| The FCMP Procedure |
| Overview of the CMPLIB= System Option |
The SAS system option CMPLIB= specifies where to look for previously compiled functions and subroutines. All procedures (including FCMP) that support the use of FCMP functions and subroutines use this system option.
Instead of specifying the LIBRARY= option on every procedure statement that supports functions and subroutines, you can use the CMPLIB= system option to set libraries that can be used by all procedures.
| Syntax of the CMPLIB= System Option |
The syntax for the CMPLIB= option has the following form:
| OPTIONS CMPLIB = library |
| OPTIONS CMPLIB = (library-1, ..., library-n) |
| OPTIONS CMPLIB = list-1, ..., list-n |
where
identifies the statement as an OPTIONS statement.
specifies that the previously compiled libraries be linked into the program.
specifies a list of libraries.
| Example 1: Setting the CMPLIB= System Option |
The following example shows how to set the CMPLIB= system option.
OPTIONS cmplib = sasuser.funcs;
OPTIONS cmplib = (sasuser.funcs work.functions mycat.funcs);
OPTIONS cmplib =( sasuser.func1 - sasuser.func10);
| Example 2: Compiling and Using Functions |
In the following example, PROC FCMP compiles the SIMPLE function and stores it in the sasuser.models data set. Then the CMPLIB= system option is set, and the function is called by PROC MODEL.
proc fcmp outlib = sasuser.models.yval; function simple(a,b,x); y=a+b*x; return(y); endsub; run; options cmplib = sasuser.models nodate ls=80; data a; input y @@; x=_n_; datalines; 08 06 08 10 08 10 ; proc model data=a; y=simple(a,b,x); fit y / outest=est1 out=out1; quit;
Output from Using the SIMPLE Function with PROC MODEL
The SAS System 1
The MODEL Procedure
Model Summary
Model Variables 1
Parameters 2
Equations 1
Number of Statements 1
Model Variables y
Parameters a b
Equations y
The Equation to Estimate is
y = F(a, b)
NOTE: At OLS Iteration 1 CONVERGE=0.001 Criteria Met. The SAS System 2
The MODEL Procedure
OLS Estimation Summary
Data Set Options
DATA= A
OUT= OUT1
OUTEST= EST1
Minimization Summary
Parameters Estimated 2
Method Gauss
Iterations 1
Final Convergence Criteria
R 0
PPC 0
RPC(a) 64685.48
Object 0.984333
Trace(S) 1.67619
Objective Value 1.11746
Observations Processed
Read 6
Solved 6 The SAS System 3
The MODEL Procedure
Nonlinear OLS Summary of Residual Errors
DF DF Adj
Equation Model Error SSE MSE Root MSE R-Square R-Sq
y 2 4 6.7048 1.6762 1.2947 0.4084 0.2605
Nonlinear OLS Parameter Estimates
Approx Approx
Parameter Estimate Std Err t Value Pr > |t|
a 6.533333 1.2053 5.42 0.0056
b 0.514286 0.3095 1.66 0.1719
Number of Observations Statistics for System
Used 6 Objective 1.1175
Missing 0 Objective*N 6.7048For information about PROC MODELS, see
SAS/ETS User's Guide.
Copyright © 2010 by SAS Institute Inc., Cary, NC, USA. All rights reserved.