
SAS/OR® 9.2 User’s Guide
QSIM Application

TW10647_ColorTitlePage.indd 1 1/16/09 2:22:35 PM

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2008.
SAS/OR® 9.2 User’s Guide: QSIM Application. Cary, NC: SAS Institute Inc.

SAS/OR® 9.2 User’s Guide: QSIM Application
Copyright © 2008, SAS Institute Inc., Cary, NC, USA
ISBN 978-1-59047-944-5
All rights reserved. Produced in the United States of America.
For a hard-copy book: No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, or otherwise, without the prior written permission of the publisher, SAS
Institute Inc.
For a Web download or e-book: Your use of this publication shall be governed by the
terms established by the vendor at the time you acquire this publication.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of this
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227-19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st electronic book, March 2008
2nd electronic book, February 2009

1st printing, March 2009
SAS® Publishing provides a complete selection of books and electronic products to help
customers use SAS software to its fullest potential. For more information about our
e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site
at support.sas.com/publishing or call 1-800-727-3228.
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.

Contents

Chapter 1. Introduction . 1

Chapter 2. Getting Started . 5

Chapter 3. Building a Model with Elementary Components 17

Chapter 4. Transactions . 49

Chapter 5. Formulas . 55

Chapter 6. Building a Model with Compound Components 59

Chapter 7. Random and Exogenous Variation in the Model 69

Chapter 8. Saving and Restoring . 77

Chapter 9. Analyzing the Sample Path . 85

Chapter 10. Selected Examples . 99

Appendix A. References . 119

Index . 121

iv

Acknowledgments

Credits

Documentation

Writing Marc-david Cohen

Editing Virginia Clark, Donna Sawyer, Anne Jones

Documentation Support Tim Arnold, Michelle Opp, Remya Chandran

Technical Review Marc-david Cohen, Gehan Corea, Edward P. Hughes,
John Jasperse, Charles B. Kelly, Phil Meanor

Software

The QSIM Application was implemented by the Operations Research and
Development Department. Substantial support was given to the project by other
members of the Analytical Solutions Division. Core Development Division,
Display Products Division, Graphics Division, and the Host Systems Division also
contributed to this product.

QSIM Application Hong Chen, Phil Meanor, Marc-david Cohen,
Charles B. Kelly

Support Groups

Software Testing Emily Lada, Tao Huang, John Jasperse, Bengt Pederson,
Rob Pratt, Nitin Agarwal, Marianne Bohinski, Edward P.
Hughes

Technical Support Tonya Chapman

vi � Acknowledgments

Acknowledgments
Many people have been instrumental in the development of SAS/OR software. The
individuals acknowledged here have been especially helpful.

Lance Broad New Zealand Ministry of Forestry

Richard Brockmeier Union Electric Company

Ken Cruthers Goodyear Tire & Rubber Company

Patricia Duffy Auburn University

Richard A. Ehrhardt University of North Carolina at Greensboro

Paul Hardy Babcock & Wilcox

Don Henderson ORI Consulting Group

Dave Jennings Lockheed Martin

Vidyadhar G. Kulkarni University of North Carolina at Chapel Hill

Wayne Maruska Basin Electric Power Cooperative

Bruce Reed Auburn University

Charles Rissmiller Lockheed Martin

David Rubin University of North Carolina at Chapel Hill

John Stone North Carolina State University

Keith R. Weiss ICI Americas Inc.

The final responsibility for the SAS System lies with SAS Institute alone. We hope
that you will always let us know your opinions about the SAS System and its doc-
umentation. It is through your participation that SAS software is continuously im-
proved.

What’s New in SAS/OR 9.2

Overview
SAS/OR 9.2 continues the improvements delivered starting with SAS/OR 9.1.3 re-
lease 3.1 and release 3.2. Several new and enhanced features expand the scale and
scope of problems that SAS/OR can address. These enhancements also make it easier
for you to use the capabilities of SAS/OR. Brief descriptions of these new features
are presented in the following sections. For more information, see the SAS/OR doc-
umentation, available in the following volumes:

• SAS/OR User’s Guide: Bills of Material Processing

• SAS/OR User’s Guide: Constraint Programming

• SAS/OR User’s Guide: Local Search Optimization

• SAS/OR User’s Guide: Mathematical Programming

• SAS/OR User’s Guide: Project Management

• SAS/OR User’s Guide: The QSIM Application

Online help can also be found under the corresponding classification.

The NETFLOW Procedure
The NETFLOW procedure for network flow optimization contains a new feature that
enables you to specify and solve generalized network problems. In generalized net-
works, the amount of flow that enters an arc might not equal the amount of flow that
leaves the arc, signifying a loss or a gain as flow traverses the arc. A new PROC
NETFLOW option, GENNET, indicates that the network is generalized. Generalized
networks have a broad range of practical applications, including the following:

• transportation of perishable goods (weight loss due to drying)

• financial investment account balances (interest rates)

• manufacturing (yield ratios)

• electrical power generation (loss during transmission along lines)

Another new option, EXCESS=, enables you to use PROC NETFLOW to solve an
even wider variety of network flow optimization problems for both standard and gen-
eralized networks. As a result, PROC NETFLOW is equipped to deal with many
frequently encountered challenges to successful network flow optimization, such as
the following:

viii � What’s New in SAS/OR 9.2

• networks with excess supply or demand

• networks that contain nodes with unknown supply and demand values

• networks with nodes that have range constraints on supply and demand

In SAS/OR 9.2, the MPSOUT= option directs the NETFLOW procedure to save in-
put problem data in an MPS-format SAS data set. Invoking the MPSOUT= option
causes the NETFLOW procedure to output the data and halt without attempting opti-
mization. The MPS-format SAS data set corresponds closely to the MPS-format text
file (commonly used in the optimization community). Problems that are specified in
this format can be solved by using the OPTLP procedure.

The INTPOINT Procedure
In SAS/OR 9.2, the MPSOUT= option directs the INTPOINT procedure to save in-
put problem data in an MPS-format SAS data set. Invoking the MPSOUT= option
causes the INTPOINT procedure to output the data and halt without attempting opti-
mization. The MPS-format SAS data set corresponds closely to the MPS-format text
file (commonly used in the optimization community). Problems that are specified in
this format can be solved by using the OPTLP procedure.

The LP Procedure
In SAS/OR 9.2, the MPSOUT= option directs the LP procedure to save input problem
data in an MPS-format SAS data set. Invoking the MPSOUT= option causes the LP
procedure to output the data and halt without attempting optimization. The MPS-
format SAS data set corresponds closely to the MPS-format text file (commonly used
in the optimization community). Problems that are specified in this format can be
solved by using the OPTLP or OPTMILP procedure.

The OPTLP Procedure
The OPTLP procedure enables you to choose from three linear programming solvers:
primal simplex, dual simplex, and interior point (experimental). The simplex solvers
implement a two-phase simplex method, and the interior point solver implements a
primal-dual predictor-corrector algorithm.

The TIMETYPE= option enables you to specify the type of time (real time or
CPU time) that can be limited via the MAXTIME= option and reported via the
–OROPTLP– macro variable.

PROC OPTLP accepts linear programming problems that are submitted in an MPS-
format SAS data set. The MPS-format SAS data set corresponds closely to the MPS-
format text file (commonly used in the optimization community). Problem data in
formats that are used by the LP, INTPOINT, and NETFLOW procedures can be con-
verted into MPS-format SAS data sets by using the new MPSOUT= option in each
of these procedures.

The OPTMODEL Procedure � ix

New in SAS/OR 9.2, the experimental IIS= option enables you to identify, for an
infeasible problem, constraints and variable bounds that form an irreducible infea-
sible set (IIS). Identifying an IIS can be very helpful in diagnosing and remedy-
ing infeasibility in a linear program. Information about the IIS is contained in the
PRIMALOUT= and DUALOUT= data sets.

Also new in SAS/OR 9.2, the value “2” for the PRINTLEVEL= option directs the
OPTLP procedure to produce an ODS table called “ProblemStatistics” in addition to
the “ProblemSummary” and “SolutionSummary” ODS tables that are produced for
PRINTLEVEL=1.

The OPTMILP Procedure
The OPTMILP procedure solves mixed-integer linear programming problems with
an LP-based branch-and-bound algorithm that has been completely rewritten for this
release. The algorithm also implements advanced techniques including presolvers,
cutting planes, and primal heuristics. The resulting improvements in efficiency enable
you to use PROC OPTMILP to solve larger and more complex optimization problems
than you could solve with previous releases of SAS/OR.

PROC OPTMILP accepts mixed-integer linear programming problems that are sub-
mitted in an MPS-format SAS data set.

New in SAS/OR 9.2, the value “2” for the PRINTLEVEL= option directs the
OPTMILP procedure to produce an ODS table called “ProblemStatistics” in addition
to the “ProblemSummary” and “SolutionSummary” ODS tables that are produced for
PRINTLEVEL=1.

The OPTMODEL Procedure
The OPTMODEL procedure provides a modeling environment that is tailored to
building, solving, and maintaining optimization models. This makes the pro-
cess of translating the symbolic formulation of an optimization model into PROC
OPTMODEL virtually transparent, since the modeling language mimics the symbolic
algebra of the formulation as closely as possible. PROC OPTMODEL also stream-
lines and simplifies the critical process of populating optimization models with data
from SAS data sets. All of this transparency produces models that are more easily
inspected for completeness and correctness, more easily corrected, and more easily
modified, whether through structural changes or through the substitution of new data
for old.

The OPTMODEL procedure comprises the powerful OPTMODEL modeling lan-
guage and state-of-the-art solvers for several classes of mathematical programming
problems.

x � What’s New in SAS/OR 9.2

Seven solvers are available to OPTMODEL as listed in Table 1:

Table 1. List of OPTMODEL Solvers

Problem Solver
linear programming LP
mixed integer programming MILP
quadratic programming (experimental) QP
nonlinear programming, unconstrained NLPU
general nonlinear programming NLPC
general nonlinear programming SQP
general nonlinear programming (experimental) IPNLP

New in SAS/OR 9.2, the experimental IIS= option for the LP solver enables you to
identify, for an infeasible linear program, constraints and variable bounds that form
an irreducible infeasible set (IIS). Identifying an IIS can be very helpful in diagnosing
and remedying infeasibility in a linear program.

The OPTQP Procedure
The OPTQP procedure solves quadratic programming problems with a new infeasible
primal-dual predictor-corrector interior point algorithm. Performance is excellent for
both sparse and dense quadratic programming problems, and PROC OPTQP excels
at solving large problems efficiently.

PROC OPTQP accepts quadratic programming problems that are submitted in a QPS-
format SAS data set. The QPS-format SAS data set corresponds closely to the format
of the QPS text file (a widely accepted extension of the MPS format).

Earned Value Management Macros
The set of earned value management macros complements the current SAS/OR pro-
cedures for project and resource scheduling (PROC CPM and PROC PM) by provid-
ing diagnostic information about the execution of scheduled projects. Earned value
management (EVM) is growing in prominence and acceptance in the project man-
agement community due to its ability to turn information about partially completed
projects into valid, early projections of overall project performance. EVM measures
current project execution against the project execution plan on a cost and schedule
basis.

SAS/OR provides two sets of EVM macros: a set of four analytical macros to com-
pute EVM metrics, and a set of six macros to create graphical reports based on these
metrics. A wide variety of EVM metrics and performance projections, for both task-
by-task and project-wide evaluations, are supported.

The GA Procedure � xi

Microsoft Project Conversion Macros
The SAS macros %MDBTOPM and %MP2KTOPM have been used in previous
releases of SAS/OR to convert files saved by Microsoft Project 98 and Microsoft
Project 2000 (and later), respectively, into SAS data sets that can be used as input for
project scheduling with SAS/OR. Now these two macros are combined in the SAS
macro %MSPTOSAS, which converts Microsoft Project 98 (and later) data. This
macro generates the necessary SAS data sets, determines the values of the relevant
options, and invokes PROC PM in SAS/OR with the converted project data. The
%MSPTOSAS macro enables you to use Microsoft Project for the input of project
data and still take advantage of the excellent project and resource scheduling capabil-
ities of SAS/OR.

In SAS/OR 9.2, the experimental %SASTOMSP macro converts data sets used by
the CPM and PM procedures into an MDB file that is readable by Microsoft Project.
The macro converts information that is common to both PROC CPM / PROC PM
and Microsoft Project, including hierarchical relationships, precedence relationships,
time constraints, resource availabilities, resource requirements, project calendars, re-
source calendars, task calendars, holiday information, and work-shift information. In
addition, the early and late schedules, the actual start and finish times, the resource-
constrained schedule, and the baseline schedule are also extracted and stored as start-
finish variables.

Execution of the %MSPTOSAS and %SASTOMSP macros requires SAS/ACCESS
software.

The GA Procedure
The GA procedure solves optimization problems through the use of genetic algo-
rithms. The procedure uses functions and call routines to set parameters such as
crossover operators and mutation probabilities for genetic algorithm optimization. In
SAS/OR 9.2, the routines that are used to specify procedure-supplied mutation and
crossover operators (SetMut and SetCross), objective functions (SetObj), and selec-
tion options (SetSel) have been revised to a more flexible and readable form. The
operator type is now specified as a parameter in these routines instead of being incor-
porated into the name of a separate call routine. Parameters for each operator type
are now specified as property name-value pairs.

Note: Several call routines that were available in SAS/OR 9.1.3 have been replaced
by new call routines and are not available in SAS/OR 9.2. Table 2 lists the routines
and their replacements.

xii � What’s New in SAS/OR 9.2

Table 2. PROC GA Routines Replaced in SAS/OR 9.2

New Routine Routines Replaced
Cross call CrossSimple call, Cross2Point call, CrossUniform call,

CrossArithmetic call, CrossHeuristic call, CrossOrder call,
CrossPMatch call, CrossCycle call

Mutate call MutDelta call, MutUniform call, MutSwap call, MutInvert call
SetCross call SetCrossSimple call, SetCross2Point call, SetCrossUniform call,

SetCrossArithmetic call, SetCrossHeuristic call,
SetCrossOrder call, SetCrossPMatch call, SetCrossCycle call

SetMut call SetMutRoutine call, SetMutDelta call, SetMutUniform call,
SetMutSwap call, SetMutInvert call

SetObj call SetObjTSP call
SetSel call SetSelTournament call, SetSelDuel call

In addition, the following new routines are provided:

• Objective function

• ReadCompare call

• SetCompareRoutine call

• SetObjFunc call

• SetProperty call

• ShellSort call

• Shuffle call

The Boolean encoding has been modified so that 0/1 values can be read from and writ-
ten to solution segments directly, instead of requiring the PackBits and UnpackBits
routines. In addition, each Boolean value is represented by one variable in a
LASTGEN= or FIRSTGEN= data set, similar to the other encodings.

If the FIRSTGEN= data set has a field named “OBJECTIVE,” then in the Initialize
call, the value of that field (if nonmissing) is used as the initial objective value for the
solution represented by that observation.

The default crossover and mutation probabilities have been changed to 0.

New options have been implemented for the Initialize call and the ReEvaluate call.

New in SAS/OR 9.2, the option LIBRARY= specifies an external library of routines.
The NOVALIDATE= and NOVALIDATEWARNING= options control the level of
feasibility checks performed by the GA procedure.

The CLP Procedure (Experimental) � xiii

The CLP Procedure (Experimental)
The CLP procedure features improved algorithms for the “alldifferent” constraint
as well as several extensions to the edgefinder algorithm for resource-constrained
scheduling. The EDGEFINDER option can now determine whether an activity must
be the first (last) to be scheduled from among a set of activities, while the NF= and
NL= options specify the level of propagation for the “not first” and “not last” ex-
tensions. A new activity selection strategy RJRAND and a corresponding activity
assignment strategy MAXTW have been added; these strategies tend to favor right-
justified schedules. The MAXTIME= option enables you to specify a time limit on
the CPU time for controlling execution times.

xiv � What’s New in SAS/OR 9.2

Chapter 1
Introduction

Chapter Contents

PURPOSE . 3

ACCESSING THE SAS/OR SAMPLE LIBRARY 3

ONLINE HELP SYSTEM AND UPDATES 3

ADDITIONAL DOCUMENTATION FOR SAS/OR SOFTWARE 3

2

Chapter 1
Introduction

Purpose
SAS/OR User’s Guide: The QSIM Application provides a complete reference for the
QSIM Application, which is used to build and analyze models of queueing systems
using discrete event simulation.

Accessing the SAS/OR Sample Library
The SAS/OR sample library includes many examples that illustrate the use of
SAS/OR software. To access these sample programs, select Learning to Use
SAS->Sample SAS Programs from the SAS Help and Documentation window,
and then select SAS/OR from the list of available topics.

Online Help System and Updates
You can access online help information about SAS/OR software in two ways, de-
pending on whether you are using the SAS windowing environment in the command
line mode or the pull-down menu mode.

If you are using a command line, you can access the SAS/OR help menus by typing
help or on the command line. If you are using the pull-down menus, you can select
SAS Help and Documentation->SAS Products from the Help pull-down menu, and
then select SAS/OR from the list of available topics.

Additional Documentation for SAS/OR Software
In addition to SAS/OR User’s Guide: The QSIM Application, you may find these
other documents helpful when using SAS/OR software:

SAS/OR User’s Guide: Bills of Material Processing
provides documentation for the BOM procedure and all bill-of-material post-
processing SAS macros. The BOM procedure and SAS macros provide the ability to
generate different reports and to perform several transactions to maintain and update
bills of material.

SAS/OR User’s Guide: Constraint Programming
provides documentation for the constraint programming procedure in SAS/OR soft-
ware. This book serves as the primary documentation for the CLP procedure, an
experimental procedure in SAS/OR software.

4 � Chapter 1. Introduction

SAS/OR User’s Guide: Local Search Optimization
provides documentation for the local search optimization procedure in SAS/OR soft-
ware. This book serves as the primary documentation for the GA procedure, which
uses genetic algorithms to solve optimization problems.

SAS/OR User’s Guide: Mathematical Programming
provides documentation for the mathematical programming procedures in SAS/OR
software. This book serves as the primary documentation for the INTPOINT, LP,
NETFLOW, and NLP procedures, in addition to the newer OPTMODEL, OPTLP,
OPTQP, and OPTMILP procedures, the various solvers called by the OPTMODEL
procedure, and the MPS-format SAS data set specification.

SAS/OR User’s Guide: Project Management
provides documentation for the project management procedures in SAS/OR soft-
ware. This book serves as the primary documentation for the CPM, DTREE,
GANTT, NETDRAW, and PM procedures, the earned value management macros,
the Microsoft Project conversion macros, and the PROJMAN application.

SAS/OR Software: Project Management Examples, Version 6
contains a series of examples that illustrate how to use SAS/OR software to man-
age projects. Each chapter contains a complete project management scenario and
describes how to use PROC GANTT, PROC CPM, and PROC NETDRAW, in addi-
tion to other reporting and graphing procedures in the SAS System, to perform the
necessary project management tasks.

SAS/IRP User’s Guide: Inventory Replenishment Planning
provides documentation for SAS/IRP software. This book serves as the primary doc-
umentation for the IRP procedure for determining replenishment policies, as well as
the %IRPSIM SAS programming macro for simulating replenishment policies.

Chapter 2
Getting Started

Chapter Contents

INVOKING THE QSIM APPLICATION 8

USER INTERFACE . 8
The Command Buttons . 11
The Component Control Panel . 11

A SIMPLE M/M/1 QUEUEING MODEL 13
Queueing . 13
Service . 13
Statistics . 14

6

Chapter 2
Getting Started

The QSIM Application is a SAS application for modeling and analyzing queueing
systems using discrete event simulation. These models are used in a wide variety
of scenarios that might be encountered in network and telecommunications systems,
manufacturing systems, and transportation networks. For example, before instituting
a re-engineered business process, you could use the QSIM Application to model the
new process and study the model behavior to gain insight into how the new process
might behave.

Figure 2.1. An M/M/1 Queueing Model

The application has a graphical user interface that requires no programming and pro-
vides all the tools for building, executing, and analyzing discrete event simulation
models.

Figure 2.1 shows a simple M/M/1 queueing model built with the QSIM Application.
An M/M/1 queueing model has a Poisson arrival process, exponential service times
for a single server, and a FIFO queueing discipline. You can build a model of such
a queueing system, control the simulation of the model, and produce summary
statistics from the simulation sample path from within the application. You can save
the model and the sample path in SAS data sets for reuse and further analysis. The
application is designed to simplify model building by encouraging the construction of

8 � Chapter 2. Getting Started

hierarchical models based on user-built model components that can be stored, shared,
and replicated easily.

In this context a model is a directed network. Transactions flow through the network
changing the state of the model upon arrival at vertices or nodes. The type of state
change that occurs depends on the current state of the simulation and the particulars
of the model.

Invoking the QSIM Application
You invoke the application by typing QSIM on a command line or selecting
Solutions ä from the menu bar then Analysis ä Queueing Simulation from the
pull-down menu.

User Interface
When you invoke the QSIM Application, a Simulation window and a palette opens,
as shown in Figure 2.2. The Simulation window has two panels; the command panel
on the top and the model panel on the bottom. The palette contains the components
that can be used to build a model. You build the model in the model panel, using
the mouse to drag and drop model components from the palette into the model panel.
These model components are connected by arcs to produce a directed network rep-
resentation of the model. You can change parameters and other properties of model
components using pop-up menus from the components.

Figure 2.2. The Palette and the Simulation Window

User Interface � 9

If you don’t see the component that you want in the palette, use the scrollbar on
its right side to scroll the palette. You pick up the component from the palette and
drag it to the model panel and then drop it. For example, to place a Sampler in the

Simulation window, you pick up the component in the palette and then drop it
on the model panel.

The command panel contains command buttons. These are push buttons that execute

commands. For example, the animate button, , is a command button that toggles
animation on and off when pressed.

The QSIM Application also supports cursor tracking. As you move the cursor over a
component, the shape of the cursor will change depending on where the cursor is in
the component. When the cursor changes shape, you can click the left mouse button
and elicit location-dependent behavior such as resizing the component, drawing an
arc, or replicating (cloning) a component. For example, if you click when the cursor
is a +, you can draw an arc from that component to the next component that you click.
Also, picking and dragging a component with the cursor will move the component.
Finally, clicking the right mouse button will always display a pop-up menu.

This paradigm for the user interface is used throughout the QSIM Application.

Figure 2.3. The Sampler Pop-Up Menu

10 � Chapter 2. Getting Started

Figure 2.3 on page 9 shows the pop-up menu on the Sampler obtained by clicking the
right mouse button. Notice that the first item in the menu names the type of compo-
nent. The submenu from the Sampler entry lists the actions that are specific to that
component. In this case, it includes: Control Panel..., which opens a window that
enables you to control the component, an action often used; Start, which starts the
transaction sampling, an action seldom needed; and Stop, which stops the transaction
sampling, also an action seldom needed. Other general actions include Expose/Hide
Detail for changing the Sampler representation from an image to a line drawing, and
Tools for other less frequently used tools.

Model components are connected by arcs. Transactions flow down arcs between
components. You can connect two components with an arc by placing the cursor over
the right side of a component. Notice that the cursor shape changes to +. If you click
the left mouse button you will have a rubberband line to the cursor. Now when you
select another component, an arc will connect the two components. If you move the
cursor out of the Simulation window while the rubberband line is connected to it, the
window may start power scrolling. Bringing the cursor back into the window will
stop the scrolling. Clicking outside the window will take you out of the rubberband
line mode.

Model components have control panels associated with them. With these panels, you
specify parameters and control the behavior of the component. The simulation also
has a control panel, as shown in Figure 2.5 on page 12. It is displayed by selecting

the command button.

The Component Control Panel � 11

The Command Buttons

Figure 2.4. The Command Panel and Buttons

The command buttons shown in Figure 2.4 initiate global simulation commands.
Notice that the stop button is pressed. This means that the simulation is temporar-
ily halted. If the button were pressed again, the simulation would proceed from the
point at which it was interrupted. From left to right the command buttons are

Button Description

shows the simulation time. By default time is measured in
dimensionless units, but it can be changed to any unit from
milliseconds to years using the pull down menu
Options ä Clock.... Pressing on this button toggles
between the simulation time and the clock icon.

starts the simulation.

stops the simulation.

resets the simulation.

toggles transaction animation on and off. When animation is on,
you can see transactions that originate at Samplers traversing
the network.

aligns components vertically and horizontally.

raises the Debug Control Panel.

raises the Components Control Panel.

raises the Viewport Window.

saves the simulation model.

raises the Component Attributes Panel for changing colors,
fonts, and images.

The Component Control Panel

The Component Control Panel gives you control over individual components in your
models. You select components in the Components list box and then press buttons
in the window to perform actions. The Components list box shows the highest level
of components in the model. Since components can be nested into a hierarchy, there
can be multiple levels.

12 � Chapter 2. Getting Started

Figure 2.5. The Component Control Panel

If you select a component and press one of the five buttons to the right of the
Components list box, the component executes that action. For example, selecting
Sampler in the list box and pressing the Start button starts transaction sampling in
that sampler.

• The Start button starts all the selected components.

• The Stop button stops all the selected components.

• The Reset button resets all selected components.

• The Controls button raises the control panels for all selected components.

• The Analyze button executes statistical analyses on all selected components.

The two buttons and are used for navigating into and out of compound
components in the Components list box.

Before performing any statistical analysis, data must be collected. The Data
Collection check box controls saving the simulation sample path into a SAS data
set which is then used for the data analysis.

Service � 13

A Simple M/M/1 Queueing Model
A simple example illustrates some of the concepts involved in model building. The
network shown in Figure 2.6 models an M/M/1 queue. Transactions originate at the
source node Sampler. The user chooses the interval between transactions, called the
inter-arrival time, to be a sample of a random variable (from one of several distri-
butions), a fixed amount, or the value of a variable read from a SAS data set. By
default, the inter-arrival time is an observation of an exponential random variable
with parameter 1. This models a Poisson process for transaction arrivals.

Figure 2.6. An M/M/1 Queueing Model

Queueing

When the transaction leaves the Sampler, it flows down the arc to the FIFO Queue.
It is important to note that the movement of the transaction down the arc does not
advance the simulation clock. On transaction arrival at the FIFO Queue, the queue
broadcasts messages down arcs asking nodes downstream if they are busy. The re-
sponses depend on the types of components that are connected to the queue and the
state of the simulation when the message is received. (Details are given in the next
chapter.) It is important to note that broadcasting and evaluation of these messages
does not advance the simulation clock. If the queue gets a response that there is a non-
busy node, then it sends the transaction down the arc leading to that node. Otherwise,
the transaction remains in the queue. When the simulation is first started, the Server
is empty; when it gets the message “are you busy” from the queue, it responds “no.”
As a result, the queue routes the transaction down the arc to the Server.

Service

When the transaction arrives at the Server, service is scheduled and the transaction
ties up the server. By default, the service time is an observation of an exponential ran-
dom variable with parameter 1. Both the service distribution and its parameters can be
changed using the server’s control panel. While the server is serving this transaction,
any “are you busy” messages sent to it result in a “yes” response. When service is
complete, the server sends the transaction on any arcs directed away from it and also

14 � Chapter 2. Getting Started

sends a message up the arcs directed into it requesting an additional transaction. In
this example, if the FIFO Queue is not empty, it will remove the transaction that has
been there the longest and send it to the Server. By default, all queues in the system
have a capacity of 50 transactions. Of course, this capacity can be changed through
the user interface or programmatically, as discussed in the next chapter. Since by de-
fault the inter-arrival times and the service times are E(1), exponentially distributed
with mean 1, the transaction time in the system would not have a stationary distribu-
tion if the queue had infinite capacity.

Statistics

Finally, the transaction flows to a Bucket, which collects transactions and can also
save the value of transaction attributes in a SAS data set.

Figure 2.7. A Bucket Control Panel

From the bucket control panel (Figure 2.7) you can set the size of the transaction
collection buffer and name the transaction attribute to accumulate. You can also name
a SAS data set into which to collect the transaction attribute values.

Statistics � 15

----------------------------------- name=age -----------------------------------

The UNIVARIATE Procedure
Variable: value

Moments

N 1803 Sum Weights 1803
Mean 24.5093328 Sum Observations 44190.3271
Std Deviation 14.8024337 Variance 219.112044
Skewness -0.1060516 Kurtosis -1.2191446
Uncorrected SS 1477915.34 Corrected SS 394839.903
Coeff Variation 60.3950903 Std Error Mean 0.34860632

Basic Statistical Measures

Location Variability

Mean 24.50933 Std Deviation 14.80243
Median 26.21585 Variance 219.11204
Mode . Range 53.62360

Interquartile Range 26.10309

Tests for Location: Mu0=0

Test -Statistic- -----p Value------

Student’s t t 70.30662 Pr > |t| <.0001
Sign M 901.5 Pr >= |M| <.0001
Signed Rank S 813153 Pr >= |S| <.0001

Quantiles (Definition 5)

Quantile Estimate

100% Max 53.62741148
99% 50.95981599
95% 46.44804080
90% 43.36915659
75% Q3 37.45295397
50% Median 26.21585009
25% Q1 11.34985903
10% 3.08194661
5% 1.38985610
1% 0.28776996
0% Min 0.00381383

Extreme Observations

-------Lowest------- -----Highest-----

Value Obs Value Obs

0.00381383 1442 51.9481 819
0.02449773 1486 52.1543 818
0.02846473 1458 52.1938 418
0.04001101 1249 52.4247 419
0.06573967 1700 53.6274 817

Figure 2.8. Statistics on a Transaction Attribute

If you collect data into a SAS data set and then press the Analyze button, univariate
statistics will be calculated by the UNIVARIATE procedure (Figure 2.8) and a sample
distribution function as shown in Figure 2.9 on page 16 will be plotted.

16 � Chapter 2. Getting Started

Figure 2.9. Sample Distribution Function

See Chapter 9, “Analyzing the Sample Path,” for more information about collecting
statistics and analyzing simulation data.

Chapter 3
Building a Model with Elementary

Components

Chapter Contents

SOURCE COMPONENTS . 20

SERVER COMPONENTS . 22

QUEUE COMPONENTS . 25

LOGIC COMPONENTS . 28
Trigger Component . 28
MultiTrigger Component . 30
Modifier Component . 31
MultiModifier Component . 32
Switch Component . 33
Router Component . 35
Adder Component . 36
Splitter Component . 37

HOLDER COMPONENTS . 37
NumberHolder Components . 38
StringHolder Components . 40

CHART COMPONENTS . 41
Bucket . 42
Box Plot . 42
Histogram . 43
Line Plot . 44

PORT, CONNECTOR, AND LABEL COMPONENTS 45

CONNECTING COMPONENTS . 46

18

Chapter 3
Building a Model with Elementary

Components
For ease in building and maintaining models, the QSIM Application promotes hi-
erarchical model building, user component construction, and component reuse by
providing a comprehensive set of primitive components and the ability to assemble
components into compound components. For example, you can build a queue-server
network, then encapsulate it, identify an image to represent it, use it to define a tem-
plate for additional replication, and save the template in a SAS data set to be shared in
other models and by other users. This chapter discusses the details of the elementary
components used in model building.

There are several types of elementary components: sources, servers, queues, logic,
holders, charts, and connectors. Although each of these has a special role, they have
much in common, as is evident from their pop-up menus (displayed by pressing the
right mouse button while pointing to the component).

Figure 3.1. The Pop-Up Menu on the FIFO Queue Component

Figure 3.1 shows a typical pop-up menu. The first entry in this pop-up menu is the
name of the component. The submenu from that entry has Control Panel... as the
first choice. Selecting it displays the component’s control panel, which enables you
to set component parameters. Other choices include Expose/Hide Details, Tools,
Delete, and Help. The Expose/Hide Details entry toggles the display of the com-
ponent between an icon that represents the component, which you can change, and a
drawn representation of the component. For some of the components, the drawn rep-
resentation shows state information while the simulation is in progress and animating.
For example, the family of queues slowly fills as transactions arrive and queue up for
service.

Many of the components also have internal state information that changes as the result
of transaction arrival and other kinds of message sending. There are five general types
of actions that either change component state or return information about the compo-
nent state: transaction arrival, request for transaction, are you busy message, query
message, and trigger message. The query message is sent from the Modifier compo-
nents and formulas. These messages make requests about the state of the component,
for example, the number of transactions waiting in a queue. The trigger message is

20 � Chapter 3. Building a Model with Elementary Components

sent when a transaction arrives at a Trigger component, and it is used to change the
state of the component. For example, since the Sampler services the “start” message,
a transaction arriving at a Trigger component can start a Sampler. The sections that
follow document the elementary components and show in tables the types of state
and information messages that the components service.

Each elementary component has a Control Panel associated with it. This panel pro-
vides you access to parameters that control the behavior and appearance of the com-
ponent.

The system assigns a unique component ID to each of the elementary components.
This is done so that you can unambiguously identify each component that appears
in a list box. For example, when you instantiate a Server all that appears in the

Simulation window is the icon . If you have several of these icons and you
look at a Trigger control panel, such as the one shown in Figure 3.14 on page 39,
you cannot distinguish them unless you give each a unique label. By default, each
will have a unique ID, which is appended to the name of the object and displayed in
the list box. As an alternative, you can give the component a label, which will be
displayed in the list box. By default, the iconic representation of a component in the
Simulation window includes the unique ID.

Source Components
The source components are sources of transactions for the simulation network. There
are two types of sources: Sampler and Transaction Pool.

Icon Component Description

Sampler generates transactions with prescribed inter-arrival times

Transaction Pool a source of transactions

The Sampler generates a transaction, and then waits a specified time interval before
generating another transaction. The time between transactions, called the inter-arrival
time, can be a sample of a random variable (from one of several distributions), a fixed
amount, or the value of a variable read from a SAS data set. By default, the inter-
arrival time is an observation of an exponential random variable with parameter 1.
This means that by default the Samplers follow a Poisson arrival process.

Source Components � 21

Figure 3.2. The Sampler Control Panel

Figure 3.2 shows the Control Panel for the Sampler. The combo box labeled “Inter-
Arrival-Time Distribution” enables you to specify the type of distribution. If you
press the down arrow a list of distributions is displayed. You select the inter-arrival
time distribution by selecting one of these. See Chapter 7, “Random and Exogenous
Variation in the Model,” for information on the choices of distributions.

The control panel also has a slider for setting the capacity of the Sampler, that is,
the number of transactions that will be generated before the Sampler shuts off. The
“Transaction Image” button on the control panel enables you to choose a bitmap
image that would flow through the network when the simulation is being animated.

The Transaction Pool (the other source component) differs from the Sampler only in
that it does not create transactions unless it receives a request for transaction message.
In other ways, it is identical to the Sampler.

The following documents the logic of the source components.

Request for Transaction

A Sampler passes requests to arcs leading into it. A Transaction Pool generates a
transaction and initiates its flow.

Are You Busy Message

The source components pass this request to arcs leading out of them and return their
answers.

Query Message

Keyword Meaning
capacity returns the capacity
id the source component’s unique identifier
on TRUE if the source component is started, else FALSE
remaining returns the number of transactions remaining to be sent
size returns the number of transactions sent

22 � Chapter 3. Building a Model with Elementary Components

Trigger Message

Keyword Meaning
reset stops the source component and resets the number of

transactions remaining to be sent to 1
setCapacity sets the capacity from the transaction attribute “capacity”
setDistribution sets the distribution from the transaction attribute “distribution.”

This attribute should be a character string whose value is one
of the distributions: Exponential, Gamma, Erlang, Uniform,
IUniform, and Deterministic.

setParameter1 sets the first parameter in the distribution from
the transaction attribute “parameter1”

setParameter2 sets the second parameter in the distribution from
the transaction attribute “parameter2”

start starts the source component
stop stops the source component

Server Components
Server components model a resource used by a transaction for a specified amount of
time. There are two types of servers: Server and MServer.

Icon Component Description

Server provides service for a transaction

MServer provides service simultaneously for multiple transactions

The Server holds the transaction while it is served. The service time can be a sample
of a random variable (from one of several distributions), a fixed amount, or the value
of a variable read from a SAS data set. By default, the service time is an observation
of an exponential random variable with parameter 1.

An MServer, or multiple-server, can service multiple transactions simultaneously.
The capacity of an MServer is set using the slider labeled “Capacity” on its control
panel.

Server Components � 23

Figure 3.3. The Multiple-Server Control Panel

Notice that in the lower-right corner of the server components, there is a small rect-
angle. This is a Balk node. If a transaction arrives at a Server when it is busy or at an
MServer when it is at capacity, the transaction will flow out the Balk node. Consider,
for example, a situation where transactions are either serviced upon arrival by server
1 or, if server 1 is not free, wait for service from server 2. This is modeled by the
network in Figure 3.4.

When the transaction leaves the Server or MServer, it has an attribute as named in
the control panel that contains the time that the transaction spent in the server. This
attribute can be used for controlling the simulation logic and for measuring the per-
formance of the simulation by displaying it in one of the chart components or saving
it in a SAS data set.

Figure 3.4. Server Balk Model

The following documents the logic of the server components.

Transaction Arrival

If the server is busy, at capacity, or stopped, the transaction flows out the Balk node;
otherwise, service is scheduled. On service completion, a request for transaction
message is sent to arcs directed into the server. If a transaction is found, then its flow
is initiated. Regardless, the transaction that just finished service flows on each of the
arcs directed out of the server.

24 � Chapter 3. Building a Model with Elementary Components

Request for Transaction

If the server is not busy or stopped, then pass on the request to all arcs directed into
the server. The order in which the requests for service are issued is determined by
the order of the components in the “Pull from” list box on the Server Control Panel.
Also, if a component is not included in the “Pull from” list box, then the request for
transaction message is not propagated on the arc leading to that component.

Are You Busy Message

If the server is not busy and not stopped, then return FALSE; otherwise, return TRUE.

Query Message

Keyword Meaning
busy returns TRUE if the Server is busy or the MServer

is at capacity or either is stopped; else, returns FALSE
capacityIs returns the capacity of the MServer
full returns TRUE if the Server is busy or the MServer

is at capacity; else, returns FALSE
id returns the server’s unique identifier
off returns TRUE if the Server or MServer is stopped
sizeIs returns the number of multiple-server units that are busy
space returns TRUE if the Server is free or the MServer

is not at capacity; else, return FALSE

Trigger Message

Keyword Meaning
preempt removes all the transactions that are being served. They flow

out of the Balk node.
preemptContinue removes all the transactions that are being served.

They flow out of the Balk node. The server requests transactions from
upstream components.

removeIt removes the transaction at the Trigger, if it is also being served.
It flows out of the Balk node.

reset resets the Server and MServer, destroying all waiting transactions
seize attempts to obtain service for the transaction that arrived at

the Trigger
setCapacity sets the MServer capacity from the transaction

attribute “capacity”
setDistribution sets the distribution from the transaction attribute “distribution”
setParameter1 sets the first parameter in the distribution from the

transaction attribute “parameter1”
setParameter2 sets the second parameter in the distribution from the

transaction attribute “parameter2”
start starts the Server component
stop stops the Server component. Transactions in service have

normal completion.

Queue Components � 25

Queue Components
Queue components are transient storage for transactions. There are three types of
queues: FIFO Queues, LIFO Queues, and Priority Queues.

Icon Component Description

FIFO Queues first-in-first-out

LIFO Queues last-in-first-out

Priority Queues priority

Each type of queue can behave as a buffer. This means that when the transaction
first arrives, the queue will not try to route it to a nonbusy component but will wait
for a request for transaction message from a downstream component before sending
it on. In addition, you can have the queue behave as a buffer for some downstream
components and as a standard queue for others. Those components in the “Don’t
push to:” list box in the Queue Control Panel (see Figure 3.5) define components for
which the queue acts as a buffer. Those components in the “Push to:” list box define
components for which the queue acts as a standard queue.

The LIFO and FIFO queues order transactions according to their arrival time. The
Priority Queue uses the value of the numeric transaction attribute named “priority”
to determine placement location in the queue. This default name can be changed.
The priority attribute can be assigned to a transaction by the Modifier component,
discussed in the section “Logic Components” on page 28. By default, the smaller the
value of the attribute, the higher placement in the queue and the sooner the element
will leave the queue. Although this is the default priority order, it can be changed by
unselecting the “Ascending Priority Order” check box on the control panel shown in
Figure 3.5.

26 � Chapter 3. Building a Model with Elementary Components

Figure 3.5. The Priority Queue Control Panel

When each transaction leaves the queue, it has an attribute with the time it spent in
the queue. The name of this attribute can be specified in the queue control panel. See
Figure 3.5 for where to give the attribute name. By default the attribute name for all
queues is “queue.”

The following documents the logic of the Queue components.

Transaction Arrival

If the queue is off or at capacity, the transaction flows out the Balk node; otherwise,
it sends the message are you busy to the nodes on arcs directed away from the queue
and listed in the Push to list box. If FALSE is returned, then route the transaction
there; otherwise, queue the transaction.

Request for Transaction

If the queue is not empty (size > 0), then remove the next transaction according to the
type of queue and send it out the arc directed to the component that made the request;
otherwise, return FALSE.

Are You Busy Message

always returns FALSE.

Queue Components � 27

Query Message

Keyword Meaning
capacity returns the queue’s capacity
id returns the queue’s unique identifier
releaseType returns a string naming the way that the last transaction

was released from the balk node. Possible values are: “balk,” “empty,”
“filter,” “filterOne,” and “releaseOne.”

size returns the number of transactions that are in the queue
space returns TRUE if there is unused capacity in the queue

Trigger Message

Keyword Meaning
balk causes the transaction at the Trigger to leave the queue from the Balk node
empty empties the queue of all transactions. Note that the transactions

do not leave via the Balk node.
filter evaluates a formula for each transaction in the queue. If the

formula evaluates to TRUE, the transaction balks; otherwise, it
maintains its place in the queue. The formula that is evaluated should
be in an attribute named ”formula” in the triggering transaction.

filterOne evaluates a formula for each transaction in the queue.
The first transaction for which the formula evaluates to TRUE balks.
The formula that is evaluated should be in an attribute named “formula”
in the triggering transaction.

insert inserts the transaction at the Trigger into the queue
releaseOne releases one transaction from the queue via the Balk node
reset destroys all transactions in the queue
start starts the queue
stop stops the queue

28 � Chapter 3. Building a Model with Elementary Components

Logic Components
The logic components fall into two categories: those that control the flow of trans-
actions (Adder, Splitter, Router, and Switch), and those that change the state of the
simulation (Modifier and Trigger).

Icon Component Description

Adder assemble multiple transactions

Splitter split single transactions

Modifier assign an attribute to transactions

MModifier assign multiple attributes to transactions

Trigger change a component’s state

MTrigger change multiple components’ state

Router direct flow as a function of system state

Switch direct flow as a function of system state

Trigger Component

When a transaction arrives at a Trigger component, it initiates a message being
sent to another component. For example, Figure 3.6 shows the control panel for a
Trigger component. Notice that the FIFO Queue component is selected and that
the insert trigger is also selected.

Figure 3.6. The Trigger Control Panel

Trigger Component � 29

When a transaction arrives at this Trigger, the “insert” message is sent to the spe-
cific queue selected in the control panel. As documented in the section “Queue
Components” on page 25, the transaction that arrives at the Trigger is the one in-
serted into the queue named “FIFO Queue.”

Notice the check box labeled Schedule Trigger Event in the trigger control
panel. You select this check box to delay execution of the trigger event. You can
specify the length of the delay by pressing the Event Interval button. This opens a
Distribution window (like the one shown in Figure 5.3 on page 56) from which you
can choose a distribution, a fixed interval, or a numeric variable in a SAS data set.

The Trigger Interval field provides a mechanism for disabling the trigger for
some transactions. If the trigger interval is one, then every other transaction will
activate the trigger logic. If the trigger interval is two, then every third transaction
will activate the trigger logic, and so on.

The Trigger Value push button provides a mechanism for associating a value with the
trigger. This is used with the “setFromTrigger” trigger message in Holders.

The following documents the logic of the Trigger component.

Transaction Arrival

executes the trigger; then the transaction flows down each arc directed away from the
component.

Request for Transaction

The request is sent up each arc directed into the component.

Are You Busy Message

If any of the components on arcs directed out of the Trigger is busy, then return
TRUE; else, return FALSE.

Query Message

Keyword Meaning
id returns the component’s unique identifier
value returns the value associated with the Trigger

Trigger Message

Keyword Meaning
reset resets the Trigger
start starts the Trigger
stop stops the Trigger

30 � Chapter 3. Building a Model with Elementary Components

MultiTrigger Component

When a transaction arrives at a MTrigger component, it initiates the sending of a set
of messages to a set of components, one message to each component. For exam-
ple, Figure 3.7 shows the control panel for a MTrigger component.

Figure 3.7. The MTrigger Control Panel

Notice that the Triggers list box contains two entries, one labeled Server ->
preempt and the other labeled Trigger. The first one indicates that an arriving
transaction will cause the “preempt” message to be sent to Server. The second one,
labeled Trigger, has not been specified but is selected. Selecting this and press-
ing the Edit button raises the second window which looks like the Trigger Control
Panel. Notice that the Server named Server is selected in that window. Also notice
that seize has been selected. This means that the second message triggered by an
arriving transaction will send the “seize” message to the component labeled Server.

The following documents the logic of the MTrigger component.

Transaction Arrival

sends each message to the appropriate component, then the transaction flows down
each arc directed away from the component.

Request for Transaction

The request is sent up each arc directed into the component.

Are You Busy Message

If any of the components on arcs directed out of the MultiTrigger is busy, then return
TRUE; else, return FALSE.

Query Message

Keyword Meaning
id returns the component’s unique identifier

Modifier Component � 31

Trigger Message

Keyword Meaning
reset resets the Multi-Trigger
start starts the Multi-Trigger
stop stops the Multi-Trigger

Modifier Component

The Modifier component assigns an attribute to a transaction. The control panel,
shown in Figure 3.8, provides a field for entering the attribute name and a set of radio
buttons for specifying how a value for that attribute is calculated. It can be the result
of a simple character or numeric assignment, a formula evaluation, sampling of a
random variable, or the value read from a variable in a data set. Regardless, the result
of evaluation is the value given to the attribute. This attribute-value combination
is unique to the transaction, and the transaction carries it on its route through the
simulation network.

Figure 3.8. The Modifier Control Panel

By default, the value is calculated when the transaction arrives at the Modifier.
However, if you select the Delay Formula Evaluation check box, the for-
mula is not evaluated when the transaction arrives at the modifier but is itself the
value of the attribute. This feature is used with the “filter” trigger message on queues.

The following documents the logic of the Modifier component.

Transaction Arrival

assigns the attribute value pair; then the transaction flows down each arc directed
away from the component.

Request for Transaction

The request is sent up each arc directed into the component.

Are You Busy Message

If any of the components on arcs directed out of the Modifier is busy, then return
TRUE; else, return FALSE.

32 � Chapter 3. Building a Model with Elementary Components

Query Message

Keyword Meaning
id returns the component’s unique identifier

Trigger Message

Keyword Meaning
reset resets the Modifier
start starts the Modifier
stop stops the Modifier

MultiModifier Component

The MModifier component assigns multiple attributes to a transaction. The control
panel, shown in Figure 3.9, provides a field for entering the attribute name and an Ok
push button for adding the attribute to the attributes list.

Figure 3.9. The MModifier Control Panel

The list shows two attributes, named “class” and “priority.” By default, when a trans-
action arrives at the component, each of the attributes is assigned a value as is done in
the Modifier component. You specify the details of how each attribute is evaluated by
selecting the attribute and pushing the Edit button. This raises a control panel like the
one for the Modifier as shown above. These attribute-value combinations are unique
to the transaction, and the transaction carries them on its route through the simulation
network.

The following documents the logic of the MModifier component.

Switch Component � 33

Transaction Arrival

assigns the attribute; then the transaction flows down each arc directed away from the
component.

Request for Transaction

The request is sent up each arc directed into the component.

Are You Busy Message

If any of the components on arcs directed out of the Modifier is busy, then return
TRUE; else, return FALSE.

Query Message

Keyword Meaning
id returns the component’s unique identifier

Trigger Message

Keyword Meaning
reset resets the Multi-modifier
start starts the Multi-modifier
stop stops the Multi-modifier

Switch Component

The Router and Switch components are for controlling the flow of transactions as a
function of the state of the simulation. The Router can have a formula associated with
each arc directed away from it. When a transaction arrives at the Router, each formula
is evaluated and the transaction flows down all arcs with formulas that evaluate to
TRUE. The Switch is similar to the Router, but it has only one formula associated
with it. The formula evaluation is interpreted as a case, which identifies an arc or set
of arcs down which the transaction should flow. If the evaluation does not identify a
valid case, the transaction flows out the Balk node.

34 � Chapter 3. Building a Model with Elementary Components

Figure 3.10. Switch Control Panel

Figure 3.10 shows the control panel for a switch connected to two queues as
in Figure 3.11. Selecting the Formula button displays a Formula Manager Window
(see Chapter 5). There you build, verify, and save the formula associated with the
switch. When a transaction arrives at the switch, the formula associated with the
switch is evaluated. This value is compared to each of the cases listed in the Switch
control panel. The transaction flows down the arcs associated with each of the cases
that match. You can associate arcs with a case by selecting a case and pressing the
Edit button. This displays the Switch Control Panel, as shown in Figure 3.10. In this
window you select one or more of the listed components. For example, a Switch can
be used to direct transactions to the smaller of two queues.

Figure 3.11. Switch Controlled Queue Selection

The following documents the logic of the Switch component.

Transaction Arrival

evaluates the formula for the switch. The transaction flows down the arcs leaving the
switch that have case values matching the formula evaluation. If there is no match,
the transaction flows out the balk node.

Router Component � 35

Request for Transaction

The request is sent up each arc directed into the component.

Are You Busy Message

If any of the components on arcs directed out of the Switch is busy, then return TRUE;
else, return FALSE.

Query Message

Keyword Meaning
id returns the component’s unique identifier

Trigger Message

Keyword Meaning
reset resets the Switch
start starts the Switch
stop stops the Switch

Router Component

The Router and Switch components are for controlling the flow of transactions as a
function of the state of the simulation. The Router can have a formula associated with
each arc directed away from it. When a transaction arrives at the Router, each formula
is evaluated and the transaction flows down all arcs with formulas that evaluate to
TRUE. The Switch is similar to the Router, but it has only one formula associated
with it. The formula evaluation is interpreted as a case, which identifies an arc or set
of arcs down which the transaction should flow. If the evaluation does not identify a
valid case, the transaction flows out the Balk node.

The following documents the logic of the Router component.

Transaction Arrival

evaluates the formula for each arc leaving the router. If an evaluation returns TRUE,
then the transaction flows down the associated arc.

Request for Transaction

The request is sent up each arc directed into the component.

Are You Busy Message

If any of the components on arcs directed out of the Router is busy, then return TRUE;
else, return FALSE.

36 � Chapter 3. Building a Model with Elementary Components

Query Message

Keyword Meaning
id returns the component’s unique identifier

Trigger Message

Keyword Meaning
reset resets the Router
start starts the Router
stop stops the Router

Adder Component
The Adder component is useful when you want to model the assembly process such
as putting two parts together. The Adder guarantees that this will occur only when
both of the parts are available.

The following documents the logic of the Adder component.

Transaction Arrival

If all components on arcs leading into the Adder can initiate flow, then initiate a
transaction from each and generate a new transaction to travel down each arc directed
away from the Adder; otherwise, the transaction flows out the balk node.

Request for Transaction

If all components on arcs leading into the Adder can initiate flow, then initiate a
transaction from each and generate a new transaction to travel down each arc directed
away from the Adder.

Are You Busy Message

If all components on arcs leading into the Adder can initiate flow, then return TRUE;
else, return FALSE.

Query Message

Keyword Meaning
id returns the component’s unique identifier

Trigger Message

Keyword Meaning
reset resets the Adder
start starts the Adder
stop stops the Adder

Holder Components � 37

Splitter Component
The transaction entering the Splitter leaves down all arcs away from the splitter. A
single instance of the transaction leaves the Splitter multiple times so it is in multiple
places at once. It appears that these are multiple copies but they all refer to the same
transaction instance. This means that any change to the transaction can be detected in
multiple places in the model. This is the same behavior as with a Port or Connector.
The additional behavior that is provided by the Splitter comes when an “Are You
Busy” message is sent to it. This behavior differs from both the Port and Connector.

The following list documents the logic of the Splitter component.

Transaction Arrival

The transaction flows down each arc directed away from the component.

Request for Transaction

If none of the components on arcs directed out of the Splitter is busy, then pass on the
request to all components on arcs leading into the Splitter; else, deny the request.

Are You Busy Message

If any of the components on arcs directed out of the Splitter is busy, then return
TRUE; else, return FALSE.

Query Message

Keyword Meaning
id returns the component’s unique identifier

Trigger Message

Keyword Meaning
reset resets the Splitter
start starts the Splitter
stop stops the Splitter

Holder Components
There are two types of holders: StringHolder and NumberHolder. These are used to
hold strings and numbers for maintaining user-defined state information.

Icon Component Description

NumberHolder storage for a number

StringHolder storage for a string

38 � Chapter 3. Building a Model with Elementary Components

NumberHolder Components

There are various ways to both save information and retrieve information from hold-
ers. The values of attributes carried by transactions can be saved in a holder when the
transaction enters the holder. Alternatively, a value can be saved in a holder when a
transaction enters a trigger in some other part of the simulation model. For example,
suppose that you want to save the value of a transaction attribute called “weight” in a
NumberHolder.

Figure 3.12. Number Holder Saving “weight” Attribute

In the model fragment in Figure 3.12, when the transaction arrives at the Trigger, the
value of the weight attribute in that transaction is saved in the NumberHolder. Now,
another part of the simulation can query the NumberHolder to find the current value
of weight. You could also route the transaction directly to the NumberHolder and
update its state that way.

You specify the name of the attribute that is stored in the NumberHolder in the
NumberHolder Control Panel, which is displayed by selecting Control Panel... from
the pop-up menu on the NumberHolder.

Figure 3.13. Number Holder Control Panel

Notice that the NumberHolder control panel shown in Figure 3.13 has the attribute
name “weight” in the Attribute Name field.

NumberHolder Components � 39

The transaction sets the NumberHolder when it arrives at the Trigger because the
Trigger Control Panel, as shown in Figure 3.14, has the NumberHolder component
selected and the setFromAttribute selected.

Figure 3.14. A Trigger Control Panel

The Initial Value field in the holder control panel provides a way of initializing the
holder. This is useful when using the holder as a counter of resources. When the
NumberHolder decrements, there is one less available resource. Other parts of the
model may query the holder to see if there are resources available for certain activi-
ties. In this case it may be desirable to have an initial pool available.

The Disable Reset check box will disable the resetting of the last value in the holder
when the simulation reset button is pressed. If not checked, when the reset button is
pressed the holder is reset to its initial value. If checked, the reset button has no effect
on the holder.

The following documents the logic of the NumberHolder component.

Transaction Arrival

sets the value as specified in the NumberHolder Control Panel; then flows the trans-
action to each arc directed away from the component.

Request for Transaction

passes on the request to all arcs directed into the component.

Are You Busy Message

If any component on an arc leading out of the Trigger is busy, then return TRUE;
otherwise, return FALSE.

40 � Chapter 3. Building a Model with Elementary Components

Query Message

Keyword Meaning
currentValue returns the value in the holder at the current time
id returns the component’s unique identifier
value returns the value in the holder when the transaction passed through it

Trigger Message

Keyword Meaning
+ adds the transaction attribute to the value
- subtracts the transaction attribute from the value
clearSetFromAttribute clears the value then sets it
controls displays the Holder Control Panel
decrement decrements the value
increment increments the value
print prints the value on the SAS Log window
reset resets the value .
setFromAttribute sets the value from the transaction attribute
setFromTrigger sets the value that is assigned with the

Trigger Value button in the Trigger Control Panel
setTimenow sets the simulation time into the value
start starts the holder
stop stops the holder

StringHolder Components

The following list documents the logic of the StringHolder component.

Transaction Arrival

sets the value as specified in the StringHolder Control Panel; then flows the transac-
tion to each arc directed away from the component.

Request for Transaction

passes on the request to all arcs directed into the component.

Are You Busy Message

If any component on an arc leading out of the Trigger is busy, then return TRUE;
otherwise, return FALSE.

Chart Components � 41

Query Message

Keyword Meaning
currentValue returns the value in the holder at the current time
id returns the component’s unique identifier
value returns the value in the holder when the transaction passed through it

Trigger Message

clearSetFromAttribute clears the value then sets it
controls displays the Holder Control Panel
print prints the value on the SAS Log window
reset resets the value
setFromAttribute sets the value from the transaction attribute
setFromTrigger sets the value that is assigned with the

Trigger Value button in the Trigger Control Panel
start starts the holder
stop stops the holder

Chart Components
There are five types of charts and a Bucket component. The charts are used to display
information about the performance of the system. The bucket collects data. Charts
can be used in two ways: you can drag and drop a component (queue, server, or
NumberHolder, for example) on a chart and then choose the attribute of the com-
ponent you want to display in the chart and the frequency with which to sample the
component. In those cases, the chart will instantiate a bucket within it to collect the
data. On the other hand, if you drop a bucket into a chart, the chart uses that instant
as its data source. This is used to display attribute data in transactions.

Icon Component Description

Bucket collect value of an attribute for analysis

VHistogram vertical histogram of numeric data

HHistogram horizontal histogram of numeric data

VBoxPlot vertical box plot of numeric data

HBoxPlot horizontal box plot of numeric data

LinePlot plot of numeric data over simulation time

42 � Chapter 3. Building a Model with Elementary Components

Bucket

The bucket is a component for collecting statistics on an attribute and saving its values
in a SAS data set. You name an attribute for which you want to collect statistics in
the Bucket control panel. The attribute “age” is the default collected. You can also
specify the buffer size, which is the number of values of the attribute that is used in
calculating statistics and displaying in the chart component. There is also a way to
name a data set into which the attribute’s values are saved and a way to start and stop
data collection. In addition, the ‘Reset’ button empties the buffer and the ‘Ok’ button
sets the buffer size and attribute names.

Figure 3.15. A Bucket control panel

When you select the Collect Data check box, for each transaction the values of the
monitored attribute are saved in a SAS data set. Chapter 8, “Saving and Restoring,”
discusses the details of this data set. You can analyze the data you collect by press-
ing the Analyze button which executes PROC UNIVARIATE and PROC GPLOT.
Chapter 9, “Analyzing the Sample Path,” discusses the details of the type of analy-
sis.

Box Plot

The Box Plot shows the minimum, maximum, and quartiles of the attribute that it
is monitoring. This attribute can be named in a bucket that is dropped on the box
plot or can be one of the states of a component that is dropped on the box plot. If a
bucket is dropped on the box plot then the bin controls for the box plot are those of
the bucket. If a component is dropped on the box plot then there is a hidden bucket
associated with the box plot and the bin controls are associated with the box plot and
are accessible from the box plot control panel.

Histogram � 43

Figure 3.16. A Box Plot Control Panel

The box plot control panel has buttons to enable or disable automatic scaling, refresh
the plot, raise the local bin controls, and to specify auxiliary controls. The latter two
buttons apply if you drop a component on a box plot.

You can also drop box plots onto other box plots. This enables you to collect statistics
on the minimum, maximum, and quartiles of the attribute. It is a type of batch means.

Histogram

The histogram shows a distribution histogram of the selected attribute. The
Histogram control panel shows the minimum, maximum, number, mean, and stan-
dard deviation of the attribute that it is monitoring. This attribute can be named in a
bucket that is dropped on the histogram or can be one of the states of a component
that is dropped on the histogram. If a bucket is dropped on the histogram, then the bin
controls for the histogram are those of the bucket. If a component is dropped on the
histogram, then the bin controls are associated with the histogram and are accessible
from the histogram control panel.

Figure 3.17. A Histogram and Control Panel

44 � Chapter 3. Building a Model with Elementary Components

The histogram control panel has buttons to enable or disable automatic scaling, re-
fresh the plot, raise the local bin controls, and to specify auxiliary controls. The latter
two buttons apply if you drop a component on a histogram.

You can also drop histograms onto other histograms. This enables you to collect
statistics on the minimum, maximum, mean, and standard deviation of the attribute.
It is a type of batch means.

Line Plot

The line plot shows the attribute’s sample path. The line plot control panel shows the
minimum, maximum, number, mean, and standard deviation of the attribute that it is
monitoring. This attribute can be named in a bucket that is dropped on the line plot or
can be one of the states of a component that is dropped on the line plot. If a bucket is
dropped on the line plot, then the bin controls for the line plot are those of the bucket.
If a component is dropped on the line plot, then the bin controls are associated with
the line plot and are accessible from the line plot control panel.

Figure 3.18. A Line Plot of Transaction Age

The line plot control panel has buttons to enable or disable automatic scaling, refresh
the plot, raise the local bin controls, and to specify auxiliary controls. The latter two
buttons apply if you drop a component on a line plot.

Figure 3.19. A Line Plot Control Panel

You can also drop line plots onto other line plots. This enables you to collect statistics
on the minimum, maximum, mean, and standard deviations of the attribute. It is a
type of batch means.

Port, Connector, and Label Components � 45

Port, Connector, and Label Components
Ports and Connectors aid in connecting components to each other and are useful
when building hierarchical models and assembling components into larger aggregate
components. You can annotate the simulation with text using Labels. In addition, you
can attach labels to many of the elementary components. You do this by selecting
Tools ä Add label from the pop-up menu on the component you want to annotate.
Then, type the text you want to appear in the label.

Icon Component Description

Port for connecting multiple components

Connector for connecting multiple components without using arcs

Label for annotating the model

Figure 3.20 shows an example with a connector labeled “a.” When a transaction flows
into connector “a,” it will flow out of all other connectors “a.”

Figure 3.20. Simple Example Using a Connector

The three “a” connectors are treated as identical. An equivalent model using an in-
stance of a Port is shown in Figure 3.21.

Figure 3.21. Simple Example Using a Port

Here, the port explicitly connects the three components, which were implicitly con-
nected using the Connector. In addition, ports have a special role in compound com-
ponents. In this setting, they can be used to create special connections from the out-
side of compound components to the inside of compound components. See Chapter
6, “Building a Model with Compound Components,” for more details on this special
function.

46 � Chapter 3. Building a Model with Elementary Components

You duplicate a Connector by selecting Duplicate on the pop-up menu. If you type
in the interior of the Connector, then all the duplicates of that connector will display
the same text.

Connecting Components
The examples presented thus far use arcs to connect components. This section de-
scribes arcs and some of the features they provide in more detail. If you click on
the right side of a component, when the cursor is in the “+” shape, a rubberband line
displays from the component to the cursor. If you don’t see this line, it means that the
component doesn’t support arcs directed away from it. You will not get an error mes-
sage. If there is a rubberband line attached to the cursor, when you click in another
component that supports arcs directed towards it, the rubberband line is replaced by
a solid arc. If, while the rubberband line is connected to the cursor, you move the
cursor to the right or below the window border, the window will scroll automatically.
This is power scrolling, and it allows you to connect components that may not be
visible in the window simultaneously. If you click outside the window border while
power scrolling, then the rubberband line is dropped.

There are two types of arcs: regular arcs and segmented arcs. As the name implies,
segmented arcs are composed of multiple line segments. Figure 3.22 shows the two
types of arcs.

Figure 3.22. Two Types of Arcs

If you click on the simulation window background while a rubberband line is con-
nected to the cursor, the selected point ends one line segment and begins another. In
this way you can create circuitous routes between components.

Notice the rectangular handle in the center of the arc. This is the arc’s “hot spot.”
If you click the right mouse button while the cursor is over the hot spot, a menu
associated with the arc pops up.

Connecting Components � 47

Figure 3.23. Pop-Up Menu for a Segmented Arc

In the pop-up menu for segmented arcs in Figure 3.23, there is a selection called
Perpendicular. This selection causes the arc to be drawn so that the line segments
are perpendicular to each other. As the numerous selections in Figure 3.23 show, a
full range of capabilities are available.

48

Chapter 4
Transactions

Chapter Contents

Attributes . 51
Trigger Messages . 52
Timing Transaction Arrivals . 53

50

Chapter 4
Transactions

Transactions are generated in three components: Sampler, Transaction Pool, and
Adder. Transactions are discrete entities that traverse the simulation network, and
they can be used to represent physical and conceptual things such as a partially as-
sembled refrigerator on an assembly line, a telephone call in a phone system, or an
event such as a check on the size of a queue.

You can view the movement of transactions through the network by pressing the
Animate button on the command panel. Bitmap images can be assigned to trans-
actions in each of the three components in which they are generated. For example,
the Transaction Image push button on the Sampler control panel opens a window
from which you can choose an image to display on the transactions that originate at
that Sampler. Figure 4.1 shows an example. Although Figure 4.1 shows the image
SASHELP.ORIMG24.PHONE, any image in a SAS catalog can be used.

Figure 4.1. Setting an Image for a Sampler Transaction

When there are no references to transactions in the simulation, the transaction is
disposed of. This means that if a transaction does not reside in a queue, is busy in a
server, is traversing an arc, or is being processed by another elementary component,
it will be disposed of. You do not have to explicitly destroy transactions.

Attributes

You assign an attribute to a transaction in the Modifier component. There are three
types of attributes: numeric, character, and unevaluated formulas. An attribute is
attached to the transaction for the duration of the transaction, but it can be given
another value at any time.

History

The transaction maintains a history of the time it has spent traversing the network.
This history is saved in transaction attributes. For example, when a transaction enters
a queue, it records the time it entered the queue in an attribute that is named in the

52 � Chapter 4. Transactions

queue control panel (see Figure 3.5 on page 26). When the transaction leaves the
queue, it updates the attribute with the total time it spent in the queue. When a
transaction enters a Bucket, if the Collect Data check box is set (see Figure 9.8 on
page 93), then any attribute in its history can be written to a SAS data set. You have
to name the attribute for which you want to save data in the bucket control panel.

By default, the total age of the transaction is also a part of its history. This is the
quantity that is, by default, collected in Buckets. You can access it with the attribute
named “age.”

It is important to note that the transaction only spends simulation time in queues and
servers. All the real time that is spent in other components and traversing arcs do not
result in passage of simulation time.

Trigger Messages

The Trigger component includes an entry labeled “Transaction” in the Components
list. Figure 4.2 shows a Trigger control panel with this entry selected.

Figure 4.2. Transaction Trigger Messages

Notice the entries in the Trigger list box. These entries are possible behaviors to
trigger when a transaction arrives at the Trigger component. In this example, because
Transaction is selected, the target of the trigger is the transaction itself. The
removeFromServers action causes the transaction to send that message to all servers
in the simulation which in turn causes removal of that transaction from any servers in
which it is receiving service. The other actions are described in the following list.

Timing Transaction Arrivals � 53

removeFromServers removes the transaction from any server by sending the
removeIt message to all servers.

removeFromQueues removes the transaction from any queue by sending the
balk message to all queues.

routeToId routes the transaction to the component that has id equal
to the value of the routeToId attribute attached to the trans-
action.

Note that when using the routeToId trigger, you need to assign an attribute to the
transaction with the name “routeToId” and the value the id of a component. You
could assign that id as a numeric attribute when the transaction is in a modifier. This
approach may not work if you save the model and then subsequently reload it because
the id number of the component may change between the save and the load. You
can avoid this problem by assigning the routeToId attribute as the “id” of a model
component.

These options provide you additional modeling flexibility. Two examples, “Servers as
Resources II” and “Special Routing” in Chapter 10, “Selected Examples,” illustrate
two uses of the routeToId trigger.

Timing Transaction Arrivals

There are some issues concerning timing of transaction arrivals at a component.
Consider model fragment A in Figure 4.3.

Figure 4.3. Model Fragment A

Although transactions leaving the multiple-server will arrive at the Trigger and the
Bucket at the same simulation time, the logic and behavior of each of these compo-
nents will be executed in sequence. There is no guarantee which will occur first.

Figure 4.4. Model Fragment B

To guarantee that the Trigger “Server Off” executes before the transaction traverses
to the Bucket, connect the components as in Figure 4.4.

54

Chapter 5
Formulas

The Router, Switch, and Modifier components use formulas to control routing and set
attributes. Formulas are specified in a Formula Manager window. Figure 7.6 shows
one such window with the formula 5.0 + X , where X is a random variable with
distribution E(1), exponentially distributed with mean 1.

Figure 5.1. Formula Manager Window

Formulas are built using an interface that is similar to that used when building models.
The palette has a set of icons that can be dragged and dropped into the Formula
Manager window. You use these to build expressions. The following list shows some
of the elements that are used to build expressions.

Icon Description

another formula

a transaction attribute

the simulation clock

a component in the model

an observation of a variable in a SAS data set

a number constant

a string constant

56 � Chapter 5. Formulas

As with components, each of these elements has a pop-up menu associated with it.

For example, the random variable icon shown in Figure 7.6 has a pop-up menu,
shown in Figure 5.2.

Figure 5.2. Pop-up Menu on the Random Variable Formula Element

If you select Edit, the window shown in Figure 5.3 is displayed. From this window,
you select the distribution for the random variable. When the formula is evaluated (to
set an attribute or determine transaction routing, for example), an observation of the
random variable is made.

Figure 5.3. Control Panel for the Random Variable Formula Element

Another important formula element is the model element, . Recall the example
discussed in the section “Switch Component” on page 33. There, the model in Figure
3.11 on page 34 routes transactions to the shortest queue. The control panel on the
Switch shown in Figure 3.10 on page 34 has TRUE as a case for routing to component
Queue 1. This means that you want the formula associated with this switch to return
TRUE if Queue 1 is shorter than Queue 2. To accomplish this, you compare the sizes
of the two queues and return TRUE if the size of Queue 1 is less than the size of
Queue 2.

Figure 5.4. Formula for Comparing the Size of Two Queues

Figure 5.4 shows the formula for accomplishing this. The edit window for the left-
hand model element is shown in Figure 5.5.

Chapter 5. Formulas � 57

Figure 5.5. The Model Element Edit Window

The Model list box contains the simulation components. When you select one of
these components, the Query list box displays query messages for that component.
When the formula is evaluated, the result of the query of the identified component will
be used. For example, when the formula shown in Figure 5.4 is evaluated, the model
element will query Queue 1 with the message size, which will return the number of
elements in its queue. Similarly, if you edit the model element on the right-hand side
of the > and set it to query size of Queue 2, the formula will evaluate to TRUE if
Queue 1 has fewer elements than Queue 2. In this case, the switch will send the
transaction to Queue 1.

You should be careful when validating your models that they are behaving as you
want them. There is a great amount of error-checking done when formulas are evalu-
ated, particularly with regard to type, but not every error will be detected. For exam-
ple, a Router may expect a TRUE or FALSE returned from a formula, but you could
enter a valid formula that evaluates to a number or a string. The QSIM Application
would not detect this type of error but would function as if a nonzero number were
TRUE.

The formula syntax is standard with two exceptions. First, functions of one argument,
such as the trigonometric functions, are specified in reverse polish style. Thus, an
expression like log(X) would be displayed as in Figure 5.6.

Figure 5.6. A Formula for the Log of a Random Variable

Functions of two arguments, such as max and min, are specified between the argu-
ments. So, an expression like max(X, π) would be displayed as in Figure 5.7.

Figure 5.7. A Formula for the Maximum of a Random Variable and π

58

Chapter 6
Building a Model with Compound

Components

Chapter Contents

ASSEMBLING COMPONENTS INTO COMPOUND COMPONENTS . . 61

NESTED COMPOUND COMPONENTS 63
Controlling Subcomponent Exposure . 63

EDITING COMPONENTS . 66

PALETTES FOR REUSING COMPONENTS 67

60

Chapter 6
Building a Model with Compound

Components
The ability to assemble elementary components into larger aggregates is an important
feature of the QSIM Application. It encourages hierarchical model building, infor-
mation hiding, and component reuse. This chapter discusses the details of model
building using compound components.

Figure 6.1. A Compound Component with Queue and a Server

Assembling Components into Compound
Components
The pop-up menu on the Simulation window (see Figure 6.2) has as its first entry
Assemble Components. When you choose this selection, you get a rubberband rect-
angle with which you can sweep out an area on the Simulation Window. Any com-
ponents that are completely within this region will be encapsulated in a compound
component.

62 � Chapter 6. Building a Model with Compound Components

Figure 6.2. The Simulation Window Pop-up Menu

Figure 6.1 shows an example of a compound component. This encapsulated queue
and server can now be treated as a single unit, called a compound component. It has
a pop-up menu, shown in Figure 6.3, which includes Assemble Components and
Disassemble Components for assembling additional compound components within
it and for removing the encapsulation.

Figure 6.3. The Compound Component Pop-up Menu

This compound component also includes Edit, a selection that opens a separate win-
dow for editing the contents of the compound component, and Expose/Hide Details,
a selection that toggles the compound component with an icon. The default icon,

, can be replaced with a user icon by using the Component Attributes Panel
selection on the Command Panel (see Figure 9.2 on page 88).

Controlling Subcomponent Exposure � 63

You can also pick up components and move them into and out of compound compo-
nents. Compound components themselves can be moved into and out of compound
components as well. And, it is not necessary to use drag and drop to accomplish this.
You simply move the component by pressing the mouse button down as you scroll
over the component when you see the hand icon. When you release the mouse button,
the component will be in the new position within the compound component.

Nested Compound Components
It is often useful to nest compound components within one another when making
reusable components. One issue that arises when doing this is how to expose exter-
nally connections to internal component logic. The Port component is particularly
helpful to accomplish this when nested compound components are built for subse-
quent reuse. Consider an example of a queue-server combination. By adding two
Ports, one for transactions to enter the queue and the one for transactions to leave af-
ter service, and then assembling the ports and the compound component into a larger
unit, you can further encapsulate the queue-server combination as shown in Figure
6.4.

Figure 6.4. A Multi-Level Compound Component with Queue, Server, and Ports

Controlling Subcomponent Exposure

Another feature that helps in building hierarchical models is the ability to limit the
exposure of compound components. Even though the model in Figure 6.4 is nested
and allows you to connect to ports, it still exposes submodel detail. However, the
pop-up menu on the compound component also has an entry labeled Expose/Hide
Detail. Selection of this entry hides the detail in the compound component behind

the icon .

With the inner compound component hidden, the model shown in Figure 6.4 looks
like Figure 6.5.

64 � Chapter 6. Building a Model with Compound Components

Figure 6.5. A Multi-Level Compound Component with Ports

You can expose the detail in the inner Queue/Server component by selecting
Expose/Hide Detail again on the component labeled Logic. With these features,
you assemble components with complex behavior, attach ports to the substructures,
then hide the detail, exposing only the structure necessary for using the compound
component.

Not only can you hide the visual details of compound components, but you can also
hide the details of the logic in a compound component. Just hide the details of the
Logic component in Figure 6.5 and you obtain the example shown in Figure 6.6.

Figure 6.6. A Multi-Level Compound Component with Details Hidden

Notice that the Ports remain exposed. That is because the Toggle Exposure was
selected from the pop-up menu on the Port as shown in Figure 6.7.

Figure 6.7. A Multi-Level Compound Component with Queue, Server, and Ports

The pop-up menu on compound components in Figure 6.3 shows the selection Select
Components.... When this is selected for the component labeled Logic, the window
in Figure 6.8 is displayed. In this window, you can select those components that you
want exposed when queries are made on the Logic compound component.

Controlling Subcomponent Exposure � 65

Figure 6.8. A Compound Component Control Panel

Initially, the Exposed Components list box contains all the components in the Logic
compound component. These are the only components that will be exposed. You
move components between the Exposed Components and Non-Exposed Components
list boxes by simply selecting them. Notice that only FIFO Queue will be exposed.
For example, consider the model shown in Figure 6.9.

Figure 6.9. A Model with Switch and Compound Component

If you select the Controls... from the pop-up menu on the Queue-Server Component
then only the FIFO Queue Control Panel will be raised, as shown in Figure 6.10.

66 � Chapter 6. Building a Model with Compound Components

Figure 6.10. Control Panel for the Formula Model Element

This is because you had previously (in Figure 6.8) selected only that element to be
exposed.

Editing Components
Suppose that you want to edit the Logic component in the model in Figure 6.9. One
way is to visually expose the detail in an edit window by selecting Edit... from the
pop-up menu on compound components (see Figure 6.3). Figure 6.11 shows such an
edit window for the Logic component.

Figure 6.11. Editing the Logic Compound Component

In this new window, you can modify the detail structure of the Logic compound
component.

Palettes for Reusing Components � 67

Palettes for Reusing Components
Another powerful feature of compound components is the ability to use them as tem-
plates for replication. You do this by simply dragging and dropping them into a
palette. Notice the compound component at the bottom of the palette in Figure 6.12.
Since this is in the palette and is a template, it can be replicated.

Figure 6.12. The Toolbar with the New “Logic” Button

Now, this icon can be replicated by simply dragging it onto the Simulation window
as you would any other component in the palette. You can change the image on
the icon by using the pop-up menu on the icon and selecting Graphic Attributes.
Furthermore, this icon or template can be saved in a SAS dataset by saving the palette.
See Chapter 8, “Saving and Restoring,” for details.

Note that it is possible to create compound components and, as a result, templates,
that reference components not in the compound component and template itself. For
example, you can have a Trigger as a template that references a queue not in that tem-
plate. When the template is replicated, the Trigger will no longer reference the queue,
and its reference to a component in the model will have to be re-established. However,
any references to components within the template will be preserved in replicates.

68

Chapter 7
Random and Exogenous Variation in

the Model

Chapter Contents

RANDOM SOURCES OF VARIATION . 72
Controlling the Seed Values . 73
Controlling Time Units . 74

FORMULADISTRIBUTION . 74

DATASOURCE . 75

70

Chapter 7
Random and Exogenous Variation in

the Model
Random and exogenous sources of variation play a central role in discrete event sim-
ulation. The Sampler, Server, MServer, and formulas are the principle sources of this
variation in the QSIM models. However, there are other situations where variation
can be meaningfully incorporated into models. For example, you may want to delay
the effect of a Trigger for some random or fixed amount of time. In each of these
cases you have access to a combo box, such as the one in the Sampler control panel
shown in Figure 7.1, labeled to show the use of the source of variation. In this case, it
is the time between transaction arrivals to the system. If you click on the down arrow,
a list that includes the possible distributions is displayed.

Figure 7.1. Sources of Variation

When you select one of these distributions, the selection is displayed in the text area
to the left of the down arrow. For each distribution you select, you can set one or
more parameters which further define the choice.

There are two types of sources of variation: random and exogenous. These are not
mutually exclusive. That is, an exogenous source of variation can be randomly gen-
erated.

72 � Chapter 7. Random and Exogenous Variation in the Model

Random Sources of Variation
The random sources of variation are generated using pseudo-random number gener-
ators. The QSIM application provides a set of standard generators. These include:

• Exponential, with parameter λ and density function

f(x) = λ exp−λx, for x ≥ 0, λ ≥ 0

• Nonhomogeneous Poisson, with rate parameter λ(t) and density function

f(x) =
1

λ(t)
exp−x/λ(t), for x ≥ 0, λ(t) ≥ 0

where λ(t) is cyclic and continuous for all t ≥ 0 with

λ∗ ≡ sup
t≥0

λ(t)

• Gamma, with parameters λ and n and density function

f(x) =
xn−1 exp−x/λ

λnΓ(n)
, for x ≥ 0, λ > 0, n > 0

• Erlang, with parameters λ and n and density function

f(x) =
xn−1 exp−x/λ

λnΓ(n)
, for x ≥ 0, λ > 0, nεZ+

• Uniform, with parameter U and density function

f(x) =
1
U

, for U ≥ 0, 0 ≤ x < U

• IUniform, with parameter U and density function

f(x) =
1
bUc

, for U ≥ 1, 0 ≤ x ≤ bUc, xεZ+

• Deterministic, with parameter U and density function

f(x) = 1, for x = U

Each of these generators has a control panel for setting parameters. For example, if
you pick Exponential from the list box in Figure 7.1 and then click the Parameters
button, the exponential control panel in Figure 7.2 will be displayed. In this window,
you set the initial seed value and the mean 1/λ.

Controlling the Seed Values � 73

Figure 7.2. The Exponential Control Panel

The seed value for each distribution is initialized automatically. You have the capa-
bility of changing this value. The next section tells you how you can control seed
values.

Note that, by default, the Exponential mean in Figure 7.2, is set to 1. You can change
the mean with the slider. The slider has a range of 0 to 10 for this parameter. If 10 is
not large enough for the mean, you simply click in the display and type the mean that
you want.

Controlling the Seed Values

The QSIM application gives you considerable control over the streams of random
numbers used in simulations. Each instance of a random number has its own unique
generator. The control panel for each provides a mechanism for setting the seed and
time units associated with the random variable. The exponential control panel in
Figure 7.2 shows this. By default, a seed is selected when the component is instanti-
ated. This seed is selected from a seeds dataset, named QSEEDS, in the SASHELP
library and selected to guarantee no overlap with any other random variable seed val-
ues for 100,000 observations. Moreover, each time you run the QSIM Application,
the selection of seeds continues from where it last left off. You can control these by
raising the Seed Control panel by selecting the Options ä Seeds... from the pull-
down menus (see Figure 7.3) on the Simulation window.

Figure 7.3. The Options Pull-down Menu

In the Seed Preferences window, shown in Figure 7.4, you can increase the default
distance between seeds, and when you click the Reset Seeds button, you reset the
seeds to the original values that were automatically assigned when the components
were instantiated. This enables you to rerun the simulation with the same seed values
used initially.

74 � Chapter 7. Random and Exogenous Variation in the Model

Figure 7.4. The Seed Control Panel

The Reset Seed Stream button resets the seed stream to the beginning of the
QSEEDS dataset. This will result in use of the seeds that were used when the ap-
plication was first installed on your computer. You can also edit the QSEEDS data
set in the SASHELP directory to change the seed values, although this is not recom-
mended.

Controlling Time Units

Each of the random variable control panels also shows a Units combo box. See Figure
7.2 for an example. With this you can identify a value for the time units. Then, with
the Clock Options window, (see Figure 7.5) accessed by selecting Options ä Clock
Options... from the Simulation window (Figure 7.3), you can assign time units to be
used for the simulation clock.

Figure 7.5. The Clock Control Panel

If you select time units for the simulation of seconds and an inter-arrival time dis-
tribution for some random variable on a Sampler has time units of minutes, then the
simulation will automatically perform the conversion in the sampling.

FormulaDistribution
QSIM provides a general function writing capability with the FormulaDistribution
selection, shown in the list box in Figure 7.1. After you select it and then click the
Parameters button, a Formula Manager window (as shown in Figure 5.1 on page 55)
is displayed. From this window, you can write a function that returns a number that
is used as the sample. For example, suppose you wanted a mixture distribution with
density function

f(x) = .5f1(x) + .5f2(x)

DataSource � 75

where f1(x) is exponential with parameter λ, and f2(x) is uniform. Figure 7.6 shows
a portion of the four windows needed to express this.

Figure 7.6. An Example of a Mixture Distribution

The bottom window is the FormulaDistribution Formula window, and it contains the

conditional element . Editing this element provides you with the capability

to specify the condition . If the condition evaluates to TRUE, it

returns the formula in the True Expression window , which is the appropriate
exponential random variable; if it evaluates to FALSE, it returns the formula in the

False Expression window , which is the uniform random variable.

DataSource
You have another opportunity to customize the source of variation with the
DataSource selection shown in Figure 7.1. With this choice, you can select a SAS
data set and a numeric variable. Whenever a sample is needed, an observation is
read from the data set and the value of the selected variable is used as the sample
value. You choose the data set by clicking the Parameters button, which displays
the DataSource Control window in Figure 7.7.

76 � Chapter 7. Random and Exogenous Variation in the Model

Figure 7.7. The DataSource Control

Suppose that you had executed the following DATA step, which sampled 10,000 ob-
servations from the mixture distribution with density function

f(x) = .5f1(x) + .5f2(x)

where f1(x) is exponential with parameter 1 and f2(x) is uniform.

data mixture;
keep sample;
do i = 1 to 10000;

if ranuni(123456789) < .5 then
sample = ranexp(98765432);

else sample = ranuni(54321678);
output;
end;

Then, the selections highlighted in Figure 7.7 would result in the sample being used.
Note that the simulation may require more than 10,000 observations of the random
variable with this mixture density. In this case, the DataSource will rewind the data
set to the beginning and reuse the sample. If this feature is not accounted for, it could
result in some unexpected and incorrect estimates of performance measures.

Chapter 8
Saving and Restoring

Chapter Contents

MODELS . 79

PALETTES . 80

GRAPHS . 82

SAMPLE PATHS . 82
The Component Dictionary Data Set . 82
Component State Sample Paths . 83
Transaction Sample Paths . 83

78

Chapter 8
Saving and Restoring

There are several ways to save information about the simulation. You can save a
picture of the model as a SAS Graph object, save the sample path of a simulation,
and save a representation of the simulation model or a piece of the model. Each of
these saved representations can be reused, each in its own special way.

Figure 8.1. The Save As Selection on the Simulation Window

Figure 8.1 shows the pull-down menu on the Simulation window from which you
choose whether you want to save a graph or a model.

Models
A model of the simulation includes the values of all parameters and settings, and
the logical and physical structure of the model. It does not include information on
transactions in service or those waiting for service, nor does it include information on
which windows and panels are open. When you select Model... from the pull-down
menu in Figure 8.1, the Save Model window in Figure 8.2 opens. The model is saved
in a SAS data set whose name you enter in the Save Model window. You can restore
a model by selecting Open... from the pull-down menu in Figure 8.1.

Figure 8.2. Save the Simulation Model

80 � Chapter 8. Saving and Restoring

Since a model is saved in a SAS data set, it is possible to edit the model. However,
this should not be done since it will result in errors when reading the model back into
the simulation.

Palettes
The palette contains the default components that are discussed in Chapter 3,
“Building a Model with Elementary Components,” and any compound components
that you have assembled and added. As discussed above, these are dragged and
dropped into the Simulation window when building simulation models. There are
several features for manipulating and maintaining palettes.

Figure 8.3. The Simulation File Pull-down Menu

Figure 8.3 shows the File ä New Palette... pull-down menu on the Simulation win-
dow. This will open a new palette. You can have multiple palettes open at any time.
The File ä Clear Palette pull-down menu on the palette, shown in Figure 8.4, emp-
ties the palette of all components. This enables you to bring up a new palette, clear
it, and add whatever components you have built to it. You have created a customized
palette.

Figure 8.4. The Palette File Pull-down Menu

The palette File pull-down menu also has an Open... and Save.... With these selec-
tions, you can save all the templates in a palette into a SAS data set which can then,
in another invocation of the QSIM Application, be opened and loaded into a palette.

Palettes � 81

Figure 8.5. Save Palette Window

In Figure 8.5, the palette is saved into a data set named SASUSER.BASE.

Figure 8.6. Load Palettes Window

In Figure 8.6, SASUSER and BASE are selected so that when the Ok button
is pushed, the palette will be populated with the templates that were saved in
SASUSER.BASE.

82 � Chapter 8. Saving and Restoring

Graphs
A graph is a visual representation of the model. There is no structural information
about the model saved in the graph of the model. When you select Graph... from the
pull-down menu in Figure 8.1, the Save Graph window opens.

Figure 8.7. Save the Graph of the Simulation

In this window you enter the name of the entry in a catalog into which the graph
representation is stored as a SAS/GRAPH grseg.

Sample Paths
There are two ways of accumulating sample path data. One is from the perspective
of the components, and the other is from the perspective of the transactions. Each
of these stores the sampled data in a SAS data set that can be analyzed by your
own programs. One relies on another SAS data set named DICT, which contains a
dictionary for tying together components and unique component IDs.

Unlike the other pieces that are saved (models, templates, and graphs), the sample
paths cannot be reconstituted by the QSIM application or by other applications or
procedures within the SAS System. However, this information can be useful in user-
written SAS programs to further analyze these data.

The Component Dictionary Data Set

The component dictionary data set is always in WORK.DICT. It has two variables,
CMPONENT and ID. Figure 8.8 shows a printout of the data set for a simple M/M/1
model.

Figure 8.8. An M/M/1 Example Dictionary Data Set

The value of the CMPONENT variable will be whatever label is associated with the
component. Note that only elementary components will appear in this data set.

Transaction Sample Paths � 83

Component State Sample Paths

The component state information is saved in the data set WORK.SAMPLE. For each
change of state in the simulation, a new observation is added. This data set contains
three variables: TIMENOW, the simulation time when the state change occurred; ID,
the id of the component that is changing state; and STATE, the value of the new state.
Figure 8.9 shows an example. Notice that the ID corresponds to either the server or
the queue as given in the dictionary in Figure 8.8.

Figure 8.9. An M/M/1 Component State Sample Path Data Set

Sample path data are not saved to WORK.SAMPLE until the Collect Data check box
in the Simulation control panel (see Figure 2.5 on page 12) is selected.

Transaction Sample Paths

The state information on the components in a transaction’s sample path can be saved
to a data set in a Bucket. Figure 9.8 shows the Collect Data check box, which must
be set to start saving data on the transactions arriving to that Bucket. These data are
placed in a data set named for the number of the Bucket. You can see and change the
default name in the Bucket control panel.

Figure 8.10. An M/M/1 Transaction State Sample Path Data Set

84

Chapter 9
Analyzing the Sample Path

Chapter Contents

RUNNING A SIMULATION . 88

STATISTICS ON COMPONENT STATE 89
Queue Length . 89
Server Utilization . 93
DATA Step Program for Extracting Information 96

STATISTICS ON TRANSACTION STATE 97
Time in the System . 97

86

Chapter 9
Analyzing the Sample Path

The QSIM application provides some built-in analysis capabilities. You can obtain
sample means, variance estimates, and other simple statistics on several measures
of performance, including time spent in system components and resource utilization.
You can also display simple line plots, histograms, and box plots to dynamically
observe system behavior.

An additional feature is the ability to accumulate the sample paths in SAS data sets.
See Chapter 8, “Saving and Restoring,” for more information. With these data in
data sets, you can write your own programs to do more sophisticated analysis.

When calculating statistics, QSIM uses the following measures of system perfor-
mance:

• number in a queue

• time in a queue

• number of multiple-servers busy

• server utilization

• time in service

• time in the system

In addition, statistics can be calculated on samples of random variables, which are
user-defined attributes.

To illustrate some of the analysis features, this chapter uses the multiple-server,
single-input queueing model shown in Figure 9.1.

Figure 9.1. A Single Queue 3-Server Model

The inter-arrival time distribution is E(.33) and the service time distribution for each
server is E(1). Transactions queue in a FIFO discipline and go to the first available
server. This corresponds to the type of queueing that you encounter at check-in at
many airports.

88 � Chapter 9. Analyzing the Sample Path

Running a Simulation
Suppose that you have built the model in Figure 9.1. You start and stop this simulation

using the button on the command panel in the simulation window. The button
starts the simulation by sending a start message to each of the components in the

model. Similarly, the button stops the simulation.

Figure 9.2. The Command Panel and Buttons

Also note that the button stops and resets the simulation by sending the reset
message to each component. But first it stops the simulation, resets the simulation
clock, and removes all pending actions. For example, all queues are emptied and
transactions in service are discarded.

The button toggles animation on and off. Animation is one effective way to
validate a model. You simply turn animation on and observe the simulation behav-
ior. In addition, you can add Triggers and StringHolders to display and print state
information to help you with model validation.

Another way to control the simulation is with the Component Control Panel as shown
in Figure 9.3.

Figure 9.3. The Component Control Panel

Queue Length � 89

Notice the buttons on the right side of the control panel. When any of these buttons
are clicked, a message is sent to each of the selected components. For example, you
can select a component from the Components list box and start it only by clicking the
Start button. It sends the start message to the selected component. This is typically
not the way to start the simulation since not all components will be started, but it is
the typical way to analyze component performance with the Analyze button.

Statistics on Component State
The queues and servers are two component types for which performance measures
are typically of interest. For queues you want to know the distribution on queue
length, and for servers you want to know about server utilization. Other performance
measures that may be of interest are time in the queue and time in service. These are
discussed in the section “Statistics on Transaction State” on page 97.

There are two ways you can obtain statistics on queue length and server utilization.
One way uses the chart components and the other uses the Simulation control panel
shown in Figure 9.3. When the data collection status is “On” in this control panel,
all changes of state are recorded to a SAS data set. These data can be summarized
through the Simulation Control Panel and through the Analyze button.

Queue Length

The QSIM Application will generate and execute SAS code that calculates summary
statistics on the length of a queue. When you want to start collecting the sample
data, you select the On radio button in the Simulation control panel. This starts data
collection. When you are ready to generate sample statistics, select the component
for which you want the statistics and then click the Analyze button. For example, you
display data on the queue length on the single-queue multiple-server model in Figure
9.1 by selecting FIFOQueue 1 in the Simulation Control panel and then by pressing
Analyze.

90 � Chapter 9. Analyzing the Sample Path

Figure 9.4. Statistics on Queue Length

This generates the report shown in Figure 9.4 in the SAS Output Window. Figure 9.4
shows that the sample mean queue length is approximately 45.90 and that the sample
variance is approximately 2.04.

The Analyze button also opens a graphics window with the histogram on the queue
length as shown in Figure 9.5. This shows the sample distribution of queue length for
the complete sample path that was collected from the time the Collect Data check
box is selected until the time the Analyze button is selected.

Queue Length � 91

Figure 9.5. Queue Length Histogram

It is important to note that the observations in the sample path are not independent.
There can be a significant amount of autocorrelation in the observations of queue
length.

92 � Chapter 9. Analyzing the Sample Path

Another way to get Queue Length Statistics

Another way you can obtain statistics on queue length and server utilization is by
using the chart components. You take the queue that you want to monitor and drag it
into one of the chart components, the VHistogram for example. When you drop the
queue, a control panel will open from which you can select the attribute of the com-
ponent that you want sampled and the distribution to control sampling. Figure 9.6
shows an example. Here the size is selected to be monitored, and the component is
to be sampled with a deterministic inter-sample time of one time unit. This is the de-
fault sampling distribution. This is different than using the Simulation control panel
because in that case all state changes are captured, when using a chart component the
queue state is sampled.

Figure 9.6. Sample Component State Control Panel

This control panel is opened when the queue labeled “ID: 1” in Figure 3.17 on page
43 is dropped on the histogram.

Figure 9.7. Vertical Histogram of the FIFO Queue length

Figure 3.17 also shows the histogram control panel. Notice that the control panel
shows the simple statistics: minimum, maximum, mean, and standard deviation. Also

Server Utilization � 93

note that when a component is dropped on a chart, a bucket is automatically associ-
ated with the chart component. The bucket is where the sample is collected. The
controls for this implicit bucket can be viewed by clicking the Bin Controls button
in the Histogram Controls window. This opens the control panel for the bucket as
shown in Figure 3.15 on page 42.

Figure 9.8. Bucket Control Panel

You can display more detailed statistics on queue length using SAS data sets. The
“Data Collection” section in the Bucket control panel shows a data collection Status
check box. If this is selected, then data on the component state changes are routed to
the SAS data set named WORK.BCKT–1. If sample data have been collected for a
time, then clicking the Analyze button will generate a univariate analysis performed
by the UNIVARIATE procedure and a histogram.

Server Utilization

The utilization of a server is another measure of system performance that is often of
interest. Estimates on the probability that a server is busy is one statistic for mea-
suring utilization. If after collecting data using the Collect Data check box on the
Simulation Control panel, you select a server from the components list box and click
the Analyze button, you get a printout similar to that shown in Figure 9.9.

94 � Chapter 9. Analyzing the Sample Path

Figure 9.9. Statistics on Server Utilization

The mean shown is approximately .77. This is an estimate of the probability that the
server is busy.

Server Utilization � 95

Figure 9.10. Server Utilization

The pie chart in Figure 9.10 shows the percent of time that the server is busy.

Another way to get Server Utilization Statistics

Another way to view server utilization statistics is with a chart component. One
component that can be used is the VHistogram. Figure 9.11 shows a VHistogram
and a Histogram control panel. This histogram had an MServer dropped on it and is
monitoring the number of busy servers.

Figure 9.11. Histogram of Server Utilization

96 � Chapter 9. Analyzing the Sample Path

DATA Step Program for Extracting Information

When you click the Analyze button in the Simulation control panel (see Figure 9.3),
the QSIM Application executes SAS code to extract and summarize the sample path
saved in the WORK.SAMPLE data set. You can write a SAS program to extract and
analyze these data. For example, suppose you want to subset the data on the time
the queue is in each state. The following DATA step subsets WORK.SAMPLE with
those observations that have state information on queue with ID 5:

data subset;
set sample;
if id=5;
keep timenow number time;
label number="Queue Length";
time = (timenow - lag(timenow));
number = lag(state);

run;

The resulting data set has three variables: TIMENOW for the time that the state
changes, NUMBER for the number in the queue, and TIME for the length of time in
that state. The following SAS code executes the UNIVARIATE procedure to produce
summary statistics and the GCHART procedure to produce a histogram as shown in
Figure 9.5.

proc univariate data=subset;
weight time;
var number;

run;

proc gchart;
label = "Time in Queue";
vbar number / subvar=time discrete;

run;

A similar SAS program subsets the data on server utilization and produces the output
in Figure 9.10 and Figure 9.9.

data subset;
set sample;
if id=4;
keep timenow number time;
label number="Utilization";
time = (timenow - lag(timenow));
number = lag(state);

run;

proc univariate data=subset;
weight time;
var busy;

run;

Time in the System � 97

proc gchart;
pie busy / sumvar=time discrete percent=outside;

run;

Statistics on Transaction State
As a transaction goes through the simulation, it maintains a history of the time spent
at various components. When a transaction arrives at a Bucket, it can save any of
its attributes. The name of the data set is derived from the number of buckets in the
model and is displayed in the Bucket control panel as shown in Figure 3.15 on page
42.

Time in the System

By default, the Bucket component accumulates the age or system time of the trans-
actions arriving to it. However, it can accumulate any attribute of the transaction,
including user-defined attributes. The Bucket control panel has a check box which,
when set, records the attribute values in the SAS data set. Figure 3.15 on page 42
shows such a control panel. If a simulation has been executing and the Collect Data
check box has been set, then you can click the Analyze button to submit SAS code
that calculates statistics on the sample.

Univariate statistics are calculated and histograms are printed for the attribute named
in the Bucket control panel.

Figure 9.12. A Histogram Showing Time in the Queue

The control panel for the VHistogram maintains statistics on the sample in the Bucket
and displays them as shown in Figure 9.12.

98

Chapter 10
Selected Examples

Chapter Contents

QUEUES WITH RENEGING . 101

SCANNING A QUEUE . 103

PRIORITY QUEUES . 103

BATCH ARRIVALS I . 105

BATCH ARRIVALS II . 106

NONHOMOGENEOUS POISSON PROCESSES 106

MARKOV-MODULATED POISSON ARRIVALS 108

STATE-DEPENDENT SERVICE . 109

SERVERS THAT BREAK DOWN I . 110

SERVERS THAT BREAK DOWN II . 111

BATCH SERVICE I . 112

BATCH SERVICE II . 113

BATCH SERVICE III . 114

ASSEMBLY . 115

SERVERS AS RESOURCES I . 116

SERVERS AS RESOURCES II . 117

SPECIAL ROUTING . 118

100

Chapter 10
Selected Examples

This chapter shows examples of several common modeling structures. These mod-
els address such subjects as queues with reneging, priority queues, batch arrivals, and
servers that break down. The examples are meant only to show how you would model
these typical situations using the QSIM Application. They are not meant to show how
you would analyze these models to evaluate them or identify optimal parameteriza-
tions.

Queues with Reneging
When a customer arrives at a facility that includes queues and service, they may
choose to enter a queue, if there is room, or leave the facility. Once in a queue, they
may choose to leave it if they have waited too long. Not entering a queue and leaving
a queue are two types of reneging. This example shows how to model some typical
queues with reneging.

The model in Figure 10.1 shows a single queue for three servers. It models the
M/M/c/K system where c = 3 and K = 50. This system has Poisson arrivals to
a single queue with a capacity of K transactions for service by c parallel servers.
Another way to model this system is with the MServer, as shown in Figure 10.1.

Figure 10.1. An M/M/c/K Model

This model is often compared to one with c parallel queues and servers, as shown
in Figure 10.2.

102 � Chapter 10. Selected Examples

Figure 10.2. A 3-Queue 3-Server Model

In this model, the Switch component directs the transaction to one of the three queues.
In this case, the transaction is routed to the shortest length queue. This is accom-
plished with two formulas tied to the switch. A model for this is shown in Figure
3.11 on page 34.

Another variant on the parallel server models in Figure 10.1 and Figure 10.2 has
customers entering a queue and, if they have waited for too long, deciding to switch
to another queue. This decision-making and queue-switching policy is more complex,
but it can be modeled as shown in Figure 10.3.

Figure 10.3. A 2-Queue 2-Server Model with Reneging

In this model, upon arrival, the transaction is assigned an attribute named “priority,”
whose value is the current simulation time. This is done in the Modifier component
labeled “priority.” Next, the transaction goes to a Switch, which compares the two
queues and sends the transaction down the path leading to the shorter of the two
queues. Next, the transaction encounters a Trigger, which schedules the transaction
to balk when it has spent a given amount of time in the queue. The default is a random
variable with exponential distribution with mean 1. When a transaction balks, it goes

Priority Queues � 103

into another Switch, which checks whether the other queue is shorter. If it is, the
transaction is routed to the Connector a and goes to the end of the other queue.
Otherwise, the transaction goes back into the queue after scheduling, in the Trigger,
another future check.

Scanning a Queue
In the preceding example, transactions balked from a queue at a time scheduled, by a
trigger, before the transaction entered the queue. Similar behavior can be modeled by
periodically scanning all the transactions in a queue and balking those transactions
that meet some criteria that may be based on the state of the system.

Figure 10.4. Scanning a Queue

Figure 10.4 shows a simple model where the scanning process controls the peri-
odic searching of the queue in the main process. The sampler in the section labeled
“Scanning Process” has deterministic, inter-arrival time distribution so that at fixed
times a transaction gets a formula and goes to the Trigger that starts the scan of the

queue. The formula has where the transaction attribute is random.
Since the trigger is set to the queue in the main process and the filter trigger message,
when the transaction arrives at the Trigger, the queue is scanned and each transaction
whose value of the random attribute is less than .8 is balked.

Priority Queues
Many types of models require that multiple classes of transactions be served by a
single server. For example, two different types of customers arrive at an auto repair
shop. One type needs only minor repairs, and the other type needs more major work.
If one class has priority on getting service, then a priority queue is the appropriate
modeling choice. Figure 10.5 shows one such model having two classes.

104 � Chapter 10. Selected Examples

Figure 10.5. A Priority Queue Example with Two Transaction Classes

The two classes of transactions arrive according to independent Poisson processes
as represented by the two Samplers. Transactions travel to Modifiers that set the
priority to be either a 1 or a 2. They then enter a Priority Queue with the priority level
determining their position in the queue; the higher priority transactions are serviced
before the lower priority transactions. When the transactions finish service, they enter
a Switch that directs them to one of two Buckets as a function of priority class.

The model in Figure 10.5 assumes that if a Class 1 transaction is in service when
a Class 2 transaction arrives, the Class 1 transaction completes service before the
Class 2 transaction starts service ahead of any other Class 1 transactions in the queue.
Figure 10.6 shows how you would modify the model if you wanted to preempt a Class
1 transaction that was in service when a Class 2 transaction arrived.

Figure 10.6. A Priority Queue Example with Two Transaction Classes and
Preemption

For this preemption, you would store the class of the transaction currently in service
in a number holder. This storage is done by the trigger just below the number holder.
Then, when a Class 2 transaction arrives, it causes a check of the class of the transac-
tion in service. If it is Class 1, then it is preempted. Notice that any preempted Class
1 transactions are routed back into the queue.

Batch Arrivals I � 105

Batch Arrivals I
The model in Figure 10.7 shows one way to represent batch arrivals. The compound
component labeled “Arrival Process” has a sampler with the batch inter-arrival time
distribution set. When a transaction arrives in this process, it traverses to the Trigger
labeled “Reset,” which resets the Sampler labeled “Batch Source.”

Figure 10.7. Batch Arrivals

The transaction then goes to the Trigger labeled “Start,” which starts the Batch Source
Sampler. The Batch Source Sampler has a deterministic inter-arrival time distribu-
tion with parameter 0 and capacity c, the batch size. Because of this inter-arrival
time distribution, when the Batch Source Sampler is started by the Start Trigger, the
Batch Source generates c transactions at the current simulation time and sends them
to the queue. This is the batch arrival of transactions.

Notice the LinePlot labeled “Number in the Queue.” The periodic discrete jumps in
queue length show a batch arrival.

106 � Chapter 10. Selected Examples

Batch Arrivals II
Another variant on batch arrivals has batch size as a random variable. A simple
extension to the previous model provides this alternative.

Figure 10.8. Batch Arrivals

Figure 10.8 shows two components added to the model of Figure 10.7: a Modifier la-
beled “capacity” and a Trigger labeled “Set Capacity.” The capacity Modifier samples
a uniform random variable on the interval [0, 30] and sets it in the capacity attribute
on the transaction in the Arrival Process. The Set Capacity Trigger then sets the ca-
pacity of the Batch Source Sampler to that value. Then, the Start Trigger starts the
Batch Source arrivals as before.

Compare the LinePlot labeled “Number in the Queue” in this model to the previous
example. Here, in addition to the timing of the discrete jumps in queue length, the
size of the discrete jumps in queue length is random.

Nonhomogeneous Poisson Processes
In many situations, the arrival rate or service rate is determined by a Poisson process
whose parameter varies as a function of time. For example, if the arrival rate to a
fast food restaurant varies with the time of day and increases to a local maximum
during meal times, you can sample from a nonhomogeneous Poisson process. In the
QSIM Application, there are some limitations to the shape of the rate function that
are allowed. This function must be cyclical and bounded. The software takes the
absolute value of the rate function to guarantee that it is nonnegative.

In this example, shown in Figure 10.9, the model has deterministic arrival rate and
nonhomogeneous Poisson service times.

Nonhomogeneous Poisson Processes � 107

Figure 10.9. Nonhomogeneous Poisson Service

The service rate is 9 + cos(0.001t), where t is the value of the simulation time when
a sample is taken. This rate function is specified via the control panel for the random
variable, as shown in Figure 10.10.

Figure 10.10. Nonhomogeneous Poisson Control Panel

In this window you can set two parameters of the process: the rate function and the
maximum value that the rate function can take. The rate function is specified as
a QSIM formula. When you click the Rate Function button, a Formula Manager
window opens and allows you to specify the function.

Figure 10.11. Rate Function

Figure 10.11 shows the function used in this example. The maximum is needed by the
algorithm that does the sampling. If this is not the correct maximum or the function
specified is not cyclical, then the sample is not from the desired distribution.

When the transactions from this simple model are displayed in the LinePlot as shown
in Figure 10.9, you can see the impact of the cyclical rate function on the transaction
time in the system.

108 � Chapter 10. Selected Examples

Markov-Modulated Poisson Arrivals
A Markov-modulated Poisson Process (MMPP) is a Poisson process that has its pa-
rameter controlled by a Markov process. These arrival processes are typical in com-
munications modeling where time-varying arrival rates capture some of the impor-
tant correlations between inter-arrival times. This example has a Markov-modulated
Poisson process that serves to control the arrival process to a single-queue, single-
server queueing model.

Figure 10.12. Markov-Modulated Poisson Arrivals

Figure 10.12 shows one way to model an MMPP. The process labeled “Markov-
modulated Poisson Process” samples from an MMPP distribution and sets the value
of the parameter lambda, the mean inter-arrival time for an exponential random vari-
able in the Sampler labeled “MMPP Arrivals.” In the upper process, lambda is given
the values 10, .1, and 1, based on the state of a Markov chain. The state is changed in
the Modifier components labeled “state.” Each has a conditional component driven
by an observation of a uniform random variable. So, for a given state, the state is
changed to the next state and the value of lambda is chosen for the MMPP Arrivals
Sampler. The selected lambda is set in the MMPP Arrivals Sampler, and the process
is delayed for an exponential amount of time whose parameter is state dependent.
The transaction then goes to a switch that routes based on the state for the next state
change.

State-Dependent Service � 109

State-Dependent Service
In many situations, the rate of service depends on the type of service being performed.
For example, the time it takes for a teller to service a customer in a bank depends
on the type of service requested. State-dependent service distributions are modeled
similarly to the Markov-modulated Poisson arrivals. Consider the example shown
in Figure 10.13, in which there are multiple classes of transactions to a single queue.

Figure 10.13. State Dependent Service

Figure 10.13 shows this model with the addition of a Modifier to set the exponential
mean service time. When the transaction leaves the queue to begin service, it passes
through a Trigger that sets the parameter for the service time as a function of the class
of transaction that is to receive the service. In addition to the parameter, other models
can change the shape of the service distribution.

110 � Chapter 10. Selected Examples

Servers That Break Down I
You may have a need to model a server that periodically breaks down and is repaired.
For example, a machine on an assembly line may periodically fail. Figure 10.14
shows such a model. The Server component labeled is the server that experiences
down periods when it cannot service transactions.

Figure 10.14. A Server That Breaks Down

The process in the compound component labeled “Breakdown Loop” models the
breakdown behavior. The transaction pool has a capacity of 1 so that, when it is
started, one transaction is generated that cycles through the breakdown loop for the
rest of the simulation. This loop has two delays: Delay 1 models the time when the
server is in operation; Delay 2 models the time when the server is broken. The two
triggers, labeled “Down” and “Up,” stop and start the Server.

Servers That Break Down II � 111

Servers That Break Down II
Another variant of the server breakdown model concerns what happens to the trans-
action that is in service when the breakdown occurs. In the model in Figure 10.14,
even though the server is stopped when it breaks, the transaction in service completes
service. The model in Figure 10.15 adds the preemption of the transaction in service,
which is routed back into the queue.

Figure 10.15. A Server That Breaks Down

By default, the transaction is placed at the end of the FIFO queue. So, if there were
other transactions waiting for service, the preempted transaction would be behind
them. Another variant on this model would place the preempted transaction into the
front of the queue, even though the queue was a FIFO for nonpreempted transactions.
This variant could be accomplished using a priority queue where the transaction pri-
ority is the simulation time at the time the transaction arrived to the queue and the
queue has decreasing priority (see Figure 3.5). See the preceding example on priority
queues.

112 � Chapter 10. Selected Examples

Batch Service I
Suppose that you want to service transactions in a batch where you start service si-
multaneously on all the items in the batch but the individual service times are inde-
pendent and identically distributed. This might occur in a drying process, where you
have arrivals to a drying machine determined by some arrival process. When there
are enough items to fill the batch, the baking of all the items in the batch begins.
However, as each item dries it is removed individually from the drying machine.

Figure 10.16. Batch Service

The model in Figure 10.16 accomplishes this batch service. In this model the
multiple-server is set to the batch size and the Server On compound component turns
the server on if it is empty and there are 10 or more transactions in the FIFOQueue.
The Trigger labeled “Server Off” turns the server off when each transaction leaves
service. When a server is off, all transactions currently in service complete normally,
but the server will not send out messages for additional transactions. As a result, ser-
vice on all transactions in process will complete, but additional arrivals to the system
will queue until there are at least 10 and the server is empty.

Notice the LinePlot labeled “Server Utilization.” It shows the number of transactions
in service over time. It demonstrates graphically the batch service and independent
nature of the service completions.

Batch Service II � 113

Batch Service II
Some situations demand a somewhat different approach to batch service; for example,
consider a washing machine. The machine is started when enough items have arrived
for service to complete the batch. However, unlike the preceding example, all the
items in the batch finish at the same time. The model in Figure 10.17 accomplishes
this.

Figure 10.17. Batch Service

In this model the service distribution in the MServer labeled “Batch Server” is deter-
ministic with a large parameter value, for example, D. The Server labeled “Delay”
provides the actual sample of the service time for the entire batch. The Batch Server
is turned on before the Delay and off after service for the batch is complete. Since
turning the server off does not preempt transactions currently in service, there is an-
other Trigger labeled “Preempt” that preempts all the transactions in the Batch Server.
Since the transactions are preempted, they leave the server through the balk node.

Notice the LinePlot labeled “Server Utilization,” which shows the number of trans-
actions in service over time. It demonstrates graphically the batch service and depen-
dent nature of the service completions.

Because of the modeling technique used here, the service time distribution is the
minimum of D and X , an exponential random variable. If you want the service
time distribution to be X , then use caution in choosing D so that the probability that
X > D is very small and highly unlikely to occur within the number of samples
planned.

114 � Chapter 10. Selected Examples

Batch Service III
Another variant on batch service has the transactions accumulating into a batch ac-
cording to the arrival process and has service scheduled as soon as the first transaction
arrives. Service on the entire batch completes at once.

Figure 10.18. Batch Service

Figure 10.18 shows a model of this batch service. When the first transaction ar-
rives to the Server labeled “Delay,” it initiates the definition of a batch. Any other
transactions that arrive to that server are discarded through the balk node. When the
delay is complete, the Trigger labeled “Preempt Service” terminates service on all the
transactions in the MServer labeled “Batch Server.” As the transactions arrive, they
accumulate in the MServer for batch service. This server has a deterministic service
distribution with a large parameter value, for example, D. Note that because of the
modeling technique used here, the service time distribution is the minimum of D and
X , an exponential random variable. If you want the service time distribution to be
X , then use caution in choosing D so that the probability that X > D is very small
and highly unlikely to occur within the number of samples planned.

Notice the LinePlot labeled “Server Utilization,” which shows the number of transac-
tions in service over time. It demonstrates graphically the accumulation of the batch
and the dependent nature of the service completions.

Assembly � 115

Assembly
In a model of manufacturing systems, there is often assembly of subunits into larger
units. The assembly cannot occur unless all of the subunit pieces are available. An
important component for modeling this behavior is the Adder.

Figure 10.19. Assembly Unit

Figure 10.19 shows the assembly of two subunits into a larger unit. Each subunit line
produces components as modeled by servers 1 and 2. These subunits queue in the
buffers at the end of the subunit assembly lines. When the multiple server is free, it
requests a transaction from the Adder. The Adder requests one transaction from each
of the lines going into it. If there is a transaction available from each of these lines,
then it requests one. When all the transactions have arrived at the Adder, it generates
a new transaction, which is sent down the arc to the multiple server.

116 � Chapter 10. Selected Examples

Servers as Resources I
There are instances in which where the system needs to schedule concurrent service
from multiple servers on a single transaction. In these situations, you can think of
servers as resources that are being utilized by the transactions. For example, in an
auto repair facility, several mechanics (modeled as servers) can work on a single car
(the transaction) at a time. The Splitter is useful for treating servers as resources and
capturing concurrent use of the resources.

Figure 10.20. Servers as Resources

Figure 10.20 shows a simple model with arrivals from two sources, each sending the
transactions into a queue. If the two servers are free and there is a transaction in FIFO
1, then the first transaction inserted into the queue will flow to both the servers and
service will start in each. The service times in each of these is independent (unless
you construct and use a service time distribution that destroys this independence).
When Server 2 becomes free, it requests a transaction. If Server 1 is busy, then the
request can only be honored by a transaction in the FIFO 2 queue. When Server 1
becomes free, it requests a transaction that can only be honored if Server 2 is free and
there is a transaction in FIFO 1.

Servers as Resources II � 117

Servers as Resources II
In the preceding example, the resources (servers) performed service independently
on a transaction. However, there are situations where the resource may be used in a
more controlled way. Suppose there are two parallel lines that each require the use of
a shared resource (a crane, for example).

Figure 10.21. Servers as Resources

Figure 10.21 shows such a model. As in the last example, the Splitter is used to
capture the shared use of the resources by a transaction. In addition, there is a Trigger
after each of the servers in the parallel lines. These triggers release the transaction
from service in any other servers. Therefore, the time the transaction uses the Crane
is the minimum of the time scheduled for Crane use and the line service time. In
particular, if the service time in Server 1 is X and the service time specified for the
Crane is Y , then the service time that the transaction actually receives in the Crane is
min(X, Y). This occurs because either the transaction finishes with the Crane before
it is done with service in Server 1 (or Server 2) or it finishes with service in Server
1 (or Server 2) before the Crane service is completed. In this case, Trigger 1 (or
Trigger 2) sends the “RemoveFromServers” messages (see Figure 4.2 on page 52),
which removes that transaction from any servers in which it may be receiving service.
In this case, the transaction can be explicitly removed from service by the Crane.

118 � Chapter 10. Selected Examples

Special Routing
There are other ways that independent streams can share resources. One is illustrated
in Figure 10.22.

Figure 10.22. Special Routing

Here the Modifiers labeled “routeToId” set the attribute “routeToId” to the id of
“FIFO 1” or “FIFO 2.” When the transaction finishes with the service of the “Crane”
and traverses to the Trigger labeled “routeToId,” it is routed to the component whose
id is in its attribute “routeToId.” This is another way that transactions can be routed
through the network.

Appendix A
References

Bratley, P., Fox, B.L., and Schrage, L.E. (1983), A Guide to Simulation, New York:
Springer-Verlag.

Fischer, W. and Meier-Hellstern K. (1992), “The Markov-modulated Poisson process
(MMPP) cookbook,” Performance Evaluation, 18, 149-171.

Fishman, G.S. (1978), Principles of Discrete Event Simulation, New York: John
Wiley & Sons.

Gross, D. and Harris, C.M. (1985), Fundamentals of Queueing Theory, Second
Edition, New York: John Wiley & Sons.

Kleijnen, J.P.C. (1987), Statistical Tools for Simulation Practitioners, New York:
Marcel Dekker, Inc.

Kleijnen, J.P.C. (1974), Statistical Techniques in Simulation - Part I, New York:
Marcel Dekker, Inc.

Kleijnen, J.P.C. (1975), Statistical Techniques in Simulation - Part II, New York:
Marcel Dekker, Inc.

Law, A.M. and Kelton, W.E. (1982), Simulation Modeling and Analysis, New York:
McGraw-Hill Book Company.

Rubinstein, R.Y. (1981), Simulation and the Monte Carlo Method, New York: John
Wiley & Sons.

120

Index

Default
+(plus sign), add transaction attribute, 40
-(minus sign), subtract transaction attribute, 40

A
Adder, 36, 51, 115
Analyze, 93, 97
analyze data, 42
animation, 51
arcs, 10, 46

segmented, 47
are you busy message, 19
arrivals

batch, 105, 106
attributes, 31, 32, 51, 55

B
balk, 27
Balk node, 23, 33, 35
Box Plot, 41, 42
Bucket, 42, 83, 97
Bucket Control Panel, 93
buffer, 25
busy, 24

C
capacity, 21, 27
chart components, 92
check box

Collect Data, 97
Clear Palette, 80
clearSetFromAttribute, 40, 41
Collect Data, 93, 97
command buttons, 11
command panel, 11
Component Control Panel, 88
component dictionary data set, 82
component id, 82
component state sample path, 83, 89
compound components, 61

controlling exposure, 63
editing, 66
pop-up menu, 62

connecting components, 46
Connector, 45, 103
control panel

Box Plot, 43
Bucket, 42, 93
Component, 88

Compound Component, 65
DataSource, 76
Exponential Control Panel, 73
Histogram, 43
Line Plot, 44
MModifier, 32
Modifier, 31
MServer, 23
MTrigger, 30
NumberHolder, 38
Priority Queue, 26
Sampler, 21, 71
Simulation, 93
Switch, 34
Trigger, 28, 39

controls, 40, 41
currentValue, 40, 41

D
data collection, 42, 52
DataSource Control window, 75
DataSource Distribution, 75
decrement, 40
Deterministic Distribution, 72
distribution, 29, 71

DataSource, 75
Deterministic, 72
Erlang, 72
Exponential, 72
Formula, 74
Gamma, 72
IUniform, 72
Markov-modulated Poisson, 108
Mixture, 75
Nonhomogeneous Poisson, 72, 106
Uniform, 72

E
Edit, 66
elementary components, 19

Box Plot, 42
Bucket, 42
Connector, 45
FIFO Queue, 25
Histogram, 43
Holders, 37
Label, 45
LIFO Queue, 25
Line Plot, 44

122 � Index

Logic Components, 28
MModifier, 32
Modifier, 31
MServer, 22
MTrigger, 30
NumberHolder, 38
Port, 45
Priority Queue, 25
Router, 35
Sampler, 20
Server, 22
Splitter, 37
StringHolder, 40
Switch, 33
Transaction Pool, 20
Trigger, 28

empty, 27
Erlang Distribution, 72
Exponential Distribution, 72
Expose/Hide Details, 19

F
FIFO Queue, 25
filter, 27
filterOne, 27
Formula Distribution, 74
Formula Manager, 55
Formula Manager Window, 34, 55, 107
formulas, 55

G
Gamma Distribution, 72
graphs, 82

H
Histogram, 41
histogram

queue length, 91
time in queue, 97

Holders, 37

I
id, 21, 24, 27, 29, 30, 32, 33, 35–37, 40, 41
images, 51
insert, 27
IUniform Distribution, 72

L
Label, 45
LIFO Queue, 25
Line Plot, 41, 44
logic

Adder, 36
MModifier, 32
Modifier, 31
MTrigger, 30
NumberHolder, 39
Queue components, 26
Router, 35

Server components, 23
Source components, 21
StringHolder, 40
Switch, 34
Trigger, 29

Logic Components, 28

M
M/M/1 Queue, 13
M/M/c/K, 101
Markov-modulated Poisson Process, 108
MModifier, 32
model, 79

assembly, 115
batch arrivals, 105, 106
batch service, 112–114
queue with reneging, 101, 103
routing, 118
scanning a queue, 103
servers as resources, 116–118
service break down, 110, 111
state-dependent service, 109

Modifier, 31, 51, 55, 102
MServer, 22, 71
MTrigger, 30

N
New Palette, 80
Nonhomogeneous Poisson Distribution, 72
Nonhomogeneous Poisson Parameter Window, 107
Nonhomogeneous Poisson Process, 106
number in a queue, 87
NumberHolder, 38
NumberHolder Control Panel, 38

O
off, 24
on, 21

P
Palette, 67, 80
palette, 9

component, 9
Formula Manager, 55

pie chart
server utilization, 95

pop-up menu, 10
pop-up menu selections

Assemble Components, 61, 62
Control Panel..., 10, 19
Disassemble Components, 62
Duplicate, 46
Edit, 62, 66
Expose/Hide Details, 10, 19, 62
on arcs, 46
Select Components..., 64
Start, 10
Stop, 10
Toggle Exposure, 64

Index � 123

Tools, 10
Port, 45, 63
preempt, 25
preemptContinue, 25
print, 40, 41
Priority Queue, 25, 102, 103
pull down menus

Clear Palette, 80
New Palette, 80

pull-down menu selections
Graph..., 82
Model..., 79
Open..., 79
Save As, 79

pull-down menus
Clock Options, 74
Seeds..., 73

push button
Analyze, 93, 97

Q
query message, 19

busy, 24
capacity, 21, 27
currentValue, 40, 41
id, 21, 24, 27, 29, 30, 32, 33, 35–37, 40, 41
off, 24
on, 21
releaseType, 27
remaining, 21
size, 21, 27
sizeIs, 24
space, 24, 27
value, 29, 40, 41

queue
priority, 102
reneging, 101, 103
scanning a queue, 103

Queue Components, 25
queue length statistics, 89

R
random variation, 71
releaseOne, 27
releaseType, 27
remaining, 21
removeFromQueues, 53
removeFromServers, 53
removeIt, 25
reset, 22, 25, 27, 29, 31–33, 35–37, 40, 41
reset the simulation, 88
restoring information, 81
Router, 35, 55
routeToId, 53

S
sample path, 82, 87
Sampler, 10, 20, 51, 71

batch arrivals, 105, 106

SAS data set, 42, 52, 93, 96
SAS Graph, 82
Save Graph Window, 82
Save Model Window, 79
saving information, 79

component dictionary data set, 82
component state sample path, 83
graphs, 82
model, 79
Palette, 80, 81
sample path, 82
transaction state sample path, 83

seed values, 73
seize, 25
Select Components..., 64
Server, 71

as resource, 116–118
batch, 112–114
break down, 110, 111
state-dependent service, 109

Server Components, 22
server utilization, 87
server utilization statistics, 93
setCapacity, 22, 25
setDistribution, 25
setFromAttribute, 40, 41
setFromTrigger, 29, 40, 41
setParameter1, 22, 25
setParameter2, 22, 25
Simulation Control Panel, 93
simulation window

pop-up menu, 62
size, 21, 27
sizeIs, 24
Source Components, 20
space, 24, 27
Splitter, 37, 116, 117
start, 22, 25, 27, 29, 31–33, 35–37, 40, 41
start the simulation, 88
state, 89
state change, 19, 28, 30, 33, 35
statistics, 42, 89

queue length, 89
server utilization, 93
time in the system, 97

stop, 22, 25, 27, 29, 31–33, 35–37, 40, 41
stop the simulation, 88
StringHolder, 40
Switch, 33, 55, 56, 102
system performance

queue length, 89
server utilization, 93
time in the system, 97

T
time in a queue, 87
time in service, 87
time in system, 87
time in the system statistics, 97

124 � Index

time units, 74
Toggle Exposure, 64
transaction

attributes, 31, 32, 51
generation, 20
history, 51
timing of arrivals, 53

transaction arrival, 19
Transaction Pool, 20, 51
transaction state sample path, 83
transactions, 51

saving state information, 83
Trigger, 28, 71

delayed trigger event, 29
Trigger Interval, 29
Trigger Value, 29

Trigger Control Pane, 39
trigger message, 19, 52

+(plus sign), 40
-(minus sign), 40
balk, 27
clearFromSetAttribute, 41
clearSetFromAttribute, 40
controls, 40, 41
decrement, 40
empty, 27
filter, 27
filterOne, 27
insert, 27
preempt, 25
preemptContinue, 25
print, 40, 41
releaseOne, 27
removeIt, 25
reset, 22, 25, 27, 29, 31–33, 35–37, 40, 41
seize, 25
setCapacity, 22, 25
setDistribution, 25
setFromAttribute, 40, 41
setFromTrigger, 40, 41
setParameter1, 22, 25
setParameter2, 22, 25
start, 22, 25, 27, 29, 31–33, 35–37, 40, 41
stop, 22, 25, 27, 29, 31–33, 35–37, 40, 41

U
Uniform Distribution, 72
units, 74
User Interface, 8

V
value, 29, 40, 41

W
window

Bucket control panel, 93
Component Control Panel, 88
Compound Node Editor, 66
DataSource Control, 75

Formula Manager, 34, 55, 74, 107
Nonhomogeneous Poisson Parameter, 107
NumberHolder Control Panel, 38
Palette, 67
Save Graph, 82
Save Model, 79
Simulation Control Panel, 93
Trigger Control Panel, 39

Your Turn

We welcome your feedback.
� If you have comments about this book, please send them to yourturn@sas.com.

Include the full title and page numbers (if applicable).
� If you have comments about the software, please send them to suggest@sas.com.

66

SAS® Publishing Delivers!
Whether you are new to the work force or an experienced professional, you need to distinguish yourself in this rapidly
changing and competitive job market. SAS® Publishing provides you with a wide range of resources to help you set
yourself apart. Visit us online at support.sas.com/bookstore.

SAS® Press
Need to learn the basics? Struggling with a programming problem? You’ll find the expert answers that you
need in example-rich books from SAS Press. Written by experienced SAS professionals from around the
world, SAS Press books deliver real-world insights on a broad range of topics for all skill levels.

s u p p o r t . s a s . c o m / s a s p r e s s
SAS® Documentation
To successfully implement applications using SAS software, companies in every industry and on every
continent all turn to the one source for accurate, timely, and reliable information: SAS documentation.
We currently produce the following types of reference documentation to improve your work experience:

•	 Online	help	that	is	built	into	the	software.	
•	 Tutorials	that	are	integrated	into	the	product.	
•	 Reference	documentation	delivered	in	HTML	and	PDF	– free on the Web.
•	 Hard-copy	books.	

s u p p o r t . s a s . c o m / p u b l i s h i n g
SAS® Publishing News
Subscribe to SAS Publishing News to receive up-to-date information about all new SAS titles, author
podcasts, and new Web site features via e-mail. Complete instructions on how to subscribe, as well as
access to past issues, are available at our Web site.

s u p p o r t . s a s . c o m / s p n

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.
Other	brand	and	product	names	are	trademarks	of	their	respective	companies.	©	2009	SAS	Institute	Inc.	All	rights	reserved.	518177_1US.0109

http://support.sas.com/saspress
http://support.sas.com/publishing
http://support.sas.com/LE

	Contents
	Acknowledgments
	What's New in SAS/OR 9.2
	Chapter 1. Introduction
	Purpose
	Accessing the SAS/OR Sample Library
	Online Help System and Updates
	Additional Documentation for SAS/OR Software

	Chapter 2. Getting Started
	Invoking the QSIM Application
	User Interface
	The Command Buttons
	The Component Control Panel

	A Simple M/M/1 Queueing Model
	Queueing
	Service
	Statistics

	Chapter 3. Building a Model with Elementary Components
	Source Components
	Server Components
	Queue Components
	Logic Components
	Trigger Component
	MultiTrigger Component
	Modifier Component
	MultiModifier Component
	Switch Component
	Router Component
	Adder Component
	Splitter Component

	Holder Components
	NumberHolder Components
	StringHolder Components

	Chart Components
	Bucket
	Box Plot
	Histogram
	Line Plot

	Port, Connector, and Label Components
	Connecting Components

	Chapter 4. Transactions
	Attributes
	Trigger Messages
	Timing Transaction Arrivals

	Chapter 5. Formulas
	Chapter 6. Building a Model with Compound Components
	Assembling Components into Compound Components
	Nested Compound Components
	Controlling Subcomponent Exposure

	Editing Components
	Palettes for Reusing Components

	Chapter 7. Random and Exogenous Variation in the Model
	Random Sources of Variation
	Controlling the Seed Values
	Controlling Time Units

	FormulaDistribution
	DataSource

	Chapter 8. Saving and Restoring
	Models
	Palettes
	Graphs
	Sample Paths
	The Component Dictionary Data Set
	Component State Sample Paths
	Transaction Sample Paths

	Chapter 9. Analyzing the Sample Path
	Running a Simulation
	Statistics on Component State
	Queue Length
	Server Utilization
	DATA Step Program for Extracting Information

	Statistics on Transaction State
	Time in the System

	Chapter 10. Selected Examples
	Queues with Reneging
	Scanning a Queue
	Priority Queues
	Batch Arrivals I
	Batch Arrivals II
	Nonhomogeneous Poisson Processes
	Markov-Modulated Poisson Arrivals
	State-Dependent Service
	Servers That Break Down I
	Servers That Break Down II
	Batch Service I
	Batch Service II
	Batch Service III
	Assembly
	Servers as Resources I
	Servers as Resources II
	Special Routing

	Appendix A. References
	Index

