
SAS® 9.4
Guide to Metadata-Bound 
Libraries
Second Edition

SAS® Documentation



The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2013. SAS® 9.4 Guide to Metadata-Bound Libraries, Second 
Edition. Cary, NC: SAS Institute Inc.

SAS® 9.4 Guide to Metadata-Bound Libraries, Second Edition

Copyright © 2013, SAS Institute Inc., Cary, NC, USA

All rights reserved. Produced in the United States of America.

For a hard-copy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, 
electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS Institute Inc.

For a web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at the time you acquire this 
publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the publisher is illegal and 
punishable by law. Please purchase only authorized electronic editions and do not participate in or encourage electronic piracy of copyrighted 
materials. Your support of others' rights is appreciated.

U.S. Government License Rights; Restricted Rights: The Software and its documentation is commercial computer software developed at private 
expense and is provided with RESTRICTED RIGHTS to the United States Government. Use, duplication or disclosure of the Software by the 
United States Government is subject to the license terms of this Agreement pursuant to, as applicable, FAR 12.212, DFAR 227.7202-1(a), DFAR 
227.7202-3(a) and DFAR 227.7202-4 and, to the extent required under U.S. federal law, the minimum restricted rights as set out in FAR 52.227-19 
(DEC 2007). If FAR 52.227-19 is applicable, this provision serves as notice under clause (c) thereof and no other notice is required to be affixed to 
the Software or documentation. The Government's rights in Software and documentation shall be only those set forth in this Agreement.

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513-2414.

July 2015

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other 
countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.



Contents

SAS 9.4 Guide to Metadata-Bound Libraries, Second Edition . . . . . . . . . . . . . . . . . . . . . v
What’s New in Metadata-Bound Libraries in SAS 9.4 . . . . . . . . . . . . . . . . . . . . . . . . . . vii
Accessibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Chapter 1 • Overview of Metadata-Bound Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
What is a Metadata-Bound Library? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Depiction of a Metadata-Bound Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Authorization Model for Metadata-Bound Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Benefits of Metadata-Bound Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Limitations of Metadata-Bound Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Who Should Use Metadata-Bound Libraries? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Chapter 2 • Implementation of Metadata-Bound Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Binding Data to Metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Validating a Metadata-Bound Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Unbinding a Metadata-Bound Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Changing a Metadata-Bound Library Password . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Changing a Metadata-Bound Library’s Encryption Options . . . . . . . . . . . . . . . . . . . . . 26
Verifying Access to Metadata-Bound Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Mutually Exclusive Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Providing Fine-Grained Access Using Views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Providing Fine-Grained Access Using Condition Permissions . . . . . . . . . . . . . . . . . . . 35
Best Practices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Chapter 3 • Reference for Metadata-Bound Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Permissions for Metadata-Bound Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Passwords for Metadata-Bound Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Auditing for Metadata-Bound Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Considerations for Data File Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Considerations for Renaming Physical Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Object Creation, Location, and Inheritance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Security Information in Metadata-Bound Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
SAS Language Reference for Metadata-Bound Libraries . . . . . . . . . . . . . . . . . . . . . . . 51

Chapter 4 • Troubleshooting for Metadata-Bound Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Facilitate End-User Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Replace Missing Metadata Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Realign Security Location Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Appendix 1 • Security Impact of Moving Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
About This Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Adding Physical Tables to a Metadata-Bound Library . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Copying Metadata-Bound Tables to a Traditional Library . . . . . . . . . . . . . . . . . . . . . . . 62

Appendix 2 • AUTHLIB Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Overview: AUTHLIB Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Concepts: AUTHLIB Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Syntax: AUTHLIB Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Using the AUTHLIB Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99



Results: AUTHLIB Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Examples: AUTHLIB Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Recommended Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

iv Contents



SAS 9.4 Guide to Metadata-
Bound Libraries, Second Edition

Audience

This document is intended for administrators who want SAS to always enforce its 
metadata-layer permission requirements before providing access to SAS data. Metadata-
bound libraries provide enhanced protection for Base SAS data (SAS data sets and SAS 
views).

In general, only administrators who set up and maintain metadata-bound libraries need to 
know the information that this document contains. However, in order to access metadata-
bound data, a connection to the metadata server is required. So a user who makes a 
direct request (for example, through a LIBNAME statement) does have to facilitate that 
connection. See “Metadata Server Connection Options” on page 51.

Requirements
Administration of metadata-bound libraries requires Base SAS, a SAS Metadata Server, 
and SAS Management Console.

v



vi SAS 9.4 Guide to Metadata-Bound Libraries, Second Edition



What’s New in Metadata-Bound 
Libraries in SAS 9.4

Overview

The following new features and enhancements affect metadata-bound libraries in SAS 
9.4:

• New SAS Management Console features simplify administration.

• A new automatic process simplifies certain administrative interactions with 
encrypted tables.

• Effective with the first maintenance release for SAS 9.4, you can require the tables in 
a library to be encrypted. You can also store the AES encryption key for a library’s 
data sets in the library’s metadata.

• The REPAIR statement’s DELETE LOCATION action is now a production feature.

• Effective with the third maintenance release for SAS 9.4, replaced metadata-bound 
library passwords and encryption keys are retained in metadata until all tables are 
successfully modified or the administrator explicitly purges them.

SAS Management Console

The following new features reduce the need to write SAS code to administer metadata-
bound libraries. From within a /System/Secured Libraries branch on the 
Folders tab in SAS Management Console, you can perform the following tasks:

• bind a physical library and its contents to metadata

• change the password of a metadata-bound library

• unbind a metadata-bound library and delete the corresponding metadata objects

• require that the tables in a library be encrypted (available in the first maintenance 
release for SAS 9.4)

• validate a library to identify any discrepancies related to metadata bindings (for 
example, missing or mismatched physical tables, security location information, or 
metadata objects)

• store or modify an AES encryption key in a library’s metadata (available in the first 
maintenance release for SAS 9.4)

vii



• specify permission conditions that give users access to some but not all of the data 
within a physical table (available in the first maintenance release for SAS 9.4)

• specify whether a library’s passwords and encryption keys are to be retained in 
metadata or automatically purged if all tables in the library are successfully modified 
to use the newer credentials (available in the third maintenance release for SAS 9.4)

Note: Unlike most actions in SAS Management Console, the actions that are described 
in the first four items in the preceding list affect not only metadata, but also the 
corresponding physical data. All of the actions build SAS code and execute it in a 
workspace server.

Encryption

• The process for modifying passwords for a metadata-bound library that contains 
encrypted tables has been simplified. A copy-in-place approach is automatically used 
when necessary to accomplish a task. See “Making Security-Related Changes to an 
Encrypted Table” on page 47.

• You can use the TABLES statement of the AUTHLIB procedure to supply a key to 
use in AES encryption of metadata-bound Base SAS libraries. See “Using AES 
Encryption with Metadata-Bound Libraries” on page 47.

• Effective with the first maintenance release for SAS 9.4, you can force encryption by 
specifying REQUIRE_ENCRYPTION=YES when you create or modify a metadata-
bound library. By requiring some form of encryption for all tables within a metadata-
bound library, you increase security. See CREATE Statement and MODIFY 
Statement.

• Effective with the first maintenance release for SAS 9.4, you can use 
ENCRYPTKEY= to store an AES encryption key in metadata when you create or 
modify a metadata-bound library. The stored key is used to attempt to open the 
library’s AES-encrypted tables when no key is supplied by the user. The stored key is 
used to encrypt data sets in the following cases: when encryption is required, and 
when AES encryption is specified in SAS code but no key is supplied.

REPAIR Statement

• The REPAIR statement of the AUTHLIB procedure no longer supports password 
modification. See “REPAIR Statement” on page 89.

• The REPAIR DELETE LOCATION action of the AUTHLIB procedure is now a 
production feature. See “REPAIR Statement” on page 89.

PURGE Statement and PURGE= Option

In the third maintenance release for SAS 9.4, a new statement and a new option for the 
MODIFY statement were added to the AUTHLIB procedure.

viii Metadata-Bound Libraries



• The PURGE statement removes any retained metadata-bound library credentials 
older than a given date of replacement. 

• The MODIFY statement has a PURGE= option that automatically removes all 
retained metadata-bound library credentials if all tables in the library are successfully 
modified to use the newer credentials. 

PURGE Statement and PURGE= Option ix



x Metadata-Bound Libraries



Accessibility

For information about the accessibility of any of the products mentioned in this 
document, see the usage documentation for that product.

xi



xii Metadata-Bound Libraries



Chapter 1

Overview of Metadata-Bound 
Libraries

What is a Metadata-Bound Library? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Depiction of a Metadata-Bound Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Authorization Model for Metadata-Bound Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Benefits of Metadata-Bound Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Limitations of Metadata-Bound Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Who Should Use Metadata-Bound Libraries? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

What is a Metadata-Bound Library?
A metadata-bound library is a physical library that is tied to a corresponding metadata 
object. Creating a metadata-bound library generates a new metadata object and binds the 
physical library to that object.

Each metadata-bound library has information in its directory structure that points to a 
specific metadata object (a secured library object). Similarly, each physical table within a 
metadata-bound library has information in its header that points to a specific metadata 
object (a secured table object). These pointers create security bindings between the 
physical data and its corresponding metadata objects. The bindings ensure that SAS 
universally enforces metadata-layer permission requirements for the physical data—
regardless of how a user requests access from SAS.

Access from SAS to metadata-bound data is provided only if all of the following 
conditions are met:

• The requesting user can connect to the metadata server in which the corresponding 
metadata objects are stored.

• The requesting user’s metadata identity has all required metadata-layer effective 
permissions for the requested action.

• The host identity with which the data is retrieved has all required host-layer access to 
the data.

1



Depiction of a Metadata-Bound Library
The following figure depicts the metadata objects and physical security information that 
are generated when you bind a library to metadata. The "Before" section shows the 
initial state and the "After" section shows the security location information, bindings, 
and metadata objects that are generated.

Figure 1.1 Depiction of a Metadata-Bound Library

Host Layer

Host Layer

Metadata Layer

Metadata Layer

Before:

After:

root

sensitive data

sensitive data

tableA.sas7bdat

tableB.sas7bdat

tableA.sas7bdat

tableB.sas7bdat

tableA

tableB

= security location information = security binding

SAS Folders

System

Secured Libraries

Secured Folder A

Secured Libraries

Secured Folder A

...other directories...

root

.sassl

seclib

loc

...other directories...

...other folders...

SAS Folders

System

...other folders...

Here are some key points about the "After" section of the preceding figure:

• The physical data includes references to corresponding objects within a SAS 
metadata repository. 

• For a physical library, the security information consists of a subdirectory and file. 
The corresponding metadata object is called a secured library object. In the 
figure, seclib is the secured library object that corresponds to the physical 
metadata-bound library called sensitive data.

z/OS Specifics

2 Chapter 1 • Overview



On z/OS, the security information for a UNIX file system (UFS) library is 
stored as described in the preceding figure. However, the security information 
for a z/OS direct-access bound library is instead stored within the bound 
library data set itself. For this reason, z/OS sites that choose to use metadata-
bound libraries might prefer the z/OS direct-access bound library 
implementation to the UFS library implementation. z/OS sequential-access 
bound libraries cannot be bound to metadata.

• For a physical table, the security information consists of information in the 
header. The corresponding metadata object is called a secured table object. In the 
figure, tableA and tableB are secured table objects that correspond to the physical 
metadata-bound tables tableA.sas7bdat and tableB.sas7bdat.

• Each security binding causes all access from SAS to be subject to the requesting 
user’s effective metadata-layer permissions on the relevant corresponding metadata 
object.

Note: The figure assumes that the physical data is initially unprotected. If one or more 
of the physical tables already had a different password, the presence of that password 
would prevent that table from being affected by the bind action.

Authorization Model for Metadata-Bound Tables
The following figure depicts the authorization model for a traditional table and a 
metadata-bound table. In both cases, UserA references the target data directly (for 
example, through a LIBNAME statement) and UserB requests the target data through a 
client that uses metadata to locate data (for example, SAS Web Report Studio).

Figure 1.2 Authorization Checks (by Data Type and Access Method)

Access to a Traditional Table

Traditional Table

Access to a Metadata-Bound Table

= authorization check
   (metadata layer)

= authorization check
   (host layer)

Metadata-Bound Table

UserA UserAUserB UserB

Metadata Layer Controls Metadata Layer Controls

Authorization Model for Metadata-Bound Tables 3



The preceding figure depicts the following key difference:

• When accessing a traditional table, a user can bypass metadata-layer controls by 
making a direct request. 

• When accessing a metadata-bound table, a user cannot completely bypass metadata-
layer controls. Even on a direct request, UserA is always subject to a metadata-layer 
permissions check before accessing SAS data from SAS. 

For the metadata-bound table, the upwards-facing arrows are caused by the physical 
data’s security binding. For each metadata-bound table, information within the table 
header identifies a corresponding metadata object (a secured table object). Metadata-
layer permissions on each secured table object affect access from SAS to the 
corresponding physical table.

For the metadata-bound table, UserB is subject to two metadata-layer authorization 
checks against two different metadata objects.

• The first check is against a traditional table object (for example, verifying that UserB 
has the ReadMetadata permission).

• The second check is against a secured table object (for example, verifying that UserB 
has the Select permission).

T I P In the SAS metadata, traditional table objects and secured table objects are 
distinct and independent types of objects. See “Object Creation, Location, and 
Inheritance” on page 48.

Here are some additional details about the preceding figure:

• The requesting users do not supply library or table passwords.

• The metadata-layer authorization checks are against the metadata identity of the 
requesting user. The host-layer authorization checks are against the identity of the 
SAS process that retrieves the data. 

• The figure addresses access to SAS data from SAS, not interaction through host 
commands.

• The figure is conceptual, simplified, and abstracted. It is not intended as a detailed 
technical specification.

See Also
• “Identity in Authorization Evaluations” on page 43

• “About Access to SAS Data” in SAS Intelligence Platform: Security Administration 
Guide

Benefits of Metadata-Bound Libraries
The benefits of metadata-bound libraries are as follows:

• Metadata-bound libraries can provide seamless, secure access to SAS data.

• Metadata-bound libraries offer more robust protection than do other metadata-based 
approaches to access control. Because enforcement for a metadata-bound library 
originates from the physical data, that enforcement occurs regardless of whether an 
access request from SAS is mediated by metadata (for example, from SAS Web 

4 Chapter 1 • Overview

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=bisecag&pubcode=67045&id=n08kuet5lau3tfn1tcmhilvliq8i
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=bisecag&pubcode=67045&id=n08kuet5lau3tfn1tcmhilvliq8i


Report Studio) or direct (for example, from a LIBNAME statement that is submitted 
in SAS Enterprise Guide).

• The protection that metadata-bound libraries provide is persistent. Protections for a 
metadata-bound table apply to any other instances of a physical table with the same 
name in the same physical library. In other words, permissions that you set in the 
metadata survive activities that affect the underlying physical table. For example, the 
protections remain in place after you re-create or replace the underlying physical 
table.

Limitations of Metadata-Bound Libraries
The limitations of metadata-bound libraries are as follows:

• Only Base SAS data—SAS tables (data sets) and SAS views—can be bound to 
metadata. In the current release, you can create metadata-bound libraries for only 
data that is processed by the BASE engine.

• Concatenated libraries or temporary libraries cannot be bound to metadata. However, 
metadata-bound libraries can participate in a library concatenation.

• Binding data to metadata does not prevent the use of operating system commands 
against files and directories. For example, a user who has Write access to an 
operating system directory (in order to create physical tables) can use host 
commands to delete and replace files within that directory. Such commands operate 
independently of any metadata binding. However, replacement of files through 
operating system commands is detected and audited. See “Auditing for Metadata-
Bound Libraries” on page 45.

• In the current release, metadata-bound libraries don’t support column-level 
permissions. However, you can create views that subset data by columns or rows, 
and then set permissions to specify who can access each view. Dynamic row-level 
filtering based on each requesting user’s authenticated user ID is supported. See 
“Providing Fine-Grained Access Using Views” on page 33.

• Advanced tasks (repairing a metadata-bound library or performing actions on only 
certain tables within a metadata-bound library) are not supported in SAS 
Management Console. You can use SAS code to perform these tasks.

• Clients that use metadata to locate data can’t use secured library objects or secured 
table objects for that purpose. To support access from such clients, each metadata-
bound library must also be registered in metadata as a traditional library object. 

Note: The metadata objects that serve as bind targets for physical data are distinct 
from and independent of the metadata objects that are used to register physical 
data. For example, a physical library can be bound to a secured library object 
without also being registered as a traditional library object. Similarly, tables that 
are within a metadata-bound library (and bound to corresponding secured table 
objects) might or might not also be registered as traditional table objects. There 
are no associations in metadata between secured library objects and traditional 
library objects. See “Object Creation, Location, and Inheritance” on page 48.

Note: In the SAS metadata, a secured library object is functional only if it exists 
within the /System/Secured Libraries branch of a repository. You can’t 
bind physical libraries to secured library objects that are in other metadata 
locations. You can create subfolders within a /System/Secured Libraries 

Limitations of Metadata-Bound Libraries 5



branch. In the SAS metadata, a secured table object can exist only within a 
secured library object.

The following additional limitations affect the availability of metadata-bound data:

• Access to metadata-bound tables is not supported in any release prior to the second 
maintenance release of SAS 9.3.

z/OS Specifics
For a z/OS direct-access bound library that is bound to metadata, this constraint 
is slightly broader: neither the library nor any of its members can be accessed by 
earlier releases of SAS.

Note: An exception is that access to metadata-bound tables through a SAS/SHARE 
server is available to earlier clients, if SQL statements are passed to the server 
and the server is in the second maintenance release of SAS 9.3 (or later).

• For the SAS OLE DB Local Data Provider, access to metadata-bound tables is not 
supported. The SAS OLE DB Local Data Provider uses a specialized stand-alone 
engine that provides access to data sets from external programs without running 
SAS.

• For the SAS/SHARE Data Provider, access to metadata-bound tables through a 
SAS/SHARE server is available only if SQL statements are passed to the server. The 
SAS/SHARE Data Provider is one of the SAS Providers for OLE DB.

• For the SAS/IntrNet Application Dispatcher, access to metadata-bound tables is 
supported only if the application server runs with AUTH=HOST.

Who Should Use Metadata-Bound Libraries?
As with any other security-related decision, a decision about whether to use metadata-
bound libraries involves weighing the benefits of enhanced protection against increased 
administrative effort and complexity. This topic is intended to help you make a decision 
that is appropriate for your resources, environment, and security goals.

If all of the following circumstances exist, it makes sense to consider using metadata-
bound libraries:

• You have SAS data sets that require a high level of security, with access distinctions 
at the user or group level.

• You are running (or planning to run) a SAS Metadata Server in which your users are 
registered.

• You have not already met your security requirements through a combination of 
physical layer (operating system) separation and customized configuration of your 
SAS servers.

The following prerequisite knowledge is essential for successful use of metadata-bound 
libraries:

• You have a basic understanding of the SAS metadata environment, including its 
authorization system.

• You know how to create folders and set permissions in SAS Management Console.

• You have read and understood at least the first two chapters of this document.

The following additional factors should be considered in a decision about whether to use 
metadata-bound libraries:

6 Chapter 1 • Overview



• If your metadata promotion strategy does not maintain a separate set of physical data 
for each deployment level (for example, development, test, and production), 
significant additional administrative complexity is involved (compared to using 
secured libraries against a single set of physical data).

• Recovering from actions that inadvertently disrupt coordination between the physical 
data and its corresponding metadata objects can be complex.

• Any batch processing against metadata-bound data requires that the metadata server 
is available and that the requesting user can connect to it.

Note: In working with metadata-bound libraries, it is also useful to know how to write 
and submit SAS code.

Who Should Use Metadata-Bound Libraries? 7



8 Chapter 1 • Overview



Chapter 2

Implementation of Metadata-
Bound Libraries

Binding Data to Metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
GUI Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Code Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Traditional Registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Validating a Metadata-Bound Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
GUI Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Code Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Unbinding a Metadata-Bound Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
GUI Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Code Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Changing a Metadata-Bound Library Password . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
GUI Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Code Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Changing a Metadata-Bound Library’s Encryption Options . . . . . . . . . . . . . . . . . 26
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
GUI Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Code Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Verifying Access to Metadata-Bound Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Who Can Read Metadata-Bound Data? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Mutually Exclusive Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

9



Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Providing Fine-Grained Access Using Views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Column-Level Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Identity-Driven, Row-Level Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Providing Fine-Grained Access Using Condition Permissions . . . . . . . . . . . . . . . . . 35
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Best Practices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
General Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Avoiding Mixed States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Binding Data to Metadata

Overview
The following list outlines the process for setting up a metadata-bound library:

1. Use SAS Management Console to identify or create an appropriately secured folder 
for the data.

2. Use either SAS Management Console or SAS code to bind the physical library to 
metadata.

T I P Binding a physical library introduces additional constraints on access, so it is a 
good practice to review existing access patterns before you begin. For help with 
resolving any unanticipated disruptions in end-user access, see “Facilitate End-User 
Access” on page 55.

Note: If you want to support access from clients that use metadata in order to locate 
data, make sure that the data also has a traditional registration in metadata. See 
“Traditional Registration” on page 15.

Requirements
In order to bind a physical library to metadata, the following requirements must be met:

• The workspace server (or SAS session) that makes the bind request must have host-
layer control of the target library. This ensures that only users who have host control 
can bind a physical library to metadata. For host-specific details, see “Requirement 
for Host-Layer Control” on page 42.

• The workspace server (or SAS session) that makes the bind request must connect to 
the metadata server as an identity that has the ReadMetadata and 
WriteMemberMetadata permissions to the target secured data folder.

Preparation
This introductory demonstration limits access to a library that contains tables copied 
from the SASHELP library. After you complete the steps that are in the preparation 

10 Chapter 2 • Implementation



section, use either the graphical user interface (GUI) method or the SAS code method to 
bind the data.

1. In the operating system, create a directory called test. Copy some of the tables 
from your SASHELP directory into the test directory.

T I P By default, SASHELP is in your SASHOME directory, under 
SASFoundation\<version>\core\.

2. Create an appropriately secured metadata location.

a. Log on to SAS Management Console as someone who has the ReadMetadata and 
WriteMemberMetadata permissions on the /System/Secured Libraries 
folder. In the standard configuration, only members of the SAS Administrators 
group (and unrestricted users) have the necessary access.

b. On the Folders tab, navigate to SAS Folders ð System ð Secured Libraries. 
Add a new folder called Demo Folder. 

c. On the new folder’s Authorization tab, adjust access. As a simplified 
introductory example, give yourself exclusive access to the data. One way to do 
this is by adding explicit controls as follows:

• In the Users and Groups list box, select the PUBLIC group and explicitly 
deny all permissions for that group.

• Add yourself to the tab (click the Add button next to the Users and Groups 
list box) and explicitly grant all permissions to yourself.

T I P Read access to metadata-bound data is governed by the Select 
permission.

T I P In SAS Management Console, an explicit setting has a white background 
color (not gray or green).

T I P In practice, it would be a good idea to also apply the SAS Administrators 
Settings ACT (access control template).

Binding Data to Metadata 11



GUI Method
To bind the physical library (your test directory) to metadata:

1. In SAS Management Console, right-click the /System/Secured Libraries/
Demo Folder folder and select New ð Secured Library.

2. On the General page of the New Secured Library wizard, enter Demo Library as the 
name for the object. Click Next.

The Connection Data page of the New Secured Library wizard appears:

12 Chapter 2 • Implementation



Refer to the entries in the preceding example as you complete steps 3 through 8.

3. Select the application server that you want to use to bind the target directory to 
metadata. 

Note: The application server must include a standard workspace server that has host 
access to the target directory.

4. Specify the directory path that you want to bind to metadata.

5. Set and confirm a password for the new metadata-bound library. 

Note: The password can be no more than eight characters long. To create a more 
complex password, select the Specify multiple passwords check box and supply 
three distinct passwords. Using multiple passwords for a metadata-bound library 
only increases security; the different passwords do not manage different types of 
access.

Note: Users do not supply metadata-bound library passwords in order to access data, 
so they should neither know, nor have access to, the password values.

CAUTION:
If you lose the password for a metadata-bound library, you cannot unbind 
the library or change its password. Keep track of passwords that you assign.

6. If any of the library’s data sets are currently encrypted using AES encryption, enter 
the current key in the Encrypt Key field. 

Binding Data to Metadata 13



T I P The key that you enter is placed in quotation marks when it is submitted to 
SAS and is therefore case sensitive. If the key was originally specified in SAS 
code without quotation marks, then be sure to use uppercase letters when 
entering it here.

Note: If the tables do not all have the same key, then you must use the code method 
to bind the library to metadata.

7. If you want to require encryption for all tables that are bound to the library, select the 
Require Encryption check box and select Yes. Then take one of the following 
actions:

• To require AES encryption, you must specify an AES encryption key to store in 
the library’s metadata. See step 8.

• To require SAS Proprietary encryption, select the Encryption Type check box 
and select SAS Proprietary. Then go to step 9.

8. Follow these steps if you are requiring AES encryption or if you want to store a 
default key to use for encrypting some data sets:

a. Select the Encryption Type check box and select AES. 

b. Enter an encryption key in the New Encrypt Key and Confirm Encrypt Key 
fields. 

T I P The value that you enter is a passphrase of up to 64 characters in length, 
from which the actual AES encryption key is derived. Most SAS 
documentation refers to the passphrase as the encryption key.

T I P The key is placed in quotation marks when it is submitted to SAS and is 
therefore case sensitive.

T I P Be sure to keep a record of the encryption key, even though it is stored in 
metadata.

If encryption is required, the stored encryption key will be used to encrypt every data 
set that is bound in the library. If encryption is not required, the stored key will be 
used to encrypt new tables when AES encryption is specified in SAS code but no key 
is supplied.

CAUTION:
For AES-encrypted data sets that are referentially related to one another, 
follow these best practices to ensure that the data does not become 
inaccessible: Store the encryption key in the library’s metadata. You can modify 
the stored key, but do not remove the key from metadata and do not unbind the 
library.

9. Click Finish. 

10. In the New Secured Library window, click Yes to view the log. 

It is strongly recommended that you always check the log for warnings after you 
perform an action on a secured library object.

14 Chapter 2 • Implementation



Code Method
As an alternative to using SAS Management Console, you can use SAS code to bind the 
data. See “CREATE Statement” on page 77.

Results
After the data is bound, each eligible physical table in your test library is represented in 
the metadata as a new secured table object. A table is eligible if it is not already secured 
with a password that differs from the password that you supply.

The following image depicts the new secured library object and secured table objects in 
SAS Management Console. Your list of secured table objects corresponds to the tables 
that you copied in the preparation phase. See “Preparation” on page 10.

T I P If the new objects are not immediately visible, right-click the Secured Libraries 
folder and select Refresh. The new secured table objects are visible in the right panel 
when their respective secured library object is selected in the folder tree.

Traditional Registration
If you want to support access from clients that use metadata to locate data, register the 
library and tables in metadata (using the Data Library Manager plug-in within SAS 
Management Console).

For example, to make the data available from within SAS Web Report Studio, you might 
register it beneath the Shared Data folder.

Use the Data Library Manager plug-in within SAS Management Console to perform this 
task.

T I P Permissions on a traditional library or table object can further limit access. For 
example, a user who reads data through the META LIBNAME engine (MLE) must 
have permissions on both the traditional table object (the ReadMetadata and Read 
permissions) and the secured table object (the ReadMetadata and Select 
permissions).

Binding Data to Metadata 15



Validating a Metadata-Bound Library

Overview
Validating a metadata-bound library identifies any inconsistencies between the physical 
metadata-bound library and its corresponding metadata objects. The validation report 
lists any missing or mismatched physical tables, security location information, and 
metadata objects for a specified physical library.

To validate a metadata-bound library, use either SAS Management Console or the 
AUTHLIB procedure.

T I P In general, you perform this validation against a physical library that is already 
bound to metadata. However, you can also perform this validation against a 
traditional library, in order to determine whether any individual physical tables 
within that library are bound to metadata.

Requirements
In order to validate a metadata-bound library, the following requirements must be met:

• The workspace server (or SAS session) that makes the request must run under an 
account that has host-layer Read access to the target physical library. This is 
necessary in order to assign the libref.

• The workspace server (or SAS session) that makes the request must connect to the 
metadata server as an identity that has the ReadMetadata permission for the target 
secured library object and secured table objects.

GUI Method

Introduction
To generate a metadata-bound library report in SAS Management Console, select the 
Report action on a secured library object. The report identifies any missing or 
mismatched security information for the corresponding metadata-bound library and its 
tables.

Note:  In SAS Management Console, the report action is available for only secured 
library objects. To use SAS Management Console to generate a report for a 
traditional (unbound) library, initiate the task from any secured library object and 
enter the path of the target physical library in the Secured Library Report window.

Instructions
1. On the Folders tab in SAS Management Console, beneath a /System/Secured 

Libraries branch, locate the secured library object that corresponds to the 
metadata-bound library that you want to validate.

2. Right-click the object and select Report.

The Secured Library Report dialog box appears:

16 Chapter 2 • Implementation



Refer to the entries in the preceding example as you complete steps 3 through 5.

3. Select the application server that you want to use to generate the report.

Note: The application server must include a standard workspace server that has host 
access to the target directory.

4. Specify the directory path of the target metadata-bound library.

5. If the library includes one or more AES-encrypted tables and the key is not recorded 
in the library’s metadata, select the Encrypt Key check box and enter the key to 
open the data sets.

Note: The key that you enter is placed in quotation marks when it is submitted to 
SAS and is therefore case sensitive. If the key was originally specified in SAS 
code without quotation marks, then be sure to use uppercase letters when 
entering it here.

Note: If the library contains a table that is encrypted with a different key, the 
message Invalid ENCRYPTKEY will appear in the report output.

If a key is recorded in the library’s metadata, you can leave the Encrypt Key field 
blank. The stored key will be used to open the data sets.

6. Click OK.

7. In the Secured Library Report window, click Yes to view the report and the log.

Validating a Metadata-Bound Library 17



Code Method
As an alternative to using SAS Management Console, you can use the AUTHLIB 
procedure to generate a metadata-bound library report. See “REPORT Statement” on 
page 94.

Results
It is important to carefully examine the entire report. The first section of the report lists 
all physical tables that are properly bound. Subsequent sections list any physical tables 
that are not properly bound and identify any other discrepancies.

T I P To generate the report in HTML format, use the AUTHLIB procedure (instead of 
SAS Management Console). For an example, see Output A2.2 on page 113.

Unbinding a Metadata-Bound Library

Overview
You unbind a library in order to remove its metadata-based protections. When you 
perform this action, physical and metadata content are affected as follows:

• Physical security information is deleted from the library directory and table headers.

• Corresponding secured library and secured table objects are deleted from the SAS 
metadata.

You can use either SAS Management Console or the AUTHLIB procedure to unbind a 
library.

T I P It is a good practice to validate a library before you unbind it. See “Validating a 
Metadata-Bound Library” on page 16.

Note: An unbind action affects only those physical tables that are located within the 
specified library. If a bound table is host-copied to another directory, that table’s 
security location information is unaffected by subsequent unbind actions against its 
parent metadata-bound library. In order to reestablish access to the table, corrective 
action against the table is necessary. See “REPAIR Statement” on page 89.

Requirements
In order to unbind a library, the following requirements must be met:

• You must know the current password for the metadata-bound library.

• The requesting workspace server (or SAS session) must run under an account that 
has host-layer control of the target physical library. For host-specific details, see 
“Requirement for Host-Layer Control” on page 42.

• The requesting workspace server (or SAS session) must connect to the metadata 
server as an identity that has the necessary metadata-layer permissions for the target 
secured data folder, secured library object, and secured table objects. See 
“Permissions for Metadata-Bound Data” on page 39.

18 Chapter 2 • Implementation



GUI Method

Introduction
When you delete a secured library object in SAS Management Console, access to the 
associated physical directory is affected as follows:

• If you right-click a secured library object and select Delete, the associated physical 
directory and tables remain bound (to a no-longer existing secured library object), so 
the data is inaccessible. 

CAUTION:
Use the Delete action only if you are certain that the associated physical 
directory no longer exists. 

• If you right-click a secured library object and select Delete and Unbind, the 
associated physical directory and tables are unbound from, and no longer protected 
by, metadata. This is the standard method for deleting a secured library object.

After you perform a Delete and Unbind action, the remaining protection for the 
library’s contents is as follows:

• If you do not supply new passwords, the current passwords are preserved on the 
affected tables.

T I P If you do not want the current passwords to be preserved, select the 
Change passwords check box but leave the fields for new passwords blank. 
With this approach, the only remaining protection for the data is host-layer 
access controls.

• If you supply new passwords, the data is available to only those users who know 
the new passwords and have host-layer access.

• If you do not supply new encryption options, the current encryption is preserved 
in the affected tables.

T I P If you do not want encryption to be preserved, select None as the 
encryption method.

• You can specify a different encryption method or a new AES encryption key to 
be applied to the physical data.

• If AES encryption is applied or preserved, or if you specify a new AES 
encryption key, the data is available to only those users who supply the key and 
have host-layer access.

Instructions
To unbind a physical library and delete its corresponding secured library and secured 
table objects:

1. On the Folders tab in SAS Management Console, beneath a /System/Secured 
Libraries branch, locate the secured library object that corresponds to the 
metadata-bound library that you want to unbind.

2. Right-click the object and select Delete and Unbind.

CAUTION:
The Delete action removes the secured library object and leaves any 
corresponding data bound. Be sure to select the Delete and Unbind action, not 
the Delete action.

Unbinding a Metadata-Bound Library 19



The Delete and Unbind Secured Library dialog box appears:

Refer to the entries in the preceding example as you complete steps 3 through 8.

3. Select the application server that you want to use to unbind the target directory.

Note: The application server must include a standard workspace server that has host 
access to the target directory.

4. Verify that the directory path of the target metadata-bound library is correct.

Note: The directory path is pre-populated with the most recently referenced path. If 
any directories in the path have been renamed, be sure to modify the path.

5. Supply the current password of the target metadata-bound library.

Note: If the target metadata-bound library has three distinct passwords, select the 
Specify multiple passwords check box, so there are three fields in the Password 
row. Supply all three passwords.

6. If you want to change or remove the current password, select the Change password 
values check box. Then take one of the following actions:

• To specify a new password for accessing the unbound data, enter new values in 
the New Password and Confirm Password fields.

20 Chapter 2 • Implementation



• To make the target accessible without passwords, leave the New Password and 
Confirm Password fields blank.

7. If the data sets are currently encrypted using AES encryption and the key is not 
stored in the library’s metadata, enter the current key in the Encrypt Key field.

8. If you want to change the encryption options, select the Encryption Type check box. 
Then take one of the following actions:

• To apply AES encryption (or to specify a new AES encryption key), select the 
AES radio button. Then enter an encryption key in the New Encrypt Key and 
Confirm Encrypt Key fields.

T I P Make sure that you have a record of the encryption key, as users will 
need to supply it when accessing the unbound data.

• To apply SAS Proprietary encryption, select the SAS Proprietary radio button. 
You cannot remove the library’s password if you use this encryption type.

• To remove all encryption from the library’s data sets, select the None radio 
button. 

CAUTION:
If you have to unbind a library that contains AES-encrypted data sets that 
are referentially related to other data sets, then either make sure that all 
related data sets are no longer AES-encrypted or make sure that all related 
data sets share the same encryption key. If you preserve AES encryption, the 
data will be available only to those users who supply the key and have host-layer 
access.

9. Click OK.

10. In the Delete and Unbind Secured Library window, click Yes to confirm your intent.

11. In the Delete and Unbind Secured Library window, click Yes to view the log.

It is strongly recommended that you always check the log for warnings after you 
perform an action on a secured library object.

Scope
In general, all tables within a metadata-bound library are protected by the library and 
share the library’s password. The GUI method facilitates this simple, best practice 

Unbinding a Metadata-Bound Library 21



approach by affecting the physical library and all of its eligible tables. A table is eligible 
if it is either unsecured or secured with the library password.

The following list identifies selective scope situations, in which you cannot use the GUI 
method:

• If you do not want to affect the library, use the code method and set the 
TABLESONLY option. 

• If you want to affect only some of the tables, use the code method and add a 
TABLES statement after the MODIFY statement.

Code Method
As an alternative to using SAS Management Console, you can use the AUTHLIB 
procedure to unbind a library. See “REMOVE Statement” on page 86.

Results
After you complete the preceding steps, the physical library remains intact, but is no 
longer bound to or protected by metadata.

In the host layer, the security location information is deleted from the target directory 
and files.

In the metadata layer, the corresponding secured library and table objects are deleted.

T I P To update the display in SAS Management Console, right-click the Secured 
Libraries folder and select Refresh.

Changing a Metadata-Bound Library Password

Overview
Before you change a library password, it is essential to understand when and how library 
passwords are used. See “Passwords for Metadata-Bound Data” on page 43.

You might change a library password for any of the following reasons:

• You suspect the password has been compromised.

• Your security policy mandates periodic changes to library passwords.

• You want to bind tables that have been host-copied into the metadata-bound library 
(in order to maintain the best practice scenario where all tables within a metadata-
bound library are bound to that library).

To change the password of a metadata-bound library, use either SAS Management 
Console or the AUTHLIB procedure.

Requirements
In order to change a library password, the following requirements must be met:

• You must know the current password for the metadata-bound library.

22 Chapter 2 • Implementation



• The requesting workspace server (or SAS session) must run under an account that 
has host-layer control of the target physical library. For host-specific details, see 
“Requirement for Host-Layer Control” on page 42.

• The requesting workspace server (or SAS session) must connect to the metadata 
server as an identity that has the ReadMetadata and WriteMetadata permissions to 
the corresponding secured library object and secured table objects.

Note: On a secured library object, the WriteMemberMetadata permission (from the 
parent secured data folder) is inherited as the WriteMetadata permission. See 
“WriteMetadata and WriteMemberMetadata” in SAS Intelligence Platform: 
Security Administration Guide.

GUI Method

Introduction
In SAS Management Console, you change a library password by modifying its 
corresponding secured library object.

Instructions
1. On the Folders tab in SAS Management Console, beneath a /System/Secured 

Libraries branch, locate the secured library object that corresponds to the 
metadata-bound library whose password you want to change.

2. Right-click the object and select Modify.

The Modify Secured Library dialog box appears:

Changing a Metadata-Bound Library Password 23

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=bisecag&pubcode=67045&id=n18k3upmr61e6tn1ucviclbkxqao
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=bisecag&pubcode=67045&id=n18k3upmr61e6tn1ucviclbkxqao


Refer to the entries in the preceding example as you complete steps 3 through 7.

3. Select the application server that you want to use to update the binding information 
in the target directory.

Note: The application server must include a standard workspace server that has host 
access to the target directory.

4. Verify that the directory path of the target metadata-bound library is correct.

Note: The directory path is pre-populated with the most recently referenced path. If 
any directories in the path have been renamed, be sure to modify the path.

5. The Automatically purge old library credentials check box is selected by default. 
This option automatically removes all retained metadata-bound library credentials 
(passwords or encryption keys) if all tables in the library are successfully modified to 
use the newer credentials.

If you want the replaced credentials to be retained in metadata, then clear the check 
box. The passwords are retained until you use the PURGE statement to remove them, 

24 Chapter 2 • Implementation



or until you later modify the library with the check box selected. The following are 
reasons that you might want to retain credentials:

• You created views, using the old passwords, to implement row and column level 
security on the library’s tables. SAS does not know which view files might 
contain the old passwords and does not have the ability to modify them in the 
view file. The old passwords need to be retained until you redefine the views to 
use the new passwords.

• You want to be able to process data sets that are restored from backups taken 
before the passwords were modified. 

6. In the Password field, supply the current password for the target metadata-bound 
library.

Note: If the target metadata-bound library currently has three distinct passwords, 
select the Specify multiple passwords check box and supply all three passwords 
in the Password row.

7. Select the Change password values check box.

8. In the New Password and Confirm Password fields, set and confirm a new 
password for the metadata-bound library. The password can be only eight characters 
long.

CAUTION:
If you lose the password for a metadata-bound library, you cannot unbind 
the library or change its password. Keep track of passwords that you assign.

T I P  To create a more complex password, select the Specify multiple passwords 
check box and supply three distinct passwords. If the target metadata-bound 
library currently has one password, supply the current password in all three of the 
fields in the Password row. Using three passwords for a metadata-bound library 
only increases security; the different passwords do not manage different types of 
access.

T I P Users do not supply metadata-bound library passwords in order to access 
data, so they should neither know, nor have access to, the password values.

9. Click OK.

10. In the Modify Secured Library window, click Yes to view the log.

It is strongly recommended that you always check the log for warnings after you 
perform an action on a secured library object. If the log indicates that some tables 
were not modified (perhaps because a user was accessing them), repeat the 
modification when the tables are not being used. When doing so, specify the new 
password in the Password field.

Scope
In general, all tables within a metadata-bound library are protected by the library and 
share the library’s password. The GUI method facilitates this simple, best practice 

Changing a Metadata-Bound Library Password 25



approach by affecting the physical library and all of its eligible tables. A table is eligible 
if it is either unsecured or secured with the library password.

In the following selective scope situations, you cannot use the GUI method:

• If you do not want to affect the library, use the code method and set the 
TABLESONLY option. 

• If you want to affect only some of the tables, use the code method and add a 
TABLES statement after the MODIFY statement.

Code Method
As an alternative to using SAS Management Console, you can use the AUTHLIB 
procedure to modify a library password. See “MODIFY Statement” on page 81.

Results
After you complete the preceding steps, the new password is recorded in the physical 
tables, replacing each instance of the old password.

The new password is also recorded in the metadata and associated with the 
corresponding secured library object.

Changing a Metadata-Bound Library’s Encryption 
Options

Overview
To change the encryption options for a metadata-bound library, use either SAS 
Management Console or the AUTHLIB procedure.

Requirements
In order to change a library’s encryption options, the following requirements must be 
met:

• You must know the current password for the metadata-bound library.

• The requesting workspace server (or SAS session) must run under an account that 
has host-layer control of the target physical library. For host-specific details, see 
“Requirement for Host-Layer Control” on page 42.

• The requesting workspace server (or SAS session) must connect to the metadata 
server as an identity that has the ReadMetadata and WriteMetadata permissions to 
the corresponding secured library object and secured table objects.

Note: On a secured library object, the WriteMemberMetadata permission (from the 
parent secured data folder) is inherited as the WriteMetadata permission. See 
“WriteMetadata and WriteMemberMetadata” in SAS Intelligence Platform: 
Security Administration Guide.

26 Chapter 2 • Implementation

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=bisecag&pubcode=67045&id=n18k3upmr61e6tn1ucviclbkxqao
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=bisecag&pubcode=67045&id=n18k3upmr61e6tn1ucviclbkxqao


GUI Method

Introduction
In SAS Management Console, you change a library’s encryption options by modifying 
its corresponding secured library object.

Instructions
1. On the Folders tab in SAS Management Console, beneath a /System/Secured 

Libraries branch, locate the secured library object that corresponds to the 
metadata-bound library whose encryption options you want to change.

2. Right-click the object and select Modify. The Modify Secured Library dialog box 
appears:

Refer to the entries in the previous example as you complete steps 3 through 8.

3. Select the application server that you want to use to update the binding information 
in the target directory.

Changing a Metadata-Bound Library’s Encryption Options 27



Note: The application server must include a standard workspace server that has host 
access to the target directory.

4. Verify that the directory path of the target metadata-bound library is correct.

Note: The directory path is pre-populated with the most recently referenced path. If 
any directories in the path have been renamed, be sure to modify the path.

5. The Automatically purge old library credentials check box is selected by default. 
This option automatically removes all retained metadata-bound library credentials 
(passwords or encryption keys) if all tables in the library are successfully modified to 
use the newer credentials.

If you want the replaced encryption key to be retained in metadata, then clear the 
check box. For example, you might want to retain the replaced encryption key so that 
you can process data sets that are restored from backups taken before the key was 
replaced. The old encryption key is retained until you use the PURGE statement to 
remove it, or until you later modify the library with the check box selected.

6. Supply the current password of the target metadata-bound library.

Note: If the target metadata-bound library has three distinct passwords, select the 
Specify multiple passwords check box, so there are three fields in the Password 
row. Supply all three passwords.

7. If the library’s data sets are already encrypted using AES encryption and the key is 
not stored in the library’s metadata, enter the current key in the Encrypt Key field. 

T I P The value that you enter is a passphrase of up to 64 characters in length, from 
which the actual AES encryption key is derived. Most SAS documentation refers 
to the passphrase as the encryption key.

T I P The key that you enter is placed in quotation marks when it is submitted to 
SAS and is therefore case sensitive. If the key was originally specified in SAS 
code without quotation marks, then be sure to use uppercase letters when 
entering it here.

8. If you want to require encryption for all tables that are bound to the library, select the 
Require Encryption check box and select Yes.

If an AES encryption key was previously stored in the library’s metadata, that key 
will be used to encrypt every data set that is bound to the library. If you want to use a 
different key, or if you did not previously store a key, specify the key as described in 
step 8.

If you want to require SAS Proprietary encryption, select Encryption Type check 
box and select SAS Proprietary.

9. If you want to store an AES encryption key in the library’s metadata or change the 
value of a previously stored key:

a. Select the Encryption Type check box and select AES.

b. Enter an encryption key in the New Encrypt Key and Confirm Encrypt Key 
fields.

T I P The value that you enter is a passphrase of up to 64 characters in length.

T I P The encryption key is placed in quotation marks when it is submitted to SAS 
and is therefore case sensitive.

T I P Be sure to keep a record of the encryption key, even though it is stored in 
metadata.

28 Chapter 2 • Implementation



If encryption is required, the stored key will be used to encrypt every data set that is 
bound in the library.

If encryption is not required, the stored key will be used to re-encrypt every data set 
that was encrypted using a previously stored key. It will also be used to encrypt new 
tables when AES encryption is specified in SAS code but no key is supplied.

Note: If you choose not to require encryption, then you can use the TABLES 
statement with the code method to specify an encryption key for each table. 
However, SAS recommends that you store an encryption key in the library’s 
metadata and use it for all of the library’s metadata-bound data sets that are 
encrypted with AES.

CAUTION:
For AES-encrypted data sets that are referentially related to one another, 
follow these best practices to ensure that the data does not become 
inaccessible: Store the encryption key in the library’s metadata. You can modify 
the stored key, but do not remove the key from metadata and do not unbind the 
library. 

10. Click OK.

11. In the Modify Secured Library window, click Yes to view the log.

It is strongly recommended that you always check the log for warnings after you 
perform an action on a secured library object. If the log indicates that some tables 
were not modified (perhaps because a user was accessing them), repeat the 
modification when the tables are not being used. When doing so, specify the new 
encryption key in the Encrypt Key field.

Note: You can remove encryption by selecting an encryption type of None. However, if 
encryption is currently required, you must use a two-step process. In the first step, 
select the Require Encryption check box, select No, and select the current 
encryption type. Click OK to save this change. Then, modify the library again, and 
select an encryption type of None.

Code Method
As an alternative to using SAS Management Console, you can use the AUTHLIB 
procedure to modify encryption options. See “MODIFY Statement” on page 81.

Results
After you complete the preceding steps, the tables are re-encrypted using the newly 
supplied options.

The new AES encryption key is recorded in the metadata and associated with the 
corresponding secured library object.

Changing a Metadata-Bound Library’s Encryption Options 29



Verifying Access to Metadata-Bound Data

Who Can Read Metadata-Bound Data?
In order to read metadata-bound data, you must connect to the target metadata server as 
an identity that has the following metadata-layer effective access:

• the ReadMetadata permission (for the target secured table object and its parent 
secured library object)

• the Select permission (for the target secured table object)

If you are accessing the data from a client that uses metadata in order to locate data, you 
must also have the ReadMetadata permission for the corresponding traditional table 
object.

If the data is accessed through the MLE, you must also have the Read permission for the 
corresponding traditional table object.

Example
This example demonstrates one way to verify Read access to data.

In this example, you connect to a metadata server as a restricted user, set up a libref that 
points at a metadata-bound library, and then write a description of the contents of one of 
the metadata-bound tables within that library.

options
     metaserver="machine.company.com"
     metauser="sasdemo"
     metapass="********";

libname secdemo 'path';

proc datasets library=secdemo nolist;
   contents data=EMPINFO out=testout;
   title 'Contents of the Metadata-Bound Table EMPINFO';
run;    

See Also
• “Facilitate End-User Access” on page 55

• “Limitations of Metadata-Bound Libraries” on page 5

• “DATASETS Procedure” in Base SAS Procedures Guide

30 Chapter 2 • Implementation

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=proc&pubcode=67916&id=p1mv8y55ufie3xn1jc63l2wbq7z6


Mutually Exclusive Access

Introduction
To establish several distinct levels of access, set up a metadata folder structure with 
appropriate permissions. Each secured library object inherits permissions from its 
metadata folder. Each secured table object inherits permissions from its parent secured 
library object.

This example demonstrates one way to set up mutually exclusive access for two user 
groups (GroupA and GroupB) to four libraries (LibraryA1, LibraryA2, LibraryB1, and 
LibraryB2).

Note: This example illustrates library-level access distinctions. You can also set up 
table-level access distinctions by setting metadata-layer permissions on individual 
secured table objects within a metadata-bound library.

Preparation
The example assumes that the following prerequisites are met:

• The privilege and permission requirements are met. See “Requirements” on page 10.

• The data exists in the host. 

• If you are using SAS code to perform the bind action, each physical library has been 
assigned a libref (liba1, liba2, libb1, and libb2) in your SAS session.

• GroupA and GroupB exist in the SAS metadata.

Instructions
1. On the Folders tab in SAS Management Console, beneath SAS Folders/

System/Secured Libraries, create two sibling secured data folders named 
FolderA and FolderB.

2. Constrain access at the Secured Libraries folder. One way to do this is to 
explicitly deny all permissions to the PUBLIC group and explicitly grant all 
permissions to the SAS Administrators group. These protections flow throughout the 
Secured Libraries branch, except where modified by additional direct access 
controls.

3. Expand access to the new folders as follows:

Folder Metadata Group Explicit Grants*

FolderA GroupA ReadMetadata and Select

Mutually Exclusive Access 31



Folder Metadata Group Explicit Grants*

FolderB GroupB ReadMetadata and Select

* For conciseness, this example uses individual explicit controls (instead of ACTs) and provides only 
Read access (the Select permission). These settings do not allow members of GroupA and GroupB to 
update or delete data.

T I P To add GroupA and GroupB to the Authorization tab, click the Add button 
next to the Users and Groups list box. In SAS Management Console, an explicit 
setting has a white background color (not gray or green).

4. To bind the physical data to metadata, either use SAS Management Console or 
submit code. Be sure to specify FolderA as the metadata location for the first two 
libraries, and FolderB as the metadata location for the last two libraries.

5. In SAS Management Console, examine the contents of FolderA and FolderB. 

T I P If the new secured library objects are not immediately visible, right-click the 
Secured Libraries folder and select Refresh from the pop-up menu. The 
new secured table objects are visible in the right panel when their respective 
secured library object is selected in the folder tree.

Examine the Authorization tab of several of the new objects to verify that metadata-
layer access is as expected.

6. If you want to provide access through clients that use metadata to locate data, 
register the library and tables in metadata. For example, if the data is accessed from 
SAS Web Report Studio, you might register it beneath the Shared Data folder.

Results
Test access from various clients. Behavior should be as follows:

• A user who is unrestricted should have access to all of the tables.

• A user who is a direct or indirect member of both GroupA and GroupB should have 
access to all of the tables. 

• A restricted user who is a member of only GroupA or only GroupB should have 
access to only the data beneath FolderA or FolderB.

• A restricted user who is not GroupA, GroupB, or the SAS Administrators group 
should not have access to any of the data.

See Also
“Binding Data to Metadata” on page 10

32 Chapter 2 • Implementation



Providing Fine-Grained Access Using Views

Overview
You can create views that give users access to some but not all of the data within a 
physical table. Use the following approach:

1. If the physical table and its parent library are not already bound to metadata, bind 
them.

2. Create a view that excludes the rows or columns that you want to hide.

3. Apply the password of the underlying physical table to the view.

4. Set metadata-layer permissions to control who can access the view.

Column-Level Access
In this example, partial access to a customer data table is provided by creating a view 
and managing access to it. The view keeps the name and telephone number columns 
from the underlying table, but excludes the credit card number column.

options metauser="sasadm@saspw" metapass="********"
   metaserver="machine.company.com";

libname cust 'path';

proc authlib library=cust;
   create
      securedlibrary='cust'
      securedfolder='CustomerData'
      pw=secret;
quit;

proc sql; 
   create view cust.PUBLIC as
      select Name, Phone
      from cust.PRIVATE(pw=secret);
quit;

The preceding code creates a new secured library object (CustomerData) that contains 
two objects: a table object (called PRIVATE) and a view object (called PUBLIC).

Note: The password that is supplied to bind the library is also supplied when the 
PUBLIC view is defined against the PRIVATE table. In order to create a view of a 
metadata-bound table, you must know the password of that physical table’s parent 
library, and provide that password in the view definition. You can enable end users to 
access the view without giving them access to the underlying table. In effect, this 
provides selective access to the columns and rows within the underlying table.

Note: If you modify the password for the metadata-bound library, you must also update 
the view definition with the new password. Until you have time to redefine all of the 
views to use the new password, you can retain the old password in metadata by 
deselecting Automatically purge old library credentials in the Modify Secured 

Providing Fine-Grained Access Using Views 33



Library dialog box. The old password is retained until you use the PURGE statement 
to remove it, or until you later modify the library with the Automatically purge old 
library credentials check box selected.

To complete the protection, use SAS Management Console to set metadata-layer 
permissions so that restricted users can access the PUBLIC view but not the PRIVATE 
table. For example, if only unrestricted users should access the PRIVATE table, you 
might use the following approach:

• On the Authorization tab for the CustomerData folder, verify that the PUBLIC 
group is denied the ReadMetadata, WriteMetadata, WriteMemberMetadata, and 
Select permissions. Verify that the PRIVATE table inherits these denials.

• On the Authorization tab for the PUBLIC view object, explicitly grant the 
ReadMetadata and Select permissions to SASUSERS.

Identity-Driven, Row-Level Access
In this example, partial access to an employee information table (HR.EMPINFO) is 
provided by creating a view (HR.PERSONAL) that dynamically filters rows in the 
underlying table. The filtering is based on each requesting user’s authenticated user ID. 
The filtering relies on a security associations table, which maps each user’s authenticated 
user ID to a corresponding employee ID.

The following code creates the identity-driven view of the employee information table. 
When requesting users access the view, they retrieve only those rows that match the user 
ID with which they authenticated to the metadata server.

proc sql; 
   create view hr.personal as
      select a.*
      from hr.empinfo(pw=secret) a,
           hr.security(where=(loginid=_METADATA_AUTHENTICATED_USERID_)) b
      where b.loginid ne '' and a.empid = b.empid;
quit;

Here are some details about the preceding code:

• The code assumes that the HR libref is already established and points to a metadata-
bound library that has a single password value of secret.

• The reference to the EMPINFO table must supply the password (secret) in order 
to create the view, because the table is bound to metadata.

• SECURITY is a security associations table that maps all valid 
_METADATA_AUTHENTICATED_USERID_ values to the primary key of the 
target table (the EMPID column in the EMPINFO table). 

Note: As an alternative to creating a separate security associations table, you could 
directly add a column of _METADATA_AUTHENTICATED_USERID_ values 
to your target table.

• _METADATA_AUTHENTICATED_USERID_ is a substitution parameter that 
supplies a user-specific value in each request, based on the user ID with which the 
requesting user authenticated to the metadata server. 

• The _METADATA_AUTHENTICATED_USERID_ substitution parameter is used 
in a WHERE clause that is expressed as a data set option.

If you want to provide broader access to certain users (for example, to enable department 
managers to see information about their employees), you can enhance the SECURITY 

34 Chapter 2 • Implementation



table to include a column that maps employees to departments, create an additional view 
that exploits that mapping, and set metadata-layer permissions so that only department 
managers can use the new view.

See Also
• “SAS Views” in SAS Language Reference: Concepts

• “Connection Options ” in SAS Language Interfaces to Metadata

Providing Fine-Grained Access Using Condition 
Permissions

Overview
Effective with the first maintenance release for SAS 9.4, you can use permission 
conditions to give users access to some but not all of the data within a physical table. 
Use the following approach:

1. If the physical table and its parent library are not already bound to metadata, bind 
them.

2. Set metadata-layer permissions to control who can access each table.

3. Use SAS Management Console to specify permission conditions.

Instructions
1. On the Folders tab in SAS Management Console, beneath a /System/Secured 

Libraries branch, select the secured library object that corresponds to the 
metadata-bound library whose data sets you want to protect.

2. In the right panel, right-click the table for which you are defining a permission 
condition. Select Properties, and then select the Authorization tab of the properties 
dialog box.

3. Select or add the identity whose access you want to limit. 

4. In the permissions list, add an explicit  grant of the Select permission for the 
selected identity. In SAS Management Console, an explicit setting has a white 
background color (not gray or green). 

5. Click the Add Condition button. 

Note: If the Edit Condition button is displayed, a condition already exists for the 
selected user or group. You can click this button to modify the condition.

6. In the Permission Condition dialog box, enter the WHERE clause for an SQL query 
that filters the data as appropriate for the selected identity. Do not include the 
WHERE key word in your entry.

T I P  To make dynamic, per-person access distinctions, you can use identity-
driven properties as the values against which target data values are compared. 
Use the following syntax when specifying one of these properties: 
SUB::property-name (for example, SUB::SAS.Userid). For a list of 

Providing Fine-Grained Access Using Condition Permissions 35

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=68089&id=p0oyrm825mmmoyn1o5ft3prihn7g
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrmeta&pubcode=67971&id=n03ph3v01d4e7en1n0v7wm8o3yiu


available identity-driven properties, see “Fine-Grained Controls for Data” in SAS 
Intelligence Platform: Security Administration Guide.

CAUTION:
The syntax that you enter and save in the Permission Condition dialog box 
is not checked for validity. Make sure that the syntax that you have entered is 
correct.

7. Click OK.

Best Practices

General Guidelines
The following list provides general guidelines for implementing metadata-bound 
libraries:

• Use SAS (not host commands) for management of physical data. Using host 
commands does not compromise security, but it can decrease clarity and create noise 
(warnings) in the audit logs. See Appendix 1, “Security Impact of Moving Tables,” 
on page 59.

Note:  An exception to this guideline is that using a host copy command to back up 
or restore physical data to the same directory is not problematic.

• Within the /System/Secured Libraries folder in metadata, open up access 
only as necessary. In particular, grant the WriteMetadata and WriteMemberMetadata 
permissions to only administrators that should be able to change access to the 
metadata-bound data.

• After you bind libraries to metadata, review the metadata-layer permissions on the 
generated secured library objects and secured table objects, and adjust access if 
needed. For example, you can use SAS Management Console to add users or groups 
to a secured table’s Authorization tab, and grant (or deny) the Select permission (to 
manage Read access to the data).

• If you use the metadata promotion tools (for example, to create separate deployments 
for development, test, and production environments), maintain a separate copy of 
your physical data for each environment. The alternative, pointing multiple metadata 
servers at the same physical data, is supported but introduces significantly more 
complexity. For more information about promoting secured library objects, secured 
table objects, and secured data folders, see “Promotion Details for Specific Object 
Types” in SAS Intelligence Platform: System Administration Guide.

• Create or modify a metadata-bound library at a time when the physical data is not 
being accessed by other users. If the physical data is in use, some actions on open 
tables might fail. Interactions with a libref that was established before a library is 
bound are as follows: 

• For an existing physical table, the pre-established libref is subject to security that 
is implemented in the subsequent statement. Access that occurs in these 
circumstances causes a message to be written to the log. The message explains 
that the physical table is in a library that does not have a secured library location.

• For a new physical table, the pre-established libref is not subject to security that 
is implemented through the subsequent statement, and the new table is not bound 
to a secured table object. 

36 Chapter 2 • Implementation

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=bisecag&pubcode=67045&id=n0m3ptctbmjpzkn1woe49pep6tep
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=bisecag&pubcode=67045&id=n0m3ptctbmjpzkn1woe49pep6tep
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=bisag&pubcode=68240&id=n1f9181cn1d545n1odu6hkrrcee4
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=bisag&pubcode=68240&id=n1f9181cn1d545n1odu6hkrrcee4


• If you bind data that users are accustomed to accessing directly, inform those users 
that they must establish a connection to the metadata server before they can assign a 
libref against a metadata-bound library.

• In your metadata backup strategy, remember to consider your secured data folders, 
secured library objects, and secured table objects. See “Best Practices for Backing 
Up and Restoring Your SAS Content” in SAS Intelligence Platform: System 
Administration Guide.

• Use the LIBNAME option AUTHADMIN=YES when you are repairing any 
inconsistencies between physical data and its corresponding secured library and 
secured table objects in metadata. Do not use AUTHADMIN=YES in other 
circumstances.

Avoiding Mixed States
Binding data to metadata is a library-level feature. In general, all tables within a 
metadata-bound library are protected by that library and share the library’s password.

To establish and maintain a best practice state that minimizes complexity:

• Ensure that all physical tables within a metadata-bound library are protected by that 
library. This standard, default state maximizes clarity. Special circumstances (for 
example, a table that has a different, pre-existing password) can result in a mixed 
state (for example, one of the tables within a metadata-bound library is not bound to 
that library). To verify that this guideline is met, validate the library.

• Ensure that all physical tables that are protected by a particular metadata-bound 
library remain within that library. This standard, default state maximizes clarity and 
is essential for unbind actions to be fully effective. Special circumstances (for 
example, a table that is host-copied to another directory) can prevent an unbind 
action from unbinding the relocated data set.

For example, if someone uses a host copy command to add unbound physical tables to a 
metadata-bound library, the added tables are not automatically bound. To bind the added 
physical tables, use the modify action to re-apply the password of the metadata-bound 
library. See “Changing a Metadata-Bound Library Password” on page 22.

Note: If the host-copied tables were already bound to another library, you must first use 
the REPAIR DELETE LOCATION statement of the AUTHLIB procedure to remove 
that binding. See “REPAIR Statement” on page 89. After you remove the original 
binding, you can use the modify action to re-apply the password of the library in 
which the tables are currently located.

Best Practices 37

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=bisag&pubcode=68240&id=p1u29z4y7j3spvn1gaqzlyx2narb
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=bisag&pubcode=68240&id=p1u29z4y7j3spvn1gaqzlyx2narb
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=bisag&pubcode=68240&id=p1u29z4y7j3spvn1gaqzlyx2narb


38 Chapter 2 • Implementation



Chapter 3

Reference for Metadata-Bound 
Libraries

Permissions for Metadata-Bound Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Permissions on Secured Library and Table Objects . . . . . . . . . . . . . . . . . . . . . . . . . 39
Permission Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Requirement for Host-Layer Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Identity in Authorization Evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Passwords for Metadata-Bound Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Auditing for Metadata-Bound Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Which Events Can Be Logged? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Detecting a Circumvention of Update Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Audit Record Content and Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Considerations for Data File Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Using AES Encryption with Metadata-Bound Libraries . . . . . . . . . . . . . . . . . . . . . 47
Making Security-Related Changes to an Encrypted Table . . . . . . . . . . . . . . . . . . . . 47

Considerations for Renaming Physical Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Object Creation, Location, and Inheritance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
About This Topic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Object Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Metadata Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Access Control Inheritance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Security Information in Metadata-Bound Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

SAS Language Reference for Metadata-Bound Libraries . . . . . . . . . . . . . . . . . . . . 51
About This Topic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Metadata Server Connection Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
LIBNAME Statement Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
AUTHLIB Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Permissions for Metadata-Bound Data

Permissions on Secured Library and Table Objects
For secured library objects and secured table objects, SAS enforces the following special 
metadata-layer permissions:

39



Table 3.1 Permissions for Metadata-Bound Data

Permission Abbreviation Actions Affected

Delete D Delete rows in a physical table. For example, in order to use SAS to delete data 
from a metadata-bound table, you need the Delete permission on the 
corresponding secured table object. You also need the Select permission on that 
object.

Insert I Add rows to a physical table. For example, in order to use SAS to add data to a 
metadata-bound table, you need the Insert permission on the corresponding 
secured table object.

Update U Update rows in a physical table. For example, in order to use SAS to update data 
in a metadata-bound table, you need the Update permission on the corresponding 
secured table object. You also need the Select permission on that object.

Select S Read rows within a physical table. For example, in order to use SAS to read data 
from a metadata-bound table, you need the Select permission on the 
corresponding secured table object.

Create Table CT Create a new physical table. For example, in order to use SAS to add a table to a 
metadata-bound library, you need the Create Table permission on the 
corresponding secured library object.

Rename a physical table (if that action creates a new table, rather than overwriting 
a preexisting table). For example, if you rename TableA to TableB in a metadata-
bound library that does not already contain a TableB, you need the Create Table 
permission on the corresponding secured library object. You also need the Alter 
Table permission on TableA’s corresponding secured table object.

Drop Table DT Delete a physical table. For example, in order to use SAS to delete a metadata-
bound table, you need the Drop Table permission on the corresponding secured 
table object.*

Alter Table AT Replace a physical table. For example, in order to use SAS to replace a metadata-
bound table, you need the Alter Table permission on the corresponding secured 
table object.

Rename a physical table. For example, in order to use SAS to rename a metadata-
bound table, you need the Alter Table permission on the corresponding secured 
table object. You also need the Create Table permission on the corresponding 
secured library object.

Perform other administrative updates on a physical table, such as modifying 
variable names and labels. For example, in order to use SAS to change labels in a 
metadata-bound table, you need the Alter Table permission on the corresponding 
secured table object.

* A user who has Write access in the host layer can delete physical tables using operating system commands, regardless of whether the 
user has a grant of DT in the metadata layer. Any table replacements are detected through audit log entries. See “Auditing for 
Metadata-Bound Libraries” on page 45.

40 Chapter 3 • Reference



Permission Requirements

Introduction
This topic addresses tasks that are performed using SAS. Tasks that are instead 
performed using host commands are not subject to metadata-layer permission 
requirements. See Appendix 1, “Security Impact of Moving Tables,” on page 59.

Table-Level Tasks
The following table documents the effective metadata-layer grants on a secured table 
object that are required in order to perform certain tasks with that object.

T I P Each of the following tasks is initiated by SAS against physical data (SAS data 
set files or SAS views). For data that is bound to metadata, SAS always enforces 
metadata-layer permission requirements before allowing access.

Table 3.2 Metadata-Layer Permission Requirements for Selected Tasks

Task

Effective Grants

(on the secured table 
object)

View data in a metadata-bound table Select

Add rows to a metadata-bound table Insert

Update rows in a metadata-bound table Select, Update

Delete rows from a metadata-bound table Select, Delete

Replace a metadata-bound table with a new version of data Alter Table

Rename a metadata-bound table (for example, using PROC DATASETS with CHANGE) Alter Table, Create Table*

Modify variable names or labels in a metadata-bound table (for example, using PROC 
DATASETS with MODIFY)

Alter Table

Copy a metadata-bound table out of a metadata-bound library (for example, using PROC 
COPY)

Select

Move a metadata-bound table out of a metadata-bound library (for example, using PROC 
COPY with MOVE)

Select, Drop Table

Delete a metadata-bound table from the file system (for example, using PROC 
DATASETS with DELETE)

Drop Table

* The Create Table permission is required on any target secured table object that will be overwritten. If there is no such object, then the 
Create Table permission is required on the parent library.

Library-Level Tasks
The following table documents which effective metadata-layer grants on which objects 
are required in order to perform certain library-level tasks.

Permissions for Metadata-Bound Data 41



T I P Each of the following tasks is initiated by SAS against physical data. With 
metadata-bound libraries, SAS always enforces metadata-layer permission 
requirements before allowing access.

Table 3.3 Metadata-Layer Permission Requirements for Selected Tasks

Task Secured Data Folder

Secured 
Library 
Object

Secured 
Table 
Object

Bind a library to metadata* WriteMemberMetadata - -

Unbind a metadata-bound library WriteMemberMetadata WriteMetadata -

Add tables to a metadata-bound library (for example, using the 
COPY procedure)

- Create Table Alter 
Table**

* If the metadata identity that is used to bind a physical library to metadata doesn’t have effective metadata-layer grants of the data 
permissions, explicit grants are added to the new secured library object when it is created.

** Alter Table is required on any target table object that is overwritten. If there is no such table object, then Create Table is required on the 
parent library object.

Additional Considerations
The following additional requirements apply:

• The metadata identity under which authorization decisions are requested must have 
the ReadMetadata permission for all applicable objects.

• The host identity under which physical data is accessed must meet the usual host-
layer requirements, such as the following:

• In order to view physical data, the host identity must have host-layer Read access 
to the data.

• In order to add, update, or delete a physical table, the host identity must have 
host-layer Write access to the target directory or file (in accordance with the host 
system’s requirements).

• In order to create, modify, or delete a metadata-bound library, the host identity 
must have host-layer control of the physical directory. For host-specific details, 
see “Requirement for Host-Layer Control” on page 42.

• When accessing data from a client such as SAS Web Report Studio, users must also 
have appropriate permissions for the traditional library and table objects that are used 
to locate the data.

Requirement for Host-Layer Control
For actions other than validation, the requesting identity must have host-layer control of 
the target physical directory. This ensures that only users who have host control can 
bind, unbind, or modify passwords for a physical library.

The requesting SAS session (or workspace server) must run under a privileged host 
account as follows:

• On UNIX, the account must be the owner of the directory.

• On Windows, the account must have Full Control of the directory.

42 Chapter 3 • Reference



• On z/OS, for UNIX file system libraries, the account must be the owner of the 
directory.

• On z/OS, for direct-access bound libraries, the account must have RACF ALTER 
access authority to the library data set.

Identity in Authorization Evaluations
In general, metadata-layer access is evaluated against the metadata identity of the 
requesting user (the client), and host-layer access is evaluated against the server process 
identity (or, for a Base SAS session, the identity under which the session was initiated).

The following list documents some exceptions:

• If access is through a SAS/CONNECT server that did not receive the requesting 
user’s metadata identity from the client session, metadata-layer authorization checks 
are made against the SAS/CONNECT server’s metadata identity. This unusual 
circumstance occurs if the server runs with the 
NOCONNECTMETACONNECTION option and is not a trusted peer of the 
metadata server.

• If access is through a SAS/SHARE server that cannot impersonate the requesting 
user on a connection to the metadata server, and the target data is a remote view, then 
metadata-layer authorization checks are made against the SAS/SHARE server’s 
metadata identity. For example, metadata-layer authorization checks are made 
against the SAS/SHARE server’s metadata identity if that server runs with the 
AUTHENTICATE=OPTIONAL option and no client identity is established.

For access through a SAS/SHARE server that does impersonate the requesting user, an 
additional consideration is which client identity matters—the one that connects to the 
SAS/SHARE server, or the one that issues the LIBNAME statement. The following list 
provides details:

• In both of the following cases, checks are under the metadata identity that 
corresponds to the user ID with which the client host authenticates to the 
SAS/SHARE server:

• Access is through view files and the REMOTEVIEW option is set to YES (the 
default value). 

• Access is from a third-party client (such as ODBC, OLEDB, or JDBC).

• Otherwise, checks are under the metadata identity in the client at the time that the 
LIBNAME statement is issued.

Passwords for Metadata-Bound Data
In addition to being tied to a particular metadata object, a metadata-bound library also 
has a set of associated passwords. These passwords serve a secondary role, enabling 
administrators to recover metadata (for example, in the event that they accidentally 
delete a secured library object from the metadata) and ensuring that authorization 
decisions come from only valid sources.

Here are some details about these passwords:

• The passwords are recorded both in the physical data and in metadata.

Passwords for Metadata-Bound Data 43



• The passwords are always stored and transmitted in encrypted formats. Even if an 
encrypted password is captured, it can’t be submitted as a password value in SAS 
code.

• The passwords do not create access distinctions. For simplicity, we recommend that 
you use PW= to set a single password value, rather than specifying different 
password values using READ=, WRITE=, and ALTER=. 

However, each plain text password value can be only eight characters long. You 
might choose to set different password values (using READ=, WRITE=, and 
ALTER=) for greater security. In effect, setting different values can create a 24-
character password.

• Passwords that you supply in SAS Management Console are encoded or encrypted in 
transit, in accordance with your configuration. 

• You can use the PWENCODE procedure to encode passwords for use in the 
AUTHLIB procedure. If you supply an encoded password, enclose it in quotation 
marks. All other encryption of the password (both in-transit and on-disk) occurs 
automatically. An encrypted password that is captured in transmission cannot be 
used.

• End users never have to supply these passwords, so they should neither know, nor 
have access to, the password values.

• Use of metadata-bound libraries doesn’t involve prompting end users for secured 
library passwords.

• When it communicates authorization decisions, the metadata server supplies 
passwords that match passwords that are stored with the physical data, in order to 
prove that it is the valid source for those decisions.

• In order to use SAS to copy a metadata-bound table, you must have Read access (the 
Select permission) for the source table. The source table’s password is not applied to 
the new (output) table. If the new table is added to a metadata-bound library, that 
library’s password is applied to it. If the new physical table is added to a traditional 
library, the new table is not protected as a secured table or with passwords retained 
from the source table.

• In general, all metadata-bound tables within a particular metadata-bound library 
share the same set of passwords. Each library’s passwords are automatically applied 
to the tables within that library. However, the following exceptions exist:

• Physical tables that existed in the operating system directory, with passwords, at 
the time that their parent metadata-bound library was created retain their pre-
existing passwords. Such physical tables are not secured by metadata unless you 
modify their passwords to match the parent library’s passwords.

• Physical tables that you copy into a metadata-bound library using operating 
system commands yield the following results:

• If the original tables are metadata-bound tables, the copied tables are 
protected by the same metadata-bound library that protected the original 
tables. The act of copying the physical tables into another metadata-bound 
library doesn’t cause a change to the protections.

• If the original tables are not metadata-bound tables, the copied tables are not 
secured by metadata unless you explicitly apply the library passwords to 
them.

44 Chapter 3 • Reference



See Also
“Avoiding Mixed States” on page 37

Auditing for Metadata-Bound Libraries

Which Events Can Be Logged?
For metadata-bound libraries, certain events can be logged to a system-wide logging 
facility.

The following table summarizes the events that can be logged:

Table 3.4 Logged Events for Metadata-Bound Data

Category (Logger) Logged Events

Authorization failure records

(Audit.Data.MetaBoundLib.PermDenied)

A user attempts to access a metadata-bound table to which the user has 
insufficient effective permissions in the metadata layer. Access is not 
allowed.

Misalignment issue records*

(Audit.Data.MetaBoundLib.AuthAudit)

A user accesses a metadata-bound table that is located within a traditional 
(unbound) library.

A user accesses a traditional (unbound) table that is located within a 
metadata-bound library.**

A user accesses a metadata-bound table whose security location reference 
doesn’t match the security location reference of its parent library.

A user accesses a metadata-bound table whose security name reference 
doesn’t match the corresponding secured table object. In other words, there 
is a mismatch of names (the correspondence is determined by another 
identifier).

A user attempts to access a metadata-bound table whose passwords do not 
match the passwords of the corresponding secured library object. In other 
words, there is a mismatch of passwords. Even if the user’s metadata-layer 
permissions are sufficient, access is not allowed.

* The misalignment issue records do not specify who created the issue; these records just indicate that the issue exists at the time that 
access is requested.

** This is the most important event to audit, because it might indicate an earlier circumvention of security. See “Detecting a 
Circumvention of Update Security” on page 45.

Detecting a Circumvention of Update Security
A user who has only Read access to a metadata-bound table might be able to update the 
table by using the following process:

1. Use SAS to copy the metadata-bound table to an unsecured library.

2. Update the data.

Auditing for Metadata-Bound Libraries 45



3. Use a host command to copy the table back to its original metadata-bound library.

Because the user used a host command to copy the table back to its original secured 
library location, the updated table is no longer bound to its corresponding secured table 
object.

Note: The preceding scenario can occur when you enable a user to update some, but not 
all, of the tables within a metadata-bound library. In order to perform that task, the 
user needs host-layer Write access to the entire library. This enables the user to 
perform step 3 in the preceding list, regardless of whether the user has metadata-
layer Update access to the target metadata-bound table.

The audit record that is written when a user accesses a traditional (unbound) table that is 
located within a metadata-bound library provides an indication that someone might have 
used the preceding process to circumvent security.

Note: These audit records can also indicate that you have not followed the 
recommended practice of ensuring that all tables within a metadata-bound library are 
bound to that library.

Audit Record Content and Layout
Here is an example of an authorization failure record:

DateTime=2012-02-15T17:48:28,671, Userid=JOE@COMPANY, 
StepName=DATASTEP, Action=Read, LoginId=JOE@COMPANY, IdentityName=Joe, 
Libref=REVENUE , OSLibraryPath=\\machine.company.com\Data\Revenue, 
MemberName=CSV, MemberType=VIEW , DataSetInfoSecuredLibrary=/System/
Secured Libraries/Data/, 
DataSetInfoSecuredLibraryGuid=5200B831-50A1-4E66-92CD-AD86ACDB43B7, 
DataSetInfoSecuredTableName=CSV.VIEW, 
DataSetInfoSecuredTableGuid=5BE37390-986F-45B4-8227-F3653C79768A, 
LibraryInfoSecuredLibrary=/System/Secured Libraries/Data, 
LibraryInfoSecuredLibraryGuid=5200B831-50A1-4E66-92CD-AD86ACDB43B7, 
RequiredPermission=Select, UserEffectivePermissions=None, Message=ERROR: 
JOE@COMPANY as Joe is not authorized to read data set REVENUE.CSV.VIEW. 
Select permission is required.

Here is an example of a misalignment issue record that indicates a possible security 
concern:

DateTime=2012-02-15T17:48:21,201, Userid=JOE@COMPANY, 
StepName=DATASTEP, RecType=201, LoginId=JOE@COMPANY, 
IdentityName=omitest, Libref=METAOMI , OSLibraryPath=\\machine.company.com
\Data, MemberName=D, MemberType=DATA , DataSetInfoSecuredLibrary=, 
DataSetInfoSecuredLibraryGuid=, DataSetInfoSecuredTableName=, 
DataSetInfoSecuredTableGuid=, LibraryInfoSecuredLibrary=/System/Secured Libraries/
Data, LibraryInfoSecuredLibraryGuid=ACFAF468-B77E-4DF2-BB64-
D7342F2CB1CE, PasswordDifferences=, UserEffectivePermissions=, 
Message=WARNING: Data set METAOMI.D.DATA is not bound to a secured table 
object, but it resides in a directory that is bound to a secured library object. The data set 
might have existed in this directory before the library was bound, or the data set might 
have been copied to this directory with a host copy utility.

T I P The layout of an audit record is determined by conversion patterns within your 
logging configuration file.

46 Chapter 3 • Reference



See Also
• “Administering Logging for SAS Servers” in SAS Intelligence Platform: System 

Administration Guide

• “Audit Messages for Metadata-Bound Libraries” in SAS Logging: Configuration and 
Programming Reference

Considerations for Data File Encryption

Overview
In general, the process for encrypting metadata-bound tables is the same as for 
encrypting traditional tables, except for the following:

• The Read password is obtained from the secured library object (in metadata), instead 
of being supplied in SAS code.

• Beginning in the first maintenance release for SAS 9.4, AES encryption keys can be 
obtained from the secured library object (in metadata), instead of being supplied in 
SAS code.

• Beginning in the first maintenance release for SAS 9.4, you can specify that 
encryption is required for the tables in a library. When tables are created or modified, 
the data is automatically encrypted using the specified method.

The following topics document aspects of data encryption that are specific to metadata-
bound libraries.

Using AES Encryption with Metadata-Bound Libraries
When you create or modify a metadata-bound library and specify AES encryption, you 
can specify an encryption key to be stored in the library’s metadata. The stored key is 
used to attempt to open the library’s AES-encrypted data sets when no key is supplied by 
the user. If a table has a different encryption key, it cannot be opened unless the user 
supplies the correct key.

You can specify that AES encryption is required for the tables in a library. In this case, 
the stored encryption key is used to encrypt every data set that is bound in the library. 
You cannot specify different encryption keys for individual tables if encryption is 
required.

If encryption is not required, the stored key is used to encrypt new tables when AES 
encryption is specified in SAS code but no key is supplied.

To simplify administration, we strongly recommend that all AES-encrypted tables within 
a metadata-bound library be encrypted with the same key.

Making Security-Related Changes to an Encrypted Table
When you modify the encryption options for a metadata-bound library or table, a copy-
in-place approach is used to re-encrypt any tables that were originally encrypted. For 
example, this approach is used to apply a new encryption method or a new AES 
encryption key, to automatically encrypt tables when encryption is required, and to 
incorporate a new READ password into keys for default SAS encryption.

Considerations for Data File Encryption 47

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=bisag&pubcode=68240&id=n1365xislvhmbun1cc1gmrqo53tu
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=bisag&pubcode=68240&id=n1365xislvhmbun1cc1gmrqo53tu
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=logug&pubcode=67485&id=n0gxut59nj0a3mn1j3eqd470ju35
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=logug&pubcode=67485&id=n0gxut59nj0a3mn1j3eqd470ju35


The following actions occur in the copy-in-place process:

1. The original table is renamed to the reserved data set name 
__TEMP_ENCRYPT_FILE_NAME__.

2. The temporary table is copied back to the original table name (which causes the data 
to be re-encrypted).

Note:  In order for this step to be completed, the metadata-layer Create Table and 
Alter Table permissions are required.

3. The temporary table (__TEMP_ENCRYPT_FILE_NAME__) is deleted.

The preceding process occurs automatically when it is needed. No action on your part is 
required.

See Also
• “Example 10: Binding a Library When Existing Data Sets Are SAS Proprietary 

Encrypted” on page 114

• “Example 11: Binding a Library When Existing Data Sets Are AES-Encrypted” on 
page 116

• “ENCRYPTKEY= Data Set Option” in SAS Data Set Options: Reference

• “ENCRYPT= Data Set Option” in SAS Data Set Options: Reference

• “SAS Data File Encryption” in SAS Language Reference: Concepts

Considerations for Renaming Physical Tables
If you need to rename a physical table within a metadata-bound library, use the 
DATASETS procedure or the Explorer window. If a secured table object with the new 
name already exists within the secured library object, access to the physical table is 
governed by permissions for that secured table object. If no secured table object exists 
with the new name, a new secured table object is created. Any direct access controls 
(explicit permissions and directly applied access control templates) on the secured table 
object with the old name are set on the new secured table object.

Object Creation, Location, and Inheritance

About This Topic
This topic highlights key differences between the following sets of metadata objects:

• secured library and table objects

• traditional library and table objects

Each set of objects serves a distinct purpose, so each has distinct characteristics.

48 Chapter 3 • Reference

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=ledsoptsref&pubcode=68025&id=n0yzx049gh8pn3n1v7yrzagard3a
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=ledsoptsref&pubcode=68025&id=p1hwtxbozzzy4un11ldzgovfhcrf
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrcon&pubcode=68089&id=n1s7u3pd71rgunn1xuexedikq90f


Object Creation
You create secured library and table objects by binding physical data to metadata. This 
adds security information to the physical data and creates corresponding metadata 
objects at the same time. You use either SAS Management Console or the AUTHLIB 
procedure to perform this task.

You create traditional library and table objects by registering physical data (using SAS 
Management Console). You can also register traditional tables through SAS code (using 
the METALIB procedure). Registering data in metadata has no impact on the physical 
content of the data.

Metadata Location
Traditional library and table objects can be located in any regular metadata folder. For 
greater security, metadata locations for secured library and table objects are constrained 
as follows:

• These objects can be located only within a /System/Secured Libraries 
branch in the SAS Folders tree. You can put secured library objects in subfolders 
within a /System/Secured Libraries branch. You cannot bind physical 
libraries to secured library objects in other locations. 

• Each secured library object is located within a secured data folder, which is a special 
type of metadata folder that exists only under a /System/Secured Libraries 
branch.

• Each secured table object is located within a secured library object.

Access Control Inheritance
For secured library and table objects, metadata-layer access control inheritance is as 
follows:

• Each secured library object inherits from its parent secured data folder.

• Each secured table object inherits from its parent secured library.

This inheritance pattern differs from that of traditional library and table objects, which 
both inherit directly from their parent folders. The difference in inheritance pattern 
reflects the distinct purpose of each set of objects:

• Secured library and table objects serve as bind targets for physical data (providing 
access control for the data), so their inheritance pattern follows the inheritance 
pattern of the physical data.

• Traditional library and table objects serve as pointers to physical data (enabling 
clients to locate data through metadata), so their inheritance pattern is folder 
oriented.

The following figure depicts examples of inheritance for both types of libraries:

Object Creation, Location, and Inheritance 49



Figure 3.1 Examples of Inheritance for Traditional and Secured Library Objects

Inheritance for
Secured 

Library Objects

Inheritance for
Traditional 

Library Objects

Table Library

Column Secured Library

Secured Table

Secured Libraries

System

SAS Folders

Repository ACT

Secured Data Folder

Security Information in Metadata-Bound Data
In addition to the usual directory and file content, additional security-related information 
is stored in the host for metadata-bound data.

• For a physical library, the security information consists of a subdirectory and file. 
The corresponding metadata object is called a secured library object.

z/OS Specifics
On z/OS, the security information for a UNIX file system (UFS) library is stored 
as described above. However, the security information for a z/OS direct-access 
bound library is instead stored within the bound library data set itself. For this 
reason, z/OS sites that choose to use metadata-bound libraries might prefer the 
z/OS direct-access bound library implementation to the UFS library 
implementation. z/OS sequential-access bound libraries cannot be bound to 
metadata.

• For a physical table, the security information consists of information in the header. 
The corresponding metadata object is called a secured table object.

The security information includes the following:

• an indication that access to the physical data must be authorized by the metadata 
server

• a record of the metadata location of the metadata objects that correspond to the 
physical data

50 Chapter 3 • Reference



The security-related information itself is host protected.

SAS Language Reference for Metadata-Bound 
Libraries

About This Topic
Administrators who use the SAS code method to set up and maintain metadata-bound 
libraries need to know the SAS language reference information for metadata-bound 
libraries.

Note:  For data consumers, interaction with metadata-bound libraries is mostly 
transparent: each access request succeeds or fails based on the requesting user’s 
permissions. However, a connection to the metadata server is required in order to 
access metadata-bound data, so users who make direct requests (for example, 
through a LIBNAME statement) do have to facilitate that connection.

Metadata Server Connection Options
An administrator connects from a SAS session to a target metadata server in order to set 
up or maintain metadata-bound data using SAS code.

Metadata server connection information can be provided in the following ways:

• Specify options in a configuration file. For example, you might add the following 
lines to a configuration file: 

-METAPORT  8561
-METAREPOSITORY "foundation"
-METASERVER "a123.us.company.com"
-METAUSER  "myuserid"
-METAPASS  "Pwd1"

• Specify options in an OPTIONS statement. For example, you might add the 
following OPTIONS statement to your SAS program or autoexec.sas file:

options
     metaport=8561
     metarepository="foundation"
     metaserver="a123.us.company.com"
     metauser="myuserid"
     metapass="Pwd1";

• Reference a stored connection profile (using the METACONNECT= and 
METAPROFILE options).

• Provide connection information interactively. If sufficient information is not 
otherwise available, you can be prompted for connection information.

T I P If a port is not specified, the default metadata server port (8561) is used. If a 
repository is not specified, the foundation repository is used. If Integrated Windows 
authentication (IWA) is configured, you don’t have to supply a user ID or password.

For additional information, see “Connection Options ” in SAS Language Interfaces to 
Metadata.

SAS Language Reference for Metadata-Bound Libraries 51

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrmeta&pubcode=67971&id=n03ph3v01d4e7en1n0v7wm8o3yiu
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lrmeta&pubcode=67971&id=n03ph3v01d4e7en1n0v7wm8o3yiu


LIBNAME Statement Options

AUTHADMIN
An administrator specifies the AUTHADMIN=YES option in a LIBNAME statement in 
order to access a metadata-bound library for which corresponding metadata is corrupted, 
misconfigured, or missing. If the administrator specifies AUTHADMIN=YES in a 
LIBNAME statement, the administrator must somehow supply the metadata-bound 
library password (or passwords) in order to access the files. In this specialized context, 
metadata-layer permissions are not used to determine access.

Note: Since some access requests do not have a way to specify passwords, the 
administrator can use the AUTHPW option (or related options) in the LIBNAME 
statement to provide the metadata-bound library password (or passwords). See 
“AUTHPW (and Related Options)” on page 52.

Note: The AUTHADMIN=YES option is accepted only if the account under which your 
SAS session runs has host-layer control of the target physical library. This ensures 
that only users who have host control for a particular directory can use this option 
against that directory. The host-specific details for this requirement are the same as 
for the AUTHLIB procedure statements (except the REPORT statement). See 
“Requirements” on page 10.

We recommend that you use AUTHADMIN=YES when you are repairing any 
inconsistencies between physical data and its corresponding secured library and secured 
table objects in metadata. We do not recommend that you use AUTHADMIN=YES in 
other circumstances. The purpose of this option is to enable an administrator to establish 
a libref for a library that is in need of repair.

We also recommend that you reassign the library (without AUTHADMIN=YES) after 
the repairs are made.

Note: In the current release, the REPAIR DELETE LOCATION statement is a 
production feature. Other actions in the REPAIR statement are preproduction 
features.

For additional information, see “LIBNAME Statement” in SAS Statements: Reference.

AUTHPW (and Related Options)
An administrator can choose to specify AUTHPW=password-value in a LIBNAME 
statement as an alternate method for making the metadata-bound library password 
available to later requests.

A password that is supplied by the AUTHPW option is used only if both of the 
following circumstances exist:

• AUTHADMIN=YES is specified in the LIBNAME statement.

Note: Use of AUTHADMIN=YES does not necessitate use of AUTHPW. You are 
not required to specify metadata-bound library passwords in a LIBNAME 
statement. However, you should not specify metadata-bound library passwords in 
a LIBNAME statement that doesn’t also specify AUTHADMIN=YES.

• The correct password for the target metadata-bound library is not otherwise available 
(either no password is supplied or the supplied password is invalid). 

In such requests, the value from the AUTHPW option is validated against the password 
within the physical table. An error is returned if the passwords do not match.

52 Chapter 3 • Reference

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lestmtsref&pubcode=68024&id=n1nk65k2vsfmxfn1wu17fntzszbp


Requests to access metadata-bound tables within a library that was assigned with 
AUTHADMIN=YES must meet at least one of the following criteria:

• The request comes from the AUTHLIB procedure, which has a supplied password.

• The request explicitly supplies the password.

• The library was also assigned with the AUTHPW option, which supplies the 
password.

• The request is interactive and the user can supply the password when prompted.

Note: For conciseness, the preceding discussion assumes that there is only one password 
for the target metadata-bound library. For a metadata-bound library that has two or 
three distinct passwords, you must specify each password (using the AUTHREAD, 
AUTHWRITE, and AUTHALTER options as appropriate) instead of using the 
AUTHPW option on its own.

For additional information, see “LIBNAME Statement” in SAS Statements: Reference.

See Also
“Passwords for Metadata-Bound Data” on page 43

AUTHLIB Procedure
An administrator can use the AUTHLIB procedure to set up and maintain metadata-
bound libraries. The AUTHLIB procedure is documented in the Base SAS Procedures 
Guide. As a convenience for the reader, documentation for the AUTHLIB procedure is 
also reproduced in this document. (See Appendix 2.)

SAS Language Reference for Metadata-Bound Libraries 53

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=lestmtsref&pubcode=68024&id=n1nk65k2vsfmxfn1wu17fntzszbp


54 Chapter 3 • Reference



Chapter 4

Troubleshooting for Metadata-
Bound Libraries

Facilitate End-User Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Replace Missing Metadata Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Realign Security Location Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Facilitate End-User Access
This topic provides guidance for enabling end users to access metadata-bound data.

Issue: User can’t access the metadata server.

Resolution:

Complete the following steps:

• Explain to the user how to connect to the target metadata server from his or her SAS 
session. See “Metadata Server Connection Options” on page 51.

• In SAS Management Console, make sure the user is correctly registered in the 
metadata repository. See the topic "Introduction to User Administration" in the SAS 
Management Console: Guide to Users and Permissions.

Issue: User is not authorized to access the data.

Resolution:

Complete the following steps:

• Verify that the user is using the second maintenance release of SAS 9.3 (or a later 
release). Users cannot access metadata-bound data from earlier releases of SAS.

• In SAS Management Console, make sure the user is correctly registered in the 
metadata repository. See the topic "Introduction to User Administration" in the SAS 
Management Console: Guide to Users and Permissions.

• In SAS Management Console, verify that the user has the necessary permissions on 
the secured table object that corresponds to the target metadata-bound table. If the 
user is attempting to access data from a client that uses metadata in order to locate 
data, verify that the user has sufficient permissions on the traditional table object. 
See “Verifying Access to Metadata-Bound Data” on page 30.

• Make sure that the host account under which the data is retrieved has host-layer 
access to the data. See “Identity in Authorization Evaluations” on page 43.

55



• In the metadata server log, make sure that the user is connecting to the metadata 
server under the expected metadata identity. See “Default Locations for Server Logs” 
in SAS Intelligence Platform: System Administration Guide.

Replace Missing Metadata Objects
This topic provides guidance for replacing missing secured data folders, secured library 
objects, and secured table objects.

Note: Some of the resolutions in this section use the REPAIR statement, most of which 
is a preproduction feature in the current release. These resolutions should be used 
only under advice and direction from SAS Technical Support. As an alternative to 
using the REPAIR statement, you can create a new physical library, bind that library 
to metadata, and use the SAS COPY procedure to copy your data into the new 
library. See “REPAIR Statement” on page 91.

Issue: A secured data folder is missing.

Resolution:

Use one of the following approaches:

• Use the metadata promotion tools to import the folder (and its contents) from an 
existing package. See “Promotion Tools Overview” in SAS Intelligence Platform: 
System Administration Guide.

• Re-create the folder in SAS Management Console. On the Folders tab, navigate to 
the appropriate location (under a repository’s /System/Secured Libraries 
branch), right-click, and select New ð Folder.

• Recover metadata from a metadata server backup. See “Backing Up and Recovering 
the SAS Metadata Server” in SAS Intelligence Platform: System Administration 
Guide.

Issue: A secured library object is missing.

Resolution:

Use one of the following approaches:

• Use the metadata promotion tools to import the secured library object (and its 
secured table objects) from an existing package. See “Promotion Tools Overview” in 
SAS Intelligence Platform: System Administration Guide.

• Use the REPAIR statement of the AUTHLIB procedure, with the ADD action and 
the METADATA option. This approach should be used only under advice and 
direction from SAS Technical Support.

• Recover metadata from a metadata server backup. See “Backing Up and Recovering 
the SAS Metadata Server” in SAS Intelligence Platform: System Administration 
Guide.

Issue: A secured table object is missing.

Resolution:

Use one of the following approaches:

56 Chapter 4 • Troubleshooting

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=bisag&pubcode=68240&id=p1ausbmrrybuynn1xnxb6jmdfarz
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=bisag&pubcode=68240&id=p1ausbmrrybuynn1xnxb6jmdfarz
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=bisag&pubcode=68240&id=n1gs51ocqhoqnvn1a0ovhakhh4wf
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=bisag&pubcode=68240&id=n1gs51ocqhoqnvn1a0ovhakhh4wf
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=bisag&pubcode=68240&id=n1ssd4xrk6xyvcn1en8hgfcdalin
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=bisag&pubcode=68240&id=n1ssd4xrk6xyvcn1en8hgfcdalin
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=bisag&pubcode=68240&id=n1ssd4xrk6xyvcn1en8hgfcdalin
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=bisag&pubcode=68240&id=n1gs51ocqhoqnvn1a0ovhakhh4wf
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=bisag&pubcode=68240&id=n1gs51ocqhoqnvn1a0ovhakhh4wf
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=bisag&pubcode=68240&id=n1ssd4xrk6xyvcn1en8hgfcdalin
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=bisag&pubcode=68240&id=n1ssd4xrk6xyvcn1en8hgfcdalin
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=bisag&pubcode=68240&id=n1ssd4xrk6xyvcn1en8hgfcdalin


• Use the metadata promotion tools to import the secured table object’s parent library 
from an existing package. The import overwrites the current secured library object 
and its child objects, and it re-creates any missing secured table objects. See 
“Promotion Tools Overview” in SAS Intelligence Platform: System Administration 
Guide.

• Use the REPAIR statement of the AUTHLIB procedure, with the ADD action, the 
METADATA option, and TABLESONLY=YES. This approach should be used only 
under advice and direction from SAS Technical Support.

• Recover metadata from a metadata server backup. See “Backing Up and Recovering 
the SAS Metadata Server” in SAS Intelligence Platform: System Administration 
Guide.

Realign Security Location Information
This topic provides guidance for realigning missing or corrupted security location 
information (the security binding information that is stored with the physical data).

Note: The resolutions in this section use the REPAIR statement, most of which is a 
preproduction feature in the current release. These resolutions should be used only 
under advice and direction from SAS Technical Support. As an alternative to using 
the REPAIR statement, you can create a new physical library, bind that library to 
metadata, and use the SAS COPY procedure to copy your data into the new library. 
See “REPAIR Statement” on page 91.

Issue: Physical library (or table) security location information is corrupted.

Resolution:

Use the REPAIR statement with the UPDATE action and the LOCATION option.

Issue: Physical library (or table) security location information is missing.

Resolution:

Use the REPAIR statement with the ADD action and the LOCATION option.

Realign Security Location Information 57

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=bisag&pubcode=68240&id=n1gs51ocqhoqnvn1a0ovhakhh4wf
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=bisag&pubcode=68240&id=n1gs51ocqhoqnvn1a0ovhakhh4wf
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=bisag&pubcode=68240&id=n1ssd4xrk6xyvcn1en8hgfcdalin
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=bisag&pubcode=68240&id=n1ssd4xrk6xyvcn1en8hgfcdalin
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=bisag&pubcode=68240&id=n1ssd4xrk6xyvcn1en8hgfcdalin


58 Chapter 4 • Troubleshooting



Appendix 1

Security Impact of Moving Tables

About This Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Adding Physical Tables to a Metadata-Bound Library . . . . . . . . . . . . . . . . . . . . . . 59
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Using SAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Using Host Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Copying Metadata-Bound Tables to a Traditional Library . . . . . . . . . . . . . . . . . . . 62
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Using SAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Using Host Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

About This Appendix
If you need to copy or move metadata-bound libraries in the file system, we recommend 
that you use SAS, not operating system commands.

Note:  An exception to this guideline is that using a host copy command to back up or 
restore physical data to the same directory is not problematic.

For example, if you use SAS (the COPY procedure) to copy a table, the new table takes 
on the nature of its parent library as follows:

• Copying a table into a metadata-bound library yields a metadata-bound table.

• Copying a table into an unbound library yields an unbound table.

The following topics depict the security impact of copying or moving metadata-bound 
libraries and tables.

Adding Physical Tables to a Metadata-Bound 
Library

The examples in this topic use the copy action. The same results occur if physical tables 
are moved, except that the original physical tables are deleted.

59



Introduction
When you copy or move physical tables into a metadata-bound library, the result varies 
depending on the following factors:

• whether you use SAS or host commands to perform the action

• whether the original tables are protected with passwords that differ from the 
password of the target library

The following figure depicts an initial state for the examples in this topic.

Figure A1.1 Example: Initial State

Host Layer Metadata Layer

sensitive data seclib

seclib2more data

tableA.sas7bdat tableA

tableB.sas7bdat tableB

tableC.sas7bdat

tableD.sas7bdat tableD

= security location information = security binding

unsecured data

Using SAS
If you use SAS to add physical tables to a metadata-bound library, the added tables are 
automatically secured. The password of the target library is applied to the added tables, 
and corresponding secured table objects are created in metadata.

The following example depicts the impact of using the COPY procedure to copy tableC 
and tableD into the sensitive data folder.

60 Appendix 1 • Security Impact of Moving Tables



Figure A1.2 Example: After a SAS Copy

Host Layer Metadata Layer

sensitive data seclib

seclib2

unsecured data

tableA.sas7bdat tableA

tableB.sas7bdat tableB

tableC.sas7bdat tableC

tableC.sas7bdat

more data

tableD.sas7bdat tableD

tableD.sas7bdat tableD

Notice that security information and bindings are generated for the added tables and that 
corresponding secured table objects are automatically created in metadata. With a SAS 
copy, both of the added tables are automatically secured by their parent library.

Using Host Commands
If you use a host copy command to add physical tables to a secured library, the added 
tables are not automatically secured. If you create a host copy of an unsecured table, the 
copy is unsecured. If you create a host copy of a secured table, the copy retains the 
security information and binding of the original table.

The following example depicts the impact of using host commands to copy two physical 
tables (tableC and tableD) into the sensitive data folder.

Figure A1.3 Example: After a Host Copy

Host Layer Metadata Layer

sensitive data seclib

seclib2

unsecured data

more data

tableA.sas7bdat tableA

tableB.sas7bdat tableB

tableDtableD.sas7bdat

tableC.sas7bdat

tableC.sas7bdat

tableD.sas7bdat

Adding Physical Tables to a Metadata-Bound Library 61



Notice that the copied tableC is not secured, and that the copied tableD has the same 
security binding as the original tableD.

Copying Metadata-Bound Tables to a Traditional 
Library

The examples in this topic use the copy action. The same results occur if tables are 
moved, except that the original physical tables are deleted.

Introduction
When you copy or move metadata-bound tables into a traditional physical library, the 
result varies depending on whether you use SAS or host commands to perform the 
action.

The following figure depicts an initial state for the examples in this topic.

Figure A1.4 Example: Initial State

tableC

= security location information = security binding

seclib

tableA.sas7bdat
tableB.sas7bdat

tableC.sas7bdat

secured data

unsecured data

Host Layer Metadata Layer

Using SAS
If you use SAS to add a metadata-bound table to a traditional physical library, the added 
table is not secured. It takes on the unsecured nature of its new parent library. For this 
reason, SAS requires that you have adequate metadata-layer permissions to the original 
table in order to copy (or move) it. See “Permissions for Metadata-Bound Data” on page 
39.

The following example depicts the impact of using the COPY procedure to copy a 
physical table (tableC) into the unsecured data folder.

62 Appendix 1 • Security Impact of Moving Tables



Figure A1.5 Example: After a SAS Copy

Host Layer Metadata Layer

unsecured data

secured data seclib

tableA.sas7bdat
tableB.sas7bdat

tableC.sas7bdat tableC

tableC.sas7bdat

Using Host Commands
If you use a host command to add a metadata-bound table to a traditional physical 
library, the added table is secured. It is bound to the same metadata object that the 
original table is bound to. With a host command, SAS isn’t involved, so metadata-layer 
permissions can’t be checked. Thus, the original security information and binding is 
preserved.

Figure A1.6 Example: After a Host Copy

Host Layer Metadata Layer

unsecured data

secured data seclib

tableA.sas7bdat
tableB.sas7bdat

tableC.sas7bdat tableC

tableC.sas7bdat

Copying Metadata-Bound Tables to a Traditional Library 63



64 Appendix 1 • Security Impact of Moving Tables



Appendix 2

AUTHLIB Procedure

Overview: AUTHLIB Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Concepts: AUTHLIB Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Metadata-Bound Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Using Metadata-Bound Library Passwords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Setting and Modifying Metadata-Bound Library Passwords . . . . . . . . . . . . . . . . . . 68
Encrypted Data Set Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Setting and Modifying Metadata-Bound Library Encryption Options . . . . . . . . . . . 70
Retaining and Purging Metadata-Bound Library Credentials . . . . . . . . . . . . . . . . . 71
Requiring Encryption for Metadata-Bound Data Sets . . . . . . . . . . . . . . . . . . . . . . . 72
Data Sets in a Metadata-Bound Library That Are Not Bound 

to Secured Table Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Syntax: AUTHLIB Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
PROC AUTHLIB Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
CREATE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
MODIFY Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
PURGE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
REMOVE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
REPAIR Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
REPORT Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
TABLES Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Using the AUTHLIB Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Requirements for Using the AUTHLIB Statements . . . . . . . . . . . . . . . . . . . . . . . . . 99
Copy-In-Place Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Results: AUTHLIB Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Examples: AUTHLIB Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Example 1: Binding a Physical Library That Contains Unprotected Data Sets . . . 100
Example 2: Binding a Physical Library That Contains 

Password-Protected Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Example 3: Binding a Library When Existing Data Sets Are 

Protected with the Same Passwords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Example 4: Binding a Library When Existing Data Sets Are 

Protected with Different Passwords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Example 5: Changing Passwords on Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Example 6: Changing Metadata-Bound Library Passwords . . . . . . . . . . . . . . . . . . 109
Example 7: Using the REMOVE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Example 8: Using the REPORT Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Example 9: Using the TABLES Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Example 10: Binding a Library When Existing Data Sets Are 

SAS Proprietary Encrypted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

65



Example 11: Binding a Library When Existing Data Sets Are AES-Encrypted . . 116
Example 12: Binding a Library with an Optional Recorded 

Encryption Key When Existing AES-Encrypted Data Sets 
Have Different Encryption Keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Example 13: Binding a Library with Required AES 
Encryption When Existing Data Sets Are Encrypted with 
the Same Encryption Key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Example 14: Changing the Encryption Key on a Metadata-
Bound Library That Requires AES Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Example 15: Binding a Library with Existing Data Sets That 
Are AES-Encrypted with Different Encryption Keys . . . . . . . . . . . . . . . . . . . . . 126

Example 16: Changing a Metadata-Bound Library to Require 
AES Encryption When Existing Data Sets Are Encrypted 
with Different Encryption Keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Example 17: Using the REMOVE Statement on a Metadata-
Bound Library with Required AES Encryption . . . . . . . . . . . . . . . . . . . . . . . . . 131

Example 18: Resetting Credentials on Imported SecuredLibrary Objects . . . . . . . 133

Overview: AUTHLIB Procedure
The AUTHLIB procedure is a utility procedure that manages metadata-bound libraries. 
With PROC AUTHLIB, you can do the following:

• create a metadata-bound library by binding a physical library to metadata within a 
SAS Metadata Repository

• modify password and encryption key values for a metadata-bound library

• purge replaced password and encryption key values that are also known as metadata-
bound library credentials

• repair metadata-bound libraries by recovering security information, secured library 
objects, and secured table objects 

• remove the physical security information and metadata objects that protect a 
metadata-bound library

• report inconsistencies between physical library contents and corresponding metadata 
objects within a specified metadata-bound library

Users cannot access metadata-bound data sets from any release of SAS prior to the 
second maintenance release of 9.3.

Note: For a z/OS direct-access bound library that has been bound to metadata, the 
constraint is slightly broader. Neither the library nor any of its members can be 
accessed by earlier releases of SAS.

Concepts: AUTHLIB Procedure

Metadata-Bound Library
A metadata-bound library is a physical library that is tied to a corresponding metadata 
secured table object. Each physical table within a metadata-bound library has 

66 Appendix 2 • AUTHLIB Procedure



information in its header that points to a specific metadata object. The pointer creates a 
security binding between the physical table and the metadata object. The binding ensures 
that SAS universally enforces metadata-layer access requirements for the physical table
—regardless of how a user requests access from SAS. See Chapter 1, “Overview of 
Metadata-Bound Libraries,” on page 1.

Using Metadata-Bound Library Passwords
A metadata-bound library contains a single set of passwords that are stored in the 
secured library object. This set of passwords is added to all data sets that are created in 
the metadata-bound library. These passwords are not used to authorize user access to the 
data. They are used to authorize administrator access to repair the binding of physical 
data to the secured library or table metadata objects. The passwords are also validated in 
the process of authorizing a user’s access to a data set. They do not determine the 
permissions that any user is authorized to have.

The metadata-bound library passwords are intended to be known only by the 
administrators of the metadata-bound library. Knowledge of these passwords is required 
to restore or re-create secured library and secured table objects in a SAS Metadata 
Server for data sets in a data library that have lost their previously recorded metadata 
objects and permissions.

The metadata-bound library passwords also prevent a user from exporting the secured 
library and secured table objects from a SAS Metadata Server and then importing them 
to a SAS Metadata Server that an unauthorized user created and controls. This prevents 
the unauthorized user from using such objects where the user has modified the 
permissions.

The metadata-bound library passwords are always stored and transmitted in encrypted 
formats. The encrypted password is not usable to access the data if it is captured from a 
transmission and presented to SAS as a password value in the SAS language. 
Administrators might choose to use the PWENCODE procedure to encode the 
passwords for use in a PROC AUTHLIB statement. Using an encoded password 
prevents a casual observer from seeing the clear-text password in the PROC AUTHLIB 
statements that the administrator types.

There are three passwords in the metadata-bound library set that correspond to the 
READ=, WRITE=, and ALTER= passwords of SAS data sets. For greater simplicity in 
administration of metadata-bound libraries, it is recommended that you use the PW= 
option in PROC AUTHLIB statements to specify a single password value. In the context 
of metadata-bound libraries, the READ=, WRITE=, and ALTER= options do not Create 
access distinctions. If you are concerned that a single eight character password does not 
meet your security requirements, then you can choose to set three different password 
values (using READ=, WRITE=, and ALTER=). Setting different values for these three 
options can create a 24-character password. However, you must keep track of all 
password values that you have assigned to a metadata-bound library. You must specify 
the passwords to do the following:

• unbind the library

• modify the passwords

• repair any inconsistencies in the binding information between what is recorded in the 
physical files and the actual metadata objects

For more information, see “Setting and Modifying Metadata-Bound Library Passwords” 
on page 68.

T I P All password values must be valid SAS names with a maximum length of 8 
characters.

Concepts: AUTHLIB Procedure 67



CAUTION:
If you lose the password (or passwords) for a metadata-bound library, then you 
cannot unbind the library or change its passwords. Be sure to keep track of 
passwords that you assign in the CREATE and MODIFY statements.

Setting and Modifying Metadata-Bound Library Passwords
The metadata-bound library passwords are set in the CREATE statement and can be 
changed with the MODIFY statement. The passwords stored in data sets in the operating 
system library can be changed by those statements and subordinate TABLES statements. 
The passwords stored in the data sets can also be changed if the library is unbound from 
the metadata with a REMOVE statement.

All of the password options in the CREATE, MODIFY, TABLES, and REMOVE 
statements accept a syntax where two values can be specified separated by a slash (/) (for 
example, PW=password-value/new-password-value). For CREATE and 
MODIFY statements, a password value to set in the metadata or data sets is obtained 
from the password value before the slash (/) if no new password value is specified after 
the slash (/). The same is true for the REMOVE statement with the additional possibility 
of specifying the slash (/) and no new password value to indicate that the password 
should be removed from the data sets during the unbind process. However, note that if 
the CREATE, MODIFY, or REMOVE statement also specifies TABLESONLY=YES, 
then any new password values on those statements are ignored.

In general, you do not specify a new password value in a TABLES statement following a 
CREATE or MODIFY statement. The new value is obtained from the metadata to which 
the data set is bound or being bound. You can specify a new password value in TABLES 
statements following a REMOVE statement if you want different data sets to have 
unique passwords. In that case, you follow these steps:

1. Change the password for the data sets using a REMOVE statement with 
TABLESONLY=YES and an individual TABLES statement for each unique 
password.

2. Remove the metadata-bound library with a REMOVE statement without 
TABLESONLY=YES.

See Also
• “Example 1: Binding a Physical Library That Contains Unprotected Data Sets” on 

page 100

• “Example 2: Binding a Physical Library That Contains Password-Protected Data 
Sets” on page 102

• “Example 3: Binding a Library When Existing Data Sets Are Protected with the 
Same Passwords” on page 104

• “Example 4: Binding a Library When Existing Data Sets Are Protected with 
Different Passwords” on page 105

• “Example 5: Changing Passwords on Data Sets” on page 107

• “Example 6: Changing Metadata-Bound Library Passwords” on page 109

68 Appendix 2 • AUTHLIB Procedure



Encrypted Data Set Considerations
Some data sets in metadata-bound libraries might be encrypted either with the SAS 
Proprietary Encryption or Advanced Encryption Standard (AES) algorithm. SAS 
Proprietary Encryption is specified as ENCRYPT=YES when the data set is created. 
AES encryption is specified as ENCRYPT=AES and an ENCRYPTKEY= key value 
when the data set is created. Special considerations apply for these encrypted data sets 
when processed by the AUTHLIB procedure.

CAUTION:
AES encryption is supported only in SAS 9.4 and later releases. Do not use AES 
encryption if the data sets need to be accessible by the second maintenance release of 
SAS 9.3.

SAS Proprietary Encrypted Data Sets
SAS Proprietary Encryption uses the READ password of the data set as part of the 
encryption key. Since all metadata-bound data sets in the library share the same set 
of passwords, it is not necessary to specify the READ password when accessing the 
file. However, when the READ password is modified on the data set in a CREATE, 
MODIFY, or REMOVE statement, the data must be re-encrypted with the new 
password value. This process is done automatically for you in the 9.4 release with a 
copy-in-place operation. For more information about the copy-in-place operation, see 
“Copy-In-Place Operation” on page 99.

AES-Encrypted Data Sets
There are two ways to access an AES-encrypted data set:

• the user must provide the ENCRYPTKEY= key value to open the data set

• the administrator must have recorded an optional or required encryption key for 
the metadata-bound library with the ENCRYPTKEY= option in the CREATE or 
MODIFY statement

Note: The ENCRYPTKEY= value is a passphrase that can be up to 64 characters 
long from which the actual AES encryption key is later derived, but it is referred 
to as the encryption key in most SAS documentation.

By recording an optional or required ENCRYPTKEY= key value for the metadata-
bound library, the metadata becomes a key store for the encryption key value. Like 
password values, the key value is always stored and transmitted in encrypted 
formats. The encrypted key value is not usable to access the data if it is captured 
from a transmission and presented to SAS as an encryption key value in the SAS 
language. For more information, see “Setting and Modifying Metadata-Bound 
Library Encryption Options” on page 70. If there is no recorded encryption key for 
the library or the data set is encrypted with a different key, then you can specify the 
encryption key value by specifying the ENCRYPTKEY= option in a TABLES 
statement. For more information, see “TABLES Statement” on page 95.

Note: If an encryption key is recorded in the metadata with the AUTHLIB 
procedure, then it is honored by the SAS 9.4 release when creating and replacing 
SAS data sets, whether the first maintenance release for SAS 9.4 has been 
applied or not. The SAS 9.4 release of the AUTHLIB procedure cannot be used 
to administer the metadata-bound library if the REQUIRE_ENCRYPTION=YES 
attribute has been set.

CAUTION:
Even if you record the encryption key in metadata for the library, you should 
also record the key elsewhere when using ENCRYPT=AES. If you lose the 
metadata and forget the ENCRYPTKEY= key value, then you lose your data. 

Concepts: AUTHLIB Procedure 69



SAS cannot assist you in recovering the ENCRYPTKEY= key value. The 
following note is written to the log:

NOTE: If you lose or forget the ENCRYPTKEY= value, 
there will be no way  to open the file or 
recover the data.

For more information, see “Setting and Modifying Metadata-Bound Library Encryption 
Options” on page 70.

CAUTION:
If data sets using AES encryption have referential integrity constraints, then the 
encryption key for all data sets must be available when they are opened for 
Update access. Normally, SAS requires that all data sets share the same encryption 
key. With a recorded optional or required encryption key in metadata, related data 
sets can have different keys. However, issues can arise if you change the encryption 
key on one library that has data sets related to data sets in a different library.

T I P If a metadata-bound library contains AES-encrypted data sets, then SAS 
recommends that you record an encryption key and use it for all metadata-bound data 
sets in the library that are encrypted with AES. The best way to ensure that the 
encryption key is used for all data sets is to require encryption. For more 
information, see “Requiring Encryption for Metadata-Bound Data Sets” on page 
72.

See Also
• “Example 10: Binding a Library When Existing Data Sets Are SAS Proprietary 

Encrypted” on page 114

• “Example 11: Binding a Library When Existing Data Sets Are AES-Encrypted” on 
page 116

• “Example 12: Binding a Library with an Optional Recorded Encryption Key When 
Existing AES-Encrypted Data Sets Have Different Encryption Keys ” on page 118

• “Example 13: Binding a Library with Required AES Encryption When Existing Data 
Sets Are Encrypted with the Same Encryption Key” on page 121

• “Example 14: Changing the Encryption Key on a Metadata-Bound Library That 
Requires AES Encryption” on page 123

Setting and Modifying Metadata-Bound Library Encryption Options
There are three options that affect metadata-bound library encryption:

• REQUIRE_ENCRYPTION=

• ENCRYPT=

• ENCRYPTKEY=

The metadata-bound library encryption options are set in the CREATE statement and can 
be changed with the MODIFY statement. The encryption of data sets in the operating 
system library can be changed by the CREATE and MODIFY statements and 
subordinate TABLES statements. The encryption of data sets can also be changed if the 
library is unbound from the metadata by using a REMOVE statement. However, note 
that if the CREATE, MODIFY, or REMOVE statement also specifies 
TABLESONLY=YES, then any new encryption options on those statements are ignored. 
Also note that when encryption options are changed for a data set, the copy-in-place 

70 Appendix 2 • AUTHLIB Procedure



operation is automatically executed to re-encrypt the data with the new options. For 
more information about the copy-in-place operation, see “Copy-In-Place Operation” on 
page 99.

The default for the REQUIRE_ENCRYPTION= option is NO when it is used in the 
CREATE statement. The REQUIRE_ENCRYPTION= option can be changed in the 
MODIFY statement to YES or NO.

The ENCRYPT= option specifies the encryption type to use: AES, YES, or NO. 
ENCRYPT=NO is not valid if encryption is required. To record or change a metadata-
bound library encryption key, ENCRYPT=AES must be specified. If you want to switch 
from required encryption with a recorded AES encryption key to required encryption 
with the SAS Proprietary algorithm, then specify ENCRYPT=YES in the MODIFY 
statement. This process also removes the recorded encryption key. To remove the 
recorded encryption key when encryption is not required, specify ENCRYPT=NO in the 
MODIFY statement. To change the encryption of data sets when unbinding with the 
REMOVE statement, perform one of the following tasks:

• specify different encryption options for data sets that are unbound by using 
TABLESONLY=YES and the encryption options on different TABLES statements

• change to a common encryption for all data sets that are unbound with the 
ENCRYPT=option if TABLESONLY is not YES

Similar to password options, the ENCRYPTKEY= option on statements accepts a syntax 
where two values that are separated by a slash (/) can be specified. Here is an example:

ENCRYPTKEY=key-value/new-key-value

For CREATE and MODIFY statements, the encryption key value to record in the 
metadata or data sets is obtained from the encryption key value before the slash (/) if

• ENCRYPT=AES

• there is no new key value specified after the slash (/)

If you do not specify ENCRYPT=AES, then the encryption key value is used to open 
data sets but is not recorded in metadata. Unlike password options, you do not remove an 
encryption key value by specifying a slash (/) after it and leaving it blank. Instead, you 
use ENCRYPT=YES or ENCRYPT=NO, as discussed in the previous paragraph.

If encryption is required, then you do not specify a new key value in a TABLES 
statement following a CREATE or MODIFY statement. The new value is obtained from 
the metadata to which the data set is bound or being bound. If encryption is not required 
or if you are following a REMOVE statement with TABLESONLY=YES, then you can 
specify ENCRYPT=AES and a new key value in TABLES statements to have the data 
set re-encrypted with the new key value.

See Also
• “Example 15: Binding a Library with Existing Data Sets That Are AES-Encrypted 

with Different Encryption Keys” on page 126

• “Example 16: Changing a Metadata-Bound Library to Require AES Encryption 
When Existing Data Sets Are Encrypted with Different Encryption Keys” on page 
129

Retaining and Purging Metadata-Bound Library Credentials
Passwords and encryption keys for a metadata-bound library are collectively referred to 
as metadata-bound library credentials. Prior to the third maintenance release of SAS 

Concepts: AUTHLIB Procedure 71



9.4, when any of these credentials were modified, the replaced values were immediately 
removed from the metadata. Sometimes tables were not processed because another user 
was accessing the table.

Beginning with the third maintenance release of SAS 9.4, the credentials are retained in 
metadata and can be used by the system to open data sets that were not modified. This 
retention enables the user to continue processing tables and the administrator to 
complete the modification of credentials. The retained credentials are purged if a 
MODIFY statement that is processing all of the tables in the library determines that all 
the tables have been successfully changed with the credentials.

An administrator might want to retain the credentials even after all the existing tables 
have been processed successfully. The following are reasons for retaining the 
credentials:

• It enables processing of view files that implemented row and column level security 
on underlying tables by using the old passwords in the view definition. SAS does not 
know which view files might contain the passwords and does not have the ability to 
modify them in the view file. The administrator must redefine the views with the 
new passwords.

• It enables processing of data sets restored from backups prior to the modification.

An administrator who wants to retain older credentials and not purge them can specify 
the PURGE=NO option in the MODIFY statement.

Note: The administrator must specify the PURGE=NO option in each MODIFY 
statement that processes all tables until the administrator is ready for the replaced 
credentials to be purged.

If a library contains tables that do not follow our best practices, automatic deletion of old 
credentials might not occur when issuing a MODIFY statement for all tables. For 
example, a MODIFY statement that changes the stored encryption key for a library with 
optional encryption would not modify the keys of data sets whose keys do not match the 
stored key. Because some data sets were not modified, the old encryption key is not 
removed. In this case, the PURGE statement must be used to remove the old credentials.

Note: Notes are written to the SAS log whenever a metadata-bound table is accessed 
and the replaced credentials are used to successfully open the data set. The Note 
identifies the date and time that these credentials were replaced.

For more information, see “PURGE Statement” on page 85.

Requiring Encryption for Metadata-Bound Data Sets
Beginning in the first maintenance release for SAS 9.4, an administrator can require that 
all data sets in a metadata-bound library be automatically encrypted when created. This 
is specified by using the REQUIRE_ENCRYPTION=YES option in the CREATE or 
MODIFY statements. The type of encryption required depends on whether there is a 
recorded AES encryption key or not. If there is a recorded encryption key, then all data 
sets that are bound to the secured library object are automatically AES-encrypted with 
the recorded encryption key. If there is no recorded AES encryption key, then all data 
sets are automatically encrypted with the SAS Proprietary algorithm.

In order to automatically encrypt the data sets, a copy-in-place operation is used. For an 
explanation of the copy-in-place operation, see “Copy-In-Place Operation” on page 99. 
If the data set is currently encrypted with a different key value, then that key value must 
be either the current recorded encryption key value or specified with the 
ENCRYPTKEY= option in the TABLES statement.

72 Appendix 2 • AUTHLIB Procedure



Note: If the REQUIRE_ENCRYPTION=YES attribute of a metadata-bound library is 
set in the metadata with the AUTHLIB procedure, then it is honored by SAS 9.4 
when creating and replacing SAS data sets whether the first maintenance release for 
SAS 9.4 has been applied or not. The pre-maintenance version of the AUTHLIB 
procedure cannot be used to administer the metadata-bound library if the 
REQUIRE_ENCRYPTION=YES attribute has been set. The second maintenance 
release of SAS 9.3 does not honor the REQUIRE_ENCRYPTION=YES attribute, 
and its AUTHLIB procedure should not be used to administer the library if the 
REQUIRE_ENCRYPTION=YES attribute is set.

See Also
• “Example 15: Binding a Library with Existing Data Sets That Are AES-Encrypted 

with Different Encryption Keys” on page 126

• “Example 16: Changing a Metadata-Bound Library to Require AES Encryption 
When Existing Data Sets Are Encrypted with Different Encryption Keys” on page 
129

Data Sets in a Metadata-Bound Library That Are Not Bound to 
Secured Table Objects

It is possible that some data sets in a metadata-bound library do not have the metadata-
bound library passwords. These data sets are not considered to be part of the bound 
library for authorization purposes. This can occur with either of the following scenarios:

• the data sets existed in the library before it was bound and their passwords differed 
from the metadata library passwords

• the data set is AES-encrypted and the encryption key was not available to open the 
data set in a CREATE or MODIFY statement

See the following examples:

• “Example 2: Binding a Physical Library That Contains Password-Protected Data 
Sets” on page 102

• “Example 12: Binding a Library with an Optional Recorded Encryption Key When 
Existing AES-Encrypted Data Sets Have Different Encryption Keys ” on page 118

This can also occur if data sets were to be copied into the library by an operating system 
copy utility.

If a data set was bound before being copied, then the data set is still protected by the 
permissions that the users have in the secured table object to which it is bound in the 
original secured library.

If a data set was not bound before being copied, then it is also not bound in the new 
library or protected by the metadata permissions. If the data set has passwords, then you 
must supply the appropriate passwords to access the data.

You can use the MODIFY statement to modify the passwords if necessary and to bind 
the data set to a secured table object in the secured library object to which the library is 
bound. For more information, see “Example 5: Changing Passwords on Data Sets” on 
page 107. 

Concepts: AUTHLIB Procedure 73



Syntax: AUTHLIB Procedure
Restrictions: Users cannot access metadata-bound data sets from any release of SAS prior to the 

second maintenance release of SAS 9.3.
The AUTHLIB procedure is intended for use by SAS administrators. Users who lack 
sufficient privileges in either the metadata layer or the host layer cannot use this 
statement.
The AUTHLIB procedure cannot operate on libraries that are assigned for access 
through a SAS/SHARE server.
The physical library specified cannot be a concatenated library, temporary library, or 
accessed through a SAS/SHARE server and must be processed by an engine that 
supports metadata-bound libraries.

Requirement: The AUTHLIB procedure requires a connection to the target metadata server.

Tip: Each password and encryption key option must be coded on a separate line to 
ensure that they are properly blotted in the log.

See: SAS Guide to Metadata-Bound Libraries

74 Appendix 2 • AUTHLIB Procedure



PROC AUTHLIB <option(s)>;
CREATE

SECUREDLIBRARY='secured-library-name'
<SECUREDFOLDER='secured-folder-path'>
<LIBRARY=libref>
PW=all-password-value </ new-all-password-value> |
ALTER=alter-password-value </ new-alter-password-value>
READ=read-password-value </ new-read-password-value>
WRITE=write-password-value </ new-write-password-value>
<REQUIRE_ENCRYPTION=YES | NO>
<ENCRYPT=YES | NO | AES>
<ENCRYPTKEY=key-value </ new-key-value>>;

MODIFY <LIBRARY=libref>
PW=all-password </ new-all-password> |

ALTER=alter-password </ new-alter-password>
READ=read-password </ new-read-password>
WRITE=write-password </ new-write-password>
<TABLESONLY=YES | NO>
<REQUIRE_ENCRYPTION=YES | NO>
<ENCRYPT=YES | NO | AES>
<ENCRYPTKEY=key-value </ new-key-value>>
<PURGE=YES | NO>;

PURGE CREDENTIALS | CREDS <LIBRARY=libref>
PW=all-password |

ALTER=alter-password 
READ=read-password 
WRITE=write-password 
BEFORE=datetime;

REMOVE<LIBRARY=libref>
PW=all-password </ <new-all-password>> |

ALTER=alter-password </ <new-alter-password>>
READ=read-password </ <new-read-password>>
WRITE=write-password </ <new-write-password>>
<TABLESONLY=YES | NO>
<ENCRYPT=YES | NO | AES>
<ENCRYPTKEY=key-value </ new-key-value>>;

REPAIR ADD | UPDATE | DELETE
LOCATION | METADATA

SECUREDLIBRARY=’secured-library-name’
SECUREDFOLDER='secured-folder-path'
<LIBRARY=libref>
PW=all-password |

ALTER=alter-password
READ=read-password
WRITE=write-password

<TABLESONLY=YES | NO>
<ENCRYPTKEY=key-value>;

REPORT <LIBRARY=libref>
<ENCRYPTKEY=key-value>;

TABLES SAS-dataset(s) | _ALL_ | _NONE_ 
</>

<PW=all-password > </ <new-all-password>> |
<ALTER=alter-password> </ <new-alter-password>>
<READ=read-password> </ <new-read-password>>
<WRITE=write-password> </ <new-write-password>>;
<MEMTYPE= DATA | VIEW>
<ENCRYPT=YES | NO | AES>
<ENCRYPTKEY=key-value< / new-key-value>>;

Syntax: AUTHLIB Procedure 75



Statement Task Example

PROC AUTHLIB Create and manage metadata-bound libraries

CREATE Create the secured library object in the SAS Metadata 
Server and record the physical security information in the 
directory or bound files

Ex. 1, Ex. 2, 
Ex. 3, Ex. 4, 
Ex. 11, Ex. 10, 
Ex. 12, Ex. 13, 
Ex. 15

MODIFY Modify password values and encryption key values for a 
metadata-bound library

Ex. 5, Ex. 6, 
Ex. 16

PURGE Removes any retained metadata-bound library credentials 
older than a given date of replacement.

REMOVE Remove the physical security information and metadata 
objects that protect a metadata-bound library

Ex. 7

REPAIR Recover security information (in physical data) or secured 
library and table objects (in metadata)

REPORT For a specified metadata-bound library, compare physical 
library contents with corresponding metadata objects (in 
order to identify any inconsistencies)

Ex. 8

TABLES Specify which tables within a specified metadata-bound 
library are affected by certain AUTHLIB statements

Ex. 4, Ex. 9, 
Ex. 11, Ex. 10, 
Ex. 12, Ex. 15, 
Ex. 16

PROC AUTHLIB Statement
Manages metadata-bound libraries.

Syntax
PROC AUTHLIB <option(s)>;

Summary of Optional Arguments

LIBRARY=libref
is the name of the physical library for which the secured library object is 
created and the security information is stored.

NOWARN
suppresses error processing.

PWREQ=YES | NO
controls the pop up of a dialog box.

76 Appendix 2 • AUTHLIB Procedure



Optional Arguments
LIBRARY=libref

is the name of the physical library for which the secured library object is created and 
the security information is stored.

If the LIBRARY= option is not specified, then the LIBRARY=libref (physical 
library) from the CREATE, MODIFY, REMOVE, REPORT, or REPAIR statement is 
used.

Alias LIB=, DDNAME=, DD=

Restriction The physical library specified cannot be a concatenated library, 
temporary library, or accessed through a SAS/SHARE server and must 
be processed by an engine that supports metadata-bound libraries.

NOWARN
suppresses the file not found error message when a data set in a TABLES 
statement does not exist.

PWREQ=YES | NO
controls the pop up of a dialog box for a data set password in interactive mode. 

YES
specifies that a dialog box appear if a missing or invalid password is entered 
when required.

NO
prevents a dialog box from appearing. If a missing or invalid password is entered, 
then the data set is not opened, and an error message is written to the SAS log.

Default PWREQ=NO

CREATE Statement
Binds a physical library and data sets in the library to metadata by generating corresponding metadata 
objects in the SAS Metadata Repository and creating a record of the metadata objects in the physical 
directory and data sets.

Requirement: The AUTHLIB CREATE statement requires a connection to the target metadata 
server. For more requirements, see “Requirements for Using the AUTHLIB 
Statements” on page 99.

Tip: Each password and encryption key option must be coded on a separate line to 
ensure that they are properly blotted in the log.

CREATE Statement 77



Syntax
CREATE

SECUREDLIBRARY='secured-library-name'
<SECUREDFOLDER='secured-folder-path'>
<LIBRARY=libref>
PW=all-password-value </ new-all-password-value> |
ALTER=alter-password-value </ new-alter-password-value>
READ=read-password-value </ new-read-password-value>
WRITE=write-password-value </ new-write-password-value>
<REQUIRE_ENCRYPTION=YES | NO>
<ENCRYPT=YES | NO | AES>
<ENCRYPTKEY=key-value </ new-key-value>>;

Required Arguments
SECUREDLIBRARY='secured-library-name'

names the secured library object in the SAS Metadata Server.

Alias SECLIB=

Restriction The total length of the secured library object pathname including the 
fully qualified secured folder path cannot exceed 256 characters.

PW=all-password-value </ new-all-password-value>
sets a single password for a metadata-bound library.

ALTER=alter-password-value </ new-alter-password-value>
sets one of a maximum of three password values for a metadata-bound library.

READ=read-password-value </ new-read-password-value>
sets one of a maximum of three password values for a metadata-bound library.

WRITE=write-password-value </ new-write-password-value>
sets one of a maximum of three password values for a metadata-bound library.

T I P All password values must be valid SAS names with a maximum length of 8 
characters.

Optional Arguments
SECUREDFOLDER='secured-folder-path'

is the name of the metadata folder within the /System/Secured Libraries 
folder tree where the secured library object is created.

If the SECUREDFOLDER= option is not specified, then the metadata-bound library 
is created directly in the /System/Secured Libraries folder of the Foundation 
repository. If the SECUREDFOLDER= option does not begin with a slash (/), then it 
is a relative path and the value is appended to /System/Secured Libraries/ 
to find the folder. If the SECUREDFOLDER= option begins with a slash (/), then it 
is an absolute path and the value must begin with /System/Secured Libraries 
or /<repository_name>/System/Secured Libraries.

Alias SECFLDR=

Restriction The total length of the secured library object pathname including the 
fully qualified secured folder path cannot exceed 256 characters.

78 Appendix 2 • AUTHLIB Procedure



ENCRYPT=YES | NO | AES
specifies the encryption type.

YES
specifies the SAS Proprietary algorithm.

NO
specifies no encryption.

AES
specifies Advanced Encryption Standard (AES) encryption and to record the key 
in metadata.

Requirement ENCRYPTKEY= option is required if the library has AES 
encryption.

See “Encrypted Data Set Considerations” on page 69

ENCRYPTKEY=key-value </ key-value>
specifies a key value for AES encryption.

Requirement ENCRYPTKEY= option is required if the library or a data file has 
AES encryption.

Note The encryption key value for all the data sets in a library can be 
stored in a metadata-bound library so that an authorized user does not 
have to supply the encryption key value every time a data set is 
opened. See “Considerations for Data File Encryption” on page 47.

Tip The ENCRYPTKEY= value is a passphrase that can be up to 64 
characters long from which the actual AES encryption key is later 
derived, but it is referred to as the encryption key in most SAS 
documentation.

See “Encrypted Data Set Considerations” on page 69 

“ENCRYPTKEY= Data Set Option” in SAS Data Set Options: 
Reference 

LIBRARY=libref
name of the physical library for which the secured library object is created and the 
security information is stored.

If the LIBRARY= option is not specified, then the physical library from the 
AUTHLIB procedure is used.

Alias LIB=, DDNAME=, DD=

Restriction The physical library specified cannot be a concatenated library, 
temporary library, or accessed through a SAS/SHARE server and must 
be processed by an engine that supports metadata-bound libraries.

REQUIRE_ENCRYPTION=YES | NO

YES
specifies that all data sets in a metadata-bound library are automatically 
encrypted.

CREATE Statement 79

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=ledsoptsref&pubcode=68025&id=n0yzx049gh8pn3n1v7yrzagard3a
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=ledsoptsref&pubcode=68025&id=n0yzx049gh8pn3n1v7yrzagard3a


NO
specifies that data sets in a metadata-bound library are not automatically 
encrypted.

See “Requiring Encryption for Metadata-Bound Data Sets” on page 72

Details

Specifying Passwords
If your physical library does not contain password-protected data sets, then you need to 
specify the new metadata-bound library password(s) with either the PW= option or 
READ=,WRITE=, and ALTER= options in the CREATE statement. This is the most 
common case. For an example, see “Example 1: Binding a Physical Library That 
Contains Unprotected Data Sets” on page 100.

If your physical library contains some password-protected data sets that all share the 
same current set of passwords, then you can specify the most restrictive password on the 
data sets before a slash (/) in the CREATE statement password option(s) and the new 
password(s) after the slash (/). For an example, see “Example 3: Binding a Library When 
Existing Data Sets Are Protected with the Same Passwords” on page 104. 

If your physical library contains password-protected data sets with different sets of 
passwords, then you can specify the data sets with each set of passwords on separate 
TABLES statements (see “Example 4: Binding a Library When Existing Data Sets Are 
Protected with Different Passwords” on page 105) or you can subsequently use 
MODIFY and TABLES statements to change the passwords after the library has been 
bound with the CREATE statement (see “Example 5: Changing Passwords on Data Sets” 
on page 107).

Specifying Encryption Keys
To create or access a metadata-bound library that is protected using AES algorithm 
requires an encryption key value. You must use ENCRYPT=AES and 
ENCRYPTKEY=key-value data set options.

If your physical library contains some AES-encrypted data sets that all share the same 
AES encryption key, then you can specify the key value following ENCRYPTKEY= in 
the CREATE statement. If you want to record the key in metadata, then specify 
ENCRYPT=AES. For an example, see “Example 13: Binding a Library with Required 
AES Encryption When Existing Data Sets Are Encrypted with the Same Encryption 
Key” on page 121.

If your physical library contains AES-encrypted data sets with different encryption keys, 
then you can specify the data sets with each encryption key on separate TABLES 
statements. For an example, see “Example 15: Binding a Library with Existing Data Sets 
That Are AES-Encrypted with Different Encryption Keys” on page 126.

T I P See “Considerations for Data File Encryption” on page 47.

For more information, see “ENCRYPTKEY= Data Set Option” in SAS Data Set 
Options: Reference and “ENCRYPT= Data Set Option” in SAS Data Set Options: 
Reference.

CAUTION:
If data sets using AES encryption have referential integrity constraints, then the 
encryption key for all data sets must be available when they are opened for 
Update access. Normally, SAS requires that all data sets share the same encryption 
key. With a recorded optional or required encryption key in metadata, related data 

80 Appendix 2 • AUTHLIB Procedure

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=ledsoptsref&pubcode=68025&id=n0yzx049gh8pn3n1v7yrzagard3a
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=ledsoptsref&pubcode=68025&id=n0yzx049gh8pn3n1v7yrzagard3a
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=ledsoptsref&pubcode=68025&id=p1hwtxbozzzy4un11ldzgovfhcrf
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=ledsoptsref&pubcode=68025&id=p1hwtxbozzzy4un11ldzgovfhcrf


sets can have different keys. However, issues can arise if you change the encryption 
key on one library that has data sets related to data sets in a different library.

CAUTION:
For AES-encrypted data sets that are referentially related to one another, follow 
these best practices to ensure that the data does not become inaccessible: 
Store the encryption key in the library’s metadata. You can modify the stored key, 
but do not remove the key from metadata and do not unbind the library.

CAUTION:
Even if you record the encryption key in metadata for the library, then you 
should also record the key elsewhere when using ENCRYPT=AES. If you lose 
the metadata and forget the ENCRYPTKEY= key value, then you lose your data. 
SAS cannot assist you in recovering the ENCRYPTKEY= key value. The following 
note is written to the log:

NOTE: If you lose or forget the ENCRYPTKEY= value, 
there will be no way  to open the file or 
recover the data.

MODIFY Statement
Modifies password and encryption key values for a metadata-bound library.

Requirement: The AUTHLIB MODIFY statement requires a connection to the target metadata 
server. For more requirements, see “Requirements for Using the AUTHLIB 
Statements” on page 99.

Tip: Each password and encryption key option must be coded on a separate line to 
ensure that they are properly blotted in the log.

Syntax
MODIFY

<LIBRARY=libref>
PW=all-password </ new-all-password> |
ALTER=alter-password </ new-alter-password>
READ=read-password </ new-read-password>
WRITE=write-password </ new-write-password>
<TABLESONLY=YES | NO>
<REQUIRE_ENCRYPTION=YES | NO>
<ENCRYPT=YES | NO | AES>
<ENCRYPTKEY=key-value </ new-key-value>>
<PURGE=YES | NO>;

Required Arguments
PW=all-password </ new-all-password>

modifies a single password for a metadata-bound library.

ALTER=alter-password </ new-alter-password>
modifies one of a maximum of three password values for a metadata-bound library.

READ=read-password </ new-read-password>
modifies one of a maximum of three password values for a metadata-bound library.

MODIFY Statement 81



WRITE=write-password </ new-write-password>
modifies one of a maximum of three password values for a metadata-bound library.

T I P All password values must be valid SAS names with a maximum length of 8 
characters.

Optional Arguments
ENCRYPT=YES | NO | AES

specifies the encryption type.

YES
specifies the SAS Proprietary algorithm.

NO
specifies no encryption.

AES
specifies Advanced Encryption Standard (AES) encryption and to record the key 
in metadata.

Requirement ENCRYPTKEY= option is required if the library has AES 
encryption.

See “Encrypted Data Set Considerations” on page 69

ENCRYPTKEY=key-value </ key-value>
specifies a key value for AES encryption.

Requirement ENCRYPTKEY= option is required if the library or a data file has 
AES encryption.

Note The encryption key value for all the data sets in a library can be 
stored in a metadata-bound library so that an authorized user does not 
have to supply the encryption key value every time a data set is 
opened. See “Considerations for Data File Encryption” on page 47.

Tip The ENCRYPTKEY= value is a passphrase that can be up to 64 
characters long from which the actual AES encryption key is later 
derived, but it is referred to as the encryption key in most SAS 
documentation.

See “Encrypted Data Set Considerations” on page 69 

“ENCRYPTKEY= Data Set Option” in SAS Data Set Options: 
Reference 

LIBRARY=libref
name of the physical library that is metadata-bound.

If the LIBRARY= option is not specified, then the physical library from the 
AUTHLIB procedure is used.

Alias LIB=, DDNAME=, DD=

Restriction The physical library specified cannot be a concatenated library, 
temporary library, or accessed through a SAS/SHARE server and must 
be processed by an engine that supports metadata-bound libraries.

82 Appendix 2 • AUTHLIB Procedure

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=ledsoptsref&pubcode=68025&id=n0yzx049gh8pn3n1v7yrzagard3a
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=ledsoptsref&pubcode=68025&id=n0yzx049gh8pn3n1v7yrzagard3a


PURGE=YES | NO

YES
removes all retained metadata-bound library credentials if all tables in the library 
are successfully modified to the newer credentials.

Default YES

NO
does not remove replaced metadata-bound library credentials even if all tables in 
the library were successfully modified.

See “Retaining and Purging Metadata-Bound Library Credentials” on page 71 

REQUIRE_ENCRYPTION=YES | NO

YES
specifies that all data sets in a metadata-bound library are automatically 
encrypted.

NO
specifies that data sets in a metadata-bound library are not automatically 
encrypted.

See “Requiring Encryption for Metadata-Bound Data Sets” on page 72

TABLESONLY=YES | NO
specifies whether the MODIFY statement action is applied at the library level or just 
to the tables. If TABLESONLY=NO, then the action is applied to the library and data 
sets. If TABLESONLY=YES, then the action is applied only to the data sets. 

Default NO

Tip If you specify TABLESONLY=YES and a new password or encryption key 
value in the CREATE, MODIFY, or REMOVE statement, then the new 
password value or encryption key value is ignored. The current password 
or encryption key value is still required if the library is metadata-bound.

Details

Using the MODIFY Statement
The MODIFY statement can modify the value of the required metadata-bound library 
passwords and encryption options. This statement can also modify passwords on data 
sets (tables) that do not have the required metadata-bound library password values. The 
TABLES statement follows the MODIFY statement to specify current passwords and 
encryption keys in the data sets.

If your physical library is currently bound to a metadata library with one set of 
passwords and you want to change the metadata-bound library passwords to another set, 
then specify the current and new values for the metadata-bound library passwords 
separated by a / in the MODIFY statement. For an example, see “Example 6: Changing 
Metadata-Bound Library Passwords” on page 109.

If your physical library contains password-protected data sets with different sets of 
passwords from the metadata-bound library passwords, then you can modify the data set 
passwords to match the metadata-bound library required passwords using the MODIFY 
and TABLES statements. Specify the metadata-bound library passwords in the MODIFY 
statement. Specify the data sets with each set of passwords in separate TABLES 

MODIFY Statement 83



statements. For more information, see “Example 5: Changing Passwords on Data Sets” 
on page 107.

If you want to change encryption options for the library, then specify the new options in 
the MODIFY statement. If your physical library contains AES-encrypted data sets, then 
you must specify the ENCRYPTKEY= key value in the MODIFY or TABLES 
statements or have a recorded encryption key for the library to make any modifications 
to the encrypted data sets. For and example, see “Example 16: Changing a Metadata-
Bound Library to Require AES Encryption When Existing Data Sets Are Encrypted with 
Different Encryption Keys” on page 129.

For more information, see “TABLES Statement” on page 95.

CAUTION:
For AES-encrypted data sets that are referentially related to one another, follow 
these best practices to ensure that the data does not become inaccessible: 
Store the encryption key in the library’s metadata. You can modify the stored key, 
but do not remove the key from metadata and do not unbind the library.

CAUTION:
Even if you record the encryption key in metadata for the library, you should 
also record the key elsewhere when using ENCRYPT=AES. If you lose the 
metadata and forget the ENCRYPTKEY= key value, then you lose your data. SAS 
cannot assist you in recovering the ENCRYPTKEY= key value. 

You might have a need to import a SecuredLibrary object from a backup package for one 
of the following reasons:

• the SecuredLibrary object was inadvertently deleted 

• you are promoting the metadata-bound library to a new metadata server

Password values and encryption key values are not exported with the SecuredLibrary 
object. This prevents them from being imported to a rogue Metadata Server. In this case, 
the passwords and any recorded encryption key values need to be reset in the imported 
SecuredLibrary object. Until you do this, libname assignments that refers to the imported 
SecuredLibrary object will fail with the following messages:

ERROR: The secured library object information for library library-name 
could not be obtained from the metadata server or has invalid data.
ERROR: Association not found.
ERROR: Error in the LIBNAME statement.

For an example, see “Example 18: Resetting Credentials on Imported SecuredLibrary 
Objects” on page 133.

Using the LIBRARY= Option
If you want to override the default library from the AUTHLIB procedure, then use 
LIBRARY=.

MODIFY <LIBRARY=library-name>

If you want to modify the passwords or encryption options for a secured library object 
that is no longer bound to a physical library, then specify LIBRARY=_NONE_ with the 
SECUREDLIBRARY= and SECUREDFOLDER= options to locate the secured library 
object.

MODIFY <LIBRARY=_NONE_ SECUREDLIBRARY=secured-library-name> 
                <SECUREDFOLDER=secured-folder-name>

84 Appendix 2 • AUTHLIB Procedure



CAUTION:
Do not use LIB=_none_ when the secured library object is bound to a physical 
library. LIB=_none_ causes the action to operate only on the secured library object 
and has no effect on the physical data. 

Using the PURGE Option
Passwords and encryption keys for a metadata-bound library are collectively referred to 
as metadata-bound library credentials. For information about retaining and purging 
credentials, see “Retaining and Purging Metadata-Bound Library Credentials” on page 
71.

PURGE Statement
Removes any retained metadata-bound library credentials older than a given date of replacement.

Requirement: The AUTHLIB PURGE statement requires a connection to the target metadata 
server. For more requirements, see “Requirements for Using the AUTHLIB 
Statements” on page 99.

Tip: Each password and encryption key option must be coded on a separate line to 
ensure that they are properly blotted in the log.

Syntax
PURGE CREDENTIALS | CREDS <LIBRARY=libref>

PW=all-password |
ALTER=alter-password 
READ=read-password 
WRITE=write-password 
BEFORE=datetime;

Required Arguments
PW=all-password

specifies a single password for a metadata-bound library.

ALTER=alter-password
specifies one of a maximum of three password values for a metadata-bound library.

READ=read-password
specifies one of a maximum of three password values for a metadata-bound library.

WRITE=write-password
specifies one of a maximum of three password values for a metadata-bound library.

T I P All password values must be valid SAS names with a maximum length of 8 
characters.

BEFORE=datetime
specifies a datetime constant before any replaced, but retained, credentials are 
removed.

PURGE Statement 85



Optional Argument
LIBRARY=libref

name of the physical library for which the metadata-bound library is created and the 
security information is stored.

If the LIBRARY= option is not specified, then the physical library from the 
AUTHLIB procedure is used.

Alias LIB=, DDNAME=, DD=

Restriction The physical library specified cannot be a concatenated library, 
temporary library, or accessed through a SAS/SHARE server and must 
be processed by an engine that supports metadata-bound libraries.

Details

Using the PURGE Statement
Passwords and encryption keys for a metadata-bound library are collectively referred to 
as metadata-bound library credentials. For more information about purging metadata-
bound library credentials, see “Retaining and Purging Metadata-Bound Library 
Credentials” on page 71.

Using the LIBRARY= Option
If you want to override the default library from the AUTHLIB procedure, then use 
LIBRARY= option.

PURGE CREDENTIALS <LIBRARY=library-name>

If you want to purge the credentials for a secured library object that is no longer bound 
to a physical library, then specify LIBRARY=_NONE_ with the SECUREDLIBRARY= 
and SECUREDFOLDER= options to locate the secured library object.

PURGE CREDENTIALS <LIBRARY=_NONE_ SECUREDLIBRARY=secured-library-name>
<SECUREDFOLDER=secured-folder-name>

REMOVE Statement
Removes the physical security information and metadata objects that protect a metadata-bound library so 
that it is no longer a metadata-bound library.

Requirement: The AUTHLIB REMOVE statement requires a connection to the target metadata 
server. For more requirements, see “Requirements for Using the AUTHLIB 
Statements” on page 99.

Note: If any data set uses SAS Proprietary Encryption, then you cannot remove passwords 
unless you also specify ENCRYPT=NO to remove encryption.

Tips: Each password and encryption key option must be coded on a separate line to 
ensure that they are properly blotted in the log.
If you do not want the non-secured data sets altered, then move all non-secured 
data sets from the physical library before performing a REMOVE statement.
Before you use the REMOVE statement, consider running the REPORT statement. 
The output from the REPORT statement identifies any physical tables that do not 
have corresponding secured table objects in metadata. In the unusual circumstance 
that such physical tables exist, their security location information is unaffected by the 

86 Appendix 2 • AUTHLIB Procedure



REMOVE statement unless you specify AUTHADMIN=YES in the LIBNAME 
statement. You should use the AUTHADMIN=YES option in the LIBNAME statement 
in this circumstance.

Examples: “Example 7: Using the REMOVE Statement” on page 110
“Example 17: Using the REMOVE Statement on a Metadata-Bound Library with 
Required AES Encryption” on page 131

Syntax
REMOVE<LIBRARY=libref>

PW=all-password </ <new-all-password>> |
ALTER=alter-password </ <new-alter-password>>
READ=read-password </ <new-read-password>>
WRITE=write-password </ <new-write-password>>
<TABLESONLY=YES | NO>
<ENCRYPT=YES | NO | AES>
<ENCRYPTKEY=key-value </ new-key-value>>;

Required Arguments
PW=all-password </ <new-all-password>>

specifies a single password for a metadata-bound library.

ALTER=alter-password </ <new-alter-password>>
specifies one of a maximum of three password values for a metadata-bound library.

READ=read-password </ <new-read-password>>
specifies one of a maximum of three password values for a metadata-bound library.

WRITE=write-password </ <new-write-password>>
specifies one of a maximum of three password values for a metadata-bound library.

Optional Arguments
ENCRYPT=YES | NO | AES

specifies the encryption type.

YES
specifies the SAS Proprietary algorithm.

NO
specifies no encryption.

AES
specifies Advanced Encryption Standard (AES) encryption and is required if 
specifying that data sets be encrypted with a new key value.

See “Encrypted Data Set Considerations” on page 69

ENCRYPTKEY=key-value </ key-value>
specifies a key value for AES encryption.

Tip The ENCRYPTKEY= value is a passphrase that can be up to 64 characters 
long from which the actual AES encryption key is later derived, but it is 
referred to as the encryption key in most SAS documentation.

See “ENCRYPTKEY= Data Set Option” in SAS Data Set Options: Reference

REMOVE Statement 87

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=ledsoptsref&pubcode=68025&id=n0yzx049gh8pn3n1v7yrzagard3a


LIBRARY=libref
name of the physical library that is metadata-bound.

If the LIBRARY= option is not specified, then the physical library from the PROC 
AUTHLIB statement is used.

Alias LIB=, DDNAME=, DD=

Restriction The physical library specified cannot be a concatenated library, 
temporary library, or accessed through a SAS/SHARE server and must 
be processed by an engine that supports metadata-bound libraries.

TABLESONLY=YES | NO
specifies whether the REMOVE statement action is applied at the library level or just 
to the tables. If TABLESONLY=NO, then the action is applied to the library and data 
sets. If TABLESONLY=YES, then the action is applied only to the individual data 
sets listed. 

Default NO

Tip If you specify TABLESONLY=YES and a new password or encryption 
options, then the new password or encryption options are ignored. The 
current password is still required if the library is metadata-bound.

Details
The REMOVE statement is used to unbind the metadata-bound library feature from a 
SAS library and the data sets within it. This statement also removes the secured library 
and secured table objects from the SAS Metadata Server. The data sets remain in the 
physical library protected by the metadata-bound library passwords unless the 
administrator specifies password modifications in the REMOVE statement. Since the 
metadata-bound library feature is being removed and there is no longer a requirement 
that the data set passwords match the metadata-bound library passwords, the data set 
passwords can be removed by using a slash (/) after the current password but not 
specifying a new password. If you choose to do this, then you are warned in the SAS log 
that the data sets no longer have any SAS protection. You can also modify the encryption 
key of data sets by specifying the new key following a slash (/) in ENCRYPTKEY= and 
specifying ENCRYPT=AES. You can change to SAS Proprietary Encryption by 
specifying ENCRYPT=YES. You can remove all encryption by specifying 
ENCRYPT=NO.

The REMOVE statement removes the location information from any data set if the 
passwords specified match the metadata-bound library passwords stored in the data set. 
Note also that if the data set is AES-encrypted, the encryption key must either be 
recorded in metadata or specified in the REMOVE or TABLES statements. However, it 
does not delete the referenced secured table object unless that secured table object is 
under the secured library object to which the operating system library is bound. If a data 
set has been copied into the bound library by a utility not written in SAS from another 
metadata-bound library, then this process prevents a REMOVE from deleting the 
secured table object that belongs to the other metadata-bound library.

Note: Ensure that all physical tables that are protected by a particular metadata-bound 
library remain within that library (directory). This best practice maximizes clarity 
and is essential in order for REMOVE statements to be fully effective. Special 
circumstances (for example, a table that is host copied to another directory) can 
prevent a REMOVE statement from unbinding the relocated data set.

CAUTION:

88 Appendix 2 • AUTHLIB Procedure



If you have to unbind a library that contains AES-encrypted data sets that are 
referentially related to other data sets, then either make sure that all related 
data sets are no longer AES-encrypted or make sure that all related data sets 
share the same encryption key. If you preserve AES encryption, the data will be 
available only to those users who supply the key and have host-layer access.

REPAIR Statement
Recovers security information (in physical data) or secured library and table objects (in metadata).

Requirement: The AUTHLIB REPAIR statement requires a connection to the target metadata 
server. For more requirements, see “Requirements for Using the AUTHLIB 
Statements” on page 99.

Tip: Each password and encryption key option must be coded on a separate line to 
ensure that they are properly blotted in the log.

Syntax
REPAIR ADD | UPDATE | DELETE

LOCATION | METADATA
SECUREDLIBRARY=’secured-library-name’
SECUREDFOLDER='secured-folder-path'
<LIBRARY=libref>
PW=all-password |
ALTER=alter-password
READ=read-password
WRITE=write-password
<TABLESONLY=YES | NO>
<ENCRYPTKEY=key-value>;

Required Arguments
ADD | UPDATE | DELETE

one of these actions must be specified.

LOCATION | METADATA
clarifies whether the action is to apply to the physical security information in the file 
system, to the metadata objects in the SAS Metadata Server, or to both.

PW=all-password
specifies a single password for a metadata-bound library.

ALTER=alter-password
assigns, changes, or removes an Alter password from the secured library object and 
from the data sets in the physical library.

READ=read-password
assigns, changes, or removes a Read password from the secured library object and 
from the data sets in the physical library.

WRITE=write-password
assigns, changes, or removes a Write password from the secured library object and 
from the data sets in the physical library.

REPAIR Statement 89



Optional Arguments
ENCRYPTKEY=key-value

specifies a key value for AES encryption.

Requirement ENCRYPTKEY= data set option is required if the library or a data 
file has AES encryption and if the key is not recorded in the library 
metadata.

Note The encryption key value for all the data sets in a library can be 
stored in a metadata-bound library so that an authorized user does not 
have to supply the encryption key value every time a data set is 
opened. See “Considerations for Data File Encryption” on page 47.

Tip The ENCRYPTKEY= value is a passphrase that can be up to 64 
characters long from which the actual AES encryption key is later 
derived, but it is referred to as the encryption key in most SAS 
documentation.

See “ENCRYPTKEY= Data Set Option” in SAS Data Set Options: 
Reference

LIBRARY=libref
name of the physical library where the security information is stored.

If the LIBRARY= option is not specified, then the physical library from the PROC 
AUTHLIB statement is used.

Alias LIB=, DDNAME=, DD=

Restriction The physical library specified cannot be a concatenated library, 
temporary library, or accessed through a SAS/SHARE server and must 
be processed by an engine that supports metadata-bound libraries.

SECUREDLIBRARY='secured-library-name'
names the secured library object in the SAS Metadata Server.

Alias SECLIB=

Restriction The total length of the secured library object pathname including the 
fully qualified secured folder path cannot exceed 256 characters.

SECUREDFOLDER='secured-folder-path'
name of the metadata folder within a /System/Secured Libraries folder tree 
where the secured library is repaired or re-created.

Alias SECFLDR=

Restriction The total length of the secured library object pathname including the 
fully qualified secured folder path cannot exceed 256 characters.

TABLESONLY=YES | NO
specifies whether the REPAIR statement action is applied at the library level or just 
to the tables. If TABLESONLY=NO, then the action is applied to the library and the 
tables. If TABLESONLY=YES, then the action is applied only to the tables. This is 
especially important for REPAIR because it gives the administrator a way to delete 
specific secured table objects without deleting the secured library and all secured 
tables. 

90 Appendix 2 • AUTHLIB Procedure

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=ledsoptsref&pubcode=68025&id=n0yzx049gh8pn3n1v7yrzagard3a
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=ledsoptsref&pubcode=68025&id=n0yzx049gh8pn3n1v7yrzagard3a


Default NO

Details
The REPAIR statement feature that has been fully tested is REPAIR DELETE 
LOCATION. Use this combination of options when you need to delete the security 
information in a metadata-bound library and or data sets within the library without 
deleting the metadata objects.

It is possible for a system administrator to get in situations where a data set still has 
location information pointing to a secured table object that no longer exists. REPAIR 
DELETE LOCATION is required to remove that location information before the data set 
can be accessed in any other way.

When using the REPAIR statement, one of the ADD, UPDATE, or DELETE actions 
must be specified. LOCATION, METADATA, or both are used to clarify if the action is 
to apply to the metadata security information in the file system, to the metadata objects 
in the SAS Metadata Server, or to both. Other than DELETE LOCATION, these other 
actions have not been fully tested and are considered pre-production implementations. 
They are documented here but should be used only under advise and direction from 
Technical Support.

One or more TABLES statements can follow the REPAIR statement to perform the same 
action on the specified data sets. An implicit TABLES _ALL_ is used if no TABLES 
statement follows the REPAIR statement.

Inconsistencies between the metadata security information stored in the operating system 
files and the secured library object in the SAS Metadata Server that need repair can 
prevent the assignment of a LIBNAME statement to the physical library. The 
administrator that owns the physical library and knows the metadata-bound library 
passwords can perform a library assignment and repair the data by adding the 
AUTHADMIN=YES option to the LIBNAME statement. Best practice is to use the 
AUTHADMIN=YES option when performing any REPAIR actions.

CAUTION:
Repairing a metadata-bound library is an advanced task. Make sure you have a 
current backup (of both metadata and physical data) before you use this statement.

Use the REPAIR statement to restore metadata-bound library security information or 
metadata objects that are inadvertently deleted. The administrator can carefully use the 
REPAIR statement to make some repairs to inconsistencies reported by the REPORT 
statement. If there are a significant number of groupings in the REPORT listing, then it 
might be more advisable to do the following:

1. Create a new operating system directory and metadata-bound library, and then use 
SAS Management Console to set appropriate default library permissions for the new 
secured library object.

2. Access the current library with the AUTHADMIN=YES, AUTHPW= or 
AUTHALTER=, AUTHWRITE=, and AUTHREAD= options in the LIBNAME 
statement.

3. Use the SAS COPY procedure to copy the SAS data sets to the new library. Use 
CONSTRAINT=YES if any data sets have referential integrity constraints. Use SAS 
Management Console to set any permissions on the secured table objects that differ 
from those inherited from the secured library object. The following is an example of 
using the COPY procedure.

Metadata-bound library ABCDE also has data sets Employees, EmpInfo, and Product. 
The REPORT statement has shown some inconsistencies between the physical library 

REPAIR Statement 91



contents and the corresponding metadata objects. This is an example of a way to resolve 
these differences.

libname klmno "SAS-library-2";

proc authlib lib=klmno;
 create securedfolder="Department XYZZY"    
        securedlibrary="KLMNOEmps"  
        pw=password;
run;    
quit;

libname abcde "SAS-library" 
   AUTHADMIN=yes 
   AUTHPW=password;

proc copy in=abcde out=klmno ;run;

Log A2.1 Using PROC COPY to Resolve Differences

88   proc copy in=abcde out=klmno ;run;

NOTE: Copying ABCDE.EMPINFO to KLMNO.EMPINFO (memtype=DATA).
NOTE: Data set ABCDE.EMPINFO.DATA has secured table object location information, but the
      secured library object location information that it contains:
           SecuredFolder:      /System/Secured Libraries/Department XYZZY
           SecuredLibrary:     ABCDEEmps
           SecuredLibraryGUID: 38C24AF4-9CF5-458B-8389-52092307007E
      is different from the registered location for the library ABCDE:
           SecuredFolder:
           SecuredLibrary:
           SecuredLibraryGUID:
      The data set might have been copied to this directory with a host copy utility.
NOTE: Permissions are obtained from the secured table and the secured library objects that are
      referenced in the header of the metadata-bound table.
NOTE: Metadata-bound library permissions are used for KLMNO.EMPINFO.DATA.
NOTE: Successfully added new secured table object "EMPINFO.DATA" to the secured library object
      at path "/System/Secured Libraries/Department XYZZY/KLMNOEmps" for data set
      KLMNO.EMPINFO.DATA.
NOTE: There were 5 observations read from the data set ABCDE.EMPINFO.
NOTE: The data set KLMNO.EMPINFO has 5 observations and 6 variables.
NOTE: Copying ABCDE.EMPLOYEES to KLMNO.EMPLOYEES (memtype=DATA).
NOTE: Data set ABCDE.EMPLOYEES.DATA has secured table object location information, but the
      secured library object location information that it contains:
           SecuredFolder:      /System/Secured Libraries/Department XYZZY
           SecuredLibrary:     ABCDEEmps
           SecuredLibraryGUID: 38C24AF4-9CF5-458B-8389-52092307007E
      is different from the registered location for the library ABCDE:
           SecuredFolder:
           SecuredLibrary:
           SecuredLibraryGUID:
      The data set might have been copied to this directory with a host copy utility.
NOTE: Permissions are obtained from the secured table and the secured library objects that are
      referenced in the header of the metadata-bound table.
NOTE: Metadata-bound library permissions are used for KLMNO.EMPLOYEES.DATA.
NOTE: Successfully added new secured table object "EMPLOYEES.DATA" to the secured library
      object at path "/System/Secured Libraries/Department XYZZY/KLMNOEmps" for data set
      KLMNO.EMPLOYEES.DATA.

92 Appendix 2 • AUTHLIB Procedure



NOTE: There were 5 observations read from the data set ABCDE.EMPLOYEES.
NOTE: The data set KLMNO.EMPLOYEES has 5 observations and 6 variables.
NOTE: Copying ABCDE.PRODUCT to KLMNO.PRODUCT (memtype=DATA).
NOTE: Data set ABCDE.PRODUCT.DATA has secured table object location information, but the
      secured library object location information that it contains:
           SecuredFolder:      /System/Secured Libraries/Department XYZZY
           SecuredLibrary:     ABCDEEmps
           SecuredLibraryGUID: 38C24AF4-9CF5-458B-8389-52092307007E
      is different from the registered location for the library ABCDE:
           SecuredFolder:
           SecuredLibrary:
           SecuredLibraryGUID:
      The data set might have been copied to this directory with a host copy utility.
NOTE: Permissions are obtained from the secured table and the secured library objects that are
      referenced in the header of the metadata-bound table.
NOTE: Metadata-bound library permissions are used for KLMNO.PRODUCT.DATA.
NOTE: Successfully added new secured table object "PRODUCT.DATA" to the secured library object
      at path "/System/Secured Libraries/Department XYZZY/KLMNOEmps" for data set
      KLMNO.PRODUCT.DATA.
NOTE: There were 5 observations read from the data set ABCDE.PRODUCT.
NOTE: The data set KLMNO.PRODUCT has 5 observations and 2 variables.
NOTE: PROCEDURE COPY used (Total process time):
      real time           0.14 seconds
      cpu time            0.04 seconds

The following REPAIR statement combination of options are preproduction and have 
not been fully tested. Preproduction means that this feature is a preliminary release of 
software that has not completed full development and testing. Because it has not been 
fully tested, preproduction software should be used with care. After final testing is 
completed, preproduction software is likely to be offered in a future release as a 
production-quality component or product.

REPAIR ADD LOCATION
Use this combination of options when metadata-bound library and secured table 
security information is missing in the metadata-bound library or data sets within the 
metadata-bound library. The secured library and secured tables objects must exist in 
the SAS Metadata Server.

REPAIR UPDATE LOCATION
Use this combination of options when metadata-bound library and secured table 
security information exists in the metadata-bound library or data sets within the 
metadata-bound library but points to incorrect or non-existent metadata objects. The 
secured library and secured tables objects to which you update the location 
information must exist in the SAS Metadata Server.

REPAIR ADD METADATA LOCATION
Use this combination of options when secured library and secured table objects have 
been deleted from the SAS Metadata Server and their security information is no 
longer registered in the metadata-bound library and data sets within the metadata-
bound library. The metadata objects are created in the SAS Metadata Server, and the 
security information for these objects are registered in the metadata-bound library 
and data sets.

REPAIR DELETE METADATA
Use this combination of options when you need to delete the secured library, the 
secured table metadata objects, or both without deleting the security information in a 
metadata-bound library or in the data sets within that library.

REPAIR DELETE METADATA LOCATION
Use this combination of options when you need to delete the secured library, the 
secured table metadata objects, or both and the security information in a metadata-
bound library or in the data sets within that library.

REPAIR Statement 93



REPAIR UPDATE LOCATION
Use this combination of options when you need to update the security information in 
a metadata-bound library, in the data sets, or both to point to different existing 
secured library and secured table metadata objects.

Note: The METADATA option is not supported with a REPAIR UPDATE action.

REPORT Statement
For a specified metadata-bound library, compares physical library contents with corresponding metadata 
objects (in order to identify any inconsistencies).

Requirement: The AUTHLIB REPORT statement requires a connection to the target metadata 
server. For more requirements, see “Requirements for Using the REPORT 
Statement” on page 94.

Tip: Each password and encryption key option must be coded on a separate line to 
ensure that they are properly blotted in the log.

Example: “Example 8: Using the REPORT Statement” on page 112

Syntax
REPORT

<LIBRARY=libref>
<ENCRYPTKEY=key-value>;

Optional Arguments
LIBRARY=libref

name of the physical library on which to report binding information.

If the LIBRARY= option is not specified, then the physical library from the PROC 
AUTHLIB statement is used.

Alias LIB=, DDNAME=, DD=

Restriction The physical library specified cannot be a concatenated library, 
temporary library, or accessed through a SAS/SHARE server and must 
be processed by an engine that supports metadata-bound libraries.

ENCRYPTKEY=key-value
specifies a key value for an AES encryption.

Tip The ENCRYPTKEY= value is a passphrase that can be up to 64 characters 
long from which the actual AES encryption key is later derived, but it is 
referred to as the encryption key in most SAS documentation.

See “ENCRYPTKEY= Data Set Option” in SAS Data Set Options: Reference

Details

Requirements for Using the REPORT Statement
An administrator uses the REPORT statement to identify any inconsistencies between a 
physical metadata-bound library and its corresponding metadata objects.

94 Appendix 2 • AUTHLIB Procedure

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=ledsoptsref&pubcode=68025&id=n0yzx049gh8pn3n1v7yrzagard3a


In order to use the REPORT statement, you must meet the following criteria:

• The SAS session runs under an account that has host-layer Read access to the target 
physical library. This is necessary in order to assign the libref.

• The SAS session connects to the metadata server as an identity that has the 
ReadMetadata permission for the target secured library object and secured table 
objects.

• If the library has secured library object location information and the secured library 
object cannot be obtained, then you will need to use the AUTHADMIN=YES option 
in the LIBNAME= statement in order to assign the library.

Reporting Inconsistencies
The REPORT statement is used to report any inconsistencies between the physical 
library contents and the corresponding metadata objects.

Inconsistencies between the metadata security information in the physical directory, data 
sets, the secured library, and secured table objects might occur if the metadata or the 
operating system files are manipulated using nonstandard SAS processing. For example, 
an operating system data set copied from one directory into a metadata-bound library 
directory using an operating system copy utility will not have the appropriate security 
information for that metadata-bound library. Another example is that an administrator 
might mistakenly delete a secured library or secured table object using SAS 
Management Console.

The REPORT statement reports the secured table and metadata-bound library security 
information for each data set in the operating system directory of the library. This data 
set information is grouped by the metadata-bound library attributes that all the data sets 
share. If any data sets in the physical library are correctly registered to the secured 
library object for the library and have the required passwords, then those data sets and 
attributes will be listed as the first grouping in the report. Subsequent groupings are for 
data sets with either passwords that differ from the metadata-bound library passwords or 
whose metadata-bound library security information does not match the metadata-bound 
library location registered for the operating system directory.

TABLES Statement
Used after a CREATE, MODIFY, REMOVE, REPAIR, and REPORT statement to specify the tables to 
process a statement action. Also, you can specify the current passwords or encryption key value of the 
data sets in the TABLES statement, if different from the metadata-bound library passwords or recorded 
encryption key.

Default: When no TABLES statement is specified, the TABLES _ALL_ statement is the 
default behavior.

Requirement: The TABLES statement must be preceded by a CREATE, MODIFY, REMOVE, 
REPAIR, REPORT, or another TABLES statement.

Tip: Each password and encryption key option must be coded on a separate line to 
ensure that they are properly blotted in the log.

Example: “Example 9: Using the TABLES Statement” on page 113

TABLES Statement 95



Syntax
TABLES SAS-dataset(s) | _ALL_ | _NONE_ 

</>
<PW=all-password > </ <new-all-password>> |
<ALTER=alter-password> </ <new-alter-password>>
<READ=read-password> </ <new-read-password>>
<WRITE=write-password> </ <new-write-password>>;
<MEMTYPE= DATA | VIEW>
<ENCRYPT=YES | NO | AES>
<ENCRYPTKEY=key-value< / new-key-value>>;

Required Argument
SAS-dataset(s) | _ALL_ | _NONE_

SAS-dataset(s)
name of one or more SAS data sets

_ALL_
specifies password options to apply to all data sets.

_NONE_
limits the action of the previous CREATE, MODIFY, or REPAIR statements to 
the library level and does not apply the action to any table.

Optional Arguments
/

is required if any options are included, such as passwords or MEMTYPE=. Here is 
an example:

tables table-name / pw=password;

ENCRYPT=YES | NO | AES
specifies the encryption type.

YES
specifies the SAS Proprietary algorithm.

NO
specifies no encryption.

AES
specifies Advanced Encryption Standard (AES) encryption and is required if 
changing and encrypting with a new key value and TABLESONLY=YES in the 
action statement.

See “Encrypted Data Set Considerations” on page 69

ENCRYPTKEY=key-value </ key-value>
specifies a key value for AES encryption.

Requirement ENCRYPTKEY= data set option is required if the data file has AES 
encryption and the key is not recorded for the library.

Tip The ENCRYPTKEY= value is a passphrase that can be up to 64 
characters long from which the actual AES encryption key is later 
derived, but it is referred to as the encryption key in most SAS 
documentation.

96 Appendix 2 • AUTHLIB Procedure



See “Encrypted Data Set Considerations” on page 69 

“ENCRYPTKEY= Data Set Option” in SAS Data Set Options: 
Reference 

MEMTYPE= DATA | VIEW
restricts processing to a single member type of DATA or VIEW. If not specified, then 
the default is both types. 

DATA
specifies SAS data file member type.

VIEW
specifies SAS view member type.

Alias MTYPE=, MT=

Default ALL

PW=all-password </ <new-all-password>>
specifies the current password of the data set.

ALTER=alter-password </ <new-alter-password>>
specifies the current ALTER= password of the data set.

READ=read-password </ <new-read-password>>
specifies the current READ= password of the data set.

WRITE=write-password </ <new-write-password>>
specifies the current WRITE= password of the data set.

T I P All password values must be valid SAS names with a maximum length of 8 
characters.

Details

Using the TABLES Statement
The TABLES statement is primarily used to specify the current password(s) and 
encryption key(s) on data sets when different from the current metadata-bound library 
required password(s) or encryption key(s). A TABLES statement usually follows a 
CREATE or MODIFY statement to make the data set passwords and encryption keys 
change to the metadata-bound library passwords and encryption keys. For an example, 
see “Example 4: Binding a Library When Existing Data Sets Are Protected with 
Different Passwords” on page 105.

TABLES _NONE_ can be used to limit the action of the previous CREATE, MODIFY, 
or REPAIR statements to the library level and not apply the action to any table. TABLES 
_ALL_ is the default behavior if no TABLES statement is specified. You might wish to 
write an explicit TABLES _ALL_ if you want to specify passwords or encryption key 
values to use when opening all data sets.

Using the TABLES Statement with the CREATE Statement
The CREATE statement can be followed by one or more TABLES statements to specify 
current passwords or encryption key values for data sets when different from the 
metadata-bound library passwords and encryption keys. If the TABLES statement is not 
used, then only two groups of data sets are bound:

• data sets without passwords or encryption keys

TABLES Statement 97

http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=ledsoptsref&pubcode=68025&id=n0yzx049gh8pn3n1v7yrzagard3a
http://support.sas.com/documentation/cdlutility/cdlredirect.htm?locale=en&alias=ledsoptsref&pubcode=68025&id=n0yzx049gh8pn3n1v7yrzagard3a


• data sets with passwords or encryption key values matching the metadata-bound 
library

In effect, omitting TABLES statements is equivalent to specifying one TABLES _ALL_ 
statement. For more information, see “CREATE Statement” on page 77.

Using the TABLES Statement with the MODIFY Statement
The MODIFY statement can be followed by one or more TABLES statements to specify 
modifications to passwords or an encryption key value in the data sets. If no TABLES 
statement follows the MODIFY statement, then there is an implicit TABLES _ALL_ 
statement. A separate TABLES statement is required for sets of data sets (tables) that 
might have different current passwords or encryption keys. For more information, see 
“MODIFY Statement” on page 81.

Using the TABLES Statement with the REPAIR Statement
When using the REPAIR statement, one of the ADD, UPDATE, or DELETE actions 
must be specified. LOCATION, METADATA, or both are used to clarify if the action is 
to apply to the physical security information in file system, to the metadata objects in the 
SAS Metadata Server, or to both. The REPAIR statement can be followed by one or 
more TABLES statements to perform the same action on the specified data sets. 
However, you cannot specify a new password or encryption key value in a TABLES 
statement that follows a REPAIR statement. For more information, see “REPAIR 
Statement” on page 89.

Using the TABLES Statement with the REMOVE Statement
You can use a TABLES statement with TABLESONLY=YES in the REMOVE 
statement to only remove the location information and secured table objects for specific 
tables in the metadata-bound library. If you do not use TABLESONLY=YES with a 
TABLES statement, then the secured library object and all secured table objects are 
deleted by the REMOVE statement.

When you use the TABLES statement after the REMOVE statement, an ENCRYPT=NO 
option removes the encryption on the data set as the table is being removed. For more 
information, see “Encrypted Data Set Considerations” on page 69. This process is 
necessary only if the administrator is trying to remove the passwords or encryption of a 
data set.

If you are removing the binding of the physical library to metadata or the physical 
library is not bound to a secured library, then you might want to modify the data set 
passwords or encryption to some other value. You are not restricted to changing to a 
common metadata-bound library password or encryption. You might choose to specify 
both a current and new password or current and new encryption key separated by a slash 
(/) in the REMOVE statement. If you want the different data sets to have unique 
passwords or encryption, then use the following two steps:

1. Change the PW= option for the data sets using a REMOVE statement with 
TABLESONLY=YES and an individual TABLES statement for each unique 
password and encryption.

2. Remove the metadata-bound library using a REMOVE statement without 
TABLESONLY=YES.

Using the TABLES Statement with the REPORT Statement
The TABLES statement is syntactically accepted with the REPORT statement but has 
little use. Specifying TABLES limits the report to the tables listed if used. For more 
information, see “REPORT Statement” on page 94.

98 Appendix 2 • AUTHLIB Procedure



Using the AUTHLIB Procedure

Requirements for Using the AUTHLIB Statements
Except for the REPORT statement, all statements within the AUTHLIB procedure 
require that you must meet the following criteria:

• The SAS session runs under an account that has host-layer control of the target 
physical library. To ensure that only users who have host control can bind a physical 
library to metadata, the SAS session must run under a privileged host account as 
follows:

• On UNIX, the account must be the owner of the directory.

• On Windows, the account must have full control of the directory.

• On z/OS, for UNIX file system libraries, the account must be the owner of the 
directory.

• On z/OS, for direct-access bound libraries, the account must have RACF ALTER 
access authority to the library data set.

• The SAS session connects to the SAS Metadata Server as an identity that has 
ReadMetadata and WriteMemberMetadata permissions to the target secured data 
folder.

• You must supply the password(s) in CREATE, MODIFY, REPAIR, and REMOVE 
statements.

The REPORT statement requirements are less restrictive and are documented with that 
statement.

Copy-In-Place Operation
In the SAS 9.4 release, the copy-in-place operation is used to re-encrypt data sets.

Prior to the second maintenance release of SAS 9.4, metadata-bound data sets in 
different representations other than the host environment executing the AUTHLIB code 
fails in CREATE, MODIFY, REPAIR, and REMOVE actions. In the second maintenance 
release of SAS 9.4, the copy-in-place operation is used to bind or alter bindings of most 
metadata-bound data files and view files that are accessed through CEDA (Cross-
Environment Data Access). However, metadata-bound data sets accessed through CEDA 
that contain indexes, extended attributes, and integrity constraints are detected and the 
copy-in-place operation is not attempted as it would still fail.

The following steps are performed in the copy-in-place operation:

1. The data set is renamed to _TEMP_ENCRYPT_FILE_NAME_.

2. The data set is copied back to the original data set name, which re-encrypts the data 
in the process.

3. The _TEMP_ENCRYPT_FILE_NAME_ file is deleted.

See the following SAS log examples of the copy-in-place operation:

• “Example 12: Binding a Library with an Optional Recorded Encryption Key When 
Existing AES-Encrypted Data Sets Have Different Encryption Keys ” on page 118

Using the AUTHLIB Procedure 99



• “Example 16: Changing a Metadata-Bound Library to Require AES Encryption 
When Existing Data Sets Are Encrypted with Different Encryption Keys” on page 
129

Results: AUTHLIB Procedure
The REPORT statement produces the following output.

Output A2.1 Using the REPORT Statement

Examples: AUTHLIB Procedure

Example 1: Binding a Physical Library That Contains Unprotected Data 
Sets

Features: PROC AUTHLIB statement options
CREATE statement options:
PW=
SECUREDLIBRARY=

100 Appendix 2 • AUTHLIB Procedure



SECUREDFOLDER=

Details

This example demonstrates binding a physical library that contains data sets that do not 
have passwords or AES encryption.

Program
proc authlib lib=zyxwvut; 

    create securedfolder="Department XYZZY"    
        securedlibrary="ZYXWVUTEmps"  
        pw=secretpw;  
run;
quit;    

 

Program Description

Library ZYXWVUT contains three data sets that do not have passwords: 
Employees, EmpInfo, Product.

proc authlib lib=zyxwvut; 

Using the CREATE statement, enter the name of the metadata folder and name the 
secured library object in the SAS Metadata Server. Specify metadata-bound library 
passwords with the PW= option.

    create securedfolder="Department XYZZY"    
        securedlibrary="ZYXWVUTEmps"  
        pw=secretpw;  
run;
quit;    

Results: The library and data sets are bound with the password secretpw. The binding is 
straightforward, as PROC AUTHLIB has unhindered access to the data.

 

Example 1: Binding a Physical Library That Contains Unprotected Data Sets 101



Log Examples

Log A2.2 Unprotected Data Sets

79   proc authlib lib=zyxwvut;
80
81    create securedfolder="Department XYZZY"
82           securedlibrary="ZYXWVUTEmps"
83           pw=XXXXXXXX;
84
85   run;

NOTE: Successfully created a secured library object for the physical library ZYXWVUT and recorded its
      location as:
           SecuredFolder:      /System/Secured Libraries/Department XYZZY
           SecuredLibrary:     ZYXWVUTEmps
           SecuredLibraryGUID: 1A323C03-A3D8-4A83-9615-2BC2CB9FAAE2
NOTE: Successfully added new secured table object "EMPINFO.DATA" to the secured library object at
      path "/System/Secured Libraries/Department XYZZY/ZYXWVUTEmps" for data set ZYXWVUT.EMPINFO.DATA.
NOTE: The passwords on ZYXWVUT.EMPINFO.DATA were successfully modified.
NOTE: Successfully added new secured table object "EMPLOYEES.DATA" to the secured library object at
      path "/System/Secured Libraries/Department XYZZY/ZYXWVUTEmps" for data set
      ZYXWVUT.EMPLOYEES.DATA.
NOTE: The passwords on ZYXWVUT.EMPLOYEES.DATA were successfully modified.
NOTE: Successfully added new secured table object "PRODUCT.DATA" to the secured library object at
      path "/System/Secured Libraries/Department XYZZY/ZYXWVUTEmps" for data set ZYXWVUT.PRODUCT.DATA.
NOTE: The passwords on ZYXWVUT.PRODUCT.DATA were successfully modified.
86   quit;

Example 2: Binding a Physical Library That Contains Password-
Protected Data Sets

Features: PROC AUTHLIB statement options
CREATE statement options:
PW=
SECUREDLIBRARY=
SECUREDFOLDER=

Details

This example demonstrates what happens if you use a similar CREATE statement as 
Example 1 when the physical library contains two data sets that have the same READ=, 
WRITE=, and ALTER= passwords and one data set that does not have any passwords. 
None of the data sets are AES-encrypted.

Program
proc authlib lib=abcde; 

    create securedfolder="Department XYZZY"    
        securedlibrary="ABCDEEmps"  
        pw=secretpw;   
run;
quit;

102 Appendix 2 • AUTHLIB Procedure



 

Program Description

Library ABCDE has Employees, EmpInfo, and Product data sets. However, in library 
ABCDE, the Employees and EmpInfo data sets are protected with a READ= password 
abcd, WRITE= password efgh, and an ALTER= password ijkl before the library is 
secured by the statements. The third data set, Product, is not protected with passwords.

proc authlib lib=abcde; 

Using the CREATE statement, enter the name of the metadata folder and name the 
secured library object in the SAS Metadata Server. Specify metadata-bound library 
passwords with the PW= option.

    create securedfolder="Department XYZZY"    
        securedlibrary="ABCDEEmps"  
        pw=secretpw;   
run;
quit;

Results: The ABCDE library is bound and the unprotected Product data set is bound 
and the password was set. The protected data sets are not bound and their passwords did 
not change because their current passwords were not specified. 

 

Log Examples

Log A2.3 Password-Protected Data Sets

179  proc authlib lib=abcde;
180
181   create securedfolder="Department XYZZY"
182          securedlibrary="ABCDEEmps"
183          pw=XXXXXXXX;
184
185  run;

NOTE: Successfully created a secured library object for the physical library ABCDE and recorded its
      location as:
           SecuredFolder:      /System/Secured Libraries/Department XYZZY
           SecuredLibrary:     ABCDEEmps
           SecuredLibraryGUID: 4881263D-C346-41F7-AC49-BF9181AF13D2
ERROR: The ALTER password is the most restrictive on ABCDE.EMPINFO.DATA. You must supply its value in
       order to alter or add any passwords.
ERROR: The ALTER password is the most restrictive on ABCDE.EMPLOYEES.DATA. You must supply its value
       in order to alter or add any passwords.
NOTE: Successfully added new secured table object "PRODUCT.DATA" to the secured library object at
      path "/System/Secured Libraries/Department XYZZY/ABCDEEmps" for data set ABCDE.PRODUCT.DATA.
NOTE: The passwords on ABCDE.PRODUCT.DATA were successfully modified.
NOTE: Some statement actions not processed because of errors noted above.
186  quit;

NOTE: The SAS System stopped processing this step because of errors.

Example 2: Binding a Physical Library That Contains Password-Protected Data Sets
103



Example 3: Binding a Library When Existing Data Sets Are Protected 
with the Same Passwords

Features: PROC AUTHLIB statement options
CREATE statement options:
PW=
SECUREDLIBRARY=
SECUREDFOLDER=

Details

This example demonstrates how to specify the passwords for the Employees and 
EmpInfo data sets from the preceding example in the PROC AUTHLIB CREATE 
statement. None of the data sets are AES-encrypted.

Program
proc authlib lib=abcde; 

    create securedlibrary="ABCDEEmps"
        securedfolder="Department XYZZY" 
        pw=ijkl/secretpw; 
run;  
quit;

 

Program Description

Library ABCDE also has Employees, EmpInfo, and Product data sets. However, in 
library ABCDE, the Employees and EmpInfo data sets are protected with a READ= 
password abcd, WRITE= password efgh, and ALTER= password ijkl before the 
library is secured by the statements. The third data set, Product, is not protected with any 
passwords.

proc authlib lib=abcde; 

Using the CREATE statement, enter the name of the metadata folder and name the 
secured library object in the SAS Metadata Server. Specify the ALTER= password 
ijkl for the data sets in the PW= argument before the new password secretpw, 
separated by a slash (/).

    create securedlibrary="ABCDEEmps"
        securedfolder="Department XYZZY" 
        pw=ijkl/secretpw; 
run;  
quit;

Results: The library ABCDE is bound. All three data sets are bound with the same 
password secretpw.

 

104 Appendix 2 • AUTHLIB Procedure



Log Examples

Log A2.4 Securing a Library with Data Sets That Are Protected with the Same Passwords

39   proc authlib lib=abcde;
40   create securedlibrary="ABCDEEmps"
41   securedfolder="Department XYZZY"
42   pw=XXXX/XXXXXXXX;
43   run;

NOTE: Successfully created a secured library object for the physical library ABCDE and recorded its 
location as:
           SecuredFolder:      /System/Secured Libraries/Department XYZZY
           SecuredLibrary:     ABCDEEmps
           SecuredLibraryGUID: 9F746F86-2336-4E2F-A67E-BFB77DEC27F0
NOTE: Successfully added new secured table object "DEPTNAME.DATA" to the secured library object at 
path "/System/Secured
      Libraries/Department XYZZY/ABCDEEmps" for data set ABCDE.DEPTNAME.DATA.
NOTE: The passwords on ABCDE.DEPTNAME.DATA were successfully modified.
NOTE: Successfully added new secured table object "EMPINFO.DATA" to the secured library object at path 
"/System/Secured
      Libraries/Department XYZZY/ABCDEEmps" for data set ABCDE.EMPINFO.DATA.
NOTE: The passwords on ABCDE.EMPINFO.DATA were successfully modified.
NOTE: Successfully added new secured table object "EMPLOYEE.DATA" to the secured library object at 
path "/System/Secured
      Libraries/Department XYZZY/ABCDEEmps" for data set ABCDE.EMPLOYEE.DATA.
NOTE: The passwords on ABCDE.EMPLOYEE.DATA were successfully modified.
44   quit;

Example 4: Binding a Library When Existing Data Sets Are Protected 
with Different Passwords

Features: PROC AUTHLIB statement options
CREATE statement options:
ALTER=
READ=
SECUREDLIBRARY=
SECUREDFOLDER=
WRITE=
TABLE statement options:
ALTER=
PW=
READ=
WRITE=

Details

This example demonstrates how to bind the library KLMNO, which contains three data 
sets with different passwords. None of the data sets are AES-encrypted. It also 
demonstrates creating a longer metadata-bound library password by specifying the 
READ=, WRITE=, and ALTER= password options.

Program
proc authlib lib=klmno;

Example 4: Binding a Library When Existing Data Sets Are Protected with Different 
Passwords 105



    create securedlibrary="KLMNOEmps"
        securedfolder="Department XYZZY" 
        read=abcdefgh 
        write=ijklmno 
        alter=pqrstuvw;

    tables employees / 
        pw=lmno; 
    tables empinfo / 
        read=abcd 
        write=efgh  
        alter=ijkl;  
    tables product; 
run;
quit; 

 

Program Description

Library KLMNO has Employees, EmpInfo, and Product data sets. The Employees 
data set is protected with the PW= password lmno. The EmpInfo data set is protected 
with a READ= password abcd, a WRITE= password efgh, and an ALTER= password 
ijkl. The Product data set is not protected. 

proc authlib lib=klmno;

Using the CREATE statement, enter the name of the metadata folder and name the 
secured library object in the SAS Metadata Server. Specify the values for READ= 
password abcdefgh, WRITE= password ijklmno, and ALTER= password 
pqrstuvw to create a longer metadata-bound library password.

    create securedlibrary="KLMNOEmps"
        securedfolder="Department XYZZY" 
        read=abcdefgh 
        write=ijklmno 
        alter=pqrstuvw;

Use the TABLES statement to specify the current password for each data set. When 
using TABLES statements, a TABLES statement must be specified for all data sets. 

    tables employees / 
        pw=lmno; 
    tables empinfo / 
        read=abcd 
        write=efgh  
        alter=ijkl;  
    tables product; 
run;
quit; 

Results: The library KLMNO is bound, and all three data sets are bound with the same 
passwords. The passwords are READ= password abcdefgh, WRITE= password 
ijklmno, and ALTER= password pqrstuvw.

 

106 Appendix 2 • AUTHLIB Procedure



Log Examples

Log A2.5 Securing a Library with Existing Data Sets That Are Protected with Different Passwords

177  libname klmno "c:\lib2";
NOTE: Libref KLMNO was successfully assigned as follows:
      Engine:        V9
      Physical Name: c:\lib2
178
179  proc authlib lib=klmno;
180  create securedlibrary="KLMNOEmps"
181  securedfolder="Department XYZZY"
182  read=XXXXXXXX
183  write=XXXXXXX
184  alter=XXXXXXXX;
185  tables employees /
186  pw=XXXX;
187  tables empinfo /
188  read=XXXX
189  write=XXXX
190  alter=XXXX;
191  tables product;
192  run;

NOTE: Successfully created a secured library object for the physical library KLMNO and recorded its 
location as:
           SecuredFolder:      /System/Secured Libraries/Department XYZZY
           SecuredLibrary:     KLMNOEmps
           SecuredLibraryGUID: BC74E81F-E86B-402E-8C16-F9A94A078F81
NOTE: Successfully added new secured table object "EMPLOYEES.DATA" to the secured library object at 
path "/System/Secured
      Libraries/Department XYZZY/KLMNOEmps" for data set KLMNO.EMPLOYEES.DATA.
NOTE: The passwords on KLMNO.EMPLOYEES.DATA were successfully modified.
NOTE: Successfully added new secured table object "EMPINFO.DATA" to the secured library object at path 
"/System/Secured
      Libraries/Department XYZZY/KLMNOEmps" for data set KLMNO.EMPINFO.DATA.
NOTE: The passwords on KLMNO.EMPINFO.DATA were successfully modified.
NOTE: Successfully added new secured table object "PRODUCT.DATA" to the secured library object at path 
"/System/Secured
      Libraries/Department XYZZY/KLMNOEmps" for data set KLMNO.PRODUCT.DATA.
NOTE: The passwords on KLMNO.PRODUCT.DATA were successfully modified.
193  quit;

Example 5: Changing Passwords on Data Sets
Features: PROC AUTHLIB statement options

MODIFY statement options:
PW=
TABLESONLY=
TABLES statement options:
PW=

Details

This example shows a different approach for modifying the passwords of existing data 
sets to match the metadata-bound library passwords. It uses the MODIFY statement. 
Here, the MODIFY statement is used to modify the data set passwords of the Employees 

Example 5: Changing Passwords on Data Sets 107



and EmpInfo data sets from Example 2 on page 102 to match the metadata-bound library 
password. Neither of these data sets are AES-encrypted.

The MODIFY statement can also be used to modify the data set passwords of data sets 
that are copied into a metadata-bound library by operating system commands after the 
library has been bound.

Program
proc authlib lib=abcde; 

    modify tablesonly=yes 
        pw=secretpw;

    tables _all_ / 
        pw=ijkl/secretpw; 
run;    
quit;

 

Program Description

Library ABCDE has Employees, EmpInfo, and Product data sets. The library is 
bound with metadata-bound library password secretpw. However, in library ABCDE, the 
Employees and EmpInfo data sets are not bound to the library and are protected with an 
ALTER= password ijkl. The third data set, Product, is already bound.

proc authlib lib=abcde; 

The MODIFY statement is used to modify the data set passwords of the Employees 
and EmpInfo data sets to match the metadata-bound library password. The 
TABLESONLY= statement specifies to modify table passwords only. 

    modify tablesonly=yes 
        pw=secretpw;

A TABLES statement must be specified. The existing data sets’ ALTER password is 
specified in the PW= argument before the metadata-bound password, separated by a 
slash (/) in the TABLES statement. 

    tables _all_ / 
        pw=ijkl/secretpw; 
run;    
quit;

Results: All three data sets are now bound with the secretpw password.

 

108 Appendix 2 • AUTHLIB Procedure



Log Examples

Log A2.6 Changing Data Set Passwords

76   proc authlib lib=abcde;
77   modify tablesonly=yes
78   pw=XXXXXXXX;
79   tables _all_ /
80   pw=XXXX/XXXXXXXX;
81   run;

NOTE: The passwords on ABCDE.DEPTNAME.DATA do not require modification.
NOTE: The passwords on ABCDE.EMPINFO.DATA do not require modification.
NOTE: The passwords on ABCDE.EMPLOYEE.DATA do not require modification.
82   quit;

Example 6: Changing Metadata-Bound Library Passwords
Features: PROC AUTHLIB statement options

MODIFY statement options:
PW=
SECUREDLIBRARY=
SECUREDFOLDER=

Details

This example demonstrates how to use the MODIFY statement to change the library 
passwords if you believe that the metadata-bound library passwords have been 
compromised. The following code changes the library passwords and the data set 
passwords of all data sets in the library that use the specified passwords or do not have a 
password. In this example, no data sets are AES-encrypted. See later examples if your 
library has AES-encrypted data.

Program
proc authlib lib=abcde; 

    modify securedlibrary="ABCDEEmps" 
        securedfolder="Department XYZZY" 
        pw=secretpw/new-password;  
run; 
quit;

 

Program Description

Library ABCDE requires a password change.

proc authlib lib=abcde; 

Use the MODIFY statement to change the library passwords and the data set 
passwords. Note that the name of the secured library object and the name of the 
metadata folder are optional, but can be specified to ensure that the library is bound to 

Example 6: Changing Metadata-Bound Library Passwords 109



that secured library object before making the change. This is used when the SAS 
Management Console submits the code from the Modify action to ensure that the correct 
operation system library path was specified.

    modify securedlibrary="ABCDEEmps" 
        securedfolder="Department XYZZY" 
        pw=secretpw/new-password;  
run; 
quit;

Results: The library ABCDE remains bound and the library password is modified to the 
new-password. All three data sets remain bound, and their passwords are modified with 
new-password. An error message would be displayed in the SAS log for any data set that 
had a password other than secretpw.

 

Log Examples

Log A2.7 Changing Metadata-bound Library Passwords

217  proc authlib lib=abcde;
218    modify securedlibrary="ABCDEEmps"
219        securedfolder="Department XYZZY"
220        pw=XXXXXXXX/XXXXXXXX;
221
222  run;

NOTE: The passwords for the secured library object with path "/System/Secured Libraries/Department
      XYZZY/ABCDEEmps" were successfully modified."
NOTE: The passwords on ABCDE.EMPINFO.DATA were successfully modified.
NOTE: The passwords on ABCDE.EMPLOYEES.DATA were successfully modified.
NOTE: The passwords on ABCDE.PRODUCT.DATA were successfully modified.
223  quit;

Example 7: Using the REMOVE Statement
Features: PROC AUTHLIB statement options

REMOVE statement options:
PW=

Details

This example demonstrates how to unbind a metadata-bound library. The code does the 
following:

• deletes metadata that describes the library and its tables from the SAS Metadata 
Repository

• removes security bindings from the physical library and data sets

• removes the assigned password from the data sets, leaving them unprotected

The slash (/) after the password is optional and is used to remove or replace the 
password from the data sets. If a library is bound with READ=, WRITE=, and ALTER= 

110 Appendix 2 • AUTHLIB Procedure



passwords, as in Example 4 on page 105, then you must specify all of the passwords, and 
they must each have a slash (/). None of the data sets are AES-encrypted.

Program
proc authlib lib=abcde; 

    remove 
        pw=currntpw/; 
run;    
quit;

 

Program Description

Unbinding the metadata-bound library ABCDE.

proc authlib lib=abcde; 

Use the REMOVE statement to unbind the metadata-bound library. The slash (/) after 
the password is used to remove the password from the data sets. 

    remove 
        pw=currntpw/; 
run;    
quit;

Results: The library ABCDE and all the data sets that are bound to it are no longer 
bound. All passwords are removed from the unbound data sets making them 
unprotected.

 

Example 7: Using the REMOVE Statement 111



Log Examples

Log A2.8 Unbinding a Metadata-Bound Library

195  proc authlib lib=abcde;
196  remove
197  pw=XXXXXXXX/;
198  run;

WARNING: Some or all the passwords on ABCDE.DEPTNAME.DATA were removed along with the secured library 
object location,
         leaving the data set unprotected.
NOTE: The secured table object location for ABCDE.DEPTNAME.DATA was successfully removed.
WARNING: Some or all the passwords on ABCDE.EMPINFO.DATA were removed along with the secured library 
object location, leaving
         the data set unprotected.
NOTE: The secured table object location for ABCDE.EMPINFO.DATA was successfully removed.
WARNING: Some or all the passwords on ABCDE.EMPLOYEE.DATA were removed along with the secured library 
object location,
         leaving the data set unprotected.
NOTE: The secured table object location for ABCDE.EMPLOYEE.DATA was successfully removed.
NOTE: Successfully deleted the secured library object that was located at:
           SecuredFolder:      /System/Secured Libraries/Department XYZZY
           SecuredLibrary:     ABCDEEmps
           SecuredLibraryGUID: 9F746F86-2336-4E2F-A67E-BFB77DEC27F0
NOTE: Successfully deleted the recorded location of the secured library object for the physical 
library ABCDE.
199  quit;

Example 8: Using the REPORT Statement
Features: PROC AUTHLIB statement options

Report statement

Details

This example demonstrates how to check a library's bindings.

Program
proc authlib lib=abcde;  

    report; 
run; 
quit;   

 

Program Description

Check the bindings of the metadata-bound library ABCDE.

proc authlib lib=abcde;  

Use the REPORT statement.

112 Appendix 2 • AUTHLIB Procedure



    report; 
run; 
quit;   

Results: For the REPORT statement results, see“Output Example” on page 113.

 

Log Examples

Log A2.9 Creating a Report

49   proc authlib lib=abcde;
50    report;
51   run;

52   quit;

Output Example

Output A2.2 REPORT Statement Results for the ABCDE Library

Example 9: Using the TABLES Statement
Features: PROC AUTHLIB statement options

CREATE statement options:
ALTER=
READ=
SECUREDLIBRARY=
SECUREDFOLDER=
WRITE=
TABLE statements options:
ALTER=
PW=
READ=
WRITE=

Example 9: Using the TABLES Statement 113



Details

Example 4 on page 105 demonstrates how to use the TABLES statement.

Example 10: Binding a Library When Existing Data Sets Are SAS 
Proprietary Encrypted

Features: PROC AUTHLIB statement options
CREATE statement options:
PW=
SECUREDLIBRARY=
SECUREDFOLDER=
TABLES statement options:
PW=
READ=

Details

The following example demonstrates how to bind and change passwords on SAS 
Proprietary encrypted data sets.

Program
proc authlib lib=klmno;    

    create securedlibrary="KLMNOEmps"
        securedfolder="Department XYZZY" 
        pw=pqrstuvw;

    tables employees / 
        pw=lmno; 
    tables empinfo / 
        read=abcd;  
    tables product; 
run;
quit;

 

Program Description

Library KLMNO has three data sets: Employees, EmpInfo, and Product. In this 
library, the Employees data set is protected with the PW= password lmno. The EmpInfo 
data set is protected with a READ= password abcd. Both Employees and EmpInfo data 
sets are SAS Proprietary encrypted. The Product data set is not protected. 

proc authlib lib=klmno;    

Using the CREATE statement, enter the name of the metadata folder and name the 
secured library object in the SAS Metadata Server. Set the library password to 
pqrstuvw.

    create securedlibrary="KLMNOEmps"
        securedfolder="Department XYZZY" 
        pw=pqrstuvw;

114 Appendix 2 • AUTHLIB Procedure



Because these data sets have different passwords, a TABLES statement must be 
specified for all data sets in order to change their passwords. 

    tables employees / 
        pw=lmno; 
    tables empinfo / 
        read=abcd;  
    tables product; 
run;
quit;

Results: The library KLMNO is bound. All three data sets are bound and use the same 
PW= password pqrstuvw. Data sets Employees and EmpInfo are copied-in-place to 
encrypt with the password pqrstuvw. Data set Product is bound, but not encrypted.

 

Example 10: Binding a Library When Existing Data Sets Are SAS Proprietary Encrypted
115



Log Examples

Log A2.10 TABLES Statement for the KLMNO Library Containing a SAS Proprietary Data Set

265  proc authlib lib=klmno;
266  create securedlibrary="KLMNOEmps"
267  securedfolder="Department XYZZY"
268  pw=XXXXXXXX;
269  tables employees /
270  pw=XXXX;
271  tables empinfo /
272  read=XXXX;
273  tables product;
274  run;

NOTE: Successfully created a secured library object for the physical library KLMNO and recorded its 
location as:
           SecuredFolder:      /System/Secured Libraries/Department XYZZY
           SecuredLibrary:     KLMNOEmps
           SecuredLibraryGUID: E71881CD-8C54-4E21-A8B5-FD7D4FBDAA7D
NOTE: Copying data set KLMNO.EMPLOYEES in place to encrypt with the new secured library passwords or 
encryption options.
NOTE: Renaming the data set KLMNO.EMPLOYEES to KLMNO.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: Copying the data set KLMNO.__TEMP_ENCRYPT_FILE_NAME__ to KLMNO.EMPLOYEES.
NOTE: Metadata-bound library permissions are used for KLMNO.EMPLOYEES.DATA.
NOTE: Successfully added new secured table object "EMPLOYEES.DATA" to the secured library object at 
path "/System/Secured
      Libraries/Department XYZZY/KLMNOEmps" for data set KLMNO.EMPLOYEES.DATA.
NOTE: There were 5 observations read from the data set KLMNO.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: The data set KLMNO.EMPLOYEES has 5 observations and 6 variables.
NOTE: Deleting the data set KLMNO.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: The passwords on KLMNO.EMPLOYEES.DATA were successfully modified.
NOTE: Copying data set KLMNO.EMPINFO in place to encrypt with the new secured library passwords or 
encryption options.
NOTE: Renaming the data set KLMNO.EMPINFO to KLMNO.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: Copying the data set KLMNO.__TEMP_ENCRYPT_FILE_NAME__ to KLMNO.EMPINFO.
NOTE: Metadata-bound library permissions are used for KLMNO.EMPINFO.DATA.
NOTE: Successfully added new secured table object "EMPINFO.DATA" to the secured library object at path 
"/System/Secured
      Libraries/Department XYZZY/KLMNOEmps" for data set KLMNO.EMPINFO.DATA.
NOTE: There were 5 observations read from the data set KLMNO.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: The data set KLMNO.EMPINFO has 5 observations and 6 variables.
NOTE: Deleting the data set KLMNO.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: The passwords on KLMNO.EMPINFO.DATA were successfully modified.
NOTE: The passwords on KLMNO.PRODUCT.DATA do not require modification.
NOTE: Successfully added new secured table object "PRODUCT.DATA" to the secured library object at path 
"/System/Secured
      Libraries/Department XYZZY/KLMNOEmps" for data set KLMNO.PRODUCT.DATA.
275  quit;

Example 11: Binding a Library When Existing Data Sets Are AES-
Encrypted

Features: PROC AUTHLIB statement options
CREATE statement options:
PW=
SECUREDLIBRARY=
SECUREDFOLDER=
TABLES statement option:
ENCRYPTKEY=

116 Appendix 2 • AUTHLIB Procedure



Details

This example demonstrates how to bind data sets that are AES-encrypted. None of the 
data sets have passwords.

CAUTION:
SAS strongly recommends that you not have AES-encrypted data sets with 
different encryption keys in metadata-bound libraries, like this example creates. 
Instead, SAS recommends that you record a default encryption key in metadata and 
convert all AES-encrypted data sets to use that key. Doing this, your users, and 
programs do not have to specify the key when opening the data sets. The examples 
following this example show you how to do this process.

Program
proc authlib lib=klmno;    

    create securedlibrary="KLMNOEmps"
        securedfolder="Department XYZZY" 
        pw=pqrstuvw;

    tables employees / 
        encryptkey=lmno; 
    tables empinfo / 
        encryptkey=abcd;  
    tables product; 
run;
quit;

  

Program Description

Library KLMNO has three data sets: Employees, EmpInfo, and Product. In this 
library, the Employees data set is AES-encrypted and has the ENCRYPTKEY= value 
lmno. The EmpInfo data set is AES-encrypted and has the ENCRYPTKEY= value 
abcd. The Product data set is not protected. 

proc authlib lib=klmno;    

Using the CREATE statement, enter the name of the metadata folder and name the 
secured library object in the SAS Metadata Server. Set the library password to 
pqrstuvw.

    create securedlibrary="KLMNOEmps"
        securedfolder="Department XYZZY" 
        pw=pqrstuvw;

Using the TABLES statements, specify the encrypt key for each data set. A 
TABLES statement must be specified for all data sets.

    tables employees / 
        encryptkey=lmno; 
    tables empinfo / 
        encryptkey=abcd;  

Example 11: Binding a Library When Existing Data Sets Are AES-Encrypted 117



    tables product; 
run;
quit;

Results: The library KLMNO is bound. All three data sets are bound. The Employees 
and EmpInfo data sets remain AES-encrypted. The Product data set is not encrypted. 
The encrypt key values for the Employees and Empinfo data sets are different. SAS 
strongly recommends that you not have AES-encrypted data sets with different 
encryption keys in metadata-bound libraries, like this example created. 

  

Log Examples

Log A2.11 TABLES Statement for the KLMNO Library Containing AES-Encrypted Data Sets

351  proc authlib lib=klmno;
352  create securedlibrary="KLMNOEmps"
353  securedfolder="Department XYZZY"
354  pw=XXXXXXXX;
355  tables employees /
356  encryptkey=XXXX;
357  tables empinfo /
358  encryptkey=XXXX;
359  tables product;
360  run;

NOTE: Successfully created a secured library object for the physical library KLMNO and recorded its 
location as:
           SecuredFolder:      /System/Secured Libraries/Department XYZZY
           SecuredLibrary:     KLMNOEmps
           SecuredLibraryGUID: 48E2C4C7-ADE1-49D2-BBFE-14E5EAAB8961
NOTE: Successfully added new secured table object "EMPLOYEES.DATA" to the secured library object at 
path "/System/Secured
      Libraries/Department XYZZY/KLMNOEmps" for data set KLMNO.EMPLOYEES.DATA.
NOTE: The passwords on KLMNO.EMPLOYEES.DATA were successfully modified.
NOTE: Successfully added new secured table object "EMPINFO.DATA" to the secured library object at path 
"/System/Secured
      Libraries/Department XYZZY/KLMNOEmps" for data set KLMNO.EMPINFO.DATA.
NOTE: The passwords on KLMNO.EMPINFO.DATA were successfully modified.
NOTE: Successfully added new secured table object "PRODUCT.DATA" to the secured library object at path 
"/System/Secured
      Libraries/Department XYZZY/KLMNOEmps" for data set KLMNO.PRODUCT.DATA.
NOTE: The passwords on KLMNO.PRODUCT.DATA were successfully modified.
361  quit;

Example 12: Binding a Library with an Optional Recorded Encryption 
Key When Existing AES-Encrypted Data Sets Have Different Encryption 
Keys

Features: PROC AUTHLIB statement options
CREATE statement options:
ENCRYPT=
ENCRYPTKEY=
PW=
SECUREDLIBRARY=
SECUREDFOLDER=

118 Appendix 2 • AUTHLIB Procedure



TABLES statement options:
ENCRYPT=
ENCRYPTKEY=

Details

This example demonstrates how to bind a library with an optional recorded encryption 
key. None of the data sets have passwords.

Since some SAS code existed that created and references the EmpInfo data set with 
ENCRYPTKEY=DEF and since the recorded library key is not required, the 
specification of the ENCRYPTKEY=DEF should be removed from the code. Any code 
that re-creates the data must keep the ENCRYPT=AES option so that the optional 
recorded key is used when the data set is re-created.

Program
proc authlib lib=abcde; 

    create securedlibrary="ABCDEEmps"
        securedfolder="Department XYZZY" 
        pw=secret 
        encrypt=aes
        encryptkey=optionalkey;
 

    tables employee;
    tables empinfo / 
        encryptkey=def/optionalkey 
        encrypt=aes;
    tables deptname;
run;
quit;

 

Program Description

Library ABCDE has Employees, EmpInfo, and DeptName data sets. In this library, 
the EmpInfo data set is AES-encrypted and has the ENCRYPTKEY= value def.

proc authlib lib=abcde; 

Using the CREATE statement, enter the name of the metadata folder and name the 
secured library object in the SAS Metadata Server. The optional encrypt key is 
specified for the metadata-bound library.

    create securedlibrary="ABCDEEmps"
        securedfolder="Department XYZZY" 
        pw=secret 
        encrypt=aes
        encryptkey=optionalkey;
 

A TABLES statement is required for each data set.

    tables employee;

Example 12: Binding a Library with an Optional Recorded Encryption Key When Existing 
AES-Encrypted Data Sets Have Different Encryption Keys 119



    tables empinfo / 
        encryptkey=def/optionalkey 
        encrypt=aes;
    tables deptname;
run;
quit;

Results: The ABCDE library is bound and the optional encrypt key is stored. When the 
statements are executed, the following happens to the three data sets. The Employee data 
set is updated with the new metadata-bound library password but is not encrypted. The 
DeptName data set is updated with the metadata-bound library password but is not 
encrypted. The EmpInfo data set is copied to re-encrypt with the optional recorded key 
and gets the new metadata-bound library password. Note that it is necessary to supply 
both the current and new optional key in the TABLES statement for EmpInfo in the 
following program. Without the new key specification, the data set would remain 
encrypted with the def key.

 

120 Appendix 2 • AUTHLIB Procedure



Log Examples

Log A2.12 Changing an Encryption Key Value to the Recorded Encryption Key

467  libname abcde "c:\lib1";
NOTE: Libref ABCDE was successfully assigned as follows:
      Engine:        V9
      Physical Name: c:\lib1
468
469  proc authlib lib=abcde;
470  create securedlibrary="ABCDEEmps"
471  securedfolder="Department XYZZY"
472  pw=XXXXXX
473  encrypt=aes
474  encryptkey=XXXXXXXXXXX;
475  tables employee;
476  tables empinfo /
477  encryptkey=XXX/XXXXXXXXXXX 
478  encrypt=aes;
479  tables deptname;
480  run;

NOTE: Successfully created a secured library object for the physical library ABCDE and recorded its 
location as:
           SecuredFolder:      /System/Secured Libraries/Department XYZZY
           SecuredLibrary:     ABCDEEmps
           SecuredLibraryGUID: 8E683650-B306-4871-A92D-16D481EC6456
NOTE: Successfully added new secured table object "EMPLOYEE.DATA" to the secured library object at 
path "/System/Secured
      Libraries/Department XYZZY/ABCDEEmps" for data set ABCDE.EMPLOYEE.DATA.
NOTE: The passwords on ABCDE.EMPLOYEE.DATA were successfully modified.
NOTE: Copying data set ABCDE.EMPINFO in place to encrypt with the new secured library passwords or 
encryption options.
NOTE: Renaming the data set ABCDE.EMPINFO to ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: Copying the data set ABCDE.__TEMP_ENCRYPT_FILE_NAME__ to ABCDE.EMPINFO.
NOTE: Metadata-bound library permissions are used for ABCDE.EMPINFO.DATA.
NOTE: Successfully added new secured table object "EMPINFO.DATA" to the secured library object at path 
"/System/Secured
      Libraries/Department XYZZY/ABCDEEmps" for data set ABCDE.EMPINFO.DATA.
NOTE: There were 5 observations read from the data set ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: The data set ABCDE.EMPINFO has 5 observations and 6 variables.
NOTE: Deleting the data set ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: The passwords on ABCDE.EMPINFO.DATA were successfully modified.
NOTE: Successfully added new secured table object "DEPTNAME.DATA" to the secured library object at 
path "/System/Secured
      Libraries/Department XYZZY/ABCDEEmps" for data set ABCDE.DEPTNAME.DATA.
NOTE: The passwords on ABCDE.DEPTNAME.DATA were successfully modified.
480  quit;

Example 13: Binding a Library with Required AES Encryption When 
Existing Data Sets Are Encrypted with the Same Encryption Key

Features: PROC AUTHLIB statement options
CREATE statement options:
ENCRYPT=
ENCRYPTKEY=
PW=
REQUIRE_ENCRYPTION
SECUREDLIBRARY=

Example 13: Binding a Library with Required AES Encryption When Existing Data Sets 
Are Encrypted with the Same Encryption Key 121



SECUREDFOLDER=

Details

This example demonstrates how to bind a library with requiring that all of the data sets 
in this metadata-bound library have AES encryption and have the same encryption key.

Program
proc authlib lib=abcde; 

    create  seclib="ABCDEEmps"
        securedfolder="Department XYZZY"
        pw=secret 
        require_encryption=yes 
        encrypt=aes 
        encryptkey=abc ;
run;
quit;

 

Program Description

Library ABCDE has three data sets: Employees, EmpInfo, and DeptName. Data set 
EmpInfo has encryption key value of abc. The other two data sets are not AES-
encrypted. None of the data sets have passwords.

proc authlib lib=abcde; 

Using the CREATE statement, enter the name of the metadata folder and name the 
secured library object in the SAS Metadata Server. REQUIRE_ENCRYPTION=YES 
specifies that all data sets in the metadata-bound library are automatically AES-
encrypted.

    create  seclib="ABCDEEmps"
        securedfolder="Department XYZZY"
        pw=secret 
        require_encryption=yes 
        encrypt=aes 
        encryptkey=abc ;
run;
quit;

Results: The library ABCDE is bound, and all of the data sets are bound and AES-
encrypted with the same encryption key.

 

122 Appendix 2 • AUTHLIB Procedure



Log Examples

Log A2.13 Library ABCDE Requiring AES Encryption When the Data Sets Are Already Encrypted with the Same 
Encryption Key

40   proc authlib lib=abcde;
41   create  seclib="ABCDEEmps"
42         securedfolder="Department XYZZY"
43         pw=XXXXXX
44         require_encryption=yes
45         encrypt=aes
46         encryptkey=XXX ;
47   run;

NOTE: Setting library to require encryption.
NOTE: Required encryption will use AES encryption with the recorded key.

NOTE: Successfully created a secured library object for the physical library ABCDE and recorded its 
location as:
           SecuredFolder:      /System/Secured Libraries/Department XYZZY
           SecuredLibrary:     ABCDEEmps
           SecuredLibraryGUID: 9FD6C5D9-EF00-4CDC-8D0A-348D08BB329E
NOTE: Copying data set ABCDE.DEPTNAME in place to do required encryption with the library's required 
encryption key and
      passwords.
NOTE: Renaming the data set ABCDE.DEPTNAME to ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: Copying the data set ABCDE.__TEMP_ENCRYPT_FILE_NAME__ to ABCDE.DEPTNAME.
NOTE: Metadata-bound library permissions are used for ABCDE.DEPTNAME.DATA.
NOTE: Successfully added new secured table object "DEPTNAME.DATA" to the secured library object at 
path "/System/Secured
      Libraries/Department XYZZY/ABCDEEmps" for data set ABCDE.DEPTNAME.DATA.
NOTE: There were 10 observations read from the data set ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: The data set ABCDE.DEPTNAME has 10 observations and 2 variables.
NOTE: Deleting the data set ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: The passwords on ABCDE.DEPTNAME.DATA were successfully modified.
NOTE: Successfully added new secured table object "EMPINFO.DATA" to the secured library object at path 
"/System/Secured
      Libraries/Department XYZZY/ABCDEEmps" for data set ABCDE.EMPINFO.DATA.
NOTE: The passwords on ABCDE.EMPINFO.DATA were successfully modified.
NOTE: Copying data set ABCDE.EMPLOYEE in place to do required encryption with the library's required 
encryption key and
      passwords.
NOTE: Renaming the data set ABCDE.EMPLOYEE to ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: Copying the data set ABCDE.__TEMP_ENCRYPT_FILE_NAME__ to ABCDE.EMPLOYEE.
NOTE: Metadata-bound library permissions are used for ABCDE.EMPLOYEE.DATA.
NOTE: Successfully added new secured table object "EMPLOYEE.DATA" to the secured library object at 
path "/System/Secured
      Libraries/Department XYZZY/ABCDEEmps" for data set ABCDE.EMPLOYEE.DATA.
NOTE: There were 22 observations read from the data set ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: The data set ABCDE.EMPLOYEE has 22 observations and 11 variables.
NOTE: Deleting the data set ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: The passwords on ABCDE.EMPLOYEE.DATA were successfully modified.
48   quit;

Example 14: Changing the Encryption Key on a Metadata-Bound Library 
That Requires AES Encryption

Features: PROC AUTHLIB statement options
MODIFY statement options:

Example 14: Changing the Encryption Key on a Metadata-Bound Library That Requires 
AES Encryption 123



ENCRYPT=
ENCRYPTKEY=
PW=

Details

This example demonstrates how to use the MODIFY statement to change the stored 
library encryption key if you believe that the metadata-bound library encryption keys 
might have been compromised.

Program
proc authlib lib=abcde;

    modify  
       pw=secret 
       encrypt=aes 
       encryptkey=/new;

run;
quit;

 

Program Description

Library ABCDE has three data sets: Employees, EmpInfo, and DeptName. In this 
library, all data sets are AES-encrypted with encryption key value abc since AES 
encryption is required for the metadata bound library.

proc authlib lib=abcde;

Use the MODIFY statement to change the library encryption key and the data set 
encryption key. You must specify ENCRYPT=AES. 

    modify  
       pw=secret 
       encrypt=aes 
       encryptkey=/new;

run;
quit;

Results: The library ABCDE remains bound with the same password and a new 
encryption key. All three data sets remain bound with the same password and a new 
encryption key. Note that the data sets were copied-in-place to be encrypted with the 
new key value.

 

124 Appendix 2 • AUTHLIB Procedure



Log A2.14 Changing the Encryption Key ABCDE Library

502  proc authlib lib=abcde;
503  modify
504  pw=XXXXXX
505  encrypt=aes
506  encryptkey=/XXX;
507  run;

NOTE: Changing the required encryption key.

NOTE: The passwords on ABCDE.DEPTNAME.DATA do not require modification.
NOTE: Copying data set ABCDE.DEPTNAME in place to do required encryption with 
the library's required encryption key and
      passwords.
NOTE: Renaming the data set ABCDE.DEPTNAME to ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: Copying the data set ABCDE.__TEMP_ENCRYPT_FILE_NAME__ to ABCDE.DEPTNAME.
NOTE: There were 4 observations read from the data set 
ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: The data set ABCDE.DEPTNAME has 4 observations and 2 variables.
NOTE: Deleting the data set ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: The passwords on ABCDE.EMPINFO.DATA do not require modification.
NOTE: Copying data set ABCDE.EMPINFO in place to do required encryption with the 
library's required encryption key and
      passwords.
NOTE: Renaming the data set ABCDE.EMPINFO to ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: Copying the data set ABCDE.__TEMP_ENCRYPT_FILE_NAME__ to ABCDE.EMPINFO.
NOTE: There were 5 observations read from the data set 
ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: The data set ABCDE.EMPINFO has 5 observations and 6 variables.
NOTE: Deleting the data set ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: The passwords on ABCDE.EMPLOYEE.DATA do not require modification.
NOTE: Copying data set ABCDE.EMPLOYEE in place to do required encryption with 
the library's required encryption key and
      passwords.
NOTE: Renaming the data set ABCDE.EMPLOYEE to ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: Copying the data set ABCDE.__TEMP_ENCRYPT_FILE_NAME__ to ABCDE.EMPLOYEE.
NOTE: There were 5 observations read from the data set 
ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: The data set ABCDE.EMPLOYEE has 5 observations and 6 variables.
NOTE: Deleting the data set ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: The passwords and/or encryption options for the secured library object 
with path "/System/Secured Libraries/Department
      XYZZY/ABCDEEmps" were successfully modified."
NOTE: All data sets in library ABCDE are properly protected with the metadata-
bound library passwords and encryption options.
      Replaced Passwords and encryption keys were purged.
NOTE: Purged 1 versions of the replaced passwords and encryption keys older than 
2015-05-04T15:40:57-05:00.
508  quit;
NOTE: Renaming the data set ABCDE.EMPLOYEE to ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: Copying the data set ABCDE.__TEMP_ENCRYPT_FILE_NAME__ to ABCDE.EMPLOYEE.
NOTE: There were 22 observations read from the data set 
ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: The data set ABCDE.EMPLOYEE has 22 observations and 11 variables.
NOTE: Deleting the data set ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: The passwords and/or encryption options for the secured library object 
with path "/System/Secured
      Libraries/Department XYZZY/ABCDEEmps" were successfully modified.

Example 14: Changing the Encryption Key on a Metadata-Bound Library That Requires 
AES Encryption 125



Example 15: Binding a Library with Existing Data Sets That Are AES-
Encrypted with Different Encryption Keys

Features: PROC AUTHLIB statement options
CREATE statement options:
ENCRYPT=
ENCRYPTKEY=
PW=
REQUIRE_ENCRYPTION
SECUREDLIBRARY=
SECUREDFOLDER=
TABLES statement option:
ENCRYPTKEY=

Details

This example demonstrates how to change all data sets in the metadata-bound library 
that contain different encryption keys to have the required AES encryption and have the 
same encryption key. None of the data sets have passwords.

Program
proc authlib lib=abcde;

    create  seclib="ABCDEEmps"
        securedfolder="Department XYZZY"
        pw=secret 
        require_encryption=yes
        encrypt=aes 
        encryptkey=new ;

    tables employee / 
        encryptkey=abc;
    tables empinfo / 
        encryptkey=def;
    tables deptname ;
run;
quit;

 

Program Description

Library ABCDE has three data sets: Employee, EmpInfo, and DeptName. The 
Employee and EmpInfo data sets are already AES-encrypted with different keys. The 
DeptName data set is not encrypted.

proc authlib lib=abcde;

Using the CREATE statement, enter the name of the metadata folder and name the 
secured library object in the SAS Metadata Server. REQUIRE_ENCRYPTION=YES 

126 Appendix 2 • AUTHLIB Procedure



specifies that all data sets in the metadata-bound library are automatically AES-
encrypted.

    create  seclib="ABCDEEmps"
        securedfolder="Department XYZZY"
        pw=secret 
        require_encryption=yes
        encrypt=aes 
        encryptkey=new ;

Using the TABLES statement, specify the encrypt key for each data set. TABLES 
statements are required for each data set.

    tables employee / 
        encryptkey=abc;
    tables empinfo / 
        encryptkey=def;
    tables deptname ;
run;
quit;

Results: The library ABCDE is bound. All data sets in the metadata-bound library 
ABCDE have been copied-in-place to be encrypted with the required key.

 

Example 15: Binding a Library with Existing Data Sets That Are AES-Encrypted with 
Different Encryption Keys 127



Log Examples

Log A2.15 Library ABCDE Requiring AES Encryption When Each Data Set Has Different Encryption Key Values

554  proc authlib lib=abcde;
555  create seclib="ABCDEEmps"
556  securedfolder="Department XYZZY"
557  pw=XXXXXX
558  require_encryption=yes
559  encrypt=aes
560  encryptkey=XXX ;
561  tables employee /
562  encryptkey=XXX;
563  tables empinfo /
564  encryptkey=XXX;
565  tables deptname ;
566  run;

NOTE: Setting library to require encryption.
NOTE: Required encryption will use AES encryption with the recorded key.

NOTE: Successfully created a secured library object for the physical library ABCDE and recorded its 
location as:
           SecuredFolder:      /System/Secured Libraries/Department XYZZY
           SecuredLibrary:     ABCDEEmps
           SecuredLibraryGUID: 097E9A84-D6E8-488E-B779-1E2AB0670036
NOTE: Copying data set ABCDE.EMPLOYEE in place to do required encryption with the library's required 
encryption key and
      passwords.
NOTE: Renaming the data set ABCDE.EMPLOYEE to ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: Copying the data set ABCDE.__TEMP_ENCRYPT_FILE_NAME__ to ABCDE.EMPLOYEE.
NOTE: Metadata-bound library permissions are used for ABCDE.EMPLOYEE.DATA.
NOTE: Successfully added new secured table object "EMPLOYEE.DATA" to the secured library object at 
path "/System/Secured
      Libraries/Department XYZZY/ABCDEEmps" for data set ABCDE.EMPLOYEE.DATA.
NOTE: There were 5 observations read from the data set ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: The data set ABCDE.EMPLOYEE has 5 observations and 6 variables.
NOTE: Deleting the data set ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: The passwords on ABCDE.EMPLOYEE.DATA were successfully modified.
NOTE: Copying data set ABCDE.EMPINFO in place to do required encryption with the library's required 
encryption key and
      passwords.
NOTE: Renaming the data set ABCDE.EMPINFO to ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: Copying the data set ABCDE.__TEMP_ENCRYPT_FILE_NAME__ to ABCDE.EMPINFO.
NOTE: Metadata-bound library permissions are used for ABCDE.EMPINFO.DATA.
NOTE: Successfully added new secured table object "EMPINFO.DATA" to the secured library object at path 
"/System/Secured
      Libraries/Department XYZZY/ABCDEEmps" for data set ABCDE.EMPINFO.DATA.
NOTE: There were 5 observations read from the data set ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: The data set ABCDE.EMPINFO has 5 observations and 6 variables.
NOTE: Deleting the data set ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: The passwords on ABCDE.EMPINFO.DATA were successfully modified.
NOTE: Copying data set ABCDE.DEPTNAME in place to do required encryption with the library's required 
encryption key and
      passwords.
NOTE: Renaming the data set ABCDE.DEPTNAME to ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: Copying the data set ABCDE.__TEMP_ENCRYPT_FILE_NAME__ to ABCDE.DEPTNAME.
NOTE: Metadata-bound library permissions are used for ABCDE.DEPTNAME.DATA.
NOTE: Successfully added new secured table object "DEPTNAME.DATA" to the secured library object at 
path "/System/Secured
      Libraries/Department XYZZY/ABCDEEmps" for data set ABCDE.DEPTNAME.DATA.
NOTE: There were 4 observations read from the data set ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: The data set ABCDE.DEPTNAME has 4 observations and 2 variables.
NOTE: Deleting the data set ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: The passwords on ABCDE.DEPTNAME.DATA were successfully modified.
567  quit;

128 Appendix 2 • AUTHLIB Procedure



Example 16: Changing a Metadata-Bound Library to Require AES 
Encryption When Existing Data Sets Are Encrypted with Different 
Encryption Keys

Features: PROC AUTHLIB statement options
MODIFY statement options:
ENCRYPT=
ENCRYPTKEY=
PW=
REQUIRE_ENCRYPTION
SECUREDLIBRARY=
SECUREDFOLDER=
TABLES statement option:
ENCRYPTKEY=

Details

This example is similar to the previous example. The difference is that the library is 
already bound to metadata, so the MODIFY statement is used to change the binding to 
require AES encryption.

Program
proc authlib lib=abcde;

    modify  seclib="ABCDEEmps"
        securedfolder="Department XYZZY"
        pw=secret 
        require_encryption=yes
        encrypt=aes 
        encryptkey=new;

    tables employee / 
        encryptkey=abc;
    tables empinfo / 
        encryptkey=def;
    tables deptname ;
run;
quit;

 

Program Description

Library ABCDE has three data sets: Employees, EmpInfo, and DeptName. In this 
library, the Employees data set has the encryption key value abc. The EmpInfo data set 
has the encryption key value def. The DeptName data set is not AES-encrypted. 

proc authlib lib=abcde;

Using the MODIFY statement, enter the name of the metadata folder and name the 
secured library object in the SAS Metadata Server. You use the 
REQUIRE_ENCRYPTION=YES option to require that all data sets in the metadata-

Example 16: Changing a Metadata-Bound Library to Require AES Encryption When 
Existing Data Sets Are Encrypted with Different Encryption Keys 129



bound library have AES encryption. Note that the name of the secured library object and 
the name of the metadata folder are optional, but can be specified to ensure that the 
library is bound to that secured library object before making the change. 

    modify  seclib="ABCDEEmps"
        securedfolder="Department XYZZY"
        pw=secret 
        require_encryption=yes
        encrypt=aes 
        encryptkey=new;

Using the TABLES statement, specify the encrypt key for each data set. TABLES 
statements are required for each data set.

    tables employee / 
        encryptkey=abc;
    tables empinfo / 
        encryptkey=def;
    tables deptname ;
run;
quit;

Results: The library ABCDE remains bound. The MODIFY statement changed the 
binding to require AES encryption. All three data sets are copied-in-place to encrypt the 
data sets with the required encrypt key..

 

130 Appendix 2 • AUTHLIB Procedure



Log Examples

Log A2.16 Library ABCDE Requiring AES Encryption and Changing the Encryption Key Values of Each Data Set to a 
Recorded Encryption Key Value

628  proc authlib lib=abcde;
629  modify seclib="ABCDEEmps"
630  securedfolder="Department XYZZY"
631  pw=XXXXXX
632  require_encryption=yes
633  encrypt=aes
634  encryptkey=XXX;
635  tables employee /
636  encryptkey=XXX;
637  tables empinfo /
638  encryptkey=XXX;
639  tables deptname ;
640  run;

NOTE: Changing library to require encryption.
NOTE: Required encryption will use AES encryption with the recorded key.

NOTE: The passwords on ABCDE.EMPLOYEE.DATA do not require modification.
NOTE: Copying data set ABCDE.EMPLOYEE in place to do required encryption with the library's required 
encryption key and
      passwords.
NOTE: Renaming the data set ABCDE.EMPLOYEE to ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: Copying the data set ABCDE.__TEMP_ENCRYPT_FILE_NAME__ to ABCDE.EMPLOYEE.
NOTE: There were 5 observations read from the data set ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: The data set ABCDE.EMPLOYEE has 5 observations and 6 variables.
NOTE: Deleting the data set ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: The passwords on ABCDE.EMPINFO.DATA do not require modification.
NOTE: Copying data set ABCDE.EMPINFO in place to do required encryption with the library's required 
encryption key and
      passwords.
NOTE: Renaming the data set ABCDE.EMPINFO to ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: Copying the data set ABCDE.__TEMP_ENCRYPT_FILE_NAME__ to ABCDE.EMPINFO.
NOTE: There were 5 observations read from the data set ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: The data set ABCDE.EMPINFO has 5 observations and 6 variables.
NOTE: Deleting the data set ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: The passwords on ABCDE.DEPTNAME.DATA do not require modification.
NOTE: Copying data set ABCDE.DEPTNAME in place to do required encryption with the library's required 
encryption key and
      passwords.
NOTE: Renaming the data set ABCDE.DEPTNAME to ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: Copying the data set ABCDE.__TEMP_ENCRYPT_FILE_NAME__ to ABCDE.DEPTNAME.
NOTE: There were 4 observations read from the data set ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: The data set ABCDE.DEPTNAME has 4 observations and 2 variables.
NOTE: Deleting the data set ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: The passwords and/or encryption options for the secured library object with path "/System/
Secured Libraries/Department
      XYZZY/ABCDEEmps" were successfully modified."
641  quit;

Example 17: Using the REMOVE Statement on a Metadata-Bound Library 
with Required AES Encryption

Features: PROC AUTHLIB statement options
REMOVE statement options:

Example 17: Using the REMOVE Statement on a Metadata-Bound Library with Required 
AES Encryption 131



PW=
ENCRYPT=

Details

This example demonstrates how to unbind a metadata-bound library. The code does the 
following:

• deletes metadata that describes the library and its tables from the SAS Metadata 
Repository

• removes security bindings from the physical library and data sets 

• removes the assigned password and encryption from the data sets, leaving them 
unprotected

The slash (/) after the password is optional and is used to remove or replace the 
password from the data sets. If a library is bound with READ=, WRITE=, and ALTER= 
passwords, as in Example 4 on page 105, then you must specify all of the passwords, and 
they must each have a slash (/).

Program
proc authlib lib=abcde; 

    remove 
        pw=currntpw/ 
        encrypt=no;
run;
quit;

  

Program Description

Unbinding the metadata-bound library ABCDE.

proc authlib lib=abcde; 

Use the REMOVE statement to unbind the metadata-bound library. The slash (/) after 
the password is used to remove the password from the data sets. ENCRYPT=NO 
specifies that encryption is removed from all data sets.

    remove 
        pw=currntpw/ 
        encrypt=no;
run;
quit;

Results: The library ABCDE and all the data sets bound to it are no longer bound. All 
passwords and encryption are removed from the unbound data sets making them 
unprotected.

  

132 Appendix 2 • AUTHLIB Procedure



Log A2.17 Using the REMOVE Statement on a Metadata-Bound Library with Required AES 
Encryption

642  proc authlib lib=abcde;
643  remove
644  pw=XXXXXX/
645  encrypt=no;
646  run;

NOTE: Copying data set ABCDE.DEPTNAME in place to remove encryption.
NOTE: Renaming the data set ABCDE.DEPTNAME to ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: Copying the data set ABCDE.__TEMP_ENCRYPT_FILE_NAME__ to ABCDE.DEPTNAME.
NOTE: There were 4 observations read from the data set 
ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: The data set ABCDE.DEPTNAME has 4 observations and 2 variables.
NOTE: Deleting the data set ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
WARNING: Some or all the passwords on ABCDE.DEPTNAME.DATA were removed along 
with the secured library object location,
         leaving the data set unprotected.
NOTE: The secured table object location for ABCDE.DEPTNAME.DATA was successfully 
removed.
NOTE: Copying data set ABCDE.EMPINFO in place to remove encryption.
NOTE: Renaming the data set ABCDE.EMPINFO to ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: Copying the data set ABCDE.__TEMP_ENCRYPT_FILE_NAME__ to ABCDE.EMPINFO.
NOTE: There were 5 observations read from the data set 
ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: The data set ABCDE.EMPINFO has 5 observations and 6 variables.
NOTE: Deleting the data set ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
WARNING: Some or all the passwords on ABCDE.EMPINFO.DATA were removed along with 
the secured library object location, leaving
         the data set unprotected.
NOTE: The secured table object location for ABCDE.EMPINFO.DATA was successfully 
removed.
NOTE: Copying data set ABCDE.EMPLOYEE in place to remove encryption.
NOTE: Renaming the data set ABCDE.EMPLOYEE to ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: Copying the data set ABCDE.__TEMP_ENCRYPT_FILE_NAME__ to ABCDE.EMPLOYEE.
NOTE: There were 5 observations read from the data set 
ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: The data set ABCDE.EMPLOYEE has 5 observations and 6 variables.
NOTE: Deleting the data set ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
WARNING: Some or all the passwords on ABCDE.EMPLOYEE.DATA were removed along 
with the secured library object location,
         leaving the data set unprotected.
NOTE: The secured table object location for ABCDE.EMPLOYEE.DATA was successfully 
removed.
NOTE: Successfully deleted the secured library object that was located at:
           SecuredFolder:      /System/Secured Libraries/Department XYZZY
           SecuredLibrary:     ABCDEEmps
           SecuredLibraryGUID: 157F7ACD-5B71-4BC3-A490-DCED4BD275E8
NOTE: Successfully deleted the recorded location of the secured library object 
for the physical library ABCDE.
647  quit;

Example 18: Resetting Credentials on Imported SecuredLibrary Objects
Features: PROC AUTHLIB statement options

MODIFY statement options:
LIBRARY=
PW=
ENCRYPT=

Example 18: Resetting Credentials on Imported SecuredLibrary Objects 133



ENCRYPTKEY=

Details

This example shows how to reset the passwords and encryption key on SecuredLibrary 
objects that are imported from a backup package.

• The LIBNAME statement without the AUTHADMIN=YES option fails because 
there are no associated password values restored by the import.

• The AUTHADMIN=YES option is used to enable the AUTHLIB procedure to 
execute with the binding information in the physical library. 

• The MODIFY statement is used to reset the metadata-bound library passwords and 
encryption key value on the library from “Example 13: Binding a Library with 
Required AES Encryption When Existing Data Sets Are Encrypted with the Same 
Encryption Key” on page 121 assuming that the SecuredLibrary object was imported 
from a backup package without those values. 

Program
libname abcde "sas-library" ;

libname abcde "sas-library" authadmin=yes;

proc authlib lib=abcde;
    modify  
        pw=secret 
        encrypt=aes 
        encryptkey=value;
run;
quit;

libname abcde "sas-library";

Program Description

Library ABCDE has three data sets: Employees, EmpInfo, and DeptName. This 
LIBNAME statement fails because there are no associated password values.

libname abcde "sas-library" ;

Use the AUTHADMIN=YES option. The AUTHADMIN=YES option enables the 
AUTHLIB procedure to execute with the binding information in the physical library.

libname abcde "sas-library" authadmin=yes;

Use the MODIFY statement to reset the metadata-bound library passwords and 
encryption key value. The PW= option resets the password. The ENCRYPTKEY= 
option resets the encryption key value.

proc authlib lib=abcde;
    modify  
        pw=secret 
        encrypt=aes 
        encryptkey=value;
run;
quit;

134 Appendix 2 • AUTHLIB Procedure



Reissue the LIBNAME statement without the AUTHADMIN=YES option . It is good 
practice to reassign the library without AUTHADMIN=YES as soon as your 
administrative need is complete, so that any other access that you make to the library is 
not in administrative mode. In this case, it also ensures that the credentials are reset.

libname abcde "sas-library";

Log A2.18 Resetting Credentials

253 libname abcde "library-name" ;
ERROR: The secured library object information for library ABCDE could not be obtained 
       from the metadata server or has invalid data.
ERROR: Association not found.
ERROR: Error in the LIBNAME statement.
254  libname abcde "library-name" authadmin=yes;
NOTE: Libref ABCDE was successfully assigned as follows:
      Engine:             V9
      Physical Name:      library-name
      Secured Library:    /System/Secured Libraries/Department XYZZY/ABCDEEmps
      Authenticated ID:   user-id@site as user-id
      Encryption Key:     YES
      Require Encryption: YES
255  proc authlib lib=abcde;
256  modify
257        pw=XXXXXX
258        encrypt=aes
259        encryptkey=XXX ;
260  run;

NOTE: Required encryption will use AES encryption with the recorded key.

NOTE: The passwords on ABCDE.DEPTNAME.DATA do not require modification.
NOTE: The passwords on ABCDE.EMPINFO.DATA do not require modification.
NOTE: The passwords on ABCDE.EMPLOYEE.DATA do not require modification.
261  quit;

Example 18: Resetting Credentials on Imported SecuredLibrary Objects 135



136 Appendix 2 • AUTHLIB Procedure



Recommended Reading

Here is the recommended reading list for this title:

• SAS Intelligence Platform: Overview

• SAS Intelligence Platform: Data Administration Guide

• SAS Intelligence Platform: Security Administration Guide

• SAS Management Console: Guide to Users and Permissions

• Base SAS Procedures Guide

For a complete list of SAS publications, go to sas.com/store/books. If you have 
questions about which titles you need, please contact a SAS Representative:

SAS Books
SAS Campus Drive
Cary, NC 27513-2414
Phone: 1-800-727-0025
Fax: 1-919-677-4444
Email: sasbook@sas.com
Web address: sas.com/store/books

137

http://sas.com/store/books
mailto:sasbook@sas.com
http://sas.com/store/books


138 Recommended Reading



Glossary

Base SAS
the core product that is part of SAS Foundation and is installed with every 
deployment of SAS software. Base SAS provides an information delivery system for 
accessing, managing, analyzing, and presenting data.

data set
See SAS data set.

encryption
the conversion of data by the use of algorithms or other means into an unintelligible 
form in order to secure data (for example, passwords) in transmission and in storage.

identity
See metadata identity.

library reference
See libref.

libref (library reference)
a SAS name that is associated with the location of a SAS library. For example, in the 
name MYLIB.MYFILE, MYLIB is the libref, and MYFILE is a file in the SAS 
library.

metadata identity (identity)
a metadata object that represents an individual user or a group of users in a SAS 
metadata environment. Each individual and group that accesses secured resources on 
a SAS Metadata Server should have a unique metadata identity within that server.

metadata object
a set of attributes that describe a table, a server, a user, or another resource on a 
network. The specific attributes that a metadata object includes vary depending on 
which metadata model is being used.

metadata repository
a collection of related metadata objects, such as the metadata for a set of tables and 
columns that are maintained by an application.

metadata server
a server that provides metadata management services to one or more client 
applications.

139



metadata-bound library
a physical SAS library that is tied to a corresponding secured library object. All 
access from SAS to a metadata-bound library is subject to the requesting user’s 
effective permissions on the corresponding metadata object.

metadata-bound table
a physical SAS data set (a table or view) that is tied to a corresponding secured table 
object. All access from SAS to a metadata-bound table is subject to the requesting 
user’s effective permissions on the corresponding metadata object.

procedure
See SAS procedure.

SAS data set (data set)
a file whose contents are in one of the native SAS file formats. There are two types 
of SAS data sets: SAS data files and SAS data views.

SAS procedure (procedure)
a type of SAS language element that refers to a self-contained program for 
performing a specific task, such as to produce reports, to manage files, or to analyze 
data.

SAS statement (statement)
a type of SAS language element that is used to perform a particular operation in a 
SAS program or to provide information to a SAS program.

SAS system option (system option)
a type of SAS language element that is applied to any of a number of operations 
during a SAS session. System options can control SAS session initialization, SAS 
interactions with hardware and software, and input and output processing of SAS 
files.

SAS table
the visual rendering of a SAS data set in tabular format. See also SAS data set.

SAS view
a type of SAS data set that retrieves data values from other files. A SAS view 
contains only descriptor information such as the data types and lengths of the 
variables (columns), plus other information that is required for retrieving data values 
from other SAS data sets or from files that are stored in other software vendors' file 
formats. SAS views can be created by the SAS DATA step, as well as by the SAS 
SQL procedure.

secured data folder
a SAS metadata object that serves as a specialized container for secured library 
objects, as part of the metadata-bound libraries feature. In each metadata repository, 
the first secured data folder is Secured Libraries, in the System folder. Additional 
secured data folders can be added only beneath a Secured Libraries folder.

secured library object
a SAS metadata object to which a physical SAS library is bound. Metadata-layer 
permissions on each secured library object manage access to its corresponding 
physical library. Secured library objects are stored beneath a repository’s Secured 
Libraries folder.

140 Glossary



secured table object
a SAS metadata object to which a physical SAS data set (a table or view) is bound. 
Metadata-layer permissions on each secured table object manage access to its 
corresponding physical data set. Each secured table object is stored beneath a 
secured library object.

statement
See SAS statement.

submit
to perform an action that causes a software application such as SAS to compile and 
execute a program.

system option
See SAS system option.

Glossary 141



142 Glossary



Index

A
access to data

facilitating for end users 55
fine-grained, using condition 

permissions 35
fine-grained, using views 33
mutually exclusive 31
required conditions 1
verifying read access 30

auditing 45
AUTHADMIN option 52
AUTHLIB CREATE statement

DATASETS procedure 90
usage criteria 10

AUTHLIB procedure
requirements 99
results 100
statement usage table 76
syntax 74
task tables 74

AUTHLIB REPAIR statement
DATASETS procedure 89

authorization model for metadata-bound 
libraries 3

AUTHPW option 52

B
benefits of metadata-bound libraries 4
best practices for metadata-bound libraries

36
binding a library example

recorded encryption key 118
required AES encryption 121
with different encryption keys 126

binding tables to metadata 22

C
changing metadata-bound library example

different encryption keys 129
changing the encryption key

requiring AES encryption 123
connection options 51

CREATE
usage criteria 10
using multiple TABLE statements 105

CREATE example
AES encryption 116
physical library contained password

102
SAS Proprietary Encryption 114
setting up metadata-bound libraries 15
to bind a physical library 100
to modify passwords 104

CREATE statement
AUTHLIB procedure 77, 78

E
encrypted data 47

F
fine-grained access to data

using condition permissions 35
using views 33

H
host commands

for adding tables 61
for copying tables 63

L
LIBNAME statement options 52
limitations of metadata-bound libraries 5

M
metadata-bound libraries 1, 66

authorization model 3
basic demonstration 10
benefits 4
best practices 36
depiction 2
limitations 5

143



passwords 67
setting up 10
troubleshooting 55
use 6
validating 16
verifying read access 30

MODIFY
criteria for use 22, 26

MODIFY example
binding an individual table 26, 29
to change metadata-bound library 

passwords 109
to change passwords 107

MODIFY statement
AUTHLIB procedure 81

mutually exclusive access to data 31

P
passwords 43
permissions 39
physical tables

adding to a metadata-bound library 59
adding to a traditional library 62
binding to metadata 22
providing access 55
renaming 48

PROC AUTHLIB
task table 76

PROC AUTHLIB statement
AUTHLIB procedure 76

PURGE statement
AUTHLIB procedure 85

purging
credentials 71

R
REMOVE

criteria for use 18
REMOVE example 22, 110

requiring AES encryption 131
REMOVE statement

AUTHLIB procedure 86
REPAIR statement

AUTHLIB procedure 89
REPORT

criteria for use 16
REPORT example 18, 112
REPORT statement

AUTHLIB procedure 94
require encryption

AUTHLIB procedure 79
retaining

credentials 71

S
SAS commands

for adding tables 60
for copying tables 62

SAS language reference
connection options 51
LIBNAME statement options 52

secured data folders
location 5
replacement 56

secured folder
AUTHLIB procedure 78

secured libraries 89
AUTHLIB procedure 78

secured library 90
secured library objects 48

permissions 39
replacement 56

secured table objects 48
permissions 39
replacement 56

security location information 50
realigning 57

T
tables

See physical tables
TABLES example 113
TABLES statement

AUTHLIB procedure 95
troubleshooting metadata-bound libraries

55

U
unbinding a library 18

144 Index






	Contents
	SAS 9.4 Guide to Metadata-Bound Libraries, Second Edition
	Audience
	Requirements

	What’s New in Metadata-Bound Libraries in SAS 9.4
	Overview
	SAS Management Console
	Encryption
	REPAIR Statement
	PURGE Statement and PURGE= Option

	Accessibility
	Overview of Metadata-Bound Libraries
	What is a Metadata-Bound Library?
	Depiction of a Metadata-Bound Library
	Authorization Model for Metadata-Bound Tables
	Benefits of Metadata-Bound Libraries
	Limitations of Metadata-Bound Libraries
	Who Should Use Metadata-Bound Libraries?

	Implementation of Metadata-Bound Libraries
	Binding Data to Metadata
	Overview
	Requirements
	Preparation
	GUI Method
	Code Method
	Results
	Traditional Registration

	Validating a Metadata-Bound Library
	Overview
	Requirements
	GUI Method
	Code Method
	Results

	Unbinding a Metadata-Bound Library
	Overview
	Requirements
	GUI Method
	Code Method
	Results

	Changing a Metadata-Bound Library Password
	Overview
	Requirements
	GUI Method
	Code Method
	Results

	Changing a Metadata-Bound Library’s Encryption Options
	Overview
	Requirements
	GUI Method
	Code Method
	Results

	Verifying Access to Metadata-Bound Data
	Who Can Read Metadata-Bound Data?
	Example

	Mutually Exclusive Access
	Introduction
	Preparation
	Instructions
	Results

	Providing Fine-Grained Access Using Views
	Overview
	Column-Level Access
	Identity-Driven, Row-Level Access

	Providing Fine-Grained Access Using Condition Permissions
	Overview
	Instructions

	Best Practices
	General Guidelines
	Avoiding Mixed States


	Reference for Metadata-Bound Libraries
	Permissions for Metadata-Bound Data
	Permissions on Secured Library and Table Objects
	Permission Requirements
	Requirement for Host-Layer Control
	Identity in Authorization Evaluations

	Passwords for Metadata-Bound Data
	Auditing for Metadata-Bound Libraries
	Which Events Can Be Logged?
	Detecting a Circumvention of Update Security
	Audit Record Content and Layout

	Considerations for Data File Encryption
	Overview
	Using AES Encryption with Metadata-Bound Libraries
	Making Security-Related Changes to an Encrypted Table

	Considerations for Renaming Physical Tables
	Object Creation, Location, and Inheritance
	About This Topic
	Object Creation
	Metadata Location
	Access Control Inheritance

	Security Information in Metadata-Bound Data
	SAS Language Reference for Metadata-Bound Libraries
	About This Topic
	Metadata Server Connection Options
	LIBNAME Statement Options
	AUTHLIB Procedure


	Troubleshooting for Metadata-Bound Libraries
	Facilitate End-User Access
	Replace Missing Metadata Objects
	Realign Security Location Information

	Security Impact of Moving Tables
	About This Appendix
	Adding Physical Tables to a Metadata-Bound Library
	Introduction
	Using SAS
	Using Host Commands

	Copying Metadata-Bound Tables to a Traditional Library
	Introduction
	Using SAS
	Using Host Commands


	AUTHLIB Procedure
	Overview: AUTHLIB Procedure
	Concepts: AUTHLIB Procedure
	Metadata-Bound Library
	Using Metadata-Bound Library Passwords
	Setting and Modifying Metadata-Bound Library Passwords
	Encrypted Data Set Considerations
	Setting and Modifying Metadata-Bound Library Encryption Options
	Retaining and Purging Metadata-Bound Library Credentials
	Requiring Encryption for Metadata-Bound Data Sets
	Data Sets in a Metadata-Bound Library That Are Not Bound to
Secured Table Objects

	Syntax: AUTHLIB Procedure
	PROC AUTHLIB Statement
	CREATE Statement
	MODIFY Statement
	PURGE Statement
	REMOVE Statement
	REPAIR Statement
	REPORT Statement
	TABLES Statement

	Using the AUTHLIB Procedure
	Requirements for Using the AUTHLIB Statements
	Copy-In-Place Operation

	Results: AUTHLIB Procedure
	Examples: AUTHLIB Procedure
	Binding a Physical Library That Contains Unprotected Data Sets
	Binding a Physical Library That Contains Password-Protected
Data Sets
	Binding a Library When Existing Data Sets Are Protected with
the Same Passwords
	Binding a Library When Existing Data Sets Are Protected with
Different Passwords
	Changing Passwords on Data Sets
	Changing Metadata-Bound Library Passwords
	Using the REMOVE Statement
	Using the REPORT Statement
	Using the TABLES Statement
	Binding a Library When Existing Data Sets Are SAS Proprietary
Encrypted
	Binding a Library When Existing Data Sets Are AES-Encrypted
	Binding a Library with an Optional Recorded Encryption Key
When Existing AES-Encrypted Data Sets Have Different Encryption Keys 
	Binding a Library with Required AES Encryption When Existing
Data Sets Are Encrypted with the Same Encryption Key
	Changing the Encryption Key on a Metadata-Bound Library That
Requires AES Encryption
	Binding a Library with Existing Data Sets That Are AES-Encrypted
with Different Encryption Keys
	Changing a Metadata-Bound Library to Require AES Encryption
When Existing Data Sets Are Encrypted with Different Encryption Keys
	Using the REMOVE Statement on a Metadata-Bound Library with
Required AES Encryption
	Resetting Credentials on Imported SecuredLibrary Objects


	Recommended Reading
	Glossary
	Index

