCHECK System Option . 36
SSLCRLLOC= System Option . 36
SSLPKCS12LOC= System Option . 37
SSLPKCS12PASS= System Option . 38
SSLPVTKEYLOC= System Option . 39
SSLPVTKEYPASS= System Option . 40
SSLREQCERT= System Option . 40

Dictionary

ENCRYPTFIPS System Option
Specifies that the SAS/SECURE and TLS security services use FIPS 140-2 validated algorithms.

Client: Optional

Server: Optional

Valid in: SAS invocation, configuration file, SAS/CONNECT spawner command line

Categories: Communications: Networking and Encryption
System Administration: Security

PROC OPTIONS
GROUP=

Communications
SECURITY

Default: NOENCRYPTFIPS

Restriction: The ENCRYPTFIPS option is not supported on z/OS for TLS.

23

Operating
environment:

UNIX, Windows, z/OS

See: NETENCRYPTALGORITHM

Syntax
ENCRYPTFIPS

Syntax Description
ENCRYPTFIPS

specifies that SAS/SECURE and TLS services are using FIPS 140-2 compliant
encryption algorithms.

Note: Turning on the ENCRYPTFIPS option is not generally recommended for
TLS, unless absolutely required by your sites policy.

When this option is specified, an INFO message is written at server start-up to
indicate that FIPS encryption is enabled.

Note: SAS Internal Passwords are stored using the SHA-256 hashing algorithm
when this option is specified.

The ENCRYPTFIPS option is provided by SAS primarily as a mechanism to help
ensure that your SAS system is configured to leverage the encryption algorithms and
cipher suites specified by the FIPS 140-2 standard and that libraries are validated for
compliance when loaded. With this option enabled, SAS verifies that all of your SAS
servers have been configured to use the FIPS approved Advanced Encryption
Standard (AES) libraries or the SSL protocol. ENCRYPTFIPS makes sure IOM uses
AES and that SAS/CONNECT uses AES or SSL.

However, turning off the SAS system option ENCRYPTFIPS does not impact the
ability of SAS to use FIPS approved encryption algorithms available with
SAS/SECURE, such as the Advanced Encryption Standard (AES), nor does it
prevent SAS from leveraging strong FIPS approved cipher suites when acting as an
SSL client.

CAUTION:
Use ENCRYPTFIPS with caution. Turning on the ENCRYPTFIPS option is not
generally recommended for TLS, unless absolutely required by your sites policy.
If the ENCRYPTFIPS option is turned on, the SAS server based TLS clients will
attempt to load a special subset of OpenSSL libraries, contained as part of the
OpenSSL FIPS Object Module. Because these libraries are not present by
default, you must follow the process described in “TLS on UNIX: Building FIPS
140-2 Capable OpenSSL ” on page 103.

Restriction When the ENCRYPTFIPS option is specified, the
NETENCRYPTALGORITHM system option must be set to AES or
SSL. If a different algorithm is specified, an error message is output.

Notes When configuring the ENCRYPTFIPS option on a Microsoft Windows
2003 server, refer to “SAS/SECURE FIPS 140-2 Compliant
Installation and Configuration” on page 11 for instructions on resolving
the environment variable issue.

24 Chapter 2 • SAS System Options for Encryption

The ENCRYPTFIPS option is configured only at start-up. However,
you can see that the option is configured when you view the OPTIONS
statement or the SAS System Options window.

NOENCRYPTFIPS
specifies that the SAS/SECURE and TLS security services are not limited to FIPS
140-2 verified algorithms.

Details
The ENCRYPTFIPS option limits the services provided by SAS/SECURE and TLS to
those services that are part of the FIPS 140-2 specification.

Note: Turning on the ENCRYPTFIPS option is not generally recommended for TLS,
unless absolutely required by your sites policy.

Read more about Security Requirements for Cryptographic Modules at FEDERAL
INFORMATION PROCESSING STANDARDS PUBLICATION. Refer to “FIPS 140-2
Standards Compliance” on page 5 for an overview of FIPS 140-2 standards.

There is an interaction between the ENCRYPTFIPS option and the
NETENCRYPTALGORITHM option. Only the AES algorithm or the SSL algorithm is
supported for FIPS 140-2 encryption. An error is logged when an unsupported algorithm
is specified.

ERROR: When SAS option ENCRYPTFIPS is ON the option value for SAS option
ERROR: NETENCRYPTALGORITHM must be a single value of AES or SSL.
ERROR: Invalid option value.
NOTE: Unable to initialize the options subsystem.

When the ENCRYPTFIPS option is specified, a message is logged informing the user
that FIPS 140-2 encryption is enabled. This log can be viewed in the log for SAS
window at the DEBUG and or TRACE levels. Refer to “The SAS Log” in SAS
Language Reference: Concepts and “Administering Logging for SAS/CONNECT” in
SAS/CONNECT User’s Guide.

Examples

Example 1
Here is an example of configuring the ENCRYPTFIPS option on UNIX:

-encryptfips -netencryptalgorithm aes;

Example 2
Here is an example of configuring the ENCRYPTFIPS option on z/OS:

encryptfips netecryptalgorithm="aes"

Example 3
Here is an example of configuring the ENCRYPTFIPS option on Windows:

-encryptfips -netencralg "AES"

See Also
• “NETENCRYPTALGORITHM System Option” on page 26

• “FIPS 140-2 Standards Compliance” on page 5

ENCRYPTFIPS System Option 25

http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n03qoiyzzrrl4in1pfvbqgj7jan8
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=n03qoiyzzrrl4in1pfvbqgj7jan8
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=connref&pubcode=69581&id=p1bkl4hgx3tidvn1vp3swhi3unvr
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=connref&pubcode=69581&id=p1bkl4hgx3tidvn1vp3swhi3unvr

• “Security Options” in SAS/CONNECT User’s Guide

NETENCRYPT System Option
Specifies whether client/server data transfers are encrypted.

Client: Optional

Server: Optional

Valid in: Configuration file, OPTIONS statement, SAS System Options window, SAS
invocation, SAS/CONNECT spawner command line

Category: Communications: Networking and Encryption

PROC OPTIONS
GROUP=

Communications

Default: NONETENCRYPT

Operating
environment:

UNIX, Windows, z/OS

See: NETENCRYPTALGORITHM

Example: “SAS/SECURE for SAS/CONNECT: Example ” on page 64

Syntax
NETENCRYPT | NONETENCRYPT

Syntax Description
NETENCRYPT

specifies that encryption is required.

NONETENCRYPT
specifies that encryption is not required, but is optional.

Details
The default for this option specifies that encryption is used if the
NETENCRYPTALGORITHM option is set and if both the client and the server are
capable of encryption. If encryption algorithms are specified but either the client or the
server is incapable of encryption, then encryption is not performed.

Encryption might not be supported at the client or at the server in these situations:

• You are using a release of SAS (prior to SAS 8) that does not support encryption.

• Your site (the client or the server) does not have a security software product installed.

• You specified encryption algorithms that are incompatible in SAS sessions on the
client and the server.

NETENCRYPTALGORITHM System Option
Specifies the algorithm or algorithms to be used for encrypted client/server data transfers.

26 Chapter 2 • SAS System Options for Encryption

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=connref&pubcode=69581&id=p0qxop2ou79cc3n1mo57cu3lrc1n&anchor=p10bvhn20lplarn1phpnfp2714b7

Client: Optional

Server: Required

Valid in: Configuration file, OPTIONS statement, SAS System Options window, SAS
invocation, SAS/CONNECT spawner command line

Category: Communications: Networking and Encryption

PROC OPTIONS
GROUP=

Communications

Alias: NETENCRALG

Operating
environment:

UNIX, Windows, z/OS

See: “NETENCRYPT System Option” on page 26, “ENCRYPTFIPS System Option” on
page 23

Examples: “TLS for a SAS/CONNECT Windows Spawner: Example ” on page 67
“TLS on a z/OS Spawner on a SAS/CONNECT Server: Example” on page 69
“TLS for a SAS/CONNECT UNIX Spawner: Example ” on page 65

Syntax
NETENCRYPTALGORITHM algorithm | (“algorithm-1”... “algorithm-n”)

Syntax Description
algorithm | (“algorithm-1”... “algorithm-n”)

specifies the algorithm or algorithms that can be used for encrypting data that is
transferred between a client and a server across a network. When you specify two or
more encryption algorithms, use a space or a comma to separate them, and enclose
the algorithms in parentheses.

The following algorithms can be used:

• RC2

• RC4

• DES

• TripleDES

• SAS Proprietary

• SSL

• AES

Restrictions If you do not have SAS/SECURE, an error is generated if algorithm
AES is specified.

The SSL option is not applicable to the Integrated Object Model
(IOM) servers.

When ENCRYPTFIPS is specified, only the SSL algorithm or the
AES algorithm can be specified. Otherwise, an error message is
output.

NETENCRYPTALGORITHM System Option 27

Details
The NETENCRYPTALGORITHM option must be specified in the server session.

Use this option to specify one or more encryption algorithms that you want to use to
protect the data that is transferred across the network. If more than one algorithm is
specified, the client session negotiates the first specified algorithm with the server
session. If the client session does not support that algorithm, the second algorithm is
negotiated, and so on.

If either the client session or the server session specifies the NETENCRYPT option
(which makes encryption mandatory) but a common encryption algorithm cannot be
negotiated, the client cannot connect to the server.

If the NETENCRYPTALGORITHM option is specified in the server session only, then
the server's values are used to negotiate the algorithm selection. If the client session
supports only one of multiple algorithms that are specified in the server session, the
client can connect to the server.

There is an interaction between either NETENCRYPT or NONETENCRYPT and the
NETENCRYPTALGORITHM option.

Table 2.1 Client/Server Connection Outcomes

Server Settings Client Settings Connection Outcome

NONETENCRYPT

NETENCRALG=alg

No settings If the client is capable of
encryption, the client/server
connection is encrypted.
Otherwise, the connection is
not encrypted.

NETENCRYPT

NETENCRALG=alg

No settings If the client is capable of
encryption, the client/server
connection is encrypted.
Otherwise, the client/server
connection fails.

No settings NONETENCRYPT

NETENCRALG=alg

A client/server connection is
not encrypted.

No settings NETENCRYPT

NETENCRALG=alg

A client/server connection
fails.

NETENCRYPT or
NONETENCRYPT

NETENCRALG=alg-1

NETENCRALG=alg-2 Regardless of whether
NETENCRYPT or
NONETENCRYPT is
specified, a client/server
connection fails.

Example
In the following example, the client and the server specify different values for the
NETENCRYPTALGORITHM option.

The client specifies two algorithms in the following OPTIONS statement:

28 Chapter 2 • SAS System Options for Encryption

options netencryptalgorithm=(rc2 tripledes);

The server specifies three algorithms and requires encryption in the following OPTIONS
statement:

options netencrypt netencryptalgorithm=(ssl des tripledes);

The client and the server negotiate an algorithm that they share in common, TripleDES,
for encrypting data transfers.

NETENCRYPTKEYLEN= System Option
Specifies the key length that is used by the encryption algorithm for encrypted client/server data transfers.

Client: Optional

Server: Optional

Valid in: Configuration file, OPTIONS statement, SAS System Options window, SAS
invocation, SAS/CONNECT spawner command line

Category: Communications: Networking and Encryption

PROC OPTIONS
GROUP=

Communications

Alias: NETENCRKEY=

Default: 0

Operating
environment:

UNIX, Windows, z/OS

Tip: When additional encryption options are specified on the spawner command line, the
options must be included in the -SASCMD value. The spawner does not
automatically pass the encryption values. For detailed information, see SASCMD for
your operating environment in SAS/CONNECT User’s Guide.

Syntax
NETENCRYPTKEYLEN= 0 | 40 | 128

Syntax Description
0

specifies that the maximum key length that is supported at both the client and the
server is used.

40
specifies a key length of 40 bits for the RC2 and RC4 algorithms.

128
specifies a key length of 128 bits for the RC2 and RC4 algorithms. If either the client
or the server does not support 128-bit encryption, the client cannot connect to the
server.

Details
The NETENCRYPTKEYLEN= option supports only the RC2 and RC4 algorithms. The
SAS Proprietary, DES, TripleDES, SSL, and AES algorithms are not supported.

NETENCRYPTKEYLEN= System Option 29

By default, if you try to connect a computer that is capable of only a 40-bit key length to
a computer that is capable of both a 40-bit and a 128-bit key length, the connection is
made using the lesser key length. If both computers are capable of 128-bit key lengths, a
128-bit key length is used.

Using longer keys consumes more CPU cycles. If you do not need a high level of
encryption, set NETENCRYPTKEYLEN=40 to decrease CPU usage.

SSLCALISTLOC= System Option
Specifies the location of the public certificate(s) for trusted certificate authorities (CA).

Client: Required

Server: Optional

Valid in: Configuration file, OPTIONS statement, SAS System Options window, SAS
invocation, SAS/CONNECT spawner command line

Category: Communications: Networking and Encryption

PROC OPTIONS
GROUP=

Communications

Operating
environment:

UNIX, z/OS

Notes: In the third maintenance release of SAS 9.4, the default path set for the
SSLCALISTLOC= system option on UNIX and z/OS foundation servers is
<SASHome>/SASSecurityCertificateFramework/1.1/cacerts/ trustedcerts.pem. The
trustedcerts.pem file contains the list of trusted CA Certificates, the Mozilla Bundle
provided by SAS at installation.
In SAS 9.4, the first maintenance release of SAS 9.4, and the second maintenance
release of SAS 9.4, the default path set for the SSLCALISTLOC= system option on
UNIX and z/OS foundation servers is SAS-configuration-directory/Levn/certs/
cacert.pem. The cacert.pem file contains the list of trusted CA Certificates.

Tip: When additional encryption options are specified on the spawner command line, the
options must be included in the -SASCMD value. The spawner does not
automatically pass the encryption values. For detailed information, see SASCMD for
your operating environment in SAS/CONNECT User’s Guide.

See: “Certificate Locations” on page 86.

Examples: “TLS for a SAS/CONNECT UNIX Spawner: Example ” on page 65
“TLS on a z/OS Spawner on a SAS/CONNECT Server: Example” on page 69

Syntax
SSLCALISTLOC=“file–path”

Syntax Description
“file-path”

specifies the location of a single file that contains the public certificate(s) for all of
the trusted certificate authorities (CA) in the trust chain.

30 Chapter 2 • SAS System Options for Encryption

Details
The SSLCALISTLOC= option specifies the location of a single file that contains the
public certificate(s) for all of the trusted certificate authorities (CA) in the trust chain.
The CA file must be PEM-encoded (base64). For z/OS, the file must be formatted as
ASCII and must reside in a UNIX file system. For more information, see “Certificate
File Formats” on page 80.

From SAS 9.4 to the second maintenance release of SAS 9.4, the default setting for the
SSLCALISTLOC= system option on UNIX and z/OS foundation servers is SAS-
configuration-directory/Levn/certs/cacert.pem. The cacert.pem file
contains the list of trusted CA Certificates.

In the third maintenance release of SAS 9.4, the default path set for the
SSLCALISTLOC= system option on UNIX foundation servers is <SASRoot>/
SASHome/SASSecurityCertificateFramework/1.1/cacerts/
trustedcerts.pem. By default, the trustedcerts.pem file contains a managed set of
trusted root certificates provided by Mozilla. If additional CA certificates are required,
they can be added using the SAS Deployment Manager (SAS Deployment Manager).

CAUTION:
Do not change the SSLCALISTLOC= system option . Starting in the third
maintenance release of SAS 9.4, the SSLCALISTLOC= system option should not be
overridden or changed unless directed by technical support or PSD. In addition, the
trustedcerts.pem file should not be altered by any means other than by using the new
SAS Deployment Manager tasks for adding and removing certificates to Trusted CA
Bundle. If the file is changed outside of using these tasks, the provided Trusted CA
Bundle might not be supported and maintenance of those changes is not guaranteed.
See “Manage Certificates in the Trusted CA Bundle Using the SAS Deployment
Manager” on page 96.

For the specifics and an example of how to create a trust list on z/OS, refer to “Step 5.
Create a CA Trust List Using OpenSSL” on page 122. For information about creating a
trust list on UNIX, refer to “Step 5. Create a Certificate Chain in PEM Format Using
OpenSSL” on page 93 and “Manage Certificates in the Trusted CA Bundle Using the
SAS Deployment Manager” on page 96.

Note: Environment variables SSLCACERTDIR and SSL_CERT_DIR point to a
directory that contains all of the public certificate file(s) of all CA(s) in the trust
chain. One file exists for each CA in the trust chain. These can be used instead of
using the SSLCALISTLOC= system option.Refer to “SSLCACERTDIR
Environment Variable” on page 46 and “SSL_CERT_DIR Environment Variable”
on page 48.

For Foundation Servers such as workspace servers and stored process servers (that is,
servers in a deployment), if certificates are used, SAS searches for certificates in a
specific order. SAS searches for certificates in the following order:

1. SAS looks for SAS system option SSLCALISTLOC= to find the file
trustedcerts.pem.

2. SAS looks for the SSLCALISTLOC environment variable to find the file
trustedcerts.pem.

3. If trustedcerts.pem exists and SSL_CERT_DIR and SSLCACERTDIR environment
variables are set, SAS checks trustedcerts.pem first before it searches these
directories.

4. If trustedcerts.pem does not exist, but the certificates are in the directory defined by
SSL_CERT_DIR or SSLCACERTDIR, then SAS ignores SSLCALISTLOC=.

SSLCALISTLOC= System Option 31

5. If trustedcerts.pem does not exist, and the SSL_CERT_DIR and SSLCACERTDIR
environment variables are not set, SAS reports an error.

Note: A trusted CA certificate is required at the client in order to validate a server's
digital certificate. The trusted CA certificate must be from the CA that signed the
server certificate. The SSLCALISTLOC= option is required at the server only if the
SSLCLIENTAUTH option is also specified at the server.

SSLCERTISS= System Option
Specifies the name of the issuer of the digital certificate that TLS should use.

Client: Optional

Server: Optional

Valid in: Configuration file, OPTIONS statement, SAS System Options window, SAS
invocation, SAS/CONNECT spawner command line

Category: Communications: Networking and Encryption

PROC OPTIONS
GROUP=

Communications

Operating
environment:

Windows

Tip: When additional encryption options are specified on the spawner command line, the
options must be included in the -SASCMD value. The spawner does not
automatically pass the encryption values. For detailed information, see SASCMD for
your operating environment in SAS/CONNECT User’s Guide.

Example: “TLS for SAS/SHARE on Windows: Examples ” on page 73

Syntax
SSLCERTISS=“issuer-of-digital-certificate”

Syntax Description
“issuer-of-digital-certificate”

specifies the name of the issuer of the digital certificate that should be used by TLS.

Details
The SSLCERTISS= option is used with the SSLCERTSERIAL= option to uniquely
identify a digital certificate from the Microsoft Certificate Store.

Note: You can also use the SSLCERTSUBJ= option to identify a digital certificate
instead of using the SSLCERTISS= and SSLCERTSERIAL= options.

SSLCERTLOC= System Option
Specifies the location of the digital certificate for the machine's public key. This is used for authentication.

Client: Optional

32 Chapter 2 • SAS System Options for Encryption

Server: Required

Valid in: Configuration file, OPTIONS statement, SAS System Options window, SAS
invocation, SAS/CONNECT spawner command line

Category: Communications: Networking and Encryption

PROC OPTIONS
GROUP=

Communications

Operating
environment:

UNIX, z/OS

Tip: When additional encryption options are specified on the spawner command line, the
options must be included in the -SASCMD value. The spawner does not
automatically pass the encryption values. For detailed information, see SASCMD for
your operating environment in SAS/CONNECT User’s Guide.

Examples: “TLS for a SAS/CONNECT UNIX Spawner: Example ” on page 65
“TLS on a z/OS Spawner on a SAS/CONNECT Server: Example” on page 69
“TLS for SAS/SHARE on UNIX: Example ” on page 71

Syntax
SSLCERTLOC=“file-path”

Syntax Description
“file-path”

specifies the location of a file that contains a digital certificate for the machine's
public key. This is used by servers to send to clients for authentication.

Details
The SSLCERTLOC= option is required for a server. It is required at the client only if the
SSLCLIENTAUTH option is specified at the server.

If you want the spawner to locate the appropriate digital certificate, you must specify
both the -SSLCERTLOC and -SSLPVTKEYLOC options in the -SASCMD script.

The certificate must be PEM-encoded (base64). Under z/OS, the file must be formatted
as ASCII and must reside in a UNIX file system. For more information, see “Certificate
File Formats” on page 80.

SSLCERTSERIAL= System Option
Specifies the serial number of the digital certificate that TLS should use.

Client: Optional

Server: Optional

Valid in: Configuration file, OPTIONS statement, SAS System Options window, SAS
invocation, SAS/CONNECT spawner command line

Category: Communications: Networking and Encryption

PROC OPTIONS
GROUP=

Communications

SSLCERTSERIAL= System Option 33

Operating
environment:

Windows

Tip: When additional encryption options are specified on the spawner command line, the
options must be included in the -SASCMD value. The spawner does not
automatically pass the encryption values. For detailed information, see SASCMD for
your operating environment in SAS/CONNECT User’s Guide.

Example: “TLS for SAS/SHARE on Windows: Examples ” on page 73

Syntax
SSLCERTSERIAL=“serial-number”

Syntax Description
“serial-number”

specifies the serial number of the digital certificate that should be used by TLS.

Details
The SSLCERTSERIAL= option is used with the SSLCERTISS= option to uniquely
identify a digital certificate from the Microsoft Certificate Store.

Note: You can also use the SSLCERTSUBJ= option to identify a digital certificate
instead of using the SSLCERTISS= and SSLCERTSERIAL= options.

SSLCERTSUBJ= System Option
Specifies the subject name of the digital certificate that TLS should use.

Client: Optional

Server: Optional

Valid in: Configuration file, OPTIONS statement, SAS System Options window, SAS
invocation, SAS/CONNECT spawner command line

Category: Communications: Networking and Encryption

PROC OPTIONS
GROUP=

Communications

Operating
environment:

Windows

Tip: When additional encryption options are specified on the spawner command line, the
options must be included in the -SASCMD value. The spawner does not
automatically pass the encryption values. For detailed information, see SASCMD for
your operating environment in SAS/CONNECT User’s Guide.

Example: “TLS for a SAS/CONNECT Windows Spawner: Example ” on page 67

Syntax
SSLCERTSUBJ=“subject-name”

34 Chapter 2 • SAS System Options for Encryption

Syntax Description
“subject-name”

specifies the subject name of the digital certificate that TLS should use.

Details
The SSLCERTSUBJ= option is used to search for a digital certificate from the Microsoft
Certificate Store.

Note: You can also use the SSLCERTISS= and SSLCERTSERIAL= options instead of
the SSLCERTSUBJ= option to identify a digital certificate.

SSLCLIENTAUTH System Option
Specifies whether a server should perform client authentication.

Server: Optional

Valid in: Configuration file, OPTIONS statement, SAS System Options window, SAS
invocation, SAS/CONNECT spawner command line

Category: Communications: Networking and Encryption

PROC OPTIONS
GROUP=

Communications

Operating
environment:

UNIX, Windows, z/OS

Tip: When additional encryption options are specified on the spawner command line, the
options must be included in the -SASCMD value. The spawner does not
automatically pass the encryption values. For detailed information, see SASCMD for
your operating environment in SAS/CONNECT User’s Guide.

Syntax
SSLCLIENTAUTH | NOSSLCLIENTAUTH

Syntax Description
SSLCLIENTAUTH

specifies that the server should perform client authentication.

T I P If you enable client authentication, a certificate for each client is needed.

NOSSLCLIENTAUTH
specifies that the server should not perform client authentication.

Default NOSSLCLIENTAUTH is the default.

Details
Server authentication is always performed, but the SSLCLIENTAUTH option enables a
user to control client authentication. This option is valid only when used on a server.

SSLCLIENTAUTH System Option 35

SSLCRLCHECK System Option
Specifies whether a Certificate Revocation List (CRL) is checked when a digital certificate is validated.

Client: Optional

Server: Optional

Valid in: Configuration file, OPTIONS statement, SAS System Options window, SAS
invocation, SAS/CONNECT spawner command line

Category: Communications: Networking and Encryption

PROC OPTIONS
GROUP=

Communications

Operating
environment:

UNIX, Windows, z/OS

Tip: When additional encryption options are specified on the spawner command line, the
options must be included in the -SASCMD value. The spawner does not
automatically pass the encryption values. For detailed information, see SASCMD for
your operating environment in SAS/CONNECT User’s Guide.

Syntax
SSLCRLCHECK | NOSSLCRLCHECK

Syntax Description
SSLCRLCHECK

specifies that CRLs are checked when digital certificates are validated.

NOSSLCRLCHECK
specifies that CRLs are not checked when digital certificates are validated.

Details
A Certificate Revocation List (CRL) is published by a Certificate Authority (CA) and
contains a list of revoked digital certificates. The list contains only the revoked digital
certificates that were issued by a specific CA.

The SSLCRLCHECK option is required at the server only if the SSLCLIENTAUTH
option is also specified at the server. Because clients check server digital certificates, this
option is relevant for the client.

SSLCRLLOC= System Option
Specifies the location of a Certificate Revocation List (CRL).

Client: Optional

Server: Optional

Valid in: Configuration file, OPTIONS statement, SAS System Options window, SAS
configuration, SAS/CONNECT spawner command line

Category: Communications: Networking and Encryption

36 Chapter 2 • SAS System Options for Encryption

PROC OPTIONS
GROUP=

Communications

Operating
environment:

UNIX, z/OS

Tip: When additional encryption options are specified on the spawner command line, the
options must be included in the -SASCMD value. The spawner does not
automatically pass the encryption values. For detailed information, see SASCMD for
your operating environment in SAS/CONNECT User’s Guide.

Syntax
SSLCRLLOC=“file-path”

Syntax Description
“file-path”

specifies the location of a file that contains a Certificate Revocation List (CRL).

Details
The SSLCRLLOC= option is required only when the SSLCRLCHECK option is
specified.

SSLPKCS12LOC= System Option
Specifies the location of the PKCS #12 encoding package file.

Client: Optional

Server: Optional

Valid in: Configuration file, OPTIONS statement, SAS System Options window, SAS
invocation, SAS/CONNECT spawner command line

Category: Communications: Networking and Encryption

PROC OPTIONS
GROUP=

Communications

Operating
environment:

UNIX, z/OS

Tip: When additional encryption options are specified on the spawner command line, the
options must be included in the -SASCMD value. The spawner does not
automatically pass the encryption values. For detailed information, see SASCMD for
your operating environment in SAS/CONNECT User’s Guide.

Examples: “TLS on a z/OS Spawner on a SAS/CONNECT Server: Example” on page 69
“TLS for SAS/SHARE on z/OS: Example ” on page 74

Syntax
SSLPKCS12LOC=“file-path”

SSLPKCS12LOC= System Option 37

Syntax Description
“file-path”

specifies the location of the PKCS #12 DER encoding package file that contains the
certificate and the private key.

z/OS specifics If you run in a z/OS operating environment, this file must be in the
UNIX file system. The OpenSSL library cannot read MVS data
sets.

Details
If the SSLPKCS12LOC= option is specified, the PKCS #12 DER encoding package
must contain both the certificate and private key. The SSLCERTLOC= and
SSLPVTKEYLOC= options are ignored.

You must specify both the -SSLPKCS12LOC option and the -SSLPKCS12PASS option
in the -SASCMD script if you want the spawner to locate the appropriate digital
certificate.

SSLPKCS12PASS= System Option
Specifies the password that TLS requires for decrypting the private key.

Client: Optional

Server: Optional

Valid in: Configuration file, OPTIONS statement, SAS System Options window, SAS
invocation, SAS/CONNECT spawner command line

Category: Communications: Networking and Encryption

PROC OPTIONS
GROUP=

Communications

Operating
environment:

UNIX, z/OS

Tip: When additional encryption options are specified on the spawner command line, the
options must be included in the -SASCMD value. The spawner does not
automatically pass the encryption values. For detailed information, see SASCMD for
your operating environment in SAS/CONNECT User’s Guide.

Examples: “TLS on a z/OS Spawner on a SAS/CONNECT Server: Example” on page 69
“TLS for SAS/SHARE on z/OS: Example ” on page 74

Syntax
SSLPKCS12PASS=password

Syntax Description
password

specifies the password that TLS requires in order to decrypt the PKCS #12 DER
encoding package file. The PKCS #12 DER encoding package is stored in the file
that is specified by using the SSLPKCS12LOC= option.

38 Chapter 2 • SAS System Options for Encryption

Details
The SSLPKCS12PASS= option is required only when the PKCS #12 DER encoding
package is encrypted. The z/OS RACDCERT EXPORT command always encrypts
package files when exporting the certificate and the private key.

You must specify both the -SSLPKCS12LOC option and the -SSLPKCS12PASS option
in the -SASCMD script if you want the spawner to locate the appropriate digital
certificate.

SSLPVTKEYLOC= System Option
Specifies the location of the private key that corresponds to the digital certificate.

Client: Optional

Server: Optional

Valid in: Configuration file, OPTIONS statement, SAS System Options window, SAS
invocation, SAS/CONNECT spawner command line

Category: Communications: Networking and Encryption

PROC OPTIONS
GROUP=

Communications

Operating
environment:

UNIX, z/OS

Tip: When additional encryption options are specified on the spawner command line, the
options must be included in the -SASCMD value. The spawner does not
automatically pass the encryption values. For detailed information, see SASCMD for
your operating environment in SAS/CONNECT User’s Guide.

Examples: “TLS for a SAS/CONNECT UNIX Spawner: Example ” on page 65
“TLS for SAS/SHARE on UNIX: Example ” on page 71

Syntax
SSLPVTKEYLOC=“file-path”

Syntax Description
“file-path”

specifies the location of the file that contains the private key that corresponds to the
digital certificate that was specified by using the SSLCERTLOC= option.

Details
The SSLPVTKEYLOC= option is required at the server only if the SSLCERTLOC=
option is also specified at the server.

The key must be PEM-encoded (base64). Under z/OS, the file must be formatted as
ASCII and must reside in a UNIX file system. For more information, see “Certificate
File Formats” on page 80.

You must specify both the -SSLCERTLOC option and the -SSLPVTKEYLOC option in
the -SASCMD script if you want the spawner to locate the appropriate digital certificate.

SSLPVTKEYLOC= System Option 39

SSLPVTKEYPASS= System Option
Specifies the password that TLS requires for decrypting the private key.

Client: Optional

Server: Optional

Valid in: Configuration file, OPTIONS statement, SAS System Options window, SAS
invocation, SAS/CONNECT spawner command line

Category: Communications: Networking and Encryption

PROC OPTIONS
GROUP=

Communications

Operating
environment:

UNIX, z/OS

Tip: When additional encryption options are specified on the spawner command line, the
options must be included in the -SASCMD value. The spawner does not
automatically pass the encryption values. For detailed information, see SASCMD for
your operating environment in SAS/CONNECT User’s Guide.

Examples: “TLS for a SAS/CONNECT UNIX Spawner: Example ” on page 65
“TLS for SAS/SHARE on UNIX: Example ” on page 71

Syntax
SSLPVTKEYPASS=“password”

Syntax Description
“password”

specifies the password that TLS requires in order to decrypt the private key. The
private key is stored in the file that is specified by using the SSLPVTKEYLOC=
option.

Details
The SSLPVTKEYPASS= option is required only when the private key is encrypted.
OpenSSL performs key encryption.

Note: No SAS system option is available to encrypt private keys.

SSLREQCERT= System Option
Specifies what checks to perform on server certificates in a TLS session.

Client: Optional

Server: Optional

Valid in: Configuration file, SAS invocation

Category: Communications: Networking and Encryption

40 Chapter 2 • SAS System Options for Encryption

PROC OPTIONS
GROUP=

Communications

Operating
environment:

UNIX

Example: export SSLREQCERT=ALLOW

Syntax
SSLREQCERT=ALLOW | DEMAND | NEVER | TRY

Syntax Description
ALLOW

specifies that the client requests a server certificate, but the session proceeds
normally even if no certificate is provided or an invalid certificate is provided.

DEMAND
specifies that a server certificate is requested, and if no valid certificate is provided,
the session terminates. DEMAND is the default setting.

NEVER
specifies that the Authentication Server does not ask for a certificate.

TRY
specifies that the client requests a server certificate, and if no certificate is provided,
the session proceeds normally. If an invalid certificate is provided, the session
terminates.

Details
If you do not add the SSLREQCERT= option to your configuration file, then the default
value is DEMAND. If you specify SSLREQCERT, then the value of SSLREQCERT
applies to all of your authentication providers.

SSLREQCERT= System Option 41

42 Chapter 2 • SAS System Options for Encryption

Chapter 3

SAS Environment Variables for
Encryption

Overview of Environment Variables . 43

Dictionary . 43
SAS_SSL_MIN_PROTOCOL Environment Variable . 43
SAS_SSL_CIPHER_LIST Environment Variable . 45
SSLCACERTDIR Environment Variable . 46
SSL_CERT_DIR Environment Variable . 48
SSL_USE_SNI Environment Variable . 50

Overview of Environment Variables
UNIX environment variables are variables that apply to both the current shell and to any
subshells that it creates. The way in which you define an environment variable depends
on the shell that you are running. For more information, see “Defining Environment
Variables in UNIX Environments” in SAS Companion for UNIX Environments.

z/OS environment variables are specified in a SAS data set that is referred to as the
TKMVSENV data set file. For more information about setting environment variables in
the TKMVSENV file, see“TKMVSENV File” in SAS Companion for z/OS.

For Windows, you can choose to define a SAS environment variable using the SET
system option or to define a Windows environment variable using the Windows SET
command. For more information, see “Using Environment Variables” in SAS Companion
for Windows.

Dictionary

SAS_SSL_MIN_PROTOCOL Environment Variable
Specifies the minimum TLS or SSL protocol that can be negotiated when using OpenSSL.

Client: Optional

Server: Optional

Valid in: Configuration file, command line

Categories: Communications: Networking and Encryption

43

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=hostunx&pubcode=69602&id=n09yufm73q93yzn12nz78mpitlps
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=hostunx&pubcode=69602&id=n09yufm73q93yzn12nz78mpitlps
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=hosto390&pubcode=69824&id=p1q15c52hf7uprn1ins0ugzjgq5a
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=hostwin&pubcode=69955&id=n07buc7sg08fdrn1c1jmmr8hl78r&anchor=n082l7wzkielp1n1o0zbnvmqh67i
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=hostwin&pubcode=69955&id=n07buc7sg08fdrn1c1jmmr8hl78r&anchor=n082l7wzkielp1n1o0zbnvmqh67i

System Administration: Security

Default: TLS 1.2. Starting in the fourth maintenance release of SAS 9.4, the minimum
OpenSSL protocol default is TLS 1.2.

Operating
environment:

UNIX, z/OS, and Windows

Notes: This environment variable must be set before TLS or SSL are loaded. It cannot be
changed after TLS or SSL are loaded. You must set the environment variable before
the SAS/CONNECT spawner is started and before SAS is started on the client.
This environment variable is available in all SAS 9.3 and SAS 9.4 versions of
software if hot fixes are applied.

Tip: You can also define SET commands for Windows by using the System Properties
dialog box that you access from the Control Panel.

See: “Defining Environment Variables in UNIX Environments” in SAS Companion for UNIX
Environments, “TKMVSENV File” in SAS Companion for z/OS, “Using Environment
Variables” in SAS Companion for Windows

Examples: Export the environment variable on UNIX hosts for the Bourne Shell:

export SAS_SSL_MIN_PROTOCOL=TLS1.2

Set the environment variable on UNIX hosts for the C Shell environment:

SETENV SAS_SSL_MIN_PROTOCOL TLS1.2

Set the environment variable at SAS invocation for UNIX hosts:

-set "SAS_SSL_MIN_PROTOCOL=TLS1.2"

Set the environment variable on Windows hosts

SET SAS_SSL_MIN_PROTOCOL=TLS1.2

Syntax
SAS_SSL_MIN_PROTOCOL= protocol
"SAS_SSL_MIN_PROTOCOL= protocol"
SAS_SSL_MIN_PROTOCOL protocol

Syntax Description
protocol

specifies the minimum TLS protocol version that is negotiated between UNIX, z/OS,
and Windows servers when using OpenSSL. Valid values for TLS 1.2 are TLS1.2
and TLSv1.2.

See the SAS Security Bulletin on OpenSSL for the most current information about
the versions of OpenSSL used in SAS products and about the advisories under
consideration. For a list of the versions of OpenSSL libraries provided by SAS, see
OpenSSL Version to SAS Software Release.

CAUTION:
It is highly recommended that you use TLS 1.2 or above. Versions prior to
TLS 1.2 have known security vulnerabilities.

Note: A message is written to the SAS log when an invalid value is specified.

44 Chapter 3 • SAS Environment Variables for Encryption

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=hostunx&pubcode=69602&id=n09yufm73q93yzn12nz78mpitlps
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=hostunx&pubcode=69602&id=n09yufm73q93yzn12nz78mpitlps
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=hosto390&pubcode=69824&id=p1q15c52hf7uprn1ins0ugzjgq5a
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=hostwin&pubcode=69955&id=n07buc7sg08fdrn1c1jmmr8hl78r&anchor=n082l7wzkielp1n1o0zbnvmqh67i
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=hostwin&pubcode=69955&id=n07buc7sg08fdrn1c1jmmr8hl78r&anchor=n082l7wzkielp1n1o0zbnvmqh67i
http://support.sas.com/security/openssl-security-advisories.html
http://support.sas.com/documentation/onlinedoc/secure/openssl/SAStoOpenSSLVersionTable.pdf

Details
The SAS_SSL_MIN_PROTOCOL environment variable enables you to set a minimum
TLS protocol that will be negotiated. During the first TLS handshake attempt, the
highest supported protocol version is offered. If this handshake fails, earlier protocol
versions are offered instead.

TLS1.2 is the default minimum OpenSSL protocol version used to negotiate between
client and servers in the fourth maintenance release of SAS 9.4. You can specify an
earlier fallback value, but it is not recommended.

SAS_SSL_CIPHER_LIST Environment Variable
Specifies the ciphers that can be used on UNIX and z/OS for OpenSSL.

Client: Optional

Server: Optional

Valid in: Configuration file, command line

Categories: Communications: Networking and Encryption
System Administration: Security

Operating
environment:

UNIX and z/OS

Notes: This environment variable is available in all SAS 9.3 and SAS 9.4 versions of
software if hot fixes are applied.
This environment variable must be set before TLS or SSL are loaded. It cannot be
changed after TLS or SSL is loaded. You must set the environment variable before
the SAS/CONNECT spawner is started and before SAS is started on the client.

Tip: You can also define SET commands for Windows by using the System Properties
dialog box that you access from the Control Panel.

See: “Defining Environment Variables in UNIX Environments” in SAS Companion for UNIX
Environments, “TKMVSENV File” in SAS Companion for z/OS

Examples: Export the environment variable on UNIX hosts for the Bourne Shell:

export SAS_SSL_CIPHER_LISTSS=TLS1.2

Set the environment variable on UNIX hosts for the C Shell environment:

SETENV SAS_SSL_CIPHER_LISTS HIGH

Set the environment variable at SAS invocation for UNIX hosts:

-set SAS_SSL_CIPHER_LISTS 3DES:RC2"

Set the environment variable on Windows hosts

SET SAS_SSL_CIPHER_LISTS SHA256

Syntax
SAS_SSL_CIPHER_LIST=openssl_cipher_list

SAS_SSL_CIPHER_LIST Environment Variable 45

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=hostunx&pubcode=69602&id=n09yufm73q93yzn12nz78mpitlps
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=hostunx&pubcode=69602&id=n09yufm73q93yzn12nz78mpitlps
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=hosto390&pubcode=69824&id=p1q15c52hf7uprn1ins0ugzjgq5a

Syntax Description
openssl-cipher-list

The SAS_SSL_CIPER_LIST environment variable specifies the ciphers that can be
used on UNIX and z/OS for OpenSSL. Refer to the OpenSSL Ciphers document to
see how to format the openssl-cipher-list and for a complete list of the ciphers that
work with your TLS or SSL version. The OpenSSL Cipher information can be found
at OpenSSL 1.0.1 Ciphers

Note: SAS does not support CAMELLIA, IDEA, MD2, and RC5 ciphers.

Note: The protocol and cipher information for the actual connection can be seen by
setting dumpCurrentCipherInfo at the SAS DEBUG level. For information, see
“Encryption: SAS Logging Facility” on page 20.

Note: If you set a minimum protocol that does not allow some ciphers, you might
get an error.

For Windows, you can configure the SSL Cipher Suite Order in the group policy
settings. Search the https://msdn.microsoft.com/en-US/ website for information
about how to set the SSL or TLS Cipher Suite Order.

Details
This environment variable is available on UNIX and z/OS platforms. This environment
variable can be specified anytime before TLS is used. After TLS is loaded, it cannot be
changed.

Refer to the OpenSSL documentation on ciphers for information about the ciphers that
can be specified for this environment variable. This information can be found at
OpenSSL 1.0.1 Ciphers.

Note: For Windows, you can configure the SSL Cipher Suite Order in the group policy
settings. Search the https://msdn.microsoft.com/en-US/ website for information
about how to set the SSL or TLS Cipher Suite Order.

SSLCACERTDIR Environment Variable
Specifies the location of the trusted certificate authorities (CA) found in OpenSSL format.

Client: Optional

Server: Optional

Valid in: Configuration file, SAS invocation, SAS/CONNECT spawner start-up

Categories: Communications: Networking and Encryption
System Administration: Security

Default: The default location for certificates is set using the SSLCALISTLOC= system option.
Certificates are located in one .pem file. By contrast, The SSLCACERTDIR
environment variable allows the customer to specify a location where multiple
certificate files reside. See “SSLCALISTLOC= System Option” on page 30.

Operating
environment:

UNIX

Note: This environment variable is available in all SAS 9.3 and SAS 9.4 versions of
software if hot fixes are applied.

46 Chapter 3 • SAS Environment Variables for Encryption

https://www.openssl.org/docs/man1.0.1/apps/ciphers.html
https://msdn.microsoft.com/en-US/
https://www.openssl.org/docs/man1.0.1/apps/ciphers.html
https://msdn.microsoft.com/en-US/

Tips: OpenSSL looks up the CA certificate based on the x509 hash value of the certificate.
SSLCACERTDIR requires that the certificates are located in the specified directory
where the certificate names are the value of a hash that OpenSSL generates.
If you are upgrading from a version of OpenSSL that is older than 1.0.0, you need to
update your certificate directory links. Starting with code base 1.0.0, SHA hashing is
used instead of MD5. You can use the OpenSSL C_REHASH utility to re-create
symbolic links to files named by the hash values.
You can discover the hash value for a CA and then create a link to the file named
after the certificate’s hash value. Note that you must add ".0" to the hash value.

ln -s cacert1.pem 'openssl x509 -noout -hash -in
/u/myuser/sslcerts/cacert1.pem'.0

If you list the CA file, you see the link between the file named after the certificate’s
hash value and the CA file.

lrwxrwxrwx 1 myuser rnd 10 Apr 7 14:42 6730c6a9.0 -> cacert1.pem

To verify the path of the server certificate file (cacert1.pem for our example), use the
following OpenSSL command:

openssl verify -CApath /u/myuser/sslcerts cacert1.pem

See: “Defining Environment Variables in UNIX Environments” in SAS Companion for UNIX
Environments

Examples: The SSLCACERTDIR environment variable points to the directory where the CA
certificate is located. Export the environment variable on UNIX hosts for the Bourne
Shell:

export SSLCACERTDIR=/u/myuser/sslcerts/

Set the environment variable on UNIX hosts for the C Shell directory where the CA
certificates are located:

SETENV SSLCACERTDIR /u/myuser/sslcerts/

Set the environment variable at SAS invocation for UNIX hosts:

-set "SSLCACERTDIR=/u/myuser/sslcerts/"

Syntax
SSLCACERTDIR=“file-path”

Syntax Description
“file-path”

specifies the location where the public certificates for all of the trusted certificate
authorities (CA) in the trust chain are filed. There is one file for each CA. The names
of the files are the value of a hash that OpenSSL generates.

Note: OpenSSL generates different hash values for each OpenSSL version. For
example, OpenSSL 0.9.8 generates different hash values than does OpenSSL 1.x.

Details
Environment variables SSLCACERTDIR and SSL_CERT_DIR point to a directory that
contains all of the public certificate files of all CAs in the trust chain. One file exists for
each CA in the trust chain.

SSLCACERTDIR Environment Variable 47

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=hostunx&pubcode=69602&id=n09yufm73q93yzn12nz78mpitlps
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=hostunx&pubcode=69602&id=n09yufm73q93yzn12nz78mpitlps

SSLCACERTDIR requires the certificates to be in the directory where their names are
the value of a hash that OpenSSL generates.

Each CA certificate file must be PEM-encoded (base64). For more information, see
“Certificate File Formats” on page 80.

For Foundation Servers such as workspace servers and stored process servers (that is,
servers in a deployment), if certificates are used, SAS searches for certificates in a
specific order. SAS searches for certificates in the following order:

1. SAS looks for SAS system option SSLCALISTLOC= to find the file
trustedcerts.pem.

2. SAS looks for the SSLCALISTLOC environment variable to find the file
trustedcerts.pem.

3. If trustedcerts.pem exists and SSL_CERT_DIR and SSLCACERTDIR environment
variables are set, SAS checks trustedcerts.pem first before it searches the directory.

4. If trustedcerts.pem does not exist, but the certificates are in the directory defined by
SSL_CERT_DIR or SSLCACERTDIR, then SAS ignores SSLCALISTLOC=.

5. If trustedcerts.pem does not exist, and the SSL_CERT_DIR and SSLCACERTDIR
environment variables are not set, SAS reports an error.

In SAS 9.4, the first maintenance release of SAS 9.4, and the second maintenance
release of SAS 9.4, the default path set for the SSLCALISTLOC= system option on
UNIX and z/OS foundation servers is SAS-configuration-directory/Levn/
certs/cacert.pem. The cacert.pem file contains the list of trusted certificates.

In the third maintenance release of SAS 9.4, the default path set for the
SSLCALISTLOC= system option on UNIX and z/OS foundation servers is
<SASHome>/SASSecurityCertificateFramework/1.1/cacerts/
trustedcerts.pem. The trustedcerts.pem file contains the list of trusted certificates.

Note: A trusted CA certificate is required at the client in order to validate a server's
digital certificate. The trusted CA certificate must be from the CA that signed the
server certificate.

SSL_CERT_DIR Environment Variable
Specifies the location of the trusted certificate authorities (CA) found in OpenSSL format. This is the
OpenSSL environment variable.

Client: Optional

Server: Optional

Valid in: Configuration file, SAS invocation, SAS/CONNECT spawner start-up

Categories: Communications: Networking and Encryption
System Administration: Security

Default: The default location for certificates is set using the SSLCALISTLOC= system option.
Certificates are located in one .pem file. By contrast, The SSLCACERTDIR
environment variable allows the customer to specify a location where multiple
certificate files reside. See “SSLCALISTLOC= System Option” on page 30.

Operating
environment:

UNIX

48 Chapter 3 • SAS Environment Variables for Encryption

Note: This environment variable is available in all SAS 9.3 and SAS 9.4 versions of
software if hot fixes are applied.

Tips: OpenSSL looks up the CA certificate based on the x509 hash value of the certificate.
SSL_CERT_DIR requires that the certificates are located in the specified directory
where the certificate names are the value of a hash that OpenSSL generates.
If you are upgrading from a version of OpenSSL that is older than 1.0.0, you need to
update your certificate directory links. Starting with code base 1.0.0, SHA hashing is
used instead of MD5. You can use the OpenSSL C_REHASH utility to re-create
symbolic links to files named by the hash values.
You can discover the hash value for the CA and then create a link to the file named
after the certificate’s hash value. Note that you must add ".0" to the hash value.

ln -s cacert1.pem 'openssl x509 -noout -hash -in
/u/myuser/sslcerts/cacert1.pem'.0

If you list the CA file, you see the link between the file named after the certificate’s
hash value and the CA file.

lrwxrwxrwx 1 myuser rnd 10 Apr 7 14:42 6730c6a9.0 -> cacert1.pem

To verify the path of the server certificate file (cacert1.pem for our example), use the
following OpenSSL command:

openssl verify -CApath /u/myuser/sslcerts cacert1.pem

See: “Defining Environment Variables in UNIX Environments” in SAS Companion for UNIX
Environments

Examples: The SSL_CERT_DIR environment variable points to the directory where the CA
certificate is located. Export the environment variable on UNIX hosts for the Bourne
Shell:

export SSL_CERT_DIR=/u/myuser/sslcerts/

Set the environment variable on UNIX hosts for the C Shell directory where the CA
certificates are located:

SETENV SSL_CERT_DIR /u/myuser/sslcerts/

Set the environment variable at SAS invocation for UNIX hosts:

-set "SSL_CERT_DIR=/u/myuser/sslcerts/"

Syntax
SSL_CERT_DIR=“file-path”

Syntax Description
“file-path”

specifies the location where the public certificates for all of the trusted certificate
authorities (CA) in the trust chain are filed. There is one file for each CA. The names
of the files are the value of a hash that OpenSSL generates.

Note: OpenSSL generates different hash values for each OpenSSL version. For
example, OpenSSL 0.9.8 generates different hash values than does OpenSSL 1.x.

SSL_CERT_DIR Environment Variable 49

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=hostunx&pubcode=69602&id=n09yufm73q93yzn12nz78mpitlps
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=hostunx&pubcode=69602&id=n09yufm73q93yzn12nz78mpitlps

Details
Environment variables SSLCACERTDIR and SSL_CERT_DIR point to a directory that
contains all of the public certificate files of all CAs in the trust chain. One file exists for
each CA in the trust chain.

SSL_CERT_DIR requires the certificates to be in the directory where their names are the
value of a hash that OpenSSL generates.

Each CA certificate file must be PEM-encoded (base64). For more information, see
“Certificate File Formats” on page 80.

For Foundation Servers such as workspace servers and stored process servers (that is,
servers in a deployment), if certificates are used, SAS searches for certificates in a
specific order. SAS searches for certificates in the following order:

1. SAS looks for SAS system option SSLCALISTLOC= to find the file
trustedcerts.pem.

2. SAS looks for the SSLCALISTLOC environment variable to find the file
trustedcerts.pem.

3. If trustedcerts.pem exists and SSL_CERT_DIR and SSLCACERTDIR environment
variables are set, SAS checks trustedcerts.pem first before it searches the directory.

4. If trustedcerts.pem does not exist, but the certificates are in the directory defined by
SSL_CERT_DIR or SSLCACERTDIR, then SAS ignores SSLCALISTLOC=.

5. If trustedcerts.pem does not exist, and the SSL_CERT_DIR and SSLCACERTDIR
environment variables are not set, SAS reports an error.

In SAS 9.4, the first maintenance release of SAS 9.4, and the second maintenance
release of SAS 9.4, the default path set for the SSLCALISTLOC= system option on
UNIX and z/OS foundation servers is SAS-configuration-directory/Levn/
certs/cacert.pem. The cacert.pem file contains the list of trusted certificates.

In the third maintenance release of SAS 9.4, the default path set for the
SSLCALISTLOC= system option on UNIX and z/OS foundation servers is
<SASHome>/SASSecurityCertificateFramework/1.1/cacerts/
trustedcerts.pem. The trustedcerts.pem file contains the list of trusted certificates.

Note: A trusted CA certificate is required at the client in order to validate a server's
digital certificate. The trusted CA certificate must be from the CA that signed the
server certificate.

SSL_USE_SNI Environment Variable
Enables the client to use Server Name Indication (SNI) in the TLS handshake to identify the server name
that it is trying to connect to.

Client: Optional

Server: Optional

Valid in: SAS invocation, configuration file

Categories: Communications: Networking and Encryption
System Administration: Security

Default: By default, the TLS SNI extension is not sent as part of the TLS handshake.

Restrictions: The SSL_USE_SNI environment variable is supported only on UNIX.

50 Chapter 3 • SAS Environment Variables for Encryption

Windows always sends SNI to the web servers. Some web servers do not support
SNI and fail to connect when the TLS SNI extension is present.

Operating
environment:

UNIX

Note: When this environment variable is specified, the TLS SNI extension is sent to the
web server.

See: “Defining Environment Variables in UNIX Environments” in SAS Companion for UNIX
Environments

Examples: Export the environment variable on UNIX hosts for the Bourne Shell :

export SSL_USE_SNI=1

Set the environment variable on UNIX hosts for the C Shell :

SETENV SSL_USE_SNI

Set the environment variable at SAS invocation for UNIX hosts:

sas -dms -set SSL_USE_SNI

Syntax
SSL_USE_SNI

Syntax Description
SSL_USE_SNI

UNIX clients and servers now support TLS Server Name Indication (SNI). The
client uses SNI in the first message of the TLS handshake (connection setup) to
identify the server name that it is trying to connect to.

Default SNI is disabled by default on UNIX. To enable SNI, specify the
SSL_USE_SNI environment variable.

Details
The client uses SNI in the TLS handshake to identify the server name that it is trying to
connect to. When making a TLS connection, the client requests a digital certificate from
the web server. After the server sends the certificate, the client examines it and compares
the name that it was trying to connect to with the name or names included in the
certificate. If a match is found, the connection proceeds as normal.

Note: When SSL_USE_SNI is set, some server connections might fail. For example,
PROC IOMOPERATE using an Apache proxy (HTTP CONNECT) might not
connect when the SSL_USE_SNI environment variable is set. In that case, disable
the environment variable.

See Also
For more information, see “Troubleshooting TLS” on page 125.

SSL_USE_SNI Environment Variable 51

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=hostunx&pubcode=69602&id=n09yufm73q93yzn12nz78mpitlps
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=hostunx&pubcode=69602&id=n09yufm73q93yzn12nz78mpitlps

52 Chapter 3 • SAS Environment Variables for Encryption

Chapter 4

PWENCODE Procedure

Overview: PWENCODE Procedure . 53

Concepts: PWENCODE Procedure . 53
Using Encoded Passwords in SAS Programs . 53
Encoding versus Encryption . 54

Syntax: PWENCODE Procedure . 54
PROC PWENCODE Statement . 54

Examples: PWENCODE Procedure . 56
Example 1: Encoding a Password . 56
Example 2: Using an Encoded Password in a SAS Program 57
Example 3: Saving an Encoded Password to the Paste Buffer 59
Example 4: Specifying Method= SAS003 to Encode a Password 60

Overview: PWENCODE Procedure
The PWENCODE procedure enables you to encode passwords. Encoding obfuscates the
data. Unlike encryption, encoding is a reversible permutation of the data and uses no
keys.

Encoded passwords can be used in place of plaintext passwords in SAS programs that
access relational database management systems (RDBMSs) and various servers.
Examples are SAS/CONNECT servers, SAS/SHARE servers, SAS Integrated Object
Model (IOM) servers, SAS Metadata Servers, and more.

Concepts: PWENCODE Procedure

Using Encoded Passwords in SAS Programs
When a password is encoded with PROC PWENCODE, the output string includes a tag
that identifies the string as having been encoded. An example of a tag is {sas001}. The
tag indicates the encoding method. SAS servers and SAS/ACCESS engines recognize
the tag and decode the string before using it. Encoding a password enables you to write
SAS programs without having to specify a password in plaintext.

53

Note: PROC PWENCODE passwords can contain up to a maximum of 512 characters,
which include alphanumeric characters, spaces, and special characters. Data set
passwords, however, must follow SAS naming rules. For information about SAS
naming rules, see “Rules for Most SAS Names” in SAS Language Reference:
Concepts.

The encoded password is never written to the SAS log in plain text. Instead, each
character of the password is replaced by an X in the SAS log.

Encoding versus Encryption
PROC PWENCODE uses encoding to disguise passwords. With encoding, one character
set is translated to another character set through some form of table lookup. Encryption,
by contrast, involves the transformation of data from one form to another through the use
of mathematical operations and, usually, a “key” value. Encryption is generally more
difficult to break than encoding.

PROC PWENCODE is intended to prevent casual, non-malicious viewing of passwords.
You should not depend on PROC PWENCODE for all your data security needs; a
determined and knowledgeable attacker can decode the encoded passwords. Data should
be protected by other security controls such as file system permissions or other access
control mechanisms.

Syntax: PWENCODE Procedure
PROC PWENCODE IN='password' <OUT=fileref> <METHOD=encoding-method>;

Statement Task Example

PROC PWENCODE Encode a password Ex. 1, Ex. 2,
Ex. 3, Ex. 4

PROC PWENCODE Statement
Encodes a password.

Examples: “Example 1: Encoding a Password” on page 56
“Example 2: Using an Encoded Password in a SAS Program” on page 57
“Example 3: Saving an Encoded Password to the Paste Buffer” on page 59
“Example 4: Specifying Method= SAS003 to Encode a Password” on page 60

Syntax
PROC PWENCODE IN='password' <OUT=fileref> <METHOD=encoding-method>;

54 Chapter 4 • PWENCODE Procedure

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=p18cdcs4v5wd2dn1q0x296d3qek6&anchor=p0v4w5zj1972man13kghfmmqec3s
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=p18cdcs4v5wd2dn1q0x296d3qek6&anchor=p0v4w5zj1972man13kghfmmqec3s

Required Argument
IN='password'

specifies the password to encode. The password can contain up to a maximum of 512
characters, which include alphanumeric characters, spaces, and special characters.

Note: Data set passwords must follow SAS naming rules. If the IN=password
follows SAS naming rules, it can also be used for SAS data sets. For information
about SAS naming rules, see “Rules for Most SAS Names” in SAS Language
Reference: Concepts.

If the password contains embedded single or double quotation marks, use the
standard SAS rules for quoting character constants. These rules can be found in the
SAS Constants in Expressions chapter of SAS Language Reference: Concepts.

Note: Each character of the encoded password is replaced by an X when written to
the SAS log.

See “Example 1: Encoding a Password” on page 56

“Example 2: Using an Encoded Password in a SAS Program” on page 57

“Example 3: Saving an Encoded Password to the Paste Buffer” on page 59

Optional Arguments
OUT=fileref

specifies a fileref to which the output string is to be written. If the OUT= option is
not specified, the output string is written to the SAS log.

Note: The global macro variable

_PWENCODE

is set to the value that is written to the OUT= fileref or to the value that is
displayed in the SAS log.

See “Example 2: Using an Encoded Password in a SAS Program” on page 57

METHOD=encoding-method
specifies the encoding method. Here are the supported values for encoding-method:

Table 4.1 Supported Encoding Methods

Encoding Method Description
Supported Data Encryption
Algorithm

sas001 Uses base64 to encode
passwords.

None

sas002, which can
also be specified as
sasenc

Uses a 32-bit key to encode
passwords.

SASProprietary, which is included
in SAS software.

sas003 Uses a 256-bit key plus 16-
bit salt to encode
passwords.

AES (Advanced Encryption
Standard), which is supported in
SAS/SECURE.

PROC PWENCODE Statement 55

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=p18cdcs4v5wd2dn1q0x296d3qek6&anchor=p0v4w5zj1972man13kghfmmqec3s
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=p18cdcs4v5wd2dn1q0x296d3qek6&anchor=p0v4w5zj1972man13kghfmmqec3s

Encoding Method Description
Supported Data Encryption
Algorithm

sas004 Uses a 256-bit key plus 64-
bit salt value to encode
passwords.

AES (Advanced Encryption
Standard), which is supported in
SAS/SECURE.

Note: SAS/SECURE is a product that enables you to protect data through the use of
industry-standard encryption and hashing algorithms. For more information, see
“SAS/SECURE Software Availability” in Encryption in SAS.

If the METHOD= option is omitted, the default encoding method is used. When the
FIPS 140-2 compliance option, -encryptfips, is specified, the encoding method
defaults to sas003. For all other cases, encoding method sas002 is the default
method used. SAS002 is also the default method used if you specify an invalid
method.

Note: The METHOD= option supports the SAS003 and SAS004 values, but only if
you have SAS/SECURE.

The SAS003 and the SAS004 encoded passwords consist of a 256-bit key plus a salt
value. These salt values are random. Therefore, each time you use PROC
PWENCODE to encode the same password, you get a different salt value and
therefore a different encoded password.

Examples: PWENCODE Procedure

Example 1: Encoding a Password
Features: IN= argument

Details

This example shows a simple case of encoding a password and writing the encoded
password to the SAS log.

Program
proc pwencode in='my password';
run;

Program Description

Encode the password.

proc pwencode in='my password';
run;

56 Chapter 4 • PWENCODE Procedure

Log

Note that each character of the password is replaced by an X in the SAS log.

19 proc pwencode in=XXXXXXXXXXXXX;
20 run;

{SAS002}DBCC571245AD0B31433834F80BD2B99E16B3C969

NOTE: PROCEDURE PWENCODE used (Total process time):
 real time 0.01 seconds
 cpu time 0.01 seconds

Example 2: Using an Encoded Password in a SAS Program
Features: IN= argument

OUT= option

Details

This example illustrates the following:

• encoding a password and saving it to an external file

• reading the encoded password with a DATA step, storing it in a macro variable, and
using it in a SAS/ACCESS LIBNAME statement

Program 1: Encoding the Password
filename pwfile
'external-filename';

proc pwencode in='mypass1' out=pwfile;
run;

Program Description

Declare a fileref.

filename pwfile
'external-filename';

Encode the password and write it to the external file. The OUT= option specifies
which external fileref the encoded password is written to.

proc pwencode in='mypass1' out=pwfile;
run;

Program 2: Using the Encoded Password
filename pwfile
'external-filename';

options symbolgen;

Example 2: Using an Encoded Password in a SAS Program 57

data _null_;
infile pwfile truncover;
input line :$50.;
call symputx('dbpass',line);
run;

libname x odbc dsn=SQLServer user=testuser password="&dbpass";

Program Description

Declare a fileref for the encoded-password file.

filename pwfile
'external-filename';

Set the SYMBOLGEN SAS system option. This step shows that the actual password
cannot be revealed, even when the macro variable that contains the encoded password is
resolved in the SAS log. This step is not required in order for the program to work
properly.

options symbolgen;

Read the file and store the encoded password in a macro variable. The DATA step
stores the encoded password in the macro variable DBPASS.

data _null_;
infile pwfile truncover;
input line :$50.;
call symputx('dbpass',line);
run;

Use the encoded password to access a DBMS. You must use double quotation marks
(“ ”) so that the macro variable resolves properly.

libname x odbc dsn=SQLServer user=testuser password="&dbpass";

58 Chapter 4 • PWENCODE Procedure

Log

1 filename pwfile 'external-filename';
2 options symbolgen;
3 data _null_;
4 infile pwfile truncover;
5 input line :$50.;
6 call symputx('dbpass',line);
7 run;

NOTE: The infile PWFILE is:
 Filename=external-filename
 RECFM=V,LRECL=256,File Size (bytes)=4,
 Last Modified=12Apr2012:13:23:49,
 Create Time=12Apr2012:13:23:39

NOTE: 1 record was read from the infile PWFILE.
 The minimum record length was 4.
 The maximum record length was 4.
NOTE: DATA statement used (Total process time):
 real time 0.57 seconds
 cpu time 0.04 seconds
8
9 libname x odbc
SYMBOLGEN: Macro variable DBPASS resolves to {sas002}bXlwYXNzMQ==
9 ! dsn=SQLServer user=testuser password="&dbpass";
NOTE: Libref X was successfully assigned as follows:
 Engine: ODBC
 Physical Name: SQLServer

Example 3: Saving an Encoded Password to the Paste Buffer
Features: IN= argument

OUT= option

Other features: FILENAME statement with CLIPBRD access method

DETAILS

This example saves an encoded password to the paste buffer. You can then paste the
encoded password into another SAS program or into the password field of an
authentication dialog box.

Program
filename clip clipbrd;

proc pwencode in='my password' out=clip;
run;

Program Description

Declare a fileref with the CLIPBRD access method.

filename clip clipbrd;

Example 3: Saving an Encoded Password to the Paste Buffer 59

Encode the password and save it to the paste buffer. The OUT= option saves the
encoded password to the fileref that was declared in the previous statement.

proc pwencode in='my password' out=clip;
run;

Log

Note that each character of the password is replaced by an X in the SAS log.

24
25 filename clip clipbrd;
26 proc pwencode in=XXXXXXXXXXXXX out=clip;
27 run;

NOTE: PROCEDURE PWENCODE used (Total process time):
 real time 0.00 seconds
 cpu time 0.00 seconds

Example 4: Specifying Method= SAS003 to Encode a Password
Features: METHOD= argument

Details

This example shows a simple case of encoding a password using the sas003 encoding
method and writing the encoded password to the SAS log.

Program
proc pwencode in='my password' method=sas003;
run;

Program Description

Encode the password using SAS003.

proc pwencode in='my password' method=sas003;
run;

60 Chapter 4 • PWENCODE Procedure

Log

Note that each character of the password is replaced by an X in the SAS log. SAS003
encoding uses AES encryption plus a 16-bit salt. Because SAS003 uses random
salting, each time you run the following code, a different password is generated.

8 proc pwencode in=XXXXXXXXXXXXX method=sas003;
29 run;

{SAS003}08D7B93810D390916F615117D71B2639B4BE

NOTE: PROCEDURE PWENCODE used (Total process time):
 real time 0.00 seconds
 cpu time 0.00 seconds

Example 4: Specifying Method= SAS003 to Encode a Password 61

62 Chapter 4 • PWENCODE Procedure

Chapter 5

Encryption Technologies:
Examples

SAS Proprietary Encryption for SAS/SHARE: Example . 64
SAS/SHARE Client . 64
SAS/SHARE Server . 64

SAS/SECURE for SAS/CONNECT: Example . 64
SAS/CONNECT Client on UNIX . 64
SAS/CONNECT Server on UNIX . 64

TLS for a SAS/CONNECT UNIX Spawner: Example . 65
Start-up of a UNIX Spawner on a SAS/CONNECT Server 65
Connection of a SAS/CONNECT Client to a UNIX Spawner 66

TLS for a SAS/CONNECT Windows Spawner: Example . 67
Start-up of a Windows Spawner on a Single-User SAS/CONNECT Server 67
Connection of a SAS/CONNECT Client to a Windows

Spawner on a SAS/CONNECT Server . 68

TLS on a z/OS Spawner on a SAS/CONNECT Server: Example 69
Start-up of a z/OS Spawner on a SAS/CONNECT Server . 69
Connection of a SAS/CONNECT Client to a z/OS Spawner 71

TLS for SAS/SHARE on UNIX: Example . 71
Start-up of a Multi-UserSAS/SHARE Server . 71
SAS/SHARE Client Access of a SAS/SHARE Server . 72

TLS for SAS/SHARE on Windows: Examples . 73
Start-up of a Multi-UserSAS/SHARE Server . 73
SAS/SHARE Client Access of a SAS/SHARE Server . 73

TLS for SAS/SHARE on z/OS: Example . 74
Start-up of a Multi-UserSAS/SHARE Server . 74
SAS/SHARE Client Access of a SAS/SHARE Server . 75

SSH Tunnel for SAS/CONNECT: Example . 75
Start-up of a UNIX Spawner on a Single-User SAS/CONNECT Server 75
Connection of a SAS/CONNECT Client to a UNIX Spawner

on a SAS/CONNECT Server . 75

SSH Tunnel for SAS/SHARE: Example . 76
Start-up of a Multi-UserSAS/SHARE Server . 76
SAS/SHARE Client Access of a SAS/SHARE Server . 76

63

SAS Proprietary Encryption for SAS/SHARE:
Example

SAS/SHARE Client
In this example, the NETENCRYPTALGORITHM= option is set to sasproprietary to
specify the use of the proprietary algorithm to encrypt the data between the client and the
server. The NETENCRYPTALGORITHM= option must be set before the LIBNAME
statement establishes the connection to the server.

options netencryptalgorithm=sasproprietary;
options comamid=tcp;
libname sasdata 'edc.prog2.sasdata' server=rmthost.share1;

SAS/SHARE Server
This example shows how to set the options for encryption services on a SAS/SHARE
server. The NETENCRYPT option specifies that encryption is required by any client that
accesses this server. The NETENCRYPTALGORITHM= option specifies that the SAS
Proprietary Encryption algorithm be used for encryption of all data that is exchanged
with connecting clients.

options netencrypt netencryptalgorithm=sasproprietary;
options comamid=tcp;
proc server id=share1;
run;

SAS/SECURE for SAS/CONNECT: Example

SAS/CONNECT Client on UNIX
The following statements configure the client. The NETENCRYPTALGORITHM=
option specifies the use of the RC4 algorithm.

options netencryptalgorithm=rc4;
options remote=unxnode comamid=tcp;
signon;

SAS/CONNECT Server on UNIX
The following command starts a spawner on the computer that runs the server. The -
NETENCRYPT option specifies that encryption is required for all clients that connect to
the spawner. The -NETENCRYPTALGORITHM option specifies the use of the RC4
algorithm for encrypting all network data. The -SASCMD option specifies the SAS start-
up command.

cntspawn -service spawner -netencrypt -netencryptalgorithm rc4 -sascmd mystartup

The spawner executes a UNIX shell script that executes the commands to start SAS.

64 Chapter 5 • Encryption Technologies: Examples

#!/bin/ksh
#________________
mystartup
#________________
. ~/.profile
sas dmr -noterminal -comamid tcp $*

TLS for a SAS/CONNECT UNIX Spawner: Example

Start-up of a UNIX Spawner on a SAS/CONNECT Server
After digital certificates are generated for the CA, the server, and the client, and a CA
trust list for the client is created, you can start a UNIX spawner program that runs on a
server that SAS/CONNECT clients connect to. The spawner acts both as a TLS server to
CONNECT clients and a TLS client to the spawned CONNECT server.

The following example code starts the spawner using TLS encryption and specifies a
private password that must be provided either through prompting or within a file:

% cntspawn -service unxspawn -netencryptalgorithm ssl
-sslcertloc /users/server/certificates/server.pem
-sslpvtkeyloc /users/server/certificates/serverkey.pem
-sslpvtkeypass starbuck1
-sslcalistloc /users/server/certificates/sas.pem
-sascmd /users/server/command.ksh

Note: Starting in the third maintenance release of SAS, this option might not be needed
if you are managing certificates using the SDM.

The following table explains the SAS commands that are used to start a spawner on a
SAS/CONNECT single-user server.

Table 5.1 SAS Commands and Arguments for Spawner Start-Up Tasks

SAS Commands and Arguments Function

CNTSPAWN Starts the spawner

-SERVICE unxspawn Specifies the spawner service (configured in
the services file)

-NETENCRYPTALGORITM SSL Specifies the SSL encryption algorithm

-SSLCERTLOC /users/server/certificates/
server.pem

Specifies the file path for the location of the
server's public certificate

-SSLPVTKEYLOC /users/server/certificates/
serverkey.pem

Specifies the file path for the location of the
server's private key

-SSLPVTKEYPASS password Specifies the password to access the server's
private key if the private key is encrypted with
a password

TLS for a SAS/CONNECT UNIX Spawner: Example 65

SAS Commands and Arguments Function

-SSLCALISTLOC /users/server/certificates/
sas.pem

Specifies the CA trust list

Note: Starting in the third maintenance
release of SAS, this option might not be
needed if you are managing certificates using
the SDM.

-SASCMD /users/server/command.ksh Specifies the name of an executable file that
starts a SAS session when you sign on without
a script file

In order for the UNIX CONNECT server to locate the appropriate server digital
certificate, you must specify either the -SSLCERTLOC, -SSLPVTKEYLOC, and -
SSLPVTKEYPASS options or the -SSLPKCS12LOC and -SSLPKCS12PASS options in
the script that is specified by the -SASCMD option.

Here is an example of an executable file:

#!/bin/ksh
#----------------------------------
mystartup
#----------------------------------

. ~/.profile
sas -noterminal -sslcertloc /users/server/certificates/server.pem
-sslpvtkeyloc /users/server/certificates/serverkey.pem $*
#------------------------------

For complete information about starting a UNIX spawner, see Communications Access
Methods for SAS/CONNECT and SAS/SHARE.

Connection of a SAS/CONNECT Client to a UNIX Spawner
After a UNIX spawner is started on a SAS/CONNECT server, a SAS/CONNECT client
can connect to it.

The following example shows how to connect a client to a spawner that is running on a
SAS/CONNECT server:

options netencryptalgorithm=ssl;
options sslcalistloc="/users/johndoe/certificates/sas.pem";
%let machine=unxspawn;
signon machine.spawner user=_prompt_;

The following table explains the SAS options that are used to connect to a
SAS/CONNECT server.

Table 5.2 SAS Options, Statements, and Arguments for Client Access to a SAS/CONNECT
Server

SAS Options, Statements, and
Arguments Client Access Tasks

NETENCRYPTALGORITHM=SSL Specifies the encryption algorithm

66 Chapter 5 • Encryption Technologies: Examples

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=camref&pubcode=68088&id=titlepage
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=camref&pubcode=68088&id=titlepage

SAS Options, Statements, and
Arguments Client Access Tasks

SSLCALISTLOC=sas.pem Specifies the CA trust list

SIGNON=unxspawn Specifies the server and service to connect to

USER=_PROMPT_ Prompts for the user ID and password to be
used for authenticating the client to the server

The server-ID and the server's Common Name, which was specified in the server's
digital certificate, must be identical.

For complete information about connecting to a UNIX spawner, see Communications
Access Methods for SAS/CONNECT and SAS/SHARE.

TLS for a SAS/CONNECT Windows Spawner:
Example

Start-up of a Windows Spawner on a Single-User SAS/CONNECT
Server

After digital certificates for the CA, the server, and the client have been generated and
imported into the appropriate Certificate Store, you can start a spawner program that
runs on a server that SAS/CONNECT clients connect to.

Here is an example of how to start a Windows spawner on a SAS/CONNECT server.
From <SASHome>\SASFoundation\9.4, execute the following command:

cntspawn -install -netencryptalgorithm ssl -sslcertsubj "apex.pc.com"
-sascmd mysas.bat -servuser userid -servpass password

The following table shows the SAS commands that are used to start a spawner on a
SAS/CONNECT single-user server.

Table 5.3 SAS Commands and Arguments for Spawner Start-Up Tasks

SAS Command and Arguments Function

CNTSPAWN Starts the spawner.

-INSTALL Causes an instance of a spawner to be
installed as a Windows service. For
information about the -INSTALL option, see
“Spawner Options” in SAS/CONNECT User’s
Guide.

-NETENCRYPTALGORITHM SSL Specifies the SSL encryption algorithm.

-SSLCERTSUBJ "apex.pc.com" Specifies the subject name that is used to
search for a certificate from the Microsoft
Certificate Store.

TLS for a SAS/CONNECT Windows Spawner: Example 67

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=camref&pubcode=68088&id=titlepage
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=camref&pubcode=68088&id=titlepage
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=connref&pubcode=69581&id=p0qxop2ou79cc3n1mo57cu3lrc1n
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=connref&pubcode=69581&id=p0qxop2ou79cc3n1mo57cu3lrc1n

SAS Command and Arguments Function

-SASCMD mysas.bat Specifies the name of an executable file that
starts a SAS session when you sign on without
a script file.

-SERVUSER user-ID Specifies the user-ID to be used to start the
spawner and to obtain a digital certificate. The
-SERVUSER and -SERVPASS options are
used together and must be specified when the
spawner is installed as a service (the -
INSTALL option is specified). For
information about the -SERVUSER option,
see “Spawner Options” in SAS/CONNECT
User’s Guide.

-SERVPASS password Specifies the password to be used to start the
spawner and to obtain a digital certificate. The
-SERVUSER and -SERVPASS options are
used together and must be specified when the
spawner is installed as a service (the -
INSTALL option is specified). For
information about the -SERVPASS option, see
“Spawner Options” in SAS/CONNECT User’s
Guide.

In order for the Windows spawner to locate the appropriate server digital certificate in
the Microsoft Certificate Store, you must specify the -SSLCERTSUBJ system option in
the script that is specified by the -SASCMD option. -SSLCERTSUBJ specifies the
subject name of the digital certificate that TLS should use. The subject that is assigned to
the -SSLCERTSUBJ option and the computer that is specified in the client sign-on must
be identical.

Note: You can also use the SSLCERTISS= and SSLCERTSERIAL= options instead of
the SSLCERTSUBJ= option to identify a digital certificate.

If the Windows spawner is started as a service, the -SERVPASS and -SERVUSER
options must also be specified in the Windows spawner start-up command in order for
TLS to locate the appropriate CA digital certificate.

For complete information about starting a Windows spawner, see Communications
Access Methods for SAS/CONNECT and SAS/SHARE.

Connection of a SAS/CONNECT Client to a Windows Spawner on a
SAS/CONNECT Server

After a spawner has been started on a SAS/CONNECT server, a SAS/CONNECT client
can connect to it.

Here is an example of how to make a client connection to a Windows spawner that is
running on a SAS/CONNECT server:

options netencryptalgorithm=ssl;
%let machine=apex.pc.com;
signon machine.unxspawn user=_prompt_;

The computer that is specified in the client sign-on and the subject (the -SSLCERTSUBJ
option) that is specified at the server must be identical.

68 Chapter 5 • Encryption Technologies: Examples

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=connref&pubcode=69581&id=p0qxop2ou79cc3n1mo57cu3lrc1n
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=connref&pubcode=69581&id=p0qxop2ou79cc3n1mo57cu3lrc1n
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=connref&pubcode=69581&id=p0qxop2ou79cc3n1mo57cu3lrc1n
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=connref&pubcode=69581&id=p0qxop2ou79cc3n1mo57cu3lrc1n

The following table shows the SAS options that are used to connect to a Windows
spawner that runs on a SAS/CONNECT server.

Table 5.4 SAS Options, Statements, and Arguments for Client Access to a SAS/CONNECT
Server

SAS Options, Statements, and
Arguments Function

NETENCRYPTALGORITHM=SSL Specifies the encryption algorithm

SIGNON=server-ID Specifies which server to connect to

USER=_PROMPT_ Prompts for the user ID and password to be
used for authenticating the client to the server

The server-ID and the server's Common Name, which was specified in the server's
digital certificate, must be identical.

TLS on a z/OS Spawner on a SAS/CONNECT
Server: Example

Start-up of a z/OS Spawner on a SAS/CONNECT Server
After digital certificates are generated for the CA, the server, and the client, and a CA
trust list for the client is created, you can start a z/OS spawner program that runs on a
server that SAS/CONNECT clients connect to.

Note: Starting in the third maintenance release of SAS 9.4, you can use the SDM to
manage your certificates. The SSLCALSTLOC defaults to <SASRoot>/SASHome/
SASSecurityCertificateFramework/1.1/cacerts/trustedcerts.pem
and is set at SAS installation in the z/OS common options template. Therefore, you
no longer need to specify the -SSLCALISTLIC option.

For example:

//SPAWNER EXEC PGM=CNTSPAWN,
// PARM='-service 4321 =<//DDN:SYSIN'
//STEPLIB DD DISP=SHR,DSN=<customer.high.level.pfx>.LIBRARY
//STEPLIB DD DISP=SHR,DSN=<customer.high.level.pfx>.LIBE
//SYSPRINT DD SYSOUT=*
//SYSTERM DD SYSOUT=*
//TKMVSJNL DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//SYSIN DD *
-netencryptalgorithm ssl
-sslpkcs12loc /users/server/certificates/server.p12
-sslpkcs12pass starbuck1
-sslcalistloc /users/server/certificates/sas.pem
-sascmd /users/server/command.sh

The following table explains the SAS commands that are used to start a spawner on a
SAS/CONNECT server.

TLS on a z/OS Spawner on a SAS/CONNECT Server: Example 69

Table 5.5 SAS Commands and Arguments for Spawner Start-Up Tasks

SAS Commands and Arguments Function

CNTSPAWN Starts the spawner

-SERVICE 4321 Specifies the spawner service that is listening
on port 4321

- NETENCRYPTALGORITHM SSL Specifies the SSL encryption algorithm

-SSLPKCS12LOC /users/server/certificates/
serverkey.p12

Specifies the file path for the location of the
server's PKCS #12 DER encoding package

-SSLPKCS12PASS password Specifies the password to access the server's
private key in the PKCS #12 package

-SSLCALISTLOC /users/server/certificates/
sas.pem

Specifies the CA trust list.

Note: Starting in the third maintenance
release of SAS 9.4, if you are using the SDM
to manage your certificates, you no longer
need to specify this command.

-SASCMD /users/server/command.sh Specifies the name of an executable file that
starts a SAS session when you sign on without
a script file

In order for the z/OS spawner to locate the appropriate server digital certificate, you
must specify either the -SSLCERTLOC, -SSLPVTKEYLOC, and -SSLPVTKEYPASS
options or the -SSLPKCS12LOC and -SSLPKCS12PASS options in the script that is
specified by the -SASCMD option.

Here is an example of an executable file, command.sh:

#!/bin/sh
args=$*
if [-n "$NETENCRALG"] ; then
 args="$args -netencralg $NETENCRALG"
fi
if [-n "$SASDAEMONPORT"] ; then
 args="$args -sasdaemonport $SASDAEMONPORT"
fi
if [-n "$SASCLIENTPORT"] ; then
 args="$args -sasclientport $SASCLIENTPORT"
fi
export TSOOUT=
export SYSPROC=SAS.CLIST
/bin/tso -t %sas -dmr -noterminal
-sslpkcs12loc /users/server/certificates/serverkey.p12
-sslpkcs12pass password $args

For complete information about starting a z/OS spawner, see Communications Access
Methods for SAS/CONNECT and SAS/SHARE.

70 Chapter 5 • Encryption Technologies: Examples

Connection of a SAS/CONNECT Client to a z/OS Spawner
After a z/OS spawner is started on a SAS/CONNECT server, a SAS/CONNECT client
can connect to it.

The following example shows how to connect a client to a spawner that is running on a
SAS/CONNECT server:

options command-tcp netencryptalgorithm=ssl;
options sslcalistloc="/users/johndoe/certificates/sas.pem";
%let machine=apex.server.com;
signon machine.4321 user=_prompt_;

The following table explains the SAS options that are used to connect to a
SAS/CONNECT server.

Table 5.6 SAS Options and Arguments for Client Access to a SAS/CONNECT Server

SAS Options and Arguments Client Access Tasks

COMAMID=TCP Specifies the TCP/IP access method

NETENCRYPTALGORITHM=SSL Specifies the encryption algorithm

SSLCALISTLOC=sas.pem Specifies the CA trust list

SIGNON=server-ID.service Specifies the server and service to connect to

USER=_PROMPT_ Prompts for the user ID and password to be
used for authenticating the client to the server

The server ID and the server's Common Name, which was specified in the server's
digital certificate, must be identical.

For complete information about connecting to a z/OS spawner, see Communications
Access Methods for SAS/CONNECT and SAS/SHARE.

TLS for SAS/SHARE on UNIX: Example

Start-up of a Multi-UserSAS/SHARE Server
After certificates for the CA, the server, and the client have been generated, and a CA
trust list for the client has been created, you can start a SAS/SHARE server.

Here is an example of starting a secured SAS/SHARE server:

%let tcpsec=_secure_;
options netencryptalgorithm=ssl;
options sslcertloc="/users/johndoe/certificates/server.pem";
options sslpvtkeyloc="/users/johndoe/certificates/serverkey.pem";
options sslpvtkeypass="password";
proc server id=shrserv;
run;

TLS for SAS/SHARE on UNIX: Example 71

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=camref&pubcode=68088&id=titlepage
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=camref&pubcode=68088&id=titlepage

The following table lists the SAS option or statement that is used for each task to start a
server.

Table 5.7 SAS Options and Statements for Server Start-Up Tasks

SAS Options and Statements Server Start-Up Tasks

TCPSEC= _SECURE_ Secures the server

NETENCRALG=SSL Specifies SSL as the encryption algorithm

SSLCERTLOC=server.pem Specifies the filepath for the location of the
server's certificate

SSLPVTKEYLOC=serverkey.pem Specifies the filepath for the location of the
server's private key

SSLPVTKEYPASS="password" Specifies the password to access server's private
key

PROC SERVERID=shrserv Starts the server

Note: As an alternative to using the SSLPVTKEYPASS= option to protect the private
key, you might prefer that the private key remain unencrypted, and use the file
system permissions to prevent Read and Write access to the file that contains the
private key. To store the private key without encrypting it, use the-NODES option
when requesting the certificate.

SAS/SHARE Client Access of a SAS/SHARE Server
After a SAS/SHARE server has been started, the client can access it.

Here is an example of how to make a client connection to a secured SAS/SHARE server:

options sslcalistloc="/users/johndoe/certificates/cacerts.pem";
%let machine=apex.server.com;
libname a '.' server=machine.shrserv user=_prompt_;

The following table lists the SAS options that are used to access a SAS/SHARE server
from a client.

Table 5.8 SAS Options and Arguments Tasks for Accessing a SAS/SHARE Server from a
Client

SAS Options and Arguments Client Access Tasks

SSLCALISTLOC=cacerts.pem Specifies the CA trust list

SERVER=machine.shrserv Specifies the machine and server to connect to

USER=_PROMPT_ Prompts for the user ID and password to be
used for authenticating the client to the server

72 Chapter 5 • Encryption Technologies: Examples

The server-ID and the server's Common Name, which was specified in the server's
certificate, must be identical.

TLS for SAS/SHARE on Windows: Examples

Start-up of a Multi-UserSAS/SHARE Server
After certificates for the CA, the server, and the client have been generated and imported
into the appropriate certificate store, you can start a SAS/SHARE server. Here is an
example of how to start a secured SAS/SHARE server:

%let tcpsec=_secure_;
options comamid=tcp netencryptalgorithm=ssl;
options sslcertiss="Glenn's CA";
options sslcertserial="0a1dcfa3000000000015";
proc server id=shrserv;
run;

The following table lists the SAS option or statement that is used for each task to start a
server.

Table 5.9 SAS Options, Statements, and Arguments for Server Start-Up Tasks

SAS Options, Statements, and
Arguments Server Start-Up Tasks

TCPSEC= _SECURE_ Secures the server

COMAMID=TCP Specifies the TCP/IP access method

NETENCRALG=SSL Specifies SSL as the encryption algorithm

SSLCERTISS="Glenn's CA" Specifies the name of the issuer of the digital
certificate that TLS should use

SSLCERTSERIAL="0a1dcfa30000000000
15"

Specifies the serial number of the digital
certificate that TLS should use

PROC SERVERID=shrserv; Starts the server

SAS/SHARE Client Access of a SAS/SHARE Server
After a SAS/SHARE server has been started, the client can access it.

Here is an example of how to make a client connection to a secured SAS/SHARE server:

options comamid=tcp;
%let machine=apex.server.com;
libname a '.' server=machine.shrserv user=_prompt_;

The following table lists the SAS options that are used for accessing a server from a
client.

TLS for SAS/SHARE on Windows: Examples 73

Table 5.10 SAS Options and Arguments for Accessing a SAS/SHARE Server from a Client

SAS Options and Arguments Client Access Tasks

COMAMID=TCP Specifies the TCP/IP access method

SERVER=machine.shrserv Specifies the machine and server to connect to

USER=_PROMPT_ Prompts for the user ID and password to be
used for authenticating the client to the server

The server-ID and the server's Common Name, which was specified in the server's
certificate, must be identical.

TLS for SAS/SHARE on z/OS: Example

Start-up of a Multi-UserSAS/SHARE Server
After certificates for the CA, the server, and the client have been generated, and a CA
trust list for the client has been created, you can start a SAS/SHARE server.

Here is an example of starting a secured SAS/SHARE server:

%let tcpsec=_secure_;
options netencryptalgorithm=ssl;
options sslpkcs12loc="/users/johndoe/certificates/server.p12;
options sslpkcs12pass="password";
proc server id=shrserv;
run;

The following table lists the SAS option or statement that is used for each task to start a
server.

Table 5.11 SAS Options, Statements, and Arguments for Server Start-Up Tasks

SAS Options, Statements, and
Arguments Server Start-Up Tasks

TCPSEC= _SECURE_ Secures the server

NETENCRALG=SSL Specifies SSL as the encryption algorithm

SSLPKCS12LOC=server.p12 Specifies the filepath for the location of the
server's private key

SSLPKCS12PASS="password" Specifies the password to access server's private
key

PROC SERVERID=shrserv Starts the server

74 Chapter 5 • Encryption Technologies: Examples

SAS/SHARE Client Access of a SAS/SHARE Server
After a SAS/SHARE server has been started, the client can access it.

Here is an example of how to make a client connection to a secured SAS/SHARE server:

options sslcalistloc="/users/johndoe/certificates/cacerts.pem";
%let machine=apex.server.com;
libname a '.' server=machine.shrserv user=_prompt_;

The following table lists the SAS options that are used to access a SAS/SHARE server
from a client.

Table 5.12 SAS Options and Arguments for Accessing a SAS/SHARE Server from a Client

SAS Options and Arguments Client Access Tasks

SSLCALISTLOC=cacerts.pem Specifies the CA trust list

SERVER=machine.shrserv Specifies the machine and server to connect to

USER=_PROMPT_ Prompts for the user ID and password to be
used for authenticating the client to the server

The server-ID and the server's Common Name, which was specified in the server's
certificate, must be identical.

SSH Tunnel for SAS/CONNECT: Example

Start-up of a UNIX Spawner on a Single-User SAS/CONNECT Server
Here is an example of code for starting a UNIX spawner program that runs on a server
that SAS/CONNECT clients connect to.

cntspawn -service 4321

The UNIX spawner is started and is listening on destination port 4321. For complete
details about starting a UNIX spawner, see Communications Access Methods for
SAS/CONNECT and SAS/SHARE.

Connection of a SAS/CONNECT Client to a UNIX Spawner on a
SAS/CONNECT Server

After the UNIX spawner has been started on a SAS/CONNECT server, a
SAS/CONNECT client can connect to it.

Here is an example of code for setting up an SSH tunnel using OpenSSH and making a
client connection to the UNIX spawner that is running on a SAS/CONNECT server:

ssh -N -L
5555:SSH-client-computer:4321
SSH-server-computer

SSH Tunnel for SAS/CONNECT: Example 75

The SSH command is entered in the command line. The SSH software is started on the
computer on which the SSH client runs. The SSH client's listen port is defined as 5555.
The SAS/CONNECT client accesses the SSH client's listen port that is tunneled to the
UNIX spawner, which runs on destination port 4321.

%let sshhost=SSH-client-computer
5555;
signon sshhost;

In SAS, the macro variable SSHHOST is assigned to the SSH client computer and its
listen port 5555. A sign-on is specified to a SAS/CONNECT client at listen port 5555.
The SSH client forwards the request from port 5555 through an encrypted tunnel to the
SSH server, which forwards the request to the UNIX spawner that is listening on
destination port 4321.

SSH Tunnel for SAS/SHARE: Example

Start-up of a Multi-UserSAS/SHARE Server
Here is an example of code for starting a SAS/SHARE server:

proc server id=_4321; run;

A SAS/SHARE server is started and is ready to receive requests on destination port
4321.

SAS/SHARE Client Access of a SAS/SHARE Server
Here is an example of code for setting up an SSH tunnel and making a client connection
to a SAS/SHARE server:

ssh -N -L
5555:SSH-client-computer:4321
SSH-server-computer

The SSH command is entered in the command line. The SSH software is started on the
computer on which the SSH client runs. The SSH client's listen port is defined as 5555.
The SAS/SHARE client accesses the SSH client's listen port that is tunneled to the
SAS/SHARE server, which runs on destination port 4321.

%let sshhost=SSH-client-computer
5555;
libname orion '.' server=sshhost;

In SAS, the macro variable SSHHOST is assigned to the SSH client computer and its
listen port 5555. A LIBNAME statement is specified to access the library that is located
on the SAS/SHARE server. The SSH client forwards the request from port 5555 through
an encrypted tunnel to the SSH server, which forwards the request to destination port
4321 on the SAS/SHARE server.

76 Chapter 5 • Encryption Technologies: Examples

Part 2

Installing and Configuring TLS
and Certificates

Chapter 6
Certificates Explained . 79

Chapter 7
Installing and Configuring TLS and Certificates on UNIX 85

Chapter 8
Installing and Configuring TLS and Certificates on Windows 105

Chapter 9
Installing and Configuring TLS and Certificates on z/OS 119

Chapter 10
Troubleshooting . 125

77

78

Chapter 6

Certificates Explained

About Certificates . 79

Certificate File Formats . 80

Overview of Certificate Management Using the SAS Deployment Manager 82

Certificate Implementation: How TLS Client and Servers Negotiate 83

How SAS Validates Certificates between Clients and Servers 83

About Certificates
Certificates are used to authenticate a server process or a human user. A certificate
authority (CA) is an authority in a network that issues and manages security credentials
and public keys for message encryption. As part of a public key infrastructure (PKI), a
CA checks with a registration authority to verify information provided by the requestor
of a digital certificate. If the registration authority verifies the requestor's information,
the CA can then issue a certificate.

A certificate authority (CA) is a third-party organization that verifies the information or
the identity of computers on a network and issues digital certificates of authenticity.
Digital certificates are used in a network security system to guarantee that the two
parties exchanging information are really who they claim to be. Depending on how a
network's security system is configured, the certificate can include its owner's public key
and name, the expiration date of the certificate, or other information.

Authenticating entities is accomplished through three types of certificates:

• Third-party-signed

You go to a commercial third-party certificate authority, such as VeriSign, Symantec,
or Comodoto and purchase a certificate.

• site-signed

You go to the IT department at your site to obtain a certificate.

• self-signed

You serve as your own certificate authority.

79

Figure 6.1 Types of Certificates

Certificate File Formats
There are many file formats used to identify certificates. Here are some of them:

• Encodings (also used as extensions)

PEM
Privacy Enhanced Email (.pem) is a container format (Base64 Encoded x.
509)The .pem extension is used for different types of X.509v3 files, which
contain ASCII (Base64) armored data prefixed with a “—– BEGIN …” line.

80 Chapter 6 • Certificates Explained

Examples are CA certificate files or an entire certificate chain that includes a
public key, a private key, and root certificates.

The PEM file format is preferred by open-source software. It can have a variety
of extensions (.pem, .key, .cer, .cert, and so on). Refer to “Convert between PEM
and DER File Formats Using OpenSSL” on page 95, “TLS on Windows:
Converting between PEM and DER File Formats for TLS” on page 116.

DER
Distinguished Encoding Rules (.der) is used for binary DER encoded certificates.
A PEM file is just a Base64 encoded DER file. OpenSSL can convert these to
PEM. Windows sees these as Certificate files. These files can also bear the .cer
extension or the .crt extension. Refer to “Convert between PEM and DER File
Formats Using OpenSSL” on page 95, “TLS on Windows: Converting between
PEM and DER File Formats for TLS” on page 116.

PKCS12 .P12
Public-Key Cryptography Standards (.pkcs12) is a file format that has both
public and private keys in the file. Private keys are password protected. These
files are also known as *.PFX format on Windows. Unlike PEM files, this
container is fully encrypted.

• Common Extensions

CRT
The CRT extension is used for certificates. The certificates can be encoded as
binary DER or as ASCII PEM. The CER and CRT extensions are nearly
synonymous.

Note: The only time CRT and CER can safely be interchanged is when the
encoding type can be identical. For example, PEM-encoded CRT is the same
as PEM-encoded CER.

CER
A CER file is recognized by Windows Explorer as a certificate. It is an alternate
form of CRT (Microsoft Convention). You can use MS to convert CRT to CER.
You can encode both to DER-encoded CER or to base64[PEM]-encoded CER.

Note: If you export a certificate using the Windows export wizard, the CER-
formatted file is Base64 Encoded x.509 and is the equivalent to PEM.

Note: The only time CRT and CER can safely be interchanged is when the
encoding type can be identical. For example, PEM-encoded CRT is the same
as PEM-encoded CER.

CSR
This is a Certificate Signing Request. Some applications can generate these for
submission to certificate authorities. It includes some of the key details of the
requested certificate, such as subject, organization, and state, as well as the public
key of the certificate that will be signed. These are signed by the CA and a
certificate is returned. The returned certificate is the public certificate. Note that
this public certificate can be in a couple of formats.

KEY
The KEY extension is used both for public and private PKCS#8 keys. The keys
can be encoded as binary DER or as ASCII PEM.

Certificate File Formats 81

Overview of Certificate Management Using the
SAS Deployment Manager

Starting in the third maintenance release of SAS 9.4, a bundle of root digital certificates
is provided to get TLS up and working at SAS installation. SAS provides a bundle of
certificates from Mozilla that can be used as the default trust provider when you are
setting up protocols such as TLS. When providing your own signed certificates, you
must add the CA root and intermediate certificates to the trusted CA bundle using the
SAS Deployment Manager. See “Add Your Certificates to the Trusted CA Bundle” on
page 97.

You will also need to add your self-signed certificates to the trusted CA bundle.

Note: In the second maintenance release for SAS 9.4 and earlier, when providing your
own signed certificates, you must add the CA root and intermediate certificates to the
SAS Private JRE using the Java keytool -importcert command. See “Add
Your Certificates to the SAS Private JRE” on page 101.

Note: Regardless of your release of SAS 9.4, on Windows, when providing your own
signed certificates, you must add the CA root and intermediate certificates to the
Windows certificates stores using the Windows Certificates Snap-in. See “Add Your
Certificates to the Windows CA Stores” on page 109.

The Mozilla bundle of CA certificates (root certificates) is used to create two new files,
the trustedcerts.pem file and the trustedcerts.jks file (used by Java apps). Initially, these
files contain only a list of root certificates that have been approved by Mozilla for
inclusion in Network Security Services (NSS). These files are updated each time the
SAS Deployment Manager add and remove certificates tasks are performed.

For additional information about the Mozilla Bundle of Certificates, see Mozilla CA
Certificate Store. The current list of included root certificates can be found at Mozilla
Included CA Certificate List.

When you use the SAS Deployment Manager task to add custom CA certificates, your
certificates are added to the trustedcerts.pem and trustedcerts.jks files. The
trustedcerts.jks is copied to the jssecacerts file in the SAS Private JRE on Windows and
UNIX hosts. After you add files using the SAS Deployment Manager, the three files
contain the CA certificates redistributed by SAS from Mozilla as well as the certificates
that you just added. The same process occurs when the SAS Deployment Manager task
to used to remove the same custom CA certificates. The three files are regenerated. All
three files (trustedcerts.pem, trustedcerts.jks, and jssecacerts) are kept in sync using the
SAS Deployment Manager tasks. Refer to the SAS Deployment Wizard and SAS
Deployment Manager 9.4: User's Guide for a detailed discussion of these files and the
tasks to add and remove certificates.

When the initial installation of SAS Software is complete on UNIX and z/OS platforms,
the SSLCALISTLOC option is set by default to point to the trustedcerts.pem file.

Note: THE SSLCALISTLOC option should not be overridden or changed unless
directed by technical support. In addition, the trustedcerts.pem file should not be
altered by any means other than by using the new SAS Deployment Manager add
and remove certificate tasks. If the file is changed by another means, the provided
trusted CA bundle might not be supported and maintenance of those changes is not
guaranteed.

CAUTION:

82 Chapter 6 • Certificates Explained

https://www.mozilla.org/en-US/about/governance/policies/security-group/certs/
https://www.mozilla.org/en-US/about/governance/policies/security-group/certs/
https://wiki.mozilla.org/CA:IncludedCAs
https://wiki.mozilla.org/CA:IncludedCAs

Do not remove any of the CA certificates that were initially included as part of the
Mozilla CA Bundle.

Certificate Implementation: How TLS Client and
Servers Negotiate

Public and private key pairs are used to negotiate algorithms between the TLS client and
the TLS enabled server. Here are a few key points.

• TLS needs public and private key pairs. The server sends its public key to the client.
The client can then send its public key to the server. However, the private key is
never sent anywhere.

• Public keys are stored in files commonly called certificates and private keys are
stored in files commonly called keys. TLS uses certificates to describe the public and
private key pairs to use. TLS uses certificates defined by the X.509 standard. These
certificates contain information that includes the subject (usually the host name) and
the Public Key Signature signed by a Certificate Authority (CA).

Certificates come in PEM, DER, and PKCS12 file formats. For more details, see
“Certificate File Formats” on page 80.

• To send a certificate, the sender indicates which public certificate to send and has
access to its private key associated with that public certificate. If the private key uses
a password, the sender must know that password to use the private key.

• Secure servers always send their certificates to the client.

• Clients are required to send their certificates to the server only if they are asked.

• The receiver verifies the certificates in the following ways:

• making sure the certificate has not expired.

• making sure the certificate authority (CA) listed in the certificate is known and is
valid. If the CA in a certificate is signed by another CA certificate, it is known as
an intermediate CA. The signer CA’s certificate must also be verified. This
creates a CA certificate chain.

• making sure that the certificate’s “Subject” common name (CN) is for the host
that the certificate was sent from. Wildcards such as “*.mydomain.com” can be
used in the certificate.

• making sure the certificate has not been revoked.

How SAS Validates Certificates between Clients
and Servers

Certificates must be validated between the clients and servers. The following SAS
system options, environment variables, or Windows selections are set to provide
information about the signer’s public key.

• For SAS servers on UNIX or z/OS:

Certificates can be in one of two locations:

How SAS Validates Certificates between Clients and Servers 83

• All certificates must be in one file in PEM format that is referenced by the
SSLCALISTLOC= option. The option points to the signer's public key (a file in
PEM format). When a server or client receive a certificate, they have to validate
the certificate using the signer's public key.

Normally, a website is required to send all intermediate certificates when they
send the server certificate. If they do, the SSLCALISTLOC= just needs to
contain the root CA certificate. If it does not, then all intermediate CA
certificates need to be put into the file.

See “SSLCALISTLOC= System Option” on page 30.

• For UNIX, all certificates must be in an OpenSSL CA certificates directory
pointed to by the SSL_CERT_DIR or SSLCACERTDIR environment variables.

SSL_CERT_DIR is the OpenSSL environment variable and SSLCACERTDIR is
the SAS environment variable. The layout of this directory is specified by
OpenSSL, where the certificates are in PEM format and referenced by their hash
values.

See “SSLCACERTDIR Environment Variable” on page 46 and
“SSL_CERT_DIR Environment Variable” on page 48.

• For the SAS servers on Windows:

The certificate must be in the Windows System truststore.

Note: Many certificates are already pre-populated on Windows machines.

84 Chapter 6 • Certificates Explained

Chapter 7

Installing and Configuring TLS
and Certificates on UNIX

TLS on UNIX: System and Software Requirements . 85

Certificate Locations . 86

Preparation for Setting Up Digital Certificates . 87

Setting Up Digital Certificates Using OpenSSL . 87
Step 1. Generate a New RSA Private Key and Certificate

Signing Request (CSR) . 87
Step 2 (Optional). Generate a Public Certificate from an Existing Certificate 91
Step 3. Secure Your Private Key File . 93
Step 4. Check Your Digital Certificate Using OpenSSL . 93
Step 5. Create a Certificate Chain in PEM Format Using OpenSSL 93
Step 6. Verify Certificates in the Trust Chain Using OpenSSL 95
Step 7. End OpenSSL . 95

Convert between PEM and DER File Formats Using OpenSSL 95

Manage Certificates in the Trusted CA Bundle Using the SAS
Deployment Manager . 96

Overview . 96
Add Your Certificates to the Trusted CA Bundle . 97
Remove Your Certificates from the Trusted CA Bundle . 100
SAS Deployment Manager Criteria for Validating Certificates 101

Add Your Certificates to the SAS Private JRE . 101

How Clients and Servers Validate Certificates . 103

TLS on UNIX: Building FIPS 140-2 Capable OpenSSL . 103

TLS on UNIX: System and Software Requirements
The system and software requirements for using TLS on UNIX operating environments
are as follows:

• a computer that runs UNIX.

• Internet access and a web browser.

• the TCP/IP communications access method when connecting to SAS/CONNECT or
SAS/SHARE servers. See “Access Methods” in SAS/CONNECT User’s Guideand
Access Methods in SAS/SHARE User’s Guidefor your operating environment.

85

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=connref&pubcode=69581&id=p18adngt11xyyhn1s6aixijxqbzr

• knowledge of your site's security policy, practices, and technology. The properties of
the digital certificates that you request are based on the security policies that have
been adopted at your site.

• access to the SAS Deployment Manager if you plan to add digital certificates when
you install SAS 9.4m3 and above. See SAS® Deployment Wizard and SAS®
Deployment Manager 9.4: User's Guide.

• access to the SAS Deployment Wizard if you plan to create a FIPS-2 capable
environment when you install SAS 9.4. See SAS® Deployment Wizard and SAS®
Deployment Manager 9.4: User's Guide.

• access to the OpenSSL utility at OpenSSL Source. You will need access if you plan
to use OpenSSL for the following actions:

• You plan to apply to become a CA.

• You plan to build FIPS 140-2 capable OpenSSL.

• Your site administrator plans to generate a site certificate and private key.

Note: The SAS 9.4 versions of OpenSSL provided by SAS are not FIPS compliant.
Refer to “TLS on UNIX: Building FIPS 140-2 Capable OpenSSL ” on page 103 for
details.

Certificate Locations
SSLCALISTLOC= points to one file that contains a list of root certificates. Environment
variables SSLCACERTDIR and SSL_CERT_DIR point to a directory that contains all of
the public certificate files of all CAs in the trust chain. One file exists for each CA in the
trust chain.

Certificates must be in one of the following locations:

• All certificates must be in one file in PEM format that is referenced by the
SSLCALISTLOC= system option. The system options are specified in the server's
invocation command.

In the third maintenance release of SAS 9.4, the sasv9.cfg file in UNIX deployments
includes the SSLCALISTLOC option for server side processes to use for certificate
validation. In the <SASHome>/SASFoundation/9.4/sasv9.cfg file, the
SSLCALISTLOC option now points to <SASHome>/
SASSecurityCertificateFramework/1.1/cacerts/
trustedcerts.pem. The file where the trusted certificates reside is named
trustedcacerts.pem. For syntax, see “SSLCALISTLOC= System Option” on page 30.

• On UNIX, all certificates must be in an OpenSSL CA certificates directory pointed
to by the SSL_CERT_DIR or SSLCACERTDIR environment variables.

SSL_CERT_DIR is the OpenSSL environment variable and SSLCACERTDIR is the
SAS environment variable. The layout of this directory is specified by OpenSSL
where the certificates are in PEM format.

If you use SSL_CERT_DIR or SSLCACERTDIR, create a link to the file named
after the certificate’s hash value.

$ ln -s SAS-configuration-directory/certs/cacert1.pem
'openssl x509 -noout -hash -in
SAS-configuration-directory/certs/cacert.pem'.0

86 Chapter 7 • Installing and Configuring TLS and Certificates on UNIX

http://www.openssl.org/source/

Note: You must add ".0" to the hash value.

For information, see “SSLCACERTDIR Environment Variable” on page 46 and
“SSL_CERT_DIR Environment Variable” on page 48.

Preparation for Setting Up Digital Certificates
The process of setting up TLS on UNIX involves setting up Digital Certificates. The
following are steps that you need to take and information that you need to know to
request digital certificates and to add the certificates to a CA trust list of certificates.

In the third maintenance release of SAS 9.4, the process for adding certificates to the
trusted CA list has been made easier. You can now use the SAS Deployment Manager at
SAS installation to add your existing digital certificates to the Trusted Certificate Bundle
of Mozilla certificates (trustedcerts.pem). For more information, see “Add Your
Certificates to the Trusted CA Bundle” on page 97.

Here is much of the process that needs to happen to set up digital certificates:

• If your server comes with an instance of OpenSSL, locate that directory. You will
need that information to set UNIX environment variable OPENSSL_CONF=.

• Create a system (database or other) to keep track of your signed certificates.

• Create an openssl.cnf file. This is optional. This file stores the locations of your CA
keys. For a partial example of this file, see Figure 7.1 on page 89.

• To prepare the certificate(s) to add to the trusted CA bundle, you can, as needed,
create a root certificate. See “ Setting Up Digital Certificates Using OpenSSL ” on
page 87.

• To prepare the certificate(s) to add to the trusted CA bundle, you can, as needed,
create a certificate trust list and verify it using the instructions provided. See “Step 5.
Create a Certificate Chain in PEM Format Using OpenSSL” on page 93 and “Step
6. Verify Certificates in the Trust Chain Using OpenSSL” on page 95.

• Use the SAS Deployment Manager after SAS installation to add your root and
intermediate certificates to the trusted CA bundle and validate the certificates. See
“Add Your Certificates to the Trusted CA Bundle” on page 97.

Setting Up Digital Certificates Using OpenSSL

Step 1. Generate a New RSA Private Key and Certificate Signing
Request (CSR)

The tasks that you perform to request a digital certificate for the CA, the server, and the
client are similar. However, the values that you specify are different.

We are using an example to show you how to generate a private key and certificate in
PEM format. SAS on UNIX and z/OS platforms requires that you use PEM format.

There are many different options that you can use with OpenSSL to generate certificates
and private keys. SAS recommends using the highest encryption standards with access
controls to secure your deployment.

Setting Up Digital Certificates Using OpenSSL 87

In the following example, Proton, Inc. is the organization that is applying to become a
CA. A certificate request is sent to a certificate authority to get it signed, thereby
becoming a CA. After Proton, Inc. becomes a CA, it can serve as a CA for issuing other
digital certificates to clients and servers on its network. The certificates generated by the
Proton, Inc. CA are considered site-signed certificates.

Note: You can also sign the certificate yourself if you have your own certificate
authority or create a self-signed certificate.

Perform the following tasks:

1. In this example, we are using an OpenSSL conf file. You do not have to use this file.
You can submit your options with the OpenSSL command or allow OpenSSL to
prompt you.

Edit your existing openssl.cnf file or create an openssl.cnf file. OpenSSL by default
looks for a configuration file in /usr/lib/ssl/openssl.cnf. It is good
practice to add -config ./openssl.cnf to the commands OpenSSL CA or
OpenSSL REQ to ensure that OpenSSL is reading the correct file.

Note: You can find where the openssl.cnf file is located by submitting the OpenSSL
command.

openssl version -d

88 Chapter 7 • Installing and Configuring TLS and Certificates on UNIX

Here is an example of some of the information that can be specified in the
openssl.cnf file. Here is a partial file example. There is a lot more information about
certificates that can be specified.

Figure 7.1 Example of an OpenSSL.cnf File

2. Select the directory where OpenSSL was built.

3. Initialize OpenSSL.

$ openssl

4. Issue the appropriate command to request a digital certificate. In the example below,
we are creating an RSA private key and generating a Certificate Signing Request all
at once.

Table 7.1 OpenSSL Commands for Generating an RSA Private Key and Certificate
Signing Request

Request Certificate
for OpenSSL Command

CA req -config ./openssl.cnf -new -out ca.csr -newkey rsa:2048 -
keyout cakey.pem -nodes -sha256

Setting Up Digital Certificates Using OpenSSL 89

Request Certificate
for OpenSSL Command

Server req -config ./openssl.cnf -new -out server.csr -newkey rsa:2048 -
keyout serverkey.pem -sha256

Client req -config ./openssl.cnf -new -out client.csr -newkey rsa:2048 -
keyout clientkey.pem -sha256

Note: For FIPS 140-2 compliant TLS, specify -sha256. SHA256 and above is highly
recommended when creating your private key.

Table 7.2 Arguments and Values Used in OpenSSL Commands

OpenSSL Arguments and
Values Functions

req Requests a certificate

-config ./openssl.cnf Specifies the storage location for the configuration
details for the OpenSSL program

-new Identifies the request as new

-out ca.csr Specifies the storage location for the certificate request

-newkey rsa:2048 Generates a new private key along with the certificate
request that is 2048 bits in length using the RSA
algorithm.

-keyout cakey.pem Specifies the storage location for the private key

-nodes Prevents the private key from being encrypted

-sha256 Specifies that the SHA256 hash algorithm be used. Use
SHA256 for FIPS 140-2. Without this option, the
default is SHA-1.

5. Informational messages are displayed and prompts for additional information appear
according to the specific request.

To accept a default value, press the Enter key. To change a default value, type the
appropriate information and press the Enter key.

Note: Unless the -NODES option is used in the OpenSSL command when creating a
digital certificate request, OpenSSL prompts you for a password before allowing
access to the private key. It is highly recommended that you supply a password to
help protect the private key.

Here is an example of a request for a digital certificate:

OpenSSL> req -config ./openssl.cnf -new -out ca.req -newkey rsa:2048
-keyout privkey.pem -nodes
Using configuration from ./openssl.cnf

90 Chapter 7 • Installing and Configuring TLS and Certificates on UNIX

Generating a 2048 bit RSA private key
............................++++++
..++++++
writing new private key to 'cakey.pem'

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [US]:
State or Province Name (full name) [North Carolina]:
Locality Name (city) [Cary]:
Organization Name (company) [Proton Inc.]:
Organizational Unit Name (department) [IDB]:
Common Name (YOUR name) []: proton.com
Email Address []:Joe.Bass@proton.com
Please enter the following 'extra' attributes to be sent with
your certificate request
A challenge password []:
An optional company name []:
OpenSSL>

The request for a digital certificate is complete.

Note: For the server, the Common Name must be the name of the computer that the
server runs on. In our examples, we are using proton.com.

Step 2 (Optional). Generate a Public Certificate from an Existing
Certificate

Perform the following tasks to generate a digital certificate for a CA, a server, and a
client based on an existing certificate.

1. Issue the appropriate command to generate a public certificate from the certificate
signing request.

Table 7.3 OpenSSL Commands for Generating Digital Certificates on UNIX

Generate Certificate for OpenSSL Command

CA x509 -req -in ca.csr -signkey cakey.pem -out ca.pem -
sha256

Note: This command generates a self-signed certificate.

Server ca -config ./openssl.cnf -in server.csr -out server.pem -md
sha256

Note: This command creates certificates signed by the CA.
These are defined in the openssl.cnf file.

Setting Up Digital Certificates Using OpenSSL 91

Generate Certificate for OpenSSL Command

Client ca -config ./openssl.cnf -in client.csr -out client.pem -md
sha256

Note: This command creates certificates signed by the CA.
These are defined in the openssl.cnf file.

Note: The -md sha256 option is the minimum value that should be specified when
using FIPS 140-2 compliant TLS.

Table 7.4 Arguments and Values Used in OpenSSL Commands to Generate a Certificate

OpenSSL Arguments and Values Functions

x509 Identifies the certificate display and signing
utility

-req Specifies that a certificate be generated from
the request

ca Identifies the Certificate Authority utility

-config ./openssl.cnf Specifies the storage location for the
configuration details for the OpenSSL
utility

-in filename.csr Specifies the storage location for the input
for the certificate request

-out filename.pem Specifies the storage location for the
certificate

-signkey cakey.pem Specifies the private key that is used to sign
the certificate that is generated by the
certificate request

-md sha256 Specifies that the SHA256 hash algorithm
be used. Use SHA256 for FIPS 140-2.
Without this option, the default is SHA-1.

2. Informational messages are displayed and prompts for additional information appear
according to the specific request.

To accept a default value, press the Enter key. To change a default value, type the
appropriate information, and press the Enter key.

Here is a sample of the messaging for creating a server digital certificate:

Note: The password is for the CA's private key.

Using configuration from ./openssl.cnf
Enter PEM pass phrase: password
Check that the request matches the signature
Signature ok

92 Chapter 7 • Installing and Configuring TLS and Certificates on UNIX

The Subjects Distinguished Name is as follows
countryName :PRINTABLE:'US'
stateOrProvinceName :PRINTABLE:'NC'
localityName :PRINTABLE:'Cary'
organizationName :PRINTABLE:'Proton, Inc.'
organizationalUnitName:PRINTABLE:'IDB'
commonName :PRINTABLE:'proton.com'
Certificate is to be certified until Oct 16 17:48:27 2014 GMT (365 days)
Sign the certificate? [y/n]:y
1 out of 1 certificate requests certified, commit? [y/n]y
Write out database with 1 new entries Data Base Updated

The subject's Distinguished Name is obtained from the digital certificate request.

The generation of a digital certificate is complete.

A root CA digital certificate is self-signed, which means that the digital certificate is
signed with the private key that corresponds to the public key that is in the digital
certificate. Except for root CAs, digital certificates are usually signed with a private
key that corresponds to a public key that belongs to someone else, usually the CA.

Step 3. Secure Your Private Key File
To help secure access to the private key, use a password to restrict access to the private
key file. This can either be done when the private key is generated or it can be performed
afterward. For example, to use OpenSSL to add a password to a private key file, use the
following command:

openssl rsa -aes256 -in /tmp/cakey.pem -out /tmp/enccakey.pem

OpenSSL will prompt us for the password to use on the private key file.

Step 4. Check Your Digital Certificate Using OpenSSL
To check a digital certificate, issue the following command:

openssl> x509 -text -in filename.pem

A digital certificate contains data that was collected to generate the digital certificate
timestamps, a digital signature, and other information. However, because the generated
digital certificate is encoded (usually in PEM format), it is unreadable.

Step 5. Create a Certificate Chain in PEM Format Using OpenSSL
After generating a digital certificate for the CA, the server, and the client (optional), you
must identify for the OpenSSL client application one or more CAs that are to be trusted.
This list is called a chain of trust.

Note: In the third maintenance release of SAS 9.4, you can use the SAS Deployment
Manager after installation to add to the trusted CA bundle of certificates. For more
information, see “Add Your Certificates to the Trusted CA Bundle” on page 97.

If there is only one CA to trust, in the client application, specify the name of the file that
contains the OpenSSL CA digital certificate. If multiple CAs are to be trusted, you can
copy and paste into a new file the contents of all the digital certificates of CAs to be
trusted by the client application. These CAs can be primary, intermediate, or root
certificates. Add the root CAs to the client’s truststore.

Setting Up Digital Certificates Using OpenSSL 93

For the server, do not include the Root CA in the server's certificate chain.

To manually create a new trust list, use the following template:

(Your Server Certificate - ssl.crt)

-----BEGIN CERTIFICATE-----

<PEM encoded certificate>

-----END CERTIFICATE-----

(Your Intermediate CA Certificate(s))

-----BEGIN CERTIFICATE-----

<PEM encoded certificate>

-----END CERTIFICATE-----

(Your Root CA Certificate)

-----BEGIN CERTIFICATE-----

<PEM encoded certificate>

-----END CERTIFICATE-----

The content of the digital certificate in this example is represented as <PEM encoded
certificate> . The content of each digital certificate is delimited with a -----
BEGIN CERTIFICATE----- and -----END CERTIFICATE----- pair. All text
outside the delimiters is ignored. Therefore, you might not want to use delimited lines
for descriptive comments.

Generally, OpenSSL returns .pem files, CA's return .crt files (Microsoft returns .cer
files). Instead of manually cutting and pasting these files together (regardless of your file
extension), you can also concatenate the certificate authority files together. For example,
you can take an intermediate authority certificate file, a root authority certificate file, and
primary certificate file and concatenate them into a single PEM file. An example of
concatenating certificates is as follows:

cat server.pem > certchain.pem
cat intermediateCA.pem >> certchain.pem
cat rootCA.pem >> certchain.pem

Note: You can place these files in any order.

Because the digital certificate is encoded, it is unreadable. To view the file contents, you
can use the following OpenSSL commands for your file type:

openssl x509 -in cert.pem -text -noout
openssl x509 -in cert.cer -text -noout
openssl x509 -in cert.crt -text -noout

Use the following OpenSSL command to view a DER encoded Certificate:

openssl x509 -in certificate.der -inform der -text -noout

Note: If you are including a digital certificate that is stored in DER format into your
certificate chain, you must first convert it to PEM format. For more information,
see“Convert between PEM and DER File Formats Using OpenSSL” on page 95.

94 Chapter 7 • Installing and Configuring TLS and Certificates on UNIX

Step 6. Verify Certificates in the Trust Chain Using OpenSSL
Clients and servers exchange and validate each other’s digital certificates. All of the CA
certificates that are needed to validate a server certificate compose a trust chain. All CA
certificates in a trust chain have to be available for server certificate validation. The
certificates are either combined into one file pointed to by the SSLCALISTLOC= option
or are located as individual files in an OpenSSL directory pointed to by the
SSLCACERTDIR environment variable or the SSL_CERT_DIR environment variable.

For more information, see “SSLCACERTDIR Environment Variable” on page 46,
“SSL_CERT_DIR Environment Variable” on page 48, and “SSLCALISTLOC= System
Option” on page 30.

You can use the following OpenSSL command to verify certificates signed by a
recognized certificate authority (CA):

openssl verify -verbose -CAfile <your-CA_file>.pem <your-server-cert>.pem

If your local OpenSSL installation recognizes the certificate or its signing authority and
everything checks out (dates, signing chain, and so on.), you get a simple OK message.

Note: In the third maintenance release of SAS 9.4, you can use the SAS Deployment
Manager after installation to add your trust chain. The SAS Deployment Manager
also validates those certificates. For more information, see “Add Your Certificates to
the Trusted CA Bundle” on page 97.

Step 7. End OpenSSL
To end OpenSSL, type quit at the prompt.

Convert between PEM and DER File Formats
Using OpenSSL

By default, OpenSSL files are created in PEM (Privacy Enhanced Mail) format. TLS
files that are created in Windows operating environments are created in DER
(Distinguished Encoding Rules) format.

On Windows, you can import a file that is created in either PEM or DER format.
However, a digital certificate that is created in DER format must be converted to PEM
format before it can be included in a trust list on UNIX.

Here is an example of how to convert a server digital certificate from PEM input format
to DER output format:

OpenSSL> x509 -inform PEM -outform DER -in server.pem -out
server.der

Here is an example of how to convert a server digital certificate from DER input format
to PEM output format:

OpenSSL> x509 -inform DER -outform PEM -in server.der -out server.pem

Convert between PEM and DER File Formats Using OpenSSL 95

Manage Certificates in the Trusted CA Bundle
Using the SAS Deployment Manager

Overview
In the third maintenance release of SAS 9.4, you can add your certificates by using the
SAS Deployment Manager after installation.

Note: In the second maintenance release for SAS 9.4 and earlier, when providing your
own signed certificates, you must add the CA root and intermediate certificates to the
SAS Private JRE using the Java keytool -importcert command. See “Add
Your Certificates to the SAS Private JRE” on page 101.

The SAS Deployment Manager installation process provides the following:

• a Mozilla bundle of Trusted CA certificates. It is provided in the cacerts.pem file
located in new directory <SASHome>/
SASSecurityCertificateFramework/1.1/cacerts.

• the ability to manage the trusted CA bundle by adding or removing certificates. The
process also validates the certificates.

• the SSLCALISTLOC system option set to the default certificate path: <SASHome>/
SASSecurityCertificateFramework/1.1/cacerts/trustedcerts.pem

Files placed in the new directory and updated at installation are described below. How
the cacerts directory looks is shown in Figure 7.2 on page 97.

cacerts.pem
contains the Mozilla bundle of CA certificates provided at SAS installation. This file
is in PEM format.

cacerts.jks
contains the Mozilla bundle of CA certificates provided at SAS installation. This file
is in JKS (Java keystore) format.

trustedcerts.pem
contains a merged list of trusted CA certificates, including both CA certificates in the
cacerts.pem file and CA certificates added using the SAS Deployment Manager.
Trusted CA certificates can be added to and removed from this file using the SAS
Deployment Manager during the deployment process. This file is in PEM format.

trustedcerts.jks
contains a merged list of trusted CA certificates, including both CA certificates in the
cacerts.jks file and CA certificates added using the SAS Deployment Manager.
Trusted CA certificates can be added to and removed from this file using the SAS
Deployment Manager during the deployment process. This file is in JKS (Java
keystore) format.

96 Chapter 7 • Installing and Configuring TLS and Certificates on UNIX

Figure 7.2 SAS Security Certificate Framework Directory at Install

Add Your Certificates to the Trusted CA Bundle
Starting with the third maintenance release for SAS 9.4, if you are providing your own
site-signed certificates, then you must add the CA root certificate and all of its
intermediate certificates to the trusted CA bundle. If you are using self-signed
certificates, the self-signed certificate needs to be added to trusted CA bundle as well.
You do this using SAS Deployment Manager.

Note: You can add only one certificate at a time with the deployment manager. You
must rerun the deployment manager each time you add a certificate to the trusted CA
bundle.

Note: If you have any Windows machines, you must also add the CA root and
intermediate certificates to the Windows Certificate stores. For more information, see
“Add Your Certificates to the Windows CA Stores” on page 109.

Note: These steps are to be performed for sites that are running the third maintenance
for SAS 9.4 and later. If you are running the second maintenance release for SAS 9.4
or earlier, see “Add Your Certificates to the SAS Private JRE” on page 101.

To add CA root and intermediate certificates or to add self-signed certificates being used
in deployment, perform these steps:

1. Log on to the primary middle-tier machine as the SAS Installer user.

2. Start SAS Deployment Manager by navigating to SAS-installation-
directory/SASDeploymentManager/9.4 and launching sasdm.exe
(Windows) or sasdm.sh (UNIX). On Windows, you can use the shortcut on the
Start menu.

3. When prompted for the task, select Add Certificate to Trusted CA Bundle, and
click Next.

Manage Certificates in the Trusted CA Bundle Using the SAS Deployment Manager 97

4. Specify the path to your CA root certificate, and click Next.

Note: Certificate Location is the location that you established in “Certificate
Locations” on page 86.

The CA root certificate must be in base64 encoding (ASCII) and have a PEM, CRT,
or CER file extension. For more information, see “Certificate File Formats” on page
80.

Note: Add your CA root certificate before adding your CA intermediate certificates.

5. On the Summary page, click Start.

98 Chapter 7 • Installing and Configuring TLS and Certificates on UNIX

6. When you see a green checkmark on the Deployment Complete page, this means that
you added your certificate successfully to SAS-installation-directory/
SASSecurityCertificateFramework/1.1/cacerts.

Click Next.

T I P The log files created by the add certificate task are located at <SASHOME>/
InstallMisc/InstallLogs/certframe*.

7. On the Additional Resources page, click Finish to close the deployment manager.

8. Repeat steps 2 through 7 to add your CA intermediate certificates.

Manage Certificates in the Trusted CA Bundle Using the SAS Deployment Manager 99

9. To verify that your CA root and intermediate certificates were successfully added,
enter the following command:

path-to-keytool-command/keytool -list -keystore /SAS-
installation-directory/SASSecurityCertificateFramework/1.1/
cacerts/trustedcerts.jks.

For example:

/usr/java/jdk1.8.0_45/bin/keytool -list -keystore /opt/
SASHome/SASSecurityCertificateFramework/1.1/cacerts/
trustedcerts.jks

You should see output similar to the following:

intca, Oct 15, 2015, trustedCertEntry,
Certificate fingerprint (SHA1): 12:4D:C9:88:CD:D5:F3:E9:9E:29:D8:AB:F1:00:AD:93
:60:61:11:45 cn=twca root certification authority,ou=root ca,o=taiwan-ca,c=tw,
Jun 2, 2015, trustedCertEntry, Certificate fingerprint (SHA1): CF:9E:87:6D:D3:EB
:FC:42:26:97:A3:B5:A3:7A:A0:76:A9:06:23:48
rootca, Oct 15, 2015, trustedCertEntry,
Certificate fingerprint (SHA1): 57:7B:1E:D7:16:5D:5F:44:EB:79:AB:40:FA:98:49:DD:
DF:4F:B5:F7 cn=microsec e-szigno root ca,ou=e-szigno ca,o=microsec ltd.,l=budapest,
c=hu, Jun 2, 2015, trustedCertEntry,

10. Repeat steps 1 through 9 on each machine.

Note: Repeating these steps is required on client machines with Java clients such as
SAS Management Console installed.

11. If you have any Windows machines in your SAS deployment, then proceed to“Add
Your Certificates to the Windows CA Stores”.

Remove Your Certificates from the Trusted CA Bundle
Starting with the third maintenance release for SAS 9.4, you can use SAS Deployment
Manager to remove certificates from the trusted CA bundle.

To remove a certificate from the trusted CA bundle, you must have file permissions to
access the truststore location. Only certificate files that were added using the Add
Certificate Task can be deleted.

T I P Your certificates were added to SAS-installation-
directory/SASSecurityCertificateFramework/1.1/cacerts. Select
this directory when removing your certificates.

Note: If the file that you are removing is an intermediate certificate, removing it might
disrupt the chain of trust for your customer certificate. If you do not plan to replace
this intermediate certificate, you should remove each customer certificate in the
chain.

100 Chapter 7 • Installing and Configuring TLS and Certificates on UNIX

Figure 7.3 Remove a Certificate from the Trusted CA Bundle Using the Deployment Manager

T I P The log files created by the remove certificate task are located at <SASHOME>/
InstallMisc/InstallLogs/certframe*.

Refer to the SAS Deployment Wizard and SAS Deployment Manager 9.4: User's Guide
for detailed information about using the SAS Deployment Manager to manage your
certificates.

SAS Deployment Manager Criteria for Validating Certificates
The following criteria must be met for the validation to complete. Otherwise, errors are
generated. See “Troubleshooting TLS” on page 125 for possible errors that might be
generated.

• Each certificate’s issuer must be added to the trusted certificate bundle before the
certificate can be validated.

• Certificates must be X.509 certificates formatted in Base-64 encoding that
have .pem, .crt, or .cer extensions.

• The issuing CA is a trusted CA.

• The issuing CA's public key validates the issuer's digital signature.

• The current date is within the certificate's validity period.

Add Your Certificates to the SAS Private JRE
Prior to the third maintenance release for SAS 9.4, there is no SAS Deployment
Manager task to help you manage any certificates that you provide. If you are providing
your own certificates, then you must add the CA root certificate and all of its
intermediate certificates to the SAS Private JRE using the keytool -importcert
command.

Add Your Certificates to the SAS Private JRE 101

Note: If you have any Windows machines, you must also add the CA root and
intermediate certificates to the Windows certificates stores. For more information,
see “Add Your Certificates to the Windows CA Stores” on page 109.

To add CA root and intermediate certificates, perform these steps:

1. Log on to the primary middle-tier machine as the SAS Installer user.

2. Change the directory to where your keytool commands reside.

For example:

cd /usr/java/jdk_version/bin

3. Enter the following command. Refer to the table for information that you must
provide.

./keytool –importcert –keystore "SAS-installation-directory
/SASPrivateJavaRuntimeEnvironment/9.4/jre/lib/security/cacerts"
–storepass changeit –alias myhost –file path-to-keystore.jks

Note: The keytool command must be on one line. It is shown on more than one
line in the preceding code sample for display purposes only.

T I P For more information about the keytool command, see http://
docs.oracle.com/javase/7/docs/technotes/tools/windows/keytool.html.

Table 7.5 User-Supplied Values for the Keytool Command

Value Description Examples

SAS-installation-
directory

Location on the machine
where SAS is installed

C:\Program Files\SASHome
\SASPrivateJavaRuntimeEnviro
nment\9.4\jre\lib\security

myhost Fully qualified machine
name

my_server.example.com

path-to-keystore.jks Absolute path to the
keystore

Refer to“Certificate
Locations” on page 86.

/opt/certs/my_keystore.jks

4. Repeat step 3 to add your CA intermediate certificates.

5. To verify that your CA root and intermediate certificates were successfully added,
enter the following command:

path-to-keytool-command/keytool -list -keystore /SAS-installation-directory
/SASSecurityCertificateFramework/1.1/cacerts/trustedcerts.jks

For example:

/usr/java/jdk1.8.0_45/bin/keytool -list -keystore
/opt/SASHome/SASSecurityCertificateFramework/1.1/cacerts/trustedcerts.jks

You should see output similar to the following:

intca, Oct 15, 2015, trustedCertEntry,
Certificate fingerprint (SHA1): 12:4D:C9:88:CD:D5:F3:E9:9E:29:D8:AB:F1:00:AD:
93:60:61:11:45 cn=twca root certification authority,ou=root ca,o=taiwan-ca,
c=tw, Jun 2, 2015, trustedCertEntry, Certificate fingerprint (SHA1): CF:9E:

102 Chapter 7 • Installing and Configuring TLS and Certificates on UNIX

http://docs.oracle.com/javase/7/docs/technotes/tools/windows/keytool.html
http://docs.oracle.com/javase/7/docs/technotes/tools/windows/keytool.html

87:6D:D3:EB:FC:42:26:97:A3:B5:A3:7A:A0:76:A9:06:23:48
rootca, Oct 15, 2015, trustedCertEntry,
Certificate fingerprint (SHA1): 57:7B:1E:D7:16:5D:5F:44:EB:79:AB:40:FA:98:49
:DD:DF:4F:B5:F7 cn=microsec e-szigno root ca,ou=e-szigno ca,o=microsec ltd.,
l=budapest,c=hu, Jun 2, 2015, trustedCertEntry,

6. Repeat steps 1 through 5 on each machine.

7. If you have any Windows machines in your SAS deployment, proceed to “Add Your
Certificates to the Windows CA Stores” on page 109.

How Clients and Servers Validate Certificates
Clients and servers exchange and validate each other’s digital certificates. All of the CA
certificates that are needed to validate a server certificate compose a trust chain. All CA
certificates in a trust chain have to be available for server certificate validation.

The following provides some details of the validation process that occurs between
clients and servers.

1. Digital certificates for the CA, the server, and the client (optional) are generated, and
the CA trust list is created. Refer to “ Setting Up Digital Certificates Using
OpenSSL ” on page 87.

2. The client connects to a TLS-enabled server.

3. The TLS-enabled server sends its certificate to the client along with all the
intermediate CA certificates. The server certificate files are provided in an accessible
directory. SAS uses the SSLCERTLOC, SSLPVTKEYLOC, and SSLPVTKEYPASS
options to locate the server certificate. A PKCS12 formatted file that contains both
the public and private certificates in one file can also be used with the
SSLPKCS12LOC and SSLPKCS12PASS options.

The system options are specified in the server's invocation command. For
information, see Chapter 2, “SAS System Options for Encryption,” on page 23.

4. The client verifies the server’s certificate against the Certificate Authority (CA) list.
The client has to know about all of the CAs in the server’s certificate chain in order
to validate the server certificate.

The CA certificate files are provided in either the file pointed to by
SSLCALISTLOC= or on UNIX in an accessible directory that is pointed to by the
SSL_CERT_DIR or SSLCACERTDIR environment variables.

5. The server can also validate the client’s certificates. Refer to the previous steps.

TLS on UNIX: Building FIPS 140-2 Capable
OpenSSL

SAS ships OpenSSL libraries on UNIX. However, these are not FIPS 140-2 compliant
libraries. You must compile a FIPS 140-2 compliant version of OpenSSL and install it. If
you plan to build FIPS 140-2 capable OpenSSL for UNIX, access the OpenSSL utility at

TLS on UNIX: Building FIPS 140-2 Capable OpenSSL 103

OpenSSL Source. Then follow the instructions in OpenSSL FIPS 140-2 Security Policy
Version 2.0 to build an OpenSSL FIPS Object Module v2.0.

Note: Different operating systems require the use of different library file extensions. For
example, HPUX, Linux, and Solaris use libcrypto.so.1.0.0 and libssl.so.1.0.0. AIX
uses libcrypto.so and libssl.so. Refer to your operating system vendor documentation
when using the vendor’s OpenSSL libraries. There might be additional procedures
that need to be followed to make the libraries work properly in your environment.

If you are using your own FIPS 140-2 compliant OpenSSL libraries, your system
administrator needs to set the environment path variables to pick up this software. Go to
the <SASHome>/SASFoundation/9.4/bin directory. This directory contains the
sasenv script that sets the environment variables that are required by SAS. When you
customize environment variable values, modify the sasenv_local file. Set the location of
the FIPS 140-2 compliant libraries in the sasenv_local file. Depending on your operating
system, set the LD_LIBRARY_PATH and the SHLIB_PATH to be the same, and set
LIBPATH on AIX.

For example, you might add the following code to the sasenv_local file.

export LD_LIBRARY_PATH=<FIPS library path>:$LD_LIBRARY_PATH

For more information, see “Contents of the !SASROOT Directory” in SAS Companion
for UNIX Environments.

Note: Prepend the customized library path in the script that is run before invoking SAS.

Use the SAS Deployment Wizard to configure FIPS after building your libraries. See
SAS® Deployment Wizard and SAS® Deployment Manager 9.4: User's Guide. Note that
SAS system option NETENCRALG= must be set SSL to configure a FIPS 140-2
compliant system.

CAUTION:
Use caution when using ENCRYPTFIPS Turning on the ENCRYPTFIPS option is
not generally recommended, unless absolutely required by your site’s policy. If the
ENCRYPTFIPS option is turned on, the SAS server-based TLS clients will attempt
to load a special subset of OpenSSL libraries, contained as part of the OpenSSL FIPS
Object Module. Because these libraries are not present by default, you must follow
the preceding process to download and compile in accordance with the specific
instructions specified by the FIPS standard. See “ENCRYPTFIPS System Option” on
page 23 and “FIPS 140-2 Standards Compliance” on page 5.

104 Chapter 7 • Installing and Configuring TLS and Certificates on UNIX

http://www.openssl.org/source/
https://www.openssl.org/docs/fips/UserGuide-2.0.pdf
https://www.openssl.org/docs/fips/UserGuide-2.0.pdf
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=hostunx&pubcode=69602&id=n0kz50mbvjknxfn1hscm84o10ac8
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=hostunx&pubcode=69602&id=n0kz50mbvjknxfn1hscm84o10ac8

Chapter 8

Installing and Configuring TLS
and Certificates on Windows

TLS on Windows: System and Software Requirements . 105

TLS on Windows: Setting Up Digital Certificates . 106
Step 1. Configure TLS . 106
Step 2. Request a Digital Certificate . 106

Add Your Certificates to the Windows CA Stores . 109

TLS on Windows: Converting between PEM and DER File Formats for TLS . . 116

Use the SAS Deployment Manager to Manage Certificates in
the Trusted CA Bundle . 116

TLS on Windows: Validating Certificates between Clients and Servers 116

TLS on Windows: FIPS 140-2 Capable OpenSSL . 117

TLS on Windows: System and Software
Requirements

The system and software requirements for using TLS on the Windows operating
environment are as follows:

• a computer that runs Windows 2000 (or later).

• depending on your configuration, access to the Internet and a web browser.

• the TCP/IP communications access method.

• Microsoft Certificate Services add-on software.

• if you run your own CA, the Microsoft Certificate Authority application (which is
accessible from your web browser).

• for SAS/CONNECT, a client session that runs on a computer that has a Trusted CA
Certificate. This is necessary in order for a SAS/CONNECT client session to connect
to a SAS/CONNECT server session via a Windows spawner using TLS encryption.

The Windows spawner must run on a server that has a Trusted CA Certificate and a
Personal Certificate.

• knowledge of your site's security policy, practices, and technology. The properties of
the digital certificates requested depends on the security policies that have been
adopted at your site.

105

There is a Microsoft issue that needs attention before configuring ENCRYPTFIPS on
Microsoft Windows 2003 servers.

Services that run on a computer that use Microsoft Windows Server 2003 might not
recognize Windows environment variable changes. To resolve this issue, perform
these steps:

Go to the Microsoft support website http://support.microsoft.com/kb/887693 to find out
how to resolve the Windows 2003 Server environment variable issue.

TLS on Windows: Setting Up Digital Certificates
Perform the following tasks to set up digital certificates for TLS:

Step 1. Configure TLS
Complete information about configuring your Windows operating environment for TLS
is contained in the Windows installation documentation and at www.microsoft.com.

The following keywords might be helpful when searching the Microsoft website:

• digital certificate services

• digital certificate authority

• digital certificate request

• site security planning

Step 2. Request a Digital Certificate

Methods of Requesting a Digital Certificate
The method of requesting a digital certificate depends on the CA that you use:

• “Request a Digital Certificate from the Microsoft Certificate Authority” on page 106

• “Request a Digital Certificate from a Certificate Authority That Is Not Microsoft” on
page 107

Request a Digital Certificate from the Microsoft Certificate Authority
Perform the following tasks to request digital certificates that are issued by the Microsoft
Certificate Authority:

1. System administrator: If you are running your own CA, use Microsoft Certificate
Services to create an active Certificate Authority (CA).

2. User:

a. Use the Certificate Request wizard to request a digital certificate from an active
enterprise CA. The Certificate Request wizard lists all digital certificate types
that the user can install.

b. Select a digital certificate type.

c. Select security options.

106 Chapter 8 • Installing and Configuring TLS and Certificates on Windows

d. Submit the request to an active CA that is configured to issue the digital
certificate.

After the CA issues the requested digital certificate, the digital certificate is
automatically installed in the Certificate Store. The installed digital certificate is
highlighted, as shown in the following display:

Figure 8.1 Digital Certificate Installation in the Certificate Store

Request a Digital Certificate from a Certificate Authority That Is Not
Microsoft
Users should perform the following tasks to request digital certificates that are not issued
by the Microsoft CA:

1. Request a digital certificate from a CA.

2. Import the digital certificate to a Certificate Store by using the Certificate Manager
Import wizard application from a web browser.

A digital certificate can be generated by using the Certificate Request wizard or any
third-party application that generates digital certificates.

Note: The Windows operating environment can import digital certificates that were
generated in the UNIX operating environment. To convert from UNIX (PEM
format) to Windows (DER format) before importing, see “TLS on Windows:
Converting between PEM and DER File Formats for TLS” on page 116.

For details about importing existing digital certificates, see “Import a Digital Certificate
to a Certificate Store” on page 107.

Import a Digital Certificate to a Certificate Store
Digital certificates that were issued by a Certificate Authority that is not Microsoft can
be imported to an appropriate Certificate Store as follows:

Certificate Type Certificate Storage Location

Client Personal Certificate Store or Machine Certificate Store

Server Personal Certificate Store or Machine Certificate Store

TLS on Windows: Setting Up Digital Certificates 107

Certificate Type Certificate Storage Location

CA (self-signed) Trusted Root Certificate Authorities

Perform the following tasks to import a digital certificate to your Personal Certificate
Store:

1. Access the Certificate Manager Import wizard application from your web browser.
From the Tools drop-down menu, select Internet Options.

Then select the Content tab, and click Certificates.

Specify the digital certificate to import to the Personal Certificate Store by selecting
the Personal tab in the Certificates window, as shown in the following display:

Figure 8.2 Digital Certificate Selections for a Personal Certificate Store

2. Click Import and follow the instructions to import digital certificates.

Repeat this task in order to import the necessary digital certificates for the CA, the
server, and the client, as appropriate.

Note: You can now import a digital certificate to the Machine Certificate store as
well as to a Personal Certificate store.

3. After you have completed the selections for your personal Certificate Store, select
the appropriate tab to view your selections.

4. To view the details about a digital certificate, select the digital certificate and click
View. Typical results are shown in the following display:

108 Chapter 8 • Installing and Configuring TLS and Certificates on Windows

Figure 8.3 Digital Certificate Details Tab

Add Your Certificates to the Windows CA Stores
If you are providing your own self-signed or site-signed certificates, then you must add
the CA root certificate and all of its intermediate certificates to the Windows certificates
stores using the Windows Certificates Snap-in.

Note: If you have not already done so, you must add your CA root and intermediate
certificates to the trusted CA bundle or to the SAS Private JRE. For more
information, see “Add Your Certificates to the Trusted CA Bundle” on page 97 or
“Add Your Certificates to the SAS Private JRE” on page 101.

To add CA root and intermediate certificates, perform these steps:

1. Click the Windows Start button, select Run, enter mmc, and click OK.

2. In the Console window, select File ð Add/Remove Snap-in.

Add Your Certificates to the Windows CA Stores 109

3. Select Certificates from the list of available snap-ins, and click Add.

4. In the dialog box that appears, select Computer account, and click Next.

110 Chapter 8 • Installing and Configuring TLS and Certificates on Windows

5. In the dialog box that appears, click Finish.

6. In the dialog box that appears, click OK.

Add Your Certificates to the Windows CA Stores 111

7. In the Console window, expand Certificates (Local Computer) on the left.

8. Right-click Trusted Root Certification Authorities, and select All Tasks ð
Import.

112 Chapter 8 • Installing and Configuring TLS and Certificates on Windows

9. On the Certificate Import Wizard page, click Next.

10. On the second wizard page, click Browse, navigate to the location that contains your
CA root certificate and any intermediate certificates, and select the appropriate
certificate. Click Next.

Add Your Certificates to the Windows CA Stores 113

11. Make sure that Place all certificates in the following store is selected, and click
Next.

12. Click Finish.

114 Chapter 8 • Installing and Configuring TLS and Certificates on Windows

13. Click OK.

14. In the Console window, expand Trusted Root Certification Authorities to make
sure that the certificate that you imported is listed.

15. Repeat steps 8 through 14 for any CA intermediate certificates.

16. Repeat steps 1 through 15 on any additional Windows machines in your SAS
deployment.

Add Your Certificates to the Windows CA Stores 115

TLS on Windows: Converting between PEM and
DER File Formats for TLS

By default, OpenSSL files are created in Privacy Enhanced Mail (PEM) format. SSL
files that are created in Windows operating environments are created in Distinguished
Encoding Rules (DER) format.

Under Windows, you can import a file that is created in either PEM or DER format.
However, a digital certificate that is created in DER format must be converted to PEM
format before it can be included in a trust list on UNIX.

Here is an example of converting a server digital certificate from DER input format to
PEM output format :

OpenSSL> x509 -inform DER -outform PEM -in server.der -out server.pem

Here is an example of converting a server digital certificate from PEM input format to
DER output format:

OpenSSL> x509 -inform PEM -outform DER -in server.pem -out
server.der

Note: Files with the .cert, .cer, or .crt extensions are recognized by Windows as a
certificate. For more information, see “Certificate File Formats” on page 80.

Use the SAS Deployment Manager to Manage
Certificates in the Trusted CA Bundle

For information, see “Manage Certificates in the Trusted CA Bundle Using the SAS
Deployment Manager” on page 96.

TLS on Windows: Validating Certificates between
Clients and Servers

Clients and servers exchange and validate each other’s digital certificates. The following
provides some details.

1. Digital certificates for the CA, the server, and the client are generated and imported
into the appropriate Certificate Store. Refer to “TLS on Windows: Setting Up Digital
Certificates ” on page 106.

2. The Windows client verifies the TLS-enabled server’s certificate against the
Certificate Authority (CA) list. The client has to know about all of the CAs in the
server’s certificate chain in order to validate the server certificate. The Windows CA
certificate is installed using Microsoft Certificate Services. The certificate must be a
trusted root certificate in the user or machine certificate store.

3. The client connects to a TLS-enabled server.

116 Chapter 8 • Installing and Configuring TLS and Certificates on Windows

4. The TLS-enabled server sends its certificate to the client. The Window’s server
certificate is installed using Microsoft Certificate Services and is located in the user
or machine certificate store. SAS uses the SSLCERTISS/SSLCERTSERIAL or the
SSLCERTSUBJ/ SSLCERTISS system options to locate the server certificate.

The system options are specified in the server's invocation command. For more
information, see Chapter 2, “SAS System Options for Encryption,” on page 23.

5. The server can also validate the client’s certificates. Refer to the previous steps.

TLS on Windows: FIPS 140-2 Capable OpenSSL
For Windows, the TLS version shipped with SAS is FIPS 140-2 compliant. To put the
library into FIPS compliant mode, enable the System cryptography: Use FIPS
compliant algorithms for encryption, hashing, and signing setting under your Local
Security Policy or as part of Group Policy. This setting informs applications that they
should use only cryptographic algorithms that are FIPS 140-2 compliant and in
compliance with FIPS approved modes of operation.

To check that your Windows server is configured for FIPS, go to the Windows Start
Menu ð Search and enter “Local Security Policy”. The Local Security Policy window
appears.

1. In the left pane of the Security Policies, expand Local Policies.

2. Click Security Options.

3. In the right pane, scroll down to System cryptography: Use FIPS compliant
algorithms for encryption, hashing, and signing and make sure that the item is
enabled.

Figure 8.4 FIPS Encryption Enabled on Windows

TLS on Windows: FIPS 140-2 Capable OpenSSL 117

118 Chapter 8 • Installing and Configuring TLS and Certificates on Windows

Chapter 9

Installing and Configuring TLS
and Certificates on z/OS

TLS on z/OS: System and Software Requirements . 119

TLS on z/OS: Setting Up Digital Certificates . 119
Step 1. Authorize Access to the RACDCERT Command 120
Step 2. Create the Digital Certificate for the CA . 120
Step 3. Create the Server and Client Digital Certificates . 121
Step 4. View Digital Certificates . 122
Step 5. Create a CA Trust List Using OpenSSL . 122
Step 5. Verify Certificates in the Trust Chain Using OpenSSL 123
Step 6. End OpenSSL . 124

Use the SAS Deployment Manager to Manage Certificates in
the Trusted CA Bundle . 124

TLS on z/OS: System and Software Requirements
The system and software requirements for using TLS on z/OS operating environments
are as follows:

• a computer that runs z/OS.

• the TCP/IP communications access method.

• if you are planning to use a computer that runs z/OS as the CA, access to the
RACDCERT command on z/OS.

• knowledge of your site's security policy, practices, and technology. The properties of
the digital certificates that you request are based on the security policies that have
been adopted at your site.

TLS on z/OS: Setting Up Digital Certificates
Perform these tasks to set up and use TLS:

119

Step 1. Authorize Access to the RACDCERT Command
To use z/OS as your trusted Certificate Authority (CA), you must authorize access to the
RACDCERT command in order to set up the CA and to create and sign certificates.
Authorize the trusted administrator using CONTROL access to these profiles in the
FACILITY class:

• IRR.DIGTCERT.ADD

• IRR.DIGTCERT.DELETE

• IRR.DIGTCERT.EXPORT

• IRR.DIGTCERT.GENCERT

• IRR.DIGTCERT.LIST

The following sites provide information about alternative CAs:

• For VeriSign, see www.verisign.com

• For Thawte, see www.thawte.com

Step 2. Create the Digital Certificate for the CA
The tasks that you perform to generate a digital certificate for the CA, the server, and the
client are similar. However, the values that you specify are different.

In this example, Proton, Inc. is the organization that is applying to become a CA by
using RACDCERT. After Proton, Inc. becomes a CA, it can serve as a CA for issuing
digital certificates to clients (users) and servers on its network.

Perform these tasks:

1. Request a digital CA certificate. Here is an example of a request:

RACDCERT GENCERT CERTAUTH +
SUBJECTSDN(+
 CN('proton.com') +
 C('US') +
 SP('North Carolina') +
 L('Cary') +
 O('Proton Inc.') +
 OU('IDB') +
) +
ALTNAME(+
 EMAIL('Joe.Bass@proton.com') +
) +
WITHLABEL('Proton CA')

2. Export the CA certificate in PEM format:

RACDCERT CERTAUTH EXPORT(LABEL('Proton CA')) +
DSN(CA.CERT)

3. Copy the certificate to the UNIX file system. Use the TSO OPUT and OCOPY
commands to copy the files to your UNIX file system.

Note: TLS certificate and key files must reside in the z/OS UNIX file system. The
OpenSSL library cannot read MVS data sets.

cp //ca.cert ca.cert

120 Chapter 9 • Installing and Configuring TLS and Certificates on z/OS

4. Convert the certificate file to ASCII format

Note: TLS PEM format certificate files must be converted to ASCII format. The
OpenSSL library code in SAS cannot read EBCDIC text.

iconv -f ibm-1047 -t iso8859-1 ca.cert >ca.cert.ascii

The creation of the CA digital certificate is complete.

A root CA digital certificate is self-signed, which means that the digital certificate is
signed using the private key that corresponds to the public key that is in the digital
certificate. Except for root CAs, digital certificates are usually signed using a private key
that corresponds to a public key that belongs to someone else, usually the CA.

The location of the CA digital certificate is specified using the SSLCALISTLOC=
system option which is automatically set to <SASHOME>/
SASSecurityCertificateFramework/1.1/cacerts/trustedcerts.pem.

Step 3. Create the Server and Client Digital Certificates
Perform these tasks to create a digital certificate for a server and a client. The steps are
identical for the server and the client. This example shows the tasks for the server.

1. Request a signed server certificate.

Here is an example of a request for a signed server certificate for user SERVER that
runs on proton.zos.com.

RACDCERT GENCERT ID(SERVER) +
SUBJECTSDN(+
 CN('proton.zos.com') +
 C('US') +
 SP('North Carolina') +
 L('Cary') +
 O('Proton Inc.') +
 OU('IDB') +
) +
ALTNAME(+
 EMAIL('Joe.Bass@proton.com') +
) +
WITHLABEL('Proton Server') +
SIGNWITH(CERTAUTH LABEL('Proton CA'))

2. Export the server certificate and key that are specified in PKCS #12 DER encoding
package format.

Note: The PKCS #12 DER encoding package is the format used by the RACDCERT
utility to encode the exported certificate and private key for an entity, such as a
server. It is a binary format.

RACDCERT ID(SERVER) EXPORT(LABEL('Proton Server')) +
DSN(SERVER.P12) +
PASSWORD('abcd')

3. Copy the certificate to the UNIX file system.

Note: The PKCS #12 DER encoding package file must reside in the z/OS UNIX file
system. The OpenSSL library cannot read MVS data sets. Because the file is
already in binary format, its conversion to ASCII is unnecessary.

cp //server.p12 server.p12

TLS on z/OS: Setting Up Digital Certificates 121

The creation of the server digital certificate and key is complete.

A PKCS #12 DER encoding package is the format that RACDCERT uses to export a
certificate and a key for an entity. The exported package file contains both the certificate
and the key. The content of the package file is secure by using the password that is
specified in the RACDCERT EXPORT command.

Specify a server or client PKCS #12 package using the SSLPKCS12LOC= system
option. Specify the password for the package using the SSLPKCS12PASS= option.

Note: For the server, the Common Name must be the name of the computer that the
server runs on (for example, proton.zos.com.)

Step 4. View Digital Certificates
To view a digital certificate, issue these commands:

RACDCERT CERTAUTH LIST(LABEL('Proton CA'))
RACDCERT ID(SERVER) LIST(LABEL('Proton Server'))

A digital certificate contains data that was collected to generate the digital certificate
timestamps, a digital signature, and other information. However, because the generated
digital certificate is encoded (usually in PEM format), it is unreadable.

To read the certificate files, issue these commands:

RACDCERT CHECKCERT(CA.CERT)
RACDCERT CHECKCERT(SERVER.P12) PASS('abcd')

Step 5. Create a CA Trust List Using OpenSSL
After generating a digital certificate for the CA, the server, and the client (optional), you
must identify for the OpenSSL client application one or more CAs that are to be trusted.
This list is called a trust list.

Note: Starting in the third maintenance release of SAS, you can use the SAS
Deployment Manager after Installation to add to the Trusted CA Bundle of
Certificates.

If there is only one CA to trust, in the client application, specify the name of the file that
contains the OpenSSL CA digital certificate.

If multiple CAs are to be trusted, you can copy and paste into a new file the contents of
all the digital certificates of CAs to be trusted by the client application. These CAs can
be primary, intermediate, or root certificates. They can be added to the file in any order.
To manually create a new trust list, use the following template:

(Your Server Certificate - ssl.crt)

-----BEGIN CERTIFICATE-----

<PEM encoded certificate>

-----END CERTIFICATE-----

(Your Intermediate CA Certificate(s))

-----BEGIN CERTIFICATE-----

122 Chapter 9 • Installing and Configuring TLS and Certificates on z/OS

<PEM encoded certificate>

-----END CERTIFICATE-----

(Your Root CA Certificate)

-----BEGIN CERTIFICATE-----

<PEM encoded certificate>

-----END CERTIFICATE-----

Because the digital certificate is encoded, it is unreadable. Therefore, the content of the
digital certificate in this example is represented as <PEM encoded certificate> .
The content of each digital certificate is delimited using a -----BEGIN
CERTIFICATE----- and -----END CERTIFICATE----- pair. All text outside the
delimiters is ignored. Therefore, you might not want to use delimited lines for
descriptive comments.

Generally, OpenSSL returns .pem files, CA's return .crt files (Microsoft returns .cer
files). Instead of manually cutting and pasting these files together (regardless of your file
extension), you can use the UNIX cat command to concatenate the certificate authority
files together. For example, you can take an intermediate authority certificate file, a root
authority certificate file, and primary certificate file and concatenate them into a single
PEM file. All the certificates must be encoded in PEM format and in ASCII format.

An example of concatenating certificates is as follows:

cat server.pem > certchain.pem
cat intermediateCA.pem >> certchain.pem
cat rootCA.pem >> certchain.pem

Note: You can place these files in any order.

Because the digital certificate is encoded, it is unreadable. To view the file contents, you
can use the following OpenSSL commands for your file type:

openssl x509 -in cert.pem -text -noout
openssl x509 -in cert.cer -text -noout
openssl x509 -in cert.crt -text -noout

Use the following OpenSSL command to view a DER encoded Certificate:

openssl x509 -in certificate.der -inform der -text -noout

Note: If you are including a digital certificate that is stored in DER format, you must
first convert it to PEM format. For more information, see “Convert between PEM
and DER File Formats Using OpenSSL” on page 95.

Step 5. Verify Certificates in the Trust Chain Using OpenSSL
Clients and servers exchange and validate each other’s digital certificates. All of the CA
certificates that are needed to validate a server certificate compose a trust chain. All CA
certificates in a trust chain have to be available for server certificate validation. The
certificates are combined into one file pointed to by the SSLCALISTLOC= option.
“SSLCALISTLOC= System Option” on page 30.

You can use the following OpenSSL command to verify certificates signed by a
recognized certificate authority (CA):

openssl verify <your-certificate-file>

TLS on z/OS: Setting Up Digital Certificates 123

If your local OpenSSL installation recognizes the certificate or its signing authority and
everything checks out (dates, signing chain, and so on.), you get a simple OK message.

openssl verify -verbose -CAfile <your-CA_file>.pem <your-server-cert>.pem

Note: In the third release of SAS 9.4, you can use the SAS Deployment Manager after
installation to add your trust chain. The SAS Deployment Manager also validates
those certificates.

Step 6. End OpenSSL
To end OpenSSL, type quit at the prompt.

Use the SAS Deployment Manager to Manage
Certificates in the Trusted CA Bundle

For an overview of using the SAS Deployment Manager to add certificates to the
Trusted CA Bundle, see “Manage Certificates in the Trusted CA Bundle Using the SAS
Deployment Manager” on page 96. For specific details about using the SAS Deployment
Manager to add certificates to the Trusted CA bundle, see the SAS Deployment Wizard
and SAS Deployment Manager 9.4: User's Guide.

124 Chapter 9 • Installing and Configuring TLS and Certificates on z/OS

Chapter 10

Troubleshooting

Troubleshooting TLS . 125
ERROR: Unable to load extension: (tkessl) . 125
ERROR: SSL provider not in FIPS mode . 125
ERROR: HTTP proxy handshake failed. 125
ERROR: Cannot load SSL Support . 126
ERROR:14090086:SSL routines:

SSL3_GET_SERVER_CERTIFICATE: certificate verify failed 126
Failed to Find the Following Issuer of this Certificate in Truststore 126
Verify that the File Contains Certificates in the Proper Encoding 126

Troubleshooting TLS

ERROR: Unable to load extension: (tkessl)
There are a lot of reasons the library might not load. The best way to debug this error is
to turn on logging and get a SAS logging facility (log4SAS) log output.

ERROR: SSL provider not in FIPS mode
This message might be displayed on Windows servers when the system cryptography
"Use FIPS compliant algorithms for encryption, hashing, and signing" setting is not
enabled. Enable this under your Local Security Policy. For more information, see “TLS
on Windows: FIPS 140-2 Capable OpenSSL ” on page 117.

ERROR: HTTP proxy handshake failed.
This message is displayed when clients sending TLS Subject Name Identification (SNI)
cannot connect to a secured proxy server.

There are servers that do not handle SNI host name checking in a way that allows
connecting to secured proxy servers.

• On UNIX servers, make sure that the USE_SSL_SNI environment variable is not set.

• On Windows servers, SNI is always sent. Other than disabling name checking
(Subject Alternative Name) on server certificates, there is currently no workaround.

125

ERROR: Cannot load SSL Support
This message is displayed when SAS cannot find required software.

• This message can be generated when SSL certificates cannot be found. If the
directory where the certificates are located is specified using the SSLCACERTDIR
environment variable, and the certificate names in the directory are not named using
the value of a hash that OpenSSL generates, this message is generated. For more
information, see “SSLCACERTDIR Environment Variable” on page 46.

• This message is generated when requisite software cannot be loaded in an IOM
session.

ERROR:14090086:SSL routines:
SSL3_GET_SERVER_CERTIFICATE: certificate verify failed

This message is displayed when certificates cannot be verified. If the directory where the
certificates are located is specified using the SSLCACERTDIR environment variable,
and the certificate names in the directory are not named using the value of a hash that
OpenSSL generates, this message is generated. For more information, see
“SSLCACERTDIR Environment Variable” on page 46.

Failed to Find the Following Issuer of this Certificate in Truststore
This message is displayed when using the SAS Deployment Manager (SDM) to add
certificates to the trust list in the wrong order. First, you need to add the issuer of the
certificate or the root certificate. Then you can add the intermediate certificate. You need
to run the SDM task for each certificate that you need to add.

Verify that the File Contains Certificates in the Proper Encoding
This message is displayed when using the SDM to add certificates with unacceptable
encodings. Certificates must be X.509 certificates formatted in Base-64 encoding that
have .pem, .crt, or .cer extensions. For more information, see “Certificate File Formats”
on page 80.

126 Chapter 10 • Troubleshooting

Recommended Reading

Here is the recommended reading list for this title:

• SAS/CONNECT User’s Guide

• SAS/SHARE User’s Guide

• SAS Statements: Reference

• SAS System Options: Reference

• Base SAS Procedures Guide

• SAS Language Reference: Concepts

• SAS XML LIBNAME Engine: User’s Guide

• SAS 9.4 Intelligence Platform: Security Administration Guide

• SAS Companion that is specific to your operating environment

• SAS Deployment Wizard and SAS Deployment Manager 9.4: User's Guide

• Configuration Guide for SAS 9.4 Foundation for Microsoft Windows for x64

• Configuration Guide for SAS 9.4 Foundation for Microsoft Windows

• Configuration Guide for SAS 9.4 Foundation for z/OS

• Configuration Guide for SAS 9.4 Foundation for UNIX Environments

For a complete list of SAS publications, go to sas.com/store/books. If you have
questions about which titles you need, please contact a SAS Representative:

SAS Books
SAS Campus Drive
Cary, NC 27513-2414
Phone: 1-800-727-0025
Fax: 1-919-677-4444
Email: sasbook@sas.com
Web address: sas.com/store/books

127

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=connref&pubcode=69581&id=titlepage
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=shrref&pubcode=69819&id=titlepage
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lestmtsref&pubcode=69738&id=titlepage
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lesysoptsref&pubcode=69799&id=titlepage
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=proc&pubcode=69850&id=titlepage
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=69852&id=titlepage
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=engxml&pubcode=64990&id=titlepage
http://www.sas.com/store/books
mailto:sasbook@sas.com
http://sas.com/store/books

128 Recommended Reading

Glossary

authentication
See client authentication.

block cipher
a type of encryption algorithm that divides a message into blocks and encrypts each
block. See also stream cipher.

Certificate Revocation List (CRL)
a list of revoked digital certificates. CRLs are published by Certification Authorities
(CAs), and a CRL contains only the revoked digital certificates that were issued by a
specific CA.

Certification Authority
a commercial or private organization that provides security services to the e-
commerce market. A Certification Authority creates and maintains digital
certificates, which help to preserve the confidentiality of an identity. Microsoft,
VeriSign, and Thawte are examples of commercial Certification Authorities.

ciphertext
unintelligible data. See also encryption.

client authentication (authentication)
the process of verifying the identity of a person or process for security purposes.

credentials
evidence that is submitted to support a claim of identity (for example, a user ID and
password) or privilege (for example, a passphrase or encryption key).

CRL
See Certificate Revocation List.

cryptography
the science of encoding and decoding information to protect its confidentiality. See
also encryption.

data security technology
a set of software features that protect data that is exchanged in client/server data
transfers across a network.

129

DER
See Distinguished Encoding Rules.

digital certificate
an electronic document that binds a public key to an individual or an organization. A
digital certificate usually contains a public key, a user's name, an expiration date, and
the name of a Certification Authority.

digital signature
a digital code that is appended to a message. The digital signature is used to verify to
a recipient that the message was sent by a particular business, organization, or
individual, and that the message has not been changed en route. The message can be
any kind of file that is transmitted electronically.

Distinguished Encoding Rules (DER)
a format that is used for creating SSL files in Windows operating environments.

encryption
the conversion of data by the use of algorithms or other means into an unintelligible
form in order to secure data (for example, passwords) in transmission and in storage.

PEM
See Privacy Enhanced Mail.

PKCS #12
See Public Key Cryptography Standard #12.

plaintext
information that a sender wishes to transmit to a receiver, and that is used as input to
an algorithm for the purpose of encryption. See also ciphertext.

port forwarding
See tunneling.

Privacy Enhanced Mail (PEM)
a format that is used for creating OpenSSL files.

private key
a number that is known only to its owner. The owner uses the private key to read
(decrypt) an encrypted message. See also public key, encryption.

public key
a number that is associated with a specific entity such as an individual or an
organization. A public key can be known by everyone who needs to have trusted
interactions with that entity. A public key is always associated with a single private
key, and can be used to verify digital signatures that were generated using that
private key.

Public Key Cryptography Standard #12 (PKCS #12)
a personal information exchange syntax standard. It defines a file format that is used
to store private keys with accompanying public-key certificates. See also Secure
Sockets Layer.

public-key cryptography
the science that uses public and private key pairs to protect confidential information.
The public key can be known by anyone. The private key is known only to the owner

130 Glossary

of the key pair. The public key is used primarily for encryption, but it can also be
used to verify digital signatures. The private key is used primarily for decryption, but
it can also be used to generate a digital signature.

SASProprietary algorithm
a fixed encoding algorithm that is included with Base SAS software. The
SASProprietary algorithm requires no additional SAS product licenses. It provides a
medium level of security.

Secure Shell (SSH)
a network protocol that enables users to access a remote computer via a secure
connection. SSH is available through various commercial products and as freeware.
OpenSSH is a free version of the SSH protocol suite of network connectivity tools.

Secure Sockets Layer (SSL)
an encryption protocol for securely communicating across the Internet. SSL uses
encryption algorithms RC2, RC4, DES, TripleDES, and AES.

SSH
See Secure Shell.

SSL
See Secure Sockets Layer.

stream cipher
a type of encryption algorithm that encrypts data one byte at a time. See also block
cipher.

TLS
See Transport Layer Security.

Transport Layer Security (TLS)
the successor to Secure Sockets Layer (SSL), a cryptographic protocol that is
designed to provide communication security over the Internet. TLS uses asymmetric
cryptography for authentication and confidentiality of the key exchange, symmetric
encryption for data/message confidentiality, and message authentication codes for
message integrity. Several versions of the protocols are in widespread use in
applications such as web browsing, electronic mail, Internet faxing, instant
messaging and voice-over-IP (VoIP). See also Secure Sockets Layer.

trust list
a file created by a user that contains the digital certificates for Certification
Authorities, if more than one Certification Authority is used.

tunneling (port forwarding)
a secure, encrypted connection between the SSH client, which runs on the same
computer as a SAS client, and an SSH server, which runs on the same computer as a
SAS server. The SSH client and server act as agents between the SAS client and the
SAS server, tunneling information via the SAS client's port to the SAS server's port.
See also Secure Shell.

Glossary 131

132 Glossary

Index

A
AES (Advanced Encryption Standard) 18
AES algorithm 10
algorithms 17

for client/server data transfers 26
key length for data transfers 29
SAS Proprietary Encryption 17
SAS/SECURE 10, 17
summary of 8

authentication
client authentication by server 35
location of digital certificate for 32

B
block cipher 17

C
certificate authorities (CAs)

digital certificate location 30
certificate authorities (CAs)

trust lists 122
Certificate authorities (CAs) 12
Certificate Locations

TLS on UNIX 86
Certificate Revocation List (CRL)

checking when digital certificate is
validated 36

location of 36
Certificate Store

importing digital certificate to 107
client authentication

by server 35
client/server connection outcomes 28
client/server data transfers

algorithm for 26
encrypting 26
key length for algorithm 29

configuration
SAS Proprietary Encryption 7
SAS/SECURE 10
TLS 14

D
Data Encryption Standard (DES) 18
data transfers

algorithm for 26
encrypting 26
key length for algorithm 29

decrypting private keys 38, 40
DER format 95

Windows 116
DES (Data Encryption Standard) 18
DES algorithm 10
digital certificates 12

certificate trust list 93, 95, 96, 116, 123,
124

checking Certificate Revocation List
when validating 36

converting between PEM and DER
formats 95, 116

importing to Certificate Store 107
location for authentication 32
location for trusted certificate

authorities 30
name of issuer 32
OpenSSL on UNIX 89
OpenSSL on z/OS 120
private key location 39
requesting from Microsoft Certificate

Authority 106
serial number of 33
subject name of 34
viewing 93, 122

digital signatures 12
DSA 18

E
encoded passwords 53, 56

encoding methods 55, 60
in SAS programs 53, 57
saving to paste buffer 59

encoding methods 55, 60
ENCRYPTFIPS= system option 23
encryption 3, 4

algorithms 4

133

comparison of technologies 19
contexts for coverage 4
data transfers 26
on-disk 5
over-the-wire 5
SAS/CONNECT client on UNIX

example 64
SAS/SHARE client example 64

environment variables
SAS_SSL_CIPHER_LIST 45
SAS_SSL_MIN_PROTOCOL 43
SSL_CERT_DIR 48
SSL_USE_SNI 50
SSLCACERTDIR 46

export restrictions for SAS/SECURE 10

F
FIPS 103, 117

How SAS Implements FIPS 5
SAS/SECURE 5
TLS 5

FIPS 140-2
algorithims 23

FIPS 140-2 configuration
SAS/SECURE 11

FIPS 140-2 installation
SAS/SECURE 11

I
implementation 20
importing digital certificates to Certificate

Store 107
installation

SAS Proprietary Encryption 7
SAS/SECURE 10
TLS 14
tunneling 16

K
key length

for data transfer algorithm 29
keys

private 12, 38, 39, 40
public 12

L
logging 20
logging security events 20

M
MD5 18

METHOD= option
PROC PWENCODE statement 55

Microsoft Certificate Authority
requesting digital certificate from 106

Microsoft CryptoAPI 10

N
NETENCRALG

NETENCRYPTALGORITHM system
option 26

NETENCRYPT system option 26
NETENCRYPTALGORITHM system

option 26
NETENCRYPTKEY=

NETENCRYPTKEYLEN= system
option 29

NETENCRYPTKEYLEN= system option
29

O
ODS generated PDF files 21
on-disk encryption 5
OpenSSL 103, 117

arguments and values 90, 92
certificate trust list 93
converting between PEM and DER

formats 95
creating digital certificates 120
digital certificates 89
FIPS 103
SSL on z/OS 120
Verify Certificates 95, 123

OpenTLS
converting between PEM and DER

formats 116
OUT= option

PROC PWENCODE statement 55
over-the-wire encryption 5

P
passwords

encoding 53, 56
encoding methods 60
for decrypting private keys 38, 40

paste buffer
saving encoded passwords to 59

PDF files 21
PDF system options 21
PEM format 95
PKCS #12 DER encoding package file

password for decrypting private keys
38

PKCS #12 encoding package file

134 Index

location of 37
port forwarding 15
private keys 12

location of 39
password for decrypting 38, 40

PROC PWENCODE statement
PWENCODE procedure 54

providers
SAS Proprietary Encryption 6
SAS/SECURE 8
SSH 15
SSL 11

public keys 12
PWENCODE procedure 53

concepts 53
encoded passwords in SAS programs

57
encoding 54
encoding methods 60
encoding passwords 56
saving encoded passwords to paste

buffer 59
syntax 54

R
RC2 algorithm 10, 17

key length for data transfer algorithm
29

RC4 algorithm 10, 17
key length for data transfer algorithm

29
Request a Certificate

TLS on UNIX 87
RSA 18

S
SAS Deployment Manager

Add Your Certificates to the SAS
Private JRE 101

certificate trust list 96, 116
Certificates 82

SAS programs
encoded passwords in 53, 57

SAS Proprietary 6
SAS Proprietary algorithm 17
SAS Proprietary Encryption 4

algorithms 17
comparison of technologies 19
configuration 7
installation 7
SAS/SHARE example 64
software availability 7
system requirements 7

SAS_SSL_CIPHER_LIST environment
variable 45

SAS_SSL_MIN_PROTOCOL
environment variable 43

SAS/CONNECT
client on UNIX example 64
SAS/SECURE example 64
server on UNIX example 64
SSH tunnel example 75
TLS UNIX spawner example 65
TLS Windows spawner example 67
TLS z/OS spawner example 69

SAS/Secure
encryption 23, 43, 45, 46, 48, 50

SAS/SECURE 8
algorithms 10, 17
comparison of technologies 19
configuration 10
export restrictions 10
FIPS 5
FIPS 140-2 configuration 11
FIPS 140-2 installation 11
installation 10
SAS/CONNECT example 64
software availability 10, 13
system requirements 10
Windows and 10

SAS/SHARE
client example 64
SAS Proprietary Encryption example

64
server example 64
SSH tunnel example 76
TLS on UNIX example 71
TLS on Windows examples 73
TLS on z/OS example 74

sasproprietary algorithm 17
SDM

certificate trust list 124
Secure Shell

See SSH (Secure Shell)
Secure Sockets Layer

See SSL (Secure Sockets Layer)
security logging 20
serial number of digital certificate 33
servers

client authentication by 35
SAS/CONNECT on UNIX example 64
SAS/SHARE server example 64

Setting up digital certificates
TLS on UNIX 87

software requirements
TLS on UNIX 85
TLS on Windows 105
TLS on z/OS 119

spawners

Index 135

TLS SAS/CONNECT UNIX example
65

TLS SAS/CONNECT Windows
example 67

TLS SAS/CONNECT z/OS example 69
SSH (Secure Shell) 15

comparison of technologies 19
system requirements 15
tunnel for SAS/CONNECT example 75
tunnel for SAS/SHARE example 76
tunneling 15, 16
tunneling installation and setup 16

SSL (Secure Sockets Layer) 11
See also OpenSSL

SSL_CERT_DIR environment variable
48

SSL_USE_SNI environment variable 50
SSLCACERTDIR environment variable

46
SSLCALISTLOC= system option 30
SSLCERTISS= system option 32
SSLCERTLOC= system option 32
SSLCERTSERIAL= system option 33
SSLCERTSUBJ= system option 34
SSLCLIENTAUTH system option 35
SSLCRLCHECK system option 36
SSLCRLLOC= system option 36
SSLPKCS12LOC= system option 37
SSLPKCS12PASS= system option 38
SSLPVTKEYLOC= system option 39
SSLPVTKEYPASS= system option 40
SSLREQCERT= system option 40
stream cipher 17
subject name of digital certificate 34
system options

PDF 21
system requirements

SAS Proprietary Encryption 7
SAS/SECURE 10
SSH 15
TLS on UNIX 85
TLS on Windows 105
TLS on z/OS 119

T
TLS 103
TLS (Transport Layer Security)

installation 14
TLS (Secure Sockets Layer)

SAS/CONNECT z/OS spawner
example 69

TLS (Transport Layer Security) 11
comparison of technologies 19
concepts 12
configuration 14

name of issuer of digital certificate 32
overview 11
password for decrypting private key 38,

40
SAS/CONNECT UNIX spawner

example 65
SAS/CONNECT Windows spawner

example 67
SAS/SHARE on UNIX example 71
SAS/SHARE on Windows examples 73
SAS/SHARE on z/OS example 74
serial number of digital certificate 33
software availability 13
SSLREQCERT= 40
subject name of digital certificate 34
system and software requirements on

Windows 105
system and software requirements on

z/OS 119
trusted certificate authorities 30

TLS (Transport Security Layer)
system and software requirements on

UNIX 85
Transport Layer Security

See TLS (Transport Layer Security)
TripleDES algorithm 10, 18
trust lists 122
trusted certificate authorities (CAs)

digital certificate location 30
tunneling 15, 16

installation and setup 16
SSH for SAS/CONNECT example 75
SSH for SAS/SHARE example 76

U
UNIX

converting between PEM and DER
formats 95

Creating a certificate trustlist 93, 96
creating a digital certificate request 89
OpenSSL on 89
SAS Deployment Wizard 101
SAS/CONNECT client example 64
SAS/CONNECT server example 64
TLS on 85
TLS SAS/CONNECT spawner example

65
TLS SAS/SHARE example 71
TLS system and software requirements

85
Validate Certificates 103
Verify certificates in trustlist 95

136 Index

W
Windows

converting between PEM and DER
formats 116

Creating a certificate trustlist 116
SAS/SECURE and 10
TLS SAS/CONNECT spawner example

67
TLS SAS/SHARE examples 73
TLS system and software requirements

105

Z
z/OS

Creating a certificate trustlist 124
creating digital certificates 120
TLS on 119
TLS SAS/CONNECT spawner example

69
TLS SAS/SHARE example 74
TLS system and software requirements

119
Verify certificates in trustlist 123

Index 137

138 Index

	Contents
	About This Book
	Syntax Conventions for the SAS Language
	Overview of Syntax Conventions for the SAS Language
	Syntax Components
	Style Conventions
	Special Characters
	References to SAS Libraries and External Files

	What's New in Encryption in SAS 9.4
	Overview
	General Enhancements
	Documentation Enhancements

	Accessibility
	Encryption in SAS 9.4
	Technologies for Encryption
	Overview of Encryption
	Security Concepts
	Two Classes of Encryption Strength
	Two Contexts for Encryption Coverage

	FIPS 140-2 Standards Compliance
	Overview
	How SAS Implements FIPS

	Providers of Encryption
	SAS Proprietary Encryption
	SAS/SECURE
	Transport Layer Security (TLS)
	SSH (Secure Shell)

	Encryption Algorithms
	Comparison of Encryption Technologies
	Encryption: Implementation
	Encryption: SAS Logging Facility
	Encrypting ODS Generated PDF Files

	SAS System Options for Encryption
	Dictionary
	ENCRYPTFIPS System Option
	NETENCRYPT System Option
	NETENCRYPTALGORITHM System Option
	NETENCRYPTKEYLEN= System Option
	SSLCALISTLOC= System Option
	SSLCERTISS= System Option
	SSLCERTLOC= System Option
	SSLCERTSERIAL= System Option
	SSLCERTSUBJ= System Option
	SSLCLIENTAUTH System Option
	SSLCRLCHECK System Option
	SSLCRLLOC= System Option
	SSLPKCS12LOC= System Option
	SSLPKCS12PASS= System Option
	SSLPVTKEYLOC= System Option
	SSLPVTKEYPASS= System Option
	SSLREQCERT= System Option

	SAS Environment Variables for Encryption
	Overview of Environment Variables
	Dictionary
	SAS_SSL_MIN_PROTOCOL Environment Variable
	SAS_SSL_CIPHER_LIST Environment Variable
	SSLCACERTDIR Environment Variable
	SSL_CERT_DIR Environment Variable
	SSL_USE_SNI Environment Variable

	PWENCODE Procedure
	Overview: PWENCODE Procedure
	Concepts: PWENCODE Procedure
	Using Encoded Passwords in SAS Programs
	Encoding versus Encryption

	Syntax: PWENCODE Procedure
	PROC PWENCODE Statement

	Examples: PWENCODE Procedure
	Encoding a Password
	Using an Encoded Password in a SAS Program
	Saving an Encoded Password to the Paste Buffer
	Specifying Method= SAS003 to Encode a Password

	Encryption Technologies: Examples
	SAS Proprietary Encryption for SAS/SHARE: Example
	SAS/SHARE Client
	SAS/SHARE Server

	SAS/SECURE for SAS/CONNECT: Example
	SAS/CONNECT Client on UNIX
	SAS/CONNECT Server on UNIX

	TLS for a SAS/CONNECT UNIX Spawner: Example
	 Start-up of a UNIX Spawner on a SAS/CONNECT Server
	Connection of a SAS/CONNECT Client to a UNIX Spawner

	TLS for a SAS/CONNECT Windows Spawner: Example
	Start-up of a Windows Spawner on a Single-User SAS/CONNECT
Server
	Connection of a SAS/CONNECT Client to a Windows Spawner on
a SAS/CONNECT Server

	TLS on a z/OS Spawner on a SAS/CONNECT Server: Example
	 Start-up of a z/OS Spawner on a SAS/CONNECT Server
	Connection of a SAS/CONNECT Client to a z/OS Spawner

	TLS for SAS/SHARE on UNIX: Example
	Start-up of a Multi-UserSAS/SHARE Server
	SAS/SHARE Client Access of a SAS/SHARE Server

	TLS for SAS/SHARE on Windows: Examples
	Start-up of a Multi-UserSAS/SHARE Server
	SAS/SHARE Client Access of a SAS/SHARE Server

	TLS for SAS/SHARE on z/OS: Example
	Start-up of a Multi-UserSAS/SHARE Server
	SAS/SHARE Client Access of a SAS/SHARE Server

	SSH Tunnel for SAS/CONNECT: Example
	Start-up of a UNIX Spawner on a Single-User SAS/CONNECT Server
	Connection of a SAS/CONNECT Client to a UNIX Spawner on a
 SAS/CONNECT Server

	SSH Tunnel for SAS/SHARE: Example
	Start-up of a Multi-UserSAS/SHARE Server
	SAS/SHARE Client Access of a SAS/SHARE Server

	Installing and Configuring TLS and Certificates
	Certificates Explained
	About Certificates
	Certificate File Formats
	Overview
of Certificate Management Using the SAS Deployment Manager
	Certificate Implementation: How TLS Client and Servers Negotiate
	How SAS Validates Certificates between Clients and Servers

	Installing and Configuring TLS and Certificates on UNIX
	TLS on UNIX: System and Software Requirements
	Certificate Locations
	Preparation for Setting Up Digital Certificates
	 Setting Up Digital Certificates Using OpenSSL
	 Step 1. Generate a New RSA Private Key and Certificate Signing
Request (CSR)
	Step 2 (Optional). Generate a Public Certificate from an Existing
Certificate
	Step 3. Secure Your Private Key File
	Step 4. Check Your Digital Certificate Using OpenSSL
	Step 5. Create a Certificate Chain in PEM Format Using OpenSSL
	Step 6. Verify Certificates in the Trust Chain Using OpenSSL
	Step 7. End OpenSSL

	Convert between PEM and DER File Formats Using OpenSSL
	Manage Certificates in the Trusted CA Bundle Using the SAS
Deployment Manager
	Overview
	Add Your Certificates to the Trusted CA Bundle
	Remove Your Certificates from the Trusted CA Bundle
	SAS Deployment Manager Criteria for Validating Certificates

	Add Your Certificates to the SAS Private JRE
	How Clients and Servers Validate Certificates
	TLS on UNIX: Building FIPS 140-2 Capable OpenSSL

	Installing and Configuring TLS and Certificates on Windows
	TLS on Windows: System and Software Requirements
	TLS on Windows: Setting Up Digital Certificates
	Step 1. Configure TLS
	Step 2. Request a Digital Certificate

	Add Your Certificates to the Windows CA Stores
	TLS on Windows: Converting between PEM and DER File Formats
for TLS
	Use the SAS Deployment Manager to Manage Certificates in the
Trusted CA Bundle
	TLS on Windows: Validating Certificates between Clients and
Servers
	TLS on Windows: FIPS 140-2 Capable OpenSSL

	Installing and Configuring TLS and Certificates on z/OS
	TLS on z/OS: System and Software Requirements
	TLS on z/OS: Setting Up Digital Certificates
	Step 1. Authorize Access to the RACDCERT Command
	Step 2. Create the Digital Certificate for the CA
	Step 3. Create the Server and Client Digital Certificates
	Step 4. View Digital Certificates
	Step 5. Create a CA Trust List Using OpenSSL
	Step 5. Verify Certificates in the Trust Chain Using OpenSSL
	Step 6. End OpenSSL

	Use the SAS Deployment Manager to Manage Certificates in the
Trusted CA Bundle

	Troubleshooting
	Troubleshooting TLS
	ERROR: Unable to load extension: (tkessl)
	ERROR: SSL provider not in FIPS mode
	ERROR: HTTP proxy handshake failed.
	ERROR: Cannot load SSL Support
	ERROR:14090086:SSL routines: SSL3_GET_SERVER_CERTIFICATE: certificate
verify failed
	Failed to Find the Following Issuer of this Certificate in
Truststore
	Verify that the File Contains Certificates in the Proper Encoding

	Recommended Reading
	Glossary
	Index

