
SAS® 9.3
Guide to Metadata-Bound
Libraries

SAS® Documentation

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2012. SAS® 9.3 Guide to Metadata-Bound Libraries. Cary, NC:
SAS Institute Inc.

SAS® 9.3 Guide to Metadata-Bound Libraries

Copyright © 2012, SAS Institute Inc., Cary, NC, USA

All rights reserved. Produced in the United States of America.

For a Web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at the time you acquire this
publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the publisher is illegal and
punishable by law. Please purchase only authorized electronic editions and do not participate in or encourage electronic piracy of copyrighted
materials. Your support of others' rights is appreciated.

U.S. Government Restricted Rights Notice: Use, duplication, or disclosure of this software and related documentation by the U.S. government is
subject to the Agreement with SAS Institute and the restrictions set forth in FAR 52.227–19, Commercial Computer Software-Restricted Rights
(June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.

1st electronic book, August 2012

SAS® Publishing provides a complete selection of books and electronic products to help customers use SAS software to its fullest potential. For
more information about our e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site at
support.sas.com/publishing or call 1-800-727-3228.

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other
countries. ® indicates USA registration.

Other brand and product names are registered trademarks or trademarks of their respective companies.

http://support.sas.com/publishing

Contents

SAS 9.3 Guide to Metadata-Bound Libraries . v
Accessibility . vii
Recommended Reading . ix

Chapter 1 • Overview of Metadata-Bound Libraries . 1
What is a Metadata-Bound Library? . 1
Depiction of a Metadata-Bound Library . 1
Authorization Model for Metadata-Bound Tables . 3
Benefits of Metadata-Bound Libraries . 4
Limitations of Metadata-Bound Libraries . 5
Who Should Use Metadata-Bound Libraries? . 6

Chapter 2 • Tasks for Metadata-Bound Libraries . 9
Setting Up a Metadata-Bound Library . 9
Validating a Metadata-Bound Library . 17
Binding an Individual Table to Metadata . 18
Unbinding a Metadata-Bound Library . 20
Verifying Read Access to Metadata-Bound Data . 21
Best Practices for Metadata-Bound Libraries . 22

Chapter 3 • Reference for Metadata-Bound Libraries . 25
Permissions for Metadata-Bound Data . 25
Passwords for Metadata-Bound Data . 29
Auditing for Metadata-Bound Libraries . 30
Considerations for Data File Encryption . 32
Considerations for Renaming Physical Tables . 33
Object Creation, Location, and Inheritance . 34
Security Information in Metadata-Bound Data . 35
SAS Language Reference for Metadata-Bound Libraries . 36

Chapter 4 • Troubleshooting for Metadata-Bound Libraries . 39
Facilitate End-User Access . 39
Replace Missing Metadata Objects . 40
Realign Security Location Information . 41

Appendix 1 • Security Impact of Moving Tables . 43
About This Appendix . 43
Adding Physical Tables to a Metadata-Bound Library . 43
Copying Metadata-Bound Tables to a Traditional Library . 46

Appendix 2 • AUTHLIB Procedure . 49
Overview: AUTHLIB Procedure . 49
. 50
Syntax: AUTHLIB Procedure . 52
Results: AUTHLIB Procedure . 67
Examples: AUTHLIB Procedure . 68

Glossary . 79
Index . 83

iv Contents

SAS 9.3 Guide to Metadata-
Bound Libraries

Audience

This document is intended for administrators who want SAS to always enforce its
metadata-layer permission requirements before providing access to SAS data. Metadata-
bound libraries provide enhanced protection for Base SAS data (SAS data sets and SAS
views).

Only administrators who set up and maintain metadata-bound libraries need to know the
information that this document contains. In order to access metadata-bound data, a
connection to the metadata server is required. So a user who makes a direct request (for
example, through a LIBNAME statement) does have to facilitate that connection. See
“Metadata Server Connection Options” on page 36.

Requirements
Administration of metadata-bound libraries requires Base SAS, a SAS Metadata Server,
and SAS Management Console.

Support for metadata-bound libraries begins in the second maintenance release of SAS
9.3.

v

vi SAS 9.3 Guide to Metadata-Bound Libraries

Accessibility

For information about accessibility for a SAS product, see the online Help for that
product or send e-mail to accessibility@sas.com.

vii

viii Accessibility

Recommended Reading

Here is the recommended reading list for this title:

• SAS Intelligence Platform: Overview

• SAS Intelligence Platform: Data Administration Guide

• SAS Intelligence Platform: Security Administration Guide

• SAS Management Console: Guide to Users and Permissions

• Base SAS Procedures Guide

For a complete list of SAS publications, go to support.sas.com/bookstore. If you have
questions about which titles you need, please contact a SAS Publishing Sales
Representative:

SAS Publishing Sales
SAS Campus Drive
Cary, NC 27513-2414
Phone: 1-800-727-3228
Fax: 1-919-677-8166
E-mail: sasbook@sas.com
Web address: support.sas.com/bookstore

ix

mailto:sasbook@sas.com
http://support.sas.com/bookstore

x Recommended Reading

Chapter 1

Overview of Metadata-Bound
Libraries

What is a Metadata-Bound Library? . 1

Depiction of a Metadata-Bound Library . 1

Authorization Model for Metadata-Bound Tables . 3

Benefits of Metadata-Bound Libraries . 4

Limitations of Metadata-Bound Libraries . 5

Who Should Use Metadata-Bound Libraries? . 6

What is a Metadata-Bound Library?
A metadata-bound library is a physical library that is tied to a corresponding metadata
object. The CREATE statement of the AUTHLIB procedure generates a new metadata
object and binds the physical library to that object.

Each physical table within a metadata-bound library has information in its header that
points to a specific metadata object (a secured table object). The pointer creates a
security binding between the physical table and the metadata object. The binding ensures
that SAS universally enforces metadata-layer permission requirements for the physical
table—regardless of how a user requests access from SAS.

Access from SAS to data within a metadata-bound library is provided only if all of the
following conditions are met:

• The requesting user can connect to the metadata server in which the corresponding
object is stored.

• The requesting user’s metadata identity has all required metadata-layer effective
permissions for the requested action.

• The host identity with which the data is retrieved has all required host-layer access to
the data.

Depiction of a Metadata-Bound Library
The following figure depicts the metadata objects and physical security information that
are generated when you bind a physical library to metadata. The "Before" section shows

1

the initial state and the "After" section shows the security location information, bindings,
and metadata objects that are generated by the CREATE statement of the AUTHLIB
procedure.

Figure 1.1 Depiction of a Metadata-Bound Library

Before:

After:

Metadata LayerHost Layer

tableB.sas7bdat

tableA.sas7bdat

sensitive data

root

… other directories ...

Metadata Layer

tableA

tableB

seclib

Host Layer

root

… other directories ...

Secured Folder A

SAS Folders

System

Secured Libraries

… other folders ...

Secured Folder A

SAS Folders

System

Secured Libraries

… other folders ...

sensitive data

tableB.sas7bdat

tableA.sas7bdat

= security location information = security binding

authlocation
.sassl/loc

Here are some key points about the "After" section of the preceding figure:

• The physical data includes references to corresponding objects within a SAS
metadata repository.

• For a physical library, the security information consists of a subdirectory and file.
The corresponding metadata object is called a secured library object. In the
figure, seclib is the secured library object that corresponds to the physical
metadata-bound library called sensitive data.

Note: On z/OS, the security information for a UNIX file system (UFS) library is
stored as described in the preceding figure. However, the security
information for a z/OS direct-access bound library is instead stored within the
bound library data set itself. For this reason, z/OS sites that choose to use
metadata-bound libraries might prefer the z/OS direct-access bound library
implementation to the UFS library implementation. z/OS sequential-access
bound libraries cannot be bound to metadata.

2 Chapter 1 • Introduction

• For a physical table, the security information consists of information in the
header. The corresponding metadata object is called a secured table object. In the
figure, tableA and tableB are secured table objects that correspond to the physical
metadata-bound tables tableA.sas7bdat and tableB.sas7bdat.

• Each security binding causes all access from SAS to be subject to the requesting
user’s effective metadata-layer permissions on the relevant corresponding metadata
object.

Note: The figure assumes that the physical data is initially unprotected. If one of the
physical tables already had a different password, the presence of that password
would prevent that table from being affected by the CREATE statement. To move
from that situation to a best practice state (where, for clarity, all tables within the
security library are protected by that library’s bindings), use the MODIFY statement
of the AUTHLIB procedure.

Authorization Model for Metadata-Bound Tables
The following figure depicts the authorization model for a traditional table and a
metadata-bound table. In both cases, UserA references the target data directly (for
example, through a LIBNAME statement) and UserB requests the target data through a
client that uses metadata to locate data (for example, SAS Web Report Studio).

Figure 1.2 Authorization Checks (by Data Type and Access Method)

Traditional Table

Metadata

Metadata-Bound Table

UserA UserB UserA UserB

= authorization check
 (metadata layer)

= authorization check
 (host layer)

Metadata

Access to a Traditional Table Access to a Metadata-Bound Table

The preceding figure depicts the following key difference:

• When accessing a traditional table, a user can bypass metadata-layer controls by
making a direct request.

Authorization Model for Metadata-Bound Tables 3

• When accessing a metadata-bound table, a user cannot completely bypass metadata-
layer controls. Even on a direct request, UserA is always subject to a metadata-layer
permissions check before accessing SAS data from SAS.

For the metadata-bound table, the upwards-facing arrows are caused by the physical
data’s security binding. For each metadata-bound table, information within the table
header identifies a corresponding metadata object (a secured table object). Metadata-
layer permissions on each secured table object affect access from SAS to the
corresponding physical table.

For the metadata-bound table, UserB is subject to two metadata-layer authorization
checks against two different metadata objects.

• The first check is against a traditional table object (for example, verifying that UserB
has the ReadMetadata permission).

• The second check is against a secured table object (for example, verifying that UserB
has the Select permission).

T I P In the SAS metadata, traditional table objects and secured table objects are
distinct and independent types of objects. See “Object Creation, Location, and
Inheritance” on page 34.

Here are some additional details about the preceding figure:

• The requesting users do not supply library or table passwords.

• The metadata-layer authorization checks are against the metadata identity of the
requesting user. The host-layer authorization checks are against the identity of the
SAS process that retrieves the data.

• The figure addresses access to SAS data from SAS, not interaction through host
commands.

• The figure is conceptual, simplified, and abstracted. It is not intended as a detailed
technical specification.

See Also
• “Identity in Authorization Evaluations” on page 28

• “Host Access to SAS Tables” in Chapter 12 of SAS Intelligence Platform: Security
Administration Guide

Benefits of Metadata-Bound Libraries
The benefits of metadata-bound libraries are as follows:

• Metadata-bound libraries can provide seamless, secure access to SAS data.

• Metadata-bound libraries offer more robust protection than do other metadata-based
approaches to access control. Because enforcement for a metadata-bound library
originates from the physical data, that enforcement occurs regardless of whether an
access request from SAS is mediated by metadata (for example, from SAS Web
Report Studio) or direct (for example, from a LIBNAME statement that is submitted
in SAS Enterprise Guide).

• The protection that metadata-bound libraries provide is persistent. Protections for a
metadata-bound table apply to any other instances of a physical table with the same

4 Chapter 1 • Introduction

name in the same physical library. In other words, permissions that you set in the
metadata survive activities that affect the underlying physical table. For example, the
protections remain in place after you recreate or replace the underlying physical
table.

Limitations of Metadata-Bound Libraries
The limitations of metadata-bound libraries are as follows:

• Only Base SAS data—SAS tables (data sets) and SAS views—can be bound to
metadata. In the current release, you can create metadata-bound libraries for only
data that is processed by the BASE engine.

• Concatenated libraries or temporary libraries cannot be bound to metadata. However,
metadata-bound libraries can participate in a library concatenation.

• Binding data to metadata does not prevent the use of operating system commands
against files and directories. For example, a user who has Write access to an
operating system directory (in order to create physical tables) can use host
commands to delete and replace files within that directory. Such commands operate
independently of any metadata binding. However, replacement of files through
operating system commands is detected and audited. See “Auditing for Metadata-
Bound Libraries” on page 30.

• In the current release, there is no graphical user interface (GUI) for creating
metadata-bound libraries. You use SAS code to perform that task. See “Overview of
Setting Up a Metadata-Bound Library” on page 9.

• In the current release, metadata-bound libraries don’t support column-level
permissions or metadata-based permission conditions. However, you can create
views that subset data by columns or rows, and then set permissions to specify who
can access each view. Dynamic row-level filtering based on each requesting user’s
authenticated user ID is supported. See “Set Up Fine-Grained Access” on page 15.

• Clients that use metadata to locate data can’t use secured library objects or secured
table objects for that purpose. To support access from such clients, each metadata-
bound library must also be registered in metadata as a traditional library object.

Note: The metadata objects that serve as bind targets for physical data are distinct
from and independent of the metadata objects that are used to register physical
data. For example, a physical library can be bound to a secured library object, but
can’t be bound to a traditional library object. Similarly, tables within a metadata-
bound library are bound to corresponding secured table objects, not to traditional
table objects. There are no associations in metadata between secured library
objects and traditional library objects. See “Object Creation, Location, and
Inheritance” on page 34.

Note: In the SAS metadata, a secured library object is functional only if it exists
within the /System/Secured Libraries branch of a repository. You can’t
bind physical libraries to secured library objects that are in other metadata
locations. You can create subfolders within a /System/Secured Libraries
branch. In the SAS metadata, a secured table object can exist only within a
secured library object.

The following additional limitations affect the availability of metadata-bound data:

• Access to metadata-bound tables is not supported in any release prior to the second
maintenance release of SAS 9.3.

Limitations of Metadata-Bound Libraries 5

Note: For a z/OS direct-access bound library that is bound to metadata, this
constraint is slightly broader: neither the library nor any of its members can be
accessed by earlier releases of SAS.

Note: An exception is that access to metadata-bound tables through a SAS/SHARE
server is available to earlier clients, if SQL statements are passed to the server
and the server is in the second maintenance release of SAS 9.3 (or later).

• For the SAS OLE DB Local Data Provider, access to metadata-bound tables is not
supported. The SAS OLE DB Local Data Provider uses a specialized standalone
engine that provides access to data sets from external programs without running
SAS.

• For the SAS/SHARE Data Provider, access to metadata-bound tables through a
SAS/SHARE server is available only if SQL statements are passed to the server. The
SAS/SHARE Data Provider is one of the SAS Providers for OLE DB.

• For the SAS/IntrNet Application Dispatcher, access to metadata-bound tables is
supported only if the application server runs with AUTH=HOST.

Who Should Use Metadata-Bound Libraries?
As with any other security-related decision, a decision about whether to use metadata-
bound libraries involves weighing the benefits of enhanced protection against increased
administrative effort and complexity. This topic is intended to help you make a decision
that is appropriate for your resources, environment, and security goals.

If all of the following circumstances exist, it makes sense to consider using metadata-
bound libraries:

• You have SAS data sets that require a high level of security, with access distinctions
at the user or group level.

• You are running (or planning to run) a SAS Metadata Server in which your users are
registered.

• You have not already met your security requirements through a combination of
physical layer (operating system) separation and customized configuration of your
SAS servers.

The following prerequisite knowledge is essential for successful use of metadata-bound
libraries:

• You know how to write and submit simple SAS code.

• You have a basic understanding of the SAS metadata environment, including its
authorization system.

• You know how to create folders and set permissions in SAS Management Console.

• You have read and understood at least the first two chapters of this document.

The following additional factors should be considered in a decision about whether to use
metadata-bound libraries:

• If your metadata promotion strategy does not maintain a separate set of physical data
for each deployment level (for example, development, test, and production),
significant additional administrative complexity is involved (compared to using
secured libraries against a single set of physical data).

6 Chapter 1 • Introduction

• As the first release of the secured libraries feature, this release might not offer
optimal usability for the administrative tasks.

• Recovering from actions that inadvertently disrupt coordination between the physical
data and its corresponding metadata objects can be complex.

• Any batch processing against metadata-bound data requires that the metadata server
is available and that the requesting user can connect to it.

Who Should Use Metadata-Bound Libraries? 7

8 Chapter 1 • Introduction

Chapter 2

Tasks for Metadata-Bound
Libraries

Setting Up a Metadata-Bound Library . 9
Overview of Setting Up a Metadata-Bound Library . 9
Who Uses the CREATE Statement? . 10
Introductory Demonstration . 10
Set Up Mutually Exclusive Access . 13
Set Up Fine-Grained Access . 15

Validating a Metadata-Bound Library . 17
About Validating a Metadata-Bound Library . 17
Who Uses the REPORT Statement? . 17
Example . 17

Binding an Individual Table to Metadata . 18
About Binding Tables to Metadata . 18
Who Uses the MODIFY Statement? . 18
Example . 19

Unbinding a Metadata-Bound Library . 20
About Unbinding a Library . 20
Who Uses the REMOVE Statement? . 20
Example . 21

Verifying Read Access to Metadata-Bound Data . 21
Who Can Read Metadata-Bound Data? . 21
Example . 22

Best Practices for Metadata-Bound Libraries . 22

Setting Up a Metadata-Bound Library

Overview of Setting Up a Metadata-Bound Library
Setting up a metadata-bound library involves the following tasks:

1. In the SAS metadata, below a /System/Secured Libraries/ folder, identify
or create an appropriately secured folder for the data.

2. In SAS code, submit a CREATE statement (within the AUTHLIB procedure) that
references your physical data directory and the metadata folder that you identified or
created in step 1.

9

3. If you want to support access from clients that use metadata in order to locate data,
make sure that the physical library and tables are also registered in metadata (using
the Data Library Manager plug-in within SAS Management Console). For example,
to make the data available from within SAS Web Report Studio, you might register it
beneath the Shared Data folder.

T I P Binding a physical library introduces additional constraints on access, so it is a
good practice to review existing access patterns beforehand. For help resolving any
unanticipated disruptions in end-user access, see “Facilitate End-User Access” on
page 39.

Who Uses the CREATE Statement?
Administrators use the CREATE statement of the AUTHLIB procedure to bind a
physical library to metadata.

In order to use the CREATE statement, you must meet the following criteria:

• Your SAS session runs under an account that has host-layer control of the target
physical library. To ensure that only users who have host control can bind a physical
library to metadata, your SAS session must run under a privileged host account as
follows:

• On UNIX, the account must be the owner of the directory.

• On Windows, the account must have Full Control of the directory.

• On z/OS, for UNIX file system libraries, the account must be the owner of the
directory.

• On z/OS, for direct-access bound libraries, the account must have RACF ALTER
access authority to the library data set.

• Your SAS session connects to the metadata server as an identity that has Read and
Write access (the ReadMetadata and WriteMemberMetadata permissions) to the
target secured data folder.

Introductory Demonstration
As a simple demonstration, limit access to a library that contains tables copied from the
SASHELP library.

To prepare:

1. In the operating system, create a directory called test. Copy some of the tables
from your SASHELP directory into the test directory.

T I P By default, SASHELP is in your SASHOME directory, under
SASFoundation\<version>\core\.

2. In a SAS session, assign the libref secdemo to the new directory.

libname secdemo 'path-to-your-test-directory';

To bind the physical library (your test directory) to metadata:

1. Create an appropriately secured metadata location.

a. Log on to SAS Management Console as someone who has the ReadMetadata and
WriteMemberMetadata permissions on the /System/Secured Libraries

10 Chapter 2 • Basic Tasks

folder. In the standard configuration, only members of the SAS Administrators
group (and unrestricted users) have the necessary access.

b. On the Folders tab, navigate to SAS Folders ð System ð Secured Libraries.
Add a new folder called Demo Folder.

c. On the new folder’s Authorization tab, adjust access. As a simplified
introductory example, give yourself exclusive access to the data. One way to do
this is by adding explicit controls as follows:

• In the Users and Groups list box, select the PUBLIC group and explicitly
deny all permissions for that group.

• Add yourself to the tab (click the Add button next to the Users and Groups
list box) and explicitly grant all permissions to yourself.

T I P In SAS Management Console, an explicit setting has a white background
color (not gray or green).

T I P In practice, it would be a good idea to also apply the SAS Administrators
Settings ACT (access control template).

2. In the same SAS session in which you assigned the secdemo libref, submit the
following code:

proc authlib library=secdemo;
 create
 securedfolder='/System/Secured Libraries/Demo Folder'
 securedlibrary='Demo Library'
 pw=secret;

run;

Setting Up a Metadata-Bound Library 11

Here are some details about the preceding code:

• The LIBRARY= option references your previously defined physical library. This
is the library for which a corresponding metadata-bound library object will be
created and in which security location information will be stored.

• The SECUREDFOLDER= option specifies the metadata folder location for the
new secured library object. To minimize exposure, we suggest that you specify a
folder for which you have already made any necessary adjustments to access (as
discussed in step 1c above).

• The SECUREDLIBRARY= argument specifies a name for the new secured
library object (in metadata).

• The PW= value is an initial assignment of a password for the library. This value
can be encoded using the PWENCODE procedure. In order to submit an encoded
password, you must enclose the value in quotation marks.

CAUTION:
If you lose the password (or passwords) for a metadata-bound library, you
can't unbind the library or change its passwords. Be sure to keep track of
passwords that you assign in the CREATE and MODIFY statements of the
AUTHLIB procedure.

• Your SAS session must be able to connect to the target metadata server as an
identity that has the ReadMetadata and WriteMemberMetadata permissions on
the target folder (SAS Folders/System/Secured Libraries).

Note: The preceding code does not explicitly supply connection information for
the metadata server. This example assumes that your SAS session already
knows how to connect to the target metadata server.

• After the code runs, each table in your test library is represented in the metadata
as a new secured table object (a child of the new secured library object). The
following image depicts the new objects in SAS Management Console.

3. If you want to support access from clients that use metadata to locate data, register
the library and tables in metadata (using the Data Library Manager plug-in within
SAS Management Console).

T I P Permissions on a traditional library or table object can further limit access.
For example, a user who reads data through the META LIBNAME engine
(MLE) must have permissions on both the traditional table object (the
ReadMetadata and Read permissions) and the secured table object (the
ReadMetadata and Select permissions).

12 Chapter 2 • Basic Tasks

Set Up Mutually Exclusive Access
To establish several distinct levels of access, set up a metadata folder structure with
appropriate permissions. Each secured library object inherits permissions from its
metadata folder. Each secured table object inherits permissions from its parent secured
library object.

The following example demonstrates one way to set up mutually exclusive access for
two user groups (GroupA and GroupB) to four libraries (LibraryA1, LibraryA2,
LibraryB1, and LibraryB2). The example assumes that the following prerequisites are
met:

• GroupA and GroupB exist in the SAS metadata.

• The data exists in the host, and each physical library has been assigned a libref
(liba1, liba2, libb1, and libb2) in your SAS session.

• You have a host account that has host-layer access to the data.

• Your SAS session knows how to connect to the metadata server using an account
that has the ReadMetadata and WriteMemberMetadata permissions on the folder
within which you will add the secured data folders (SAS Folders/System/
Secured Libraries).

Here are the implementation steps:

1. On the Folders tab in SAS Management Console, beneath SAS Folders/
System/Secured Libraries, create two sibling secured data folders named
FolderA and FolderB.

2. Constrain access at the Secured Libraries folder. One way to do this is to
explicitly deny all permissions to the PUBLIC group and explicitly grant all
permissions to the SAS Administrators group. These protections flow throughout the
Secured Libraries branch, except where modified by additional direct access
controls.

3. Expand access to the new folders as follows:

Folder Metadata Group Explicit Grants*

FolderA GroupA ReadMetadata and Select

FolderB GroupB ReadMetadata and Select

* For conciseness, this example uses individual explicit controls (instead of ACTs) and provides only
Read access (the Select permission). These settings don’t allow members of GroupA and GroupB to
update or delete data.

T I P To add GroupA and GroupB to the Authorization tab, click the Add button
next to the Users and Groups list box. In SAS Management Console, an explicit
setting has a white background color (not gray or green).

4. To bind the physical data to metadata, submit SAS code. Be sure to specify
FolderA as the metadata location for the first two libraries, and FolderB as the
metadata location for the last two libraries.

Setting Up a Metadata-Bound Library 13

proc authlib;
 create
 library=liba1
 securedfolder='FolderA'
 securedlibrary='LibraryA1'
 pw=secret;
 create
 library=liba2
 securedfolder='FolderA'
 securedlibrary='LibraryA2'
 pw=secret;
 create
 library=libb1
 securedfolder='FolderB'
 securedlibrary='LibraryB1'
 pw=secret2;
 create
 library=libb2
 securedfolder='FolderB'
 securedlibrary='LibraryB2'
 pw=secret2;
run;

T I P In the SECUREDFOLDER= option, if you supply a path that does not begin
with a slash (/), the path is calculated relative to /System/Secured
Libraries/.

5. In SAS Management Console, examine the contents of FolderA and FolderB.

T I P If the new secured library objects are not immediately visible, right-click the
Secured Libraries folder and select Refresh from the popup menu. The
new secured table objects are visible in the right panel when their respective
secured library object is selected in the folder tree.

Examine the Authorization tab of several of the new objects to verify that metadata-
layer access is as expected.

6. If you want to provide access through clients that use metadata to locate data,
register the library and tables in metadata. For example, if the data is accessed from
SAS Web Report Studio, you might register it beneath the Shared Data folder.

7. Test access from various clients. Behavior should be as follows:

• A user who is unrestricted should have access to all of the tables.

• A user who is a direct or indirect member of both GroupA and GroupB should
have access to all of the tables.

• A restricted user who is a member of only GroupA or only GroupB should have
access to only the data beneath FolderA or FolderB.

• A restricted user who is not GroupA, GroupB, or the SAS Administrators group
should not have access to any of the data.

14 Chapter 2 • Basic Tasks

Set Up Fine-Grained Access

Overview
To provide access to some but not all of the data within a physical table, use the
following approach:

1. If the physical table and its parent library are not already bound to metadata, use the
AUTHLIB procedure and metadata-layer permissions to protect them.

2. Create a view that excludes the rows or columns that you want to hide.

3. Apply the password of the underlying physical table to the view.

4. Set metadata-layer permissions to control who can access the view.

Column-Level Access
In this example, partial access to a customer data table is provided by creating a view
and managing access to it. The view keeps the name and telephone number columns
from the underlying table, but excludes the credit card number column.

options metauser="sasadm@saspw" metapass="********"
 metaserver="machine.company.com";

libname cust 'path';

proc authlib library=cust;
 create
 securedlibrary='cust'
 securedfolder='CustomerData'
 pw=secret;
quit;

proc sql;
 create view cust.PUBLIC as
 select Name, Phone
 from PRIVATE(pw=secret);
quit;

The preceding code creates a new secured library object (CustomerData) that contains
two objects: a table object (called PRIVATE) and a view object (called PUBLIC).

Note: The password that is supplied to bind the library is also supplied when the
PUBLIC view is defined against the PRIVATE table. In order to create a view of a
metadata-bound table, you must know the password of that physical table’s parent
library, and provide that password in the view definition. You can enable end users
to access the view without giving them access to the underlying table. In effect, this
provides selective access to the columns and rows within the underlying table.

Note: If you modify the password for the metadata-bound library, you must also update
the view definition with the new password.

Note: This example also demonstrates how you can explicitly provide metadata server
connection information in an OPTIONS statement.

To complete the protection, use SAS Management Console to set metadata-layer
permissions so that restricted users can access the PUBLIC view but not the PRIVATE
table. For example, if only unrestricted users should access the PRIVATE table, you
might use the following approach:

Setting Up a Metadata-Bound Library 15

• On the Authorization tab for the CustomerData folder, verify that the PUBLIC
group is denied the ReadMetadata, WriteMetadata, WriteMemberMetadata, and
Select permissions. Verify that the PRIVATE table inherits these denials.

• On the Authorization tab for the PUBLIC view object, explicitly grant the
ReadMetadata and Select permissions to SASUSERS.

Identity-Driven, Row-Level Access
In this example, partial access to an employee information table (HR.EMPINFO) is
provided by creating a view (HR.PERSONAL) that dynamically filters rows in the
underlying table. The filtering is based on each requesting user’s authenticated user ID.
The filtering relies on a security associations table, which maps each user’s authenticated
user ID to a corresponding employee ID.

The following code creates the identity-driven view of the employee information table.
When requesting users access the view, they retrieve only those rows that match the user
ID with which they authenticated to the metadata server.

proc sql;
 create view hr.personal as
 select a.*
 from hr.empinfo(pw=secret) a,
 hr.security(where=(loginid=_METADATA_AUTHENTICATED_USERID_)) b
 where b.loginid ne '' and a.empid = b.empid;
quit;

Here are some details about the preceding code:

• The code assumes that the HR libref is already established and points to a metadata-
bound library that has a single password value of secret.

• The reference to the EMPINFO table must supply the password (secret) in order
to create the view, because the table is bound to metadata.

• SECURITY is a security associations table that maps all valid
_METADATA_AUTHENTICATED_USERID_ values to the primary key of the
target table (the EMPID column in the EMPINFO table).

Note: As an alternative to creating a separate security associations table, you could
directly add a column of _METADATA_AUTHENTICATED_USERID_ values
to your target table.

• _METADATA_AUTHENTICATED_USERID_ is a substitution parameter that
supplies a user-specific value in each request, based on the user ID with which the
requesting user authenticated to the metadata server.

• The _METADATA_AUTHENTICATED_USERID_ substitution parameter is used
in a WHERE clause that is expressed as a data set option.

If you want to provide broader access to certain users (for example, to enable department
managers to see information about their employees), you can enhance the SECURITY
table to include a column that maps employees to departments, create an additional view
that exploits that mapping, and set metadata-layer permissions so that only department
managers can use the new view.

See Also
• “CREATE Statement” on page 55

• “Metadata Server Connection Options” on page 36

16 Chapter 2 • Basic Tasks

• Chapter 27, “SAS Views,” in SAS Language Reference: Concepts

• “Connection Options ” in Chapter 5 of SAS Language Interfaces to Metadata

Validating a Metadata-Bound Library

About Validating a Metadata-Bound Library
For a specified physical library, the REPORT statement of the AUTHLIB procedure lists
any missing or mismatched physical tables, security location information, and metadata
objects.

T I P In general, you use the REPORT statement against a metadata-bound library.
However, you can also use this statement against a traditional library in order to
determine whether any individual physical tables within that library are bound to
metadata.

Who Uses the REPORT Statement?
Administrators use the REPORT statement of the AUTHLIB procedure to identify any
inconsistencies between a physical metadata-bound library and its corresponding
metadata objects.

In order to use the REPORT statement, you must meet the following criteria:

• Your SAS session runs under an account that has host-layer Read access to the target
physical library. This is necessary in order to assign the libref.

• Your SAS session connects to the metadata server as an identity that has the
ReadMetadata permission for the target secured library object and secured table
objects.

Example
In this example, you use the REPORT statement to determine whether there are any
inconsistencies between a metadata-bound library and its corresponding metadata
objects.

libname secdemo 'path';

proc authlib library=secdemo;
 report;
run;

Note: The preceding code does not explicitly supply connection information for the
metadata server. This example assumes that your SAS session already knows how to
connect to the target metadata server.

In this example, no inconsistencies exist. The following image depicts output from the
preceding code.

Validating a Metadata-Bound Library 17

See Also
• “REPORT Statement” on page 63

• “Metadata Server Connection Options” on page 36

Binding an Individual Table to Metadata

About Binding Tables to Metadata
Binding data to metadata is a library-level feature. In general, all tables within a
metadata-bound library are protected by that library (and its secured table objects) and
share the library’s password (or passwords). If an inconsistency arises, you can use the
MODIFY statement of the AUTHLIB procedure to perform the following tasks:

• Apply the library’s password (or passwords) to any unbound tables.

• Update any mismatched table passwords, so they match the library passwords.

For example, if someone uses a host copy command to add physical tables to a
metadata-bound library, the added tables are not automatically bound. In order to create
corresponding metadata objects, you must apply the password (or passwords) of the
metadata-bound library to the added physical tables.

Who Uses the MODIFY Statement?
Administrators use the MODIFY statement of the AUTHLIB procedure to add or update
physical tables so that they contain the same password (or passwords) as their parent
metadata-bound library.

In order to use the MODIFY statement, you must meet the following criteria:

• Your SAS session runs under an account that has host-layer control of the target
physical library. To ensure that only users who have host control can change
passwords, your SAS session must run under a privileged host account as follows:

• On UNIX, the account must be the owner of the directory.

• On Windows, the account must have Full Control of the directory.

18 Chapter 2 • Basic Tasks

• On z/OS, for UNIX file system libraries, the account must be the owner of the
directory.

• On z/OS, for direct-access bound libraries, the account must have RACF ALTER
access authority to the library data set.

• You know the current password (or passwords) for the metadata-bound library.

• Your SAS session connects to the metadata server as an identity that has Read and
Write access (the ReadMetadata and WriteMetadata permissions) to the
corresponding secured library object and secured table objects.

Note: On a secured library object, the WriteMemberMetadata permission (from the
parent secured data folder) is inherited as the WriteMetadata permission. See
“WriteMetadata and WriteMemberMetadata” in Chapter 3 of SAS Intelligence
Platform: Security Administration Guide.

Example
In this example, you use the MODIFY statement to apply passwords to physical tables
that were added to the library through a host copy command. The following code applies
passwords to any unsecured physical tables in the secdemo library and binds those tables
to metadata (creating corresponding secured table objects).

libname secdemo 'path';

proc authlib library=secdemo;
 modify pw=secret;
run;

Here are some details about the preceding code:

• The preceding code does not include the SECUREDFOLDER and
SECUREDLIBRARY parameters. It is not necessary to use these parameters,
because the physical directory of the specified library (secdemo) contains
information that references a particular metadata folder and secured library object.

• The preceding code affects the physical library and all of the tables that it contains. If
you don’t want to affect the library, set the TABLESONLY option. If you want to
affect only some of the tables, add a TABLES statement after the MODIFY
statement. If you use one or more TABLES statements after a MODIFY statement,
only the specified tables are processed.

Note: In this example, all of the copied tables are initially unsecured. If any of the
copied tables were already secured, with a different password, those tables would
not be affected by the preceding code.

• The preceding code does not explicitly supply connection information for the
metadata server. This example assumes that your SAS session already knows how to
connect to the target metadata server.

CAUTION:
If you lose the password (or passwords) for a metadata-bound library, you can't
unbind the library or change its passwords. Be sure to keep track of passwords
that you assign in the CREATE and MODIFY statements of the AUTHLIB
procedure.

T I P This code creates a new secured table object in metadata. Whenever you create
new secured library or secured table objects, you should review the permissions on
those objects in SAS Management Console. You can adjust access if needed. For

Binding an Individual Table to Metadata 19

example, you can add users or groups to a secured table’s Authorization tab, and
grant (or deny) the Select permission (to manage Read access to the data).

See Also
• “MODIFY Statement” on page 56

• “Metadata Server Connection Options” on page 36

Unbinding a Metadata-Bound Library

About Unbinding a Library
The REMOVE statement of the AUTHLIB procedure deletes both physical and
metadata content as follows:

• The REMOVE statement deletes physical security information from the library
directory and table headers.

• The REMOVE statement deletes corresponding secured library and secured table
objects from the SAS metadata.

T I P Before you use the REMOVE statement, consider running the REPORT
statement. The output from the REPORT statement identifies any physical tables that
do not have corresponding secured table objects in metadata. In the unusual
circumstance in which such physical tables exist, their security location information
is unaffected by the REMOVE statement, unless you specify AUTHADMIN=YES
on the LIBNAME statement. You should use the AUTHADMIN=YES option on the
LIBNAME statement in this circumstance.

Who Uses the REMOVE Statement?
Administrators use the REMOVE statement of the AUTHLIB procedure to remove
protection from a metadata-bound library.

In order to use the REMOVE statement, you must meet the following criteria:

• Your SAS session runs under an account that has host-layer control of the target
physical library. To ensure that only users who have host control can unbind a
physical library from metadata, your SAS session must run under a privileged host
account as follows:

• On UNIX, the account must be the owner of the directory.

• On Windows, the account must have Full Control of the directory.

• On z/OS, for UNIX file system libraries, the account must be the owner of the
directory.

• On z/OS, for direct-access bound libraries, the account must have RACF ALTER
access authority to the library data set.

• Your SAS session connects to the metadata server as an identity that has Read and
Write access (the ReadMetadata, WriteMetadata, and WriteMemberMetadata
permissions) to the target secured data folder, secured library object, and secured
table objects.

20 Chapter 2 • Basic Tasks

• You know the password (or passwords) for the current metadata-bound library. You
must supply the password in the REMOVE statement.

Example
In this example, you use the REMOVE statement to remove the metadata binding from
an existing physical library.

libname secdemo 'path';

proc authlib library=secdemo;
 remove pw=secret/;
run;

Here are some important points about the preceding code:

• A forward slash (/) is entered at the end of the password. For a password change, the
slash separates the current and new passwords. For password removal, the slash
indicates the end of the current password that is being removed and is not being
replaced with another password).

• The SECUREDFOLDER and SECUREDLIBRARY parameters are not specified. It
is not necessary to use these parameters, because the physical directory of the
specified library (secdemo) contains information that references a particular secured
folder and secured library object.

• The preceding code deletes the corresponding secured library object and secured
table objects from the metadata.

T I P If those objects are still visible in SAS Management Console, right-click the
Secured Libraries folder and select Refresh from the popup menu.

• Connection information for the metadata server is not explicitly supplied. This
example assumes that your SAS session already knows how to connect to the target
metadata server.

Note: The REMOVE statement unbinds only those physical tables that are located
within the specified library (directory). If a table is host-copied from a metadata-
bound library to another location, that table’s security location information will be
unaffected by subsequent REMOVE statements against the metadata-bound library.
In order to reestablish access to the table, corrective action against the table is
necessary.

See Also
• “REMOVE Statement” on page 58

• “Metadata Server Connection Options” on page 36

Verifying Read Access to Metadata-Bound Data

Who Can Read Metadata-Bound Data?
In order to read metadata-bound data, you must be connected to the target metadata
server as an identity that has the following metadata-layer effective access:

Verifying Read Access to Metadata-Bound Data 21

• the ReadMetadata permission (for the target secured table object and its parent
secured library object)

• the Select permission (for the target secured table object)

If you are accessing the data from a client that uses metadata in order to locate data, you
must also have the ReadMetadata permission for the corresponding traditional table
object.

If the data is accessed through the MLE, you must also have the Read permission for the
corresponding traditional table object.

Example
In this example, you connect to a metadata server as a restricted user, set up a libref that
points at a metadata-bound library, and then write a description of the contents of one of
the metadata-bound tables within that library.

options
 metaserver="machine.company.com"
 metauser="sasdemo"
 metapass="********";

libname secdemo 'path';

proc datasets library=secdemo nolist;
 contents data=EMPINFO out=testout;
 title 'Contents of the Metadata-Bound Table EMPINFO';
run;

See Also
• Chapter 15, “DATASETS Procedure,” in Base SAS Procedures Guide

• “Metadata Server Connection Options” on page 36

Best Practices for Metadata-Bound Libraries
The following list reviews key guidelines and recommendations that help you minimize
administrative effort in setting up and maintaining metadata-bound libraries.

• Use SAS (not host commands) for management of physical data. Using host
commands doesn’t compromise security, but it can decrease clarity and create noise
(warnings) in the audit logs. See “Security Impact of Moving Tables” on page 43.

Note: An exception to this guideline is that using a host copy command to back up
or restore physical data to the same directory is not problematic.

• Within the /System/Secured Libraries folder in metadata, open up access
only as necessary. In particular, grant metadata Write access (the WriteMetadata or
WriteMemberMetadata permissions) to only administrators that should be able to
alter access to the metadata-bound data.

• After you bind libraries to metadata, review the metadata-layer permissions on the
generated secured library objects and secured table objects, and adjust access if
needed. For example, you can use SAS Management Console to add users or groups

22 Chapter 2 • Basic Tasks

to a secured table’s Authorization tab, and grant (or deny) the Select permission (to
manage Read access to the data).

• If you use the metadata promotion tools (for example, to create separate deployments
for development, test, and production environments), maintain a separate copy of
your physical data for each environment. The alternative, pointing multiple metadata
servers at the same physical data, is supported but introduces significantly more
complexity. For more information about promoting secured library objects, secured
table objects, and secured data folders, see “Promotion Details for Specific Object
Types” in Chapter 21 of SAS Intelligence Platform: System Administration Guide.

• Create or modify a metadata-bound library at a time when the physical data is not
being accessed by other users. If the physical data is in use, some AUTHLIB
procedure actions on open tables might fail. Interactions with a libref that was
established before a library is bound are as follows:

• For an existing physical table, the pre-established libref is subject to security that
is implemented in the subsequent statement. Access that occurs in these
circumstances causes a message to be written to the log. The message explains
that the physical table is in a library that does not have a secured library location.

• For a new physical table, the pre-established libref is not subject to security that
is implemented through the subsequent statement, and the new table is not bound
to a secured table object.

• Ensure that all physical tables within a metadata-bound library are protected by that
library. This standard, default state maximizes clarity. Special circumstances (for
example, a table that has a different, pre-existing password) can result in a mixed
state (for example, one of the tables within a metadata-bound library is not secured).
You can use the REPORT statement to verify that this guideline is met.

• Ensure that all physical tables that are protected by a particular metadata-bound
library remain within that library (directory). This standard, default state maximizes
clarity and is essential for REMOVE statements to be fully effective. Special
circumstances (for example, a table that is host-copied to another directory) can
prevent a REMOVE statement from unbinding the relocated data set.

• If you bind data that users are accustomed to accessing directly, inform those users
that they must establish a connection to the metadata server before they can assign a
libref against a metadata-bound library.

• In your metadata backup strategy, remember to consider your secured data folders,
secured library objects, and secured table objects. See Chapter 11, “Best Practices for
Backing Up and Restoring Your SAS Content,” in SAS Intelligence Platform: System
Administration Guide.

• Use the LIBNAME option AUTHADMIN=YES when you are repairing any
inconsistencies between physical data and its corresponding secured library and
secured table objects in metadata. Do not use AUTHADMIN=YES in other
circumstances.

Best Practices for Metadata-Bound Libraries 23

24 Chapter 2 • Basic Tasks

Chapter 3

Reference for Metadata-Bound
Libraries

Permissions for Metadata-Bound Data . 25
Permissions on Secured Library and Table Objects . 25
Permission Requirements . 26
Identity in Authorization Evaluations . 28

Passwords for Metadata-Bound Data . 29

Auditing for Metadata-Bound Libraries . 30
Which Events Can Be Logged? . 30
Audit Record Content and Layout . 31

Considerations for Data File Encryption . 32
Encrypting Metadata-Bound Data . 32
Changing Encrypted Table Passwords . 32

Considerations for Renaming Physical Tables . 33

Object Creation, Location, and Inheritance . 34
About This Topic . 34
Object Creation . 34
Metadata Location . 34
Access Control Inheritance . 34

Security Information in Metadata-Bound Data . 35

SAS Language Reference for Metadata-Bound Libraries . 36
About This Topic . 36
Metadata Server Connection Options . 36
LIBNAME Statement Options . 37
AUTHLIB Procedure . 38

Permissions for Metadata-Bound Data

Permissions on Secured Library and Table Objects
For secured library objects and secured table objects, SAS enforces the following special
metadata-layer permissions:

25

Table 3.1 Permissions for Metadata-Bound Data

Permission Abbreviation Actions Affected

Delete D Delete rows in a physical table. For example, in order to use SAS to delete data
from a metadata-bound table, you need the Delete permission on the
corresponding secured table object. You also need the Select permission on that
object.

Insert I Add rows to a physical table. For example, in order to use SAS to add data to a
metadata-bound table, you need the Insert permission on the corresponding
secured table object.

Update U Update rows in a physical table. For example, in order to use SAS to update data
in a metadata-bound table, you need the Update permission on the corresponding
secured table object. You also need the Select permission on that object.

Select S Read rows within a physical table. For example, in order to use SAS to read data
from a metadata-bound table, you need the Select permission on the
corresponding secured table object.

Create Table CT Create a new physical table. For example, in order to use SAS to add a table to a
metadata-bound library, you need the Create Table permission on the
corresponding secured library object.

Rename a physical table (if that action creates a new table, rather than overwriting
a preexisting table). For example, if you rename TableA to TableB in a metadata-
bound library that does not already contain a TableB, you need the Create Table
permission on the corresponding secured library object. You also need the Alter
Table permission on TableA’s corresponding secured table object.

Drop Table DT Delete a physical table. For example, in order to use SAS to delete a metadata-
bound table, you need the Drop Table permission on the corresponding secured
table object.*

Alter Table AT Replace a physical table. For example, in order to use SAS to replace a metadata-
bound table, you need the Alter Table permission on the corresponding secured
table object.

Rename a physical table. For example, in order to use SAS to rename a metadata-
bound table, you need the Alter Table permission on the corresponding secured
table object. You also need the Create Table permission on the corresponding
secured library object.

Perform other administrative updates on a physical table, such as modifying
variable names and labels. For example, in order to use SAS to change labels in a
metadata-bound table, you need the Alter Table permission on the corresponding
secured table object.

* A user who has Write access in the host layer can delete physical tables using operating system commands, regardless of whether the
user has a grant of DT in the metadata layer. Any table replacements are detected through audit log entries. See “Auditing for
Metadata-Bound Libraries” on page 30.

Permission Requirements

Table-Level Tasks
The following table documents the effective metadata-layer grants on a secured table
object that are required in order to perform certain tasks with that object.

26 Chapter 3 • Reference

T I P Each of the following tasks is initiated by SAS against physical data (SAS data
set files or SAS views). For data that is bound to metadata, SAS always enforces
metadata-layer permission requirements before allowing access.

Table 3.2 Metadata-Layer Permission Requirements for Selected Tasks

Task

Effective Grants

(on the secured table
object)

View data in a metadata-bound table Select

Add rows to a metadata-bound table Insert

Update rows in a metadata-bound table Select, Update

Delete rows from a metadata-bound table Select, Delete

Replace a metadata-bound table with a new version of data Alter Table

Rename a metadata-bound table (for example, using PROC DATASETS with CHANGE) Alter Table, Create Table*

Modify variable names or labels in a metadata-bound table (for example, using PROC
DATASETS with MODIFY)

Alter Table

Copy a metadata-bound table out of a metadata-bound library (for example, using PROC
COPY)

Select

Move a metadata-bound table out of a metadata-bound library (for example, using PROC
COPY with MOVE)

Select, Drop Table

Delete a metadata-bound table from the file system (for example, using PROC
DATASETS with DELETE)

Drop Table

* The Create Table permission is required on any target secured table object that will be overwritten. If there is no such object, then the
Create Table permission is required on the parent library.

Library-Level Tasks
The following table documents which effective metadata-layer grants on which objects
are required in order to perform certain library-level tasks.

T I P Each of the following tasks is initiated by SAS against physical data. With
metadata-bound libraries, SAS always enforces metadata-layer permission
requirements before allowing access.

Table 3.3 Metadata-Layer Permission Requirements for Selected Tasks

Task Secured Data Folder

Secured
Library
Object

Secured
Table
Object

Create a metadata-bound library (using the CREATE statement
of the AUTHLIB procedure)

WriteMemberMetadata - -

Permissions for Metadata-Bound Data 27

Task Secured Data Folder

Secured
Library
Object

Secured
Table
Object

Remove protections from a metadata-bound library (for
example, using the REMOVE statement of the AUTHLIB
procedure)

WriteMemberMetadata WriteMetadata -

Add tables to a metadata-bound library (for example, using the
COPY procedure)

- Create Table Alter
Table*

* Alter Table is required on any target table object that will be overwritten. If there is no such table object, then Create Table is required
on the parent library object.

Additional Considerations
The following additional requirements apply:

• The metadata identity under which authorization decisions are requested must have
the ReadMetadata permission for all applicable objects.

• The host identity under which physical data is accessed must meet the usual host-
layer requirements, such as the following:

• In order to view physical data, the host identity must have host-layer Read access
to the data.

• In order to create a metadata-bound library, the host identity must have host-layer
control of the physical directory, as follows:

• On UNIX, the account must be the owner of the directory.

• On Windows, the account must have Full Control of the directory.

• On z/OS, for UNIX file system libraries, the account must be the owner of
the directory.

• On z/OS, for direct-access bound libraries, the account must have RACF
ALTER access authority to the library data set.

• In order to add, update, or delete a physical table, the host identity must have
host-layer Write access to the target directory or file (in accordance with the host
system’s requirements).

• When accessing data from a client such as SAS Web Report Studio, users must also
have appropriate permissions for the traditional library and table objects that are used
to locate the data.

Note: The preceding tables address tasks that are performed using SAS. Tasks that are
instead performed using host commands are not subject to metadata-layer permission
requirements. See “Security Impact of Moving Tables” on page 43.

Note: If the metadata identity that is used to bind a physical library to metadata doesn’t
have effective metadata-layer grants of the data permissions, explicit grants are
added to the new secured library object when it is created.

Identity in Authorization Evaluations
In general, metadata-layer access is evaluated against the metadata identity of the
requesting user (the client), and host-layer access is evaluated against the server process
identity (or, for a Base SAS session, the identity under which the session was initiated).

28 Chapter 3 • Reference

The following list documents some exceptions:

• If access is through a SAS/CONNECT server that did not receive the requesting
user’s metadata identity from the client session, metadata-layer authorization checks
are made against the SAS/CONNECT server’s metadata identity. This unusual
circumstance occurs if the server runs with the
NOCONNECTMETACONNECTION option and is not a trusted peer of the
metadata server.

• If access is through a SAS/SHARE server that cannot impersonate the requesting
user on a connection to the metadata server, and the target data is a remote view,
then metadata-layer authorization checks are made against the SAS/SHARE server’s
metadata identity. For example, metadata-layer authorization checks are made
against the SAS/SHARE server’s metadata identity if that server runs with the
AUTHENTICATE=OPTIONAL option and no client identity is established.

For access through a SAS/SHARE server that does impersonate the requesting user, an
additional consideration is which client identity matters—the one that connects to the
SAS/SHARE server, or the one that issues the LIBNAME statement. The following list
provides details:

• In both of the following cases, checks are under the metadata identity that
corresponds to the user ID with which the client host authenticates to the
SAS/SHARE server:

• Access is through view files and the REMOTEVIEW option is set to YES (the
default value).

• Access is from a third-party client (such as ODBC, OLEDB, or JDBC).

• Otherwise, checks are under the metadata identity in the client at the time that the
LIBNAME statement is issued.

Passwords for Metadata-Bound Data
In addition to being tied to a particular metadata object, a metadata-bound library also
has a set of associated passwords. These passwords serve a secondary role, enabling
administrators to recover metadata (for example, in the event that they accidentally
delete a secured library object from the metadata) and ensuring that authorization
decisions come from only valid sources.

Here are some details about these passwords:

• The passwords are recorded both in the physical data and in metadata.

• The passwords are always stored and transmitted in encrypted formats. Even if an
encrypted password is captured, it can’t be submitted as a password value in SAS
code.

• The passwords do not create access distinctions. For simplicity, we recommend that
you use PW= to set a single password value, rather than specifying different
password values using READ=, WRITE=, and ALTER=.

However, each plain text password value can be only eight characters long. You
might choose to set different password values (using READ=, WRITE=, and
ALTER=) for greater security. In effect, setting different values can create a 24-
character password.

Passwords for Metadata-Bound Data 29

• You can use the PWENCODE procedure to encode passwords for use in the
AUTHLIB procedure. If you supply an encoded password, enclose it in quotation
marks. All other encryption of the password (both in-transit and on-disk) occurs
automatically. An encrypted password that is captured in transmission cannot be
used.

• End users never have to supply these passwords, so they should neither know, nor
have access to, the password values.

• In general, all metadata-bound tables within a particular metadata-bound library
share the same set of passwords. Each library’s passwords are automatically applied
to the tables within that library. However, the following exceptions exist:

• Physical tables that existed in the operating system directory, with passwords, at
the time that their parent metadata-bound library was created retain their pre-
existing passwords. Such physical tables are not secured by metadata unless you
modify their passwords to match the parent library’s passwords (using the
AUTHLIB MODIFY statement).

• Physical tables that you copy into a metadata-bound library using operating
system commands yield the following results:

• If the original tables are metadata-bound tables, the copied tables are
protected by the same metadata-bound library that protected the original
tables. The act of copying the physical tables into another metadata-bound
library doesn’t cause a change to the protections.

• If the original tables are not metadata-bound tables, the copied tables are not
secured by metadata unless you explicitly apply the library passwords to
them (using the AUTHLIB MODIFY statement).

• Use of metadata-bound libraries doesn’t involve prompting end users for secured
library passwords.

• When it communicates authorization decisions, the metadata server supplies
passwords that match passwords that are stored with the physical data, in order to
prove that it is the valid source for those decisions.

• In order to use SAS to copy a metadata-bound table, you must have Read access (the
Select permission) for the source table. The source table’s password is not applied to
the new (output) table. If the new table is added to a metadata-bound library, that
library’s password is applied to it. If the new physical table is added to a traditional
library, the new table is not protected as a secured table or with passwords retained
from the source table.

See Also
“Security Impact of Moving Tables” on page 43

Auditing for Metadata-Bound Libraries

Which Events Can Be Logged?
For metadata-bound libraries, certain events are logged as part of a system-wide logging
facility. The following table summarizes the events that can be logged:

30 Chapter 3 • Reference

Table 3.4 Logged Events for Metadata-Bound Data

Category (Logger) Logged Events

Authorization failure records

(Audit.Data.MetaboundLib.PermDenied)

A user attempts to access a metadata-bound table to which the user has
insufficient effective permissions in the metadata layer. Access is not
allowed.

Misalignment issue records*

(Audit.Data.MetaBoundLib.AuthAudit)

A user accesses a metadata-bound table that is located within a traditional
(unbound) library.

A user accesses a traditional (unbound) table that is located within a
metadata-bound library.**

A user accesses a metadata-bound table whose security location reference
doesn’t match the security location reference of its parent library.

A user accesses a metadata-bound table whose security name reference
doesn’t match the corresponding secured table object. In other words, there is
a mismatch of names (the correspondence is determined by another
identifier).

A user attempts to access a metadata-bound table whose passwords don't
match the passwords of the corresponding secured library object. In other
words, there is a mismatch of passwords. Even if the user’s metadata-layer
permissions are sufficient, access is not allowed.

* The misalignment issue records do not specify who created the issue; these records just indicate that the issue exists at the time that
access is requested.

** This is the most important event to audit, because it might indicate a circumvention of security (for example, a user uses SAS to copy
protected data to an unsecured location, updates that data, and then host-copies it back to the secured location). Only users who have
Write access to the directory could do this. However, anyone who needs Create Table access to any secured table object within a
library must have Write access to the corresponding directory.

Audit Record Content and Layout
Here is an example of an authorization failure record:

DateTime=2012-02-15T17:48:28,671, Userid=JOE@COMPANY,
StepName=DATASTEP, Action=Read, LoginId=JOE@COMPANY,
IdentityName=Joe, Libref=REVENUE , OSLibraryPath=\\machine.company.com\Data
\Revenue, MemberName=CSV, MemberType=VIEW , DataSetInfoSecuredLibrary=/
System/Secured Libraries/Data/,
DataSetInfoSecuredLibraryGuid=5200B831-50A1-4E66-92CD-AD86ACDB43B7,
DataSetInfoSecuredTableName=CSV.VIEW,
DataSetInfoSecuredTableGuid=5BE37390-986F-45B4-8227-F3653C79768A,
LibraryInfoSecuredLibrary=/System/Secured Libraries/Data,
LibraryInfoSecuredLibraryGuid=5200B831-50A1-4E66-92CD-AD86ACDB43B7,
RequiredPermission=Select, UserEffectivePermissions=None, Message=ERROR:
JOE@COMPANY as Joe is not authorized to read data set REVENUE.CSV.VIEW.
Select permission is required.

Here is an example of a misalignment issue record that indicates a possible security
concern:

DateTime=2012-02-15T17:48:21,201, Userid=JOE@COMPANY,
StepName=DATASTEP, RecType=201, LoginId=JOE@COMPANY,

Auditing for Metadata-Bound Libraries 31

IdentityName=omitest, Libref=METAOMI , OSLibraryPath=\\machine.company.com
\Data, MemberName=D, MemberType=DATA , DataSetInfoSecuredLibrary=,
DataSetInfoSecuredLibraryGuid=, DataSetInfoSecuredTableName=,
DataSetInfoSecuredTableGuid=, LibraryInfoSecuredLibrary=/System/Secured Libraries/
Data, LibraryInfoSecuredLibraryGuid=ACFAF468-B77E-4DF2-BB64-
D7342F2CB1CE, PasswordDifferences=, UserEffectivePermissions=,
Message=WARNING: Data set METAOMI.D.DATA is not bound to a secured table
object, but it resides in a directory that is bound to a secured library object. The data set
might have existed in this directory before the library was bound, or the data set might
have been copied to this directory with a host copy utility.

T I P The layout of an audit record is determined by conversion patterns within your
logging configuration file.

See Also
• Chapter 9, “Administering Logging for SAS Servers,” in SAS Intelligence Platform:

System Administration Guide

• SAS Logging: Configuration and Programming Reference

Considerations for Data File Encryption

Encrypting Metadata-Bound Data
The process for encrypting metadata-bound tables is the same as for encrypting
traditional tables, except that the Read password is obtained from the secured library
object (in metadata). The password is not supplied in SAS code.

See “SAS Data File Encryption” in Chapter 34 of SAS Language Reference: Concepts.

Changing Encrypted Table Passwords

No Direct Changes
Nobody can directly change or remove the password on encrypted tables in a metadata-
bound library.

Suggested Process
If you need to change the password on a metadata-bound library that contains encrypted
tables, use a process such as the following:

1. Use SAS code to create a copy of the encrypted physical tables with the new
password, in a separate directory. You can use the OVERRIDE option of the COPY
procedure to set the new password.

2. Delete the original physical tables from the original library, using either a host delete
command or the KILL option of the DATASETS procedure.

3. Change the password on the original library to the new value, using the MODIFY
statement of the AUTHLIB procedure.

4. Use SAS to copy the physical tables back to the original library.

5. Delete the copy of the physical tables that you created in step 1.

32 Chapter 3 • Reference

Integrity Constraints
If there are referential integrity constraints in any of the tables, adjust the preceding
process as follows:

• Specify CONSTRAINT=YES in step 1 and step 4.

• Either remove the constraints (delete the foreign keys) before performing step 2, or
use a host delete command in step 2.

T I P If only a few of the tables are encrypted, and none of those tables have integrity
constraints, consider using SELECT statements in steps 1 and 4 (instead of making
adjustments as indicated in the preceding list).

Example
For example, the following code fragment performs steps 1 through 4 of the suggested
process. In this example, X is the encrypted library, B is a table that has referential
integrity constraints, and FKB is a foreign key within table B.

proc copy in=x out=emptydir override=(pw=secret2) constraint=yes;
run;

proc datasets library=x;
 modify b;
 ic delete fkb;
run;
quit;

proc datasets library=x kill;
run;

proc authlib library=x;
 modify pw=secret/secret2;
run;
quit;

proc copy in=emptydir out=x constraint=yes;
run;

To complete the process (step 5), the following code fragment deletes the copy of the
physical tables from the WORK library.

proc datasets library=emptydir;
 modify b(pw=secret2);
 ic delete fkb;
run;
quit;

proc datasets library=emptydir kill pw=secret2;
run;

Considerations for Renaming Physical Tables
If you need to rename a physical table within a metadata-bound library, use the
DATASETS procedure or the Explorer window. If a secured table object with the new
name already exists within the secured library object, access to the physical table is
governed by permissions for that secured table object. If no secured table object exists

Considerations for Renaming Physical Tables 33

with the new name, a new secured table object is created. Any direct access controls
(explicit permissions and directly applied access control templates) on the secured table
object with the old name are set on the new secured table object.

Object Creation, Location, and Inheritance

About This Topic
This topic highlights key differences between the following sets of metadata objects:

• secured library and table objects

• traditional library and table objects

Each set of objects serves a distinct purpose, so each has distinct characteristics.

Object Creation
You create secured library and table objects by binding physical data, using the
CREATE statement of the AUTHLIB procedure. The CREATE statement adds security
information to the physical data and creates corresponding metadata objects at the same
time.

You create traditional library and table objects by registering physical data, using a
client such as SAS Management Console. You can also register traditional tables
through SAS code (using the METALIB procedure). Registering data in metadata has no
impact on the physical content of the data.

Metadata Location
Traditional library and table objects can be located in any regular metadata folder. For
greater security, metadata locations for secured library and table objects are constrained
as follows:

• These objects can be located only within a /System/Secured Libraries
branch in the SAS Folders tree. You can put secured library objects in subfolders
within a /System/Secured Libraries branch. You cannot bind physical
libraries to secured library objects in other locations.

• Each secured library object is located within a secured data folder, which is a special
type of metadata folder that exists only under a /System/Secured Libraries
branch.

• Each secured table object is located within a secured library object.

Access Control Inheritance
For secured library and table objects, metadata-layer access control inheritance is as
follows:

• Each secured library object inherits from its parent secured data folder.

• Each secured table object inherits from its parent secured library.

34 Chapter 3 • Reference

This inheritance pattern differs from that of traditional library and table objects, which
both inherit directly from their parent folders. The difference in inheritance pattern
reflects the distinct purpose of each set of objects:

• Secured library and table objects serve as bind targets for physical data (providing
access control for the data), so their inheritance pattern follows the inheritance
pattern of the physical data.

• Traditional library and table objects serve as pointers to physical data (enabling
clients to locate data through metadata), so their inheritance pattern is folder
oriented.

The following figure depicts examples of inheritance for both types of libraries:

Figure 3.1 Examples of Inheritance for Traditional and Secured Library Objects

Inheritance for
Secured

Library Objects

Inheritance for
Traditional

Library Objects

Table Library

Column Secured Library

Secured Table

Secured Libraries

System

SAS Folders

Repository ACT

Security Information in Metadata-Bound Data
In addition to the usual directory and file content, additional security-related information
is stored in the host for metadata-bound data.

• For a physical library, the security information consists of a subdirectory and file.
The corresponding metadata object is called a secured library object.

Note: On z/OS, the security information for a UNIX file system (UFS) library is
stored as described above. However, the security information for a z/OS direct-
access bound library is instead stored within the bound library data set itself. For
this reason, z/OS sites that choose to use metadata-bound libraries might prefer
the z/OS direct-access bound library implementation to the UFS library

Security Information in Metadata-Bound Data 35

implementation. z/OS sequential-access bound libraries cannot be bound to
metadata.

• For a physical table, the security information consists of information in the header.
The corresponding metadata object is called a secured table object.

The security information includes the following:

• an indication that access to the physical data must be authorized by the metadata
server

• a record of the metadata location of the metadata objects that correspond to the
physical data

The security-related information itself is host protected.

SAS Language Reference for Metadata-Bound
Libraries

About This Topic
Administrators who set up and maintain metadata-bound libraries need to know the SAS
language reference information for metadata-bound libraries.

Note: For data consumers, interaction with metadata-bound libraries is mostly
transparent: each access request succeeds or fails based on the requesting user’s
permissions. However, a connection to the metadata server is required in order to
access metadata-bound data, so users who make direct requests (for example,
through a LIBNAME statement) do have to facilitate that connection.

Metadata Server Connection Options
An administrator connects from a SAS session to a target metadata server in order to set
up or maintain metadata-bound data.

Metadata server connection information can be provided in the following ways:

• Specify options in a configuration file. For example, you might add the following
lines to a configuration file:

-METAPORT 8561
-METAREPOSITORY "foundation"
-METASERVER "a123.us.company.com"
-METAUSER "myuserid"
-METAPASS "Pwd1"

• Specify options in an OPTIONS statement. For example, you might add the
following OPTIONS statement to your SAS program or autoexec.sas file:

options
 metaport=8561
 metarepository="foundation"
 metaserver="a123.us.company.com"
 metauser="myuserid"
 metapass="Pwd1";

36 Chapter 3 • Reference

• Reference a stored connection profile (using the METACONNECT= and
METAPROFILE options).

• Provide connection information interactively. If sufficient information is not
otherwise available, you can be prompted for connection information.

T I P If a port is not specified, the default metadata server port (8561) is used. If a
repository is not specified, the foundation repository is used. If Integrated Windows
authentication (IWA) is configured, you don’t have to supply a user ID or password.

For additional information, see “Connection Options ” in Chapter 5 of SAS Language
Interfaces to Metadata.

LIBNAME Statement Options

AUTHADMIN
An administrator specifies the AUTHADMIN=YES option on a LIBNAME statement in
order to access a metadata-bound library for which corresponding metadata is corrupted,
misconfigured, or missing. If the administrator specifies AUTHADMIN=YES on a
LIBNAME statement, the administrator must somehow supply the metadata-bound
library password (or passwords) in order to access the files. In this specialized context,
metadata-layer permissions are not used to determine access.

Note: Since some access requests do not have a way to specify passwords, the
administrator can use the AUTHPW option (or related options) on the LIBNAME
statement to provide the metadata-bound library password (or passwords). See
“AUTHPW (and Related Options)” on page 37.

Note: The AUTHADMIN=YES option is accepted only if the account under which your
SAS session runs has host-layer control of the target physical library. This ensures
that only users who have host control for a particular directory can use this option
against that directory. The host-specific details for this requirement are the same as
for the AUTHLIB procedure statements (except the REPORT statement). See “Who
Uses the CREATE Statement?” on page 10.

We recommend that you use AUTHADMIN=YES when you are repairing any
inconsistencies between physical data and its corresponding secured library and secured
table objects in metadata. We do not recommend that you use AUTHADMIN=YES in
other circumstances. The purpose of this option is to enable an administrator to establish
a libref for a library that is in need of repair.

We also recommend that you reassign the library (without AUTHADMIN=YES) after
the repairs are made.

Note: In the current release, the REPAIR statement is a preproduction feature.

For additional information, see “LIBNAME Statement” in SAS Statements: Reference.

AUTHPW (and Related Options)
An administrator can choose to specify AUTHPW=password-value on a LIBNAME
statement as an alternate method for making the metadata-bound library password
available to later requests.

A password that is supplied by the AUTHPW option is used only if both of the
following circumstances exist:

• AUTHADMIN=YES is specified on the LIBNAME statement.

Note: Use of AUTHADMIN=YES does not necessitate use of AUTHPW. You are
not required to specify metadata-bound library passwords in a LIBNAME

SAS Language Reference for Metadata-Bound Libraries 37

statement. However, you should not specify metadata-bound library passwords in
a LIBNAME statement that doesn’t also specify AUTHADMIN=YES.

• The correct password for the target metadata-bound library is not otherwise available
(either no password is supplied or the supplied password is invalid).

In such requests, the value from the AUTHPW option is validated against the password
within the physical table. An error is returned if the passwords do not match.

Requests to access metadata-bound tables within a library that was assigned with
AUTHADMIN=YES must meet at least one of the following criteria:

• The request comes from the AUTHLIB procedure, which has a supplied password.

• The request explicitly supplies the password.

• The library was also assigned with the AUTHPW option, which supplies the
password.

• The request is interactive and the user can supply the password when prompted.

Note: For conciseness, the preceding discussion assumes that there is only one password
for the target metadata-bound library. For a metadata-bound library that has two or
three distinct passwords, you must specify each password (using the AUTHREAD,
AUTHWRITE, and AUTHALTER options as appropriate) instead of using the
AUTHPW option on its own.

For additional information, see “LIBNAME Statement” in SAS Statements: Reference.

See Also
“Passwords for Metadata-Bound Data” on page 29

AUTHLIB Procedure
An administrator uses the AUTHLIB procedure to set up and maintain metadata-bound
libraries. The AUTHLIB procedure is documented in the Base SAS Procedures Guide.
As a convenience for the reader, documentation for the AUTHLIB procedure is also
reproduced in this document (see Appendix 2).

38 Chapter 3 • Reference

Chapter 4

Troubleshooting for Metadata-
Bound Libraries

Facilitate End-User Access . 39

Replace Missing Metadata Objects . 40

Realign Security Location Information . 41

Facilitate End-User Access
This topic provides guidance for enabling end users to access metadata-bound data.

Issue: User can’t access the metadata server.

Resolution:

Complete the following steps:

• Explain to the user how to connect to the target metadata server from his or her SAS
session. See “Metadata Server Connection Options” on page 36.

• In SAS Management Console, make sure the user is correctly registered in the
metadata repository. See the topic "Introduction to User Administration" in the SAS
Management Console: Guide to Users and Permissions.

Issue: User is not authorized to access the data.

Resolution:

Complete the following steps:

• Verify that the user is using the second maintenance release of SAS (or a later
release). Users cannot access metadata-bound data from earlier releases of SAS.

• In SAS Management Console, make sure the user is correctly registered in the
metadata repository. See the topic "Introduction to User Administration" in the SAS
Management Console: Guide to Users and Permissions.

• In SAS Management Console, verify that the user has the necessary permissions on
the secured table object that corresponds to the target metadata-bound table. If the
user is attempting to access data from a client that uses metadata in order to locate
data, verify that the user has sufficient permissions on the traditional table object.
See “Verifying Read Access to Metadata-Bound Data” on page 21.

• Make sure that the host account under which the data is retrieved has host-layer
access to the data. See “Identity in Authorization Evaluations” on page 28.

39

• In the metadata server log, make sure that the user is connecting to the metadata
server under the expected metadata identity. See “Default Locations for Server
Logs” in Chapter 24 of SAS Intelligence Platform: System Administration Guide.

Replace Missing Metadata Objects
This topic provides guidance for replacing missing secured data folders, secured library
objects, and secured table objects.

Note: Some of the resolutions in this section use the REPAIR statement, which is a
preproduction feature in the current release. As an alternative to using the REPAIR
statement, you can create a new physical library, bind that library to metadata, and
use the SAS COPY procedure to copy your data into the new library. See
“(Preproduction) REPAIR Statement” on page 61.

Issue: A secured data folder is missing.

Resolution:

Use one of the following approaches:

• Use the metadata promotion tools to import the folder (and its contents) from an
existing package. See Chapter 18, “Promotion Tools Overview,” in SAS Intelligence
Platform: System Administration Guide.

• Re-create the folder in SAS Management Console. On the Folders tab, navigate to
the appropriate location (under a repository’s /System/Secured Libraries
branch), right-click, and select New ð Folder.

• Restore the folder (and its contents) from a metadata server backup. See Chapter 12,
“Backing Up and Recovering the SAS Metadata Server,” in SAS Intelligence
Platform: System Administration Guide.

Issue: A secured library object is missing.

Resolution:

Use one of the following approaches:

• Use the metadata promotion tools to import the secured library object (and its
secured table objects) from an existing package. See Chapter 18, “Promotion Tools
Overview,” in SAS Intelligence Platform: System Administration Guide.

• Use the REPAIR statement of the AUTHLIB procedure, with the ADD action and
the METADATA option.

• Restore the secured library object from a metadata server backup. See Chapter 12,
“Backing Up and Recovering the SAS Metadata Server,” in SAS Intelligence
Platform: System Administration Guide.

Issue: A secured table object is missing.

Resolution:

Use one of the following approaches:

• Use the metadata promotion tools to import the secured table object’s parent library
from an existing package. The import overwrites the current secured library object
and its child objects, and it re-creates any missing secured table objects. See Chapter

40 Chapter 4 • Troubleshooting for Metadata-Bound Libraries

18, “Promotion Tools Overview,” in SAS Intelligence Platform: System
Administration Guide.

• Use the REPAIR statement of the AUTHLIB procedure, with the ADD action and
the METADATA option.

• Restore the secured table object from a metadata server backup. See Chapter 12,
“Backing Up and Recovering the SAS Metadata Server,” in SAS Intelligence
Platform: System Administration Guide.

Realign Security Location Information
This topic provides guidance for realigning missing or corrupted security location
information (the security binding information that is stored with the physical data).

Note: The resolutions in this section use the REPAIR statement, which is a
preproduction feature in the current release. As an alternative to using the REPAIR
statement, you can create a new physical library, bind that library to metadata, and
use the SAS COPY procedure to copy your data into the new library. See
“(Preproduction) REPAIR Statement” on page 61.

Issue: Physical library (or table) security location information is corrupted.

Resolution:

Use the REPAIR statement with the UPDATE action and the LOCATION option.

Issue: Physical library (or table) security location information is missing.

Resolution:

Use the REPAIR statement with the ADD action and the LOCATION option.

Realign Security Location Information 41

42 Chapter 4 • Troubleshooting for Metadata-Bound Libraries

Appendix 1

Security Impact of Moving Tables

About This Appendix . 43

Adding Physical Tables to a Metadata-Bound Library . 43
Introduction . 44
Using SAS . 44
Using Host Commands . 45

Copying Metadata-Bound Tables to a Traditional Library 46
Introduction . 46
Using SAS . 46
Using Host Commands . 47

About This Appendix
If you need to copy or move metadata-bound libraries in the file system, we recommend
that you use SAS, not operating system commands.

Note: An exception to this guideline is that using a host copy command to back up or
restore physical data to the same directory is not problematic.

For example, if you use SAS (the COPY procedure) to copy a table, the new table takes
on the nature of its parent library as follows:

• Copying a table into a metadata-bound library yields a metadata-bound table.

• Copying a table into an unbound library yields an unbound table.

The following topics depict the security impact of copying or moving metadata-bound
libraries and tables.

Adding Physical Tables to a Metadata-Bound
Library

The examples in this topic use the copy action. The same results occur if physical tables
are moved, except that the original physical tables are deleted.

43

Introduction
When you copy or move physical tables into a metadata-bound library, the result varies
depending on the following factors:

• whether you use SAS or host commands to perform the action

• whether the original tables are protected with passwords that differ from the
password of the target library

The following figure depicts an initial state for the examples in this topic.

Figure A1.1 Example: Initial State

Metadata LayerHost Layer

tableA

tableB

seclibsensitive data

tableB.sas7bdat

tableA.sas7bdat

tableC.sas7bdat
unsecured data

tableD

seclib2more data

tableD.sas7bdat

= security binding= security location information

Using SAS
If you use SAS to add physical tables to a metadata-bound library, the added tables are
automatically secured. The password of the target library is applied to the added tables,
and corresponding secured table objects are created in metadata.

The following example depicts the impact of using the COPY procedure to copy tableC
and tableD into the sensitive data folder.

44 Appendix 1 • Security Impact of Moving Tables

Figure A1.2 Example: After a SAS Copy

Metadata LayerHost Layer

tableA

tableB

seclibsensitive data

tableB.sas7bdat

tableA.sas7bdat

tableC.sas7bdat

tableCtableD.sas7bdat

tableC.sas7bdat
unsecured data

tableD

seclib2more data

tableD.sas7bdat

tableD

Notice that security information and bindings are generated for the added tables and that
corresponding secured table objects are automatically created in metadata. With a SAS
copy, both of the added tables are automatically secured by their parent library.

Using Host Commands
If you use a host copy command to add physical tables to a secured library, the added
tables are not automatically secured. If you create a host copy of an unsecured table, the
copy is unsecured. If you create a host copy of a secured table, the copy retains the
security information and binding of the original table.

The following example depicts the impact of using host commands to copy two physical
tables (tableC and tableD) into the sensitive data folder.

Figure A1.3 Example: After a Host Copy

Metadata LayerHost Layer

tableA

tableB

seclibsensitive data

tableB.sas7bdat

tableA.sas7bdat

tableC.sas7bdat

tableD.sas7bdat

tableC.sas7bdat
unsecured data

tableD

seclib2more data

tableD.sas7bdat

Adding Physical Tables to a Metadata-Bound Library 45

Notice that the copied tableC is not secured, and that the copied tableD has the same
security binding as the original tableD.

Copying Metadata-Bound Tables to a Traditional
Library

The examples in this topic use the copy action. The same results occur if tables are
moved, except that the original physical tables are deleted.

Introduction
When you copy or move metadata-bound tables into a traditional physical library, the
result varies depending on whether you use SAS or host commands to perform the
action.

The following figure depicts an initial state for the examples in this topic.

Figure A1.4 Example: Initial State

Metadata LayerHost Layer

tableC

seclibsecured data
tableC.sas7bdat

unsecured data

tableB.sas7bdat
tableA.sas7bdat

= security binding= security location information

Using SAS
If you use SAS to add a metadata-bound table to a traditional physical library, the added
table is not secured. It takes on the unsecured nature of its new parent library. For this
reason, SAS requires that you have adequate metadata-layer permissions to the original
table in order to copy (or move) it. See “Permissions for Metadata-Bound Data” on page
25.

The following example depicts the impact of using the COPY procedure to copy a
physical table (tableC) into the unsecured data folder.

46 Appendix 1 • Security Impact of Moving Tables

Figure A1.5 Example: After a SAS Copy

Metadata LayerHost Layer

unsecured data

tableB.sas7bdat
tableA.sas7bdat

tableC.sas7bdat

tableC

seclibsecured data
tableC.sas7bdat

Using Host Commands
If you use a host command to add a metadata-bound table to a traditional physical
library, the added table is secured. It is bound to the same metadata object that the
original table is bound to. With a host command, SAS isn’t involved, so metadata-layer
permissions can’t be checked. Thus the original security information and binding is
preserved.

Figure A1.6 Example: After a Host Copy

Metadata LayerHost Layer

unsecured data

tableB.sas7bdat
tableA.sas7bdat

tableC.sas7bdat

tableC

seclibsecured data
tableC.sas7bdat

Copying Metadata-Bound Tables to a Traditional Library 47

48 Appendix 1 • Security Impact of Moving Tables

Appendix 2

AUTHLIB Procedure

Overview: AUTHLIB Procedure . 49

Concepts: AUTHLIB Procedure . 50
What Is a Metadata-Bound Library? . 50
What Are Metadata-Bound Library Passwords? . 50
Data Sets in a Metadata-Bound Library That Are Not Bound

to Secured Table Objects . 51
Requirements to Use PROC AUTHLIB Statements . 51

Syntax: AUTHLIB Procedure . 52
PROC AUTHLIB Statement . 54
CREATE Statement . 55
MODIFY Statement . 56
REMOVE Statement . 58
(Preproduction) REPAIR Statement . 59
REPORT Statement . 63
TABLES Statement . 65

Results: AUTHLIB Procedure . 67

Examples: AUTHLIB Procedure . 68
Example 1: Binding a Physical Library That Contains Unprotected Data Sets 68
Example 2: Binding a Physical Library That Contains

Password-Protected Data Sets . 69
Example 3: Securing a Library When Existing Data Sets Are

Protected with the Same Passwords . 70
Example 4: Securing a Library When Existing Data Sets Are

Protected with Different Passwords . 71
Example 5: Changing Passwords on Data Sets . 73
Example 6: Changing Metadata-Bound Library Passwords 74
Example 7: Using the REMOVE Statement . 75
Example 8: Using the REPORT Statement . 76
Example 9: Using the TABLES Statement . 77

Overview: AUTHLIB Procedure
The AUTHLIB procedure is a utility procedure that manages metadata-bound libraries.
With PROC AUTHLIB, you can do the following:

• create a metadata-bound library by binding a physical library to metadata within a
SAS Metadata Repository

49

• modify password values for a metadata-bound library

• repair metadata-bound libraries by recovering security information, secured library
objects, and secured table objects (this functionality is preproduction in this release)

• remove the physical security information and metadata objects that protect a
metadata-bound library

• report inconsistencies between physical library contents and corresponding metadata
objects within a specified metadata-bound library

Users cannot access metadata-bound data sets from any release of SAS prior to the
second maintenance release of SAS 9.3.

Note: For a z/OS direct-access bound library that has been bound to metadata, the
constraint is slightly broader—neither the library nor any of its members can be
accessed by earlier releases of SAS.

Concepts: AUTHLIB Procedure

What Is a Metadata-Bound Library?
A metadata-bound library is a physical library that is tied to a corresponding metadata
secured table object. Each physical table within a metadata-bound library has
information in its header that points to a specific metadata object. The pointer creates a
security binding between the physical table and the metadata object. The binding ensures
that SAS universally enforces metadata-layer access requirements for the physical table
—regardless of how a user requests access from SAS. For more information, see SAS
Guide to Metadata-Bound Libraries.

What Are Metadata-Bound Library Passwords?
A metadata-bound library has a single set of passwords stored in the secured library
object, which are added to all data sets that are created in the metadata-bound library.
These passwords are not used to authorize user access to the data, but rather to authorize
administrator access to repair the binding of physical data to the secured library or table
metadata objects. They are also validated in the process of authorizing a user’s access to
a data set but do not determine the permissions that any user is authorized to have.

The metadata-bound library passwords are intended to be known only by the
administrators of the metadata-bound library. Knowledge of these passwords is required
to restore or re-create secured library and secured table objects in a SAS Metadata
Server for data sets in a data library that have lost their previously recorded metadata
objects and permissions. The metadata-bound library passwords also prevent a user from
exporting the secured library and secured table objects from a SAS Metadata Server and
then importing them to a SAS Metadata Server that an unauthorized user created and
controls. This prevents the unauthorized user from using such objects where the user has
modified the permissions.

The metadata-bound library passwords are always stored and transmitted in encrypted
formats. The encrypted password is not usable to access the data if it is captured from a
transmission and presented to SAS as a password value in the SAS language.
Administrators might choose to use the PWENCODE procedure to encode the
passwords for use in a PROC AUTHLIB statement. Using an encoded password

50 Appendix 2 • AUTHLIB Procedure

prevents a casual observer from seeing the clear-text password in the PROC AUTHLIB
statements that the administrator types.

There are three passwords in the metadata-bound library set that correspond to the Read,
Write, and Alter passwords of SAS data sets. For greater simplicity in administration of
metadata-bound libraries, it is recommended that you use the PW= option in PROC
AUTHLIB statements to specify a single password value, rather than specifying
different password values using READ=, WRITE=, and ALTER= options. In the context
of metadata-bound libraries, the READ=, WRITE=, and ALTER= options do not create
access distinctions. If you are concerned that a single eight character password does not
meet your security requirements, you can choose to set three different password values
(using READ=, WRITE=, and ALTER=). Setting different values for these three options
can create a 24-character password. However, you must keep track of all password
values that you have assigned to a metadata-bound library as you must specify them to
unbind the library, modify the passwords, or repair any inconsistencies in the binding
information between what is recorded in the physical files and the actual metadata
objects.

CAUTION:
If you lose the password (or passwords) for a metadata-bound library, you
cannot unbind the library or change its passwords. Be sure to keep track of
passwords that you assign in the CREATE and MODIFY statements.

Data Sets in a Metadata-Bound Library That Are Not Bound to
Secured Table Objects

It is possible to have physical data sets in a metadata-bound library that do not have the
metadata-bound library passwords. This can occur if the data sets existed with passwords
that differ from the metadata library passwords when the library was bound. See
“Example 2: Binding a Physical Library That Contains Password-Protected Data Sets”
on page 69. It can also occur if data sets with different passwords are copied into the
library by an operating system copy utility. These data sets are not considered to be part
of the bound library for authorization purposes. If the data set was in an operating
system copied from another metadata-bound library, the data set is still protected by the
permissions users have in the secured table object to which it is bound in the original
secured library. If the data set is not copied from a metadata-bound library, then
metadata permissions do not apply, and you must supply the appropriate passwords to
access the data. You can use the MODIFY statement of PROC AUTHLIB to modify the
passwords to those of the metadata-bound library so that it will be bound to a secured
table object in the secured library object to which the library is bound. See “Example 5:
Changing Passwords on Data Sets ” on page 73.

Requirements to Use PROC AUTHLIB Statements
Except for the REPORT statement, all statements within PROC AUTHLIB require that
you must meet the following criteria:

• The SAS session runs under an account that has host-layer control of the target
physical library. To ensure that only users who have host control can bind a physical
library to metadata, the SAS session must run under a privileged host account as
follows:

• On UNIX, the account must be the owner of the directory.

• On Windows, the account must have full control of the directory.

Concepts: AUTHLIB Procedure 51

• On z/OS, for UNIX file system libraries, the account must be the owner of the
directory.

• On z/OS, for direct-access bound libraries, the account must have RACF ALTER
access authority to the library data set.

• The SAS session connects to the metadata server as an identity that has
ReadMetadata and WriteMemberMetadata permissions to the target secured data
folder.

• You must supply the password(s) in CREATE, MODIFY, REPAIR, and REMOVE
statements.

The REPORT statement requirements are less restrictive and are documented with that
statement.

Syntax: AUTHLIB Procedure
Restrictions: Users cannot access metadata-bound data sets from any release of SAS prior to the

second maintenance release of SAS 9.3.
This procedure is intended for use by SAS administrators. Users who lack sufficient
privileges in either the metadata layer or the host layer cannot use this statement.
This procedure does not support libraries accessed through a SAS/SHARE Server.

Requirement: A connection to the target metadata server.

See: For more information, see SAS Guide to Metadata-Bound Libraries.

52 Appendix 2 • AUTHLIB Procedure

PROC AUTHLIB <option-1 <...option-n>>;
CREATE

SECUREDLIBRARY='secured-library-name'
<SECUREDFOLDER='secured-folder-path'>
<LIBRARY=libref>
PW=all-password-value | |
ALTER=alter-password-value
READ=read-password-value
WRITE=write-password-value;

MODIFY
<LIBRARY=libref>

PW=all-password | |
ALTER=alter-password
READ=read-password
WRITE=write-password
<TABLESONLY=YES|NO>;

REMOVE
<LIBRARY=libref>

PW=all-password | |
ALTER=alter-password
READ=read-password
WRITE=write-password;

REPAIR ADD | UPDATE | DELETE
LOCATION | METADATA
SECUREDLIBRARY='secured-library-name'

SECUREDFOLDER='secured-folder-path'
<SECUREDLIBRARYGUID='secured-library-guid'>
<LIBRARY=libref>
PW=all-password | |
ALTER=alter-password
READ=read-password
WRITE=write-password
<TABLESONLY=YES | NO>;

REPORT
<LIBRARY=libref>;

TABLES SAS-file-1 | _ALL_ | _NONE_
<SAS-file-n>

<LIBRARY=libref>
PW=all-password | |
ALTER=alter-password
READ=read-password
WRITE=write-password
< SECUREDTABLEGUID='secured-table-guid'>;

Statement Task Example

“PROC
AUTHLIB
Statement”

Create and manage metadata-bound libraries

Syntax: AUTHLIB Procedure 53

Statement Task Example

“CREATE
Statement”

Create the secured library object in the SAS Metadata
Server and record the physical security information in the
directory or bound files

Ex. 1, Ex. 2,
Ex. 3, Ex. 4

“MODIFY
Statement”

Modify password values for a metadata-bound library Ex. 5, Ex. 6

“REMOVE
Statement”

Remove the physical security information and metadata
objects that protect a metadata-bound library

Ex. 7

“(Preproduction)
REPAIR
Statement”

Recover security information (in physical data) or secured
library and table objects (in metadata)

“REPORT
Statement”

For a specified metadata-bound library, compare physical
library contents with corresponding metadata objects (in
order to identify any inconsistencies).

Ex. 8

“TABLES
Statement”

Specify which tables within a specified metadata-bound
library are affected by certain AUTHLIB statements

Ex. 4, Ex. 9

PROC AUTHLIB Statement
Manages metadata-bound libraries.

Syntax
PROC AUTHLIB <option-1 <...option-n>>;

Optional Arguments
LIBRARY=libref

is the name of the physical library for which the secured library object is created and
the security information is stored.

If the LIBRARY= option is not specified, the LIBRARY=libref (physical library)
from the CREATE, MODIFY, REMOVE, REPORT, or REPAIR statement is used.
Alias: LIB=, DDNAME=, DD=
Restriction: The physical library specified cannot be a concatenated library or

temporary library and must be processed by an engine that supports metadata-
bound libraries.

NOWARN
suppresses the file not found error message when a data set in a TABLES
statement does not exist.

PWREQ= YES | NO
controls the pop up of a dialog box for a data set password in interactive mode.

YES
specifies that a dialog box appear if a missing or an invalid password is entered
when required.

54 Appendix 2 • AUTHLIB Procedure

NO
prevents a dialog box from appearing. If a missing or invalid password is entered,
the data set is not opened, and an error message is written to the SAS log.
Default: PWREQ=NO

CREATE Statement
Binds a physical library to metadata by generating corresponding metadata objects in the SAS Metadata
Repository and creating a record of the metadata objects in the physical directory.

Requirement: A connection to the target metadata server. For more requirements, see
“Requirements to Use PROC AUTHLIB Statements” on page 51.

Syntax
PROC AUTHLIB <option-1 <...option-n>>;

CREATE
SECUREDLIBRARY=’secured-library-name’

<SECUREDFOLDER=’secured-folder-path’>
<LIBRARY=libref>
PW=all-password-value | |
ALTER=alter-password-value
READ=read-password-value
WRITE=write-password-value;

Required Arguments
SECUREDLIBRARY='secured-library-name'

names the secured library object in the SAS Metadata Server.
Alias: SECLIB=
Restriction: The total length of the secured library object pathname including the

fully qualified secured folder path cannot exceed 256 characters.

PW=all-password-value
sets a single password for a metadata-bound library.

ALTER=alter-password-value
sets one of a maximum of three password values for a metadata-bound library.

READ=read-password-value
sets one of a maximum of three password values for a metadata-bound library.

WRITE=write-password-value
sets one of a maximum of three password values for a metadata-bound library.

Optional Arguments
SECUREDFOLDER='secured-folder-path'

is the name of the metadata folder within the /System/Secured Libraries
folder tree where the secured library object will be created.

If the SECUREDFOLDER= option is not specified, the metadata-bound library is
created directly in the /System/Secured Libraries folder of the Foundation
repository. If the SECUREDFOLDER= option does not begin with a slash (/), it is a
relative path and the value will be appended to /System/Secured Libraries/

CREATE Statement 55

to find the folder. If the SECUREDFOLDER= option begins with a slash (/), it is an
absolute path and the value must begin with /System/Secured Libraries or /
<repository_name>/System/Secured Libraries.
Alias: SECFLDR=
Restriction: The total length of the secured library object pathname including the

fully qualified secured folder path cannot exceed 256 characters.

LIBRARY=libref
name of the physical library for which the secured library object is created and the
security information is stored.

If the LIBRARY= option is not specified, the physical library from the AUTHLIB
procedure is used.
Alias: LIB=, DDNAME=, DD=
Restriction: The physical library specified cannot be a concatenated library or

temporary library and must be processed by an engine that supports metadata-
bound libraries.

Details

Specifying Passwords
If your physical library does not contain password-protected data sets, you need to
specify the new metadata-bound library password(s) with either the PW= option or
READ=,WRITE=, and ALTER= options in the CREATE statement. This is the most
common case. See “Example 1: Binding a Physical Library That Contains Unprotected
Data Sets” on page 68.

If your physical library contains some password-protected data sets that all share the
same current set of passwords, then you can specify the most restrictive password on the
data sets before a slash (/) in the CREATE statement password option(s) and the new
password(s) after the slash (/). See “Example 3: Securing a Library When Existing Data
Sets Are Protected with the Same Passwords” on page 70.

If your physical library contains password-protected data sets with different sets of
passwords, then you can specify the data sets with each set of passwords on separate
TABLES statements (see “Example 4: Securing a Library When Existing Data Sets Are
Protected with Different Passwords” on page 71) or you can subsequently use
MODIFY and TABLES statements to change the passwords after the library has been
bound with the CREATE statement (see “Example 5: Changing Passwords on Data
Sets ” on page 73).

MODIFY Statement
Modifies password values for a metadata-bound library.

Requirement: A connection to the target metadata server. For more requirements, see
“Requirements to Use PROC AUTHLIB Statements” on page 51.

56 Appendix 2 • AUTHLIB Procedure

Syntax
PROC AUTHLIB <option-1 <...option-n>>;

MODIFY
<LIBRARY=libref>

PW=all-password | |
ALTER=alter-password
READ=read-password
WRITE=write-password

<TABLESONLY=YES | NO>;

Required Arguments
PW=all-password

modifies a single password for a metadata-bound library.

ALTER=alter-password
modifies one of a maximum of three password values for a metadata-bound library.

READ=read-password
modifies one of a maximum of three password values for a metadata-bound library.

WRITE=write-password
modifies one of a maximum of three password values for a metadata-bound library.

Optional Arguments
LIBRARY=libref

name of the physical library for which the metadata-bound library is created and the
security information is stored.

If the LIBRARY= option is not specified, the physical library from the AUTHLIB
procedure is used.
Alias: LIB=, DDNAME=, DD=
Restriction: The physical library specified cannot be a concatenated library or

temporary library and must be processed by an engine that supports metadata-
bound libraries.

TABLESONLY=YES | NO
specifies whether the MODIFY statement action is applied at the library level or just
to the tables. If TABLESONLY=NO, the action is applied to the library and data
sets. If TABLESONLY=YES, the action is applied only to the data sets.
Default: NO

Details

Using the MODIFY Statement
The MODIFY statement can modify the value of the required metadata-bound library
passwords. This statement can also modify passwords on data sets (tables) that do not
have the required metadata-bound library password values. The TABLES statement
follows the MODIFY statement to specify current passwords in the data sets.

If your physical library is currently bound to a metadata library with one set of
passwords and you want to change the metadata-bound library passwords to another set,
specify the current and new values for the metadata-bound library passwords separated
by a / in the MODIFY statement. See “Example 6: Changing Metadata-Bound Library
Passwords” on page 74.

MODIFY Statement 57

If your physical library contains password-protected data sets with different sets of
passwords from the metadata-bound library passwords, then you can modify the data set
passwords to match the metadata-bound library required passwords using the MODIFY
and TABLES statements. Specify the metadata-bound library passwords in the MODIFY
statement. Specify the data sets with each set of passwords on separate TABLES
statements. See “Example 5: Changing Passwords on Data Sets ” on page 73.

Using the LIBRARY= Option
If you want to override the default library from the AUTHLIB procedure, use
LIBRARY=.

AUTHLIB MODIFY <LIBRARY=library-name>

If for some reason you want to modify the passwords for a secured library object that is
no longer bound to a physical library, specify LIBRARY=_NONE_ with the
SECUREDLIBRARY= and SECUREDFOLDER= options to locate the secured library
object.

AUTHLIB MODIFY <LIBRARY=_NONE_ SECUREDLIBRARY=secured-library-name>
 <SECUREDFOLDER=secured-folder-name>

CAUTION:
Do not use LIB=_none_ when the secured library object is bound to a physical
library. LIB=_none_ causes the action to operate only on the secured library object
and has no effect on the physical data.

REMOVE Statement
Removes the physical security information and metadata objects that protect a metadata-bound library so it
is no longer a metadata-bound library.

Requirement: A connection to the target metadata server. For more requirements, see
“Requirements to Use PROC AUTHLIB Statements” on page 51.

Syntax
PROC AUTHLIB <option-1 <...option-n>>;

REMOVE
<LIBRARY=libref>

PW=all-password | |
ALTER=alter-password
READ=read-password
WRITE=write-password;

Required Arguments
PW=all-password

specifies a single password for a metadata-bound library.

ALTER=alter-password
specifies one of a maximum of three password values for a metadata-bound library.

READ=read-password
specifies one of a maximum of three password values for a metadata-bound library.

58 Appendix 2 • AUTHLIB Procedure

WRITE=write-password
specifies one of a maximum of three password values for a metadata-bound library.

Optional Argument
LIBRARY=libref

name of the physical library where the metadata-bound library is created and the
security information is stored.

If the LIBRARY= option is not specified, the physical library from the PROC
AUTHLIB statement is used.
Alias: LIB=, DDNAME=, DD=
Restriction: The physical library specified cannot be a concatenated library or

temporary library and must be processed by an engine that supports metadata-
bound libraries.

Details
The REMOVE statement is used to unbind the metadata-bound library feature from a
SAS data library and the data sets within it. This statement also removes the secured
library and secured table objects from the SAS Metadata Server. The data sets remain in
the physical library protected by the metadata-bound library passwords unless the
administrator specifies password modifications in the REMOVE statement. Since the
metadata-bound library feature is being removed and there is no longer a requirement
that the data set passwords match the metadata-bound library passwords, the data set
passwords can be removed by using a / after the current password but not specifying a
new password value. If you choose to do this, you are warned in the SAS log that the
data sets no longer have any SAS protection.

The REMOVE statement will not unbind any data sets that are currently bound to a
secured table object in a different secured library than the one to which this physical
library is bound.

Note: Ensure that all physical tables that are protected by a particular metadata-bound
library remain within that library (directory). This standard, default state maximizes
clarity and is essential for REMOVE statements to be fully effective. Special
circumstances (for example, a table that is host copied to another directory) can
prevent a REMOVE statement from unbinding the relocated data set.

(Preproduction) REPAIR Statement
Recovers security information (in physical data) or secured library and table objects (in metadata).

Requirement: A connection to the target metadata server. For more requirements, see
“Requirements to Use PROC AUTHLIB Statements” on page 51.

Note: The REPAIR statement is a preproduction feature. For more information, see
“Details” on page 61.

(Preproduction) REPAIR Statement 59

Syntax
PROC AUTHLIB <option-1 <...option-n>>;

REPAIR ADD | UPDATE | DELETE
LOCATION | METADATA
SECUREDLIBRARY=’secured-library-name’

SECUREDFOLDER=’secured-folder-path’
<SECUREDLIBRARYGUID=’secured-library-guid’>
<LIBRARY=libref>
PW=all-password | |
ALTER=alter-password
READ=read-password
WRITE=write-password
<TABLESONLY=YES | NO>;

Required Arguments
ADD | UPDATE | DELETE

one of these actions must be specified.

LOCATION | METADATA
clarifies whether the action is to apply to the physical security information in the file
system, to the metadata objects in the SAS Metadata Server, or to both.

PW=all-password
specifies a single password for a metadata-bound library.

ALTER=alter-password
assigns, changes, or removes an Alter password from the secured library object and
from the data sets in the physical library.

READ=read-password
assigns, changes, or removes a Read password from the secured library object and
from the data sets in the physical library.

WRITE=write-password
assigns, changes, or removes a Write password from the secured library object and
from the data sets in the physical library.

Optional Arguments
LIBRARY=libref

name of the physical library where the security information is stored.

If the LIBRARY= option is not specified, the physical library from the PROC
AUTHLIB statement is used.
Alias: LIB=, DDNAME=, DD=
Restriction: The physical library specified cannot be a concatenated library or

temporary library and must be processed by an engine that supports metadata-
bound libraries.

SECUREDLIBRARY='secured-library-name'
names the secured library object in the SAS Metadata Server.
Alias: SECLIB=
Restriction: The total length of the secured library object pathname including the

fully qualified secured folder path cannot exceed 256 characters.

60 Appendix 2 • AUTHLIB Procedure

SECUREDFOLDER='secured-folder-path'
name of the metadata folder within a /System/Secured Libraries folder tree
where the secured library will be repaired or re-created.
Alias: SECFLDR=
Restriction: The total length of the secured library object pathname including the

fully qualified secured folder path cannot exceed 256 characters.

SECUREDLIBRARYGUID=secured-library-guid
external identity assigned to the secured library object and stored as part of the
security information in the physical library.

Note: The secured library GUID can be found in the REPORT statement output. The
GUID that is stored as an external ID in the metadata is not reported, but it
matches when correctly configured.

TABLESONLY=YES | NO
specifies whether the REPAIR statement action is applied at the library level or just
to the tables. If TABLESONLY=NO, the action is applied to the library and the
tables. If TABLESONLY=YES, the action is applied only to the tables. This is
especially important for REPAIR because it gives the administrator a way to delete
specific secured table objects without deleting the secured library and all secured
tables.
Default: NO

Details
CAUTION:

Repairing a metadata-bound library is an advanced task. Make sure you have a
current backup (of both metadata and physical data) before you use this statement.

The REPAIR statement is a preproduction feature, which means it is a preliminary
release of software that has not completed full development and testing. Because it has
not been fully tested, preproduction software should be used with care. After final testing
is completed, preproduction software is likely to be offered in a future release as a
production-quality component or product.

Use the REPAIR statement to restore metadata-bound library security information or
metadata objects that are inadvertently deleted. The administrator can carefully use the
REPAIR statement to make some repairs to inconsistencies reported by the REPORT
statement. If there are a significant number of groupings in the REPORT listing, it might
be more advisable to do the following:

1. Create a new operating system directory and metadata-bound library, and then use
SAS Management Console to set appropriate default library permissions for the new
secured library object.

2. Access the current library with the AUTHADMIN=YES, AUTHPW= or
AUTHALTER=, AUTHWRITE=, and AUTHREAD= options in the LIBNAME
statement.

3. Use the SAS COPY procedure to copy the SAS data sets to the new library. Use
CONSTRAINT=YES if any data sets have referential integrity constraints. Use SAS
Management Console to set any permissions on the secured table objects that differ
from those inherited from the secured library object. The following is an example of
using the COPY procedure.

Metadata-bound library ABCDE also has data sets EMPLOYEES, EMPINFO, and
PRODUCT. The REPORT statement has shown some inconsistencies between the

(Preproduction) REPAIR Statement 61

physical library contents and the corresponding metadata objects. This is an example of
a way to resolve these differences.

libname klmno "c:\lib2";

proc authlib lib=klmno;
 create securedfolder="Department XYZZY"
 securedlibrary="KLMNOEmps"
 pw=password;
run;
quit;

libname abcde "c:\mylib"
 AUTHADMIN=yes
 AUTHPW=password;

proc copy in=abcde out=klmno ;run;

Log A2.1 Using PROC COPY to Resolve Differences

88 proc copy in=abcde out=klmno ;run;

NOTE: Copying ABCDE.EMPINFO to KLMNO.EMPINFO (memtype=DATA).
NOTE: Data set ABCDE.EMPINFO.DATA has secured table object location information, but the
 secured library object location information that it contains:
 SecuredFolder: /System/Secured Libraries/Department XYZZY
 SecuredLibrary: ABCDEEmps
 SecuredLibraryGUID: 38C24AF4-9CF5-458B-8389-52092307007E
 is different from the registered location for the library ABCDE:
 SecuredFolder:
 SecuredLibrary:
 SecuredLibraryGUID:
 The data set might have been copied to this directory with a host copy utility.
NOTE: Permissions are obtained from the secured table and the secured library objects that are
 referenced in the header of the metadata-bound table.
NOTE: Metadata-bound library permissions are used for KLMNO.EMPINFO.DATA.
NOTE: Successfully added new secured table object "EMPINFO.DATA" to the secured library object
 at path "/System/Secured Libraries/Department XYZZY/KLMNOEmps" for data set
 KLMNO.EMPINFO.DATA.
NOTE: There were 5 observations read from the data set ABCDE.EMPINFO.
NOTE: The data set KLMNO.EMPINFO has 5 observations and 6 variables.
NOTE: Copying ABCDE.EMPLOYEES to KLMNO.EMPLOYEES (memtype=DATA).
NOTE: Data set ABCDE.EMPLOYEES.DATA has secured table object location information, but the
 secured library object location information that it contains:
 SecuredFolder: /System/Secured Libraries/Department XYZZY
 SecuredLibrary: ABCDEEmps
 SecuredLibraryGUID: 38C24AF4-9CF5-458B-8389-52092307007E
 is different from the registered location for the library ABCDE:
 SecuredFolder:
 SecuredLibrary:
 SecuredLibraryGUID:
 The data set might have been copied to this directory with a host copy utility.
NOTE: Permissions are obtained from the secured table and the secured library objects that are
 referenced in the header of the metadata-bound table.
NOTE: Metadata-bound library permissions are used for KLMNO.EMPLOYEES.DATA.
NOTE: Successfully added new secured table object "EMPLOYEES.DATA" to the secured library
 object at path "/System/Secured Libraries/Department XYZZY/KLMNOEmps" for data set
 KLMNO.EMPLOYEES.DATA.

62 Appendix 2 • AUTHLIB Procedure

NOTE: There were 5 observations read from the data set ABCDE.EMPLOYEES.
NOTE: The data set KLMNO.EMPLOYEES has 5 observations and 6 variables.
NOTE: Copying ABCDE.PRODUCT to KLMNO.PRODUCT (memtype=DATA).
NOTE: Data set ABCDE.PRODUCT.DATA has secured table object location information, but the
 secured library object location information that it contains:
 SecuredFolder: /System/Secured Libraries/Department XYZZY
 SecuredLibrary: ABCDEEmps
 SecuredLibraryGUID: 38C24AF4-9CF5-458B-8389-52092307007E
 is different from the registered location for the library ABCDE:
 SecuredFolder:
 SecuredLibrary:
 SecuredLibraryGUID:
 The data set might have been copied to this directory with a host copy utility.
NOTE: Permissions are obtained from the secured table and the secured library objects that are
 referenced in the header of the metadata-bound table.
NOTE: Metadata-bound library permissions are used for KLMNO.PRODUCT.DATA.
NOTE: Successfully added new secured table object "PRODUCT.DATA" to the secured library object
 at path "/System/Secured Libraries/Department XYZZY/KLMNOEmps" for data set
 KLMNO.PRODUCT.DATA.
NOTE: There were 5 observations read from the data set ABCDE.PRODUCT.
NOTE: The data set KLMNO.PRODUCT has 5 observations and 2 variables.
NOTE: PROCEDURE COPY used (Total process time):
 real time 0.14 seconds
 cpu time 0.04 seconds

When using the REPAIR statement, one of the ADD, UPDATE, or DELETE actions
must be specified. LOCATION, METADATA, or both are used to clarify if the action is
to apply to the metadata security information in the file system, to the metadata objects
in the SAS Metadata Server, or to both.

One or more TABLES statements can follow the REPAIR statement to perform the same
action on the specified data sets. An implicit Tables _ALL_ is used if no TABLES
statement follows the REPAIR statement.

Inconsistencies between the metadata security information stored in the operating system
files and the secured library object in the SAS Metadata Server that need repair can
prevent the assignment of a LIBNAME statement to the physical library. The
administrator that owns the physical library and knows the metadata-bound library
passwords can perform a library assignment and repair the data by adding the
AUTHADMIN=YES option to the LIBNAME statement. Best practice is to use the
AUTHADMIN=YES option when performing any REPAIR actions.

CAUTION:
If you lose the password (or passwords) for a metadata-bound library, you
cannot unbind the library or change its passwords. Be sure to keep track of
passwords that you assign in the CREATE and MODIFY statements.

REPORT Statement
For a specified metadata-bound library, compares physical library contents with corresponding metadata
objects (in order to identify any inconsistencies).

Requirement: A connection to the target metadata server. For more requirements, see
“Requirements for Using the REPORT Statement” on page 64.

REPORT Statement 63

Syntax
PROC AUTHLIB <option-1 <...option-n>>;

REPORT
<LIBRARY=libref>;

Optional Argument
LIBRARY=libref

name of the physical library where the metadata-bound library is created and the
metadata security information is stored.

If the LIBRARY= option is not specified, the physical library from the PROC
AUTHLIB statement is used.
Alias: LIB=, DDNAME=, DD=
Restriction: The physical library specified cannot be a concatenated library or

temporary library and must be processed by an engine that supports metadata-
bound libraries.

Details

Requirements for Using the REPORT Statement
An administrator uses the REPORT statement to identify any inconsistencies between a
physical metadata-bound library and its corresponding metadata objects.

In order to use the REPORT statement, you must meet the following criteria:

• The SAS session runs under an account that has host-layer Read access to the target
physical library. This is necessary in order to assign the libref.

• The SAS session connects to the metadata server as an identity that has the
ReadMetadata permission for the target secured library object and secured table
objects.

• If the library has secured library object location information and the secured library
object cannot be obtained, you will need to use the AUTHADMIN=YES option in
the LIBNAME= statement in order to assign the library.

Reporting Inconsistencies
The REPORT statement is used to report any inconsistencies between the physical
library contents and the corresponding metadata objects.

Inconsistencies between the metadata security information in the physical directory, data
sets, the secured library, and secured table objects might occur if the metadata or the
operating system files are manipulated using nonstandard SAS processing. For example,
an operating system data set copied from one directory into a metadata-bound library
directory using an operating system copy utility will not have the appropriate security
information for that metadata-bound library. Another example is that an administrator
might mistakenly delete a secured library or secured table object using SAS
Management Console.

The REPORT statement reports the secured table and metadata-bound library security
information for each data set in the operating system directory of the library. This data
set information is grouped by the metadata-bound library attributes that all the data sets
share. If any data sets in the physical library are correctly registered to the secured
library object for the library and have the required passwords, those data sets and
attributes will be listed as the first grouping in the report. Subsequent groupings are for

64 Appendix 2 • AUTHLIB Procedure

data sets with either passwords that differ from the metadata-bound library passwords or
whose metadata-bound library security information does not match the metadata-bound
library location registered for the operating system directory.

TABLES Statement
Used after a CREATE, MODIFY, REPAIR, and REPORT statement to specify the tables to process a
statement action and to specify the current passwords on the data sets, if different from the metadata-
bound library passwords.

Default: When no TABLES statement is specified, the TABLES _ALL_ statement is the
default behavior.

Requirement: • The TABLES statement can follow only a CREATE, MODIFY, REPAIR, or
REPORT statement.

• A connection to the target metadata server.

Syntax
TABLES SAS-dataset-1 <SAS-dataset-n> | _ALL_ | _NONE_
</>
<PW=all-password> | |
<ALTER=alter-password>
<READ=read-password>
<WRITE=write-password>
<MEMTYPE= DATA || VIEW>
< SECUREDTABLEGUID='secured-table-guid'>;

Optional Arguments
/

is required if any options are included, such as passwords or MEMTYPE=. Here is
an example:

tables table-name / pw=password;

PW=all-password
specifies the current password of the data set.

ALTER=alter-password
specifies the current ALTER= password of the data set.

READ=read-password
specifies the current READ= password of the data set.

WRITE=write-password
specifies the current WRITE= password of the data set.

MEMTYPE= DATA || VIEW
restricts processing to a single member type of DATA or VIEW. If not specified, the
default is both types.

DATA
specifies SAS data file member type.

VIEW
specifies SAS view member type.

Alias: MTYPE=, MT=

TABLES Statement 65

Default: ALL

SECUREDTABLEGUID=secured-table-guid
the external identity of the secured table object that was assigned when the object
was created and that is stored as part of the location information in physical data sets
that are bound to the secured table object.
Restriction: SECUREDTABLEGUID= option is used only in TABLES statements

that follow certain REPAIR statements.

Details

Using the TABLES Statement
CAUTION:

If you lose the password (or passwords) for a metadata-bound library, you
cannot unbind the library or change its passwords. Be sure to keep track of
passwords that you assign in the CREATE and MODIFY statements.

The TABLES statement is primarily used to specify the current password(s) on data sets
when different from the current metadata-bound library required password(s). It usually
follows a CREATE or MODIFY statement to make the data set passwords change to the
metadata-bound library passwords. See “Example 4: Securing a Library When Existing
Data Sets Are Protected with Different Passwords” on page 71.

If you are removing the binding of the physical library to metadata or the physical
library is not bound to a secured library, then you might want to modify the data set
passwords to some other value. You are not restricted to changing to a common
metadata-bound library password. In that case, you might choose to specify both a
current and new password separated by a slash / for data sets in a TABLES statement.

TABLES _NONE_ can be used to limit the action of the previous CREATE, MODIFY,
or REPAIR statements to the library level and not apply the action to any table.
TABLES _ALL_ is the default behavior if no TABLES statement is specified. You
might wish to write an explicit TABLES _ALL_ if you want to specify password options
to apply to all data sets.

Using the TABLES Statement with the CREATE Statement
The CREATE statement can be followed by one or more TABLES statements to specify
current passwords for data sets when different from the metadata-bound library
passwords. If the TABLES statement is not used, only two groups of data sets will be
bound:

• data sets without passwords

• data sets with passwords matching the metadata-bound library

In effect, omitting TABLES statements is equivalent to specifying one TABLES _ALL_
statement. For more information, see “CREATE Statement” on page 55.

Using the TABLES Statement with the MODIFY Statement
The MODIFY statement can be followed by one or more TABLES statements to specify
modifications to passwords in the data sets. If no TABLES statement follows the
MODIFY statement, there is an implicit TABLES _ALL_ statement. A separate
TABLES statement is required for sets of data sets (tables) that might have different
current passwords. For more information, see “MODIFY Statement” on page 56.

66 Appendix 2 • AUTHLIB Procedure

Using the TABLES Statement with the REPAIR Statement
When using the REPAIR statement, one of the ADD, UPDATE, or DELETE actions
must be specified. LOCATION, METADATA, or both are used to clarify if the action is
to apply to the physical security information in file system, to the metadata objects in the
SAS Metadata Server, or to both. The REPAIR statement can be followed by one or
more TABLES statements to perform the same action on the specified data sets. For
more information, see “(Preproduction) REPAIR Statement” on page 59.

Using the TABLES Statement with the REMOVE Statement
Using a TABLES statement with a REMOVE statement that does not select all tables
will produce an ERROR and not execute.

Using the TABLES Statement with the REPORT Statement
The TABLES statement is syntactically accepted with the REPORT statement but has
little or no use.

Results: AUTHLIB Procedure
The REPORT statement produces the following output.

Results: AUTHLIB Procedure 67

Examples: AUTHLIB Procedure

Example 1: Binding a Physical Library That Contains Unprotected Data
Sets

Features: CREATE Statement and Options
SECUREDLIBRARY=
SECUREDFOLDER=
PW=

Details

Here is an example of binding a physical library that contains data sets that do not have
passwords. Library ZYXWVUT contains three data sets — EMPLOYEES, EMPINFO,
and PRODUCT — that do not have passwords. The library and data sets are bound with
the password secretpw. The binding is straightforward, as PROC AUTHLIB has
unhindered access to the data.

Program

proc authlib lib=zyxwvut;
 create securedfolder="Department XYZZY"
 securedlibrary="ZYXWVUTEmps"
 pw=secretpw;

run;
quit;

68 Appendix 2 • AUTHLIB Procedure

Log

Log A2.2 Unprotected Data Sets

79 proc authlib lib=zyxwvut;
80
81 create securedfolder="Department XYZZY"
82 securedlibrary="ZYXWVUTEmps"
83 pw=XXXXXXXX;
84
85 run;

NOTE: Successfully created a secured library object for the physical library ZYXWVUT and recorded its
 location as:
 SecuredFolder: /System/Secured Libraries/Department XYZZY
 SecuredLibrary: ZYXWVUTEmps
 SecuredLibraryGUID: 1A323C03-A3D8-4A83-9615-2BC2CB9FAAE2
NOTE: Successfully added new secured table object "EMPINFO.DATA" to the secured library object at
 path "/System/Secured Libraries/Department XYZZY/ZYXWVUTEmps" for data set ZYXWVUT.EMPINFO.DATA.
NOTE: The passwords on ZYXWVUT.EMPINFO.DATA were successfully modified.
NOTE: Successfully added new secured table object "EMPLOYEES.DATA" to the secured library object at
 path "/System/Secured Libraries/Department XYZZY/ZYXWVUTEmps" for data set
 ZYXWVUT.EMPLOYEES.DATA.
NOTE: The passwords on ZYXWVUT.EMPLOYEES.DATA were successfully modified.
NOTE: Successfully added new secured table object "PRODUCT.DATA" to the secured library object at
 path "/System/Secured Libraries/Department XYZZY/ZYXWVUTEmps" for data set ZYXWVUT.PRODUCT.DATA.
NOTE: The passwords on ZYXWVUT.PRODUCT.DATA were successfully modified.
86 quit;

NOTE: PROCEDURE AUTHLIB used (Total process time):
 real time 0.68 seconds
 cpu time 0.03 seconds

Example 2: Binding a Physical Library That Contains Password-
Protected Data Sets

Features: CREATE Statement and Options
SECUREDLIBRARY=
SECUREDFOLDER=
PW=

Details

Library ABCDE also has EMPLOYEES, EMPINFO, and PRODUCT data sets.
However, in library ABCDE, the EMPLOYEES and EMPINFO data sets are protected
with a Read password of abcd, a Write password of efgh, and an Alter password of
ijkl before the library is secured by the statements in the last example. The third data
set, PRODUCT, is not protected with passwords.

Program

/* To secure a library that has password-protected data sets */
/* that all share the same alter password ijkl with */
/* PROC AUTHLIB CREATE, submit: */

Example 2: Binding a Physical Library That Contains Password-Protected Data Sets 69

proc authlib lib=abcde;
 create securedfolder="Department XYZZY"
 securedlibrary="ABCDEEmps"
 pw=secretpw;
run;
quit;

Log

The library was bound and the unprotected data set password was set. The protected data
sets’ passwords did not change because their current passwords were not specified.

Log A2.3 Password-Protected Data Sets

179 proc authlib lib=abcde;
180
181 create securedfolder="Department XYZZY"
182 securedlibrary="ABCDEEmps"
183 pw=XXXXXXXX;
184
185 run;

NOTE: Successfully created a secured library object for the physical library ABCDE and recorded its
 location as:
 SecuredFolder: /System/Secured Libraries/Department XYZZY
 SecuredLibrary: ABCDEEmps
 SecuredLibraryGUID: 4881263D-C346-41F7-AC49-BF9181AF13D2
ERROR: The ALTER password is the most restrictive on ABCDE.EMPINFO.DATA. You must supply its value in
 order to alter or add any passwords.
ERROR: The ALTER password is the most restrictive on ABCDE.EMPLOYEES.DATA. You must supply its value
 in order to alter or add any passwords.
NOTE: Successfully added new secured table object "PRODUCT.DATA" to the secured library object at
 path "/System/Secured Libraries/Department XYZZY/ABCDEEmps" for data set ABCDE.PRODUCT.DATA.
NOTE: The passwords on ABCDE.PRODUCT.DATA were successfully modified.
NOTE: Some statement actions not processed because of errors noted above.
186 quit;

NOTE: The SAS System stopped processing this step because of errors.
NOTE: PROCEDURE AUTHLIB used (Total process time):
 real time 0.14 seconds
 cpu time 0.09 seconds

Example 3: Securing a Library When Existing Data Sets Are Protected
with the Same Passwords

Features: CREATE Statement and Options
SECUREDLIBRARY=
SECUREDFOLDER=
PW=

Details

This example shows how you could have modified the passwords for the EMPLOYEES
and EMPINFO data sets from the preceding example in the PROC AUTHLIB CREATE
statement. The EMPLOYEES and EMPINFO data sets are protected with the same

70 Appendix 2 • AUTHLIB Procedure

passwords. The Alter password for the data sets,ijkl, is specified in the PW= argument
before the new password, separated by a slash (/).

Program

proc authlib lib=abcde;
 create securedlibrary="ABCDEEmps"
 securedfolder="Department XYZZY"
 pw=ijkl/secretpw;
run;
quit;

Log

Log A2.4 Securing a Library with Data Sets That Are Protected with the Same Passwords

99 proc authlib lib=abcde;
100 create securedlibrary="ABCDEEmps"
101 securedfolder="Department XYZZY" pw=XXXX/XXXXXXXX;
102 run;

NOTE: Successfully created a secured library object for the physical library ABCDE and recorded its
 location as:
 SecuredFolder: /System/Secured Libraries/Department XYZZY
 SecuredLibrary: ABCDEEmps
 SecuredLibraryGUID: 87165DCD-3C60-4C7D-BD53-903AAC68CCC7
NOTE: Successfully added new secured table object "EMPINFO.DATA" to the secured library object at
 path "/System/Secured Libraries/Department XYZZY/ABCDEEmps" for data set ABCDE.EMPINFO.DATA.
NOTE: The passwords on ABCDE.EMPINFO.DATA were successfully modified.
NOTE: Successfully added new secured table object "EMPLOYEES.DATA" to the secured library object at
 path "/System/Secured Libraries/Department XYZZY/ABCDEEmps" for data set ABCDE.EMPLOYEES.DATA.
NOTE: The passwords on ABCDE.EMPLOYEES.DATA were successfully modified.
NOTE: Successfully added new secured table object "PRODUCT.DATA" to the secured library object at
 path "/System/Secured Libraries/Department XYZZY/ABCDEEmps" for data set ABCDE.PRODUCT.DATA.
NOTE: The passwords on ABCDE.PRODUCT.DATA were successfully modified.
103 quit;

NOTE: PROCEDURE AUTHLIB used (Total process time):
 real time 0.38 seconds
 cpu time 0.09 seconds

Example 4: Securing a Library When Existing Data Sets Are Protected
with Different Passwords

Features: CREATE Statement and Options
SECUREDLIBRARY=
SECUREDFOLDER=
PW=
ALTER=
READ=
WRITE=
TABLES

Example 4: Securing a Library When Existing Data Sets Are Protected with Different
Passwords 71

Details

Library KLMNO has three data sets: EMPLOYEES, EMPINFO, and PRODUCT. In this
library, the EMPLOYEES data set is protected with the PW password lmno. The
EMPINFO data set is protected with a Read password of abcd, a Write password of
efgh, and an Alter password of ijkl. The PRODUCT data set is not protected.
Because these data sets have different passwords, to change these passwords, you must
use TABLES statements with the CREATE statement. When the TABLES statement is
used, a TABLES statement must be specified for all tables. This example also uses three
passwords to bind the library: READ=ABCDEFGH, WRITE=IJKLMNO, and
ALTER=PQRSTUVW.

Program

proc authlib lib=klmno;
 create securedlibrary="KLMNOEmps"
 securedfolder="Department XYZZY"
 read=abcdefgh write=ijklmno alter=pqrstuvw;

tables employees / pw=lmno;
tables empinfo / read=abcd write=efgh alter=ijkl;
tables product;

run;
quit;

72 Appendix 2 • AUTHLIB Procedure

Log

Log A2.5 Securing a Library with Existing Data Sets That Are Protected with Different Passwords

187 proc authlib lib=klmno;
188
189 create securedlibrary="KLMNOEmps"
190
191 securedfolder="Department XYZZY"
192 read=XXXXXXXX write=XXXXXXX alter=XXXXXXXX;
193
194 tables employees / pw=XXXX;
195 tables empinfo / read=XXXX write=XXXX alter=XXXX;
196 tables product;
197
198 run;

NOTE: Successfully created a secured library object for the physical library KLMNO and recorded its
 location as:
 SecuredFolder: /System/Secured Libraries/Department XYZZY
 SecuredLibrary: KLMNOEmps
 SecuredLibraryGUID: ABA4F5FB-F30A-4F20-9C0B-9F05E877B7BD
NOTE: Successfully added new secured table object "EMPLOYEES.DATA" to the secured library object at
 path "/System/Secured Libraries/Department XYZZY/KLMNOEmps" for data set KLMNO.EMPLOYEES.DATA.
NOTE: The passwords on KLMNO.EMPLOYEES.DATA were successfully modified.
NOTE: Successfully added new secured table object "EMPINFO.DATA" to the secured library object at
 path "/System/Secured Libraries/Department XYZZY/KLMNOEmps" for data set KLMNO.EMPINFO.DATA.
NOTE: The passwords on KLMNO.EMPINFO.DATA were successfully modified.
NOTE: Successfully added new secured table object "PRODUCT.DATA" to the secured library object at
 path "/System/Secured Libraries/Department XYZZY/KLMNOEmps" for data set KLMNO.PRODUCT.DATA.
NOTE: The passwords on KLMNO.PRODUCT.DATA were successfully modified.
199 quit;

NOTE: PROCEDURE AUTHLIB used (Total process time):
 real time 0.17 seconds
 cpu time 0.04 seconds

Example 5: Changing Passwords on Data Sets
Features: MODIFY Statement and Options

LIBRARY=
PW=
TABLESONLY=

Details

This example shows a different approach for modifying the passwords of existing data
sets to match the metadata-bound library passwords. It uses the MODIFY statement.
Here, the MODIFY statement is used to modify the data set passwords of the
EMPLOYEES and EMPINFO data sets from Example 2 on page 69 to match the
metadata-bound library password. The MODIFY statement can also be used to modify
the data set passwords of data sets that are copied into a metadata-bound library by
operating system commands after the library has been bound. The existing data sets’
Alter password is specified in the PW= argument before the metadata-bound password,
separated by a slash (/). The TABLESONLY statement specifies to modify table
passwords only.

Example 5: Changing Passwords on Data Sets 73

Program

proc authlib lib=abcde;
 modify tablesonly=yes pw=ijkl/secretpw;
run;
quit;

Log

Log A2.6 Changing Data Set Passwords

200 proc authlib lib=abcde;
201 modify tablesonly=yes pw=XXXX/XXXXXXXX;
202 run;

NOTE: Successfully added new secured table object "EMPINFO.DATA" to the secured library object at
 path "/System/Secured Libraries/Department XYZZY/ABCDEEmps" for data set ABCDE.EMPINFO.DATA.
NOTE: The passwords on ABCDE.EMPINFO.DATA were successfully modified.
NOTE: Successfully added new secured table object "EMPLOYEES.DATA" to the secured library object at
 path "/System/Secured Libraries/Department XYZZY/ABCDEEmps" for data set ABCDE.EMPLOYEES.DATA.
NOTE: The passwords on ABCDE.EMPLOYEES.DATA were successfully modified.
NOTE: The passwords on ABCDE.PRODUCT.DATA do not require modification.
203 quit;

NOTE: PROCEDURE AUTHLIB used (Total process time):
 real time 0.07 seconds
 cpu time 0.01 seconds

Example 6: Changing Metadata-Bound Library Passwords
Features: MODIFY Statement and Options

SECUREDLIBRARY=
SECUREDFOLDER=
PW=

Details

If you believe that the metadata-bound library passwords have been compromised, use
the MODIFY statement to modify the library passwords. The following code changes
the library passwords and the data set passwords of all data sets in the library that
contain the specified passwords.

Program

proc authlib lib=abcde;
 modify securedlibrary="ABCDEEmps"
 securedfolder="Department XYZZY"
 pw=secretpw/newpassd;
run;
quit;

74 Appendix 2 • AUTHLIB Procedure

Log

The preceding code changed the library passwords and the data set passwords of all data
sets in the library with those passwords. An error message is displayed for any data set
with different passwords.

Log A2.7 Changing Metadata-bound Library Passwords

217 proc authlib lib=abcde;
218 modify securedlibrary="ABCDEEmps"
219 securedfolder="Department XYZZY"
220 pw=XXXXXXXX/XXXXXXXX;
221
222 run;

NOTE: The passwords for the secured library object with path "/System/Secured Libraries/Department
 XYZZY/ABCDEEmps" were successfully modified."
NOTE: The passwords on ABCDE.EMPINFO.DATA were successfully modified.
NOTE: The passwords on ABCDE.EMPLOYEES.DATA were successfully modified.
NOTE: The passwords on ABCDE.PRODUCT.DATA were successfully modified.
223 quit;

NOTE: PROCEDURE AUTHLIB used (Total process time):
 real time 0.09 seconds
 cpu time 0.03 seconds

Example 7: Using the REMOVE Statement
Features: REMOVE Statement and Options

LIBRARY=
PW=

Details

This example shows how to unbind a metadata-bound library. The code deletes metadata
that describes the library and its tables from the SAS Metadata Repository, removes
security bindings from the physical library and data sets, and removes the assigned
password from the data sets, leaving them unprotected. The slash (/) after the password
is optional and used to remove or replace the password from the data sets. Note that if a
library is bound with Read, Write, and Alter passwords, as in Example 4 on page 71, you
must specify all of the passwords, and they must each have a /.

Program

proc authlib lib=abcde;
 remove pw=newpassd/;
run;
quit;

Example 7: Using the REMOVE Statement 75

Log

Log A2.8 Unbinding a Metadata-Bound Library

25 proc authlib lib=abcde;
26 remove pw=XXXXXXXX/;
27 run;

WARNING: Some or all the passwords on ABCDE.EMPINFO.DATA were removed along with the secured library
 object location, leaving the data set unprotected.
NOTE: The secured table object location for ABCDE.EMPINFO.DATA was successfully removed.
WARNING: Some or all the passwords on ABCDE.EMPLOYEES.DATA were removed along with the secured
 library object location, leaving the data set unprotected.
NOTE: The secured table object location for ABCDE.EMPLOYEES.DATA was successfully removed.
WARNING: Some or all the passwords on ABCDE.PRODUCT.DATA were removed along with the secured library
 object location, leaving the data set unprotected.
NOTE: The secured table object location for ABCDE.PRODUCT.DATA was successfully removed.
NOTE: Successfully deleted the secured library object that was located at:
 SecuredFolder: /System/Secured Libraries/Department XYZZY
 SecuredLibrary: ABCDEEmps
 SecuredLibraryGUID: 99F963DC-CD45-4704-96C7-DB9355B65857
NOTE: Successfully deleted the recorded location of the secured library object for the physical
 library ABCDE.
28 quit;

NOTE: PROCEDURE AUTHLIB used (Total process time):
 real time 0.75 seconds
 cpu time 0.26 seconds

Example 8: Using the REPORT Statement
Features: Report Statement

LIBRARY=

Details

The following code checks a library's bindings.

Program

proc authlib lib=abcde;
 report;
run;
quit;

76 Appendix 2 • AUTHLIB Procedure

Log

Log A2.9 Creating a Report

49 proc authlib lib=abcde;
50 report;
51 run;

52 quit;

NOTE: PROCEDURE AUTHLIB used (Total process time):
 real time 0.37 seconds
 cpu time 0.21 seconds

Results

Example 9: Using the TABLES Statement
Features: TABLE Statements and Options

PW=
ALTER=
READ=
WRITE=

Details

Library KLMNO has three data sets in the TABLES statements: EMPLOYEES,
EMPINFO, and PRODUCT.

Program

proc authlib lib=klmno;
 create securedlibrary="KLMNOEmps"
 securedfolder="Department XYZZY"
 read=abcdefgh write=ijklmno alter=pqrstuvw;

tables employees / pw=lmno;
tables empinfo / read=abcd write=efgh alter=ijkl;
tables product;

Example 9: Using the TABLES Statement 77

run;
quit;

Log

Log A2.10 TABLES Statement

187 proc authlib lib=klmno;
188
189 create securedlibrary="KLMNOEmps"
190
191 securedfolder="Department XYZZY"
192 read=XXXXXXXX write=XXXXXXX alter=XXXXXXXX;
193
194 tables employees / pw=XXXX;
195 tables empinfo / read=XXXX write=XXXX alter=XXXX;
196 tables product;
197
198 run;

NOTE: Successfully created a secured library object for the physical library KLMNO and recorded its
 location as:
 SecuredFolder: /System/Secured Libraries/Department XYZZY
 SecuredLibrary: KLMNOEmps
 SecuredLibraryGUID: ABA4F5FB-F30A-4F20-9C0B-9F05E877B7BD
NOTE: Successfully added new secured table object "EMPLOYEES.DATA" to the secured library object at
 path "/System/Secured Libraries/Department XYZZY/KLMNOEmps" for data set KLMNO.EMPLOYEES.DATA.
NOTE: The passwords on KLMNO.EMPLOYEES.DATA were successfully modified.
NOTE: Successfully added new secured table object "EMPINFO.DATA" to the secured library object at
 path "/System/Secured Libraries/Department XYZZY/KLMNOEmps" for data set KLMNO.EMPINFO.DATA.
NOTE: The passwords on KLMNO.EMPINFO.DATA were successfully modified.
NOTE: Successfully added new secured table object "PRODUCT.DATA" to the secured library object at
 path "/System/Secured Libraries/Department XYZZY/KLMNOEmps" for data set KLMNO.PRODUCT.DATA.
NOTE: The passwords on KLMNO.PRODUCT.DATA were successfully modified.
199 quit;

NOTE: PROCEDURE AUTHLIB used (Total process time):
 real time 0.17 seconds
 cpu time 0.04 seconds

78 Appendix 2 • AUTHLIB Procedure

Glossary

Base SAS
the core product that is part of SAS Foundation and is installed with every
deployment of SAS software. Base SAS provides an information delivery system for
accessing, managing, analyzing, and presenting data.

data set
See SAS data set

encryption
the act or process of converting data to a form that is unintelligible except to the
intended recipients.

identity
See metadata identity

library reference
See libref

libref
a SAS name that is associated with the location of a SAS library. For example, in the
name MYLIB.MYFILE, MYLIB is the libref, and MYFILE is a file in the SAS
library.

metadata identity
a metadata object that represents an individual user or a group of users in a SAS
metadata environment. Each individual and group that accesses secured resources on
a SAS Metadata Server should have a unique metadata identity within that server.

metadata object
a set of attributes that describe a table, a server, a user, or another resource on a
network. The specific attributes that a metadata object includes vary depending on
which metadata model is being used.

metadata repository
a collection of related metadata objects, such as the metadata for a set of tables and
columns that are maintained by an application.

metadata server
a server that provides metadata management services to one or more client
applications. A SAS Metadata Server is an example.

79

metadata-bound library
a physical SAS library that is tied to a corresponding secured library object. All
access from SAS to a metadata-bound library is subject to the requesting user’s
effective permissions on the corresponding metadata object.

metadata-bound table
a physical SAS data set (a table or view) that is tied to a corresponding secured table
object. All access from SAS to a metadata-bound table is subject to the requesting
user’s effective permissions on the corresponding metadata object.

procedure
See SAS procedure

SAS data set
a file whose contents are in one of the native SAS file formats. There are two types
of SAS data sets: SAS data files and SAS data views.

SAS procedure
a type of SAS language element that refers to a self-contained program for
performing a specific task, such as to produce reports, to manage files, or to analyze
data.

SAS statement
a type of SAS language element that is used to perform a particular operation in a
SAS program or to provide information to a SAS program.

SAS system option
a type of SAS language element that is applied to any of a number of operations
during a SAS session. System options can control SAS session initialization, SAS
interactions with hardware and software, and input and output processing of SAS
files.

SAS table
another term for SAS data set.

SAS view
a type of SAS data set that retrieves data values from other files. A SAS view
contains only descriptor information such as the data types and lengths of the
variables (columns), plus other information that is required for retrieving data values
from other SAS data sets or from files that are stored in other software vendors' file
formats. SAS views can be created by the SAS DATA step, as well as by the SAS
SQL procedure.

secured data folder
a SAS metadata object that serves as a specialized container for secured library
objects, as part of the metadata-bound libraries feature. In each metadata repository,
the first secured data folder is Secured Libraries, in the System folder. Additional
secured data folders can be added only beneath a Secured Libraries folder.

secured library object
a SAS metadata object to which a physical SAS library is bound. Metadata-layer
permissions on each secured library object manage access to its corresponding
physical library. Secured library objects are stored beneath a repository’s Secured
Libraries folder.

80 Glossary

secured table object
a SAS metadata object to which a physical SAS data set (a table or view) is bound.
Metadata-layer permissions on each secured table object manage access to its
corresponding physical data set. Each secured table object is stored beneath a
secured library object.

statement
See SAS statement

submit
to perform an action that causes a software application such as SAS to compile and
execute a program.

system option
See SAS system option

Glossary 81

82 Glossary

Index

A
access to data

facilitating for end users 39
fine-grained 15
mutually exclusive 13
required conditions 1
verifying read access 21

auditing 30
AUTHADMIN option 37
AUTHLIB CREATE statement

DATASETS procedure 55, 60
usage criteria 10

AUTHLIB procedure 49
requirements 51
results 67
statement usage table 53
syntax 49
task tables 49

AUTHLIB REPAIR statement
DATASETS procedure 60

authorization model for metadata-bound
libraries 3

AUTHPW option 37

B
benefits of metadata-bound libraries 4
best practices for metadata-bound libraries

22
binding tables to metadata 18

C
connection options 36
CREATE

usage criteria 10
using multiple TABLE statements 71

CREATE example
physical library contained password 69
setting up metadata-bound libraries 9
to bind a physical library 68

to modify passwords 70

E
encrypted data 32

F
fine-grained access to data 15

H
host commands

for adding tables 45
for copying tables 47

L
LIBNAME statement options 37
limitations of metadata-bound libraries 5

M
metadata-bound libraries 1, 50

authorization model 3
basic demonstration 10
benefits 4
best practices 22
depiction 1
limitations 5
passwords 50
setting up 9
troubleshooting 39
use 6
validating 17
verifying read access 21

MODIFY
criteria for use 18

MODIFY example
binding an individual table 18

83

to change metadata-bound library
passwords 74

to change passwords 73
mutually exclusive access to data 13

P
passwords 29
permissions 25
physical tables

adding to a metadata-bound library 43
adding to a traditional library 46
binding to metadata 18
providing access 39
renaming 33

PROC AUTHLIB
task table 54

PROC AUTHLIB statement 54

R
REMOVE

criteria for use 20
REMOVE example 21, 75

unbinding a library 20
REPORT

criteria for use 17
REPORT example 17, 76

validating a metadata-bound library 17

S
SAS commands

for adding tables 44
for copying tables 46

SAS language reference
connection options 36
LIBNAME statement options 37

secured data folders
location 5
replacement 40

secured libraries 55, 60
secured library 60
secured library objects 34

permissions 25
replacement 40

secured table objects 34
permissions 25
replacement 40

security location information 35
realigning 41

T
tables

See physical tables
TABLES example 77
troubleshooting metadata-bound libraries

39

U
unbinding a library 20

84 Index

	Contents
	SAS 9.3 Guide to Metadata-Bound Libraries
	Audience
	Requirements

	Accessibility
	Recommended Reading
	Overview of Metadata-Bound Libraries
	What is a Metadata-Bound Library?
	Depiction of a Metadata-Bound Library
	Authorization Model for Metadata-Bound Tables
	Benefits of Metadata-Bound Libraries
	Limitations of Metadata-Bound Libraries
	Who Should Use Metadata-Bound Libraries?

	Tasks for Metadata-Bound Libraries
	Setting Up a Metadata-Bound Library
	Overview of Setting Up a Metadata-Bound Library
	Who Uses the CREATE Statement?
	Introductory Demonstration
	Set Up Mutually Exclusive Access
	Set Up Fine-Grained Access

	Validating a Metadata-Bound Library
	About Validating a Metadata-Bound Library
	Who Uses the REPORT Statement?
	Example

	Binding an Individual Table to Metadata
	About Binding Tables to Metadata
	Who Uses the MODIFY Statement?
	Example

	Unbinding a Metadata-Bound Library
	About Unbinding a Library
	Who Uses the REMOVE Statement?
	Example

	Verifying Read Access to Metadata-Bound Data
	Who Can Read Metadata-Bound Data?
	Example

	Best Practices for Metadata-Bound Libraries

	Reference for Metadata-Bound Libraries
	Permissions for Metadata-Bound Data
	Permissions on Secured Library and Table Objects
	Permission Requirements
	Identity in Authorization Evaluations

	Passwords for Metadata-Bound Data
	Auditing for Metadata-Bound Libraries
	Which Events Can Be Logged?
	Audit Record Content and Layout

	Considerations for Data File Encryption
	Encrypting Metadata-Bound Data
	Changing Encrypted Table Passwords

	Considerations for Renaming Physical Tables
	Object Creation, Location, and Inheritance
	About This Topic
	Object Creation
	Metadata Location
	Access Control Inheritance

	Security Information in Metadata-Bound Data
	SAS Language Reference for Metadata-Bound Libraries
	About This Topic
	Metadata Server Connection Options
	LIBNAME Statement Options
	AUTHLIB Procedure

	Troubleshooting for Metadata-Bound Libraries
	Facilitate End-User Access
	Replace Missing Metadata Objects
	Realign Security Location Information

	Security Impact of Moving Tables
	About This Appendix
	Adding Physical Tables to a Metadata-Bound Library
	Introduction
	Using SAS
	Using Host Commands

	Copying Metadata-Bound Tables to a Traditional Library
	Introduction
	Using SAS
	Using Host Commands

	AUTHLIB Procedure
	Overview: AUTHLIB Procedure
	Concepts: AUTHLIB Procedure
	What Is a Metadata-Bound Library?
	What Are Metadata-Bound Library Passwords?
	Data Sets in a Metadata-Bound Library That Are Not Bound to
Secured Table Objects
	Requirements to Use PROC AUTHLIB Statements

	Syntax: AUTHLIB Procedure
	PROC AUTHLIB Statement
	CREATE Statement
	MODIFY Statement
	REMOVE Statement
	(Preproduction) REPAIR Statement
	REPORT Statement
	TABLES Statement

	Results: AUTHLIB Procedure
	Examples: AUTHLIB Procedure
	Binding a Physical Library That Contains Unprotected Data Sets
	Binding a Physical Library That Contains Password-Protected
Data Sets
	Securing a Library When Existing Data Sets Are Protected with
the Same Passwords
	Securing a Library When Existing Data Sets Are Protected with
Different Passwords
	Changing Passwords on Data Sets
	Changing Metadata-Bound Library Passwords
	Using the REMOVE Statement
	Using the REPORT Statement
	Using the TABLES Statement

	Glossary
	Index

