
SAS/OR® 12.3 User’s Guide
Network Optimization
Algorithms

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2013. SAS/OR® 12.3 User’s Guide: Network
Optimization Algorithms. Cary, NC: SAS Institute Inc.

SAS/OR® 12.3 User’s Guide: Network Optimization Algorithms

Copyright © 2013, SAS Institute Inc., Cary, NC, USA

All rights reserved. Produced in the United States of America.

For a hard-copy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or
by any means, electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS
Institute Inc.

For a web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at the time
you acquire this publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the publisher is
illegal and punishable by law. Please purchase only authorized electronic editions and do not participate in or encourage electronic
piracy of copyrighted materials. Your support of others’ rights is appreciated.

U.S. Government Restricted Rights Notice: Use, duplication, or disclosure of this software and related documentation by the
U.S. government is subject to the Agreement with SAS Institute and the restrictions set forth in FAR 52.227-19, Commercial
Computer Software–Restricted Rights (June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.

July 2013

SAS provides a complete selection of books and electronic products to help customers use SAS® software to its fullest potential.
For more information about our e-books, e-learning products, CDs, and hard-copy books, visit support.sas.com/bookstore or
call 1-800-727-3228.

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in
the USA and other countries. ® indicates USA registration.

Other brand and product names are registered trademarks or trademarks of their respective companies.

Contents
Chapter 1. What’s New in SAS/OR 12.1, 12.2, and 12.3 1
Chapter 2. The OPTNET Procedure . 11

Index 131

iv

Credits

Documentation

Writing Matthew Galati

Editing Anne Baxter

Documentation Support Tim Arnold, Melanie Gratton, Daniel Underwood

Technical Review Manoj Chari, Charles B. Kelly, Michelle Opp, Bengt
Pederson, Rob Pratt

Software
PROC OPTNET Matthew Galati

Support Groups

Software Testing Charles B. Kelly, Yu-Min Lin, Minghui Liu, Bengt
Pederson

Technical Support Tonya Chapman

vi

Chapter 1

What’s New in SAS/OR 12.1, 12.2, and 12.3

Contents
Overview . 1

Highlights of Enhancements in SAS/OR 12.3 . 2
Highlights of Enhancements in SAS/OR 12.1 . 2

The CLP Procedure . 3
The DTREE, GANTT, and NETDRAW Procedures . 3
Supporting Technologies for Optimization . 3
PROC OPTMODEL: Nonlinear Optimization . 4
Linear Optimization with PROC OPTMODEL and PROC OPTLP 4
Mixed Integer Linear Optimization with PROC OPTMODEL and PROC OPTMILP 4
The Decomposition Algorithm . 5
Setting the Cutting Plane Strategy . 5
Conflict Search . 6
PROC OPTMILP: Option Tuning . 6
PROC OPTMODEL: The SUBMIT Block . 7
Network Optimization with PROC OPTNET . 7
SAS Simulation Studio 12.1 . 8

Overview
SAS/OR 12.1 delivers a broad range of new capabilities and enhanced features, encompassing optimization,
constraint programming, and discrete-event simulation. SAS/OR 12.1 enhancements significantly improve
performance and expand your tool set for building, analyzing, and solving operations research models.

In previous years, SAS/OR software was updated only with new releases of Base SAS software, but this is no
longer the case. This means that SAS/OR software can be released to customers when enhancements are
ready, and the goal is to update SAS/OR every 12 to 18 months. To mark this newfound independence, the
release numbering scheme for SAS/OR changed starting with SAS/OR 12.1. This new numbering scheme
will be maintained when new versions of Base SAS and SAS/OR are shipped at the same time.

SAS/OR 12.2 is a maintenance release that does not contain any new features. SAS/OR 12.3 is another
maintenance release that includes two new features that are now production, as described in the next section.

2 F Chapter 1: What’s New in SAS/OR 12.1, 12.2, and 12.3

Highlights of Enhancements in SAS/OR 12.3
In SAS/OR 12.3, two important distributed-computing features become production: the option tuner for the
OPTMILP procedure and the nonlinear optimization multistart algorithm for the NLP solver. The option
tuner helps determine the most productive combinations of option settings for the OPTMILP procedure, and
the NLP multistart algorithm is instrumental in addressing nonconvex nonlinear optimization problems.

SAS/OR 12.3 also adds the OPTLSO procedure, which performs parallel hybrid derivative-free optimization
for optimization problems in which any or all of the functions involved can be nonsmooth, discontinuous, or
computationally expensive to evaluate directly. The OPTLSO procedure permits both continuous and integer
decision variables, and can operate in single-machine mode or distributed mode.

NOTE: Distributed mode requires SAS High-Performance Optimization.

Highlights of Enhancements in SAS/OR 12.1
Highlights of the SAS/OR enhancements include the following:

• multithreading is used to improve performance in these three areas:

– PROC OPTMODEL problem generation

– multistart for nonlinear optimization

– option tuning for mixed integer linear optimization

• concurrent solve capability (experimental) for linear programming (LP) and nonlinear programming
(NLP)

• improvements to all simplex LP algorithms and mixed integer linear programming (MILP) solver

• new decomposition (DECOMP) algorithm for LP and MILP

• new option for controlling MILP cutting plane strategy

• new conflict search capability for MILP solver

• option tuning for PROC OPTMILP

• new procedure, PROC OPTNET, for network optimization and analysis

• new SUBMIT block for invoking SAS code within PROC OPTMODEL

• SAS Simulation Studio improvements:

– one-click connection of remote blocks in large models

– autoscrolling for navigating large models

– new search capability for block types and label content

– alternative Experiment window configuration for large experiments

– selective animation capability

– new submodel component (experimental)

The CLP Procedure F 3

The CLP Procedure
In SAS/OR 12.1, the CLP procedure adds two classes of constraints that expand its capabilities and can
accelerate its solution process. The LEXICO statement imposes a lexicographic ordering between pairs of
variable lists. Lexicographic order is essentially analogous to alphabetical order but expands the concept to
include numeric values. One vector (list) of values is lexicographically less than another if the corresponding
elements are equal up to a certain point and immediately after that point the next element of the first vector
is numerically less than the second. Lexicographic ordering can be useful in eliminating certain types of
symmetry that can arise among solutions to constraint satisfaction problems (CSPs). Imposing a lexicographic
ordering eliminates many of the mutually symmetric solutions, reducing the number of permissible solutions
to the problem and in turn shortening the solution process.

Another constraint class that is added to PROC CLP for SAS/OR 12.1 is the bin-packing constraint, imposed
via the PACK statement. A bin-packing constraint directs that a specified number of items must be placed
into a specified number of bins, subject to the capacities (expressed in numbers of items) of the bins. The
PACK statement provides a compact way to express such constraints, which can often be useful components
of larger CSPs or optimization problems.

The DTREE, GANTT, and NETDRAW Procedures
In SAS/OR 12.1 the DTREE, GANTT, and NETDRAW procedures each add procedure-specific graph styles
that control fonts, line colors, bar and node fill colors, and background images.

Supporting Technologies for Optimization
The underlying improvements in optimization in SAS/OR 12.1 are chiefly related to multithreading, which
denotes the use of multiple computational cores to enable computations to be executed in parallel rather than
serially. Multithreading can provide dramatic performance improvements for optimization because these
underlying computations are performed many times in the course of an optimization process.

The underlying linear algebra operations for the linear, quadratic, and nonlinear interior point optimization
algorithms are now multithreaded. The LP, QP, and NLP solvers can be used by PROC OPTMODEL, PROC
OPTLP, and PROC OPTQP in SAS/OR. For nonlinear optimization with PROC OPTMODEL, the evaluation
of nonlinear functions is multithreaded for improved performance.

Finally, the process of creating an optimization model from PROC OPTMODEL statements has been
multithreaded. PROC OPTMODEL contains powerful declarative and programming statements and is adept
at enabling data-driven definition of optimization models, with the result that a rather small section of PROC
OPTMODEL code can create a very large optimization model when it is executed. Multithreading can
dramatically shorten the time that is needed to create an optimization model.

In SAS/OR 12.1 you can use the NTHREADS= option in the PERFORMANCE statement in PROC OPT-
MODEL and other SAS/OR optimization procedures to specify the number of cores to be used. Otherwise,
SAS detects the number of cores available and uses them.

4 F Chapter 1: What’s New in SAS/OR 12.1, 12.2, and 12.3

PROC OPTMODEL: Nonlinear Optimization
The nonlinear optimization solver that PROC OPTMODEL uses builds on the introduction of multithreading
for its two most significant improvements in SAS/OR 12.1. First, in addition to the nonlinear solver
options ALGORITHM=ACTIVESET and ALGORITHM=INTERIORPOINT, SAS/OR 12.1 introduces
the ALGORITHM=CONCURRENT option (experimental), with which you can invoke both the active
set and interior point algorithms for the specified problem, running in parallel on separate threads. The
solution process terminates when either of the algorithms terminates. For repeated solves of a number of
similarly structured problems or simply for problems for which the best algorithm isn’t readily apparent,
ALGORITHM=CONCURRENT should prove useful and illuminating.

Second, multithreading is central to the nonlinear optimization solver’s enhanced multistart capability, which
now takes advantage of multiple threads to execute optimizations from multiple starting points in parallel. The
multistart capability is essential for problems that feature nonconvex nonlinear functions in either or both of
the objective and the constraints because such problems might have multiple locally optimal points. Starting
optimization from several different starting points helps to overcome this difficulty, and multithreading this
process helps to ensure that the overall optimization process runs as fast as possible.

Linear Optimization with PROC OPTMODEL and PROC OPTLP
Extensive improvements to the primal and dual simplex linear optimization algorithms produce better
performance and better integration with the crossover algorithm, which converts solutions that are found
by the interior point algorithm into more usable basic optimal solutions. The crossover algorithm itself has
undergone extensive enhancements that improve its speed and stability.

Paralleling developments in nonlinear optimization, SAS/OR 12.1 linear optimization introduces a concurrent
algorithm, invoked with the ALGORITHM=CONCURRENT option, in the SOLVE WITH LP statement for
PROC OPTMODEL or in the PROC OPTLP statement. The concurrent LP algorithm runs a selection of
linear optimization algorithms in parallel on different threads, with settings to suit the problem at hand. The
optimization process terminates when the first algorithm identifies an optimal solution. As with nonlinear
optimization, the concurrent LP algorithm has the potential to produce significant reductions in the time
needed to solve challenging problems and to provide insights that are useful when you solve a large number
of similarly structured problems.

Mixed Integer Linear Optimization with PROC OPTMODEL and
PROC OPTMILP
Mixed integer linear optimization in SAS/OR 12.1 builds on and extends the advances in linear optimization.
Overall, solver speed has increased by over 50% (on a library of test problems) compared to SAS/OR 9.3. The
branch-and-bound algorithm has approximately doubled its ability to evaluate and solve component linear
optimization problems (which are referred to as nodes in the branch-and-bound tree). These improvements
have significantly reduced solution time for difficult problems.

The Decomposition Algorithm F 5

The Decomposition Algorithm
The most fundamental change to both linear and mixed integer linear optimization in SAS/OR 12.1 is the
addition of the decomposition (DECOMP) algorithm, which is invoked with a specialized set of options in
the SOLVE WITH LP and SOLVE WITH MILP statements for PROC OPTMODEL or in the DECOMP
statement for PROC OPTLP and PROC OPTMILP. For many linear and mixed integer linear optimization
problems, most of the constraints apply only to a small set of decision variables. Typically there are many
such sets of constraints, complemented by a small set of linking constraints that apply to all or most of
the decision variables. Optimization problems with these characteristics are said to have a “block-angular”
structure, because it is easy to arrange the rows of the constraint matrix so that the nonzero values, which
correspond to the local sets of constraints, appear as blocks along the main diagonal.

The DECOMP algorithm exploits this structure, decomposing the overall optimization problem into a set
of component problems that can be solved in parallel on separate computational threads. The algorithm
repeatedly solves these component problems and then cycles back to the overall problem to update key
information that is used the next time the component problems are solved. This process repeats until it
produces a solution to the complete problem, with the linking constraints present. The combination of
parallelized solving of the component problems and the iterative coordination with the solution of the overall
problem can greatly reduce solution time for problems that were formerly regarded as too time-consuming to
solve practically.

To use the DECOMP algorithm, you must either manually or automatically identify the blocks of the
constraint matrix that correspond to component problems. The METHOD= option controls the means by
which blocks are identified. METHOD=USER enables you to specify the blocks yourself, using the .block
suffix to declare blocks. This is by far the most common method of defining blocks. If your problem has a
significant or dominant network structure, you can use METHOD=NETWORK to identify the blocks in the
problem automatically. Finally, if no linking constraints are present in your problem, then METHOD=AUTO
identifies the blocks automatically.

The DECOMP algorithm uses a number of detailed options that specify how the solution processes for the
component problems and the overall problem are configured and how they coordinate with each other. You
can also specify the number of computational threads to make available for processing component problems
and the level of detail in the information to appear in the SAS log. Options specific to the linear and mixed
integer linear solvers that are used by the DECOMP algorithm are largely identical to those for the respective
solvers.

Setting the Cutting Plane Strategy
Cutting planes are a major component of the mixed integer linear optimization solver, accelerating its progress
by removing fractional (not integer feasible) solutions. SAS/OR 12.1 adds the CUTSTRATEGY= option in
the PROC OPTMILP statement and in the SOLVE WITH MILP statement for PROC OPTMODEL, enabling
you to determine the aggressiveness of your overall cutting plane strategy. This option complements the
individual cut class controls (CUTCLQUE=, CUTGOMORY=, CUTMIR=, and so on), with which you can
enable or disable certain cut types, and the ALLCUTS= option, which enables or disables all cutting planes.
In contrast, the CUTSTRATEGY= option controls cuts at a higher level, creating a profile for cutting plane
use. As the cut strategy becomes more aggressive, more effort is directed toward creating cutting planes and

6 F Chapter 1: What’s New in SAS/OR 12.1, 12.2, and 12.3

more cutting planes are applied. The available values of the CUTSTRATEGY= option are AUTOMATIC,
BASIC, MODERATE, and AGGRESSIVE; the default is AUTOMATIC. The precise cutting plane strategy
that corresponds to each of these settings can vary from problem to problem, because the strategy is also
tuned to suit the problem at hand.

Conflict Search
Another means of accelerating the solution process for mixed integer linear optimization takes information
from infeasible linear optimization problems that are encountered during an initial exploratory phase of
the branch-and-bound process. This information is analyzed and ultimately is used to help the branch-and-
bound process avoid combinations of decision variable values that are known to lead to infeasibility. This
approach, known as conflict analysis or conflict search, influences presolve operations on branch-and-bound
nodes, cutting planes, computation of decision variable bounds, and branching. Although the approach is
complex, its application in SAS/OR 12.1 is straightforward. The CONFLICTSEARCH= option in the PROC
OPTMILP statement or the SOLVE WITH MILP statement in PROC OPTMODEL enables you to specify
the level of conflict search to be performed. The available values for the CONFLICTSEARCH= option are
NONE, AUTOMATIC, MODERATE, and AGGRESSIVE. A more aggressive search strategy explores more
branch-and-bound nodes initially before the branch-and-bound algorithm is restarted with information from
infeasible nodes included. The default value is AUTOMATIC, which enables the solver to choose the search
strategy.

PROC OPTMILP: Option Tuning
The final SAS/OR 12.1 improvement to the mixed integer linear optimization solver is option tuning, which
helps you determine the best option settings for PROC OPTMILP. There are many options and settings
available, including controls on the presolve process, branching, heuristics, and cutting planes. The TUNER
statement enables you to investigate the effects of the many possible combinations of option settings on
solver performance and determine which should perform best. The PROBLEMS= option enables you
to submit several problems for tuning at once. The OPTIONMODE= option specifies the options to be
tuned. OPTIONMODE=USER indicates that you will supply a set of options and initial values via the
OPTIONVALUES= data set, OPTIONMODE=AUTO (the default) tunes a small set of predetermined options,
and OPTIONMODE=FULL tunes a much more extensive option set.

Option tuning starts by using an initial set of option values to solve the problem. The problem is solved
repeatedly with different option values, with a local search algorithm to guide the choices. When the tuning
process terminates, the best option values are output to a data set specified by the SUMMARY= option.
You can control the amount of time used by this process by specifying the MAXTIME= option. You can
multithread this process by using the NTHREADS= option in the PERFORMANCE statement for PROC
OPTMILP, permitting analyses of various settings to occur simultaneously.

PROC OPTMODEL: The SUBMIT Block F 7

PROC OPTMODEL: The SUBMIT Block
In SAS/OR 12.1, PROC OPTMODEL adds the ability to execute other SAS code nested inside PROC
OPTMODEL syntax. This code is executed immediately after the preceding PROC OPTMODEL syntax
and before the syntax that follows. Thus you can use the SUBMIT block to, for example, invoke other SAS
procedures to perform analyses, to display results, or for other purposes, as an integral part of the process of
creating and solving an optimization model with PROC OPTMODEL. This addition makes it even easier to
integrate the operation of PROC OPTMODEL with other SAS capabilities.

To create a SUBMIT block, use a SUBMIT statement (which must appear on a line by itself) followed by the
SAS code to be executed, and terminate the SUBMIT block with an ENDSUBMIT statement (which also
must appear on a line by itself). The SUBMIT statement enables you to pass PROC OPTMODEL parameters,
constants, and evaluated expressions to the SAS code as macro variables.

Network Optimization with PROC OPTNET
PROC OPTNET, new in SAS/OR 12.1, provides several algorithms for investigating the characteristics of
networks and solving network-oriented optimization problems. A network, sometimes referred to as a graph,
consists of a set of nodes that are connected by a set of arcs, edges, or links. There are many applications of
network structures in real-world problems, including supply chain analysis, communications, transportation,
and utilities problems. PROC OPTNET addresses the following classes of network problems:

• biconnected components

• maximal cliques

• connected components

• cycle detection

• weighted matching

• minimum-cost network flow

• minimum cut

• minimum spanning tree

• shortest path

• transitive closure

• traveling salesman

PROC OPTNET syntax provides a dedicated statement for each problem class in the preceding list.

The formats of PROC OPTNET input data sets are designed to fit network-structured data, easing the process
of specifying network-oriented problems. The underlying algorithms are highly efficient and can successfully

8 F Chapter 1: What’s New in SAS/OR 12.1, 12.2, and 12.3

address problems of varying levels of detail and scale. PROC OPTNET is a logical destination for users
who are migrating from some of the legacy optimization procedures in SAS/OR. Former users of PROC
NETFLOW can turn to PROC OPTNET to solve shortest-path and minimum-cost network flow problems,
and former users of PROC ASSIGN can instead use the LINEAR_ASSIGNMENT statement in PROC
OPTNET to solve assignment problems.

SAS Simulation Studio 12.1
SAS Simulation Studio 12.1, a component of SAS/OR 12.1 for Windows environments, adds several features
that improve your ability to build, explore, and work with large, complex discrete-event simulation models.
Large models present a number of challenges to a graphical user interface such as that of SAS Simulation
Studio. Connection of model components, navigation within a model, identification of objects or areas of
interest, and management of different levels of modeling are all tasks that can become more difficult as the
model size grows significantly beyond what can be displayed on one screen. An indirect effect of model
growth is an increased number of factors and responses that are needed to parameterize and investigate the
performance of the system being modeled.

Improvements in SAS Simulation Studio 12.1 address each of these issues. In SAS Simulation Studio, you
connect blocks by dragging the cursor to create links between output and input ports on regular blocks and
Connector blocks. SAS Simulation Studio 12.1 automatically scrolls the display of the Model window as
you drag the link that is being created from its origin to its destination, thus enabling you to create a link
between two blocks that are located far apart (additionally you can connect any two blocks by clicking on
the OutEntity port of the first block and then clicking on the InEntity port of the second block). Automatic
scrolling also enables you to navigate a large model more easily. To move to a new area in the Model window,
you can simply hold down the left mouse button and drag the visible region of the model to the desired area.
This works for simple navigation and for moving a block to a new, remote location in the model.

SAS Simulation Studio 12.1 also enables you to search among the blocks in a model and identify the blocks
that have a specified type, a certain character string in their label, or both. From the listing of identified
blocks, you can open the Properties dialog box for each identified block and edit its settings. Thus, if you
can identify a set of blocks that need similar updates, then you can make these updates without manually
searching through the model for qualifying blocks and editing them individually. For very large models, this
capability not only makes the update process easier but also makes it more thorough because you can identify
qualifying blocks centrally.

When you design experiments for large simulation models, you often need a large number of factors to
parameterize the model and a large number of responses to track system performance in sufficient detail.
This was a challenge prior to SAS Simulation Studio 12.1 because the Experiment window displayed factors
and responses in the header row of a table, with design points and their replications’ results displayed in the
rows below. A very large number of factors and responses did not fit on one screen in this display scheme,
and you had to scroll across the Experiment window to view all of them.

SAS Simulation Studio 12.1 provides you with two alternative configurations for the Experiment window.
The Design Matrix tab presents the tabular layout described earlier. The Design Point tab presents each
design point in its own display. Factors and responses (summarized over replications) are displayed in
separate tables, each with the factor or response names appearing in one column and the respective values in
a second column. This layout enables a large number of factors and responses to be displayed. Response
values for each replication of the design point can be displayed in a separate window.

SAS Simulation Studio 12.1 F 9

SAS Simulation Studio 12.1 enhances its multilevel model management features by introducing the submodel
component (experimental). Like the compound block, the submodel encapsulates a group of SAS Simulation
Studio blocks and their connections, but the submodel outpaces the compound block in some important ways.
The submodel, when expanded, opens in its own window. This means a submodel in its collapsed form
can be placed close to other blocks in the Model window without requiring space for its expanded form (as
is needed for compound blocks). The most important property of the submodel is its ability to be copied
and instantiated in several locations simultaneously, whether in the same model, in different models in the
same project, or in different projects. Each such instance is a direct reference to the original submodel, not a
disconnected copy. Thus you can edit the submodel by editing any of its instances; changes that are made to
any instance are propagated to all current and future instances of the submodel. This feature enables you to
maintain consistency across your models and projects.

Finally, SAS Simulation Studio 12.1 introduces powerful new animation controls that should prove highly
useful in debugging simulation models. In the past, animation could be switched on or off and its speed
controlled, but these choices were made for the entire model. If you needed to animate a particular segment
of the model, perhaps during a specific time span for the simulation clock, you had to focus your attention
on that area and pay special attention when the time period of interest arrived. In SAS Simulation Studio
12.1 you can select both the area of the model to animate (by selecting a block or a compound block) and the
time period over which animation should occur (by specifying the start and end times for animation). You
can also control simulation speed for each such selection. Multiple selections are supported so that you can
choose to animate several areas of the model, each during its defined time period and at its chosen speed.

10

Chapter 2

The OPTNET Procedure

Contents
Overview: OPTNET Procedure . 12
Getting Started: OPTNET Procedure . 12

Road Network Shortest Path . 13
Syntax: OPTNET Procedure . 16

Functional Summary . 17
PROC OPTNET Statement . 21
BICONCOMP Statement . 23
CLIQUE Statement . 24
CONCOMP Statement . 24
CYCLE Statement . 25
DATA_ADJ_MATRIX_VAR Statement . 27
DATA_LINKS_VAR Statement . 27
DATA_MATRIX_VAR Statement . 28
DATA_NODES_VAR Statement . 28
LINEAR_ASSIGNMENT Statement . 29
MINCOSTFLOW Statement . 30
MINCUT Statement (Experimental) . 31
MINSPANTREE Statement . 31
SHORTPATH Statement . 32
TRANSITIVE_CLOSURE Statement . 34
TSP Statement . 34

Details: OPTNET Procedure . 39
Graph Input Data . 39
Matrix Input Data . 46
Biconnected Components and Articulation Points . 47
Clique . 51
Connected Components . 54
Cycle . 59
Linear Assignment (Matching) . 65
Minimum Cut . 66
Minimum Spanning Tree . 70
Minimum-Cost Network Flow . 73
Shortest Path . 77
Transitive Closure . 89
Traveling Salesman Problem . 91
Macro Variable _OROPTNET_ . 96

12 F Chapter 2: The OPTNET Procedure

Examples: OPTNET Procedure . 104
Example 2.1: Articulation Points in a Terrorist Network 104
Example 2.2: Cycle Detection for Kidney Donor Exchange 107
Example 2.3: Linear Assignment Problem for Minimizing Swim Times 112
Example 2.4: Linear Assignment Problem, Sparse Format versus Dense Format . . . 114
Example 2.5: Minimum Spanning Tree for Computer Network Topology 118
Example 2.6: Transitive Closure for Identification of Circular Dependencies in a Bug

Tracking System . 119
Example 2.7: Traveling Salesman Tour through US Capital Cities 122

References . 129

Overview: OPTNET Procedure
The OPTNET procedure includes a number of graph theory, combinatorial optimization, and network analysis
algorithms. The algorithm classes are listed in Table 2.1.

Table 2.1 Algorithm Classes in PROC OPTNET

Algorithm Class PROC OPTNET Statement
Biconnected components BICONCOMP
Maximal cliques CLIQUE
Connected components CONCOMP
Cycle detection CYCLE
Weighted matching LINEAR_ASSIGNMENT
Minimum-cost network flow MINCOSTFLOW
Minimum cut (experimental) MINCUT
Minimum spanning tree MINSPANTREE
Shortest path SHORTPATH
Transitive closure TRANSITIVE_CLOSURE
Traveling salesman TSP

The OPTNET procedure can be used to analyze relationships between entities. These relationships are
typically defined by using a graph. A graph, G D .N;A/, is defined over a set N of nodes and a set A of
arcs. A node is an abstract representation of some entity (or object), and an arc defines some relationship (or
connection) between two nodes. The terms node and vertex are often interchanged when describing an entity.
The term arc is often interchanged with the term edge or link when describing a connection.

Getting Started: OPTNET Procedure
Since graphs are abstract objects, their analyses have applications in many different fields of study, including
social sciences, linguistics, biology, transportation, marketing, and so on. This document shows a few
potential applications through simple examples.

Road Network Shortest Path F 13

This section shows an introductory example for getting started with the OPTNET procedure. For more detail
about the input formats expected and the various algorithms available, see the sections “Details: OPTNET
Procedure” on page 39 and “Examples: OPTNET Procedure” on page 104.

Road Network Shortest Path
Consider the following road network between a SAS employee’s home in Raleigh, NC, and the SAS
headquarters in Cary, NC.

In this road network (graph), the links are the roads and the nodes are intersections between roads. With each
road, you assign a link attribute in the variable time_to_travel to describe the number of minutes that it takes
to drive from one node to another. The following data were collected using Google Maps (Google 2011),
which gives an approximate number of minutes to traverse between two points, based on the length of the
road and the typical speed during normal traffic patterns:

data LinkSetInRoadNC10am;
input start_inter $1-20 end_inter $20-40 miles miles_per_hour;
datalines;

614CapitalBlvd Capital/WadeAve 0.6 25
614CapitalBlvd Capital/US70W 0.6 25
614CapitalBlvd Capital/US440W 3.0 45
Capital/WadeAve WadeAve/RaleighExpy 3.0 40
Capital/US70W US70W/US440W 3.2 60
US70W/US440W US440W/RaleighExpy 2.7 60
Capital/US440W US440W/RaleighExpy 6.7 60
US440W/RaleighExpy RaleighExpy/US40W 3.0 60
WadeAve/RaleighExpy RaleighExpy/US40W 3.0 60
RaleighExpy/US40W US40W/HarrisonAve 1.3 55
US40W/HarrisonAve SASCampusDrive 0.5 25
;

data LinkSetInRoadNC10am;
set LinkSetInRoadNC10am;
time_to_travel = miles * 1/miles_per_hour * 60;

run;

Using PROC OPTNET, you want to find the route that yields the shortest path between home (614CapitalBlvd)
and the SAS headquarters (SASCampusDrive). This can be done with the SHORTPATH statement as follows:

proc optnet
data_links = LinkSetInRoadNC10am;
data_links_var

from = start_inter
to = end_inter
weight = time_to_travel;

shortpath
out_paths = ShortPath
source = "614CapitalBlvd"
sink = "SASCampusDrive";

run;

14 F Chapter 2: The OPTNET Procedure

For more details about shortest path algorithms in PROC OPTNET, see the section “Shortest Path” on page 77.
Figure 2.1 displays the output data set ShortPath, which gives the best route to take to minimize travel time
at 10:00 a.m. This route is also shown in Google Maps in Figure 2.2.

Figure 2.1 Shortest Path for Road Network at 10:00 A.M.

time_to_
order start_inter end_inter travel

1 614CapitalBlvd Capital/WadeAve 1.4400
2 Capital/WadeAve WadeAve/RaleighExpy 4.5000
3 WadeAve/RaleighExpy RaleighExpy/US40W 3.0000
4 RaleighExpy/US40W US40W/HarrisonAve 1.4182
5 US40W/HarrisonAve SASCampusDrive 1.2000

========
11.5582

Figure 2.2 Shortest Path for Road Network at 10:00 A.M. in Google Maps

Now suppose that it is rush hour (5:00 p.m.) and the time to traverse the roads has changed due to traffic
patterns. You want to find the route that gives the shortest path for going home from SAS headquarters under
different speed assumptions due to traffic. The following data set lists approximate travel times and speeds
for driving in the opposite direction:

data LinkSetInRoadNC5pm;
input start_inter $1-20 end_inter $20-40 miles miles_per_hour;
datalines;

614CapitalBlvd Capital/WadeAve 0.6 25
614CapitalBlvd Capital/US70W 0.6 25
614CapitalBlvd Capital/US440W 3.0 45
Capital/WadeAve WadeAve/RaleighExpy 3.0 25 /*high traffic*/
Capital/US70W US70W/US440W 3.2 60
US70W/US440W US440W/RaleighExpy 2.7 60

Road Network Shortest Path F 15

Capital/US440W US440W/RaleighExpy 6.7 60
US440W/RaleighExpy RaleighExpy/US40W 3.0 60
WadeAve/RaleighExpy RaleighExpy/US40W 3.0 60
RaleighExpy/US40W US40W/HarrisonAve 1.3 55
US40W/HarrisonAve SASCampusDrive 0.5 25
;

data LinkSetInRoadNC5pm;
set LinkSetInRoadNC5pm;
time_to_travel = miles * 1/miles_per_hour * 60;

run;

The following statements are similar to the first PROC OPTNET run, except that they use the LinkSet-
InRoadNC5pm data set and the SOURCE and SINK option values are reversed:

proc optnet
data_links = LinkSetInRoadNC5pm;
data_links_var

from = start_inter
to = end_inter
weight = time_to_travel;

shortpath
out_paths = ShortPath
source = "SASCampusDrive"
sink = "614CapitalBlvd";

run;

Now, the output data set ShortPath, shown in Figure 2.3, shows the best route for going home. Since the
traffic on Wade Avenue is typically heavy at this time of day, the route home is different from the route to
work.

Figure 2.3 Shortest Path for Road Network at 5:00 P.M.

time_to_
order start_inter end_inter travel

1 SASCampusDrive US40W/HarrisonAve 1.2000
2 US40W/HarrisonAve RaleighExpy/US40W 1.4182
3 RaleighExpy/US40W US440W/RaleighExpy 3.0000
4 US440W/RaleighExpy US70W/US440W 2.7000
5 US70W/US440W Capital/US70W 3.2000
6 Capital/US70W 614CapitalBlvd 1.4400

========
12.9582

16 F Chapter 2: The OPTNET Procedure

This new route is shown in Google Maps in Figure 2.4.

Figure 2.4 Shortest Path for Road Network at 5:00 P.M. in Google Maps

Syntax: OPTNET Procedure
PROC OPTNET options ;

Data Input Statements:
DATA_ADJ_MATRIX_VAR column1 <,column2,...> ;
DATA_LINKS_VAR < options > ;
DATA_MATRIX_VAR column1 <,column2,...> ;
DATA_NODES_VAR < options > ;

Algorithm Statements:
BICONCOMP < option > ;
CLIQUE < options > ;
CONCOMP < option > ;
CYCLE < options > ;
LINEAR_ASSIGNMENT < options > ;
MINCOSTFLOW < option > ;
MINCUT < options > ;
MINSPANTREE < options > ;
SHORTPATH < options > ;
TRANSITIVE_CLOSURE < option > ;
TSP < option > ;

PROC OPTNET statements are divided into three main categories: the PROC statement, the data input
statements, and the algorithm statements. The PROC statement invokes the procedure and sets option values
that are used across multiple algorithms. The data input statements control the names of the variables that

Functional Summary F 17

PROC OPTNET expects in the data input. The algorithm statements determine which algorithms are run and
set options for each individual algorithm.

The section “Functional Summary” on page 17 provides a quick reference for each of the options for each
statement. Each statement is then described in more detail in its own section; the PROC OPTNET statement
is described first, and sections that describe all other statements are presented in alphabetical order.

Functional Summary
Table 2.2 summarizes the statements and options available with PROC OPTNET.

Table 2.2 Functional Summary

Description Option

PROC OPTNET Options
Input
Specifies the link data set (as an adjacency matrix) DATA_ADJ_MATRIX=
Specifies the link data set DATA_LINKS=
Specifies the matrix data set DATA_MATRIX=
Specifies the node data set DATA_NODES=
Specifies the node subset data set DATA_NODES_SUB=
Output
Specifies the link output data set OUT_LINKS=
Specifies the node output data set OUT_NODES=
Options
Specifies the graph direction GRAPH_DIRECTION=
Specifies the internal graph format GRAPH_INTERNAL_FORMAT=
Includes self-links INCLUDE_SELFLINK
Specifies the overall log level LOGLEVEL=
Specifies whether time units are in CPU time or real time TIMETYPE=

Data Input Statements
DATA_ADJ_MATRIX_VAR
Specifies the data set variable names for adjacency matrix
DATA_LINKS_VAR Options
Specifies the data set variable name for the from nodes FROM=
Specifies the data set variable name for the link flow lower bounds LOWER=
Specifies the data set variable name for the to nodes TO=
Specifies the data set variable name for the link flow upper bounds UPPER=
Specifies the data set variable name for the link weights WEIGHT=
DATA_MATRIX_VAR
Specifies the data set variable names for the matrix
DATA_NODES_VAR Options
Specifies the data set variable name for the nodes NODE=
Specifies the data set variable name for node weights WEIGHT=
Specifies the data set variable name for auxiliary node weights WEIGHT2=

18 F Chapter 2: The OPTNET Procedure

Table 2.2 (continued)

Description Option

Algorithm Statements
BICONCOMP Option
Specifies the log level for biconnected components LOGLEVEL=
CLIQUE Options
Specifies the log level for clique calculations LOGLEVEL=
Specifies the maximum number of cliques to return during clique
calculations

MAXCLIQUES=

Specifies the maximum amount of time to spend calculating cliques MAXTIME=
Specifies the output data set for cliques OUT=
CONCOMP Options
Specifies the algorithm to use for connected components ALGORITHM=
Specifies the log level for connected components LOGLEVEL=
CYCLE Options
Specifies the log level for the cycle algorithm LOGLEVEL=
Specifies the maximum number of cycles to return during cycle
calculations

MAXCYCLES=

Specifies the maximum length for the cycles found MAXLENGTH=
Specifies the maximum link weight for the cycles found MAXLINKWEIGHT=
Specifies the maximum node weight for the cycles found MAXNODEWEIGHT=
Specifies the maximum amount of time to spend calculating cycles MAXTIME=
Specifies the minimum length for the cycles found MINLENGTH=
Specifies the minimum link weight for the cycles found MINLINKWEIGHT=
Specifies the minimum node weight for the cycles found MINNODEWEIGHT=
Specifies the mode for the cycle calculations MODE=
Specifies the output data set for cycles OUT=
LINEAR_ASSIGNMENT Options
Specifies the data set variable names for the linear assignment identi-
fiers

ID=()

Specifies the log level for the linear assignment algorithm LOGLEVEL=
Specifies the output data set for linear assignment OUT=
Specifies the data set variable names for costs (or weights) WEIGHT=()
MINCOSTFLOW Options
Specifies the iteration log frequency LOGFREQ=
Specifies the log level for the minimum-cost network flow algorithm LOGLEVEL=
Specifies the maximum amount of time to spend calculating the
optimal flow

MAXTIME=

MINCUT Options (Experimental)
Specifies the log level for the minimum cut algorithm LOGLEVEL=
Specifies the maximum number of cuts to return from the algorithm MAXNUMCUTS=
Specifies the maximum weight of the cuts to return from the algo-
rithm

MAXWEIGHT=

Specifies the output data set for minimum cut OUT=
MINSPANTREE Options
Specifies the log level for the minimum spanning tree algorithm LOGLEVEL=

Functional Summary F 19

Table 2.2 (continued)

Description Option

Specifies the output data set for minimum spanning tree OUT=
SHORTPATH Options
Specifies the iteration log frequency (nodes) LOGFREQ=
Specifies the log level for shortest paths LOGLEVEL=
Specifies the output data set for shortest paths OUT_PATHS=
Specifies the output data set for shortest path summaries OUT_WEIGHTS=
Specifies the type of output for shortest paths results PATHS=
Specifies the sink node for shortest paths calculations SINK=
Specifies the source node for shortest paths calculations SOURCE=
Specifies whether to use weights in calculating shortest paths USEWEIGHT=
Specifies the data set variable name for the auxiliary link weights WEIGHT2=
TRANSITIVE_CLOSURE Options
Specifies the log level for transitive closure LOGLEVEL=
Specifies the output data set for transitive closure results OUT=
TSP Options
Specifies the stopping criterion based on the absolute objective gap ABSOBJGAP=
Specifies the cutoff value for branch-and-bound node removal CUTOFF=
Specifies the overall cut strategy level CUTSTRATEGY=
Emphasizes feasibility or optimality EMPHASIS=
Specifies the initial and primal heuristics level HEURISTICS=
Specifies the maximum allowed difference between an integer vari-
able’s value and an integer

INTTOL=

Specifies the frequency of printing the branch-and-bound node log LOGFREQ=
Specifies the log level for the traveling salesman algorithm LOGLEVEL=
Specifies the maximum number of branch-and-bound nodes to be
processed

MAXNODES=

Specifies the maximum number of solutions to be found MAXSOLS=
Specifies the maximum amount of time to spend in the algorithm MAXTIME=
Specifies whether to use a mixed-integer linear programming solver MILP=
Specifies the branch-and-bound node selection strategy NODESEL=
Specifies the output data set for traveling salesman OUT=
Specifies the stopping criterion that is based on relative objective gap RELOBJGAP=
Specifies the number of simplex iterations to be performed on each
variable in the strong branching strategy

STRONGITER=

Specifies the number of candidates for the strong branching strategy STRONGLEN=
Specifies the stopping criterion based on the target objective value TARGET=
Specifies the rule for selecting branching variable VARSEL=

20 F Chapter 2: The OPTNET Procedure

Table 2.3 lists the valid input formats, GRAPH_DIRECTION= values, and GRAPH_INTERNAL_FORMAT=
values for each statement in the OPTNET procedure.

Table 2.3 Supported Input Formats and Graph Types by Statement

Input Format DIRECTION INTERNAL_FORMAT
Statement Graph Matrix UNDIRECTED DIRECTED THIN FULL
BICONCOMP X X X
CLIQUE X X X
CONCOMP

ALGORITHM=
DFS X X X X
UNION_FIND X X X X

CYCLE X X X X
LINEAR_ASSIGNMENT X X X X
MINCOSTFLOW X X X X
MINCUT X X X
MINSPANTREE X X X X
SHORTPATH X X X X
TRANSITIVE_CLOSURE X X X X
TSP X X X

Table 2.4 indicates for each algorithm statement in the OPTNET procedure which output data set options
you can specify and whether the algorithm populates the data sets specified in the OUT_NODES= and
OUT_LINKS= options in the PROC OPTNET statement.

Table 2.4 Output Options by Statement

Statement OUT_NODES OUT_LINKS Algorithm Statement Options
BICONCOMP X X
CLIQUE X OUT=
CONCOMP X
CYCLE OUT=
LINEAR_ASSIGNMENT OUT=
MINCOSTFLOW X
MINCUT X OUT=
MINSPANTREE OUT=
SHORTPATH OUT_PATHS=, OUT_WEIGHTS=
TRANSITIVE_CLOSURE OUT=
TSP X OUT=

PROC OPTNET Statement F 21

PROC OPTNET Statement
PROC OPTNET < options > ;

The PROC OPTNET statement invokes the OPTNET procedure. You can specify the following options to
define the input and output data sets, the log levels, and various other processing controls:

DATA_ADJ_MATRIX=SAS-data-set

ADJ_MATRIX=SAS-data-set
specifies the input data set that contains the graph link information, where the links are defined as an
adjacency matrix.

See the section “Adjacency Matrix Input Data” on page 43 for more information.

DATA_LINKS=SAS-data-set

LINKS=SAS-data-set
specifies the input data set that contains the graph link information, where the links are defined as a list.

See the section “Link Input Data” on page 39 for more information.

DATA_MATRIX=SAS-data-set

MATRIX=SAS-data-set
specifies the input data set that contains the matrix to be processed. This is a generic matrix (as opposed
to an adjacency matrix, which defines an underlying graph).

See the section “Matrix Input Data” on page 46 for more information.

DATA_NODES=SAS-data-set

NODES=SAS-data-set
specifies the input data set that contains the graph node information.

See the section “Node Input Data” on page 44 for more information.

DATA_NODES_SUB=SAS-data-set

NODES_SUB=SAS-data-set
specifies the input data set that contains the graph node subset information.

See the section “Node Subset Input Data” on page 45 for more information.

GRAPH_DIRECTION=DIRECTED | UNDIRECTED

DIRECTION=DIRECTED | UNDIRECTED
specifies whether the input graph should be considered directed or undirected.

Table 2.5 Values for the GRAPH_DIRECTION= Option

Option Value Description
DIRECTED Specifies the graph as directed. In a directed graph, each link .i; j / has

a direction that defines how something (for example, information) might
flow over that link. In link .i; j /, information flows from node i to node j
(i ! j). The node i is called the source (or tail) node, and j is called the
sink (or head) node.

22 F Chapter 2: The OPTNET Procedure

Table 2.5 (continued)

Option Value Description
UNDIRECTED Specifies the graph as undirected. In an undirected graph, each link fi; j g

has no direction and information can flow in either direction. That is,
fi; j g D fj; ig. This is the default.

See the section “Graph Input Data” on page 39 for more information.

GRAPH_INTERNAL_FORMAT=THIN | FULL

INTERNAL_FORMAT=THIN | FULL
requests the internal graph format for the algorithms to use.

Table 2.6 Values for the GRAPH_INTERNAL_FORMAT= Option

Option Value Description
FULL Stores the graph in standard (full) format. This is the default.
THIN (experimental) Stores the graph in thin format. This option can improve performance in

some cases both by reducing memory and by simplifying the construction
of the internal data structures. The thin format causes PROC OPTNET to
skip the removal of duplicate links when it reads in the graph. So this option
should be used with caution. For some algorithms, the thin format is not
allowed and this option is ignored. The THIN option can often be helpful
when you do calculations that are decomposed by subgraph.

See the section “Graph Input Data” on page 39 for more information.

INCLUDE_SELFLINK
includes self links—for example, .i; i/—when an input graph is read. By default, when PROC
OPTNET reads the DATA_LINKS= data set, it removes all self links.

LOGLEVEL=number | string
controls the amount of information that is displayed in the SAS log. Each algorithm has its own specific
log level. This setting sets the log level for all algorithms except those for which you specify the
LOGLEVEL= option in the algorithm statement. Table 2.7 describes the valid values for this option.

Table 2.7 Values for LOGLEVEL= Option

number string Description
0 NONE Turns off all procedure-related messages in the SAS log
1 BASIC Displays a basic summary of the input, output, and algorithmic processing
2 MODERATE Displays a summary of the input, output, and algorithmic processing
3 AGGRESSIVE Displays a detailed summary of the input, output, and algorithmic processing

The default is BASIC.

BICONCOMP Statement F 23

OUT_LINKS=SAS-data-set
specifies the output data set to contain the graph link information along with any results from the
various algorithms that calculate metrics on links.

See the various algorithm sections for examples of the content of this output data set.

OUT_NODES=SAS-data-set
specifies the output data set to contain the graph node information along with any results from the
various algorithms that calculate metrics on nodes.

See the various algorithm sections for examples of the content of this output data set.

TIMETYPE=number | string
specifies whether CPU time or real time is used for the MAXTIME= option for each applicable
algorithm. Table 2.8 describes the valid values of the TIMETYPE= option.

Table 2.8 Values for TIMETYPE= Option

number string Description
0 CPU Specifies units of CPU time
1 REAL Specifies units of real time

The default is CPU.

BICONCOMP Statement
BICONCOMP < option > ;

The BICONCOMP statement requests that PROC OPTNET find biconnected components and articulation
points of an undirected input graph.

See the section “Biconnected Components and Articulation Points” on page 47 for more information.

You can specify the following option in the BICONCOMP statement.

LOGLEVEL=number | string
controls the amount of information that is displayed in the SAS log. Table 2.9 describes the valid
values for this option.

Table 2.9 Values for LOGLEVEL= Option

number string Description
0 NONE Turns off all algorithm-related messages in the SAS log
1 BASIC Displays a basic summary of the algorithmic processing
2 MODERATE Displays a summary of the algorithmic processing
3 AGGRESSIVE Displays a detailed summary of the algorithmic processing

The default is the value that is specified in the LOGLEVEL= option in the PROC OPTNET statement
(or BASIC if that option is not specified).

24 F Chapter 2: The OPTNET Procedure

CLIQUE Statement
CLIQUE < options > ;

The CLIQUE statement invokes an algorithm that finds maximal cliques on the input graph. Maximal cliques
are described in the section “Clique” on page 51.

You can specify the following options in the CLIQUE statement:

LOGLEVEL=number | string
controls the amount of information that is displayed in the SAS log. Table 2.10 describes the valid
values for this option.

Table 2.10 Values for LOGLEVEL= Option

number string Description
0 NONE Turns off all algorithm-related messages in the SAS log
1 BASIC Displays a basic summary of the algorithmic processing
2 MODERATE Displays a summary of the algorithmic processing
3 AGGRESSIVE Displays a detailed summary of the algorithmic processing

The default is the value that is specified in the LOGLEVEL= option in the PROC OPTNET statement
(or BASIC if that option is not specified).

MAXCLIQUES=number
specifies the maximum number of cliques to return during clique calculations. The default is the positive
number that has the largest absolute value that can be represented in your operating environment.

MAXTIME=number
specifies the maximum amount of time to spend calculating cliques. The type of time (either CPU time
or real time) is determined by the value of the TIMETYPE= option. The value of number can be any
positive number; the default value is the positive number that has the largest absolute value that can be
represented in your operating environment.

OUT=SAS-data-set
specifies the output data set to contain the maximal cliques.

CONCOMP Statement
CONCOMP < options > ;

The CONCOMP statement invokes an algorithm that finds the connected components of the input graph.
Connected components are described in the section “Connected Components” on page 54.

CYCLE Statement F 25

You can specify the following options in the CONCOMP statement:

ALGORITHM=DFS | UNION_FIND
specifies the algorithm to use for calculating connected components.

Table 2.11 Values for the ALGORITHM= Option

Option Value Description
DFS Uses the depth-first search algorithm for connected components. You

cannot specify this value when you specify
GRAPH_INTERNAL_FORMAT=THIN in the PROC OPTNET statement.

UNION_FIND Uses the union-find algorithm for connected components. You can specify
this value with either the THIN or FULL value for the
GRAPH_INTERNAL_FORMAT option in the PROC OPTNET statement.
This value can be faster than DFS when used with
GRAPH_INTERNAL_FORMAT=THIN. However, you can use it only
with undirected graphs.

The default is DFS.

LOGLEVEL=number | string
controls the amount of information that is displayed in the SAS log. Table 2.12 describes the valid
values for this option.

Table 2.12 Values for LOGLEVEL= Option

number string Description
0 NONE Turns off all algorithm-related messages in the SAS log
1 BASIC Displays a basic summary of the algorithmic processing
2 MODERATE Displays a summary of the algorithmic processing
3 AGGRESSIVE Displays a detailed summary of the algorithmic processing

The default is the value that is specified in the LOGLEVEL= option in the PROC OPTNET statement
(or BASIC if that option is not specified).

CYCLE Statement
CYCLE < options > ;

The CYCLE statement invokes an algorithm that finds the cycles (or the existence of a cycle) in the input
graph. Cycles are described in the section “Cycle” on page 59.

You can specify the following options in the CYCLE statement:

LOGLEVEL=number | string
controls the amount of information that is displayed in the SAS log. Table 2.13 describes the valid
values for this option.

26 F Chapter 2: The OPTNET Procedure

Table 2.13 Values for LOGLEVEL= Option

number string Description
0 NONE Turns off all algorithm-related messages in the SAS log
1 BASIC Displays a basic summary of the algorithmic processing
2 MODERATE Displays a summary of the algorithmic processing
3 AGGRESSIVE Displays a detailed summary of the algorithmic processing

The default is the value that is specified in the LOGLEVEL= option in the PROC OPTNET statement
(or BASIC if that option is not specified).

MAXCYCLES=number
specifies the maximum number of cycles to return. The default is the positive number that has the
largest absolute value representable in your operating environment. This option works only when you
also specify MODE=ALL_CYCLES.

MAXLENGTH=number
specifies the maximum number of links to allow in a cycle. If a cycle is found whose length is greater
than number, that cycle is removed from the results. The default is the positive number that has the
largest absolute value representable in your operating environment. By default, nothing is removed
from the results. This option works only when you also specify MODE=ALL_CYCLES.

MAXLINKWEIGHT=number
specifies the maximum sum of link weights to allow in a cycle. If a cycle is found whose sum of link
weights is greater than number, that cycle is removed from the results. The default is the positive
number that has the largest absolute value representable in your operating environment. By default,
nothing is filtered. This option works only when you also specify MODE=ALL_CYCLES.

MAXNODEWEIGHT=number
specifies the maximum sum of node weights to allow in a cycle. If a cycle is found whose sum of
node weights is greater than number, that cycle is removed from the results. The default is the positive
number that has the largest absolute value representable in your operating environment. By default,
nothing is filtered. This option works only when you also specify MODE=ALL_CYCLES.

MAXTIME=number
specifies the maximum amount of time to spend finding cycles. The type of time (either CPU time
or real time) is determined by the value of the TIMETYPE= option. The value of number can be
any positive number; the default value is the positive number that has the largest absolute value that
can be represented in your operating environment. This option works only when you also specify
MODE=ALL_CYCLES.

MINLENGTH=number
specifies the minimum number of links to allow in a cycle. If a cycle is found that has fewer links than
number, that cycle is removed from the results. The default is 1. By default, nothing is filtered. This
option works only when you also specify MODE=ALL_CYCLES.

MINLINKWEIGHT=number
specifies the minimum sum of link weights to allow in a cycle. If a cycle is found whose sum of link
weights is less than number, that cycle is removed from the results. The default is the negative number
that has the largest absolute value representable in your operating environment. By default, nothing is
filtered. This option works only when you also specify MODE=ALL_CYCLES.

DATA_ADJ_MATRIX_VAR Statement F 27

MINNODEWEIGHT=number
specifies the minimum sum of node weights to allow in a cycle. If a cycle is found whose sum of node
weights is less than number, that cycle is removed from the results. The default is the negative number
that has the largest absolute value representable in your operating environment. By default, nothing is
filtered. This option works only when you also specify MODE=ALL_CYCLES.

MODE=option
specifies the mode for processing cycles.

Table 2.14 Values for the MODE= Option

Option Value Description
ALL_CYCLES Returns all (unique, elementary) cycles found.
FIRST_CYCLE Returns the first cycle found.

The default is FIRST_CYCLE.

OUT=SAS-data-set
specifies the output data set to contain the cycles found.

DATA_ADJ_MATRIX_VAR Statement
DATA_ADJ_MATRIX_VAR column1 <,column2,...> ;

ADJ_MATRIX_VAR column1 <,column2,...> ;

The DATA_ADJ_MATRIX_VAR statement enables you to explicitly define the data set variable names for
PROC OPTNET to use when it reads the data set that is specified in the DATA_ADJ_MATRIX= option in
the PROC OPTNET statement. The format of the adjacency matrix input data set is defined in the section
“Adjacency Matrix Input Data” on page 43. The value of each column variable must be numeric.

DATA_LINKS_VAR Statement
DATA_LINKS_VAR < options > ;

LINKS_VAR < options > ;

The DATA_LINKS_VAR statement enables you to explicitly define the data set variable names for PROC
OPTNET to use when it reads the data set that is specified in the DATA_LINKS= option in the PROC
OPTNET statement. The format of the links input data set is defined in the section “Link Input Data” on
page 39.

You can specify the following options in the DATA_LINKS_VAR statement:

FROM=column
specifies the data set variable name for from nodes. The value of column can be numeric or character.

28 F Chapter 2: The OPTNET Procedure

LOWER=column
specifies the data set variable name for link flow lower bounds. The value of column must be numeric.

TO=column
specifies the data set variable name for to node. The value of column can be numeric or character.

UPPER=column
specifies the data set variable name for link flow upper bounds. The value of column must be numeric.

WEIGHT=column
specifies the data set variable name for link weights. The value of column must be numeric.

DATA_MATRIX_VAR Statement
DATA_MATRIX_VAR column1 <,column2,...> ;

MATRIX_VAR column1 <,column2,...> ;

The DATA_MATRIX_VAR statement enables you to explicitly define the data set variable names for PROC
OPTNET to use when it reads the data set that is specified in the DATA_MATRIX= option in the PROC
OPTNET statement. The format of the matrix input data set is defined in the section “Matrix Input Data” on
page 46. The value of each column variable must be numeric.

DATA_NODES_VAR Statement
DATA_NODES_VAR < options > ;

NODES_VAR < options > ;

The DATA_NODES_VAR statement enables you to explicitly define the data set variable names for PROC
OPTNET to use when it reads the data set that is specified in the DATA_NODES= option in the PROC
OPTNET statement. The format of the node input data set is defined in the section “Node Input Data” on
page 44.

You can specify the following options in the DATA_NODES_VAR statement:

NODE=column
specifies the data set variable name for the nodes. The value of column can be numeric or character.

WEIGHT=column
specifies the data set variable name for node weights. The value of column must be numeric.

WEIGHT2=column
specifies the data set variable name for auxiliary node weights. The value of column must be numeric.

LINEAR_ASSIGNMENT Statement F 29

LINEAR_ASSIGNMENT Statement
LINEAR_ASSIGNMENT < options > ;

LAP < options > ;

The LINEAR_ASSIGNMENT statement invokes an algorithm that solves the minimal-cost linear assignment
problem. In graph terms, this problem is also known as the minimum link-weighted matching problem on a
bipartite graph. The input data (the cost matrix) is typically defined in the input data set that is specified in
the DATA_MATRIX= option in the PROC OPTNET statement. The data can also be defined as a directed
graph by specifying the DATA_LINKS= option in the PROC OPTNET statement, where the costs are defined
as link weights. Internally, the graph is treated as a bipartite graph in which the from nodes define one part
and the to nodes define the other part.

The linear assignment problem is described in the section “Linear Assignment (Matching)” on page 65.

You can specify the following options in the LINEAR_ASSIGNMENT statement:

ID=(column1 <,column2,...>)
specifies the data set variable names that identify the matrix rows (from nodes). The information in
these columns is carried to the output data set that is specified in the OUT= option. The value of each
column variable can be numeric or character.

LOGLEVEL=number | string
controls the amount of information that is displayed in the SAS log. Table 2.15 describes the valid
values for this option.

Table 2.15 Values for LOGLEVEL= Option

number string Description
0 NONE Turns off all algorithm-related messages in the SAS log
1 BASIC Displays a basic summary of the algorithmic processing
2 MODERATE Displays a summary of the algorithmic processing
3 AGGRESSIVE Displays a detailed summary of the algorithmic processing

The default is the value that is specified in the LOGLEVEL= option in the PROC OPTNET statement
(or BASIC if that option is not specified).

OUT=SAS-data-set
specifies the output data set to contain the solution to the linear assignment problem.

WEIGHT=(column1 <,column2,...>)
specifies the data set variable names for the cost matrix. The value of each column variable must be
numeric. If this option is not specified, the matrix is assumed to be defined by all of the numeric
variables in the data set (excluding those specified in the ID= option).

30 F Chapter 2: The OPTNET Procedure

MINCOSTFLOW Statement
MINCOSTFLOW < options > ;

MCF < options > ;

The MINCOSTFLOW statement invokes an algorithm that solves the minimum-cost network flow problem
on an input graph.

The minimum-cost network flow problem is described in the section “Minimum-Cost Network Flow” on
page 73.

You can specify the following options in the MINCOSTFLOW statement:

LOGFREQ=number
controls the frequency for displaying iteration logs for minimum-cost network flow calculations that
use the network simplex algorithm. For graphs that contain one component, this option displays
progress every number simplex iterations, and the default is 10,000. For graphs that contain multiple
components, when you also specify LOGLEVEL=MODERATE, this option displays progress after
processing every number components, and the default is based on the number of components. When
you also specify LOGLEVEL=AGGRESSIVE, the simplex iteration log for each component is
displayed with frequency number.

The value of number can be any integer greater than or equal to 1. Setting this value too low can hurt
performance on large-scale graphs.

LOGLEVEL=number | string
controls the amount of information that is displayed in the SAS log. Table 2.16 describes the valid
values for this option.

Table 2.16 Values for LOGLEVEL= Option

number string Description
0 NONE Turns off all algorithm-related messages in the SAS log
1 BASIC Displays a basic summary of the algorithmic processing
2 MODERATE Displays a summary of the algorithmic processing including a progress log

using the interval that is specified in the LOGFREQ option
3 AGGRESSIVE Displays a detailed summary of the algorithmic processing including a

progress log using the interval that is specified in the LOGFREQ option

The default is the value that is specified in the LOGLEVEL= option in the PROC OPTNET statement
(or BASIC if that option is not specified).

MAXTIME=option
specifies the maximum amount of time to spend calculating minimum-cost network flows. The type of
time (either CPU time or real time) is determined by the value of the TIMETYPE= option. The value
of number can be any positive number; the default value is the positive number that has the largest
absolute value that can be represented in your operating environment.

MINSPANTREE Statement F 31

MINCUT Statement (Experimental)
MINCUT < options > ;

The MINCUT statement invokes an algorithm that finds the minimum link-weighted cut of an input graph.

The minimum cut problem is described in the section “Minimum Cut” on page 66.

You can specify the following options in the MINCUT statement:

LOGLEVEL=number | string
controls the amount of information that is displayed in the SAS log. Table 2.17 describes the valid
values for this option.

Table 2.17 Values for LOGLEVEL= Option

number string Description
0 NONE Turns off all algorithm-related messages in the SAS log
1 BASIC Displays a basic summary of the algorithmic processing
2 MODERATE Displays a summary of the algorithmic processing
3 AGGRESSIVE Displays a detailed summary of the algorithmic processing

The default is the value that is specified in the LOGLEVEL= option in the PROC OPTNET statement
(or BASIC if that option is not specified).

MAXNUMCUTS=number
specifies the maximum number of cuts to return from the algorithm. The minimal cut and any others
found during the search, up to number, are returned. The default is 1.

MAXWEIGHT=number
specifies the maximum weight of the cuts to return from the algorithm. Only cuts that have weight less
than or equal to number are returned. The default is the positive number that has the largest absolute
value representable in your operating environment.

OUT=SAS-data-set
specifies the output data set to contain the solution to the minimum cut problem.

MINSPANTREE Statement
MINSPANTREE < options > ;

The MINSPANTREE statement invokes an algorithm that solves the minimum link-weighted spanning tree
problem on an input graph.

The minimum spanning tree problem is described in the section “Minimum Spanning Tree” on page 70.

32 F Chapter 2: The OPTNET Procedure

You can specify the following options in the MINSPANTREE statement:

LOGLEVEL=number | string
controls the amount of information that is displayed in the SAS log. Table 2.18 describes the valid
values for this option.

Table 2.18 Values for LOGLEVEL= Option

number string Description
0 NONE Turns off all algorithm-related messages in the SAS log
1 BASIC Displays a basic summary of the algorithmic processing
2 MODERATE Displays a summary of the algorithmic processing
3 AGGRESSIVE Displays a detailed summary of the algorithmic processing

The default is the value that is specified in the LOGLEVEL= option in the PROC OPTNET statement
(or BASIC if that option is not specified).

OUT=SAS-data-set
specifies the output data set to contain the solution to the minimum link-weighted spanning tree
problem.

SHORTPATH Statement
SHORTPATH < options > ;

The SHORTPATH statement invokes an algorithm that calculates shortest paths between sets of nodes on the
input graph.

The shortest path algorithm is described in the section “Shortest Path” on page 77.

You can specify the following options in the SHORTPATH statement:

LOGFREQ=number
displays iteration logs for shortest path calculations every number nodes. The value of number can be
any integer greater than or equal to 1. The default is determined automatically based on the size of the
graph. Setting this value too low can hurt performance on large-scale graphs.

LOGLEVEL=number
controls the amount of information that is displayed in the SAS log. Table 2.19 describes the valid
values for this option.

Table 2.19 Values for LOGLEVEL= Option

number string Description
0 NONE Turns off all algorithm-related messages in the SAS log
1 BASIC Displays a basic summary of the algorithmic processing
2 MODERATE Displays a summary of the algorithmic processing
3 AGGRESSIVE Displays a detailed summary of the algorithmic processing

SHORTPATH Statement F 33

The default is the value that is specified in the LOGLEVEL= option in the PROC OPTNET statement
(or BASIC if that option is not specified).

OUT_PATHS=SAS-data-set

OUT=SAS-data-set
specifies the output data set to contain the shortest paths.

OUT_WEIGHTS=SAS-data-set
specifies the output data set to contain the shortest path summaries.

PATHS=ALL | SHORTEST | LONGEST
specifies the type of output to produce in the output data set that is specified in the OUT_PATHS=
option.

Table 2.20 Values for the PATHS= Option

Option Value Description
ALL Outputs shortest paths for all pairs of source-sinks. This is the default.
LONGEST Outputs shortest paths for the source-sink pair with the longest (finite)

length. If other source-sink pairs (up to 100) have equally long length, they
are also output.

SHORTEST Outputs shortest paths for the source-sink pair with the shortest length. If
other source-sink pairs (up to 100) have equally short length, they are also
output.

SINK=sink-node
specifies the sink node for shortest paths calculations. This setting overrides the use of the variable sink
in the data set that is specified in the DATA_NODES_SUB= option in the PROC OPTNET statement.

SOURCE=source-node
specifies the source node for shortest paths calculations. This setting overrides the use of the variable
source in the data set that is specified in the DATA_NODES_SUB= option in the PROC OPTNET
statement.

USEWEIGHT=YES | NO
specifies whether to use link weights (if they exist) in calculating shortest paths.

Table 2.21 Values for the WEIGHT= Option

Option Value Description
YES Uses weights (if they exist) in shortest path calculations. This is the default.
NO Does not use weights in shortest path calculations.

WEIGHT2=column
specifies the data set variable name for the auxiliary link weights. The value of column must be
numeric.

34 F Chapter 2: The OPTNET Procedure

TRANSITIVE_CLOSURE Statement
TRANSITIVE_CLOSURE < options > ;

TRANSC < options > ;

The TRANSITIVE_CLOSURE statement invokes an algorithm that calculates the transitive closure of an
input graph.

Transitive closure is described in the section “Transitive Closure” on page 89.

You can specify the following options in the TRANSITIVE_CLOSURE statement:

LOGLEVEL=number
controls the amount of information that is displayed in the SAS log. Table 2.22 describes the valid
values for this option.

Table 2.22 Values for LOGLEVEL= Option

number string Description
0 NONE Turns off all algorithm-related messages in the SAS log
1 BASIC Displays a basic summary of the algorithmic processing
2 MODERATE Displays a summary of the algorithmic processing
3 AGGRESSIVE Displays a detailed summary of the algorithmic processing

The default is the value that is specified in the LOGLEVEL= option in the PROC OPTNET statement
(or BASIC if that option is not specified).

OUT=SAS-data-set
specifies the output data set to contain the transitive closure results.

TSP Statement
TSP < options > ;

The TSP statement invokes an algorithm that solves the traveling salesman problem.

The traveling salesman problem is described in the section “Traveling Salesman Problem” on page 91. The
algorithm that is used to solve this problem is built around the same method as is used in PROC OPTMILP: a
branch-and-cut algorithm. Many of the options below are the same as those described for PROC OPTMILP
in the SAS/OR User’s Guide: Mathematical Programming.

You can specify the following options:

ABSOBJGAP=number
specifies a stopping criterion. When the absolute difference between the best integer objective and the
objective of the best remaining branch-and-bound node becomes less than the value of number, the
procedure stops. The value of number can be any nonnegative number; the default value is 1E–6.

TSP Statement F 35

CUTOFF=number
cuts off any branch-and-bound nodes in a minimization problem with an objective value that is greater
than number. The value of number can be any number; the default value is the positive number that
has the largest absolute value that can be represented in your operating environment.

CUTSTRATEGY=option
specifies the level of cuts to be generated by PROC OPTNET. Table 2.23 lists the valid values for this
option.

Table 2.23 Values for CUTSTRATEGY= Option

number string Description
–1 AUTOMATIC Disables most of the generic mixed-integer programming cuts and focuses

on the generation of TSP-specific cuts
0 NONE Disables generation of cutting planes
1 MODERATE Uses a moderate cut strategy
2 AGGRESSIVE Uses an aggressive cut strategy

The default is AUTOMATIC.

EMPHASIS=number | string
specifies a search emphasis option or its corresponding value number as listed in Table 2.24.

Table 2.24 Values for EMPHASIS= Option

number string Description
0 BALANCE Performs a balanced search
1 OPTIMAL Emphasizes optimality over feasibility
2 FEASIBLE Emphasizes feasibility over optimality

The default is BALANCE.

HEURISTICS=number | string
controls the level of initial and primal heuristics that are applied by PROC OPTNET. This level
determines how frequently primal heuristics are applied during the branch-and-bound tree search. It also
affects the maximum number of iterations that are allowed in iterative heuristics. Some computationally
expensive heuristics might be disabled by the solver at less aggressive levels. Table 2.25 lists the valid
values for this option.

Table 2.25 Values for HEURISTICS= Option

number string Description
–1 AUTOMATIC Applies the default level of heuristics
0 NONE Disables all initial and primal heuristics
1 BASIC Applies basic intial and primal heuristics at low frequency
2 MODERATE Applies most intial and primal heuristics at moderate frequency
3 AGGRESSIVE Applies all intitial primal heuristics at high frequency

The default is AUTOMATIC.

36 F Chapter 2: The OPTNET Procedure

INTTOL=number
specifies the amount by which an integer variable value can differ from an integer and still be considered
integer feasible. The value of number can be any number between 0.0 and 1.0; the default value is
1E–5. PROC OPTNET attempts to find an optimal solution with integer infeasibility less than number.
If you assign a value that is less than 1E–10 to number and the best solution found by PROC OPTNET
has integer infeasibility between number and 1E–10, then PROC OPTNET ends with a solution status
of OPTIMAL_COND (see the section “TSP” on page 98).

LOGFREQ=number
specifies how often to print information in the branch-and-bound node log. The value of number can
be any nonnegative integer up to the largest four-byte signed integer, which is 231 � 1. The default
value is 100. If number is set to 0, then the node log is disabled. If number is positive, then an entry is
made in the node log at the first node, at the last node, and at intervals that are controlled by the value
of number. An entry is also made each time a better integer solution is found.

LOGLEVEL=number | string
controls the amount of information displayed in the SAS log by the solver, from a short description of
presolve information and summary to details at each branch-and-bound node. Table 2.26 describes the
valid values for this option.

Table 2.26 Values for LOGLEVEL= Option

number string Description
0 NONE Turns off all solver-related messages in the SAS log
1 BASIC Displays a solver summary after stopping
2 MODERATE Prints a solver summary and a node log by using the interval that is specified

in the LOGFREQ= option
3 AGGRESSIVE Prints a detailed solver summary and a node log by using the interval that is

specified in the LOGFREQ= option

The default value is MODERATE.

MAXNODES=number
specifies the maximum number of branch-and-bound nodes to be processed. The value of number can
be any nonnegative integer up to the largest four-byte signed integer, which is 231 � 1. The default
value is 231 � 1.

MAXSOLS=number
specifies a stopping criterion. If number solutions have been found, then the procedure stops. The
value of number can be any positive integer up to the largest four-byte signed integer, which is 231 � 1.
The default value is 231 � 1.

MAXTIME=number
specifies the maximum amount of time to spend solving the traveling salesman problem. The type of
time (either CPU time or real time) is determined by the value of the TIMETYPE= option. The value
of number can be any positive number; the default value is the positive number that has the largest
absolute value that can be represented in your operating environment.

TSP Statement F 37

MILP=number | string
specifies whether to use a mixed-integer linear programming (MILP) solver for solving the traveling
salesman problem. The MILP solver attempts to find the overall best TSP tour by using a branch-and-
bound based algorithm. This algorithm can be expensive for large-scale problems. If MILP=OFF, then
PROC OPTNET uses its initial heuristics to find a feasible, but not necessarily optimal, tour as quickly
as possible. Table 2.27 describes the valid values for this option.

Table 2.27 Values for MILP= Option

number string Description
1 ON Uses a mixed-integer linear programming solver
0 OFF Does not use a mixed-integer linear programming solver

NODESEL=number | string
specifies the branch-and-bound node selection strategy option or its corresponding value number, as
listed in Table 2.28.

Table 2.28 Values for NODESEL= Option

number string Description
–1 AUTOMATIC Uses automatic node selection
0 BESTBOUND Chooses the node with the best relaxed objective (best-bound-first strategy)
1 BESTESTIMATE Chooses the node with the best estimate of the integer objective value

(best-estimate-first strategy)
2 DEPTH Chooses the most recently created node (depth-first strategy)

The default is AUTOMATIC. For more information about node selection, see Chapter 11, “The
OPTMILP Procedure” (SAS/OR User’s Guide: Mathematical Programming).

OUT=SAS-data-set
specifies the output data set to contain the solution to the traveling salesman problem.

PROBE=number | string
specifies a probing option or its corresponding value number, as listed in Table 2.29:

Table 2.29 Values for PROBE= Option

number string Description
–1 AUTOMATIC Uses an automatic probing strategy
0 NONE Disables probing
1 MODERATE Uses the probing moderately
2 AGGRESSIVE Uses the probing aggressively

The default value is NONE.

38 F Chapter 2: The OPTNET Procedure

RELOBJGAP=number
specifies a stopping criterion that is based on the best integer objective (BestInteger) and the objective
of the best remaining node (BestBound). The relative objective gap is equal to

j BestInteger � BestBound j = .1E�10C j BestBound j/

When this value becomes less than the specified gap size number, the procedure stops. The value of
number can be any number between 0 and 1; the default value is 1E–4.

STRONGITER=number
specifies the number of simplex iterations to be performed for each variable in the candidate list
when using the strong branching variable selection strategy. The value of number can be any positive
number; the default value is automatically calculated by PROC OPTNET.

STRONGLEN=number
specifies the number of candidates to be used when performing the strong branching variable selection
strategy. The value of number can be any positive integer up to the largest four-byte signed integer,
which is 231 � 1. The default value is 10.

TARGET=number
specifies a stopping criterion for minimization (maximization) problems. If the best integer objective
is better than or equal to number, the procedure stops. The value of number can be any number; the
default is the negative (positive) number that has the largest absolute value that can be represented in
your operating environment.

VARSEL=number | string
specifies the rule for selecting the branching variable. Table 2.30 lists the valid values for this option.

Table 2.30 Values for VARSEL= Option

number string Description
–1 AUTOMATIC Uses automatic branching variable selection
0 MAXINFEAS Chooses the variable with maximum infeasibility
1 MININFEAS Chooses the variable with minimum infeasibility
2 PSEUDO Chooses a branching variable based on pseudocost
3 STRONG Uses strong branching variable selection strategy

The default is STRONG. For more information about variable selection, see Chapter 11, “The OPT-
MILP Procedure” (SAS/OR User’s Guide: Mathematical Programming).

Graph Input Data F 39

Details: OPTNET Procedure

Graph Input Data
This section describes how to input a graph for analysis by PROC OPTNET. Let G D .N;A/ define a graph
with a set N of nodes and a set A of links. There are two main methods for defining the set of links A as a
SAS data set. The first is to use a list of links as described in the section “Link Input Data” on page 39. The
second is to use an adjacency matrix as described in the section “Adjacency Matrix Input Data” on page 43.

To illustrate the different methods for input of a graph, consider the directed graph shown in Figure 2.5.

Figure 2.5 A Simple Directed Graph

1

1

2

1

2

6

1

1 1

4

5
1

2

2

3

A

C B

ED

G

F I

H

Notice that each node and link has associated attributes: a node label and a link weight.

Link Input Data

The DATA_LINKS= option in the PROC OPTNET statement defines the data set that contains the list of links
in the graph. A link is represented as a pair of nodes, which are defined by using either numeric or character
labels. The links data set is expected to contain some combination of the following possible variables:

• from: the from node (this variable can be numeric or character)

• to: the to node (this variable can be numeric or character)

• weight: the link weight (this variable must be numeric)

• lower: the link flow lower bound (this variable must be numeric)

• upper: the link flow upper bound (this variable must be numeric)

40 F Chapter 2: The OPTNET Procedure

As described in the GRAPH_DIRECTION= option, if the graph is undirected, the from and to labels are
interchangeable. If the weights are not given for algorithms that call for link weights, they are all assumed to
be 1.

The data set variable names can have any values that you want. If you use nonstandard names, you
must identify the variables by using the DATA_LINKS_VAR statement, as described in the section
“DATA_LINKS_VAR Statement” on page 27.

For example, the following two data sets identify the same graph:

data LinkSetInA;
input from $ to $ weight;
datalines;

A B 1
A C 2
A D 4
;

data LinkSetInB;
input source_node $ sink_node $ value;
datalines;

A B 1
A C 2
A D 4
;

These data sets can be presented to PROC OPTNET by using the following equivalent statements:

proc optnet
data_links = LinkSetInA;

run;

proc optnet
data_links = LinkSetInB;
data_links_var

from = source_node
to = sink_node
weight = value;

run;

The directed graph G shown in Figure 2.5 can be represented by the links data set LinkSetIn as follows:

data LinkSetIn;
input from $ to $ weight @@;
datalines;

A B 1 A C 2 A D 4 B C 1 B E 2
B F 5 C E 1 D E 1 E D 1 E F 2
F G 6 G H 1 G I 1 H G 2 H I 3
;

The following statements read in this graph, declare it as a directed graph, and output the resulting links and
nodes data sets. These statements do not run any algorithms, so the resulting output simply echoes back the
input graph.

Graph Input Data F 41

proc optnet
graph_direction = directed
data_links = LinkSetIn
out_nodes = NodeSetOut
out_links = LinkSetOut;

run;

The data set NodeSetOut, shown in Figure 2.6, now contains the nodes that were read from the input link
data set. The variable node shows the label associated with each node.

Figure 2.6 Node Data Set of a Simple Directed Graph

node

A
B
C
D
E
F
G
H
I

The data set LinkSetOut, shown in Figure 2.7, contains the links that were read from the input link data set.
The variables from and to show the associated node labels.

Figure 2.7 Link Data Set of a Simple Directed Graph

Obs from to weight

1 A B 1
2 A C 2
3 A D 4
4 B C 1
5 B E 2
6 B F 5
7 C E 1
8 D E 1
9 E D 1

10 E F 2
11 F G 6
12 G H 1
13 G I 1
14 H G 2
15 H I 3

If you define this graph as undirected, then reciprocal links (for example, D $ E) are treated as the same
link and duplicates are removed. PROC OPTNET takes the first occurrence of the link and ignores the others.
The default for the GRAPH_DIRECTION= option is UNDIRECTED, so you can just remove this option to
declare the graph as undirected.

42 F Chapter 2: The OPTNET Procedure

proc optnet
data_links = LinkSetIn
out_nodes = NodeSetOut
out_links = LinkSetOut;

run;

The progress of the procedure is shown in Figure 2.8. The log now shows the links (and their observation
identifiers) that were declared as duplicates and removed.

Figure 2.8 PROC OPTNET Log: Link Data Set of a Simple Undirected Graph

NOTE: ---
NOTE: Running OPTNET version 12.3.
NOTE: ---
NOTE: Data input used 0.01 (cpu: 0.02) seconds.
WARNING: Link (E,D) in observation 9 of the DATA_LINKS data set is a duplicate

and is ignored.
WARNING: Link (H,G) in observation 14 of the DATA_LINKS data set is a duplicate

and is ignored.
NOTE: The number of nodes in the input graph is 9.
NOTE: The number of links in the input graph is 13.
NOTE: ---
NOTE: Data output used 0.00 (cpu: 0.00) seconds.
NOTE: ---
NOTE: The data set WORK.NODESETOUT has 9 observations and 1 variables.
NOTE: The data set WORK.LINKSETOUT has 13 observations and 3 variables.

The data set NodeSetOut is equivalent to the one shown in Figure 2.6. However, the new links data set
LinkSetOut shown in Figure 2.9 contains two fewer links than before, because duplicates are removed.

Figure 2.9 Link Data Set of a Simple Undirected Graph

Obs from to weight

1 A B 1
2 A C 2
3 A D 4
4 B C 1
5 B E 2
6 B F 5
7 C E 1
8 D E 1
9 E F 2

10 F G 6
11 G H 1
12 G I 1
13 H I 3

Graph Input Data F 43

Certain algorithms can perform more efficiently when you specify GRAPH_INTERNAL_FORMAT=THIN
in the PROC OPTNET statement. However, when you specify this option, duplicate links are not removed
by the procedure. Instead, you should use appropriate DATA steps to clean your data before calling PROC
OPTNET.

Adjacency Matrix Input Data

An alternate way to define the links of an input graph is to use an adjacency matrix and the
DATA_ADJ_MATRIX= option in the PROC OPTNET statement. An adjacency matrix is a square matrix
with one row and column for each node in the graph and a nonzero value to represent the existence (or
weight) of a link in the graph. The row index defines the from node, and the column index defines the to node.
A matrix value that is 0 or missing (.) represents a link that does not exist in the graph.

You can specify any values that you want for the data set variable names (the columns) by using the
DATA_ADJ_MATRIX_VAR statement, as described in the section “DATA_ADJ_MATRIX_VAR Statement”
on page 27. If no names are given, then PROC OPTNET assumes that all numeric variables in the data set
are to be used in defining nodes and links.

The directed graph G shown in Figure 2.5 can be represented structurally by using the adjacency matrix data
set AdjMatSetIn as follows:

data AdjMatSetIn;
input var1-var9;
datalines;

0 1 1 1 0 0 0 0 0
0 0 1 0 1 1 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0
;

Equivalently, the following data set provides the same information by using missing values (.) instead of 0s:

data AdjMatSetIn;
input var1-var9;
datalines;

. 1 1 1

. . 1 . 1 1 . . .

. . . . 1

. . . . 1

. . . 1 . 1 . . .

. 1 . .

. 1 1

. 1 . 1

.
;

44 F Chapter 2: The OPTNET Procedure

To represent the weights, you can simply use the weights from Figure 2.5 in the input matrix as follows:

data AdjMatWtSetIn;
input var1-var9;
datalines;

. 1 2 4

. . 1 . 2 5 . . .

. . . . 1

. . . . 1

. . . 1 . 2 . . .

. 6 . .

. 1 1

. 2 . 3

.
;

This same graph can be represented by the links data set LinkSetInNum as follows:

data LinkSetInNum;
input from to weight @@;
datalines;

0 1 1 0 2 2 0 3 4 1 2 1 1 4 2
1 5 5 2 4 1 3 4 1 4 3 1 4 5 2
5 6 6 6 7 1 6 8 1 7 6 2 7 8 3
;

So the following two procedure calls are equivalent:

proc optnet
graph_direction = directed
data_links = LinkSetInNum;

run;

proc optnet
graph_direction = directed
data_adj_matrix = AdjMatWtSetIn;

run;

The first set of statements uses the DATA_LINKS= option, which represents the graph in sparse for-
mat, as described in the section “Link Input Data” on page 39. The second set of statements uses the
DATA_ADJ_MATRIX= option, which represents the graph as an adjacency matrix (a dense format). The
dense format is not appropriate for large graphs because the memory requirements grow quadratically with
the number of nodes.

Node Input Data

The DATA_NODES= option in the PROC OPTNET statement defines the data set that contains the list of
nodes in the graph. This data set is used to assign node weights.

The nodes data set is expected to contain some combination of the following possible variables:

• node: the node label (this variable can be numeric or character)

• weight: the node weight (this variable must be numeric)

• weight2: the auxiliary node weight (this variable must be numeric)

Graph Input Data F 45

You can specify any values that you want for the data set variable names. If you use nonstandard names,
you must identify the variables by using the DATA_NODES_VAR statement, as described in the section
“DATA_NODES_VAR Statement” on page 28.

The data set that is specified in the DATA_LINKS= option defines the set of nodes that are incident to some
link. If the graph contains a node that has no links (called a singleton node), then this node must be defined
in the DATA_NODES data set. The following is an example of a graph with three links but four nodes,
including a singleton node D:

data NodeSetIn;
input label $ @@;
datalines;

A B C D
;

data LinkSetInS;
input from $ to $ weight;
datalines;

A B 1
A C 2
B C 1
;

If you specify duplicate entries in the node data set, PROC OPTNET takes the first occurrence of the node
and ignores the others. A warning is printed to the log.

Node Subset Input Data

For some algorithms you might want to process only a subset of the nodes in the input graph. You can
accomplish this by using the DATA_NODES_SUB= option in the PROC OPTNET statement. You can use
the node subset data set in conjunction with the SHORTPATH statement (see the section “Shortest Path” on
page 77. The node subset data set is expected to contain some combination of the following variables:

• node: the node label (this variable can be numeric or character)

• source: whether to process this node as a source node in shortest path algorithms (this variable must
be numeric)

• sink: whether to process this node as a sink node in shortest path algorithms (this variable must be
numeric)

The values in the node subset data set determine how to process nodes when the SHORTPATH statement is
processed. A value of 0 for the source variable designates that the node is not to be processed as a source; a
value of 1 designates that the node is to be processed as a source. The same values can be used for the sink
variable to designate whether the node is to be processed as a sink. The missing indicator (.) can also be used
in place of 0 to designate that a node is not to be processed.

46 F Chapter 2: The OPTNET Procedure

A representative example of a node subset data set that might be used with the graph in Figure 2.5 is as
follows:

data NodeSubSetIn;
input node $ source sink;
datalines;

A 1 .
F . 1
E 1 .
;

The data set NodeSubSetIn indicates that you want to process the shortest paths from nodes A and E and the
shortest paths to node F.

Matrix Input Data
This section describes the matrix input format that you can use with some of the algorithms in PROC
OPTNET. The DATA_MATRIX= option in the PROC OPTNET statement defines the data set that contains
the matrix values. You can specify any values that you want for the data set variable names (the columns) by
using the DATA_MATRIX_VAR statement, as described in the section “DATA_MATRIX_VAR Statement”
on page 28. If you do not specify any names, then PROC OPTNET assumes that all numeric variables in the
data set are to be used in defining the matrix.

The following statements solve the linear assignment problem for the cost matrix that is defined in the data
set CostMatrix:

data CostMatrix;
input back breast fly free;
datalines;

35.1 36.7 28.3 36.1
34.6 32.6 26.9 26.2
31.3 33.9 27.1 31.2
28.6 34.1 29.1 30.3
32.9 32.2 26.6 24.0
27.8 32.5 27.8 27.0
26.3 27.6 23.5 22.4
29.0 24.0 27.9 25.4
27.2 33.8 25.2 24.1
27.0 29.2 23.0 21.9
;

proc optnet
data_matrix = CostMatrix;
data_matrix_var

back--free;
linear_assignment

out = LinearAssign;
run;

Biconnected Components and Articulation Points F 47

Biconnected Components and Articulation Points
A biconnected component of a graph G D .N;A/ is a connected subgraph that cannot be broken into
disconnected pieces by deleting any single node (and its incident links). An articulation point is a node
of a graph whose removal would cause an increase in the number of connected components. Articulation
points can be important when you analyze any graph that represents a communications network. Consider an
articulation point i 2 N which, if removed, disconnects the graph into two components C 1 and C 2. All paths
in G between some nodes in C 1 and some nodes in C 2 must pass through node i . In this sense, articulation
points are critical to communication. Examples of where articulation points are important are airline hubs,
electric circuits, network wires, protein bonds, traffic routers, and numerous other industrial applications.

In PROC OPTNET, you can find biconnected components and articulation points of an input graph by
invoking the BICONCOMP statement. This algorithm works only with undirected graphs.

The results for the biconnected components algorithm are written to the output links data set that is specified
in the OUT_LINKS= option in the PROC OPTNET statement. For each link in the links data set, the variable
biconcomp identifies its component. The component identifiers are numbered sequentially starting from
1. The results for the articulation points are written to the output nodes data set that is specified in the
OUT_NODES= option in the PROC OPTNET statement. For each node in the nodes data set, the variable
artpoint is either 1 (if the node is an articulation point) or 0 (otherwise).

The biconnected components algorithm reports status information in a macro variable called _OROPT-
NET_BICONCOMP_. See the section “Macro Variable _OROPTNET_BICONCOMP_” on page 99 for
more information about this macro variable.

The algorithm used by PROC OPTNET to compute biconnected components is a variant of depth-first search
(Tarjan 1972). This algorithm runs in time O.jN j C jAj/ and therefore should scale to very large graphs.

Biconnected Components of a Simple Undirected Graph

This section illustrates the use of the biconnected components algorithm on the simple undirected graph G
shown in Figure 2.10.

48 F Chapter 2: The OPTNET Procedure

Figure 2.10 A Simple Undirected Graph G

A

C

B

E

D

G

F

I
H

The undirected graph G can be represented by the links data set LinkSetInBiCC as follows:

data LinkSetInBiCC;
input from $ to $ @@;
datalines;

A B A F A G B C B D
B E C D E F G I G H
H I
;

The following statements calculate the biconnected components and articulation points and output the results
in the data sets LinkSetOut and NodeSetOut:

proc optnet
data_links = LinkSetInBiCC
out_links = LinkSetOut
out_nodes = NodeSetOut;
biconcomp;

run;

Biconnected Components and Articulation Points F 49

The data set LinkSetOut now contains the biconnected components of the input graph, as shown in Figure 2.11.

Figure 2.11 Biconnected Components of a Simple Undirected Graph

from to biconcomp

A B 2
A F 2
A G 4
B C 1
B D 1
B E 2
C D 1
E F 2
G I 3
G H 3
H I 3

In addition, the data set NodeSetOut contains the articulation points of the input graph, as shown in
Figure 2.12.

Figure 2.12 Articulation Points of a Simple Undirected Graph

node artpoint

A 1
B 1
F 0
G 1
C 0
D 0
E 0
I 0
H 0

50 F Chapter 2: The OPTNET Procedure

The biconnected components are shown graphically in Figure 2.13 and Figure 2.14.

Figure 2.13 Biconnected Components C 1 and C 2

C 1 D fB;C;Dg C 2 D fA;B;E; F g

A

C

B

E

D

G

F

I
H

A

C

B

E

D

G

F

I
H

Figure 2.14 Biconnected Components C 3 and C 4

C 3 D fG;H; I g C 4 D fA;Gg

A

C

B

E

D

G

F

I
H

A

C

B

E

D

G

F

I
H

For a more detailed example, see “Example 2.1: Articulation Points in a Terrorist Network” on page 104.

Clique F 51

Clique
A clique of a graph G D .N;A/ is an induced subgraph that is a complete graph. Every node in a clique is
connected to every other node in that clique. A maximal clique is a clique that is not a subset of the nodes of
any larger clique. That is, it is a set C of nodes such that every pair of nodes in C is connected by a link and
every node not in C is missing a link to at least one node in C . The number of maximal cliques in a given
graph can be very large and can grow exponentially with every node added. Finding cliques in graphs has
applications in numerous industries including bioinformatics, social networks, electrical engineering, and
chemistry.

You can find the maximal cliques of an input graph by invoking the CLIQUE statement. The options for this
statement are described in the section “CLIQUE Statement” on page 24. This algorithm works only with
undirected graphs.

The results for the clique algorithm are written to the output data set that is specified in the OUT= option in
the CLIQUE statement. Each node of each clique is listed in the output data set along with the variable clique
to identify the clique to which it belongs. A node can appear multiple times in this data set if it belongs to
multiple cliques.

The clique algorithm reports status information in a macro variable called _OROPTNET_CLIQUE_. See
the section “Macro Variable _OROPTNET_CLIQUE_” on page 100 for more information about this macro
variable.

The algorithm used by PROC OPTNET to compute maximal cliques is a variant of the Bron-Kerbosch
algorithm (Bron and Kerbosch 1973; Harley 2003). Enumerating all maximal cliques is NP-hard, so this
algorithm typically does not scale to very large graphs.

Maximal Cliques of a Simple Undirected Graph

This section illustrates the use of the clique algorithm on the simple undirected graph G shown in Figure 2.15.

Figure 2.15 A Simple Undirected Graph G

1
0

3

2
5

4

7
6

9

8

52 F Chapter 2: The OPTNET Procedure

The undirected graph G can be represented by the links data set LinkSetIn as follows:

data LinkSetIn;
input from to @@;
datalines;

0 1 0 2 0 3 0 4 0 5
0 6 1 2 1 3 1 4 2 3
2 4 2 5 2 6 2 7 2 8
3 4 5 6 7 8 8 9
;

The following statements calculate the maximal cliques, output the results in the data set Cliques, and use the
SQL procedure as a convenient way to create a table CliqueSizes of clique sizes:

proc optnet
data_links = LinkSetIn;
clique

out = Cliques;
run;

proc sql;
create table CliqueSizes as
select clique, count(*) as size
from Cliques
group by clique
order by size desc;

quit;

The data set Cliques now contains the maximal cliques of the input graph; it is shown in Figure 2.16.

Figure 2.16 Maximal Cliques of a Simple Undirected Graph

clique node

1 0
1 2
1 1
1 3
1 4
2 0
2 2
2 5
2 6
3 2
3 8
3 7
4 8
4 9

Clique F 53

In addition, the data set CliqueSizes contains the number of nodes in each clique; it is shown in Figure 2.17.

Figure 2.17 Sizes of Maximal Cliques of a Simple Undirected Graph

clique size

1 5
2 4
3 3
4 2

The maximal cliques are shown graphically in Figure 2.18 and Figure 2.19.

Figure 2.18 Maximal Cliques C 1 and C 2

C 1 D f0; 1; 2; 3; 4g C 2 D f0; 2; 5; 6g

1
0

3

2
5

4

7
6

9

8

1
0

3

2
5

4

7
6

9

8

54 F Chapter 2: The OPTNET Procedure

Figure 2.19 Maximal Cliques C 2 and C 3

C 2 D f2; 7; 8g C 3 D f8; 9g

1
0

3

2
5

4

7
6

9

8

1
0

3

2
5

4

7
6

9

8

Connected Components
A connected component of a graph is a set of nodes that are all reachable from each other. That is, if two
nodes are in the same component, then there exists a path between them. For a directed graph, there are two
types of components: a strongly connected component has a directed path between any two nodes, and a
weakly connected component ignores direction and requires only that a path exists between any two nodes.

In PROC OPTNET, connected components can be invoked by using the CONCOMP statement. The options
for this statement are described in the section “CONCOMP Statement” on page 24.

There are two main algorithms for finding connected components on an undirected graph: a depth-first search
algorithm (ALGORITHM=DFS) and a union-find algorithm (ALGORITHM=UNION_FIND). Given a graph
G D .N;A/, both algorithms run in time O.jN j C jAj/ and typically can scale to very large graphs. The
default, depth-first search, works only with a full graph structure (GRAPH_INTERNAL_FORMAT=FULL)
and for this reason can sometimes be slower than the union-find algorithm. For directed graphs, the only
algorithm available is depth-first search.

The results for the connected components algorithm are written to the output node data set that is specified in
the OUT_NODES= option in the PROC OPTNET statement. For each node in the node data set, the variable
concomp identifies its component. The component identifiers are numbered sequentially starting from 1.

The connected components algorithm reports status information in a macro variable called _OROPT-
NET_CONCOMP_. See the section “Macro Variable _OROPTNET_CONCOMP_” on page 100 for more
information about this macro variable.

Connected Components F 55

Connected Components of a Simple Undirected Graph

This section illustrates the use of the connected components algorithm on the simple undirected graph G
shown in Figure 2.20.

Figure 2.20 A Simple Undirected Graph G

A

C

B

E

D

GF

I

H

K J

L

The undirected graph G can be represented by the links data set LinkSetIn as follows:

data LinkSetIn;
input from $ to $ @@;
datalines;

A B A C B C C H D E D F D G F E G I K L
;

The following statements calculate the connected components and output the results in the data set Node-
SetOut:

proc optnet
data_links = LinkSetIn
out_nodes = NodeSetOut;
concomp;

run;

The data set NodeSetOut contains the connected components of the input graph and is shown in Figure 2.21.

Figure 2.21 Connected Components of a Simple Undirected Graph

node concomp

A 1
B 1
C 1
H 1
D 2
E 2
F 2
G 2
I 2
K 3
L 3

56 F Chapter 2: The OPTNET Procedure

Notice that the graph was defined by using only the links data set. As seen in Figure 2.20, this graph also
contains a singleton node labeled J, which has no associated links. By definition, this node defines its own
component. But because the input graph was defined with the links data set alone, it did not show up in the
results data set. To define a graph with nodes that have no associated links, you should also define the input
nodes data set. In this case, define the nodes data set NodeSetIn as follows:

data NodeSetIn;
input node $ @@;
datalines;

A B C D E F G H I J K L
;

Now, when you calculate the connected components, you define the input graph by using both the nodes and
links input data sets:

proc optnet
data_nodes = NodeSetIn
data_links = LinkSetIn
out_nodes = NodeSetOut;
concomp;

run;

The resulting data set NodeSetOut includes the singleton node J as its own component, as shown in
Figure 2.22.

Figure 2.22 Connected Components of a Simple Undirected Graph

node concomp

A 1
B 1
C 1
D 2
E 2
F 2
G 2
H 1
I 2
J 3
K 4
L 4

Connected Components F 57

Connected Components of a Simple Directed Graph

This section illustrates the use of the connected components algorithm on the simple directed graph G shown
in Figure 2.23.

Figure 2.23 A Simple Directed Graph G

A

C

B

E

D

G

F

H

The directed graph G can be represented by the links data set LinkSetIn as follows:

data LinkSetIn;
input from $ to $ @@;
datalines;

A B B C B E B F C G
C D D C D H E A E F
F G G F H G H D
;

The following statements calculate the connected components and output the results in the data set Node-
SetOut:

proc optnet
graph_direction = directed
data_links = LinkSetIn
out_nodes = NodeSetOut;
concomp;

run;

58 F Chapter 2: The OPTNET Procedure

The data set NodeSetOut, shown in Figure 2.24, now contains the connected components of the input graph.

Figure 2.24 Connected Components of a Simple Directed Graph

node concomp

A 3
B 3
C 2
E 3
F 1
G 1
D 2
H 2

The connected components are represented graphically in Figure 2.25.

Figure 2.25 Strongly Connected Components of G

A

C

B

E

D

G

FH

Cycle F 59

Cycle
A path in a graph is a sequence of nodes, each of which has a link to the next node in the sequence. A cycle
is a path in which the start node and end node are the same.

In PROC OPTNET, you can find cycles (or just count the cycles) of an input graph by invoking the CYCLE
statement. The options for this statement are described in the section “CYCLE Statement” on page 25. To
find the cycles and report them in an output data set, use the OUT= option. To simply count the cycles, do
not use the OUT= option.

For undirected graphs, each link represents two directed links. For this reason, the following cycles are
filtered out: trivial cycles (A! B ! A) and duplicate cycles that are found by traversing a cycle in both
directions (A! B ! C ! A) and (A! C ! B ! A).

The results for the cycle detection algorithm are written to the output data set that is specified in the OUT=
option in the CYCLE statement. Each node of each cycle is listed in the OUT= data set along with the
variable cycle to identify the cycle to which it belongs. The variable order defines the order (sequence) of the
node in the cycle.

The cycle detection algorithm reports status information in a macro variable called _OROPTNET_CYCLE_.
See the section “Macro Variable _OROPTNET_CYCLE_” on page 101 for more information about this
macro variable.

The algorithm used by PROC OPTNET to compute all cycles is a variant of the algorithm found in Johnson
1975. This algorithm runs in time O..jN j C jAj/.c C 1//, where c is the number of elementary cycles in the
graph. So, the algorithm should scale to large graphs that contain few cycles. However, some graphs can
have a very large number of cycles, so the algorithm might not scale.

If MODE=ALL_CYCLES and there are many cycles, the OUT= data set can become very large. It might
be beneficial to check the number of cycles before you try to create the OUT= data set. When you specify
MODE=FIRST_CYCLE, the algorithm returns the first cycle found and stops processing. This should run
relatively quickly. On large-scale graphs, the MINLINKWEIGHT= and MAXLINKWEIGHT= options can
be relatively expensive and might increase the computation time. See the section “CYCLE Statement” on
page 25 for more information about these options.

60 F Chapter 2: The OPTNET Procedure

Cycle Detection of a Simple Directed Graph

This section provides a simple example for using the cycle detection algorithm on the simple directed graph
G shown in Figure 2.26. Two other examples are Example 2.2, which shows the use of cycle detection for
optimizing a kidney donor exchange, and Example 2.6, which shows another application of cycle detection.

Figure 2.26 A Simple Directed Graph G

A

C

B

E

D F

The directed graph G can be represented by the links data set LinkSetIn as follows:

data LinkSetIn;
input from $ to $ @@;
datalines;

A B A E B C C A C D
D E D F E B E C F E
;

The following statements check whether the graph has a cycle:

proc optnet
graph_direction = directed
data_links = LinkSetIn;
cycle

mode = first_cycle;
run;
%put &_OROPTNET_;
%put &_OROPTNET_CYCLE_;

The result is written to the log of the procedure, as shown Figure 2.27.

Cycle F 61

Figure 2.27 PROC OPTNET Log: Check the Existence of a Cycle in a Simple Directed Graph

NOTE: ---
NOTE: Running OPTNET version 12.3.
NOTE: ---
NOTE: Data input used 0.01 (cpu: 0.02) seconds.
NOTE: The number of nodes in the input graph is 6.
NOTE: The number of links in the input graph is 10.
NOTE: ---
NOTE: Processing CYCLE statement.
NOTE: The graph does have a cycle.
NOTE: Processing cycles used 0.00 (cpu: 0.00) seconds.
NOTE: ---
NOTE: Data output used 0.00 (cpu: 0.00) seconds.
NOTE: ---
STATUS=OK CYCLE=OK
STATUS=OK NUM_CYCLES=1 CPU_TIME=0.00 REAL_TIME=0.00

The following statements count the number of cycles in the graph:

proc optnet
graph_direction = directed
data_links = LinkSetIn;
cycle

mode = all_cycles;
run;
%put &_OROPTNET_;
%put &_OROPTNET_CYCLE_;

The result is written to the log of the procedure, as shown in Figure 2.28.

Figure 2.28 PROC OPTNET Log: Count the Number of Cycles in a Simple Directed Graph

NOTE: ---
NOTE: Running OPTNET version 12.3.
NOTE: ---
NOTE: Data input used 0.01 (cpu: 0.00) seconds.
NOTE: The number of nodes in the input graph is 6.
NOTE: The number of links in the input graph is 10.
NOTE: ---
NOTE: Processing CYCLE statement.
NOTE: The graph has 7 cycles.
NOTE: Processing cycles used 0.00 (cpu: 0.00) seconds.
NOTE: ---
NOTE: Data output used 0.00 (cpu: 0.00) seconds.
NOTE: ---
STATUS=OK CYCLE=OK
STATUS=OK NUM_CYCLES=7 CPU_TIME=0.00 REAL_TIME=0.00

62 F Chapter 2: The OPTNET Procedure

The following statements return the first cycle found in the graph:

proc optnet
graph_direction = directed
data_links = LinkSetIn;
cycle

out = Cycles
mode = first_cycle;

run;

The data set Cycles now contains the first cycle found in the input graph; it is shown in Figure 2.29.

Figure 2.29 First Cycle Found in a Simple Directed Graph

cycle order node

1 1 A
1 2 B
1 3 C
1 4 A

The first cycle found in the input graph is shown graphically in Figure 2.30.

Figure 2.30 A! B ! C ! A

A

C

B

E

D F

The following statements return all of the cycles in the graph:

proc optnet
graph_direction = directed
data_links = LinkSetIn;
cycle

out = Cycles
mode = all_cycles;

run;

Cycle F 63

The data set Cycles now contains all of the cycles in the input graph; it is shown in Figure 2.31.

Figure 2.31 All Cycles in a Simple Directed Graph

cycle order node

1 1 A
1 2 B
1 3 C
1 4 A
2 1 A
2 2 E
2 3 B
2 4 C
2 5 A
3 1 A
3 2 E
3 3 C
3 4 A
4 1 B
4 2 C
4 3 D
4 4 E
4 5 B
5 1 B
5 2 C
5 3 D
5 4 F
5 5 E
5 6 B
6 1 E
6 2 C
6 3 D
6 4 E
7 1 E
7 2 C
7 3 D
7 4 F
7 5 E

64 F Chapter 2: The OPTNET Procedure

The cycles are shown graphically in Figure 2.32 through Figure 2.34.

Figure 2.32 Cycles

A! E ! B ! C ! A A! E ! C ! A

A

C

B

E

D F

A

C

B

E

D F

Figure 2.33 Cycles

B ! C ! D ! E ! B B ! C ! D ! F ! E ! B

A

C

B

E

D F

A

C

B

E

D F

Linear Assignment (Matching) F 65

Figure 2.34 Cycles

C ! D ! F ! E ! C C ! D ! E ! C

A

C

B

E

D F

A

C

B

E

D F

Linear Assignment (Matching)
The linear assignment problem (LAP) is a fundamental problem in combinatorial optimization that involves
assigning workers to tasks at minimal costs. In graph theoretic terms, LAP is equivalent to finding a
minimum-weight matching in a weighted bipartite graph. In a bipartite graph, the nodes can be divided into
two disjoint sets S (workers) and T (tasks) such that every link connects a node in S to a node in T . That is,
the node sets S and T are independent. The concept of assigning workers to tasks can be generalized to the
assignment of any abstract object from one group to some abstract object from a second group.

The linear assignment problem can be formulated as an integer programming optimization problem. The
form of the problem depends on the sizes of the two input sets, S and T . Let A represent the set of possible
assignments between sets S and T . In the bipartite graph, these are the links. If jS j � jT j, then the following
optimization problem is solved:

minimize
X

.i;j /2A

cijxij

subject to
X

.i;j /2A

xij � 1 i 2 S

X
.i;j /2A

xij D 1 j 2 T

xij 2 f0; 1g .i; j / 2 A

66 F Chapter 2: The OPTNET Procedure

This model allows for some elements of set S (workers) to go unassigned (if jS j > jT j). However, if
jS j < jT j, then the following optimization problem is solved:

minimize
X

.i;j /2A

cijxij

subject to
X

.i;j /2A

xij D 1 i 2 S

X
.i;j /2A

xij � 1 j 2 T

xij 2 f0; 1g .i; j / 2 A

This model allows for some elements of set T (tasks) to go unassigned.

In PROC OPTNET, the linear assignment problem solver can be invoked by using the LIN-
EAR_ASSIGNMENT statement. The options for this statement are described in the section “LIN-
EAR_ASSIGNMENT Statement” on page 29. The algorithm used in PROC OPTNET for solving LAP is
based on augmentation of shortest paths (Jonker and Volgenant 1987). This algorithm can be applied to
either matrix data input (see the section “Matrix Input Data” on page 46) or graph data input (see the section
“Graph Input Data” on page 39) as long as the graph is bipartite.

The resulting assignment (or matching) is given in the output data set that is specified in the OUT= option in
the LINEAR_ASSIGNMENT statement.

The linear assignment problem solver reports status information in a macro variable called _OROPT-
NET_LAP_. See the section “Macro Variable _OROPTNET_LAP_” on page 101 for more information about
this macro variable.

For a detailed example, see “Example 2.3: Linear Assignment Problem for Minimizing Swim Times” on
page 112.

Minimum Cut
A cut is a partition of the nodes of a graph into two disjoint subsets. The cut-set is the set of links whose from
and to nodes are in different subsets of the partition. A minimum cut of an undirected graph is a cut whose
cut-set has the smallest link metric, which is measured as follows: For an unweighted graph, the link metric
is the number of links in the cut-set. For a weighted graph, the link metric is the sum of the link weights in
the cut-set.

In PROC OPTNET, the minimum cut algorithm can be invoked by using the experimental MINCUT statement.
The options for this statement are described in the section “MINCUT Statement (Experimental)” on page 31.
This algorithm can be used only on undirected graphs.

If the value of the MAXNUMCUTS= option is greater than 1, then the algorithm can return more than one
set of cuts. The resulting cuts can be described in terms of partitions of the nodes of the graph or the links in
the cut-sets. The node partition is specified by the mincut_i variable, for each cut i , in the data set that is
specified in the OUT_NODES= option in the PROC OPTNET statement. Each node is assigned the value 0
or 1, which defines the side of the partition to which it belongs. The cut-set is defined in the output data set
that is specified in the OUT= option in the MINCUT statement. This data set lists the links and their weights
for each cut.

Minimum Cut F 67

The minimum cut algorithm reports status information in a macro variable called _OROPTNET_MINCUT_.
See the section “Macro Variable _OROPTNET_MINCUT_” on page 102 for more information about this
macro variable.

PROC OPTNET uses the Stoer-Wagner algorithm (Stoer and Wagner 1997) to compute the minimum cuts.
This algorithm runs in time O.jN jjAj C jN j2 log jN j/.

Minimum Cut for a Simple Undirected Graph

As a simple example, consider the weighted undirected graph in Figure 2.35.

Figure 2.35 A Simple Undirected Graph

2

3

2

2

3

1

3

3

2

2

2

4

1

3

2

5

4

7

6

8

68 F Chapter 2: The OPTNET Procedure

The links data set can be represented as follows:

data LinkSetIn;
input from to weight @@;
datalines;

1 2 2 1 5 3 2 3 3 2 5 2 2 6 2
3 4 4 3 7 2 4 7 2 4 8 2 5 6 3
6 7 1 7 8 3
;

The following statements calculate minimum cuts in the graph and output the results in the data set MinCut:

proc optnet
loglevel = moderate
out_nodes = NodeSetOut
data_links = LinkSetIn;
mincut

out = MinCut
maxnumcuts = 3;

run;
%put &_OROPTNET_;
%put &_OROPTNET_MINCUT_;

Minimum Cut F 69

The progress of the procedure is shown in Figure 2.36.

Figure 2.36 PROC OPTNET Log for Minimum Cut

NOTE: ---
NOTE: ---
NOTE: Running OPTNET version 12.3.
NOTE: ---
NOTE: ---
NOTE: Reading the links data set.
NOTE: There were 12 observations read from the data set WORK.LINKSETIN.
NOTE: Data input used 0.01 (cpu: 0.00) seconds.
NOTE: Building the input graph storage used 0.00 (cpu: 0.00) seconds.
NOTE: The input graph storage is using 0.0 MBs of memory.
NOTE: The number of nodes in the input graph is 8.
NOTE: The number of links in the input graph is 12.
NOTE: ---
NOTE: ---
NOTE: Processing MINCUT statement.
NOTE: The MINCUT algorithm is experimental in this release.
NOTE: The minimum cut algorithm found 3 cuts.
NOTE: The cut 1 has weight 4.
NOTE: The cut 2 has weight 5.
NOTE: The cut 3 has weight 5.
NOTE: Processing the minimum cut used 0.00 (cpu: 0.00) seconds.
NOTE: ---
NOTE: ---
NOTE: Creating nodes data set output.
NOTE: Creating minimum cut data set output.
NOTE: Data output used 0.00 (cpu: 0.00) seconds.
NOTE: ---
NOTE: ---
NOTE: The data set WORK.NODESETOUT has 8 observations and 4 variables.
NOTE: The data set WORK.MINCUT has 6 observations and 4 variables.
STATUS=OK MINCUT=OK
STATUS=OK CPU_TIME=0.00 REAL_TIME=0.00

The data set NodeSetOut now contains the partition of the nodes for each cut, shown in Figure 2.37.

Figure 2.37 Minimum Cut Node Partition

node mincut_1 mincut_2 mincut_3

1 1 1 1
2 1 1 0
5 1 1 0
3 0 1 0
6 1 1 0
4 0 1 0
7 0 1 0
8 0 0 0

70 F Chapter 2: The OPTNET Procedure

The data set MinCut contains the links in the cut-sets for each cut. This data set is shown in Figure 2.38 along
with each cut separately.

Figure 2.38 Minimum Cut Sets

mincut from to weight

1 2 3 3
1 6 7 1
2 4 8 2
2 7 8 3
3 1 2 2
3 1 5 3

----------------------------------- mincut=1 -----------------------------------

from to weight

2 3 3
6 7 1

------ ------
mincut 4

----------------------------------- mincut=2 -----------------------------------

from to weight

4 8 2
7 8 3

------ ------
mincut 5

----------------------------------- mincut=3 -----------------------------------

from to weight

1 2 2
1 5 3

------ ------
mincut 5

======
14

Minimum Spanning Tree
A spanning tree of a connected undirected graph is a subgraph that is a tree that connects all the nodes
together. Given weights on the links, a minimum spanning tree (MST) is a spanning tree whose weight is
less than or equal to the weight of every other spanning tree. More generally, any undirected graph (not

Minimum Spanning Tree F 71

necessarily connected) has a minimum spanning forest, which is a union of minimum spanning trees of its
connected components.

In PROC OPTNET, the minimum spanning tree algorithm can be invoked by using the MINSPANTREE
statement. The options for this statement are described in the section “MINSPANTREE Statement” on
page 31. This algorithm can be used only on undirected graphs.

The resulting minimum spanning tree is given in the output data set that is specified in the OUT= option in
the MINSPANTREE statement.

The minimum spanning tree algorithm reports status information in a macro variable called _OROPT-
NET_MST_. See the section “Macro Variable _OROPTNET_MST_” on page 102 for more information
about this macro variable.

PROC OPTNET uses Kruskal’s algorithm (Kruskal 1956) to compute the minimum spanning tree. This
algorithm runs in time O.jAj log jN j/ and therefore should scale to very large graphs.

Minimum Spanning Tree for a Simple Undirected Graph

As a simple example, consider the weighted undirected graph in Figure 2.39.

Figure 2.39 A Simple Undirected Graph

8

9
8

1

11

6

15

2

5

3

7

7

5

9

A

C

B

E

D

G

F

I

H

J

The links data set can be represented as follows:

data LinkSetIn;
input from $ to $ weight @@;
datalines;

A B 7 A D 5 B C 8 B D 9 B E 7
C E 5 D E 15 D F 6 E F 8 E G 9
F G 11 H I 1 I J 3 H J 2
;

72 F Chapter 2: The OPTNET Procedure

The following statements calculate a minimum spanning forest and output the results in the data set MinSpan-
Forest:

proc optnet
data_links = LinkSetIn;
minspantree

out = MinSpanForest;
run;

The data set MinSpanForest now contains the links that belong to a minimum spanning forest, which is
shown in Figure 2.40.

Figure 2.40 Minimum Spanning Forest

from to weight

H I 1
H J 2
C E 5
A D 5
D F 6
B E 7
A B 7
E G 9

======
42

The minimal cost links are shown in green in Figure 2.41.

Figure 2.41 Minimum Spanning Forest

8

9
8

1

11

6

15

2

5

3

7

7

5

9

A

C

B

E

D

G

F

I

H

J

For a more detailed example, see Example 2.5.

Minimum-Cost Network Flow F 73

Minimum-Cost Network Flow
The minimum-cost network flow problem (MCF) is a fundamental problem in network analysis that involves
sending flow over a network at minimal cost. Let G D .N;A/ be a directed graph. For each link .i; j / 2 A,
associate a cost per unit of flow, designated by cij . The demand (or supply) at each node i 2 N is designated
as bi , where bi � 0 denotes a supply node and bi < 0 denotes a demand node. These values must be within
Œbli ; b

u
i �. Define decision variables xij that denote the amount of flow sent between node i and node j . The

amount of flow that can be sent across each link is bounded to be within Œlij ; uij �. The problem can be
modeled as a linear programming problem as follows:

minimize
X

.i;j /2A

cijxij

subject to bli �
X

.i;j /2A

xij �
X

.j;i/2A

xj i � b
u
i i 2 N

lij � xij � uij .i; j / 2 A

When bi D bli D bui for all nodes i 2 N , the problem is called a pure network flow problem. For these
problems, the sum of the supplies and demands must be equal to 0 to ensure that a feasible solution exists.

In PROC OPTNET, the minimum-cost network flow solver can be invoked by using the MINCOSTFLOW
statement. The options for this statement are described in the section “MINCOSTFLOW Statement” on
page 30.

The minimum-cost network flow solver reports status information in a macro variable called _OROPT-
NET_MCF_. See the section “Macro Variable _OROPTNET_MCF_” on page 101 for more information
about this macro variable.

The algorithm used in PROC OPTNET for solving MCF is a variant of the primal network simplex algorithm
(Ahuja, Magnanti, and Orlin 1993). Sometimes the directed graph G is disconnected. In this case, the
problem is first decomposed into its weakly connected components, and then each minimum-cost flow
problem is solved separately.

The input for the network is the standard graph input described in the section “Graph Input Data” on page 39.
The links data set, which is specified in the DATA_LINKS= option in the PROC OPTNET statement, contains
the following columns:

• weight defines the link cost cij

• lower defines the link lower bound lij (the default is 0)

• upper defines the link upper bound uij (the default is1)

The nodes data set, which is specified in the DATA_NODES= option in the PROC OPTNET statement, can
contain the following columns:

• weight defines the node supply lower bound bli (the default is 0)

• weight2 defines the node supply upper bound bui (the default is1)

74 F Chapter 2: The OPTNET Procedure

To define a pure network where the node supply must be met exactly, use the weight variable only. You do
not need to specify all the node supply bounds. For any missing node, the solver uses its default values.

The resulting optimal flow through the network is written to the links output data set, which is specified in
the OUT_LINKS= option in the PROC OPTNET statement.

Minimum Cost Network Flow for a Simple Directed Graph

The following example demonstrates how to use the network simplex solver to find a minimum-cost flow in a
directed graph. Consider the directed graph in Figure 2.42, which appears in Ahuja, Magnanti, and Orlin
(1993).

Figure 2.42 Minimum-Cost Network Flow Problem: Data

2

20

6

0

1b = 10 3

0

5

0

8 −10

4

−5

7

−15

(2, 15)

(1, 10)

(0, 10)

(c = 6, u = 10)

(1, 5)

(4, 10)

(5, 10)

(2, 20)

(7, 15)

(8, 10)

(9, 15)

The directed graph G can be represented by the following links data set LinkSetIn and nodes data set
NodeSetIn.

data LinkSetIn;
input from to weight upper;
datalines;

1 4 2 15
2 1 1 10
2 3 0 10
2 6 6 10
3 4 1 5
3 5 4 10
4 7 5 10
5 6 2 20
5 7 7 15
6 8 8 10
7 8 9 15
;

Minimum-Cost Network Flow F 75

data NodeSetIn;
input node weight;
datalines;

1 10
2 20
4 -5
7 -15
8 -10
;

You can use the following call to PROC OPTNET to find a minimum-cost flow:

proc optnet
loglevel = moderate
graph_direction = directed
data_links = LinkSetIn
data_nodes = NodeSetIn
out_links = LinkSetOut;
mincostflow

logfreq = 1;
run;
%put &_OROPTNET_;
%put &_OROPTNET_MCF_;

76 F Chapter 2: The OPTNET Procedure

The progress of the procedure is shown in Figure 2.43.

Figure 2.43 PROC OPTNET Log for Minimum-Cost Network Flow

NOTE: ---
NOTE: ---
NOTE: Running OPTNET version 12.3.
NOTE: ---
NOTE: ---
NOTE: Reading the links data set.
NOTE: Reading the nodes data set.
NOTE: There were 5 observations read from the data set WORK.NODESETIN.
NOTE: There were 11 observations read from the data set WORK.LINKSETIN.
NOTE: Data input used 0.01 (cpu: 0.00) seconds.
NOTE: Building the input graph storage used 0.00 (cpu: 0.00) seconds.
NOTE: The input graph storage is using 0.0 MBs of memory.
NOTE: The number of nodes in the input graph is 8.
NOTE: The number of links in the input graph is 11.
NOTE: ---
NOTE: ---
NOTE: Processing MINCOSTFLOW statement.
NOTE: The network has 1 connected component.

Primal Primal Dual
Iteration Objective Infeasibility Infeasibility Time

1 0 20.0000000 89.0000000 0.00
2 0 20.0000000 89.0000000 0.00
3 5.0000000 15.0000000 84.0000000 0.00
4 5.0000000 15.0000000 83.0000000 0.00
5 75.0000000 15.0000000 83.0000000 0.00
6 75.0000000 15.0000000 79.0000000 0.00
7 130.0000000 10.0000000 76.0000000 0.00
8 270.0000000 0 0 0.00

NOTE: The Network Simplex solve time is 0.00 seconds.
NOTE: The minimum cost network flow is 270.
NOTE: Processing the minimum cost network flow used 0.00 (cpu: 0.00) seconds.
NOTE: ---
NOTE: Creating links data set output.
NOTE: Data output used 0.00 (cpu: 0.00) seconds.
NOTE: ---
NOTE: ---
NOTE: The data set WORK.LINKSETOUT has 11 observations and 5 variables.
STATUS=OK MCF=OPTIMAL
STATUS=OPTIMAL OBJECTIVE=270 CPU_TIME=0.00 REAL_TIME=0.00

Shortest Path F 77

The optimal solution is displayed in Figure 2.44.

Figure 2.44 Minimum-Cost Network Flow Problem: Optimal Solution

Obs from to upper weight mcf_flow

1 1 4 15 2 10
2 2 1 10 1 0
3 2 3 10 0 10
4 2 6 10 6 10
5 3 4 5 1 5
6 3 5 10 4 5
7 4 7 10 5 10
8 5 6 20 2 0
9 5 7 15 7 5

10 6 8 10 8 10
11 7 8 15 9 0

The optimal solution is represented graphically in Figure 2.45.

Figure 2.45 Minimum-Cost Network Flow Problem: Optimal Solution

2 6

1 3 5 8

4 7

10

0

10

10

5

5

10

0

5

10

0

Shortest Path
A shortest path between two nodes u and v in a graph is a path that starts at u and ends at v with the lowest
total link weight. The starting node is referred to as the source node, and the ending node is referred to as the
sink node.

In PROC OPTNET, shortest paths can be calculated by invoking the SHORTPATH statement. The options
for this statement are described in the section “SHORTPATH Statement” on page 32.

The shortest path algorithm reports status information in a macro variable called _OROPT-
NET_SHORTPATH_. See the section “Macro Variable _OROPTNET_SHORTPATH_” on page 102
for more information about this macro variable.

78 F Chapter 2: The OPTNET Procedure

By default, PROC OPTNET finds shortest paths for all pairs. That is, it finds a shortest path for each possible
combination of source and sink nodes. Alternatively, you can use the SOURCE= option to fix a particular
source node and find shortest paths from the fixed source node to all possible sink nodes. Conversely, by
using the SINK= option, you can fix a sink node and find shortest paths from all possible source nodes to
the fixed sink node. Using both options together, you can request one particular shortest path for a specific
source-sink pair. In addition, you can use the DATA_NODES_SUB= option to define a list of source-sink
pairs to process, as described in the section “Node Subset Input Data” on page 45. The following sections
show examples of these options.

The algorithm used in PROC OPTNET for finding shortest paths is a variant of Dijkstra’s algorithm (Ahuja,
Magnanti, and Orlin 1993). For unweighted graphs, PROC OPTNET uses a variant of breadth-first search.
Dijkstra’s algorithm on weighted graphs runs in timeO.jN j log jN jCjAj/ for each source node. Breadth-first
search runs in time O.jN j C jAj/ for each source node.

For weighted graphs, the algorithm uses the weight variable that is defined in the links data set to evaluate
a path’s total weight (or cost). You can also use the WEIGHT2= option in the SHORTPATH statement to
define an auxiliary weight. The auxiliary weight is not used in the algorithm to evaluate a path’s total weight.
It is simply calculated for the sake of reporting the total auxiliary weight for each shortest path.

Output Data Sets

The shortest path algorithm produces up to two output data sets. The output data set that is specified in the
OUT_PATHS= option contains the links of a shortest path for each source-sink pair combination. The output
data set that is specified in the OUT_WEIGHTS= option contains the total weight for the shortest path for
each source-sink pair combination.

OUT_PATHS= Data Set
This data set contains the links present in the shortest path for each of the source-sink pairs. For large graphs
and a large requested number of source-sink pairs, this output data set can be extremely large. In this case,
the generation of the output can sometimes take longer than the computation of the shortest paths. For
example, using the U.S. road network data for the state of New York, the data contain a directed graph with
264,346 nodes. Finding the shortest path for all pairs from only one source node results in 140,969,120
observations, which is a data set of size 11 GB. Finding shortest paths for all pairs from all nodes would
produce an enormous output data set.

The OUT_PATHS= data set contains the following columns:

• source: the source node label of this shortest path

• sink: the sink node label of this shortest path

• order: for this source-sink pair, the order of this link in a shortest path

• from: the from node label of this link in a shortest path

• to: the to node label of this link in a shortest path

• weight: the weight of this link in a shortest path

• weight2: the auxiliary weight of this link

Shortest Path F 79

OUT_WEIGHTS= Data Set
This data set contains the total weight (and total auxiliary weight) for the shortest path for each of the
source-sink pair.

The data set contains the following columns:

• source: the source node label of this shortest path

• sink: the sink node label of this shortest path

• path_weight: the total weight of the shortest path for this source-sink pair

• path_weight2: the total auxiliary weight of the shortest path for this source-sink pair

Shortest Paths for All Pairs

This example illustrates the use of the shortest path algorithm for all source-sink pairs on the simple undirected
graph G shown in Figure 2.46.

Figure 2.46 A Simple Undirected Graph G

2

1

4

1

6

4

5

3 2

5

A

C

B

E

D

F

80 F Chapter 2: The OPTNET Procedure

The undirected graph G can be represented by the links data set LinkSetIn as follows:

data LinkSetIn;
input from $ to $ weight @@;
datalines;

A B 3 A C 2 A D 6 A E 4 B D 5
B F 5 C E 1 D E 2 D F 1 E F 4
;

The following statements calculate shortest paths for all source-sink pairs:

proc optnet
data_links = LinkSetIn;
shortpath

out_weights = ShortPathW
out_paths = ShortPathP;

run;

The data set ShortPathP contains the shortest paths and is shown in Figure 2.47.

Shortest Path F 81

Figure 2.47 All-Pairs Shortest Paths

ShortPathP

source sink order from to weight

A B 1 A B 3
A C 1 A C 2
A D 1 A C 2
A D 2 C E 1
A D 3 E D 2
A E 1 A C 2
A E 2 C E 1
A F 1 A C 2
A F 2 C E 1
A F 3 E D 2
A F 4 D F 1
B A 1 B A 3
B C 1 B A 3
B C 2 A C 2
B D 1 B D 5
B E 1 B A 3
B E 2 A C 2
B E 3 C E 1
B F 1 B F 5
C A 1 C A 2
C B 1 C A 2
C B 2 A B 3
C D 1 C E 1
C D 2 E D 2
C E 1 C E 1
C F 1 C E 1
C F 2 E D 2
C F 3 D F 1
D A 1 D E 2
D A 2 E C 1
D A 3 C A 2
D B 1 D B 5
D C 1 D E 2
D C 2 E C 1
D E 1 D E 2
D F 1 D F 1
E A 1 E C 1
E A 2 C A 2
E B 1 E C 1
E B 2 C A 2
E B 3 A B 3
E C 1 E C 1
E D 1 E D 2
E F 1 E D 2
E F 2 D F 1
F A 1 F D 1
F A 2 D E 2
F A 3 E C 1
F A 4 C A 2
F B 1 F B 5
F C 1 F D 1
F C 2 D E 2
F C 3 E C 1
F D 1 F D 1
F E 1 F D 1
F E 2 D E 2

82 F Chapter 2: The OPTNET Procedure

The data set ShortPathW contains the path weight for the shortest paths of each source-sink pair and is shown
in Figure 2.48.

Figure 2.48 All-Pairs Shortest Paths Summary

ShortPathW

path_
source sink weight

A B 3
A C 2
A D 5
A E 3
A F 6
B A 3
B C 5
B D 5
B E 6
B F 5
C A 2
C B 5
C D 3
C E 1
C F 4
D A 5
D B 5
D C 3
D E 2
D F 1
E A 3
E B 6
E C 1
E D 2
E F 3
F A 6
F B 5
F C 4
F D 1
F E 3

When you are interested only in the source-sink pair with the longest shortest path, you can use the PATHS=
option. This option affects only the output processing; it does not affect the computation. All of the designated
source-sink shortest paths are calculated, but only the longest ones are written to the output data set.

The following statements display only the longest shortest paths:

proc optnet
data_links = LinkSetIn;
shortpath

paths = longest
out_paths = ShortPathLong;

run;

Shortest Path F 83

The data set ShortPathLong now contains the longest shortest paths and is shown in Figure 2.49.

Figure 2.49 Longest Shortest Path

ShortPathLong

source sink order from to weight

A F 1 A C 2
A F 2 C E 1
A F 3 E D 2
A F 4 D F 1
B E 1 B A 3
B E 2 A C 2
B E 3 C E 1
E B 1 E C 1
E B 2 C A 2
E B 3 A B 3
F A 1 F D 1
F A 2 D E 2
F A 3 E C 1
F A 4 C A 2

Shortest Paths for a Subset of Source-Sink Pairs

This section illustrates the use of a node subset data set, the DATA_NODES_SUB= option, and the shortest
path algorithm for calculating shortest paths between a subset of source-sink pairs. The data set variables
source and sink are used as indicators to specify which pairs to process. The marked source nodes define a
set S , and the marked sink nodes define a set T . PROC OPTNET then calculates all the source-sink pairs in
the cross product of these two sets.

For example, the following DATA step tells PROC OPTNET to calculate the pairs in S�T D fA;C g�fB;F g:

data NodeSetInSub;
input node $ source sink;
datalines;

A 1 0
C 1 0
B 0 1
F 0 1
;

The following statements calculate a shortest path for the four combinations of source-sink pairs:

proc optnet
data_nodes_sub = NodeSetInSub
data_links = LinkSetIn;
shortpath

out_paths = ShortPath;
run;

84 F Chapter 2: The OPTNET Procedure

The data set ShortPath contains the shortest paths and is shown in Figure 2.50.

Figure 2.50 Shortest Paths for a Subset of Source-Sink Pairs

ShortPath

source sink order from to weight

A B 1 A B 3
A F 1 A C 2
A F 2 C E 1
A F 3 E D 2
A F 4 D F 1
C B 1 C A 2
C B 2 A B 3
C F 1 C E 1
C F 2 E D 2
C F 3 D F 1

Shortest Paths for a Subset of Source or Sink Pairs

This section illustrates the use of the shortest path algorithm for calculating shortest paths between a subset
of source (or sink) nodes and all other sink (or source) nodes.

In this case, you designate the subset of source (or sink) nodes in the node subset data set by specifying
source (or sink). By specifying only one of the variables, you indicate that you want PROC OPTNET to
calculate all pairs from a subset of source nodes (or all pairs to a subset of sink nodes).

For example, the following DATA step designates nodes B and E as source nodes:

data NodeSetInSub;
input node $ source;
datalines;

B 1
E 1
;

You can use the same PROC OPTNET call as is used in the section “Shortest Paths for a Subset of Source-Sink
Pairs” on page 83 to calculate all the shortest paths from nodes B and E. The data set ShortPath contains the
shortest paths and is shown in Figure 2.51.

Shortest Path F 85

Figure 2.51 Shortest Paths for a Subset of Source Pairs

ShortPath

source sink order from to weight

B A 1 B A 3
B C 1 B A 3
B C 2 A C 2
B D 1 B D 5
B E 1 B A 3
B E 2 A C 2
B E 3 C E 1
B F 1 B F 5
E A 1 E C 1
E A 2 C A 2
E B 1 E C 1
E B 2 C A 2
E B 3 A B 3
E C 1 E C 1
E D 1 E D 2
E F 1 E D 2
E F 2 D F 1

Conversely, the following DATA step designates nodes B and E as sink nodes:

data NodeSetInSub;
input node $ sink;
datalines;

B 1
E 1
;

You can use the same PROC OPTNET call again to calculate all the shortest paths to nodes B and E. The
data set ShortPath contains the shortest paths and is shown in Figure 2.52.

86 F Chapter 2: The OPTNET Procedure

Figure 2.52 Shortest Paths for a Subset of Sink Pairs

ShortPath

source sink order from to weight

A B 1 A B 3
A E 1 A C 2
A E 2 C E 1
B E 1 B A 3
B E 2 A C 2
B E 3 C E 1
C B 1 C A 2
C B 2 A B 3
C E 1 C E 1
D B 1 D B 5
D E 1 D E 2
E B 1 E C 1
E B 2 C A 2
E B 3 A B 3
F B 1 F B 5
F E 1 F D 1
F E 2 D E 2

Shortest Paths for One Source-Sink Pair

This section illustrates the use of the shortest path algorithm for calculating shortest paths between one
source-sink pair by using the SOURCE= and SINK= options.

The following statements calculate a shortest path between node C and node F :

proc optnet
data_links = LinkSetIn;
shortpath

source = C
sink = F
out_paths = ShortPath;

run;

The data set ShortPath contains this shortest path and is shown in Figure 2.53.

Figure 2.53 Shortest Paths for One Source-Sink Pair

ShortPath

source sink order from to weight

C F 1 C E 1
C F 2 E D 2
C F 3 D F 1

Shortest Path F 87

The shortest path is shown graphically in Figure 2.54.

Figure 2.54 Shortest Path between Nodes C and F

2

1

4

1

6

4

5

3 2

5

A

C

B

E

D

F

Shortest Paths with Auxiliary Weight Calculation

This section illustrates the use of the shortest path algorithm with auxiliary weights for calculating shortest
paths between all source-sink pairs.

Consider a links data set where the auxiliary weight is a counter for each link:

data LinkSetIn;
input from $ to $ weight count @@;
datalines;

A B 3 1 A C 2 1 A D 6 1 A E 4 1 B D 5 1
B F 5 1 C E 1 1 D E 2 1 D F 1 1 E F 4 1
;

88 F Chapter 2: The OPTNET Procedure

The following statements calculate shortest paths for all source-sink pairs:

proc optnet
data_links = LinkSetIn;
shortpath

weight2 = count
out_weights = ShortPathW;

run;

The data set ShortPathW contains the total path weight for shortest paths in each source-sink pair and is
shown in Figure 2.55. Since the variable count in LinkSetIn is 1 for all links, the value in the output data set
variable path_weights2 gives the number of links in each shortest path.

Figure 2.55 Shortest Paths Including Auxiliary Weights in Calculation

ShortPathW

path_ path_
source sink weight weight2

A B 3 1
A C 2 1
A D 5 3
A E 3 2
A F 6 4
B A 3 1
B C 5 2
B D 5 1
B E 6 3
B F 5 1
C A 2 1
C B 5 2
C D 3 2
C E 1 1
C F 4 3
D A 5 3
D B 5 1
D C 3 2
D E 2 1
D F 1 1
E A 3 2
E B 6 3
E C 1 1
E D 2 1
E F 3 2
F A 6 4
F B 5 1
F C 4 3
F D 1 1
F E 3 2

The section “Road Network Shortest Path” on page 13 shows an example of using the shortest path algorithm
for minimizing travel to and from work based on traffic conditions.

Transitive Closure F 89

Transitive Closure
The transitive closure of a graph G is a graph GT D .N;AT / such that for all i; j 2 N there is a link
.i; j / 2 AT if and only if there exists a path from i to j in G.

The transitive closure of a graph can help to efficiently answer questions about reachability. Suppose you
want to answer the question of whether you can get from node i to node j in the original graph G. Given the
transitive closure GT of G, you can simply check for the existence of link .i; j / to answer the question. This
has many applications, including speeding up the processing of structured query languages, which are often
used in databases.

In PROC OPTNET, the transitive closure algorithm can be invoked by using the TRANSITIVE_CLOSURE
statement. The options for this statement are described in the section “TRANSITIVE_CLOSURE Statement”
on page 34.

The results for the transitive closure algorithm are written to the output data set that is specified in the OUT=
option in the TRANSITIVE_CLOSURE statement. The links that define the transitive closure are listed in
the output data set with variable names from and to.

The transitive closure algorithm reports status information in a macro variable called _OROPT-
NET_TRANSCL_. See the section “Macro Variable _OROPTNET_TRANSCL_” on page 103 for more
information about this macro variable.

The algorithm used by PROC OPTNET to compute transitive closure is a sparse version of the Floyd-Warshall
algorithm (Cormen, Leiserson, and Rivest 1990). This algorithm runs in time O.jN j3/ and therefore might
not scale to very large graphs.

Transitive Closure of a Simple Directed Graph

This example illustrates the use of the transitive closure algorithm on the simple directed graph G shown in
Figure 2.56.

Figure 2.56 A Simple Directed Graph G

AC

B

D

90 F Chapter 2: The OPTNET Procedure

The directed graph G can be represented by the links data set LinkSetIn as follows:

data LinkSetIn;
input from $ to $ @@;
datalines;

B C B D C B D A D C
;

The following statements calculate the transitive closure and output the results in the data set TransClosure:

proc optnet
graph_direction = directed
data_links = LinkSetIn;
transitive_closure

out = TransClosure;
run;

The data set TransClosure contains the transitive closure of G and is shown in Figure 2.57.

Figure 2.57 Transitive Closure of a Simple Directed Graph

Transitive Closure

from to

B C
B D
C B
D A
D C
C C
C D
B B
D B
D D
B A
C A

Traveling Salesman Problem F 91

The transitive closure of G is shown graphically in Figure 2.58.

Figure 2.58 Transitive Closure of G

A

C

B

D

For a more detailed example, see Example 2.6.

Traveling Salesman Problem
The traveling salesman problem (TSP) finds a minimum-cost tour in an undirected graph G with node set N
and links set A. A tour is a connected subgraph for which each node has degree two. The goal is then to find
a tour of minimum total cost, where the total cost is the sum of the costs of the links in the tour. With each
link .i; j / 2 A, a binary variable xij , which indicates whether link xij is part of the tour, and a cost cij are
associated. Let ı.S/ D f.i; j / 2 A j i 2 S; j … Sg. Then an integer linear programming formulation of the
TSP is as follows:

minimize
X

.i;j /2A

cijxij

subject to
X

.i;j /2ı.i/

xi;j D 2 i 2 N .two_match/X
.i;j /2ı.S/

xij � 2 S � N; 2 � jS j � jN j � 1 .subtour_elim/

xij 2 f0; 1g .i; j / 2 A

The equations (two_match) are the matching constraints, which ensure that each node has degree two in the
subgraph, and the inequalities (subtour_elim) are the subtour elimination constraints (SECs), which enforce
connectivity.

92 F Chapter 2: The OPTNET Procedure

In practical terms, you can think of the TSP in the context of a routing problem in which each node is a city
and the links are roads that connect cities. Given the pairwise distances between each city, the goal is to find
the shortest possible route that visits each city exactly once. The TSP has applications in planning, logistics,
manufacturing, genomics, and many other areas.

In PROC OPTNET, the traveling salesman problem solver can be invoked by using the TSP statement. The
options for this statement are described in the section “TSP Statement” on page 34.

The traveling salesman problem solver reports status information in a macro variable called _OROPT-
NET_TSP_. See the section “Macro Variable _OROPTNET_TSP_” on page 103 for more information about
this macro variable.

The algorithm used in PROC OPTNET for solving TSP is based on a variant of the branch-and-cut process
described in (Applegate et al. 2006).

The resulting tour is represented in two ways: In the data set that is specified in the OUT_NODES= option in
the PROC OPTNET statement, the tour is given as a sequence of nodes. In the data set that is specified in the
OUT= option of the TSP statement, the tour is given as a list of links in the optimal tour.

Traveling Salesman Problem of a Simple Undirected Graph

As a simple example, consider the weighted undirected graph in Figure 2.59.

Figure 2.59 A Simple Undirected Graph

1

4

3

1.5

3

3

1

4

2

1

4

2

1

1.5

4

3

1

3

3

5

1

1

A

C

B

E

D

G

F

I H

J

Traveling Salesman Problem F 93

The links data set can be represented as follows:

data LinkSetIn;
input from $ to $ weight @@;
datalines;

A B 1.0 A C 1.0 A D 1.5 B C 2.0 B D 4.0
B E 3.0 C D 3.0 C F 3.0 C H 4.0 D E 1.5
D F 3.0 D G 4.0 E F 1.0 E G 1.0 F G 2.0
F H 4.0 H I 3.0 I J 1.0 C J 5.0 F J 3.0
F I 1.0 H J 1.0
;

The following statements calculate an optimal traveling salesman tour and output the results in the data sets
TSPTour and NodeSetOut:

proc optnet
loglevel = moderate
data_links = LinkSetIn
out_nodes = NodeSetOut;
tsp

out = TSPTour;
run;
%put &_OROPTNET_;
%put &_OROPTNET_TSP_;

94 F Chapter 2: The OPTNET Procedure

The progress of the procedure is shown in Figure 2.60.

Figure 2.60 PROC OPTNET Log: Optimal Traveling Salesman Tour of a Simple Undirected Graph

NOTE: ---
NOTE: ---
NOTE: Running OPTNET version 12.3.
NOTE: ---
NOTE: ---
NOTE: Reading the links data set.
NOTE: There were 22 observations read from the data set WORK.LINKSETIN.
NOTE: Data input used 0.01 (cpu: 0.02) seconds.
NOTE: Building the input graph storage used 0.00 (cpu: 0.00) seconds.
NOTE: The input graph storage is using 0.0 MBs of memory.
NOTE: The number of nodes in the input graph is 10.
NOTE: The number of links in the input graph is 22.
NOTE: ---
NOTE: ---
NOTE: Processing TSP statement.
NOTE: The initial TSP heuristics found a tour with cost 16 using 0.00 (cpu:

0.00) seconds.
NOTE: The MILP presolver value NONE is applied.
NOTE: The MILP solver is called.

Node Active Sols BestInteger BestBound Gap Time
0 1 2 16.0000000 16.0000000 0.00% 0
0 0 2 16.0000000 16.0000000 0.00% 0

NOTE: Optimal.
NOTE: Objective = 16.
NOTE: Processing the traveling salesman problem used 0.03 (cpu: 0.00) seconds.
NOTE: ---
NOTE: ---
NOTE: Creating nodes data set output.
NOTE: Creating traveling salesman data set output.
NOTE: Data output used 0.00 (cpu: 0.00) seconds.
NOTE: ---
NOTE: ---
NOTE: The data set WORK.NODESETOUT has 10 observations and 2 variables.
NOTE: The data set WORK.TSPTOUR has 10 observations and 3 variables.
STATUS=OK TSP=OPTIMAL
STATUS=OPTIMAL OBJECTIVE=16 RELATIVE_GAP=0 ABSOLUTE_GAP=0
PRIMAL_INFEASIBILITY=0 BOUND_INFEASIBILITY=0 INTEGER_INFEASIBILITY=0
BEST_BOUND=16 NODES=1 ITERATIONS=15 CPU_TIME=0.00 REAL_TIME=0.03

Traveling Salesman Problem F 95

The data set NodeSetOut now contains a sequence of nodes in the optimal tour and is shown in Figure 2.61.

Figure 2.61 Nodes in the Optimal Traveling Salesman Tour

Traveling Salesman Problem

tsp_
node order

A 1
B 2
C 3
H 4
J 5
I 6
F 7
G 8
E 9
D 10

The data set TSPTour now contains the links in the optimal tour and is shown in Figure 2.62.

Figure 2.62 Links in the Optimal Traveling Salesman Tour

Traveling Salesman Problem

from to weight

A B 1.0
B C 2.0
C H 4.0
H J 1.0
I J 1.0
F I 1.0
F G 2.0
E G 1.0
D E 1.5
A D 1.5

======
16.0

96 F Chapter 2: The OPTNET Procedure

The minimum-cost links are shown in green in Figure 2.63.

Figure 2.63 Optimal Traveling Salesman Tour

1

4

3

1.5

3

3

1

4

2

1

4

2

1

1.5

4

3

1

3

3

5

1

1

A

C

B

E

D

G

F

I H

J

Macro Variable _OROPTNET_
The OPTNET procedure defines a macro variable named _OROPTNET_. This variable contains a character
string that indicates the status of the OPTNET procedure upon termination. The various terms of the variable
are interpreted as follows:

STATUS
indicates the status of the procedure at termination. The STATUS term can take one of the following
values:

OK The procedure terminated normally.

OUT_OF_MEMORY Insufficient memory was allocated to the procedure.

ERROR The procedure encountered an error.

BICONCOMP
indicates the status of the biconnected components algorithm at termination. This algorithm is described
in the section “Biconnected Components and Articulation Points” on page 47. The BICONCOMP
term can take one of the following values:

OK The algorithm terminated normally.

ERROR The algorithm encountered an error.

CLIQUE
indicates the status of the clique-finding algorithms at termination. These algorithms are described in
the section “Clique” on page 51. The CLIQUE term can take one of the following values:

Macro Variable _OROPTNET_ F 97

OK The algorithm terminated normally.

TIMELIMIT The algorithm reached its execution time limit, which is indicated by the
MAXTIME= option in the CLIQUE statement.

SOLUTION_LIM The algorithm reached its limit on the number of cliques found, which is
indicated by the MAXCLIQUES= option in the CLIQUE statement.

ERROR The algorithm encountered an error.

CONCOMP
indicates the status of the connected components algorithm at termination. This algorithm is described
in the section “Connected Components” on page 54. The CONCOMP term can take one of the
following values:

OK The algorithm terminated normally.

ERROR The algorithm encountered an error.

CYCLE
indicates the status of the cycle detection algorithm at termination. This algorithm is described in the
section “Cycle” on page 59. The CYCLE term can take one of the following values:

OK The algorithm terminated normally.

TIMELIMIT The algorithm reached its execution time limit, which is indicated by the
MAXTIME= option in the CYCLE statement.

SOLUTION_LIM The algorithm reached its limit on the number of cycles found, which is
indicated by the MAXCYCLES= option in the CYCLE statement.

ERROR The algorithm encountered an error.

LAP
indicates the status of the linear assignment solver at termination. This solver is described in the section
“Linear Assignment (Matching)” on page 65. The LAP term can take one of the following values:

OPTIMAL The solution is optimal.

INFEASIBLE The problem is infeasible.

ERROR The solver encountered an error.

MCF
indicates the status of the minimum-cost network flow solver at termination. This solver is described in
the section “Minimum-Cost Network Flow” on page 73. The MCF term can take one of the following
values:

OPTIMAL The solution is optimal.

INFEASIBLE The problem is infeasible.

UNBOUNDED The problem is unbounded.

TIMELIMIT The solver reached its execution time limit, which is indicated by the
MAXTIME= option in the MINCOSTFLOW statement.

ERROR The solver encountered an error.

98 F Chapter 2: The OPTNET Procedure

MINCUT
indicates the status of the minimum cut algorithm at termination. This algorithm is described in the
section “Minimum Cut” on page 66. The MINCUT term can take one of the following values:

OK The algorithm terminated normally.

INTERRUPTED The algorithm was interrupted by the user.

ERROR The algorithm encountered an error.

MINSPANTREE
indicates the status of the minimum spanning tree solver at termination. This solver is described in
the section “Minimum Spanning Tree” on page 70. The MINSPANTREE term can take one of the
following values:

OPTIMAL The solution is optimal.

ERROR The solver encountered an error.

SHORTPATH
indicates the status of the shortest path algorithms at termination. These algorithms are described in
the section “Shortest Path” on page 77. The SHORTPATH term can take one of the following values:

OK The algorithm terminated normally.

INTERRUPTED The algorithm was interrupted by the user.

ERROR The algorithm encountered an error.

TRANSITIVE_CLOSURE
indicates the status of the transitive closure algorithm at termination. This algorithm is described in
the section “Transitive Closure” on page 89. The TRANSITIVE_CLOSURE term can take one of the
following values:

OK The algorithm terminated normally.

ERROR The algorithm encountered an error.

TSP
indicates the status of the traveling salesman problem solver at termination. This algorithm is described
in the section “Traveling Salesman Problem” on page 91. The TSP term can take one of the following
values:

OPTIMAL The solution is optimal.

OPTIMAL_AGAP The solution is optimal within the absolute gap specified in the
ABSOBJGAP= option.

OPTIMAL_RGAP The solution is optimal within the relative gap specified in the
RELOBJGAP= option.

OPTIMAL_COND The solution is optimal, but some infeasibilities (primal, bound,
or integer) exceed tolerances due to scaling or choice of a small
INTTOL= value.

Macro Variable _OROPTNET_ F 99

TARGET The solution is not worse than the target specified in the TAR-
GET= option.

INFEASIBLE The problem is infeasible.

UNBOUNDED The problem is unbounded.

INFEASIBLE_OR_UNBOUNDED The problem is infeasible or unbounded.

SOLUTION_LIM The solver reached the maximum number of solutions specified
in the MAXSOLS= option.

NODE_LIM_SOL The solver reached the maximum number of nodes specified in
the MAXNODES= option and found a solution.

NODE_LIM_NOSOL The solver reached the maximum number of nodes specified in
the MAXNODES= option and did not find a solution.

TIME_LIM_SOL The solver reached the execution time limit specified in the
MAXTIME= option and found a solution.

TIME_LIM_NOSOL The solver reached the execution time limit specified in the
MAXTIME= option and did not find a solution.

HEURISTIC_SOL The solver used only heuristics and found a solution.

HEURISTIC_NOSOL The solver used only heuristics and did not find a solution.

ABORT_SOL The solver was stopped by the user but still found a solution.

ABORT_NOSOL The solver was stopped by the user and did not find a solution.

OUTMEM_SOL The solver ran out of memory but still found a solution.

OUTMEM_NOSOL The solver ran out of memory and either did not find a solution
or failed to output the solution due to insufficient memory.

FAIL_SOL The solver stopped due to errors but still found a solution.

FAIL_NOSOL The solver stopped due to errors and did not find a solution.

Each algorithm reports its own status information in an additional macro variable. The following sections
provide more information about these macro variables.

Macro Variable _OROPTNET_BICONCOMP_

The OPTNET procedure defines a macro variable named _OROPTNET_BICONCOMP_. This variable
contains a character string that indicates the status and some basic statistics about the results of the algorithm
used to calculate biconnected components. The various terms of the variable are interpreted as follows:

STATUS
indicates the status of the algorithm at termination. The STATUS term takes the same value as the term
BICONCOMP in the _OROPTNET_ macro as defined in the section “Macro Variable _OROPTNET_”
on page 96.

NUM_COMPONENTS
indicates the number of biconnected components found by the algorithm.

100 F Chapter 2: The OPTNET Procedure

NUM_ARTICULATION_POINTS
indicates the number of articulation points found by the algorithm.

CPU_TIME
indicates the CPU time (in seconds) taken by the algorithm.

REAL_TIME
indicates the real time (in seconds) taken by the algorithm.

Macro Variable _OROPTNET_CLIQUE_

The OPTNET procedure defines a macro variable named _OROPTNET_CLIQUE_. This variable contains a
character string that indicates the status and some basic statistics about the results of the algorithm used to
calculate cliques. The various terms of the variable are interpreted as follows:

STATUS
indicates the status of the algorithm at termination. The STATUS term takes the same value as the term
CLIQUE in the _OROPTNET_ macro as defined in the section “Macro Variable _OROPTNET_” on
page 96.

NUM_CLIQUES
indicates the number of cliques found by the algorithm.

CPU_TIME
indicates the CPU time (in seconds) taken by the algorithm.

REAL_TIME
indicates the real time (in seconds) taken by the algorithm.

Macro Variable _OROPTNET_CONCOMP_

The OPTNET procedure defines a macro variable named _OROPTNET_CONCOMP_. This variable contains
a character string that indicates the status and some basic statistics about the results of the algorithm used to
calculate connected components. The various terms of the variable are interpreted as follows:

STATUS
indicates the status of the algorithm at termination. The STATUS term takes the same value as the term
CONCOMP in the _OROPTNET_ macro as defined in the section “Macro Variable _OROPTNET_”
on page 96.

NUM_COMPONENTS
indicates the number of connected components found by the algorithm.

CPU_TIME
indicates the CPU time (in seconds) taken by the algorithm.

REAL_TIME
indicates the real time (in seconds) taken by the algorithm.

Macro Variable _OROPTNET_ F 101

Macro Variable _OROPTNET_CYCLE_

The OPTNET procedure defines a macro variable named _OROPTNET_CYCLE_. This variable contains a
character string that indicates the status and some basic statistics about the results of the algorithm used to
calculate cycles. The various terms of the variable are interpreted as follows:

STATUS
indicates the status of the algorithm at termination. The STATUS term takes the same value as the term
CYCLE in the _OROPTNET_ macro as defined in the section “Macro Variable _OROPTNET_” on
page 96.

NUM_CYCLES
indicates the number of cycles found by the algorithm.

CPU_TIME
indicates the CPU time (in seconds) taken by the algorithm.

REAL_TIME
indicates the real time (in seconds) taken by the algorithm.

Macro Variable _OROPTNET_LAP_

The OPTNET procedure defines a macro variable named _OROPTNET_LAP_. This variable contains a
character string that indicates the status and some basic statistics about the results of the algorithm used to
solve the linear assignment problem. The various terms of the variable are interpreted as follows:

STATUS
indicates the status of the solver at termination. The STATUS term takes the same value as the term
LAP in the _OROPTNET_ macro as defined in the section “Macro Variable _OROPTNET_” on
page 96.

OBJECTIVE
indicates the total weight of the minimum linear assignment.

CPU_TIME
indicates the CPU time (in seconds) taken by the solver.

REAL_TIME
indicates the real time (in seconds) taken by the solver.

Macro Variable _OROPTNET_MCF_

The OPTNET procedure defines a macro variable named _OROPTNET_MCF_. This variable contains a
character string that indicates the status and some basic statistics about the results of the algorithm used to
solve the minimum cost network flow problem. The various terms of the variable are interpreted as follows:

STATUS
indicates the status of the solver at termination. The STATUS term takes the same value as the term
MCF in the _OROPTNET_ macro as defined in the section “Macro Variable _OROPTNET_” on
page 96.

102 F Chapter 2: The OPTNET Procedure

OBJECTIVE
indicates the total link weight of the minimum cost network flow.

CPU_TIME
indicates the CPU time (in seconds) taken by the solver.

REAL_TIME
indicates the real time (in seconds) taken by the solver.

Macro Variable _OROPTNET_MINCUT_

The OPTNET procedure defines a macro variable named _OROPTNET_MINCUT_. This variable contains a
character string that indicates the status and some basic statistics about the results of the algorithm used to
find the minimum cut. The various terms of the variable are interpreted as follows:

STATUS
indicates the status of the algorithm at termination. The STATUS term takes the same value as the term
MINCUT in the _OROPTNET_ macro as defined in the section “Macro Variable _OROPTNET_” on
page 96.

CPU_TIME
indicates the CPU time (in seconds) taken by the algorithm.

REAL_TIME
indicates the real time (in seconds) taken by the algorithm.

Macro Variable _OROPTNET_MST_

The OPTNET procedure defines a macro variable named _OROPTNET_MST_. This variable contains a
character string that indicates the status and some basic statistics about the results of the algorithm used to
solve the minimum spanning tree problem. The various terms of the variable are interpreted as follows:

STATUS
indicates the status of the solver at termination. The STATUS term takes the same value as the term
MINSPANTREE in the _OROPTNET_ macro as defined in the section “Macro Variable _OROPT-
NET_” on page 96.

OBJECTIVE
indicates the total link weight of the minimum spanning tree.

CPU_TIME
indicates the CPU time (in seconds) taken by the solver.

REAL_TIME
indicates the real time (in seconds) taken by the solver.

Macro Variable _OROPTNET_SHORTPATH_

The OPTNET procedure defines a macro variable named _OROPTNET_SHORTPATH_. This variable
contains a character string that indicates the status and some basic statistics about the results of the algorithm
used to calculate shortest paths. The various terms of the variable are interpreted as follows:

Macro Variable _OROPTNET_ F 103

STATUS
indicates the status of the algorithm at termination. The STATUS term takes the same value as the term
SHORTPATH in the _OROPTNET_ macro as defined in the section “Macro Variable _OROPTNET_”
on page 96.

CPU_TIME
indicates the CPU time (in seconds) taken by the algorithm.

REAL_TIME
indicates the real time (in seconds) taken by the algorithm.

Macro Variable _OROPTNET_TRANSCL_

The OPTNET procedure defines a macro variable named _OROPTNET_TRANSCL_. This variable contains
a character string that indicates the status and some basic statistics about the results of the algorithm used to
calculate transitive closure. The various terms of the variable are interpreted as follows:

STATUS
indicates the status of the algorithm at termination. The STATUS term takes the same value as the term
TRANSITIVE_CLOSURE in the _OROPTNET_ macro as defined in the section “Macro Variable
OROPTNET” on page 96.

CPU_TIME
indicates the CPU time (in seconds) taken by the algorithm.

REAL_TIME
indicates the real time (in seconds) taken by the algorithm.

Macro Variable _OROPTNET_TSP_

The OPTNET procedure defines a macro variable named _OROPTNET_TSP_. This variable contains a
character string that indicates the status and some basic statistics about the results of the algorithm used to
solve the traveling salesman problem. The various terms of the variable are interpreted as follows:

STATUS
indicates the status of the solver at termination. The STATUS term takes the same value as the term TSP
in the _OROPTNET_ macro as defined in the section “Macro Variable _OROPTNET_” on page 96.

OBJECTIVE
indicates the objective value obtained by the solver at termination.

RELATIVE_GAP
specifies the relative gap between the best integer objective (BestInteger) and the objective of the best
remaining node (BestBound) upon termination of the solver. The relative gap is equal to

j BestInteger � BestBound j = .1E�10C j BestBound j/

104 F Chapter 2: The OPTNET Procedure

ABSOLUTE_GAP
specifies the absolute gap between the best integer objective (BestInteger) and the objective of the best
remaining node (BestBound) upon termination of the solver. The absolute gap is equal to

j BestInteger � BestBound j

PRIMAL_INFEASIBILITY
indicates the maximum (absolute) violation of the primal constraints by the solution.

BOUND_INFEASIBILITY
indicates the maximum (absolute) violation by the solution of the lower or upper bounds (or both).

INTEGER_INFEASIBILITY
indicates the maximum (absolute) violation of the integrality of integer variables that are returned by
the solver.

BEST_BOUND
specifies the best linear programming objective value of all unprocessed nodes in the branch-and-bound
tree at the end of execution. A missing value indicates that the solver has processed either all or none
of the nodes in the branch-and-bound tree.

NODES
specifies the number of nodes enumerated by the solver by using the branch-and-bound algorithm.

ITERATIONS
indicates the number of simplex iterations taken to solve the problem.

CPU_TIME
indicates the CPU time (in seconds) taken by the algorithm.

REAL_TIME
indicates the real time (in seconds) taken by the algorithm.

NOTE: The time reported in PRESOLVE_TIME and SOLUTION_TIME is either CPU time (default) or real
time. The type is determined by the TIMETYPE= option.

Examples: OPTNET Procedure

Example 2.1: Articulation Points in a Terrorist Network
This example considers the terrorist communications network from the attacks on the U.S. on September 11,
2001, described in Krebs 2002. Figure 2.64 shows this network, which was constructed after the attacks, based
on collected intelligence information. The image was created using SAS/GRAPH® Network Visualization
Workshop 2.1 (see the SAS/GRAPH: Network Visualization Workshop User’s Guide).

Example 2.1: Articulation Points in a Terrorist Network F 105

Figure 2.64 Terrorist Communications Network from 9/11

The full network data include 153 links. The following statements show a small subset to illustrate the use of
the BICONCOMP statement in this context:

data LinkSetInTerror911;
length from $25 to $32;
input from to;
datalines;

Abu_Zubeida Djamal_Beghal
Jean-Marc_Grandvisir Djamal_Beghal
Nizar_Trabelsi Djamal_Beghal
Abu_Walid Djamal_Beghal
Abu_Qatada Djamal_Beghal
Zacarias_Moussaoui Djamal_Beghal
Jerome_Courtaillier Djamal_Beghal
Kamel_Daoudi Djamal_Beghal
Abu_Walid Kamel_Daoudi
Abu_Walid Abu_Qatada
Kamel_Daoudi Zacarias_Moussaoui

106 F Chapter 2: The OPTNET Procedure

Kamel_Daoudi Jerome_Courtaillier
Jerome_Courtaillier Zacarias_Moussaoui
Jerome_Courtaillier David_Courtaillier
Zacarias_Moussaoui David_Courtaillier
Zacarias_Moussaoui Ahmed_Ressam
Zacarias_Moussaoui Abu_Qatada
Zacarias_Moussaoui Ramzi_Bin_al-Shibh
Zacarias_Moussaoui Mahamed_Atta
Ahmed_Ressam Haydar_Abu_Doha
Mehdi_Khammoun Haydar_Abu_Doha
Essid_Sami_Ben_Khemais Haydar_Abu_Doha
Mehdi_Khammoun Essid_Sami_Ben_Khemais
Mehdi_Khammoun Mohamed_Bensakhria
...
;

Suppose that this communications network had been discovered before the attack on 9/11. If the investigators’
goal was to disrupt the flow of communication between different groups within the organization, then they
would want to focus on the people who are articulation points in the network.

To find the articulation points, use the following statements:

proc optnet
data_links = LinkSetInTerror911
out_nodes = NodeSetOut;
biconcomp;

run;

data ArtPoints;
set NodeSetOut;
where artpoint=1;

run;

The data set ArtPoints contains members of the network who are articulation points. Focusing investigations
on cutting off these particular members could have caused a great deal of disruption in the terrorists’ ability
to communicate when formulating the attack.

Output 2.1.1 Articulation Points of Terrorist Communications Network from 9/11

node artpoint

Djamal_Beghal 1
Zacarias_Moussaoui 1
Essid_Sami_Ben_Khemais 1
Mohamed_Atta 1
Mamoun_Darkazanli 1
Nawaf_Alhazmi 1

Example 2.2: Cycle Detection for Kidney Donor Exchange F 107

Example 2.2: Cycle Detection for Kidney Donor Exchange
This example looks at an application of cycle detection to help create a kidney donor exchange. Suppose
someone needs a kidney transplant and a family member is willing to donate one. If the donor and recipient
are incompatible (because of blood types, tissue mismatch, and so on), the transplant cannot happen. Now
suppose two donor-recipient pairs A and B are in this situation, but donor A is compatible with recipient B
and donor B is compatible with recipient A. Then two transplants can take place in a two-way swap, shown
graphically in Figure 2.65. More generally, an n-way swap can be performed involving n donors and n
recipients (Willingham 2009).

Figure 2.65 Kidney Donor Exchange Two-Way Swap

donor A

recipient A

pair A

donor B

pair B

recipient B

To model this problem, define a directed graph as follows. Each node is an incompatible donor-recipient
pair. Link .i; j / exists if the donor from node i is compatible with the recipient from node j . The link
weight is a measure of the quality of the match. By introducing dummy links with weight 0, you can also
include altruistic donors with no recipients, or recipients without donors. The idea is to find a maximum
weight node-disjoint union of directed cycles. You want the union to be node-disjoint so that no kidney is
donated more than once, and you want cycles so that the donor from node i gives up a kidney if and only if
the recipient from node i receives a kidney.

Without any other constraints, the problem could be solved as a linear assignment problem, as described in
the section “Linear Assignment (Matching)” on page 65. But doing so would allow arbitrarily long cycles in
the solution. Because of practical considerations (such as travel) and to mitigate risk, each cycle must have
no more than L links. The kidney exchange problem is to find a maximum weight node-disjoint union of
short directed cycles.

One way to solve this problem is to explicitly generate all cycles of at most L length and then solve a set
packing problem. You can use PROC OPTNET to generate the cycles and then PROC OPTMODEL (see
SAS/OR User’s Guide: Mathematical Programming) to read the PROC OPTNET output, formulate the set
packing problem, call the mixed integer linear programming solver, and output the optimal solution.

108 F Chapter 2: The OPTNET Procedure

The following DATA step sets up the problem, first creating a random graph on n nodes with link probability
p and Uniform(0,1) weight:

/* create random graph on n nodes with arc probability p
and uniform(0,1) weight */

%let n = 100;
%let p = 0.02;
data LinkSetIn;

do from = 0 to &n - 1;
do to = 0 to &n - 1;

if from eq to then continue;
else if ranuni(1) < &p then do;

weight = ranuni(2);
output;

end;
end;

end;
run;

The following statements use PROC OPTNET to generate all cycles with length greater than or equal to 2
and less than or equal to 10:

/* generate all cycles with 2 <= length <= max_length */
%let max_length = 10;
proc optnet

loglevel = moderate
graph_direction = directed
data_links = LinkSetIn;
cycle

minLength = 2
maxLength = &max_length
out = Cycles
mode = all_cycles;

run;
%put &_OROPTNET_;
%put &_OROPTNET_CYCLE_;

Example 2.2: Cycle Detection for Kidney Donor Exchange F 109

PROC OPTNET finds 224 cycles of the appropriate length, as shown in Output 2.2.1.

Output 2.2.1 Cycles for Kidney Donor Exchange PROC OPTNET Log

NOTE: ---
NOTE: ---
NOTE: Running OPTNET version 12.3.
NOTE: ---
NOTE: ---
NOTE: Reading the links data set.
NOTE: There were 194 observations read from the data set WORK.LINKSETIN.
NOTE: Data input used 0.01 (cpu: 0.00) seconds.
NOTE: Building the input graph storage used 0.00 (cpu: 0.00) seconds.
NOTE: The input graph storage is using 0.0 MBs of memory.
NOTE: The number of nodes in the input graph is 97.
NOTE: The number of links in the input graph is 194.
NOTE: ---
NOTE: ---
NOTE: Processing CYCLE statement.
NOTE: The graph has 224 cycles.
NOTE: Processing cycles used 5.59 (cpu: 5.58) seconds.
NOTE: ---
NOTE: ---
NOTE: Creating cycle data set output.
NOTE: Data output used 0.00 (cpu: 0.00) seconds.
NOTE: ---
NOTE: ---
NOTE: The data set WORK.CYCLES has 2124 observations and 3 variables.
STATUS=OK CYCLE=OK
STATUS=OK NUM_CYCLES=224 CPU_TIME=5.58 REAL_TIME=5.59

From the resulting data set Cycles, use the following DATA step to convert the cycles into one observation
per arc:

/* convert Cycles into one observation per arc */
data Cycles0(keep=c i j);

set Cycles;
retain last;
c = cycle;
i = last;
j = node;
last = j;
if order ne 1 then output;

run;

110 F Chapter 2: The OPTNET Procedure

Given the set of cycles, you can now formulate a mixed integer linear program (MILP) to maximize the total
cycle weight. Let C define the set of cycles of appropriate length, Nc define the set of nodes in cycle c, Ac
define the set of links in cycle c, and wij denote the link weight for link .i; j /. Define a binary decision
variable xc . Set xc to 1 if cycle c is used in the solution; otherwise, set it to 0. Then, the following MILP
defines the problem that you want to solve to maximize the quality of the kidney exchange:

minimize
X
c2C

0@ X
.i;j /2Ac

wij

1A xc
subject to

X
c2C Wi2Nc

xc � 1 i 2 N .incomp_pair/

xc 2 f0; 1g c 2 C

The constraint (incomp_pair) ensures that each node (incompatible pair) in the graph is intersected at most
once. That is, a donor can donate a kidney only once. You can use PROC OPTMODEL to solve this mixed
integer linear programming problem as follows:

/* solve set packing problem to find maximum weight node-disjoint union
of short directed cycles */

proc optmodel;
/* declare index sets and parameters, and read data */
set <num,num> ARCS;
num weight {ARCS};
read data LinkSetIn into ARCS=[from to] weight;
set <num,num,num> TRIPLES;
read data Cycles0 into TRIPLES=[c i j];
set CYCLES = setof {<c,i,j> in TRIPLES} c;
set ARCS_c {c in CYCLES} = setof {<(c),i,j> in TRIPLES} <i,j>;
set NODES_c {c in CYCLES} = union {<i,j> in ARCS_c[c]} {i,j};
set NODES = union {c in CYCLES} NODES_c[c];
num cycle_weight {c in CYCLES} = sum {<i,j> in ARCS_c[c]} weight[i,j];

/* UseCycle[c] = 1 if cycle c is used, 0 otherwise */
var UseCycle {CYCLES} binary;

/* declare objective */
max TotalWeight

= sum {c in CYCLES} cycle_weight[c] * UseCycle[c];

/* each node appears in at most one cycle */
con node_packing {i in NODES}:

sum {c in CYCLES: i in NODES_c[c]} UseCycle[c] <= 1;

/* call solver */
solve with milp;

/* output optimal solution */
create data Solution from

[c]={c in CYCLES: UseCycle[c].sol > 0.5} cycle_weight;
quit;
%put &_OROPTMODEL_;

Example 2.2: Cycle Detection for Kidney Donor Exchange F 111

PROC OPTMODEL solves the problem by using the mixed integer linear programming solver. As shown in
Output 2.2.2, it was able to find a total weight (quality level) of 26.02.

Output 2.2.2 Cycles for Kidney Donor Exchange PROC OPTMODEL Log

NOTE: There were 194 observations read from the data set WORK.LINKSETIN.
NOTE: There were 1900 observations read from the data set WORK.CYCLES0.
NOTE: Problem generation will use 4 threads.
NOTE: The problem has 224 variables (0 free, 0 fixed).
NOTE: The problem has 224 binary and 0 integer variables.
NOTE: The problem has 63 linear constraints (63 LE, 0 EQ, 0 GE, 0 range).
NOTE: The problem has 1900 linear constraint coefficients.
NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).
NOTE: The MILP presolver value AUTOMATIC is applied.
NOTE: The MILP presolver removed 0 variables and 35 constraints.
NOTE: The MILP presolver removed 518 constraint coefficients.
NOTE: The MILP presolver modified 116 constraint coefficients.
NOTE: The presolved problem has 224 variables, 28 constraints, and 1382

constraint coefficients.
NOTE: The MILP solver is called.

Node Active Sols BestInteger BestBound Gap Time
0 1 3 22.7780692 1080.2049611 97.89% 0
0 1 3 22.7780692 26.5638757 14.25% 0
0 1 4 23.2747070 26.0203249 10.55% 0
0 1 4 23.2747070 26.0203023 10.55% 0
0 1 4 23.2747070 26.0202987 10.55% 0
0 1 6 26.0202871 26.0202871 0.00% 0

NOTE: The MILP solver added 5 cuts with 599 cut coefficients at the root.
NOTE: Optimal.
NOTE: Objective = 26.020287142.
NOTE: The data set WORK.SOLUTION has 6 observations and 2 variables.
STATUS=OK ALGORITHM=BAC SOLUTION_STATUS=OPTIMAL OBJECTIVE=26.020287142
RELATIVE_GAP=0 ABSOLUTE_GAP=0 PRIMAL_INFEASIBILITY=0 BOUND_INFEASIBILITY=0
INTEGER_INFEASIBILITY=0 BEST_BOUND=26.020287142 NODES=1 ITERATIONS=110
PRESOLVE_TIME=0.03 SOLUTION_TIME=0.11

The data set Solution, shown in Output 2.2.3, now contains the cycles that define the best exchange and their
associated weight (quality).

Output 2.2.3 Maximum Quality Solution for Kidney Donor Exchange

cycle_
c weight

12 5.84985
43 3.90015
71 5.44467

124 7.42574
222 2.28231
224 1.11757

112 F Chapter 2: The OPTNET Procedure

Example 2.3: Linear Assignment Problem for Minimizing Swim Times
A swimming coach needs to assign male and female swimmers to each stroke of a medley relay team. The
swimmers’ best times for each stroke are stored in a SAS data set. The LINEAR_ASSIGNMENT statement
evaluates the times and matches strokes and swimmers to minimize the total relay swim time.

The data are stored in matrix format, where the row identifier is the swimmer’s name (variable name) and
each event is a column (variables: back, breast, fly, and free). In the following DATA step, the relay times
are split into two categories, male and female:

data RelayTimes;
input name $ sex $ back breast fly free;
datalines;

Sue F 35.1 36.7 28.3 36.1
Karen F 34.6 32.6 26.9 26.2
Jan F 31.3 33.9 27.1 31.2
Andrea F 28.6 34.1 29.1 30.3
Carol F 32.9 32.2 26.6 24.0
Ellen F 27.8 32.5 27.8 27.0
Jim M 26.3 27.6 23.5 22.4
Mike M 29.0 24.0 27.9 25.4
Sam M 27.2 33.8 25.2 24.1
Clayton M 27.0 29.2 23.0 21.9
;

data RelayTimesF RelayTimesM;
set RelayTimes;
if sex='F' then output RelayTimesF;
else if sex='M' then output RelayTimesM;

run;

The following statements solve the linear assignment problem for both male and female relay teams:

proc optnet
data_matrix = RelayTimesF;
linear_assignment

out = LinearAssignF
id = (name sex);

run;
%put &_OROPTNET_;
%put &_OROPTNET_LAP_;

proc optnet
data_matrix = RelayTimesM;
linear_assignment

out = LinearAssignM
id = (name sex);

run;
%put &_OROPTNET_;
%put &_OROPTNET_LAP_;

Example 2.3: Linear Assignment Problem for Minimizing Swim Times F 113

The progress of the two PROC OPTNET calls is shown in Output 2.3.1 and Output 2.3.2.

Output 2.3.1 PROC OPTNET Log: Linear Assignment for Female Swim Times

NOTE: ---
NOTE: Running OPTNET version 12.3.
NOTE: ---
NOTE: The number of columns in the input matrix is 4.
NOTE: The number of rows in the input matrix is 6.
NOTE: Data input used 0.00 (cpu: 0.00) seconds.
NOTE: ---
NOTE: Processing LINEAR_ASSIGNMENT statement.
NOTE: The minimum cost linear assignment is 111.5.
NOTE: Processing the linear assignment problem used 0.00 (cpu: 0.00) seconds.
NOTE: ---
NOTE: Data output used 0.00 (cpu: 0.00) seconds.
NOTE: ---
NOTE: The data set WORK.LINEARASSIGNF has 4 observations and 4 variables.
STATUS=OK LAP=OPTIMAL
STATUS=OPTIMAL OBJECTIVE=111.5 CPU_TIME=0.00 REAL_TIME=0.00

Output 2.3.2 PROC OPTNET Log: Linear Assignment for Male Swim Times

NOTE: ---
NOTE: Running OPTNET version 12.3.
NOTE: ---
NOTE: The number of columns in the input matrix is 4.
NOTE: The number of rows in the input matrix is 4.
NOTE: Data input used 0.00 (cpu: 0.00) seconds.
NOTE: ---
NOTE: Processing LINEAR_ASSIGNMENT statement.
NOTE: The minimum cost linear assignment is 96.6.
NOTE: Processing the linear assignment problem used 0.00 (cpu: 0.00) seconds.
NOTE: ---
NOTE: Data output used 0.00 (cpu: 0.00) seconds.
NOTE: ---
NOTE: The data set WORK.LINEARASSIGNM has 4 observations and 4 variables.
STATUS=OK LAP=OPTIMAL
STATUS=OPTIMAL OBJECTIVE=96.6 CPU_TIME=0.00 REAL_TIME=0.00

The data sets LinearAssignF and LinearAssignM contain the optimal assignments. Note that in the case of the
female data, there are more people (set S) than there are strokes (set T). Therefore, the solver allows for
some members of S to remain unassigned.

114 F Chapter 2: The OPTNET Procedure

Output 2.3.3 Optimal Assignments for Best Female Swim Times

name sex assign cost

Karen F breast 32.6
Jan F fly 27.1
Carol F free 24.0
Ellen F back 27.8

=====
111.5

Output 2.3.4 Optimal Assignments for Best Male Swim Times

name sex assign cost

Jim M free 22.4
Mike M breast 24.0
Sam M back 27.2
Clayton M fly 23.0

====
96.6

Example 2.4: Linear Assignment Problem, Sparse Format versus Dense
Format

This example looks at the problem of assigning swimmers to strokes based on their best times. However, in
this case certain swimmers are not eligible to perform certain strokes. A missing (.) value in the data matrix
identifies an ineligible assignment. For example:

data RelayTimesMatrix;
input name $ sex $ back breast fly free;
datalines;

Sue F . 36.7 28.3 36.1
Karen F 34.6 . . 26.2
Jan F 31.3 . 27.1 .
Andrea F 28.6 . 29.1 .
Carol F 32.9 . 26.6 .
;

Recall that the linear assignment problem can also be interpreted as the minimum-weight matching in a
bipartite graph. The eligible assignments define links between the rows (swimmers) and the columns (strokes),
as in Figure 2.66.

Example 2.4: Linear Assignment Problem, Sparse Format versus Dense Format F 115

Figure 2.66 Bipartite Graph for Linear Assignment Problem

Sue back

Karen breast

Jan fly

Andrea free

Carol

Because of this, you can represent the same data in RelayTimesMatrix with a links data set as follows:

data RelayTimesLinks;
input name $ attr $ cost;
datalines;

Sue breast 36.7
Sue fly 28.3
Sue free 36.1
Karen back 34.6
Karen free 26.2
Jan back 31.3
Jan fly 27.1
Andrea back 28.6
Andrea fly 29.1
Carol back 32.9
Carol fly 26.6
;

This graph must be bipartite (such that S and T are disjoint). If it is not, PROC OPTNET returns an error.

116 F Chapter 2: The OPTNET Procedure

Now, you can use either input format to solve the same problem as follows:

proc optnet
data_matrix = RelayTimesMatrix;
linear_assignment

out = LinearAssignMatrix
weight = (back--free)
id = (name sex);

run;

proc optnet
graph_direction = directed
data_links = RelayTimesLinks;
data_links_var

from = name
to = attr
weight = cost;

linear_assignment
out = LinearAssignLinks;

run;

When you use the graph input format, the LINEAR_ASSIGNMENT options WEIGHT= and ID= are not
used directly.

The data sets LinearAssignMatrix and LinearAssignLinks now contain the optimal assignments, as shown in
Output 2.4.1 and Output 2.4.2.

Output 2.4.1 Optimal Assignments for Swim Times (Dense Input)

name sex assign cost

Sue F breast 36.7
Karen F free 26.2
Andrea F back 28.6
Carol F fly 26.6

=====
118.1

Output 2.4.2 Optimal Assignments for Swim Times (Sparse Input)

name attr cost

Sue breast 36.7
Karen free 26.2
Andrea back 28.6
Carol fly 26.6

=====
118.1

Example 2.4: Linear Assignment Problem, Sparse Format versus Dense Format F 117

The optimal assignments are shown graphically in Figure 2.67.

Figure 2.67 Optimal Assignments for Swim Times

Sue back

Karen breast

Jan fly

Andrea free

Carol

36.7

26.2

28.6

26.6

For large problems where a number of links are forbidden, the sparse format can be faster and can save
a great deal of memory. Consider an example that uses the format of the DATA_MATRIX= option with
15,000 columns (jS j D 15; 000) and 4,000 rows (jT j D 4; 000). To store the dense matrix in memory, PROC
OPTNET needs to allocate approximately jS j�jT j�8=1024=1024 D 457MB. If the data have mostly ineligible
links, then the sparse (graph) format that uses the DATA_LINKS= option is much more efficient with respect
to memory. For example, if the data have only 5% of the eligible links (15; 000 � 4; 000 � 0:05 D 3; 000; 000),
then the dense storage would still need 457 MB. The sparse storage for the same example needs approximately
jS j � jT j � 0:05 � 12=1024=1024 D 34 MB. If the problem is fully dense (all links are eligible), then the dense
format that uses the DATA_MATRIX= option is the most efficient.

118 F Chapter 2: The OPTNET Procedure

Example 2.5: Minimum Spanning Tree for Computer Network Topology
Consider the problem of designing a small network of computers. In designing the network, the goal is to
make sure that each machine in the office can reach every other machine. To accomplish this goal, Ethernet
lines must be constructed and run between the machines. The construction costs for each possible link are
based approximately on distance and are shown in Figure 2.68. Besides distance, the costs also reflect some
restrictions due to physical boundaries. To connect all the machines in the office at minimal cost, you need to
find a minimum spanning tree on the network of possible links.

Figure 2.68 Potential Office Computer Network

3.0

2.0

3.0

1.0

4.0

4.0

2.0

3.0

1.5

1.0

1.5

1.01.0

1.0

4.0

3.0

1.0

4.0

A

CB

E

D

G F

IH J

Define the link data set as follows:

data LinkSetInCompNet;
input from $ to $ weight @@;
datalines;

A B 1.0 A C 1.0 A D 1.5 B C 2.0 B D 4.0
B E 3.0 C D 3.0 C F 3.0 C H 4.0 D E 1.5
D F 3.0 D G 4.0 E F 1.0 E G 1.0 F G 2.0
F H 4.0 H I 1.0 I J 1.0
;

The following statements find a minimum spanning tree:

proc optnet
data_links = LinkSetInCompNet;
minspantree

out = MinSpanTree;
run;

Output 2.5.1 shows the resulting data set MinSpanTree, which is displayed graphically in Figure 2.69 with
the minimal cost links shown in green.

Example 2.6: Transitive Closure for Identification of Circular Dependencies F 119

Figure 2.69 Minimum Spanning Tree for Office Computer Network

3.0

2.0

3.0

1.0

4.0

4.0

2.0

3.0

1.5

1.0

1.5

1.01.0

1.0

4.0

3.0

1.0

4.0

A

CB

E

D

G F

IH J

Output 2.5.1 Minimum Spanning Tree of a Computer Network Topology

from to weight

H I 1.0
E G 1.0
E F 1.0
A B 1.0
A C 1.0
I J 1.0
D E 1.5
A D 1.5
C H 4.0

======
13.0

Example 2.6: Transitive Closure for Identification of Circular Dependencies
in a Bug Tracking System

Most software bug tracking systems have some notion of duplicate bugs in which one bug is declared to be
the same as another bug. If bug A is considered a duplicate (DUP) of bug B, then a fix for B would also fix A.
You can represent the DUPs in a bug tracking system as a directed graph where you add a link A! B if A is
a DUP of B.

The bug tracking system needs to check for two situations as users declare a bug to be a DUP. The first
situation is called a circular dependence. Consider bugs A, B, C, and D in the tracking system. The first user
declares that A is a DUP of B and that C is a DUP of D. Then, a second user declares that B is a DUP of C,
and a third user declares that D is a DUP of A. You now have a circular dependence, and no primary bug is
defined on which the development team should focus. You can easily see this circular dependence in the
graph representation, because A! B ! C ! D ! A. Finding such circular dependencies can be done
using cycle detection, which is described in the section “Cycle” on page 59. However, the second situation

120 F Chapter 2: The OPTNET Procedure

that needs to be checked is more general. If a user declares that A is a DUP of B and another user declares
that B is a DUP of C, this chain of duplicates is already an issue. The bug tracking system needs to provide
one primary bug to which the rest of the bugs are duplicated. The existence of these chains can be identified
by calculating the transitive closure of the directed graph that is defined by the DUP links.

Given the original directed graph G (defined by the DUP links) and its transitive closure GT , any link in GT

that is not in G exists because of some chain that is present in G.

Consider the following data that define some duplicated bugs (called defects) in a small sample of the bug
tracking system:

data DefectLinks;
input defectId $ linkedDefect $ linkType $ when datetime16.;
format when datetime16.;
datalines;

D0096978 S0711218 DUPTO 20OCT10:00:00:00
S0152674 S0153280 DUPTO 30MAY02:00:00:00
S0153280 S0153307 DUPTO 30MAY02:00:00:00
S0153307 S0152674 DUPTO 30MAY02:00:00:00
S0162973 S0162978 DUPTO 29NOV10:16:13:16
S0162978 S0165405 DUPTO 29NOV10:16:13:16
S0325026 S0575748 DUPTO 01JUN10:00:00:00
S0347945 S0346582 DUPTO 03MAR06:00:00:00
S0350596 S0346582 DUPTO 21MAR06:00:00:00
S0539744 S0643230 DUPTO 10MAY10:00:00:00
S0575748 S0643230 DUPTO 15JUN10:00:00:00
S0629984 S0643230 DUPTO 01JUN10:00:00:00
;

The following statements calculate cycles in addition to the transitive closure of the graph G that is defined
by the duplicated defects in DefectLinks. The output data set Cycles contains any circular dependencies, and
the data set TransClosure contains the transitive closure GT . To identify the chains, you can use PROC SQL
to identify those links in GT that are not in G.

proc optnet
loglevel = moderate
graph_direction = directed
data_links = DefectLinks;
data_links_var

from = defectId
to = linkedDefect;

cycle
out = Cycles
mode = all_cycles;

transitive_closure
out = TransClosure;

run;
%put &_OROPTNET_;
%put &_OROPTNET_CYCLE_;
%put &_OROPTNET_TRANSCL_;

Example 2.6: Transitive Closure for Identification of Circular Dependencies F 121

proc sql;
create table Chains as
select defectId, linkedDefect from TransClosure

except
select defectId, linkedDefect from DefectLinks;

quit;

The progress of the procedure is shown in Output 2.6.1.

Output 2.6.1 PROC OPTNET Log: Transitive Closure for Identification of Circular Dependencies in a Bug
Tracking System

NOTE: ---
NOTE: ---
NOTE: Running OPTNET version 12.3.
NOTE: ---
NOTE: ---
NOTE: Reading the links data set.
NOTE: There were 12 observations read from the data set WORK.DEFECTLINKS.
NOTE: Data input used 0.01 (cpu: 0.00) seconds.
NOTE: Building the input graph storage used 0.00 (cpu: 0.00) seconds.
NOTE: The input graph storage is using 0.0 MBs of memory.
NOTE: The number of nodes in the input graph is 16.
NOTE: The number of links in the input graph is 12.
NOTE: ---
NOTE: ---
NOTE: Processing CYCLE statement.
NOTE: The graph has 1 cycle.
NOTE: Processing cycles used 0.00 (cpu: 0.00) seconds.
NOTE: ---
NOTE: ---
NOTE: Processing TRANSITIVE_CLOSURE statement.
NOTE: Processing the transitive closure used 0.00 (cpu: 0.00) seconds.
NOTE: ---
NOTE: ---
NOTE: Creating transitive closure data set output.
NOTE: Creating cycle data set output.
NOTE: Data output used 0.00 (cpu: 0.00) seconds.
NOTE: ---
NOTE: ---
NOTE: The data set WORK.CYCLES has 4 observations and 3 variables.
NOTE: The data set WORK.TRANSCLOSURE has 20 observations and 2 variables.
STATUS=OK CYCLE=OK TRANSITIVE_CLOSURE=OK
STATUS=OK NUM_CYCLES=1 CPU_TIME=0.00 REAL_TIME=0.00
STATUS=OK CPU_TIME=0.00 REAL_TIME=0.00
NOTE: Table WORK.CHAINS created, with 8 rows and 2 columns.

122 F Chapter 2: The OPTNET Procedure

The data set Cycles contains one case of a circular dependence in which the DUPs start and end at S0152674.

Output 2.6.2 Cycle in Bug Tracking System

cycle order node

1 1 S0152674
1 2 S0153280
1 3 S0153307
1 4 S0152674

The data set Chains contains the chains in the bug tracking system that come from the links in GT that are
not in G.

Output 2.6.3 Chains in Bug Tracking System

linked
defectId Defect

S0152674 S0152674
S0152674 S0153307
S0153280 S0152674
S0153280 S0153280
S0153307 S0153280
S0153307 S0153307
S0162973 S0165405
S0325026 S0643230

Example 2.7: Traveling Salesman Tour through US Capital Cities
Consider a cross-country trip where you want to travel the fewest miles to visit all of the capital cities in
all US states except Alaska and Hawaii. Finding the optimal route is an instance of the traveling salesman
problem, which is described in section “Traveling Salesman Problem” on page 91.

The following PROC SQL statements use the built-in data set maps.uscity to generate a list of the capital
cities and their latitude and longitude:

/* Get a list of the state capital cities (with lat and long) */
proc sql;

create table Cities as
select unique statecode as state, city, lat, long

from maps.uscity
where capital='Y' and statecode not in ('AK' 'PR' 'HI');

quit;

Example 2.7: Traveling Salesman Tour through US Capital Cities F 123

From this list, you can generate a links data set CitiesDist that contains the distances, in miles, between each
pair of cities. The distances are calculated by using the SAS function GEODIST.

/* Create a list of all the possible pairs of cities */
proc sql;

create table CitiesDist as
select

a.city as city1, a.lat as lat1, a.long as long1,
b.city as city2, b.lat as lat2, b.long as long2,
geodist(lat1, long1, lat2, long2, 'DM') as distance
from Cities as a, Cities as b
where a.city < b.city;

quit;

The following PROC OPTNET statements find the optimal tour through each of the capital cities:

/* Find optimal tour using OPTNET */
proc optnet

loglevel = moderate
data_links = CitiesDist
out_nodes = TSPTourNodes;
data_links_var

from = city1
to = city2
weight = distance;

tsp
out = TSPTourLinks;

run;
%put &_OROPTNET_;
%put &_OROPTNET_TSP_;

The progress of the procedure is shown in Output 2.7.1. The total mileage needed to optimally traverse the
capital cities is 10; 627:75 miles.

124 F Chapter 2: The OPTNET Procedure

Output 2.7.1 PROC OPTNET Log: Traveling Salesman Tour through US Capital Cities

NOTE: ---
NOTE: ---
NOTE: Running OPTNET version 12.3.
NOTE: ---
NOTE: ---
NOTE: Reading the links data set.
NOTE: There were 1176 observations read from the data set WORK.CITIESDIST.
NOTE: Data input used 0.01 (cpu: 0.00) seconds.
NOTE: Building the input graph storage used 0.00 (cpu: 0.00) seconds.
NOTE: The input graph storage is using 0.1 MBs of memory.
NOTE: The number of nodes in the input graph is 49.
NOTE: The number of links in the input graph is 1176.
NOTE: ---
NOTE: ---
NOTE: Processing TSP statement.
NOTE: The initial TSP heuristics found a tour with cost 10645.918753 using 0.22

(cpu: 0.20) seconds.
NOTE: The MILP presolver value NONE is applied.
NOTE: The MILP solver is called.

Node Active Sols BestInteger BestBound Gap Time
0 1 1 10645.9187534 10040.5139714 6.03% 0
0 1 1 10645.9187534 10241.6970024 3.95% 0
0 1 1 10645.9187534 10262.9074205 3.73% 0
0 1 1 10645.9187534 10293.2995080 3.43% 0
0 1 1 10645.9187534 10350.0790852 2.86% 0
0 1 1 10645.9187534 10549.5506188 0.91% 0
0 1 1 10645.9187534 10576.0823291 0.66% 0
0 1 1 10645.9187534 10590.3709358 0.52% 0
0 1 1 10645.9187534 10590.8162090 0.52% 0
0 1 1 10645.9187534 10590.9748294 0.52% 0
0 1 1 10645.9187534 10607.8528157 0.36% 0
0 1 6 10645.9187534 10607.8528157 0.36% 0

NOTE: The MILP solver added 16 cuts with 4213 cut coefficients at the root.
1 1 7 10627.7543183 10607.8528157 0.19% 0
2 0 7 10627.7543183 10627.7543183 0.00% 0

NOTE: Optimal.
NOTE: Objective = 10627.754318.
NOTE: Processing the traveling salesman problem used 0.35 (cpu: 0.30) seconds.
NOTE: ---
NOTE: ---
NOTE: Creating nodes data set output.
NOTE: Creating traveling salesman data set output.
NOTE: Data output used 0.00 (cpu: 0.00) seconds.
NOTE: ---
NOTE: ---
NOTE: The data set WORK.TSPTOURNODES has 49 observations and 2 variables.
NOTE: The data set WORK.TSPTOURLINKS has 49 observations and 3 variables.
STATUS=OK TSP=OPTIMAL
STATUS=OPTIMAL OBJECTIVE=10627.754318 RELATIVE_GAP=0 ABSOLUTE_GAP=0
PRIMAL_INFEASIBILITY=0 BOUND_INFEASIBILITY=0 INTEGER_INFEASIBILITY=0
BEST_BOUND=10627.754318 NODES=3 ITERATIONS=169 CPU_TIME=0.30 REAL_TIME=0.35

Example 2.7: Traveling Salesman Tour through US Capital Cities F 125

The following PROC GPROJECT and PROC GMAP statements produce a graphical display of the solution:

/* Merge latitude and longitude */
proc sql;

/* merge in the lat & long for city1 */
create table TSPTourLinksAnno1 as
select unique TSPTourLinks.*, cities.lat as lat1, cities.long as long1

from TSPTourLinks left join cities
on TSPTourLinks.city1=cities.city;

/* merge in the lat & long for city2 */
create table TSPTourLinksAnno2 as
select unique TSPTourLinksAnno1.*, cities.lat as lat2, cities.long as long2

from TSPTourLinksAnno1 left join cities
on TSPTourLinksAnno1.city2=cities.city;

quit;

/* Create the annotated data set to draw the path on the map
(convert lat & long degrees to radians, since the map is in radians) */

data anno_path;
set TSPTourLinksAnno2;
length function color $8;
xsys='2'; ysys='2'; hsys='3'; when='a'; anno_flag=1;
function='move';
x=atan(1)/45 * long1;
y=atan(1)/45 * lat1;
output;
function='draw';
color="blue"; size=0.8;
x=atan(1)/45 * long2;
y=atan(1)/45 * lat2;
output;

run;

/* Get a map with only the contiguous 48 states */
data states;

set maps.states (where=(fipstate(state) not in ('HI' 'AK' 'PR')));
run;

data combined;
set states anno_path;

run;

126 F Chapter 2: The OPTNET Procedure

/* Project the map and annotate the data */
proc gproject data=combined out=combined dupok;

id state;
run;

data states anno_path;
set combined;
if anno_flag=1 then output anno_path;
else output states;

run;

/* Get a list of the endpoints locations */
proc sql;

create table anno_dots as
select unique x, y from anno_path;

quit;

/* Create the final annotate data set */
data anno_dots;

set anno_dots;
length function color $8;
xsys='2'; ysys='2'; when='a'; hsys='3';
function='pie';
rotate=360; size=0.8; style='psolid'; color="red";
output;
style='pempty'; color="black";
output;

run;

/* Generate the map with GMAP */
pattern1 v=s c=cxccffcc repeat=100;
proc gmap data=states map=states anno=anno_path all;

id state;
choro state / levels=1 nolegend coutline=black

anno=anno_dots des='' name="tsp";
run;

The minimal cost tour through the capital cities is shown on the US map in Figure 2.7.2.

Example 2.7: Traveling Salesman Tour through US Capital Cities F 127

Output 2.7.2 Optimal Traveling Salesman Tour through US Capital Cities

The data set TSPTourLinks contains the links in the optimal tour. To display the links in the order they are to
be visited, you can use the following DATA step:

/* Create the directed optimal tour */
data TSPTourLinksDirected(drop=next);

set TSPTourLinks;
retain next;
if _N_ ne 1 and city1 ne next then do;

city2 = city1;
city1 = next;

end;
next = city2;

run;

128 F Chapter 2: The OPTNET Procedure

The data set TSPTourLinksDirected is shown in Figure 2.70.

Figure 2.70 Links in the Optimal Traveling Salesman Tour

City Name City Name distance

Montgomery Tallahassee 177.14
Tallahassee Columbia 311.23
Columbia Raleigh 182.99
Raleigh Richmond 135.58
Richmond Washington 97.96
Washington Annapolis 27.89
Annapolis Dover 54.01
Dover Trenton 83.88
Trenton Hartford 151.65
Hartford Providence 65.56
Providence Boston 38.41
Boston Concord 66.30
Concord Augusta 117.36
Augusta Montpelier 139.32
Montpelier Albany 126.19
Albany Harrisburg 230.24
Harrisburg Charleston 287.34
Charleston Columbus 134.64
Columbus Lansing 205.08
Lansing Madison 246.88
Madison Saint Paul 226.25
Saint Paul Bismarck 391.25
Bismarck Pierre 170.27
Pierre Cheyenne 317.90
Cheyenne Denver 98.33
Denver Salt Lake City 373.05
Salt Lake City Helena 403.40
Helena Boise City 291.20
Boise City Olympia 401.31
Olympia Salem 146.00
Salem Sacramento 447.40
Sacramento Carson City 101.51
Carson City Phoenix 577.84
Phoenix Santa Fe 378.27
Santa Fe Oklahoma City 474.92
Oklahoma City Austin 357.38
Austin Baton Rouge 394.78
Baton Rouge Jackson 139.75
Jackson Little Rock 206.87
Little Rock Jefferson City 264.75
Jefferson City Topeka 191.67
Topeka Lincoln 132.94
Lincoln Des Moines 168.10
Des Moines Springfield 243.02
Springfield Indianapolis 186.46
Indianapolis Frankfort 129.90
Frankfort Nashville-Davidson 175.58
Nashville-Davidson Atlanta 212.61
Atlanta Montgomery 145.39

==========
10,627.75

References F 129

References

Ahuja, R. K., Magnanti, T. L., and Orlin, J. B. (1993), Network Flows: Theory, Algorithms, and Applications,
Englewood Cliffs, NJ: Prentice-Hall.

Applegate, D. L., Bixby, R. E., Chvátal, V., and Cook, W. J. (2006), The Traveling Salesman Problem: A
Computational Study, Princeton Series in Applied Mathematics, Princeton, NJ: Princeton University Press.

Bron, C. and Kerbosch, J. (1973), “Algorithm 457: Finding All Cliques of an Undirected Graph,” Communi-
cations of the ACM, 16, 48–50.

Cormen, T. H., Leiserson, C. E., and Rivest, R. L. (1990), Introduction to Algorithms, Cambridge, MA, and
New York: MIT Press and McGraw-Hill.

Google (2011), “Google Maps,” http://maps.google.com, accessed March 16, 2011.

Harley, E. R. (2003), Graph Algorithms for Assembling Integrated Genome Maps, Ph.D. diss., University of
Toronto.

Johnson, D. B. (1975), “Finding All the Elementary Circuits of a Directed Graph,” SIAM Journal on
Computing, 4, 77–84.

Jonker, R. and Volgenant, A. (1987), “A Shortest Augmenting Path Algorithm for Dense and Sparse Linear
Assignment Problems,” Computing, 38, 325–340.

Krebs, V. (2002), “Uncloaking Terrorist Networks,” First Monday, 7, available at http://www.
firstmonday.org/issues/issue7_4/krebs/.

Kruskal, J. B. (1956), “On the Shortest Spanning Subtree of a Graph and the Traveling Salesman Problem,”
Proceedings of the American Mathematical Society, 7, 48–50.

Stoer, M. and Wagner, F. (1997), “A Simple Min-Cut Algorithm,” Journal of the Association for Computing
Machinery, 44, 585–591.

Tarjan, R. E. (1972), “Depth-First Search and Linear Graph Algorithms,” SIAM Journal on Computing, 1,
146–160.

Willingham, V. (2009), “Massive Transplant Effort Pairs 13 Kidneys to 13 Patients,” CNN Health, http://
www.cnn.com/2009/HEALTH/12/14/kidney.transplant/index.html, accessed March 16,
2011.

http://maps.google.com
http://www.firstmonday.org/issues/issue7_4/krebs/
http://www.firstmonday.org/issues/issue7_4/krebs/
http://www.cnn.com/2009/HEALTH/12/14/kidney.transplant/index.html
http://www.cnn.com/2009/HEALTH/12/14/kidney.transplant/index.html

130

Index

ABSOBJGAP= option
TSP statement, 34

ALGORITHM= option
CONCOMP statement, 25

BICONCOMP statement
statement options, 23

CLIQUE statement
statement options, 24

CONCOMP statement
statement options, 25

CUTOFF= option
TSP statement, 35

CUTSTRATEGY= option
TSP statement, 35

CYCLE statement
statement options, 25

DATA_ADJ_MATRIX= option
PROC OPTNET statement, 21

DATA_LINKS= option
PROC OPTNET statement, 21

DATA_LINKS_VAR statement
statement options, 27

DATA_MATRIX= option
PROC OPTNET statement, 21

DATA_NODES= option
PROC OPTNET statement, 21

DATA_NODES_SUB= option
PROC OPTNET statement, 21

DATA_NODES_VAR statement
statement options, 28

EMPHASIS= option
TSP statement, 35

FROM= option
DATA_LINKS_VAR statement, 27

GRAPH_DIRECTION= option
PROC OPTNET statement, 21

GRAPH_INTERNAL_FORMAT= option
PROC OPTNET statement, 22

HEURISTICS= option
TSP statement, 35

ID= option
LINEAR_ASSIGNMENT statement, 29

INCLUDE_SELFLINK option
PROC OPTNET statement, 22

INTTOL= option
TSP statement, 36

LINEAR_ASSIGNMENT statement
statement options, 29

LOGFREQ= option
MINCOSTFLOW statement, 30
SHORTPATH statement, 32
TSP statement, 36

LOGLEVEL= option
BICONCOMP statement, 23
CLIQUE statement, 24
CONCOMP statement, 25
CYCLE statement, 25
LINEAR_ASSIGNMENT statement, 29
MINCOSTFLOW statement, 30
MINCUT statement, 31
MINSPANTREE statement, 32
PROC OPTNET statement, 22
SHORTPATH statement, 32
TRANSITIVE_CLOSURE statement, 34
TSP statement, 36

LOWER= option
DATA_LINKS_VAR statement, 28

MAXCLIQUES= option
CLIQUE statement, 24

MAXCYCLES= option
CYCLE statement, 26

MAXLENGTH= option
CYCLE statement, 26

MAXLINKWEIGHT= option
CYCLE statement, 26

MAXNODES= option
TSP statement, 36

MAXNODEWEIGHT= option
CYCLE statement, 26

MAXNUMCUTS= option
MINCUT statement, 31

MAXSOLS= option
TSP statement, 36

MAXTIME= option
CLIQUE statement, 24
CYCLE statement, 26
MINCOSTFLOW statement, 30
TSP statement, 36

MAXWEIGHT= option

132 F Index

MINCUT statement, 31
MILP= option

TSP statement, 37
MINCOSTFLOW statement

statement options, 30
MINCUT statement

statement options, 31
MINLENGTH= option

CYCLE statement, 26
MINLINKWEIGHT= option

CYCLE statement, 26
MINNODEWEIGHT= option

CYCLE statement, 27
MINSPANTREE statement

statement options, 32
MODE= option

CYCLE statement, 27

NODE= option
DATA_NODES_VAR statement, 28

NODESEL= option
TSP statement, 37

OPTNET procedure, 16
OUT= option

CLIQUE statement, 24
CYCLE statement, 27
LINEAR_ASSIGNMENT statement, 29
MINCUT statement, 31
MINSPANTREE statement, 32
SHORTPATH statement, 33
TRANSITIVE_CLOSURE statement, 34
TSP statement, 37

OUT_LINKS= option
PROC OPTNET statement, 23

OUT_NODES= option
PROC OPTNET statement, 23

OUT_PATHS= option
SHORTPATH statement, 33

OUT_WEIGHTS= option
SHORTPATH statement, 33

PATHS= option
SHORTPATH statement, 33

PROBE= option
TSP statement, 37

PROC OPTNET statement
statement options, 21

RELOBJGAP= option
TSP statement, 38

SHORTPATH statement
statement options, 32

SINK= option

SHORTPATH statement, 33
SOURCE= option

SHORTPATH statement, 33
STRONGITER= option

TSP statement, 38
STRONGLEN= option

TSP statement, 38

TARGET= option
TSP statement, 38

TIMETYPE= option
PROC OPTNET statement, 23

TO= option
DATA_LINKS_VAR statement, 28

TRANSITIVE_CLOSURE statement
statement options, 34

TSP statement
statement options, 34

UPPER= option
DATA_LINKS_VAR statement, 28

USEWEIGHT= option
SHORTPATH statement, 33

VARSEL= option
TSP statement, 38

WEIGHT2= option
DATA_NODES_VAR statement, 28
SHORTPATH statement, 33

WEIGHT= option
DATA_LINKS_VAR statement, 28
DATA_NODES_VAR statement, 28
LINEAR_ASSIGNMENT statement, 29

Your Turn

We welcome your feedback.

• If you have comments about this book, please send them to
yourturn@sas.com. Include the full title and page numbers (if applicable).

• If you have comments about the software, please send them to
suggest@sas.com.

SAS® Publishing Delivers!
Whether you are new to the work force or an experienced professional, you need to distinguish yourself in this rapidly
changing and competitive job market. SAS® Publishing provides you with a wide range of resources to help you set
yourself apart. Visit us online at support.sas.com/bookstore.

SAS® Press
Need to learn the basics? Struggling with a programming problem? You’ll find the expert answers that you
need in example-rich books from SAS Press. Written by experienced SAS professionals from around the
world, SAS Press books deliver real-world insights on a broad range of topics for all skill levels.

s u p p o r t . s a s . c o m / s a s p r e s s
SAS® Documentation
To successfully implement applications using SAS software, companies in every industry and on every
continent all turn to the one source for accurate, timely, and reliable information: SAS documentation.
We currently produce the following types of reference documentation to improve your work experience:

•	 Online	help	that	is	built	into	the	software.	
•	 Tutorials	that	are	integrated	into	the	product.	
•	 Reference	documentation	delivered	in	HTML	and	PDF	– free on the Web.
•	 Hard-copy	books.	

s u p p o r t . s a s . c o m / p u b l i s h i n g
SAS® Publishing News
Subscribe to SAS Publishing News to receive up-to-date information about all new SAS titles, author
podcasts, and new Web site features via e-mail. Complete instructions on how to subscribe, as well as
access to past issues, are available at our Web site.

s u p p o r t . s a s . c o m / s p n

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.
Other	brand	and	product	names	are	trademarks	of	their	respective	companies.	©	2009	SAS	Institute	Inc.	All	rights	reserved.	518177_1US.0109

	Contents
	Documentation
	Software
	Support Groups

	What's New in SAS/OR 12.1, 12.2, and 12.3
	Overview
	Highlights of Enhancements in SAS/OR 12.3
	Highlights of Enhancements in SAS/OR 12.1

	The CLP Procedure
	The DTREE, GANTT, and NETDRAW Procedures
	Supporting Technologies for Optimization
	PROC OPTMODEL: Nonlinear Optimization
	Linear Optimization with PROC OPTMODEL and PROC OPTLP
	Mixed Integer Linear Optimization with PROC OPTMODEL and PROC OPTMILP
	The Decomposition Algorithm
	Setting the Cutting Plane Strategy
	Conflict Search
	PROC OPTMILP: Option Tuning
	PROC OPTMODEL: The SUBMIT Block
	Network Optimization with PROC OPTNET
	SAS Simulation Studio 12.1

	The OPTNET Procedure
	Overview: OPTNET Procedure
	Getting Started: OPTNET Procedure
	Road Network Shortest Path

	Syntax: OPTNET Procedure
	Functional Summary
	PROC OPTNET Statement
	BICONCOMP Statement
	CLIQUE Statement
	CONCOMP Statement
	CYCLE Statement
	DATA_ADJ_MATRIX_VAR Statement
	DATA_LINKS_VAR Statement
	DATA_MATRIX_VAR Statement
	DATA_NODES_VAR Statement
	LINEAR_ASSIGNMENT Statement
	MINCOSTFLOW Statement
	MINCUT Statement (Experimental)
	MINSPANTREE Statement
	SHORTPATH Statement
	TRANSITIVE_CLOSURE Statement
	TSP Statement

	Details: OPTNET Procedure
	Graph Input Data
	Link Input Data
	Adjacency Matrix Input Data
	Node Input Data
	Node Subset Input Data

	Matrix Input Data
	Biconnected Components and Articulation Points
	Biconnected Components of a Simple Undirected Graph

	Clique
	Maximal Cliques of a Simple Undirected Graph

	Connected Components
	Connected Components of a Simple Undirected Graph
	Connected Components of a Simple Directed Graph

	Cycle
	Cycle Detection of a Simple Directed Graph

	Linear Assignment (Matching)
	Minimum Cut
	Minimum Cut for a Simple Undirected Graph

	Minimum Spanning Tree
	Minimum Spanning Tree for a Simple Undirected Graph

	Minimum-Cost Network Flow
	Minimum Cost Network Flow for a Simple Directed Graph

	Shortest Path
	Output Data Sets
	Shortest Paths for All Pairs
	Shortest Paths for a Subset of Source-Sink Pairs
	Shortest Paths for a Subset of Source or Sink Pairs
	Shortest Paths for One Source-Sink Pair
	Shortest Paths with Auxiliary Weight Calculation

	Transitive Closure
	Transitive Closure of a Simple Directed Graph

	Traveling Salesman Problem
	Traveling Salesman Problem of a Simple Undirected Graph

	Macro Variable _OROPTNET_
	Macro Variable _OROPTNET_BICONCOMP_
	Macro Variable _OROPTNET_CLIQUE_
	Macro Variable _OROPTNET_CONCOMP_
	Macro Variable _OROPTNET_CYCLE_
	Macro Variable _OROPTNET_LAP_
	Macro Variable _OROPTNET_MCF_
	Macro Variable _OROPTNET_MINCUT_
	Macro Variable _OROPTNET_MST_
	Macro Variable _OROPTNET_SHORTPATH_
	Macro Variable _OROPTNET_TRANSCL_
	Macro Variable _OROPTNET_TSP_

	Examples: OPTNET Procedure
	Example 2.1: Articulation Points in a Terrorist Network
	Example 2.2: Cycle Detection for Kidney Donor Exchange
	Example 2.3: Linear Assignment Problem for Minimizing Swim Times
	Example 2.4: Linear Assignment Problem, Sparse Format versus Dense Format
	Example 2.5: Minimum Spanning Tree for Computer Network Topology
	Example 2.6: Transitive Closure for Identification of Circular Dependencies in a Bug Tracking System
	Example 2.7: Traveling Salesman Tour through US Capital Cities

	References

	Index

