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Chapter 1

What’s New in the Base SAS 9.4 Statistical
Procedures

Overview
The fourth maintenance release of Base SAS 9.4 includes enhancements to the FREQ and UNIVARIATE
statistical procedures.

FREQ Procedure Enhancements
The new AGREE(PABAK) and AGREE(AC1) options produce the prevalence-adjusted bias-adjusted
kappa coefficient and Gwet’s AC1 agreement coefficient, respectively. The AGREE(KAPPADETAILS)
option provides the following statistics: observed agreement and chance-expected agreement compo-
nents of the simple kappa coefficient, maximum possible kappa, prevalence index, and bias index. The
AGREE(WTKAPDETAILS) option provides the observed agreement and chance-expected agreement com-
ponents of the weighted kappa coefficient.

You can now specify nonzero null values for the simple and weighted kappa tests by using the
AGREE(NULLKAPPA=) and AGREE(NULLWTKAP=) options. You can specify the degrees of free-
dom for Bowker’s test of symmetry by using the AGREE(DFSYM=) option.

When you specify any of the AGREE options that are new in SAS 9.4M4, PROC FREQ displays all tables of
AGREE statistics in tabular format (instead of factoid format); to display preexisting tables in their original
factoid format, you can specify the AGREE(TABLES=RESTORE) option.

UNIVARIATE Procedure Enhancements
The new FORCEQN and FORCESN options in the PROC UNIVARIATE statement force the calculation
of the robust estimates of scale Qn and Sn. By default, these statistics are not computed for large data sets
because the calculations can be very time-consuming.
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Overview: CORR Procedure

The CORR procedure computes Pearson correlation coef�cients, three nonparametric measures of association,
polyserial correlation coef�cients, and the probabilities associated with these statistics. The correlation
statistics include the following:

� Pearson product-moment correlation

� Spearman rank-order correlation

� Kendall's tau-b coef�cient

� Hoeffding's measure of dependence,D

� Pearson, Spearman, and Kendall partial correlation

� polychoric correlation

� polyserial correlation

Pearson product-moment correlation is a parametric measure of a linear relationship between two variables.
For nonparametric measures of association, Spearman rank-order correlation uses the ranks of the data values
and Kendall's tau-b uses the number of concordances and discordances in paired observations. Hoeffding's
measure of dependence is another nonparametric measure of association that detects more general departures
from independence. A partial correlation provides a measure of the correlation between two variables after
controlling the effects of other variables.

Polyserial correlation measures the correlation between two continuous variables with a bivariate normal
distribution, where only one variable is observed directly. Information about the unobserved variable is
obtained through an observed ordinal variable that is derived from the unobserved variable by classifying its
values into a �nite set of discrete, ordered values.

A related type of correlation, polychoric correlation, measures the correlation between two unobserved
variables with a bivariate normal distribution. Information about these variables is obtained through two
corresponding observed ordinal variables that are derived from the unobserved variables by classifying their
values into �nite sets of discrete, ordered values.

When only one set of analysis variables is speci�ed, the default correlation analysis includes descriptive
statistics for each analysis variable and pairwise Pearson correlation statistics for these variables. You can
also compute Cronbach's coef�cient alpha for estimating reliability.

When two sets of analysis variables are speci�ed, the default correlation analysis includes descriptive statistics
for each analysis variable and pairwise Pearson correlation statistics between the two sets of variables.
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For a Pearson or Spearman correlation, the Fisher'sztransformation can be used to derive its con�dence limits
and ap-value under a speci�ed null hypothesisH 0W� D � 0. Either a one-sided or a two-sided alternative is
used for these statistics.

When the relationship between two variables is nonlinear or when outliers are present, the correlation
coef�cient might incorrectly estimate the strength of the relationship. Plotting the data enables you to verify
the linear relationship and to identify the potential outliers. If ODS Graphics is enabled, scatter plots and a
scatter plot matrix can be created via the Output Delivery System (ODS). Con�dence and prediction ellipses
can also be added to the scatter plot. See the section “Con�dence and Prediction Ellipses” on page 31 for a
detailed description of the ellipses.

You can save the correlation statistics in a SAS data set for use with other statistical and reporting procedures.

Getting Started: CORR Procedure

The following statements create the data setFitness, which has been altered to contain some missing values:

* ----------------- Data on Physical Fitness ----------------- *
| These measurements were made on men involved in a physical |
| fitness course at N.C. State University. |
| The variables are Age (years), Weight (kg), |
| Runtime (time to run 1.5 miles in minutes), and |
| Oxygen (oxygen intake, ml per kg body weight per minute) |
| Certain values were changed to missing for the analysis. |
* ------------------------------------------------------------ * ;
data Fitness;

input Age Weight Oxygen RunTime @@;
datalines;

44 89.47 44.609 11.37 40 75.07 45.313 10.07
44 85.84 54.297 8.65 42 68.15 59.571 8.17
38 89.02 49.874 . 47 77.45 44.811 11.63
40 75.98 45.681 11.95 43 81.19 49.091 10.85
44 81.42 39.442 13.08 38 81.87 60.055 8.63
44 73.03 50.541 10.13 45 87.66 37.388 14.03
45 66.45 44.754 11.12 47 79.15 47.273 10.60
54 83.12 51.855 10.33 49 81.42 49.156 8.95
51 69.63 40.836 10.95 51 77.91 46.672 10.00
48 91.63 46.774 10.25 49 73.37 . 10.08
57 73.37 39.407 12.63 54 79.38 46.080 11.17
52 76.32 45.441 9.63 50 70.87 54.625 8.92
51 67.25 45.118 11.08 54 91.63 39.203 12.88
51 73.71 45.790 10.47 57 59.08 50.545 9.93
49 76.32 . . 48 61.24 47.920 11.50
52 82.78 47.467 10.50
;



6 F Chapter 2: The CORR Procedure

The following statements invoke the CORR procedure and request a correlation analysis:

ods graphics on;
proc corr data=Fitness plots=matrix(histogram);
run;

The “Simple Statistics” table in Figure 2.1 displays univariate statistics for the analysis variables.

Figure 2.1 Univariate Statistics

By default, all numeric variables not listed in other statements are used in the analysis. Observations with
nonmissing values for each variable are used to derive the univariate statistics for that variable.

The “Pearson Correlation Coef�cients” table in Figure 2.2 displays the Pearson correlation, thep-value under
the null hypothesis of zero correlation, and the number of nonmissing observations for each pair of variables.

Figure 2.2 Pearson Correlation Coef�cients

By default, Pearson correlation statistics are computed from observations with nonmissing values for each
pair of analysis variables. Figure 2.2 displays a correlation of –0.86843 betweenRuntime andOxygen, which
is signi�cant with ap-value less than 0.0001. That is, there exists an inverse linear relationship between these
two variables. AsRuntime (time to run 1.5 miles in minutes) increases,Oxygen (oxygen intake, ml per kg
body weight per minute) decreases.
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When you use the PLOTS=MATRIX(HISTOGRAM) option, the CORR procedure displays a symmetric
matrix plot for the analysis variables in Figure 2.3. The histograms for these analysis variables are also
displayed on the diagonal of the matrix plot. This inverse linear relationship between the two variables,
Oxygen andRuntime, is also shown in the plot.

Note that ODS Graphics must be enabled and you must specify the PLOTS= option to produce graphs. For
more information about ODS Graphics, see Chapter 21, “Statistical Graphics Using ODS” (SAS/STAT User's
Guide).

Figure 2.3 Symmetric Matrix Plot
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Syntax: CORR Procedure

The following statements are available in PROC CORR:

PROC CORR < options > ;
BY variables ;
FREQ variable ;
ID variables ;
PARTIAL variables ;
VAR variables ;
WEIGHT variable ;
WITH variables ;

The BY statement speci�es groups in which separate correlation analyses are performed.

The FREQ statement speci�es the variable that represents the frequency of occurrence for other values in the
observation.

The ID statement speci�es one or more additional tip variables to identify observations in scatter plots and
scatter plot matrices.

The PARTIAL statement identi�es controlling variables to compute Pearson, Spearman, or Kendall partial-
correlation coef�cients.

The VAR statement lists the numeric variables to be analyzed and their order in the correlation matrix. If you
omit the VAR statement, all numeric variables not listed in other statements are used.

The WEIGHT statement identi�es the variable whose values weight each observation to compute Pearson
product-moment correlation.

The WITH statement lists the numeric variables with which correlations are to be computed.

The PROC CORR statement is the only required statement for the CORR procedure. The rest of this section
provides detailed syntax information for each of these statements, beginning with the PROC CORR statement.
The remaining statements are presented in alphabetical order.

PROC CORR Statement

PROC CORR < options > ;

Table 2.1 summarizes the options available in the PROC CORR statement.

Table 2.1 Summary of PROC CORR Options

Option Description

Data Sets
DATA= Speci�es the input data set
OUTH= Speci�es the output data set with Hoeffding'sD statistics
OUTK= Speci�es the output data set with Kendall correlation statistics
OUTP= Speci�es the output data set with Pearson correlation statistics
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Table 2.1 continued

Option Description

OUTPLC= Speci�es the output data set with polychoric correlation statistics
OUTPLS= Speci�es the output data set with polyserial correlation statistics
OUTS= Speci�es the output data set with Spearman correlation statistics

Statistical Analysis
EXCLNPWGT Excludes observations with nonpositive weight values from the analysis
FISHER Requests correlation statistics using Fisher'sz transformation
HOEFFDING Requests Hoeffding's measure of dependence,D
KENDALL Requests Kendall's tau-b
NOMISS Excludes observations with missing analysis values from the analysis
PEARSON Requests Pearson product-moment correlation
POLYCHORIC Requests polychoric correlation
POLYSERIAL Requests polyserial correlation
SPEARMAN Requests Spearman rank-order correlation

Pearson Correlation Statistics
ALPHA Computes Cronbach's coef�cient alpha
COV Computes covariances
CSSCP Computes corrected sums of squares and crossproducts
FISHER Computes correlation statistics based on Fisher'sz transformation
SINGULAR= Speci�es the singularity criterion
SSCP Computes sums of squares and crossproducts
VARDEF= Speci�es the divisor for variance calculations

ODS Output Graphics
PLOTS=MATRIX Displays the scatter plot matrix
PLOTS=SCATTER Displays scatter plots for pairs of variables

Printed Output
BEST= Displays the speci�ed number of ordered correlation coef�cients
NOCORR Suppresses Pearson correlations
NOPRINT Suppresses all printed output
NOPROB Suppressesp-values
NOSIMPLE Suppresses descriptive statistics
RANK Displays ordered correlation coef�cients

The following options can be used in the PROC CORR statement. They are listed in alphabetical order.

ALPHA
calculates and prints Cronbach's coef�cient alpha. PROC CORR computes separate coef�cients using
raw and standardized values (scaling the variables to a unit variance of 1). For each VAR statement
variable, PROC CORR computes the correlation between the variable and the total of the remaining
variables. It also computes Cronbach's coef�cient alpha by using only the remaining variables.

If a WITH statement is speci�ed, the ALPHA option is invalid. When you specify the ALPHA option,
the Pearson correlations will also be displayed. If you specify the OUTP= option, the output data
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set also contains observations with Cronbach's coef�cient alpha. If you use the PARTIAL statement,
PROC CORR calculates Cronbach's coef�cient alpha for partialled variables. See the section “Partial
Correlation” on page 22 for details.

BEST=n
prints then highest correlation coef�cients for each variable,n � 1. Correlations are ordered from
highest to lowest in absolute value. Otherwise, PROC CORR prints correlations in a rectangular table,
using the variable names as row and column labels.

If you specify the HOEFFDING option, PROC CORR displays theD statistics in order from highest to
lowest.

COV
displays the variance and covariance matrix. When you specify the COV option, the Pearson correla-
tions will also be displayed. If you specify the OUTP= option, the output data set also contains the
covariance matrix with the corresponding _TYPE_ variable value `COV.' If you use the PARTIAL
statement, PROC CORR computes a partial covariance matrix.

CSSCP
displays a table of the corrected sums of squares and crossproducts. When you specify the CSSCP
option, the Pearson correlations will also be displayed. If you specify the OUTP= option, the output
data set also contains a CSSCP matrix with the corresponding _TYPE_ variable value `CSSCP.' If you
use a PARTIAL statement, PROC CORR prints both an unpartial and a partial CSSCP matrix, and the
output data set contains a partial CSSCP matrix.

DATA=SAS-data-set
names the SAS data set to be analyzed by PROC CORR. By default, the procedure uses the most
recently created SAS data set.

EXCLNPWGT

EXCLNPWGTS
excludes observations with nonpositive weight values from the analysis. By default, PROC CORR
treats observations with negative weights like those with zero weights and counts them in the total
number of observations.

FISHER < (�sher-options ) >
requests con�dence limits andp-values under a speci�ed null hypothesis,H 0W� D � 0, for correlation
coef�cients by using Fisher'sz transformation. These correlations include the Pearson correlations and
Spearman correlations.

The following �sher-options are available:

ALPHA= �
speci�es the level of the con�dence limits for the correlation,100.1 � �/ %. The value of the
ALPHA= option must be between 0 and 1, and the default is ALPHA=0.05.

BIASADJ=YES | NO
speci�es whether or not the bias adjustment is used in constructing con�dence limits. The
BIASADJ=YES option also produces a new correlation estimate that uses the bias adjustment.
By default, BIASADJ=YES.
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RHO0=� 0

speci�es the value� 0 in the null hypothesisH 0W� D � 0, where� 1 < � 0 < 1. By default,
RHO0=0.

TYPE=LOWER | UPPER | TWOSIDED
speci�es the type of con�dence limits. The TYPE=LOWER option requests a lower con�dence
limit for the test of the one-sided hypothesisH 0W� � � 0 against the alternative hypothesis
H 1W� > � 0, the TYPE=UPPER option requests an upper con�dence limit for the test of the
one-sided hypothesisH 0W� � � 0 against the alternative hypothesisH 1W� < � 0, and the default
TYPE=TWOSIDED option requests two-sided con�dence limits for the test of the hypothesis
H 0W� D � 0.

HOEFFDING
requests a table of Hoeffding'sD statistics. ThisD statistic is 30 times larger than the usual de�nition
and scales the range between –0.5 and 1 so that large positive values indicate dependence. The
HOEFFDING option is invalid if a WEIGHT or PARTIAL statement is used.

KENDALL
requests a table of Kendall's tau-b coef�cients based on the number of concordant and discordant pairs
of observations. Kendall's tau-b ranges from –1 to 1.

The KENDALL option is invalid if a WEIGHT statement is used. If you use a PARTIAL statement,
probability values for Kendall's partial tau-b are not available.

NOCORR
suppresses displaying of Pearson correlations. If you specify the OUTP= option, the data set type
remains CORR. To change the data set type to COV, CSSCP, or SSCP, use the TYPE= data set option.

NOMISS
excludes observations with missing values from the analysis. Otherwise, PROC CORR computes
correlation statistics by using all of the nonmissing pairs of variables. Using the NOMISS option is
computationally more ef�cient.

NOPRINT
suppresses all displayed output, which also includes output produced with ODS Graphics. Use the
NOPRINT option if you want to create an output data set only.

NOPROB
suppresses displaying the probabilities associated with each correlation coef�cient.

NOSIMPLE
suppresses printing simple descriptive statistics for each variable. However, if you request an output
data set, the output data set still contains simple descriptive statistics for the variables.

OUTH=output-data-set
creates an output data set that contains Hoeffding'sD statistics. The contents of the output data set
are similar to those of the OUTP= data set. When you specify the OUTH= option, the Hoeffding'sD
statistics will be displayed.
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OUTK=output-data-set
creates an output data set that contains Kendall correlation statistics. The contents of the output data
set are similar to those of the OUTP= data set. When you specify the OUTK= option, the Kendall
correlation statistics will be displayed.

OUTP=output-data-set

OUT=output-data-set
creates an output data set that contains Pearson correlation statistics. This data set also includes means,
standard deviations, and the number of observations. The value of the _TYPE_ variable is `CORR.'
When you specify the OUTP= option, the Pearson correlations will also be displayed. If you specify
the ALPHA option, the output data set also contains six observations with Cronbach's coef�cient
alpha.

OUTPLC=output-data-set
creates an output data set that contains polychoric correlation statistics. (Polychoric correlation between
two observed binary variables is also known as tetrachoric correlation.) This data set also includes
means, standard deviations, and the number of observations. The value of the _TYPE_ variable is
`CORR.'

OUTPLS=output-data-set
creates an output data set that contains polyserial correlation statistics. The contents of the output data
set are similar to those of the OUTPLC= data set.

OUTS=SAS-data-set
creates an output data set that contains Spearman correlation coef�cients. The contents of the output
data set are similar to those of the OUTP= data set. When you specify the OUTS= option, the Spearman
correlation coef�cients will be displayed.

PEARSON
requests a table of Pearson product-moment correlations. The correlations range from –1 to 1. If you do
not specify the HOEFFDING, KENDALL, SPEARMAN, POLYCHORIC, POLYSERIAL, OUTH=,
OUTK=, or OUTS= option, the CORR procedure produces Pearson product-moment correlations
by default. Otherwise, you must specify the PEARSON, ALPHA, COV, CSSCP, SSCP, or OUT=
option for Pearson correlations. Also, if a scatter plot or a scatter plot matrix is requested, the Pearson
correlations will be displayed.

PLOTS < ( MAXPOINTS=NONE | n ) > = plot-request

PLOTS < ( MAXPOINTS=NONE | n ) > = ( plot-request < . . . plot-request > )
requests statistical graphics via the Output Delivery System (ODS).

ODS Graphics must be enabled before plots can be requested. For example:

ods graphics on;
proc corr data=Fitness plots=matrix(histogram);
run;

For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” in Chapter 21, “Statistical Graphics Using ODS” (SAS/STAT User's Guide).

The global plot option MAXPOINTS= speci�es that plots with elements that require processing more
thann points be suppressed. The default is MAXPOINTS=5000. This limit is ignored if you specify
MAXPOINTS=NONE. The plot request options include the following:
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ALL
produces all appropriate plots.

MATRIX < (matrix-options) >
requests a scatter plot matrix for variables. That is, the procedure displays a symmetric matrix
plot with variables in the VAR list if a WITH statement is not speci�ed. Otherwise, the procedure
displays a rectangular matrix plot with the WITH variables appearing down the side and the VAR
variables appearing across the top.

NONE
suppresses all plots.

SCATTER < (scatter-options) >
requests scatter plots for pairs of variables. That is, the procedure displays a scatter plot for
each applicable pair of distinct variables from the VAR list if a WITH statement is not speci�ed.
Otherwise, the procedure displays a scatter plot for each applicable pair of variables, one from
the WITH list and the other from the VAR list.

When a scatter plot or a scatter plot matrix is requested, the Pearson correlations will also be displayed.

The availablematrix-options are as follows:

HIST | HISTOGRAM
displays histograms of variables in the VAR list (speci�ed in the VAR statement) in the symmetric
matrix plot.

NVAR=ALL | n
speci�es the maximum number of variables in the VAR list to be displayed in the matrix plot,
wheren > 0. The NVAR=ALL option uses all variables in the VAR list. By default, NVAR=5.

NWITH=ALL | n
speci�es the maximum number of variables in the WITH list (speci�ed in the WITH statement)
to be displayed in the matrix plot, wheren > 0. The NWITH=ALL option uses all variables in
the WITH list. By default, NWITH=5.

If the resulting maximum number of variables in the VAR or WITH list is greater than 10, only the
�rst 10 variables in the list are displayed in the scatter plot matrix.

The availablescatter-options are as follows:

ALPHA= �
speci�es the� values for the con�dence or prediction ellipses to be displayed in the scatter plots,
where0 < � < 1 . For each� value speci�ed, a (1� � ) con�dence or prediction ellipse is created.
By default,� D 0:05.

ELLIPSE=PREDICTION | CONFIDENCE | NONE
requests prediction ellipses for new observations (ELLIPSE=PREDICTION), con�dence ellipses
for the mean (ELLIPSE=CONFIDENCE), or no ellipses (ELLIPSE=NONE) to be created in the
scatter plots. By default, ELLIPSE=PREDICTION.
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NOINSET
suppresses the default inset of summary information for the scatter plot. The inset table contains
the number of observations (Observations) and correlation.

NVAR=ALL | n
speci�es the maximum number of variables in the VAR list (speci�ed in the VAR statement) to
be displayed in the plots, wheren > 0. The NVAR=ALL option uses all variables in the VAR list.
By default, NVAR=5.

NWITH=ALL | n
speci�es the maximum number of variables in the WITH list (speci�ed in the WITH statement)
to be displayed in the plots, wheren > 0. The NWITH=ALL option uses all variables in the
WITH list. By default, NWITH=5.

If the resulting maximum number of variables in the VAR or WITH list is greater than 10, only the
�rst 10 variables in the list are displayed in the scatter plots.

POLYCHORIC < (options) >
requests a table of polychoric correlation coef�cients. (Polychoric correlation between two observed
binary variables is also known as tetrachoric correlation.) A polychoric correlation measures the
correlation between two unobserved, continuous variables that have a bivariate normal distribution.
Information about each unobserved variable is obtained through an observed ordinal variable that is
derived from the unobserved variable by classifying its values into a �nite set of discrete, ordered
values. If you specify a WEIGHT statement, the POLYCHORIC option is not applicable.

You can specify the followingoptions for computing polychoric correlation:

CONVERGE=p
speci�es the convergence criterion. The valuep must be between 0 and 1. The iterations are
considered to have converged when the absolute change in the parameter estimates between
iteration steps is less thanp for each parameter—that is, for the correlation and the thresholds for
the unobserved continuous variable that de�ne the categories for the ordinal variable. By default,
CONVERGE=0.0001.

MAXITER=number
speci�es the maximum number of iterations. The iterations stop when the number of iterations
exceedsnumber . By default, MAXITER=200.

NGROUPS=ALL | n
speci�es the maximum number of groups allowed for each ordinal variable, wheren > 1.
NGROUPS=ALL allows an unlimited number of groups in each ordinal variable. Otherwise, if
the number of groups exceeds the speci�ed numbern, polychoric correlations are not computed
for the affected pairs of variables. By default, NGROUPS=20.

POLYSERIAL < (options) >
requests a table of polyserial correlation coef�cients. A polyserial correlation measures the correlation
between two continuous variables with a bivariate normal distribution, where one variable is observed
and the other is unobserved. Information about the unobserved variable is obtained through an observed
ordinal variable that is derived from the unobserved variable by classifying its values into a �nite set
of discrete, ordered values. If you specify a WEIGHT statement, the POLYSERIAL option is not
applicable.
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You can specify the followingoptions for computing polyserial correlation:

CONVERGE=p
speci�es the convergence criterion. The valuep must be between 0 and 1. The iterations are
considered to have converged when the absolute change in the parameter estimates between
iteration steps is less thanp for each parameter—that is, for the correlation and the thresholds for
the unobserved continuous variable that de�ne the categories for the ordinal variable. By default,
CONVERGE=0.0001.

MAXITER=number
speci�es the maximum number of iterations. The iterations stop when the number of iterations
exceedsnumber . By default, MAXITER=200.

NGROUPS=ALL | n
speci�es the maximum number of groups allowed for each ordinal variable, wheren > 1.
NGROUPS=ALL allows an unlimited number of groups in each ordinal variable. Otherwise, if
the number of groups exceeds the speci�ed numbern, polyserial correlations are not computed
for the affected pairs of variables. By default, NGROUPS=20.

ORDINAL=WITH | VAR
speci�es the ordinal variable list. The ORDINAL=WITH option speci�es that the ordinal
variables are provided in the WITH statement, and the continuous variables are provided in the
VAR statement. The ORDINAL=VAR option speci�es that the ordinal variables are provided in
the VAR statement, and the continuous variables are provided in the WITH statement. By default,
ORDINAL=WITH.

RANK
displays the ordered correlation coef�cients for each variable. Correlations are ordered from highest to
lowest in absolute value. If you specify the HOEFFDING option, theD statistics are displayed in order
from highest to lowest.

SINGULAR=p
speci�es the criterion for determining the singularity of a variable if you use a PARTIAL statement. A
variable is considered singular if its corresponding diagonal element after Cholesky decomposition has
a value less thanp times the original unpartialled value of that variable. By default, SINGULAR=1E� 8.
The range ofp is between 0 and 1.

SPEARMAN
requests a table of Spearman correlation coef�cients based on the ranks of the variables. The correla-
tions range from –1 to 1. If you specify a WEIGHT statement, the SPEARMAN option is invalid.

SSCP
displays a table of the sums of squares and crossproducts. When you specify the SSCP option, the
Pearson correlations are also displayed. If you specify the OUTP= option, the output data set contains a
SSCP matrix and the corresponding _TYPE_ variable value is `SSCP.' If you use a PARTIAL statement,
the unpartial SSCP matrix is displayed, and the output data set does not contain an SSCP matrix.

VARDEF=DF | N | WDF | WEIGHT | WGT
speci�es the variance divisor in the calculation of variances and covariances. The default is
VARDEF=DF.



16 F Chapter 2: The CORR Procedure

Table 2.2 displays available values and associated divisors for the VARDEF= option, wheren is the
number of nonmissing observations,k is the number of variables speci�ed in the PARTIAL statement,
andwj is the weight associated with thejth nonmissing observation.

Table 2.2 Possible Values for the VARDEF= Option

Value Description Divisor

DF Degrees of freedom n - k - 1
N Number of observations n
WDF Sum of weights minus one

P n
j wj � k � 1

WEIGHT | WGT Sum of weights
P n

j wj

BY Statement

BY variables ;

You can specify a BY statement with PROC CORR to obtain separate analyses of observations in groups that
are de�ned by the BY variables. When a BY statement appears, the procedure expects the input data set to be
sorted in order of the BY variables. If you specify more than one BY statement, only the last one speci�ed is
used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

� Sort the data by using the SORT procedure with a similar BY statement.

� Specify the NOTSORTED or DESCENDING option in the BY statement for the CORR procedure.
The NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged
in groups (according to values of the BY variables) and that these groups are not necessarily in
alphabetical or increasing numeric order.

� Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

For more information about BY-group processing, see the discussion inSAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in theBase SAS Procedures Guide.

FREQ Statement

FREQ variable ;

The FREQ statement lists a numeric variable whose value represents the frequency of the observation. If you
use the FREQ statement, the procedure assumes that each observation representsn observations, wheren is
the value of the FREQ variable. Ifn is not an integer, SAS truncates it. Ifn is less than 1 or is missing, the
observation is excluded from the analysis. The sum of the frequency variable represents the total number of
observations.

The effects of the FREQ and WEIGHT statements are similar except when calculating degrees of freedom.
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ID Statement

ID variables ;

The ID statement speci�es one or more additional tip variables to identify observations in scatter plots and
scatter plot matrix. For each plot, the tip variables include the X-axis variable, the Y-axis variable, and the
variable for observation numbers.

PARTIAL Statement

PARTIAL variables ;

The PARTIAL statement lists variables to use in the calculation of partial correlation statistics. Only the
Pearson partial correlation, Spearman partial rank-order correlation, and Kendall's partial tau-b can be
computed. When you use the PARTIAL statement, observations with missing values are excluded.

With a PARTIAL statement, PROC CORR also displays the partial variance and standard deviation for each
analysis variable if the PEARSON option is speci�ed.

VAR Statement

VAR variables ;

The VAR statement lists variables for which to compute correlation coef�cients. If the VAR statement is not
speci�ed, PROC CORR computes correlations for all numeric variables not listed in other statements.

WEIGHT Statement

WEIGHT variable ;

The WEIGHT statement lists weights to use in the calculation of Pearson weighted product-moment correla-
tion. The HOEFFDING, KENDALL, and SPEARMAN options are not valid with the WEIGHT statement.

The observations with missing weights are excluded from the analysis. By default, for observations with
nonpositive weights, weights are set to zero and the observations are included in the analysis. You can use
the EXCLNPWGT option to exclude observations with negative or zero weights from the analysis.
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WITH Statement

WITH variables ;

The WITH statement lists variables with which correlations of the VAR statement variables are to be
computed. The WITH statement requests correlations of the formr.X i ; Yj / , whereX1; : : : ; Xm are analysis
variables speci�ed in the VAR statement, andY1; : : : ; Yn are variables speci�ed in the WITH statement. The
correlation matrix has a rectangular structure of the form

2

6
4

r.Y1; X1/ � � � r .Y1; Xm /
:::

: : :
:::

r .Yn ; X1/ � � � r .Yn ; Xm /

3

7
5

For example, the statements

proc corr;
var x1 x2;
with y1 y2 y3;

run;

produce correlations for the following combinations:

2

4
r.Y1; X1/ r.Y1; X2/
r.Y 2; X1/ r.Y 2; X2/
r.Y 3; X1/ r.Y 3; X2/

3

5

Details: CORR Procedure

Pearson Product-Moment Correlation

The Pearson product-moment correlation is a parametric measure of association for two variables. It measures
both the strength and the direction of a linear relationship. If one variableX is an exact linear function of
another variableY, a positive relationship exists if the correlation is 1 and a negative relationship exists if the
correlation is –1. If there is no linear predictability between the two variables, the correlation is 0. If the two
variables are normal with a correlation 0, the two variables are independent. However, correlation does not
imply causality because, in some cases, an underlying causal relationship might not exist.

The scatter plot matrix in Figure 2.4 displays the relationship between two numeric random variables in
various situations.
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Figure 2.4 Correlations between Two Variables

The scatter plot matrix shows a positive correlation between variablesY1 andX1, a negative correlation
betweenY1 andX2, and no clear correlation betweenY2 andX1. The plot also shows no clear linear
correlation betweenY2 andX2, even thoughY2 is dependent onX2.

The formula for the population Pearson product-moment correlation, denoted� xy , is

� xy D
Cov.x; y/

p
V.x/ V.y/

D
E. .x � E.x//.y � E.y// /

p
E.x � E.x// 2 E.y � E.y// 2



20 F Chapter 2: The CORR Procedure

The sample correlation, such as a Pearson product-moment correlation or weighted product-moment correla-
tion, estimates the population correlation. The formula for the sample Pearson product-moment correlation
is

rxy D

P
i . .x i � Nx/.y i � Ny/ /

p P
i .x i � Nx/ 2

P
i .y i � Ny/ 2

where Nx is the sample mean ofx and Ny is the sample mean ofy. The formula for a weighted Pearson
product-moment correlation is

rxy D

P
i wi .x i � Nxw /.y i � Nyw /

p P
i wi .x i � Nxw /2

P
i wi .y i � Nyw /2

wherewi is the weight,Nxw is the weighted mean ofx, and Nyw is the weighted mean ofy.

Probability Values

Probability values for the Pearson correlation are computed by treating

t D .n � 2/1=2
�

r 2

1 � r 2

� 1=2

as coming from at distribution with.n � 2/ degrees of freedom, wherer is the sample correlation.

Spearman Rank-Order Correlation

Spearman rank-order correlation is a nonparametric measure of association based on the ranks of the data
values. The formula is

� D

P
i . .R i � NR/.S i � NS/ /

q P
i .R i � NR/2

P
.Si � NS/2

whereRi is the rank ofxi , Si is the rank ofy i , NR is the mean of theRi values, andNS is the mean of theSi

values.

PROC CORR computes the Spearman correlation by ranking the data and using the ranks in the Pearson
product-moment correlation formula. In case of ties, the averaged ranks are used.

Probability Values

Probability values for the Spearman correlation are computed by treating

t D .n � 2/1=2
�

r 2

1 � r 2

� 1=2

as coming from at distribution with.n � 2/ degrees of freedom, wherer is the sample Spearman correlation.
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Kendall's Tau-b Correlation Coef�cient

Kendall's tau-b is a nonparametric measure of association based on the number of concordances and
discordances in paired observations. Concordance occurs when paired observations vary together, and
discordance occurs when paired observations vary differently. The formula for Kendall's tau-b is

� D

P
i<j .sgn.x i � xj /sgn.y i � y j //

p
.T0 � T1/.T 0 � T2/

whereT0 D n.n � 1/=2, T1 D
P

k tk .tk � 1/=2, andT2 D
P

l ul .u l � 1/=2. Thetk is the number of tied
x values in thekth group of tiedx values,ul is the number of tiedy values in thelth group of tiedy values,n
is the number of observations, andsgn.z/ is de�ned as

sgn.z/ D

8
<

:

1 if z > 0
0 if z D 0
� 1 if z < 0

PROC CORR computes Kendall's tau-b by ranking the data and using a method similar to Knight (1966).
The data are double sorted by ranking observations according to values of the �rst variable and reranking
the observations according to values of the second variable. PROC CORR computes Kendall's tau-b from
the number of interchanges of the �rst variable and corrects for tied pairs (pairs of observations with equal
values of X or equal values of Y).

Probability Values

Probability values for Kendall's tau-b are computed by treating
s

p
V .s/

as coming from a standard normal distribution where

s D
X

i<j

.sgn.x i � xj /sgn.y i � y j //

andV .s/, the variance ofs, is computed as

V .s/ D
v0 � vt � vu

18
C

v1

2n.n � 1/
C

v2

9n.n � 1/.n � 2/

where

v0 D n.n � 1/.2n C 5/

vt D
P

k tk .tk � 1/.2tk C 5/

vu D
P

l ul .u l � 1/.2u l C 5/

v1 D .
P

k tk .tk � 1// .
P

ui .u l � 1//

v2 D .
P

l ti .tk � 1/.t k � 2// .
P

ul .u l � 1/.u l � 2//

The sums are over tied groups of values whereti is the number of tiedx values andui is the number of tied
y values (Noether 1967). The sampling distribution of Kendall's partial tau-b is unknown; therefore, the
probability values are not available.
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Hoeffding Dependence Coef�cient

Hoeffding's measure of dependence,D, is a nonparametric measure of association that detects more general
departures from independence. The statistic approximates a weighted sum over observations of chi-square
statistics for two-by-two classi�cation tables (Hoeffding 1948). Each set of.x; y/ values are cut points for
the classi�cation. The formula for Hoeffding'sD is

D D 30
.n � 2/.n � 3/D 1 C D 2 � 2.n � 2/D 3

n.n � 1/.n � 2/.n � 3/.n � 4/

whereD 1 D
P

i .Q i � 1/.Q i � 2/, D 2 D
P

i .R i � 1/.R i � 2/.S i � 1/.S i � 2/, andD 3 D
P

i .R i �
2/.S i � 2/.Q i � 1/. Ri is the rank ofxi , Si is the rank ofy i , andQ i (also called the bivariate rank) is 1
plus the number of points with bothx andy values less than theith point.

A point that is tied on only thex value ory value contributes 1/2 toQ i if the other value is less than the
corresponding value for theith point.

A point that is tied on bothx andy contributes 1/4 toQ i . PROC CORR obtains theQ i values by �rst ranking
the data. The data are then double sorted by ranking observations according to values of the �rst variable and
reranking the observations according to values of the second variable. Hoeffding'sD statistic is computed
using the number of interchanges of the �rst variable. When no ties occur among data set observations,
theD statistic values are between –0.5 and 1, with 1 indicating complete dependence. However, when ties
occur, theD statistic might result in a smaller value. That is, for a pair of variables with identical values, the
Hoeffding'sD statistic might be less than 1. With a large number of ties in a small data set, theD statistic
might be less than –0.5. For more information about Hoeffding'sD, see Hollander and Wolfe (1999).

Probability Values

The probability values for Hoeffding'sD statistic are computed using the asymptotic distribution computed
by Blum, Kiefer, and Rosenblatt (1961). The formula is

.n � 1/� 4

60
D C

� 4

72
which comes from the asymptotic distribution. If the sample size is less than 10, refer to the tables for the
distribution ofD in Hollander and Wolfe (1999).

Partial Correlation

A partial correlation measures the strength of a relationship between two variables, while controlling the
effect of other variables. The Pearson partial correlation between two variables, after controlling for variables
in the PARTIAL statement, is equivalent to the Pearson correlation between the residuals of the two variables
after regression on the controlling variables.

Let y D .y 1; y2; : : : ; yv / be the set of variables to correlate andz D .z1; z2; : : : ; zp / be the set of controlling
variables. The population Pearson partial correlation between theith and thejth variables ofy givenz is the
correlation between errors.y i � E.y i // and.y j � E.y j // , where

E.y i / D � i C z� i and E.y j / D � j C z� j

are the regression models for variablesy i andy j given the set of controlling variablesz, respectively.
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For a given sample of observations, a sample Pearson partial correlation betweeny i andy j givenz is derived
from the residualsy i � Oy i andy j � Oy j , where

Oy i D O� i C z O� i and Oy j D O� j C z O� j

are �tted values from regression models for variablesy i andy j givenz.

The partial corrected sums of squares and crossproducts (CSSCP) ofy given z are the corrected sums
of squares and crossproducts of the residualsy � Oy. Using these partial corrected sums of squares and
crossproducts, you can calculate the partial covariances and partial correlations.

PROC CORR derives the partial corrected sums of squares and crossproducts matrix by applying the Cholesky
decomposition algorithm to the CSSCP matrix. For Pearson partial correlations, letSbe the partitioned
CSSCP matrix between two sets of variables,z andy:

S D
�

Szz Szy

S0
zy Syy

�

PROC CORR calculatesSyy:z , the partial CSSCP matrix ofy after controlling forz, by applying the Cholesky
decomposition algorithm sequentially on the rows associated withz, the variables being partialled out.

After applying the Cholesky decomposition algorithm to each row associated with variablesz, PROC CORR
checks all higher-numbered diagonal elements associated withz for singularity. A variable is considered
singular if the value of the corresponding diagonal element is less than" times the original unpartialled
corrected sum of squares of that variable. You can specify the singularity criterion" by using the SINGULAR=
option. For Pearson partial correlations, a controlling variablez is considered singular if theR2 for predicting
this variable from the variables that are already partialled out exceeds1 � ". When this happens, PROC
CORR excludes the variable from the analysis. Similarly, a variable is considered singular if theR2 for
predicting this variable from the controlling variables exceeds1 � ". When this happens, its associated
diagonal element and all higher-numbered elements in this row or column are set to zero.

After the Cholesky decomposition algorithm is applied to all rows associated withz, the resulting matrix has
the form

T D
�

Tzz Tzy

0 Syy:z

�

whereTzz is an upper triangular matrix withT 0
zz Tzz D S0

zz , T 0
zz Tzy D S0

zy , andSyy:z D Syy � T 0
zy Tzy .

If Szz is positive de�nite, thenTzy D T 0
zz

� 1S0
zy and the partial CSSCP matrixSyy:z is identical to the

matrix derived from the formula

Syy:z D Syy � S0
zy S0� 1

zz Szy

The partial variance-covariance matrix is calculated with the variance divisor (VARDEF= option). PROC
CORR then uses the standard Pearson correlation formula on the partial variance-covariance matrix to
calculate the Pearson partial correlation matrix.

When a correlation matrix is positive de�nite, the resulting partial correlation between variablesx andy after
adjusting for a single variablez is identical to that obtained from the �rst-order partial correlation formula

rxy:z D
rxy � rxz ryzq

.1 � r 2
xz /.1 � r 2

yz /

whererxy , rxz , andryz are the appropriate correlations.
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The formula for higher-order partial correlations is a straightforward extension of the preceding �rst-order
formula. For example, when the correlation matrix is positive de�nite, the partial correlation betweenx andy
controlling for bothz_1 andz_2 is identical to the second-order partial correlation formula

rxy:z 1 z2 D
rxy:z 1 � rxz 2 :z1 ryz 2 :z1q
.1 � r 2

xz 2 :z1
/.1 � r 2

yz 2 :z1
/

whererxy:z 1 , rxz 2 :z1 , andryz 2 :z1 are �rst-order partial correlations among variablesx, y, andz_2 givenz_1.

To derive the corresponding Spearman partial rank-order correlations and Kendall partial tau-b correlations,
PROC CORR applies the Cholesky decomposition algorithm to the Spearman rank-order correlation matrix
and Kendall's tau-b correlation matrix and uses the correlation formula. That is, the Spearman partial
correlation is equivalent to the Pearson correlation between the residuals of the linear regression of the ranks
of the two variables on the ranks of the partialled variables. Thus, if a PARTIAL statement is speci�ed with
the CORR=SPEARMAN option, the residuals of the ranks of the two variables are displayed in the plot.
The partial tau-b correlations range from –1 to 1. However, the sampling distribution of this partial tau-b is
unknown; therefore, the probability values are not available.

Probability Values

Probability values for the Pearson and Spearman partial correlations are computed by treating

.n � k � 2/1=2r

.1 � r 2/1=2

as coming from at distribution with.n � k � 2/ degrees of freedom, wherer is the partial correlation andk
is the number of variables being partialled out.

Fisher's z Transformation

For a sample correlationr that uses a sample from a bivariate normal distribution with correlation� D 0, the
statistic

tr D .n � 2/1=2
�

r 2

1 � r 2

� 1=2

has a Student'st distribution with (n-2) degrees of freedom.

With the monotone transformation of the correlationr (Fisher 1921)

zr D tanh� 1.r / D
1
2

log
�

1 C r
1 � r

�

the statisticzr has an approximate normal distribution with mean and variance

E.z r / D � C
�

2.n � 1/

V .zr / D
1

n � 3

where� D tanh� 1.�/ .
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For the transformedzr , the approximate varianceV .zr / D 1=.n � 3/ is independent of the correlation� .
Furthermore, even the distribution ofzr is not strictly normal, it tends to normality rapidly as the sample size
increases for any values of� (Fisher 1973, pp. 200–201).

For the null hypothesisH 0W� D � 0, thep-values are computed by treating

zr � � 0 �
� 0

2.n � 1/

as a normal random variable with mean zero and variance1=.n � 3/, where� 0 D tanh� 1.� 0/ (Fisher 1973,
p. 207; Anderson 1984, p. 123).

Note that the bias adjustment,� 0=.2.n � 1// , is always used when computingp-values under the null
hypothesisH 0W� D � 0 in the CORR procedure.

The ALPHA= option in the FISHER option speci�es the value� for the con�dence level1 � � , the RHO0=
option speci�es the value� 0 in the hypothesisH 0W� D � 0, and the BIASADJ= option speci�es whether the
bias adjustment is to be used for the con�dence limits.

The TYPE= option speci�es the type of con�dence limits. The TYPE=TWOSIDED option requests two-sided
con�dence limits and ap-value under the hypothesisH 0W� D � 0. For a one-sided con�dence limit, the
TYPE=LOWER option requests a lower con�dence limit and ap-value under the hypothesisH 0W� < D � 0,
and the TYPE=UPPER option requests an upper con�dence limit and ap-value under the hypothesis
H 0W� > D � 0.

Con�dence Limits for the Correlation

The con�dence limits for the correlation� are derived through the con�dence limits for the parameter� , with
or without the bias adjustment.

Without a bias adjustment, con�dence limits for� are computed by treating

zr � �

as having a normal distribution with mean zero and variance1=.n � 3/.

That is, the two-sided con�dence limits for� are computed as

� l D zr � z.1 � �=2/

r
1

n � 3

� u D zr C z.1 � �=2/

r
1

n � 3
wherez.1 � �=2/ is the100.1� �=2/ percentage point of the standard normal distribution.

With a bias adjustment, con�dence limits for� are computed by treating

zr � � � bias.r/

as having a normal distribution with mean zero and variance1=.n � 3/, where the bias adjustment function
(Keeping 1962, p. 308) is

bias.r/ D
r

2.n � 1/
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That is, the two-sided con�dence limits for� are computed as

� l D zr � bias.r/ � z.1 � �=2/

r
1

n � 3

� u D zr � bias.r/ C z.1 � �=2/

r
1

n � 3

These computed con�dence limits of� l and� u are then transformed back to derive the con�dence limits for
the correlation� :

r l D tanh.� l / D
exp.2� l / � 1
exp.2� l / C 1

ru D tanh.� u / D
exp.2� u / � 1
exp.2� u / C 1

Note that with a bias adjustment, the CORR procedure also displays the following correlation estimate:

radj D tanh.zr � bias.r//

Applications of Fisher's z Transformation

Fisher (1973, p. 199) describes the following practical applications of thez transformation:

� testing whether a population correlation is equal to a given value

� testing for equality of two population correlations

� combining correlation estimates from different samples

To test if a population correlation� 1 from a sample ofn1 observations with sample correlationr1 is equal to
a given� 0, �rst apply thez transformation tor1 and� 0: z1 D tanh� 1.r 1/ and� 0 D tanh� 1.� 0/ .

Thep-value is then computed by treating

z1 � � 0 �
� 0

2.n1 � 1/

as a normal random variable with mean zero and variance1=.n1 � 3/.

Assume that sample correlationsr1 andr2 are computed from two independent samples ofn1 andn2

observations, respectively. To test whether the two corresponding population correlations,� 1 and� 2, are
equal, �rst apply theztransformation to the two sample correlations:z1 D tanh� 1.r 1/ andz2 D tanh� 1.r 2/ .

The p-value is derived under the null hypothesis of equal correlation. That is, the differencez1 � z2 is
distributed as a normal random variable with mean zero and variance1=.n1 � 3/ C 1=.n2 � 3/.

Assuming further that the two samples are from populations with identical correlation, a combined correlation
estimate can be computed. The weighted average of the correspondingz values is

Nz D
.n1 � 3/z1 C .n2 � 3/z2

n1 C n2 � 6
where the weights are inversely proportional to their variances.

Thus, a combined correlation estimate isNr D tanh. Nz/ andV .Nz/ D 1=.n1 C n2 � 6/. See Example 2.4 for
further illustrations of these applications.

Note that this approach can be extended to include more than two samples.
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Polychoric Correlation

Polychoric correlation measures the correlation between two unobserved, continuous variables that have a
bivariate normal distribution. Information about each unobserved variable is obtained through an observed
ordinal variable that is derived from the unobserved variable by classifying its values into a �nite set of
discrete, ordered values (Olsson 1979; Drasgow 1986). Polychoric correlation between two observed binary
variables is also known as tetrachoric correlation.

The polychoric correlation coef�cient is the maximum likelihood estimate of the product-moment correlation
between the underlying normal variables. The range of the polychoric correlation is from –1 to 1. Olsson
(1979) gives the likelihood equations and the asymptotic standard errors for estimating the polychoric
correlation. The underlying continuous variables relate to the observed ordinal variables through thresholds,
which de�ne a range of numeric values that correspond to each categorical level. PROC CORR uses Olsson's
maximum likelihood method for simultaneous estimation of the polychoric correlation and the thresholds.

PROC CORR iteratively solves the likelihood equations by using a Newton-Raphson algorithm. The
initial estimates of the thresholds are computed from the inverse of the normal distribution function at the
cumulative marginal proportions of the table. Iterative computation of the polychoric correlation stops when
the convergence measure falls below the convergence criterion or when the maximum number of iterations is
reached, whichever occurs �rst.

Probability Values

The CORR procedure computes two types of testing for the zero polychoric correlation: the Wald test and
the likelihood ratio (LR) test.

Given the maximum likelihood estimate of the polychoric correlationO� and its asymptotic standard error
StdErr . O�/ , the Wald chi-square test statistic is computed as

�
O�

StdErr . O�/

� 2

The Wald statistic has an asymptotic chi-square distribution with one degree of freedom.

For the LR test, the maximum likelihood function assuming zero polychoric correlation is also needed. The
LR test statistic is computed as

� 2 log
�

L 0

L 1

�

whereL 1 is the likelihood function with the maximum likelihood estimates for all parameters, andL 0 is
the likelihood function with the maximum likelihood estimates for all parameters except the polychoric
correlation, which is set to 0. The LR statistic also has an asymptotic chi-square distribution with one degree
of freedom.

Polyserial Correlation

Polyserial correlation measures the correlation between two continuous variables with a bivariate normal
distribution, where one variable is observed directly, and the other is unobserved. Information about the
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unobserved variable is obtained through an observed ordinal variable that is derived from the unobserved
variable by classifying its values into a �nite set of discrete, ordered values (Olsson, Drasgow, and Dorans
1982).

Let X be the observed continuous variable from a normal distribution with mean� and variance� 2, let Y
be the unobserved continuous variable, and let� be the Pearson correlation betweenX andY. Furthermore,
assume that an observed ordinal variableD is derived fromY as follows:

D D

8
<

:

d.1/ if Y < � 1

d.k/ if � k � 1 � Y < � k ; k D 2; 3; : : : ; K � 1
d.K/ if Y � � K � 1

whered.1/ < d .2/ < : : : < d .K/ are ordered observed values, and� 1 < � 2 < : : : < � K � 1 are ordered
unknown threshold values.

The likelihood function for the joint distribution (X, D) from a sample ofN observations.x j ; dj / is

L D
NY

j D 1

f .x j ; dj / D
NY

j D 1

f .x j / P .D D dj j xj /

wheref .x j / is the normal density function with mean� and standard deviation� (Drasgow 1986).

The conditional distribution ofY given X D xj is normal with mean�z j and variance1 � � 2, where
zj D .x j � �/=� is a standard normal variate. Without loss of generality, assume the variableY has a
standard normal distribution. Then ifdj D d.k/ , thek th ordered value inD, the resulting conditional density
is

P.D D d.k/ j xj / D

8
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:

ˆ
�

� 1 � �z jp
1� � 2

�
if k D 1

ˆ
�

� k � �z jp
1� � 2

�
� ˆ

�
� k � 1 � �z jp

1� � 2

�
if k D 2; 3; : : : ; K � 1

1 � ˆ
�

� K � 1 � �z jp
1� � 2

�
if k D K

whereˆ is the cumulative normal distribution function.

Cox (1974) derives the maximum likelihood estimates for all parameters� , � , � and� 1, . . . , � k � 1. The
maximum likelihood estimates for� and� 2 can be derived explicitly. The maximum likelihood estimate for
� is the sample mean and the maximum likelihood estimate for� 2 is the sample variance

P N
j D 1.x j � Nx/ 2

N

The maximum likelihood estimates for the remaining parameters, including the polyserial correlation�
and thresholds� 1, . . . , � k � 1, can be computed by an iterative process, as described by Cox (1974). The
asymptotic standard error of the maximum likelihood estimate of� can also be computed after this process.

For a vector of parameters, the information matrix is the negative of the Hessian matrix (the matrix of second
partial derivatives of the log likelihood function), and is used in the computation of the maximum likelihood
estimates of these parameters. The CORR procedure uses the observed information matrix (the information
matrix evaluated at the current parameter estimates) in the computation. After the maximum likelihood
estimates are derived, the asymptotic covariance matrix for these parameter estimates is computed as the
inverse of the observed information matrix (the information matrix evaluated at the maximum likelihood
estimates).
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Probability Values

The CORR procedure computes two types of testing for the zero polyserial correlation: the Wald test and the
likelihood ratio (LR) test.

Given the maximum likelihood estimate of the polyserial correlationO� and its asymptotic standard error
StdErr . O�/ , the Wald chi-square test statistic is computed as

�
O�

StdErr . O�/

� 2

The Wald statistic has an asymptotic chi-square distribution with one degree of freedom.

For the LR test, the maximum likelihood function assuming zero polyserial correlation is also needed. If
� D 0, the likelihood function is reduced to

L D
NY

j D 1

f .x j ; dj / D
NY

j D 1

f .x j /
NY

j D 1

P.D D dj /

In this case, the maximum likelihood estimates for all parameters can be derived explicitly. The maximum
likelihood estimates for� is the sample mean and the maximum likelihood estimate for� 2 is the sample
variance

P N
j D 1.x j � Nx/ 2

N

In addition, the maximum likelihood estimate for the threshold� k , k=1, . . . ,K-1, is

ˆ � 1

 P k
g D 1 ng

N

!

whereng is the number of observations in thegth ordered group of the ordinal variableD, andN D
P K

g D 1 ng

is the total number of observations.

The LR test statistic is computed as

� 2 log
�

L 0

L 1

�

whereL 1 is the likelihood function with the maximum likelihood estimates for all parameters, andL 0

is the likelihood function with the maximum likelihood estimates for all parameters except the polyserial
correlation, which is set to 0. The LR statistic also has an asymptotic chi-square distribution with one degree
of freedom.

Cronbach's Coef�cient Alpha

Analyzing latent constructs such as job satisfaction, motor ability, sensory recognition, or customer satisfac-
tion requires instruments to accurately measure the constructs. Interrelated items can be summed to obtain
an overall score for each participant. Cronbach's coef�cient alpha estimates the reliability of this type of
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scale by determining the internal consistency of the test or the average correlation of items within the test
(Cronbach 1951).

When a value is recorded, the observed value contains some degree of measurement error. Two sets of
measurements on the same variable for the same individual might not have identical values. However,
repeated measurements for a series of individuals will show some consistency. Reliability measures internal
consistency from one set of measurements to another. The observed valueY is divided into two components,
a true valueT and a measurement errorE. The measurement error is assumed to be independent of the true
value; that is,

Y D T C E Cov.T; E/ D 0

The reliability coef�cient of a measurement test is de�ned as the squared correlation between the observed
valueY and the true valueT; that is,

r 2.Y; T / D
Cov.Y; T /2

V.Y /V.T /
D

V.T / 2

V.Y /V.T /
D

V.T /
V.Y /

which is the proportion of the observed variance due to true differences among individuals in the sample. IfY
is the sum of several observed variables measuring the same feature, you can estimateV .T /. Cronbach's
coef�cient alpha, based on a lower bound forV .T /, is an estimate of the reliability coef�cient.

Supposep variables are used withYj D Tj C E j for j D 1; 2; : : : ; p, whereYj is the observed value,Tj

is the true value, andE j is the measurement error. The measurement errors (E j ) are independent of the
true values (Tj ) and are also independent of each other. LetY0 D

P
j Yj be the total observed score and let

T0 D
P

j Tj be the total true score. Because

.p � 1/
X

j

V.Tj / �
X

i ¤ j

Cov.T i ; Tj /

a lower bound forV .T0/ is given by

p
p � 1

X

i ¤ j

Cov.T i ; Tj /

With Cov.Yi ; Yj / D Cov.T i ; Tj / for i ¤ j , a lower bound for the reliability coef�cient,V .T0/=V .Y0/ , is
then given by the Cronbach's coef�cient alpha:

� D
�

p
p � 1

� P
i ¤ j Cov.Yi ; Yj /

V .Y0/
D

�
p

p � 1

�  

1 �

P
j V.Yj /

V .Y0/

!

If the variances of the items vary widely, you can standardize the items to a standard deviation of 1 before
computing the coef�cient alpha. If the variables are dichotomous (0,1), the coef�cient alpha is equivalent to
the Kuder-Richardson 20 (KR-20) reliability measure.

When the correlation between each pair of variables is 1, the coef�cient alpha has a maximum value of 1.
With negative correlations between some variables, the coef�cient alpha can have a value less than zero. The
larger the overall alpha coef�cient, the more likely that items contribute to a reliable scale. Nunnally and
Bernstein (1994) suggests 0.70 as an acceptable reliability coef�cient; smaller reliability coef�cients are seen
as inadequate. However, this varies by discipline.
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To determine how each item re�ects the reliability of the scale, you calculate a coef�cient alpha after deleting
each variable independently from the scale. Cronbach's coef�cient alpha from all variables except thekth
variable is given by

� k D
�

p � 1
p � 2

�  

1 �

P
i ¤ k V.Yi /

V .
P

i ¤ k Yi /

!

If the reliability coef�cient increases after an item is deleted from the scale, you can assume that the item is
not correlated highly with other items in the scale. Conversely, if the reliability coef�cient decreases, you
can assume that the item is highly correlated with other items in the scale. Refer to Yu (2001) for more
information about how to interpret Cronbach's coef�cient alpha.

Listwise deletion of observations with missing values is necessary to correctly calculate Cronbach's coef�cient
alpha. PROC CORR does not automatically use listwise deletion if you specify the ALPHA option. Therefore,
you should use the NOMISS option if the data set contains missing values. Otherwise, PROC CORR prints a
warning message indicating the need to use the NOMISS option with the ALPHA option.

Con�dence and Prediction Ellipses

When the relationship between two variables is nonlinear or when outliers are present, the correlation
coef�cient might incorrectly estimate the strength of the relationship. Plotting the data enables you to verify
the linear relationship and to identify the potential outliers.

The partial correlation between two variables, after controlling for variables in the PARTIAL statement, is
the correlation between the residuals of the linear regression of the two variables on the partialled variables.
Thus, if a PARTIAL statement is also speci�ed, the residuals of the analysis variables are displayed in the
scatter plot matrix and scatter plots.

The CORR procedure optionally provides two types of ellipses for each pair of variables in a scatter plot.
One is a con�dence ellipse for the population mean, and the other is a prediction ellipse for a new observation.
Both assume a bivariate normal distribution.

Let NZ andSbe the sample mean and sample covariance matrix of a random sample of sizen from a bivariate
normal distribution with mean� and covariance matrix† . The variableNZ � � is distributed as a bivariate
normal variate with mean zero and covariance.1=n/† , and it is independent ofS. Using Hotelling'sT 2

statistic, which is de�ned as

T 2 D n. NZ � � /0S� 1. NZ � � /

a100.1� �/ % con�dence ellipse for� is computed from the equation

n
n � 1

. NZ � � /0S� 1. NZ � � / D
2

n � 2
F2;n � 2.1 � �/

whereF2;n � 2.1 � �/ is the.1 � �/ critical value of anF distribution with degrees of freedom 2 andn-2.

A prediction ellipse is a region for predicting a new observation in the population. It also approximates a
region that contains a speci�ed percentage of the population.

Denote a new observation as the bivariate random variableZnew. The variable

Znew � NZ D .Znew � � / � . NZ � � /
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is distributed as a bivariate normal variate with mean zero (the zero vector) and covariance.1 C 1=n/† , and
it is independent ofS. A 100.1� �/ % prediction ellipse is then given by the equation

n
n � 1

. NZ � � /0S� 1. NZ � � / D
2.n C 1/

n � 2
F2;n � 2.1 � �/

The family of ellipses generated by different critical values of theF distribution has a common center (the
sample mean) and common major and minor axis directions.

The shape of an ellipse depends on the aspect ratio of the plot. The ellipse indicates the correlation between
the two variables if the variables are standardized (by dividing the variables by their respective standard
deviations). In this situation, the ratio between the major and minor axis lengths is

s
1 C j r j
1 � j r j

In particular, ifr=0, the ratio is 1, which corresponds to a circular con�dence contour and indicates that
the variables are uncorrelated. A larger value of the ratio indicates a larger positive or negative correlation
between the variables.

Missing Values

PROC CORR excludes observations with missing values in the WEIGHT and FREQ variables. By default,
PROC CORR usespairwise deletionwhen observations contain missing values. PROC CORR includes all
nonmissing pairs of values for each pair of variables in the statistical computations. Therefore, the correlation
statistics might be based on different numbers of observations.

If you specify the NOMISS option, PROC CORR useslistwise deletionwhen a value of the VAR or WITH
statement variable is missing. PROC CORR excludes all observations with missing values from the analysis.
Therefore, the number of observations for each pair of variables is identical.

The PARTIAL statement always excludes the observations with missing values by automatically invoking the
NOMISS option. With the NOMISS option, the data are processed more ef�ciently because fewer resources
are needed. Also, the resulting correlation matrix is nonnegative de�nite.

In contrast, if the data set contains missing values for the analysis variables and the NOMISS option is not
speci�ed, the resulting correlation matrix might not be nonnegative de�nite. This leads to several statistical
dif�culties if you use the correlations as input to regression or other statistical procedures.

In-Database Computation

The CORR procedure can use in-database computation to compute univariate statistics and the SSCP matrix
if the DATA= input data set is stored as a table in a database management system (DBMS). When the CORR
procedure performs in-database computation for the DATA= data set, the procedure generates an SQL query
that computes summary tables of univariate statistics and the SSCP matrix. The query is passed to the DBMS
and executed in-database. The results of the query are then passed back to the SAS System and transmitted
to PROC CORR. The CORR procedure then uses these summary tables to perform the remaining tasks (such
as producing the correlation and covariance matrices) in the usual way (out of the database).
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In-database computation can provide the advantages of faster processing and reduced data transfer between
the database and SAS software. For information about in-database computation, see the section “In-Database
Procedures” inSAS/ACCESS for Relational Databases: ReferenceInstead of transferring the entire data set
over the network between the database and SAS software, the in-database method transfers only the summary
tables. This can substantially reduce processing time when the dimensions of the summary tables (in terms of
rows and columns) are much smaller than the dimensions of the entire database table (in terms of individual
observations). Additionally, in-database summarization uses ef�cient parallel processing, which can also
provide performance advantages.

By default, PROC CORR uses in-database computation when possible. If in-database computation is
used, the EXCLNPWGT option is activated to exclude observations with nonpositive weights. The ID
statement requires row-level access and therefore cannot be used in-database. In addition, the HOEFFDING,
KENDALL, SPEARMAN, OUTH=, OUTK=, OUTS=, and PLOTS= options also require row-level access
and cannot be used in-database.

In-database computation is controlled by the SQLGENERATION option, which you can specify in either a
LIBNAME statement or an OPTIONS statement. See the section “In-Database Procedures” inSAS/ACCESS
for Relational Databases: Referencefor details about theSQLGENERATIONoption and other options that
affect in-database computation. There are no CORR procedure options that control in-database computation.

The order of observations is not inherently de�ned for DBMS tables. The following options relate to the
order of observations and therefore should not be speci�ed for PROC CORR in-database computation:

� If you specify the FIRSTOBS= or OBS= data set option, PROC CORR does not perform in-database
computation.

� If you specify the NOTSORTED option in the BY statement, PROC CORR in-database computation
ignores it and uses the default ASCENDING order for BY variables.

NOTE : In-database computing in the CORR procedure requires installation of the SAS Analytics Accelerator.

Output Tables

By default, PROC CORR prints a report that includes descriptive statistics and correlation statistics for each
variable. The descriptive statistics include the number of observations with nonmissing values, the mean, the
standard deviation, the minimum, and the maximum.

If a nonparametric measure of association is requested, the descriptive statistics include the median. Otherwise,
the sample sum is included. If a Pearson partial correlation is requested, the descriptive statistics also include
the partial variance and partial standard deviation.

If variable labels are available, PROC CORR labels the variables. If you specify the CSSCP, SSCP, or COV
option, the appropriate sums of squares and crossproducts and covariance matrix appear at the top of the
correlation report. If the data set contains missing values, PROC CORR prints additional statistics for each
pair of variables. These statistics, calculated from the observations with nonmissing row and column variable
values, might include the following:

� SSCP('W','V'), uncorrected sums of squares and crossproducts

� USS('W'), uncorrected sums of squares for the row variable

� USS('V'), uncorrected sums of squares for the column variable
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� CSSCP('W','V'), corrected sums of squares and crossproducts

� CSS('W'), corrected sums of squares for the row variable

� CSS('V'), corrected sums of squares for the column variable

� COV('W','V'), covariance

� VAR('W'), variance for the row variable

� VAR('V'), variance for the column variable

� DF('W','V'), divisor for calculating covariance and variances

For each pair of variables, PROC CORR prints the correlation coef�cients, the number of observations used
to calculate the coef�cient, and thep-value.

If you specify the ALPHA option, PROC CORR prints Cronbach's coef�cient alpha, the correlation between
the variable and the total of the remaining variables, and Cronbach's coef�cient alpha by using the remaining
variables for the raw variables and the standardized variables.

Output Data Sets

If you specify the OUTP=, OUTS=, OUTK=, or OUTH= option, PROC CORR creates an output data set
that contains statistics for Pearson correlation, Spearman correlation, Kendall's tau-b, or Hoeffding'sD,
respectively. By default, the output data set is a special data set type (TYPE=CORR) that many SAS/STAT
procedures recognize, including PROC REG and PROC FACTOR. When you specify the NOCORR option
and the COV, CSSCP, or SSCP option, use the TYPE= data set option to change the data set type to COV,
CSSCP, or SSCP.

The output data set includes the following variables:

� BY variables, which identify the BY group when using a BY statement

� _TYPE_ variable, which identi�es the type of observation

� _NAME_ variable, which identi�es the variable that corresponds to a given row of the correlation
matrix

� INTERCEPT variable, which identi�es variable sums when specifying the SSCP option

� VAR variables, which identify the variables listed in the VAR statement

You can use a combination of the _TYPE_ and _NAME_ variables to identify the contents of an observation.
The _NAME_ variable indicates which row of the correlation matrix the observation corresponds to. The
values of the _TYPE_ variable are as follows:

� SSCP, uncorrected sums of squares and crossproducts

� CSSCP, corrected sums of squares and crossproducts
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� COV, covariances

� MEAN, mean of each variable

� STD, standard deviation of each variable

� N, number of nonmissing observations for each variable

� SUMWGT, sum of the weights for each variable when using a WEIGHT statement

� CORR, correlation statistics for each variable

If you specify the SSCP option, the OUTP= data set includes an additional observation that contains intercept
values. If you specify the ALPHA option, the OUTP= data set also includes observations with the following
_TYPE_ values:

� RAWALPHA, Cronbach's coef�cient alpha for raw variables

� STDALPHA, Cronbach's coef�cient alpha for standardized variables

� RAWALDEL, Cronbach's coef�cient alpha for raw variables after deleting one variable

� STDALDEL, Cronbach's coef�cient alpha for standardized variables after deleting one variable

� RAWCTDEL, the correlation between a raw variable and the total of the remaining raw variables

� STDCTDEL, the correlation between a standardized variable and the total of the remaining standardized
variables

If you use a PARTIAL statement, the statistics are calculated after the variables are partialled. If PROC
CORR computes Pearson correlation statistics, MEAN equals zero and STD equals the partial standard
deviation associated with the partial variance for the OUTP=, OUTK=, and OUTS= data sets. Otherwise,
PROC CORR assigns missing values to MEAN and STD.

ODS Table Names

PROC CORR assigns a name to each table it creates. You must use these names to reference tables when
using the Output Delivery System (ODS). These names are listed in Table 2.3 and Table 2.4. For more
information about ODS, see Chapter 20, “Using the Output Delivery System” (SAS/STAT User's Guide).

Table 2.3 ODS Tables Produced by PROC CORR

ODS Table Name Description Option

Cov Covariances COV
CronbachAlpha Coef�cient alpha ALPHA
CronbachAlphaDel Coef�cient alpha with deleted variable ALPHA
Csscp Corrected sums of squares and crossproducts CSSCP
FisherPearsonCorr Pearson correlation statistics using FISHER

Fisher'sz transformation
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Table 2.3 continued

ODS Table Name Description Option

FisherSpearmanCorr Spearman correlation statistics using FISHER SPEARMAN
Fisher'sz transformation

HoeffdingCorr Hoeffding'sD statistics HOEFFDING
KendallCorr Kendall's tau-b coef�cients KENDALL
PearsonCorr Pearson correlations PEARSON
PolychoricCorr Polychoric correlations POLYCHORIC
PolyserialCorr Polyserial correlations POLYSERIAL
SimpleStats Simple descriptive statistics
SpearmanCorr Spearman correlations SPEARMAN
Sscp Sums of squares and crossproducts SSCP
VarInformation Variable information

Table 2.4 ODS Tables Produced with the PARTIAL Statement

ODS Table Name Description Option

FisherPearsonPartialCorr Pearson partial correlation statistics FISHER
using Fisher'sz transformation

FisherSpearmanPartialCorr Spearman partial correlation statistics FISHER SPEARMAN
using Fisher'sz transformation

PartialCsscp Partial corrected sums of squares CSSCP
and crossproducts

PartialCov Partial covariances COV
PartialKendallCorr Partial Kendall tau-b coef�cients KENDALL
PartialPearsonCorr Partial Pearson correlations
PartialSpearmanCorr Partial Spearman correlations SPEARMAN

ODS Graphics

Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 21, “Statistical Graphics Using ODS” (SAS/STAT User's Guide).

Before you create graphs, ODS Graphics must be enabled (for example, with the ODS GRAPHICS ON
statement). For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” in that chapter.

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” in that chapter.

PROC CORR assigns a name to each graph it creates using ODS. You can use these names to reference the
graphs when using ODS. To request these graphs, ODS Graphics must be enabled and you must specify the
options indicated in Table 2.5.
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Table 2.5 Graphs Produced by PROC CORR

ODS Graph Name Plot Description Option

ScatterPlot Scatter plot PLOTS=SCATTER
MatrixPlot Scatter plot matrix PLOTS=MATRIX

Examples: CORR Procedure

Example 2.1: Computing Four Measures of Association

This example produces a correlation analysis with descriptive statistics and four measures of association: the
Pearson product-moment correlation, the Spearman rank-order correlation, Kendall's tau-b coef�cients, and
Hoeffding's measure of dependence,D.

TheFitness data set created in the section “Getting Started: CORR Procedure” on page 5 contains measure-
ments from a study of physical �tness of 31 participants. The following statements request all four measures
of association for the variablesWeight, Oxygen, andRuntime:

ods graphics on;
title �Measures of Association for a Physical Fitness Study�;
proc corr data=Fitness pearson spearman kendall hoeffding

plots=matrix(histogram);
var Weight Oxygen RunTime;

run;

Note that Pearson correlations are computed by default only if all three nonparametric correlations (SPEAR-
MAN, KENDALL, and HOEFFDING) are not speci�ed. Otherwise, you need to specify the PEARSON
option explicitly to compute Pearson correlations.

The “Simple Statistics” table in Output 2.1.1 displays univariate descriptive statistics for analysis variables.
By default, observations with nonmissing values for each variable are used to derive the univariate statistics
for that variable. When nonparametric measures of association are speci�ed, the procedure displays the
median instead of the sum as an additional descriptive measure.

Output 2.1.1 Simple Statistics
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The “Pearson Correlation Coef�cients” table in Output 2.1.2 displays Pearson correlation statistics for pairs
of analysis variables. The Pearson correlation is a parametric measure of association for two continuous
random variables. When there are missing data, the number of observations used to calculate the correlation
can vary.

Output 2.1.2 Pearson Correlation Coef�cients

The table shows that the Pearson correlation betweenRuntime andOxygen is –0.86843, which is signi�cant
with a p-value less than 0.0001. This indicates a strong negative linear relationship between these two
variables. AsRuntime increases,Oxygen decreases linearly.

The Spearman rank-order correlation is a nonparametric measure of association based on the ranks of the
data values. The “Spearman Correlation Coef�cients” table in Output 2.1.3 displays results similar to those
of the “Pearson Correlation Coef�cients” table in Output 2.1.2.

Output 2.1.3 Spearman Correlation Coef�cients
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Kendall's tau-b is a nonparametric measure of association based on the number of concordances and
discordances in paired observations. The “Kendall Tau b Correlation Coef�cients” table in Output 2.1.4
displays results similar to those of the “Pearson Correlation Coef�cients” table in Output 2.1.2.

Output 2.1.4 Kendall's Tau-b Correlation Coef�cients

Hoeffding's measure of dependence,D, is a nonparametric measure of association that detects more general
departures from independence. Without ties in the variables, the values of theD statistic can vary between
–0.5 and 1, with 1 indicating complete dependence. Otherwise, theD statistic can result in a smaller value.
The “Hoeffding Dependence Coef�cients” table in Output 2.1.5 displays Hoeffding dependence coef�cients.
Since ties occur in the variableWeight, theD statistic for theWeight variable is less than 1.

Output 2.1.5 Hoeffding's Dependence Coef�cients

When you use the PLOTS=MATRIX(HISTOGRAM) option, the CORR procedure displays a symmetric
matrix plot for the analysis variables listed in the VAR statement (Output 2.1.6).
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