Osas |

SAS/OR" 13.1 User’s Guide

Mathematical Programming

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2013. SAS/OR® 13.1 User's Guide: Mathematical
Programming. Cary, NC: SAS Institute Inc.

SAS/OR® 13.1 User’s Guide: Mathematical Programming
Copyright © 2013, SAS Institute Inc., Cary, NC, USA
All rights reserved. Produced in the United States of America.

For a hard-copy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or
by any means, electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS
Institute Inc.

For a web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at the time
you acquire this publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the publisher is
illegal and punishable by law. Please purchase only authorized electronic editions and do not participate in or encourage electronic
piracy of copyrighted materials. Your support of others’ rights is appreciated.

U.S. Government License Rights; Restricted Rights: The Software and its documentation is commercial computer software
developed at private expense and is provided with RESTRICTED RIGHTS to the United States Government. Use, duplication or
disclosure of the Software by the United States Government is subject to the license terms of this Agreement pursuant to, as
applicable, FAR 12.212, DFAR 227.7202-1(a), DFAR 227.7202-3(a) and DFAR 227.7202-4 and, to the extent required under U.S.
federal law, the minimum restricted rights as set out in FAR 52.227-19 (DEC 2007). If FAR 52.227-19 is applicable, this provision
serves as notice under clause (c) thereof and no other notice is required to be affixed to the Software or documentation. The
Government’s rights in Software and documentation shall be only those set forth in this Agreement.

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513-2414.
December 2013

SAS provides a complete selection of books and electronic products to help customers use SAS® software to its fullest potential.
For more information about our offerings, visit support.sas.com/bookstore or call 1-800-727-3228.

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in
the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Gain Greater Insight into Your
SAS® Software with SAS Books.

Discover all that you need on your journey to knowledge and empowerment.

@ support.sas.com/bookstore §Sas
(€ D)

for additional books and resources. THE POWER TO KNOW.

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are
trademarks of their respective companies. © 2013 SAS Institute Inc. All rights reserved. S107969US.0613

v

Contents

Chapter 1.
Chapter 2.
Chapter 3.
Chapter 4.
Chapter 5.
Chapter 6.
Chapter 7.
Chapter 8.
Chapter 9.

Chapter 10.
Chapter 11.
Chapter 12.
Chapter 13.
Chapter 14.
Chapter 15.
Chapter 16.

What’s New in SAS/OR 13.1 .
Using This Book

Introduction to Optimization
Shared Concepts and Topics

The OPTMODEL Procedure

The Linear Programming Solver .

The Mixed Integer Linear Programming Solver

The Network Solver (Experimental)
The Nonlinear Programming Solver
The Quadratic Programming Solver
The OPTLP Procedure

The OPTMILP Procedure

The OPTQP Procedure

The Decomposition Algorithm

The OPTMILP Option Tuner .

The MPS-Format SAS Data Set .

Subject Index

Syntax Index

11

21

27
191
257
309
413
455
479
535
595
625
727
747

763

771

vi

Acknowledgments

Credits

Documentation

Writing Ioannis Akrotirianakis, Hao Cheng, Philipp Christophel, Matthew
Galati, Dmitry V. Golovashkin, Melanie Gratton, Joshua Griffin,
Menal Guzelsoy, Jennie Hu, Tao Huang, Trevor Kearney, Zhifeng Li,
Richard Liu, Leo Lopes, Amar Narisetty, Michelle Opp, Imre Polik,
Girish Ramachandra, Jack Rouse, Ben-Hao Wang, Kaihong Xu, Yan
Xu, Wenwen Zhou

Editing Anne Baxter, Ed Huddleston

Documentation Support Tim Arnold, Natalie Baerlocher, Remya Chandran, Melanie Gratton,
Richard Liu, Jianzhe Luo, Michelle Opp, Portia Parker, Girish
Ramachandra, Daniel Underwood

Technical Review Shahrzad Azizzadeh, Tonya Chapman, Donna Fulenwider, Bill
Gjertsen, Tao Huang, Edward P. Hughes, John Jasperse, Rui Kang,
Charles B. Kelly, Radhika Kulkarni, Yu-Min Lin, M. Muraleetharan,
Bengt Pederson, Rob Pratt, Kaihong Xu, Lois Zhu

Software

In the following list, the names of the developers who currently support the procedure are listed first.

OPTMODEL procedure

LP simplex algorithms

LP interior point algorithm

MILP solver

Network solver

Leo Lopes, Jack Rouse

Philipp Christophel, Matthew Galati, Imre P6lik, Ben-Hao Wang,
Yan Xu

Hao Cheng

Philipp Christophel, Matthew Galati, Menal Guzelsoy, Amar
Narisetty, Yan Xu

Matthew Galati, Leo Lopes, Jack Rouse

NLP solver Joshua Griffin, Tao Huang, Ben-Hao Wang, Wenwen Zhou

QP solver Hao Cheng
OPTLP procedure Hao Cheng, Matthew Galati, Imre P6lik, Ben-Hao Wang, Yan Xu
OPTMILP procedure Philipp Christophel, Amar Narisetty, Yan Xu
OPTQP procedure Hao Cheng, Wenwen Zhou
Decomposition algorithm Matthew Galati
OPTMILP option tuner Ben-Hao Wang
MPS-format SAS data set Hao Cheng, Amar Narisetty
Linear algebra specialist Alexander Andrianov
Support Groups
Software Testing Shahrzad Azizzadeh, Wei Huang, Rui Kang, Yu-Min Lin,

M. Muraleetharan, Sanjeewa Naranpanawe, Bengt Pederson,
Aysegul Peker, Rob Pratt, Jennifer Sloan, Jonathan Stephenson,
Kaihong Xu, Wei Zhang, Lois Zhu

Technical Support Tonya Chapman

Acknowledgments

Many people have been instrumental in the development of SAS/OR software. The individuals acknowledged
here have been especially helpful.

Richard Brockmeier Union Electric Company

Ken Cruthers Goodyear Tire & Rubber Company
Patricia Duffy Auburn University

Richard A. Ehrhardt University of North Carolina at Greensboro

Paul Hardy Babcock & Wilcox

viii

Don Henderson ORI Consulting Group

Dave Jennings Lockheed Martin

Vidyadhar G. Kulkarni University of North Carolina at Chapel Hill
Wayne Maruska Basin Electric Power Cooperative

Roger Perala United Sugars Corporation

Bruce Reed Auburn University

Charles Rissmiller Lockheed Martin

David Rubin University of North Carolina at Chapel Hill
John Stone North Carolina State University

Keith R. Weiss ICI Americas Inc.

The final responsibility for the SAS System lies with SAS Institute alone. We hope that you will always let
us know your opinions about the SAS System and its documentation. It is through your participation that
SAS software is continuously improved.

ix

Chapter 1
What's New in SAS/OR 13.1

Linear and Nonlinear Optimization with PROC OPTLP and PROC OPTMODEL . . .
Mixed Integer Linear Optimization with PROC OPTMILP and PROC OPTMODEL .
SAS Simulation Studio 13.1

Contents

OVEIVIEW . . . o o e e e e e e e e e e e e e e e e 1
Highlights of Enhancements in SAS/OR 13.1 1

Procedure Enhancements L 2

The CLP Procedure it e e e 2

The OPTLSO Procedure it e e e e e e 2

The OPTMODEL Procedure it 2

3

3

4

Overview

SAS/OR 13.1 includes new features and enhancements to current features in optimization, discrete-event
simulation, and constraint programming. In addition to ongoing improvements in the performance of the
linear, mixed integer, quadratic, and general nonlinear optimization solver algorithms, these changes expand
the range of problems you can address, make it easier to use the SAS/OR modeling and solution methods,
deepen integration with other SAS analytic capabilities, and more fully utilize your available computational
resources.

Highlights of Enhancements in SAS/OR 13.1
Highlights of the SAS/OR enhancements include the following:

* PROC OPTMODEL adds:

— direct access to network optimization and analysis algorithms (Experimental)
— parallel execution of solver invocations in a COFOR loop

— support for function definition via PROC FCMP in Base SAS software
* PROC OPTLSO adds:

— multiobjective optimization

— support for the use of array-structured data in function definition (with PROC FCMP)

2 4 Chapter 1: What's New in SAS/OR 13.1

* The mixed integer linear programming (MILP) solver adds the option to execute in parallel on multiple
computational cores (Experimental)

¢ SAS Simulation Studio adds:

support for custom block icons

improvements to the simulation clock display

enhancements to the Submodel block interface

other interface improvements

Procedure Enhancements

The CLP Procedure

The CLP procedure uses constraint logic programming methods to solve general and scheduling-oriented
constraint satisfaction problems; it can also solve optimization problems. In SAS/OR 13.1, the OBJ statement,
which specifies an objective function to be added to a constraint satisfaction problem, attains production
status. This statement enables PROC CLP to solve optimization problems that include intricate logical
constraints.

The OPTLSO Procedure

The OPTLSO procedure uses local and global search methods to solve optimization problems without making
any simplifying assumptions about the nature or the behavior of the objective or constraint functions. In
SAS/OR 13.1, PROC OPTLSO adds the ability to specify more than one objective by using the OBJECTIVE=
option in the PROC OPTLSO statement. For multiple objectives, PROC OPTLSO returns a set of Pareto-
optimal points, which constitute an efficient frontier. This feature expands the range of problems that can
be addressed with PROC OPTLSO and enables you to explore the trade-offs that can exist between your
identified objective functions. The definition of the Pareto-optimal set is always based on the values of the
objective functions; it also includes feasibility considerations when constraints are present. You can limit the
size of this set by specifying a value for the PARETOMAX= option in the PROC OPTLSO statement.

The OPTMODEL Procedure

The OPTMODEL procedure provides an interactive environment in which you can build and solve a wide
range of optimization models. In SAS/OR 13.1, PROC OPTMODEL adds the (experimental) network
solver, providing direct access to the set of 11 network analysis and optimization algorithms that are also
accessible via PROC OPTNET. This addition makes it easier to solve network-oriented problems with
PROC OPTMODEL, especially as a component of a larger solution or other analytical process. The SOLVE
WITH NETWORK statement invokes the network solver. Unlike other solvers that PROC OPTMODEL
uses, the network solver operates directly on arrays and sets. You do not need to explicitly define variables,

Linear and Nonlinear Optimization with PROC OPTLP and PROC OPTMODEL 4 3

constraints, and objectives to use the network solver because PROC OPTMODEL declares the appropriate
objects internally as needed. You specify the names of arrays and sets that define your network-structured
inputs and outputs as options in the SOLVE WITH NETWORK statement. In addition to input and output,
options in the SOLVE WITH NETWORK statement define processing and diagnostic controls and specify
which algorithm to execute.

PROC OPTMODEL also now enables you to run optimization solver invocations in parallel, in iterations of a
concurrent FOR loop that is specified using the COFOR statement. The COFOR statement operates in the
same manner as the FOR statement, except that with a COFOR statement PROC OPTMODEL can execute
the SOLVE statement concurrently with other statements. The execution of the COFOR sub-statement is
interleaved between loop iterations so that other iterations can be processed while an iteration waits for a
SOLVE statement to complete. Multiple solvers can run concurrently. This interleaving is managed so that in
many cases a FOR loop can be replaced by a COFOR loop to achieve concurrency with minimal or no other
changes to the code. For problems in which the SOLVE statement execution accounts for the majority of the
time needed to execute a loop iteration, use of the COFOR statement can produce significant reductions in
overall time needed.

PROC OPTMODEL can now also call functions and subroutines that have been defined and compiled using
the FCMP procedure in Base SAS software. This capability enables reuse of previously defined functions and
subroutines, deepening integration with other SAS analytic procedures from which they can also be called.
You can use an FCMP function anywhere a function is otherwise permitted in PROC OPTMODEL. You can
use the CALL statement in PROC OPTMODEL to call FCMP subroutines. An FCMP subroutine can return
data by updating PROC OPTMODEL parameters (numeric and string) that are passed as arguments in the
corresponding CALL statement and declared using the OUTARGS statement in the PROC FCMP subroutine
definition. In addition to numeric and string parameters, you can pass PROC OPTMODEL arrays to PROC
FCMP functions and subroutines that accept matrix arguments.

Linear and Nonlinear Optimization with PROC OPTLP and PROC
OPTMODEL

In SAS/OR 13.1, the concurrent solve capability for linear and nonlinear optimization attains production
status. You can specify this capability in the ALGORITHM=CONCURRENT option in the PROC OPTLP
statement or in the SOLVE statement in PROC OPTMODEL. This feature executes all available solution
algorithms in parallel, as permitted by the number of computational cores available. The first algorithm to
finish returns its solution.

Mixed Integer Linear Optimization with PROC OPTMILP and PROC
OPTMODEL

In SAS/OR 13.1, the mixed integer linear programming (MILP) solver adds the (experimental) ability to
execute the branch-and-cut solution algorithm in parallel on multiple computational cores in single-machine
mode. To enable parallel processing of the branch-and-cut algorithm, you need to specify the PARALLEL=1
option in the PROC OPTMILP statement or in the SOLVE statement in PROC OPTMODEL.

4 4 Chapter 1: What's New in SAS/OR 13.1

SAS Simulation Studio 13.1

SAS Simulation Studio 13.1, a component of SAS/OR 13.1 for Windows environments, makes several
enhancements to its graphical discrete-event simulation modeling and analysis interface. You can now
specify a custom image to replace the default icon for any block instance; the new Visual tab on each block’s
Block Properties dialog box enables you to specify a custom image and customize the block label. The
Simulation Clock display has been augmented to graphically indicate the status of a model (running, paused,
or stopped/completed).

The Definition view for a Submodel window adds its own block template, which appears when you place the
cursor over a small image of the template near the top of the Submodel window. This feature makes it easier
for you to add blocks to the definition of a submodel. In SAS Simulation Studio 13.1 it is also easier for you
to edit expressions by using a dedicated Edit Expressions window. This window opens from many Block
Properties dialog boxes for blocks in which you can specify expressions such as attribute rules. In addition,
the calculation of statistics in the Resource Stats Collector block has been improved and expanded. Lastly,
SAS Simulation Studio 13.1 streamlines the method for specifying a DataStreamDescription factor or an
InStreamPolicy port value for a Numeric Source block in order to control the probability distribution that is
sampled in the block.

Chapter 2
Using This Book

Contents

Purpose e
Organization L e e
Typographical Conventions 0 it e e
Conventions for Examples

Accessing the SAS/OR Sample Library

Online Documentation e
Additional Documentation for SAS/OR Software

R 00 00 X N Ui W

Purpose

SAS/OR User’s Guide: Mathematical Programming provides a complete reference for the mathematical
programming procedures in SAS/OR software. This book serves as the primary documentation for the
OPTLP, OPTMILP, OPTMODEL, and OPTQP procedures; the various solvers used by PROC OPTMODEL,;
and the MPS-format SAS data set specification.

This chapter describes the organization of this book and the conventions that are used in the text and example
code. To gain full benefit from using this book, you should familiarize yourself with the information presented
in this section and refer to it when needed. The section “Additional Documentation for SAS/OR Software”
on page 8 refers to other documents that contain related information.

Organization

Chapter 3, “Introduction to Optimization,” contains a brief overview of the mathematical programming
procedures in SAS/OR software and provides an introduction to optimization and the use of the optimization
tools in the SAS System. That chapter also describes the flow of data between the procedures and how the
components of the SAS System fit together.

Chapter 4, “Shared Concepts and Topics,” details syntax that is common to all the procedures in this book.
The chapter also reviews other topics such as ODS output and parallel processing that are not specific to one
procedure.

Chapter 5, “The OPTMODEL Procedure,” describes the OPTMODEL procedure, and the five subsequent
chapters describe various solvers (linear programming, mixed integer linear programming, nonlinear pro-
gramming, quadratic programming, and network) that the OPTMODEL procedure uses. The next three

6 4 Chapter 2: Using This Book

chapters describe the OPTLP, OPTMILP, and OPTQP procedures for solving linear programming, mixed
integer linear programming, and quadratic programming problems, respectively. The next two chapters
describe the decomposition algorithm for linear and mixed integer linear programming and the option tuner
for the OPTMILP procedure. The final chapter is the specification of the MPS-format SAS data set.

Each procedure description is self-contained; you need to be familiar with only the basic features of the SAS
System and with SAS terminology to use most procedures. The statements and syntax necessary to run each

procedure are presented in a uniform format throughout this book.

The following list summarizes the types of information provided for each procedure:

Overview

Getting Started

Syntax

Details

Examples

References

provides a general description of what the procedure does.
It outlines major capabilities of the procedure and lists all
input and output data sets that are used with it.

illustrates simple uses of the procedure in a few short ex-
amples. It provides introductory hands-on information for
the procedure.

constitutes the major reference section for the syntax of the
procedure. First, the statement syntax is summarized. Next,
a functional summary table lists all the statements and
options in the procedure, classified by function. In addition,
the online version includes a Dictionary of Options, which
provides an alphabetical list of all options. Following these
tables, the PROC statement is described, and then all other
statements are described in alphabetical order.

describes the features of the procedure, including algorith-
mic details and computational methods. It also explains
how the various options interact with each other. This sec-
tion describes input and output data sets in greater detail,
with definitions of the output variables, and explains the
format of printed output, if any.

consists of examples that are designed to illustrate the use
of the procedure. Each example includes a description
of the problem and lists the options that are highlighted
by the example. The example shows the data and the
SAS statements needed, and includes the output that is
produced. You can duplicate the examples by copying
the statements and data and running the SAS program.
The SAS Sample Library contains the code that is used to
run the examples shown in this book; consult your SAS
Software representative for specific information about the
Sample Library.

lists references that are relevant to the chapter.

Conventions for Examples 4 7

Typographical Conventions

This book uses various type styles, as explained by the following list:

roman is the standard type style used for most text.

UPPERCASE ROMAN is used for SAS statements, options, and other SAS lan-
guage elements when they appear in the text. However,
you can enter these elements in your own SAS code in
lowercase, uppercase, or a mixture of the two. This style
is also used for identifying arguments and values (in the
syntax specifications) that are literals (for example, to
denote valid keywords for a specific option).

UPPERCASE BOLD s used in the “Syntax” section to identify SAS keywords,
such as the names of procedures, statements, and options.

VariableName is used for the names of SAS variables and data sets when
they appear in the text.

oblique is used to indicate an option variable for which you must
supply a value (for example, DUPLICATE=dup indicates
that you must supply a value for dup).

italic is used for terms that are defined in the text, for emphasis,
and for publication titles.

monospace is used to show examples of SAS statements. In most
cases, this book uses lowercase type for SAS code. You
can enter your own SAS code in lowercase, uppercase, or
a mixture of the two.

Conventions for Examples

Most of the output shown in this book is produced with the following SAS System options:

options linesize=80 pagesize=60 nonumber nodate;

8 4 Chapter 2: Using This Book

Accessing the SAS/OR Sample Library

The SAS/OR Sample Library includes many examples that illustrate the use of SAS/OR software, including
the examples used in this documentation. To access these sample programs from the SAS windowing
environment, select Help from the main menu and then select Getting Started with SAS Software. On the
Contents tab, expand the Learning to Use SAS, Sample SAS Programs, and SAS/OR items. Then click
Samples.

Online Documentation

This documentation is available online with the SAS System. To access SAS/OR documentation from the SAS
windowing environment, select Help from the main menu and then select SAS Help and Documentation.
On the Contents tab, expand the SAS Products and SAS/OR items. Then expand the book you want to
view. You can search the documentation by using the Search tab.

You can also access the documentation by going to http://support.sas.com/documentation.

Additional Documentation for SAS/OR Software

In addition to SAS/OR User’s Guide: Mathematical Programming, you might find the following documents
helpful when using SAS/OR software:

SAS/OR User’s Guide: Bill of Material Processing
provides documentation for the BOM procedure and all bill of material postprocessing SAS macros.
The BOM procedure and SAS macros enable you to generate different reports and to perform several
transactions to maintain and update bills of material.

SAS/OR User’s Guide: Constraint Programming
provides documentation for the constraint programming procedure in SAS/OR software. This book
serves as the primary documentation for the CLP procedure.

SAS/OR User’s Guide: Local Search Optimization
provides documentation for the local search optimization procedures in SAS/OR software. This book
serves as the primary documentation for the GA procedure, which uses genetic algorithms to solve
optimization problems, and the OPTLSO procedure, which performs parallel hybrid derivative-free
optimization.

SAS/OR User’s Guide: Mathematical Programming Examples
supplements the SAS/OR User’s Guide: Mathematical Programming with additional examples that
demonstrate best practices for building and solving linear programming, mixed integer linear program-
ming, and quadratic programming problems. The problem statements are reproduced with permission
from the book Model Building in Mathematical Programming by H. Paul Williams.

http://support.sas.com/documentation

Ad(ditional Documentation for SAS/OR Software 4 9

SAS/OR User’s Guide: Mathematical Programming Legacy Procedures
provides documentation for the older mathematical programming procedures in SAS/OR software. This
book serves as the primary documentation for the INTPOINT, LP, NETFLOW, and NLP procedures.
Guidelines are also provided on migrating from these older procedures to the newer OPTMODEL
family of procedures.

SAS/OR User’s Guide: Network Optimization Algorithms
provides documentation for a set of algorithms that can be used to investigate the characteristics of
networks and to solve network-oriented optimization problems. This book also documents PROC
OPTNET, which invokes these algorithms and provides network-structured formats for input and
output data.

SAS/OR User’s Guide: Project Management
provides documentation for the project management procedures in SAS/OR software. This book serves
as the primary documentation for the CPM, DTREE, GANTT, NETDRAW, and PM procedures, in
addition to the PROJMAN Application, a graphical user interface for project management.

SAS Simulation Studio: User’s Guide
provides documentation about using SAS Simulation Studio, a graphical application for creating and
working with discrete-event simulation models. This book describes in detail how to build and run
simulation models and how to interact with SAS software for analysis and with JMP software for
experimental design and analysis.

10

Chapter 3
Introduction to Optimization

Contents
OVEIVIEW . . . o o o e e e e e e e e e e e e e e e e e e e 11
Linear Programming Problems o0 oo 13
The OPTLP Procedure e e et 13
The OPTMODEL Procedure i 13
Mixed Integer Linear Problems 14
The OPTMILP Procedure ittt 14
The OPTMODEL Procedure it 14
Quadratic Programming Problems L oo 14
The OPTQP Procedure i 14
The OPTMODEL Procedure ittt .. 15
Nonlinear Problems e 15
The OPTMODEL Procedure it 15
Model Building with PROC OPTMODEL 15
References e 19
Overview

Operations research tools are directed toward the solution of resource management and planning problems.
Models in operations research are representations of the structure of a physical object or a conceptual or
business process. Using the tools of operations research involves the following:

* defining a structural model of the system under investigation
* collecting the data for the model
* solving the model

* interpreting the results

SAS/OR software is a set of procedures for exploring models of distribution networks, production systems,
resource allocation problems, and scheduling problems using the tools of operations research.

12 4 Chapter 3: Introduction to Optimization

The following list suggests some of the application areas in which optimization-based decision support
systems have been used. In practice, models often contain elements of several applications listed here.

* Product-mix problems find the mix of products that generates the largest return when several products
compete for limited resources.

* Blending problems find the mix of ingredients to be used in a product so that it meets minimum
standards at minimum cost.

* Time-staged problems are models whose structure repeats as a function of time. Production and
inventory models are classic examples of time-staged problems. In each period, production plus
inventory minus current demand equals inventory carried to the next period.

* Scheduling problems assign people to times, places, or tasks so as to optimize people’s preferences
or performance while satisfying the demands of the schedule.

* Multiple objective problems have multiple, possibly conflicting, objectives. Typically, the objectives
are prioritized, and the problems are solved sequentially in a priority order.

» Capital budgeting and project selection problems ask for the project or set of projects that yield the
greatest return.

* Location problems seek the set of locations that meets the distribution needs at minimum cost.

* Cutting stock problems find the partition of raw material that minimizes waste and fulfills demand.

The basic optimization problem is that of minimizing or maximizing an objective function subject to
constraints imposed on the variables of that function. The objective function and constraints can be linear or
nonlinear; the constraints can be bound constraints, equality or inequality constraints, or integer constraints.
Traditionally, optimization problems are divided into various types depending on the sets of values that the
variables are restricted to (real, integer, or binary, or a combination) and the nature of functional form of the
constraints and objectives (linear, quadratic, or general nonlinear). An expression of an optimization problem
in mathematical form is called a mathematical program.

When the complete description of a mathematical program is supplied to an appropriate algorithm (such as one
of the solvers described in this book), the algorithm determines the optimal values for the decision variables
so the objective is either maximized or minimized, the optimal values that are assigned to decision variables
are on or between allowable bounds, and the constraints are obeyed. This process of solving mathematical
programs is called mathematical programming, mathematical optimization, or just optimization.

When the constraints in an optimization problem are linear and the objective is either linear or quadratic, the
optimization problem can be encapsulated in SAS data sets and then solved using the appropriate SAS/OR
procedure: the OPTLP, OPTMILP, or OPTQP procedure.

Often optimization problems, and especially those with nonlinear elements, are formalized in an algebraic
model that represents the problem. When formulated in its most abstract form, such an algebraic model is
independent of problem data. A specific optimization problem instance (including the original problem)
is then just an instantiation of the algebraic model with the specific data associated with that instance. An
optimization modeling language (also called an algebraic modeling language) is a programming environment
that has syntax, structures, and operations that enable you to express a mathematical program in a form that
corresponds in a natural and transparent way to its algebraic model. The syntax, structures, and operations

Linear Programming Problems 4 13

also enable you to populate an algebraic model with a specific data instance and then solve the resulting
optimization problem instance with an appropriate solver. The OPTMODEL procedure is such an algebraic
modeling language in SAS/OR software and can be viewed as a single, unified environment to formulate and
solve mathematical programming problems of many different types.

Whether mathematical programs are represented in SAS data sets or in an algebraic model in PROC
OPTMODEL, they can be saved, easily changed, and solved again. The SAS/OR procedures also output
SAS data sets that contain the solutions. These data sets can then be used to produce customized reports or as
input to other SAS procedures. This structure enables you to use the tools of operations research and other
SAS tools as building blocks to build decision support systems.

This chapter describes how to use SAS/OR software to solve a wide variety of optimization problems. It
describes various types of optimization problems, indicates which SAS/OR procedures you can use, and
shows how you provide data, run the procedure, and obtain optimal solutions. For additional examples
that demonstrate the features of the OPTMODEL procedure, see SAS/OR User’s Guide: Mathematical
Programming Examples.

The next section broadly classifies the SAS/OR procedures based on the types of mathematical programming
problems they can solve.

Linear Programming Problems

The OPTLP Procedure

The OPTLP procedure solves linear programming problems that are submitted in a SAS data set that uses a
mathematical programming system (MPS) format.

The MPS file format is a format commonly used for describing linear programming (LP) and integer
programming (IP) problems (Murtagh 1981; IBM 1988). MPS-format files are in text format and have
specific conventions for the order in which the different pieces of the mathematical model are specified.
The MPS-format SAS data set corresponds closely to the MPS file format and is used to describe linear
programming problems for PROC OPTLP. For more details, see Chapter 16, “The MPS-Format SAS Data
Set.”

PROC OPTLP provides three solvers to solve general LPs: primal simplex, dual simplex, and interior point.
The simplex solvers implement a two-phase simplex method, and the interior point solver implements a
primal-dual predictor-corrector algorithm. For pure network LPs or LPs with significant network structure
and additional linear side constraints, PROC OPTLP also provides a network simplex based solver. For more
details about solving LPs with PROC OPTLP, see Chapter 11, “The OPTLP Procedure.”

The OPTMODEL Procedure

The OPTMODEL procedure, a general purpose optimization modeling language, can also be used for
concisely modeling linear programming problems. If an LP has special network structure, the structure is
typically natural and evident in a well-formulated model of the problem in PROC OPTMODEL.

14 4 Chapter 3: Introduction to Optimization

Within PROC OPTMODEL you can declare a model, pass it directly to various solvers, and review the solver
result. You can also save an instance of a linear model in data set form for use by the OPTLP procedure. For
more details, see Chapter 5, “The OPTMODEL Procedure.”

Mixed Integer Linear Problems

The OPTMILP Procedure

The OPTMILP procedure solves general mixed integer linear programs (MILPs) —linear programs in which
a subset of the decision variables are constrained to be integers. The OPTMILP procedure solves MILPs
with an LP-based branch-and-bound algorithm augmented by advanced techniques such as cutting planes
and primal heuristics. For more details about the OPTMILP procedure, see Chapter 12, “The OPTMILP
Procedure.”

The OPTMILP procedure requires a MILP to be specified by a SAS data set that adheres to the MPS format.
See Chapter 16, “The MPS-Format SAS Data Set,” for details about the MPS-format data set.

The OPTMODEL Procedure

The OPTMODEL procedure, a general purpose optimization modeling language, can also be used for
concisely modeling mixed integer linear programming problems. In fact, except for the declaration of some
subset of variables to be integer or binary, modeling these problems is quite analogous to modeling LPs.
Within OPTMODEL you can declare a model, pass it directly to various solvers, and review the solver result.
You can also save an instance of a mixed integer linear model in data set form for use by PROC OPTMILP.
For more details, see Chapter 5, “The OPTMODEL Procedure.”

Quadratic Programming Problems

The OPTQP Procedure

The OPTQP procedure solves quadratic programs—problems with a quadratic objective function and a
collection of linear constraints, including general linear constraints along with lower or upper bounds (or
both) on the decision variables.

You can specify the problem input data in one SAS data set that uses a quadratic programming system (QPS)
format. For details about the QPS-format data specification, see Chapter 16, “The MPS-Format SAS Data
Set.” For more details about the OPTQP procedure, see Chapter 13, “The OPTQP Procedure.”

The OPTMODEL Procedure 4 15

The OPTMODEL Procedure

The OPTMODEL procedure, a general purpose optimization modeling language, can also be used for
concisely modeling quadratic programming problems. Within OPTMODEL you can declare a model, pass it
directly to various solvers, and review the solver result. You can also save an instance of a quadratic model in
data set form for use by PROC OPTQP. For more details, see Chapter 5, “The OPTMODEL Procedure.”

Nonlinear Problems

The OPTMODEL Procedure

The OPTMODEL procedure, a general purpose optimization modeling language, can also be used for
concisely modeling nonlinear programming problems. Within OPTMODEL you can declare a nonlinear
optimization model, pass it directly to various solvers, and review the solver result. For more details, see
Chapter 5, “The OPTMODEL Procedure.”

You can solve many different types of nonlinear programming problems with PROC OPTMODEL using its
nonlinear solver functionality. For more details about the nonlinear programming solver, see Chapter 9, “The
Nonlinear Programming Solver.”

Model Building with PROC OPTMODEL

Model generation and maintenance are often difficult and expensive aspects of applying mathematical
programming techniques. The richly expressive syntax and features of PROC OPTMODEL, in addition to
the flexible data input and output capabilities, simplify this task considerably. Although PROC OPTMODEL
offers almost unlimited latitude in how a particular optimization problem is formulated, the most effective
use of OPTMODEL is achieved when the model is abstracted away from the data. This aspect makes PROC
OPTMODEL somewhat unusual among SAS procedures and is important enough to illustrate with a simple
example.

A small product-mix problem serves as a starting point for a discussion of two different ways of modeling
with PROC OPTMODEL.

A candy manufacturer makes two products: chocolate and toffee. What combination of chocolate and toffee
should be produced in a day in order to maximize the company’s profit? Chocolate contributes $0.25 per
pound to profit, and toffee contributes $0.75 per pound. The decision variables are chocolate and toffee.

Four processes are used to manufacture the candy:

1. Process 1 combines and cooks the basic ingredients for both chocolate and toffee.

2. Process 2 adds colors and flavors to the toffee, then cools and shapes the confection.

16 4 Chapter 3: Introduction to Optimization

3. Process 3 chops and mixes nuts and raisins, adds them to the chocolate, and then cools and cuts the
bars.

4. Process 4 is packaging: chocolate is placed in individual paper shells; toffee is wrapped in cellophane
packages.

During the day, there are 7.5 hours (27,000 seconds) available for each process.

Firm time standards have been established for each process. For Process 1, mixing and cooking take 15
seconds for each pound of chocolate, and 40 seconds for each pound of toffee. Process 2 takes 56.25
seconds per pound of toffee. For Process 3, each pound of chocolate requires 18.75 seconds of processing.
In packaging, a pound of chocolate can be wrapped in 12 seconds, whereas a pound of toffee requires 50
seconds. These data are summarized as follows:

Available Required per Pound
Time chocolate toffee
Process (sec) (sec) (sec)
1 Cooking 27,000 15 40
2 Color/Flavor 27,000 56.25
3 Condiments 27,000 18.75
4 Packaging 27,000 12 50

The objective is to maximize the company’s total profit, which is represented as
Maximize: 0.25(chocolate) + 0.75(toffee)

The production of the candy is limited by the time available for each process. The limits placed on production
by Process 1 are expressed by the following inequality:

Process 1: 15(chocolate) + 40(toffee) < 27,000
Process 1 can handle any combination of chocolate and toffee that satisfies this inequality.
The limits on production by other processes generate constraints described by the following inequalities:
Process 2: 56.25(toffee) < 27,000
Process 3: 18.75(chocolate) < 27,000
Process 4: 12(chocolate) + 50(toffee) < 27,000

This linear program illustrates an example of a product mix problem. The mix of products that maximizes
the objective without violating the constraints is the solution.

First, the following statements demonstrate a way of representing the optimization model in PROC OPT-
MODEL that is almost a verbatim translation of the mathematical model:

proc optmodel;
/* declare variables */
var choco >= 0, toffee >= 0;

/* maximize objective function (profit) =/
maximize profit = 0.25xchoco + 0.75xtoffee;

/* subject to constraints x/

con processl:
con process2:
con process3:
con processé:

15%choco + 40xtoffee <=
56.25xtoffee <=

18.75%xchoco <=
12xchoco + 50xtoffee <=

/* solve LP using primal simplex solver x*/
solve with 1lp / solver = primal_spx;

/* display solution */
print choco toffee;

quit;

Model Building with PROC OPTMODEL 4 17

27000;
27000;
27000;
27000;

The optimal objective value and the optimal solution are displayed in Figure 3.1:

Figure 3.1 Solution Summary

The OPTMODEL Procedure

Solution Summary

Solver LP
Algorithm Primal Simplex
Objective Function profit
Solution Status Optimal
Objective Value 475
Primal Infeasibility 0
Dual Infeasibility 0
Bound Infeasibility 0
Iterations 6
Presolve Time 0.00
Solution Time 0.00

choco toffee

1000 300

You can observe from the preceding example that PROC OPTMODEL provides an easy and very direct way
of modeling and solving mathematical programming models. Although this way of modeling, where the data
are intertwined heavily with model elements, is correct, has significant practical limitations. The model is not
easy to explain, it is hard to generalize, and clearly this approach does not scale to large problems of the same
similar type. To overcome these issues, you need to separate the data from the essential algebraic structure of
the model. Along those lines, you can make the reasonable assumption that you have the following two data
sets (one for the products and one for processes that capture the parameters and data elements of this product

mix problem):

18 4 Chapter 3: Introduction to Optimization

data Products;
length Name $10.;
input Name $ Profit;

datalines;
Chocolate 0.25

Toffee 0.75

4

data Processes;
length Name $15.;
input Name $ Available_time Chocolate Toffee;

datalines;

Cooking 27000 15 40
Color/Flavor 27000 0 56.25
Condiments 27000 18.75 0

Packaging 27000 12 50

4

The following alternative model in PROC OPTMODEL can solve the same problem by taking these data sets
as input:

proc optmodel;
/* declare sets and data indexed by sets x/
set <string> Products;
set <string> Processes;
num Profit{Products};
num AvailableTime{Processes};
num RequiredTime{Products,Processes};

/* declare the variable */
var Amount {Products};

/* maximize objective function (profit) =/
maximize TotalProfit = sum{p in Products} Profit[p]*Amount [p];
/* subject to constraints x/
con Availability{r in Processes}:
sum{p in Products} RequiredTime[p, r] *Amount [p] <= AvailableTimelr];

/* abstract algebraic model that captures the structure of the */
/* optimization problem has been defined without referring =*/
/* to a single data constant */

/* populate model by reading in the specific data instance */

read data Products into Products=[name] Profit;

read data Processes into Processes=[name] AvailableTime=Available_time
{p in Products} <RequiredTime[p,name]= col(p)>;

/* solve LP using primal simplex solver x*/
solve with lp / solver = primal_spx;
/* display solution */
print Amount;
quit;
The details of the syntax and elements of the PROC OPTMODEL language are discussed in Chapter 5, “The
OPTMODEL Procedure.” The key observation here is that the preceding version of the PROC OPTMODEL

References 4 19

statements capture the essence of the optimization model concisely, but completely, and the model can be
explained, modified, and maintained easily. It also achieves total separation of the data from the model in that
the same PROC OPTMODEL statements can be applied to any other specific problem of this type (and of any
size) by simply changing the data sets appropriately and rerunning the same PROC OPTMODEL statements.
Also, because of PROC OPTMODEL’s ability to read data very flexibly and from any number of data sets,
the problem data can be in its most natural form, making the model easier to explain and understand.

References
IBM (1988), Mathematical Programming System Extended/370 (MPSX/370) Version 2 Program Reference
Manual, volume SH19-6553-0, Armonk, NY: IBM.
Murtagh, B. A. (1981), Advanced Linear Programming: Computation and Practice, New York: McGraw-Hill.

Rosenbrock, H. H. (1960), “An Automatic Method for Finding the Greatest or Least Value of a Function,”
Computer Journal, 3, 175-184.

20

Chapter 4
Shared Concepts and Topics

Contents

Multithreaded Parallel Computing L 21
Syntaxo e e 21

PERFORMANCE Statement vttt 21
ODS Tables o e e e e 23
Memory Limit e 24
Numerical Difficulties e 24
References e 25

Multithreaded Parallel Computing

Although the speed of a single-core processor has increased considerably over the decades, further gains in
computing power are possible through the use of multiple cores or processors. This practice is called parallel
computing, in which certain computations are partitioned into independent smaller subcomputations. Each
subcomputation is then processed on separate cores or processors simultaneously. Consumer-grade PCs and
servers are often equipped with multicore processors; multiprocessor configurations are becoming relatively
common and inexpensive. As a result, parallel computing is becoming increasingly important. One type
of parallel computing is multithreaded computing, in which several threads use the processors of a single
server to work concurrently on subtasks. These threads share the random access memory (RAM) of that
server. In another type of parallel computing, distributed computing, computation is parallelized over several
processors (possibly multithreaded), each of which owns an independent memory allocation.

Syntax

PERFORMANCE Statement
PERFORMANCE < performance-options > ;

The PERFORMANCE statement is available in the OPTMODEL, OPTLP, OPTMILP, and OPTQP procedures.
This statement can be used to control the parallel execution of multithreaded features such as the concurrent LP
algorithm and the OPTMILP option tuner. For an example that demonstrates the use of the PERFORMANCE
statement in the OPTMODEL procedure, see Example 9.5 in Chapter 9, “The Nonlinear Programming
Solver.”

22 4 Chapter 4: Shared Concepts and Topics

The PERFORMANCE statement is available in both multithreaded and distributed computing environments.
This section focuses on the multithreaded computing environment. For information about the PERFOR-
MANCE statement in a distributed computing environment, see Chapter 3, “Shared Concepts and Topics”
(Base SAS Procedures Guide: High-Performance Procedures).

NOTE: Distributed computing mode requires SAS High-Performance Optimization.

The PERFORMANCE statement enables you to control the number of threads used and the output of the ODS
table that reports procedure timing. When you specify the PERFORMANCE statement, the Performancelnfo
ODS table is produced. This table lists performance characteristics such as execution mode and number of
threads.

You can specify the following performance-options in the PERFORMANCE statement:

DETAILS
requests that the procedure produce the Timing ODS table. This table shows a breakdown of the time
used in each step of the procedure.

NTHREADS=number | CPUCOUNT
specifies the number of threads that a procedure can use. It overrides the SAS system option THREADS
| NOTHREADS. The value of number can be any integer between 1 and 256 inclusive. The default
value is CPUCOUNT, which sets the thread count to the number that is determined by the SAS system
option CPUCOUNT=.

Setting the NTHREADS= option to a number greater than the actual number of available cores might
result in reduced performance. Specifying a high NTHREADS= value does not guarantee shorter
solution time; the actual change in solution time depends on the computing hardware and the scalability
of the underlying algorithms in the specified procedure. In some circumstances, a procedure might use
fewer threads than the specified value of the NTHREADS= option because the procedure’s internal
algorithms have determined that a smaller number is preferable.

PARALLELMODE=number | string
specifies the parallel processing mode. This mode determines the solution results that are obtained
from running the same model with the same option values on the same platform multiple times.

The values of number and the corresponding values of string are listed in Table 4.1.

Table 4.1 Values for PARALLELMODE= Option

number string Description
0 DETERMINISTIC Requires algorithms to produce the same results
every time.

1 NONDETERMINISTIC Permits algorithms to produce different solution
results. This mode requires less synchronization
and might attain better performance than DETER-
MINISTIC mode.

Some procedures support only one mode; the modes that a procedure supports are detailed in its
documentation.

ODS Tables 4 23

ODS Tables

Anytime you specify the PERFORMANCE statement in a procedure, the procedure generates an ODS table
called Performancelnfo that summarizes the performance characteristics of the procedure. The information
comes from the actual characteristics used and does not necessarily match the option values specified in the
PERFORMANCE statement. When you specify the DETAILS option in the PERFORMANCE statement,
the procedure generates an additional ODS table called Timing.

Output 4.1 shows a typical Performancelnfo table in multithreaded computing mode.

Figure 4.1 Performancelnfo Table

The OPTLP Procedure

Performance Information

Execution Mode Single-Machine
Number of Threads 4

If you specify the NOTHREADS system option and do not specify the NTHREADS= option in the PER-
FORMANCE statement, then the Performancelnfo table contains the information shown in Output 4.2.

Figure 4.2 Performancelnfo Table: NOTHREADS Option Specified

The OPTLP Procedure
Performance Information

Execution Mode Single-Machine
Number of Threads Disabled

Output 4.3 demonstrates the contents of a typical Timing table.

Figure 4.3 Timing Table

Procedure Task Timing

Time
Task (sec.) % Time
Presolve Time 0.00 0.00%
Solver Time 0.00 0.00%

Wait Time 0.39 100.0%

24 4 Chapter 4: Shared Concepts and Topics

Memory Limit

The system option MEMSIZE sets a limit on the amount of memory that the SAS System uses. If you do not
specify a value for this option, then the SAS System sets a default memory limit. Your operating environment
determines the actual size of the default memory limit set by the SAS System, which is sufficient for many
applications. However, the solution of many realistic optimization problems can require more memory than
the default. It is therefore recommended that the memory limit be increased above the default when you are
solving optimization problems. This reduces the chance of a procedure failing because of an out-of-memory
error.

NOTE: The MEMSIZE system option is not available in some operating environments. See the documentation
for your operating environment for more information.

You can specify -MEMSIZE 0 to indicate that all available memory can be used, but use this setting with
caution. In most operating environments, it is better to specify an adequate amount of memory than to specify
-MEMSIZE 0. For example, if you are running PROC OPTLP to solve LP problems with only a few hundred
thousand variables and constraints, -MEMSIZE 500M might be sufficient to enable the procedure to run
without an out-of-memory error. When a problem has millions of variables, -MEMSIZE 2G or higher might
be needed. These are rules of thumb; problems with atypical structure, density, or other characteristics can
increase the optimizer’s memory requirements.

No matter how much memory is installed, 32-bit Windows operating systems permit the SAS System to use
at most 4 gigabytes of memory. This memory limit might be lower, depending on which version of Windows
you are running. The limit is enforced by the Windows operating system, not the SAS System.

You can specify the MEMSIZE option at system invocation, on the SAS command line, or in a configuration
file. The syntax is described in the SAS Companion book for your operating environment.

To report a procedure’s memory consumption, you can use the FULLSTIMER option. The syntax is described
in the SAS Companion book for your operating environment.

Numerical Difficulties

Extremely large or extremely small numerical values might cause computational difficulties (singularities,
stalled solution progress, false infeasibilities, and so on) for optimization solvers, but the occurrence of such
difficulties is hard to predict. For this reason, solvers issue a data error message when they detect model
data that exceed a specific threshold number. The value of the threshold number depends on your operating
environment and is printed in the log as part of the data error message.

References 4 25

The following conditions produce a data error:

* The absolute value of an objective coefficient, constraint coefficient, or range (difference between the
upper and lower bounds on a constraint) is greater than the threshold number.

* A variable’s lower bound, a > or = constraint’s right-hand side, or a range constraint’s lower bound is
greater than the threshold number.

* A variable’s upper bound, a < or = constraint’s right-hand side, or a range constraint’s upper bound is
smaller than the negative threshold number.

If a variable’s upper bound is greater than 1E20, then solvers treats the bound as co. Similarly, if a variable’s
lower bound is less than —1E20, then LP solver treats the bound as —oo.

If a solver fails or experiences numerical difficulties when solving a problem, try one of the following
remedies:

* Improve the input data: Rescale very large and very small numbers in constraints, objectives, right-hand
sides, and variable bounds. It is recommended that the magnitudes of the largest and smallest constraint
coefficients not exceed 1E6.

* Specify different algorithms or options (or both): For example, to solve a linear program, you can
choose from the primal simplex, dual simplex, interior point, and network simplex algorithms. Using
available options, you can tighten or relax feasibility or optimality tolerances.

References

Andrews, G. R. (1999), Foundations of Multithreaded, Parallel, and Distributed Programming, Reading,
MA: Addison-Wesley.

26

Chapter 5
The OPTMODEL

Procedure

Contents
Overview: OPTMODEL Procedure 28
Getting Started: OPTMODEL Procedure 29
An Unconstrained Optimization Example 30
The Rosenbrock Problem 33
A Transportation Problem 34
Syntax: OPTMODEL Procedure 36
Functional Summary L 38
PROC OPTMODEL Statement 40
Declaration Statements e e 44
Programming Statements Lo 52
Details: OPTMODEL Procedure 93
Named Parameters e 93
Indexing 94
TYPES . o o o e e e e 95
Names e e 96
Parameters L 96
EXpressions e e e e e e 98
Identifier Expressions o 100
Function Expressions 101
Index Sets e 102
OPTMODEL Expression Extensions 103
Conditions of Optimality 113
Data Set Input/Output e e e 116
Control Flow o e 119
Formatted Output 120
ODS Table and Variable Names 122
Constraints e e e e e 128
Suffixes 132
Integer Variable Suffixes 135
Dual Values e 136
Reduced Costs e 142
Presolver e 143
Model Update e 143
Multiple Subproblems 148
Problem Symbols e 149
OPTMODEL Options ittt e e e 150

28 4 Chapter 5: The OPTMODEL Procedure

Automatic Differentiation 151
CONVETSIONS . . . v v v v v e e e e e e e e e e 153
FCMP Routines 153
MoreonIndex Sets 156
Threaded Processing 157
Macro Variable OROPTMODEL_ 158
Rewriting PROC NLP Models for PROC OPTMODEL 159
Examples: OPTMODEL Procedure 162
Example 5.1: Matrix Square Root L 162
Example 5.2: Reading From and CreatingaDataSet. 164
Example 5.3: Model Construction 165
Example 5.4: Set Manipulation L. 171
Example 5.5: Multiple Subproblems 172
Example 5.6: Traveling Salesman Problem 176
Example 5.7: Sparse Modeling 180
Example 5.8: Chemical Equilibrium 185
References e 190

Overview: OPTMODEL Procedure

The OPTMODEL procedure includes the powerful OPTMODEL modeling language and state-of-the-art
solvers for several classes of mathematical programming problems. The problems and their solvers are listed
in Table 5.1.

Table 5.1 Solvers in PROC OPTMODEL

Problem Solver
Linear programming LP
Mixed integer linear programming MILP
Quadratic programming QP
General nonlinear programming NLP

The OPTMODEL modeling language provides a modeling environment tailored to building, solving, and
maintaining optimization models. This makes the process of translating the symbolic formulation of an
optimization model into OPTMODEL virtually transparent since the modeling language mimics the symbolic
algebra of the formulation as closely as possible. The OPTMODEL language also streamlines and simplifies
the critical process of populating optimization models with data from SAS data sets. All of this transparency
produces models that are more easily inspected for completeness and correctness, more easily corrected, and
more easily modified, whether through structural changes or through the substitution of new data for old.

In addition to invoking optimization solvers directly with PROC OPTMODEL as already mentioned, you can
use the OPTMODEL language purely as a modeling facility. You can save optimization models built with the

Getting Started: OPTMODEL Procedure 4 29

OPTMODEL language in SAS data sets that can be submitted to other SAS/OR optimization procedures. In
general, the OPTMODEL language serves as a common point of access for many of the SAS/OR optimization
capabilities, whether providing both modeling and solver access or acting as a modeling interface for other
optimization procedures.

For details and examples of the problems addressed and corresponding solvers, please see the dedicated chap-
ters in this book. This chapter aims to give you a comprehensive understanding of the OPTMODEL procedure
by discussing the framework provided by the OPTMODEL modeling language. For additional examples
that demonstrate the features of the OPTMODEL procedure, see SAS/OR User’s Guide: Mathematical

Programming Examples.

The OPTMODEL modeling language features automatic differentiation, advanced flow control, optimization-
oriented syntax (parameters, variables, arrays, constraints, objective functions), dynamic model generation,
model-data separation, and transparent access to SAS data sets.

Getting Started: OPTMODEL Procedure

Optimization or mathematical programming is a search for a maximum or minimum of an objective function
(also called a cost function), where search variables are restricted to particular constraints. Constraints are
said to define a feasible region (see Figure 5.1).

Figure 5.1 Examples of Feasible Regions

feasible region teasible region
T _l . 2 o
T > y=r —2

A more rigorous general formulation of such problems is as follows.

Let
f:S—=R
be a real-valued function. Find x* such that

e x*e S

e f(x*) < f(x), VxeS

30 4 Chapter 5: The OPTMODEL Procedure

Note that the formulation is for the minimum of f and that the maximum of f is simply the negation of the
minimum of — f.

Here, function f is the objective function, and the variable in the objective function is called the optimization
variable (or decision variable). S is the feasible region. Typically S is a subset of the Euclidean space R”
specified by the set of constraints, which are often a set of equalities (=) or inequalities (<, >) that every
element in S is required to satisfy simultaneously. For the special case where S = R”, the problem is an
unconstrained optimization. An element x of S is called a feasible solution to the optimization problem, and
the value f(x) is called the objective value. A feasible solution x* that minimizes the objective function is
called an optimal solution to the optimization problem, and the corresponding objective value is called the
optimal value.

In mathematics, special notation is used to denote an optimization problem. Generally, you can write an
optimization problem as follows:

minimize f(x)
subjectto x € S

Normally, an empty body of constraint (the part after “subject to”) implies that the optimization is un-
constrained (that is, the feasible region is the whole space R"). The optimal solution (x*) is denoted
as

x* = argmin f(x)
x€S

The optimal value (f(x*)) is denoted as

f&x*) = min f(x)

Optimization problems can be classified by the forms (linear, quadratic, nonlinear, and so on) of the functions
in the objective and constraints. For example, a problem is said to be linearly constrained if the functions
in the constraints are linear. A linear programming problem is a linearly constrained problem with a linear
objective function. A nonlinear programming problem occurs where some function in the objective or
constraints is nonlinear, and so on.

An Unconstrained Optimization Example

An unconstrained optimization problem formulation is simply

minimize f(x)

For example, suppose you wanted to find the minimum value of this polynomial:

z(x,y)=x2—x—2y—xy+y2

An Unconstrained Optimization Example 4 31

You can compactly specify and solve the optimization problem by using the OPTMODEL modeling language.
Here is the program:

/* invoke procedure */
proc optmodel;
var x, y; /* declare variables */

/* objective function */
min z=x**2 — X — 2%y — X%y + y*x2;

/* now run the solver x/
solve;

print x y;
quit;
This program produces the output in Figure 5.2.

Figure 5.2 Optimizing a Simple Polynomial

The OPTMODEL Procedure

Problem Summary

Objective Sense Minimization
Objective Function z
Objective Type Quadratic
Number of Variables 2
Bounded Above 0
Bounded Below 0
Bounded Below and Above 0
Free 2
Fixed 0
Number of Constraints 0
Constraint Coefficients 0
Performance Information
Execution Mode Single-Machine

Number of Threads 4

32 4 Chapter 5: The OPTMODEL Procedure

Figure 5.2 continued

Solution Summary
Solver QP
Algorithm Interior Point
Objective Function z
Solution Status Optimal
Objective Value -2.333333333
Primal Infeasibility 0
Dual Infeasibility 6.861556E-17
Bound Infeasibility 0
Duality Gap 0
Complementarity 0
Iterations 0
Presolve Time 0.00
Solution Time 0.78

X Yy

1.3333 1.6667

In PROC OPTMODEL you specify the mathematical formulas that describe the behavior of the optimization
problem that you want to solve. In the preceding example there were two independent variables in the
polynomial, x and y. These are the optimization variables of the problem. In PROC OPTMODEL you
declare optimization variables with the VAR statement. The formula that defines the quantity that you
are seeking to optimize is called the objective function, or objective. The solver varies the values of the
optimization variables when searching for an optimal value for the objective.

In the preceding example the objective function is named z, declared with the MIN statement. The keyword
MIN is an abbreviation for MINIMIZE. The expression that follows the equal sign (=) in the MIN statement
defines the function to be minimized in terms of the optimization variables.

The VAR and MIN statements are just two of the many available PROC OPTMODEL declaration and
programming statements. PROC OPTMODEL processes all such statements interactively, meaning that each
statement is processed as soon as it is complete.

After PROC OPTMODEL has completed processing of declaration and programming statements, it processes
the SOLVE statement, which submits the problem to a solver and prints a summary of the results. The PRINT
statement displays the optimal values of the optimization variables x and y found by the solver.

It is worth noting that PROC OPTMODEL does not use a RUN statement but instead operates on an
interactive basis throughout. You can continue to interact with PROC OPTMODEL even after invoking a
solver. For example, you could modify the problem and issue another SOLVE statement (see the section
“Model Update” on page 143).

The Rosenbrock Problem 4 33

The Rosenbrock Problem

You can use parameters to produce a clear formulation of a problem. Consider the Rosenbrock problem,
C _ 2\2 2
minimize f(x1,x2) = o (x2 —x7)" 4+ (1 —x1)

where o = 100 is a parameter (constant), x; and xp are optimization variables (whose values are to be
determined), and f(x1, x2) is an objective function.

Here is a PROC OPTMODEL program that solves the Rosenbrock problem:

proc optmodel;
number alpha = 100; /* declare parameter =*/
var x {1..2}; /* declare variables */
/* objective function x*/
min £ = alphax* (x[2] - x[1]*%x2)*x2 +
(1 - x[1])**2;
/* now run the solver x/
solve;

print x;
quit;
The PROC OPTMODEL output is shown in Figure 5.3.

Figure 5.3 Rosenbrock Function Results

The OPTMODEL Procedure

Problem Summary

Objective Sense Minimization
Objective Function £
Objective Type Nonlinear

Number of Variables
Bounded Above

Bounded Below

Bounded Below and Above
Free

Fixed

oONMNOOON

Number of Constraints 0

Performance Information

Execution Mode Single—-Machine
Number of Threads 4

34 4 Chapter 5: The OPTMODEL Procedure

Figure 5.3 continued

Solution Summary

Solver NLP
Algorithm Interior Point
Objective Function £
Solution Status Optimal
Objective Value 8.204873E-23
Optimality Error 9.704881E-11
Infeasibility 0
Iterations 14
Presolve Time 0.00
Solution Time 0.04

[1] X

1 1

2 1

A Transportation Problem

You can easily translate the symbolic formulation of a problem into the OPTMODEL procedure. Consider
the transportation problem, which is mathematically modeled as the following linear programming problem:

minimize Z CijXij
i€0,jeD
subject to Y xij = ai. VieO (SUPPLY)
jeD
Y xij = bj. VjeD (DEMAND)
ieO
xij = 0, V(@,j)e OxD

where O is the set of origins, D is the set of destinations, ¢;; is the cost to transport one unit from i to j, a;
is the supply of origin 7, b; is the demand of destination j, and x;; is the decision variable for the amount of
shipment from i to j.

Here is a very simple example. The cities in the set O of origins are Detroit and Pittsburgh. The cities in the
set D of destinations are Boston and New York. The cost matrix, supply, and demand are shown in Table 5.2.

Table 5.2 A Transportation Problem

Boston New York Supply
Detroit 30 20 200
Pittsburgh 40 10 100
Demand 150 150

A Transportation Problem 4 35

The problem is compactly and clearly formulated and solved by using the OPTMODEL procedure with the

following statements:
proc optmodel;

/* specify parameters x*/

set O={'Detroit', 'Pittsburgh'};
set D={'Boston',6 'New York'};

number c{O,D}=[30 20

40 10];
number a{0}=[200 100];
number b{D}=[150 150];
/* model description */
var x{O0,D} >= 0;
min total_cost = sum{i i

constraint supply{i in O}:
constraint demand{j in D}:

/* solve and output */
solve;
print x;

The output is shown in Figure 5.4.

n O, j in D}e[i,jl*x[i,]l;

sum{j in D}x[i, jl=ali];
sum{i in O}x[i,j]l=b[]];

Figure 5.4 Solution to the Transportation Problem

Objecti
Objecti
Objecti

Number

Free
Fixed

Number
Linear
Linear
Linear
Linear

Numbe

The OPTMODEL Procedure

Problem Summary

ve Sense
ve Function
ve Type

of Variables

Bounded Above
Bounded Below
Bounded Below and Above

of Constraints
LE (<=)

EQ (=)

GE (>=)

Range

Constraint Coefficients

Minimization
total_cost
Linear

O OO OB

O O & O

Performance Information

Execution Mode

r of Threads

Single-Machine

36 4 Chapter 5: The OPTMODEL Procedure

Figure 5.4 continued

Solution Summary
Solver LP
Algorithm Dual Simplex
Objective Function total_cost
Solution Status Optimal
Objective Value 6500
Primal Infeasibility 0
Dual Infeasibility 0
Bound Infeasibility 0
Iterations 0
Presolve Time 0.00
Solution Time 0.00
X

New

Boston York

Detroit 150 50

Pittsburgh 0 100

Syntax: OPTMODEL Procedure

PROC OPTMODEL statements are divided into three categories: the PROC statement, the declaration
statements, and the programming statements. The PROC statement invokes the procedure and sets initial
option values. The declaration statements declare optimization model components. The programming
statements read and write data, invoke the solver, and print results. In the following text, the statements are
listed in the order in which they are grouped, with declaration statements first.

NOTE: Solver specific options are described in the individual chapters that correspond to the solvers.

Syntax: OPTMODEL Procedure 4 37

PROC OPTMODEL options ;

Declaration Statements:

CONSTRAINT constraints ;

IMPVAR optimization expression declarations ;
MAX objective ;

MIN objective ;

NUMBER parameter declarations ;

PROBLEM problem declaration ;

SET [< types > | parameter declarations ;
STRING parameter declarations ;

VAR variable declarations ;

Programming Statements:

Assignment parameter = expression ;

CALL name [(expressions) | ;

CLOSEFILE files ;

COFOR { index-set } statement ;

CONTINUE ;

CREATE DATA SAS-data-set FROM columns ;
DO ; statements ; END ;

DO variable = specifications ; statements ; END ;
DO UNTIL (/ogic) ; statements ; END ;

DO WHILE (logic) ; statements ; END ;

DROP constraint ;

EXPAND name [/ options | ;

FILE file ;

FIX variable | = expression] ;

FOR { index-set } statement ;

IF logic THEN statement ; [ELSE statement] ;
LEAVE ;

(null statement) ;

PERFORMANCE options ;

PRINT print items ;

PUT put items ;

QuIT ;

READ DATA SAS-data-set INTO columns ;
RESET OPTIONS options ;

RESTORE constraint ;

SAVE MPS SAS-data-set [(OBJECTIVE | OBJ) name | ;
SAVE QPS SAS-data-set [(OBJECTIVE | OBJ) name] ;
SOLVE [WITH solver | [OBJECTIVE name | [RELAXINT | [/ options] ;
STOP ;

SUBMIT arguments [/ options] ;

UNFIX variable [= expression | ;

USE PROBLEM problem ;

38 4 Chapter 5: The OPTMODEL Procedure

Functional Summary
The statements and options available with PROC OPTMODEL are summarized by purpose in Table 5.3.

Table 5.3 Functional Summary

Description Statement Option
Declaration Statements:

Declares a constraint CONSTRAINT
Declares optimization expressions IMPVAR
Declares a maximization objective MAX

Declares a minimization objective MIN

Declares a number type parameter NUMBER
Declares a problem PROBLEM
Declares a set type parameter SET

Declares a string type parameter STRING
Declares optimization variables VAR
Programming Statements:

Assigns a value to a variable or parameter =

Invokes a library subroutine CALL

Closes the opened file CLOSEFILE
Executes the statement repeatedly with support for COFOR
concurrent solver invocations

Terminates one iteration of a loop statement CONTINUE
Creates a new SAS data set and copies data into CREATE DATA
it from PROC OPTMODEL parameters and vari-

ables

Groups a sequence of statements together as a sin- DO

gle statement
Executes statements repeatedly

DO (iterative)

Executes statements repeatedly until some condi- DO UNTIL
tion is satisfied

Executes statements repeatedly as long as some DO WHILE
condition is satisfied

Ignores the specified constraint DROP
Prints the specified constraint, variable, or objec- EXPAND
tive declaration expressions after expanding aggre-

gation operators, and so on

Selects a file for the PUT statement FILE

Treats a variable as fixed in value FIX
Executes the statement repeatedly FOR
Executes the statement conditionally IF
Terminates the execution of the entire loop body LEAVE
Null statement ;

Controls parallel execution PERFORMANCE

Functional Summary 4 39

Description Statement Option

Outputs string and numeric data PRINT

Writes text data to the current output file PUT

Terminates the PROC OPTMODEL session QUIT

Reads data from a SAS data set into PROC OPT- READ DATA

MODEL parameters and variables

Sets PROC OPTMODEL option values or restores RESET OPTIONS

them to their defaults

Adds a constraint that was previously dropped RESTORE

back into the model

Saves the structure and coefficients for a linear SAVE MPS

programming model into a SAS data set

Saves the structure and coefficients for a quadratic = SAVE QPS

programming model into a SAS data set

Invokes a PROC OPTMODEL solver SOLVE

Halts the execution of all statements that contain it STOP

Submits SAS code for execution SUBMIT

Reverses the effect of FIX statement UNFIX

Selects the current problem USE PROBLEM

PROC OPTMODEL Options:

Specifies the accuracy for nonlinear constraints PROC OPTMODEL CDIGITS=
Specifies the maximum number of error messages PROC OPTMODEL ERRORLIMIT=
displayed

Specifies the method used to approximate numeric PROC OPTMODEL FD=

derivatives

Specifies the accuracy for the objective function =~ PROC OPTMODEL FDIGITS=
Forces finite differences to be used for nonlinear PROC OPTMODEL FORCEFD=
equations

Enables the OPTMODEL presolver for the LP, PROC OPTMODEL FORCEPRESOLVE=
MILP, and QP solvers

Passes initial values for variables to the solver PROC OPTMODEL INITVAR/NOINITVAR
Specifies the tolerance for rounding the bounds on PROC OPTMODEL INTFUZZ=
integer and binary variables

Specifies the maximum length for MPS row and PROC OPTMODEL MAXILABLEN=
column labels

Checks missing values PROC OPTMODEL MISSCHECK/NOMISSCHECK
Specifies the maximum number of non-error mes- PROC OPTMODEL MSGLIMIT=
sages displayed

Specifies the number of digits to display PROC OPTMODEL PDIGITS=
Adjusts how two-dimensional array is displayed = PROC OPTMODEL PMATRIX=
Specifies the type of presolve performed by the PROC OPTMODEL PRESOLVER=
PROC OPTMODEL presolver

Specifies the tolerance, enabling the PROC OPT- PROC OPTMODEL PRESTOL=

MODEL presolver to remove slightly infeasible
constraints

40 4 Chapter 5: The OPTMODEL Procedure

Description Statement Option

Enables or disables printing summary PROC OPTMODEL PRINTLEVEL=
Specifies the width to display numeric columns PROC OPTMODEL PWIDTH=
Specifies the smallest difference that is permitted PROC OPTMODEL VARFUZZ=

by the PROC OPTMODEL presolver between the

upper and lower bounds of an unfixed variable

PROC OPTMODEL Statement
PROC OPTMODEL [options | ;

The PROC OPTMODEL statement invokes the OPTMODEL procedure. You can specify options to control
how the optimization model is processed and how results are displayed. You can specify the following
options (these options can also be specified in the RESET OPTIONS statement).

CDIGITS=number
specifies the expected number of decimal digits of accuracy for nonlinear constraints. The value can
be fractional. PROC OPTMODEL uses this option to choose a step length when numeric derivative
approximations are required to evaluate the Jacobian of nonlinear constraints. The default value
depends on your operating environment. It is assumed that constraint values are accurate to the limits
of machine precision.

See the section “Automatic Differentiation” on page 151 for more information about numeric derivative
approximations.

ERRORLIMIT=number | NONE
specifies the maximum number of error messages that can be displayed. Specifying a value of number
in the range 1 to 23! — 1 sets a specific limit. Specifying ERRORLIMIT=NONE removes any existing
limit.

NOTE: Some errors abort processing immediately.

FD=FORWARD | CENTRAL
selects the method used to approximate numeric derivatives when analytic derivatives are unavailable.
Most solvers require the derivatives of the objective and constraints. You can specify the following

values:
FORWARD uses forward differences.
CENTRAL uses central differences.

By default, FD=FORWARD. For more information about numeric derivative approximations, see the
section “Automatic Differentiation” on page 151.

PROC OPTMODEL Statement 4 41

FDIGITS=number
specifies the expected number of decimal digits of accuracy for the objective function. The value can
be fractional. PROC OPTMODEL uses the value to choose a step length when numeric derivatives
are required. The default value depends on your operating environment. It is assumed that objective
function values are accurate to the limits of machine precision.

For more information about numeric derivative approximations, see the section “Automatic Differenti-
ation” on page 151.

FORCEFD=NONE | OBJ | CON | ALL
forces PROC OPTMODEL to use finite differences instead of analytic derivatives for the specified set
of nonlinear expressions. This option can be useful with FCMP functions to provide more control over
derivative computation. You can specify the following values:

ALL restricts all derivative computations to use finite differences.

CON restricts derivative computations for the nonlinear constraint expressions and any
IMPVAR expressions they reference to use finite differences.

NONE requests analytic derivatives where they are available.

OoBJ restricts derivative computations for the objective and any IMPVAR expressions it
references to use finite differences.

By default, FORCEFD=NONE.

FORCEPRESOLVE=number | string
specifies whether PROC OPTMODEL can use the OPTMODEL presolver with the LP, MILP, and QP
solvers. By default, the OPTMODEL presolver is disabled when PROC OPTMODEL solves linear
problems or when the QP solver is specified in the SOLVE statement. Table 5.4 shows the valid values
for this option.

Table 5.4 Values for the FORCESOLVE= Option

number string Description
0 OFF Restores the default behavior.
1 ON Enables PROC OPTMODEL to use the OPT-

MODEL presolver when PROC OPTMODEL
solves linear problems or the QP solver is spec-
ified in the SOLVE statement.

By default, FORCEPRESOLVE=0.

INITVAR | NOINITVAR
selects whether or not to pass initial values for variables to the solver when the SOLVE statement is
executed. INITVAR enables the current variable values to be passed. NOINITVAR causes the solver
to be invoked without any specific initial values for variables. The INITVAR option is the default.

The LP and QP solvers always ignore initial values. The NLP solvers attempt to use specified initial
values. The MILP solver uses initial values only if the PRIMALIN option is specified.

42 4 Chapter 5: The OPTMODEL Procedure

INTFUZZ=number
specifies the tolerance for rounding the bounds on integer and binary variables to integer values.
Bounds that differ from an integer by at most number are rounded to that integer. Otherwise, lower
bounds are rounded up to the next greater integer and upper bounds are rounded down to the next
lesser integer. The value of number can range between 0 and 0.5. The default value is 0.00001.

MAXLABLEN=number
specifies the maximum length for MPS row and column labels. The allowed range is 8 to 256. This
option can also be used to control the length of row and column names displayed by solvers, such as
those found in the LP solver iteration log. See also the description of the .label suffix in the section
“Suffixes” on page 132. By default, MAXLABLEN=32.

MISSCHECK | NOMISSCHECK
enables detailed checking of missing values in expressions. MISSCHECK requests that PROC
OPTMODEL produce a message each time it evaluates an arithmetic operation or function that has
missing value operands (except when the operation or function specifically supports missing values).
The MISSCHECK option can increase processing time. NOMISSCHECK turns off this detailed
reporting. NOMISSCHECK is the default.

MSGLIMIT=number | NONE
specifies the maximum number of non-error messages that can be displayed, including notes and
warnings. Specifying a value of number in the range 0 to 23! — 1 sets a specific limit. Specifying
MSGLIMIT=NONE removes any existing limit.

PDIGITS=number
requests that the PRINT statement display number significant digitsfor numeric columns for which no
format is specified. The value can range from 1 to 9. By default, PDIGITS=5.

PMATRIX=number

adjusts the density evaluation of a two-dimensional array to affect how it is displayed. The value
number scales the total number of nonempty array elements and is used by the PRINT statement
to evaluate whether a two-dimensional array is “sparse” or “dense.” Tables that contain a single
two-dimensional array are printed in list form if they are sparse and in matrix form if they are dense.
Any nonnegative value can be assigned to number. Specifying a value for the PMATRIX= option that
is less than 1 causes the list form to be used in more cases, whereas specifying a value greater than 1
causes the matrix form to be used in more cases. If the value is 0, then the list form is always used. For
more information, see the section “PRINT Statement” on page 75. By default, PMATRIX=1.

PRESOLVER=number | string
specifies the type of presolve that the OPTMODEL presolver performs. Table 5.5 shows the valid
values of this option.

Table 5.5 Values for the PRESOLVER= Option

number string Description
-1 AUTOMATIC Applies presolver using default setting.
NONE Disables presolver.
1 BASIC Performs minimal processing, only substituting
fixed variables and removing empty feasible con-
straints.

2 MODERATE Applies a higher level of presolve processing.
3 AGGRESSIVE Applies the highest level of presolve processing.

PROC OPTMQODEL Statement 4 43

The OPTMODEL presolver tightens variable bounds and eliminates redundant constraints. In general,
this tightening improves the performance of any solver. Higher levels of presolve processing allow
more tightening and substitution passes, but might take more time to execute. The AUTOMATIC
option is intermediate between the MODERATE and AGGRESSIVE levels.

NOTE: The OPTMODEL presolver is normally bypassed when PROC OPTMODEL uses the LP,
QP, MILP, or network solvers and when the SAVE MPS and SAVE QPS statements execute. The
FORCEPRESOLVE-= option enables the OPTMODEL presolver to be used with the LP, QP, or MILP
solvers. PROC OPTMODEL always bypasses the OPTMODEL presolver when you specify certain
solver options. For more information, see the chapter for the relevant solver in this book

PRESTOL=number
provides a tolerance so that slightly infeasible constraints can be eliminated by the OPTMODEL
presolver. If the magnitude of the infeasibility is no greater than num(|X| + 1), where X is the value of
the original bound, then the empty constraint is removed from the presolved problem. OPTMODEL’s
presolver does not print messages about infeasible constraints and variable bounds when the infeasibility
is within the PRESTOL tolerance. The value of PRESTOL can range between 0 and 0.1; the default
value is 1E—12.

PRINTLEVEL=number
controls the level of listing output during a SOLVE command. The Output Delivery System (ODS)
tables printed at each level are listed in Table 5.6. Some solvers can produce additional tables; see the
individual solver chapters for more information.

Table 5.6 Values for the PRINTLEVEL= Option

number Description
0 Disables all tables.
1 Prints Problem Summary, Performance Information, and Solution Summary.
2 Prints Problem Summary, Performance Information, Solution Summary,
Methods of Derivative Computation (for NLP solvers), Solver Options,
Optimization Statistics, and solver-specific ODS tables.

For more information about the ODS tables produced by PROC OPTMODEL, see the section “ODS
Table and Variable Names” on page 122.

PWIDTH=number
sets the width used by the PRINT statement to display numeric columns when no format is specified.
The smallest value number can take is the value of the PDIGITS= option plus 7; the largest value
number can take is 16. The default value is equal to the value of the PDIGITS= option plus 7.

VARFUZZ=number
specifies the smallest difference that is permitted by the OPTMODEL presolver between the upper and
lower bounds of an unfixed variable. If the difference is smaller than number, then the variable isfixed
to the average of the upper and lower bounds before it is presented to the solver. Any nonnegative
value can be assigned to number; the default value is 0.

44 4 Chapter 5: The OPTMODEL Procedure

Declaration Statements

The declaration statements define the parameters, variables, constraints, and objectives that describe a PROC
OPTMODEL optimization model. Declarations in the PROC OPTMODEL input are saved for later use.
Unlike programming statements, declarations cannot be nested in other statements. Declaration statements
are terminated by a semicolon.

Many declaration attributes, such as variable bounds, are defined using expressions. Expressions in declara-
tions are handled symbolically and are resolved as needed. In particular, expressions are generally reevaluated
when one of the parameter values they use has been changed.

CONSTRAINT Declaration
CONSTRAINT constraint [, ... constraint] ;
CON constraint|[, ... constraint] ;

The constraint declaration defines one or more constraints on expressions in terms of the optimization
variables. You can specify multiple constraint declaration statements.

Constraints can have an upper bound, a lower bound, or both bounds. The allowed forms are as follows:

[name [{ index-set }] : | expression = expression
declares an equality constraint or, when an index-set is specified, a family of equality
constraints. The solver attempts to assign values to the optimization variables to make the
two expressions equal.

[name [{ index-set } | : | expression relation expression
declares an inequality constraint that has a single upper or lower bound. index-set declares
a family of inequality constraints. relation is the <= or >= operator. When relation is
the <= operator, the solver tries to assign optimization variable values so that the left
expression has a value less than or equal to the right expression. When relation is the >=
operator, the solver tries to assign optimization variable values so that the left expression
has a value greater than or equal to the right expression.

[name [{ index-set }] : | bound relation body relation bound

declares an inequality constraint that is bounded on both sides, called a range constraint.
index-set declares a family of range constraints. relation is the <= or >= operator. The
same operator must be used in both positions. The first bound expression defines the
lower bound (if the <= operator is used) or the upper bound (if the >= operator is used).
The second bound defines the upper bound (if the <= operator is used) or the lower bound
(if the >= operator is used). The solver tries to assign optimization variables so that the
value of the body expression is in the range between the upper and lower bounds.

name defines the name for the constraint. Use the name to reference constraint attributes, such as the bounds,
elsewhere in the PROC OPTMODEL model. If no name is provided, then a default name is created of the
form _ACON_[n], where n is an integer. See the section “Constraints” on page 128 for more information.

Declaration Statements 4 45

Here is a simple example that defines a constraint with a lower bound:

proc optmodel;
var x, y;
number low;
con a: x+y >= low;

The following example adds an upper bound:

var x, y;
number low;
con a: low <= x+y <= low+lO0;

Indexed families of constraints can be defined by specifying an index-set after the name. Any dummy
parameters that are declared in the index-set can be referenced in the expressions that define the constraint.
A particular member of an indexed family can be specified by using an identifier-expression with a bracketed
index list, in the same fashion as array parameters and variables. For example, the following statements
create an indexed family of constraints named incr:

proc optmodel;
number n;
var x{1..n}
/* require nondecreasing x values x*/
con incr{i in 1..n-1}: x[i+1] >= x[i];

The CON statement in the example creates constraints incr[1] through incr[n—1].

Constraint expressions cannot be defined using functions that return different values each time they are called.
See the section “Indexing” on page 94 for details.

IMPVAR Declaration
IMPVAR impvar-dec! [, ...impvar-decl] ;

The IMPVAR statement declares one or more names that refer to optimization expressions in the model. The
declared name is called an implicit variable. An implicit variable is useful for structuring models so that
complex expressions do not need to be repeated each time they are used. The value of an implicit variable
needs to be computed only once instead of at each place where the original expression is used, which helps
reduce computational overhead. Implicit variables are evaluated without intervention from the solver.

Multiple IMPVAR statements are allowed. The names of implicit variables must be distinct from other model
declarations, such as variables and constraints. Implicit variables can be used in model expressions in the
same places where ordinary variables are allowed.

This is the syntax for an impvar-decl:

name [{ index-set } | = expression

Each impvar-decl declares a name for an implicit variable. The name can be followed by an index-set
specification to declare a family of implicit variables. The expression that the name refers to follows. Dummy

46 4 Chapter 5: The OPTMODEL Procedure

parameters that are declared in the index-set specification can be used in the expression. The expression
can refer to other model components, including variables, the current implicit variable, and other implicit
variables.

As an example, in the following model statements the implicit variable total_weight is used in multiple
constraints to set a limit on various product quantities, represented by locations in array X:

impvar total_weight = sum{p in PRODUCTS} Weight [p]=*x[p];

con prodl_limit: Weight['Prodl'] * x['Prodl'] <= 0.3 % total_weight;
con prod2_limit: Weight['Prod2'] x x['Prod2'] <= 0.25 x total_weight;

MAX and MIN Objective Declarations
MAX name [{ index-set } | = expression ;
MIN name [{ index-set } | = expression ;

The MAX or MIN declaration specifies an objective for the solver. The name names the objective function
for later reference. When a non-array objective declaration is read, the declaration becomes the new objective
of the current problem, replacing any previous objective. The solver maximizes an objective that is specified
with the MAX keyword and minimizes an objective that is specified with the MIN keyword. An objective is
not allowed to have the same name as a parameter or variable. Multiple objectives are permitted, but the
solver processes only one objective at a time.

expression specifies the numeric function to maximize or minimize in terms of the optimization-variables.
Specify an index-set to declare a family of objectives. Dummy parameters declared in the index-set
specification can be used in the following expression.

Objectives can also be used as implicit variables. When used in an expression, an objective name refers to
the current value of the named objective function. The value of an unsuffixed objective name can depend
on the value of optimization variables, so objective names cannot be used in constant expressions such as
variable bounds. You can reference objective names in objective or constraint expressions. For example, the
following statements declare two objective names, g and |, which are immediately referred to in the objective
declaration of z and the declarations of the constraints.

proc optmodel;
var x, y;
min g=(x+y) **2;
max l=x+2x*y;
min z=qg+l;
con cl: g<=4;
con c2: 1>=2;

Objectives cannot be defined using functions that return different values each time they are called. See the
section “Indexing” on page 94 for details.

Declaration Statements 4 47

NUMBER, STRING, and SET Parameter Declarations
NUMBER parameter-decl [, ... parameter-decl | ;
STRING parameter-decl! [, ... parameter-dec!] ;
SET | < scalar-type, ...scalar-type > | parameter-dec! [, . .. parameter-decl| ;

Parameters provide names for constants. Parameters are declared by specifying the parameter type followed
by a list of parameter names. Declarations of parameters that have NUMBER or STRING types start with a
scalar-type specification:

NUMBER | NUM ;

STRING | STR ;
The NUM and STR keywords are abbreviations for the NUMBER and STRING keywords, respectively.
The declaration of a parameter that has the set type begins with a set-type specification:

SET [< scalar-type, ... scalar-type > | ;

In a set-type declaration, the SET keyword is followed by a list of scalar-type items that specify the member
type. A set with scalar members is specified with a single scalar-type item. A set with tuple members has a
scalar-type item for each tuple element. The scalar-type items specify the types of the elements at each tuple
position.

If the SET keyword is not followed by a list of scalar-type items, then the set type is determined from the type
of the initialization expression. The declared type defaults to SET<NUMBER> if no initialization expression
is given or if the expression type cannot be determined.

For any parameter type, the type declaration is followed by a list of parameter-decl items that specify the
names of the parameters to declare. In a parameter-decl item the parameter name can be followed by an
optional index specification and any necessary options, as follows:

name [{ index-set } | [parameter-options |

The parameter name and index-set can be followed by a list of parameter-options. Dummy parameters
declared in the index-set can be used in the parameter-options. The parameter options can be specified with
the following forms:

= expression
provides an explicit value for each parameter location. In this case the parameter acts like
an alias for the expression value.

INIT expression
specifies a default value that is used when a parameter value is required but no other value
has been supplied. For example:

number n init 1;
set s init {'a', 'b', 'ec'};

PROC OPTMODEL evaluates the expression for each parameter location the first time the
parameter needs to be resolved. The expression is not used when the parameter already
has a value.

48 4 Chapter 5: The OPTMODEL Procedure

= [initializers]
provides a compact means to define the values for an array, in which each array location
value can be individually specified by the initializers.

INIT [initializers]
provides a compact means to define multiple default values for an array. Each array
location value can be individually specified by the initializers. With this option the array
values can still be updated outside the declaration.

The =expression parameter option defines a parameter value by using a formula. The formula can refer to
other parameters. The parameter value is updated when the referenced parameters change. The following
example shows the effects of the update:

proc optmodel;
number n;
set<number> s = 1..n;
number a{s};
n = 3;
a[1]
a[7]
n = 10;
a[7] = 19; /* OK now =*/

2; /* OK */
19; /* error, 7 is not in s %/

In the preceding example the value of set s is resolved for each use of array a that has an index. For the first
use of a[7], the value 7 is not a member of the set s. However, the value 7 is a member of s at the second use
of a[7].

The INIT expression parameter option specifies a default value for a parameter. The following example
shows the usage of this option:

proc optmodel;
num a{i in 1..2} init ix*%2;
a[l] = 2;
put a[*]=;
When the value of a parameter is needed but no other value has been supplied, the default value specified by
INIT expression is used, as shown in Figure 5.5.

Figure 5.5 INIT Option: Output

a[l]=2 a[2]=4

NOTE: Parameter values can also be read from files or specified with assignment statements. However, the
value of a parameter that is assigned with the =expression or =[initializers] forms can be changed only by
modifying the parameters used in the defining expressions. Parameter values specified by the INIT option
can be reassigned freely.

Declaration Statements 4 49

Initializing Arrays

Arrays can be initialized with the =[initializers] or INIT [initializers] forms. These forms are convenient when
array location values need to be individually specified. The forms behave the same way, except that the INIT
[initializers] form allows the array values to be modified after the declaration. These forms of initialization
are used in the following statements:

proc optmodel;
number a{l..3} = [5 4 7];
number b{l..3} INIT [5 4 7];
put a[*]=;
b[1l] = 1;
put b[*]=;

Each array location receives a different value, as shown in Figure 5.6. The displayed values for b are a
combination of the default values from the declaration and the assigned value in the statements.

Figure 5.6 Array Initialization

a[l]=5 a[2]=4 a[3]=7
b[1l]=1 b[2]=4 b[3]=7

Each initializer takes the following form:

[[index]] value

The value specifies the value of an array location and can be a numeric or string constant, a set literal, or an
expression enclosed in parentheses.

In array initializers, string constants can be specified using quoted strings. When the string text follows the
rules for a SAS name, the text can also be specified without quotation marks. String constants that begin with
a digit, contain blanks, or contain other special characters must be specified with a quoted string.

As an example, the following statements define an array parameter that could be used to map numeric days
of the week to text strings:

proc optmodel;
string dn{l..5} =
[Monday Tuesday Wednesday Thursday Friday];

The optional index in square brackets specifies the index of the array location to initialize. The index specifies
one or more numeric or string subscripts. The subscripts allow the same syntactic forms as the value items.
Commas can be used to separate index subscripts. For example, location a[1,abc’] of an array a could be
specified with the index [1 abc]. The following example initializes just the diagonal locations in a square
array:

proc optmodel;
number m{1..3,1..3} = [[1 1] 0.1 [2 2] 0.2 [3 3] 0.3];

An index does not need to specify all the subscripts of an array location. If the index begins with a comma,
then only the rightmost subscripts of the index need to be specified. The preceding subscripts are supplied

50 4 Chapter 5: The OPTMODEL Procedure

from the index that was used by the preceding initializer. This can simplify the initialization of arrays that are
indexed by multiple subscripts. For example, you can add new entries to the matrix of the previous example
by using the following statements:

proc optmodel;
number m{1..3,1..3} = [[1 1] 0.1 [,3]1 1
[2 2] 0.2 [,3] 2
[3 3] 0.3];

The spacing shows the layout of the example array. The previous example was updated by initializing two
more values at m[1,3] and m[2,3].

If an index is omitted, then the next location in the order of the array’s index set is initialized. If the index set
has multiple index-set-items, then the rightmost indices are updated before indices to the left are updated. At
the beginning of the initializer list, the rightmost index is the first member of the index set. The index set
must use a range expression to avoid unpredictable results when an index value is omitted.

The initializers can be followed by commas. The use of commas has no effect on the initialization. The
comma can be used to clarify layout. For example, the comma could separate rows in a matrix.

Not every array location needs to be initialized. The locations without an explicit initializer are set to zero for
numeric arrays, set to an empty string for string arrays, and set to an empty set for set arrays.

NOTE: An array location must not be initialized more than once during the processing of the initializer list.

PROBLEM Declaration
PROBLEM name [{ index-set } | [FROM problem-id] [INCLUDE problem-items] ;

Problems are declared with the PROBLEM declaration. Problem declarations track an objective, a set of
included variables and constraints, and some status information that is associated with the variables and
constraints. The problem name can optionally be followed by an index-set to create a family of problems.
When a problem is first used (via the USE PROBLEM statement), the specifications from the optional FROM
and INCLUDE clauses create the initial set of included variables, constraints, and the problem objective. An
empty problem is created if neither clause is specified. The clauses are applied only when the problem is first
used with the USE PROBLEM statement.

The FROM clause specifies an existing problem from which to copy the included symbols. The problem-id
is an identifier expression. The dropped and fixed status for these symbols in the specified problem is also
copied.

The INCLUDE clause specifies a list of variables, constraints, and objectives to include in the problem. These
items are included with default status (unfixed and undropped) which overrides the status from the FROM
clause, if it exists. Each item is specified with one of the following forms:

identifier-expression
includes the specified items in the problem. The identifier-expression can be a symbol
name or an array symbol with explicit index. If an array symbol is used without an index,
then all array elements are included.

{ index-set } identifier-expression
includes the specified subset of items in the problem. The item specified by the identifier-
expression is added to the problem for each member of the index-set. The dummy

Declaration Statements 4 51

parameters from the index-set can be used in the indexing of the identifier-expression. 1If
the identifier-expression is an array symbol without indexing, then the index-set provides
the indices for the included locations.

You can use the FROM and INCLUDE clauses to designate the initial objective for a problem. The objective
is copied from the problem designated by the FROM clause, if present. Then the INCLUDE clause, if any, is
applied, and the last objective specified becomes the initial objective.

The following statements declare some problems with a variable x and different objectives to illustrate some
of the ways of including model components. Note that the statements use the predeclared problem _START_
to avoid resetting the objective in prob2 when the objective z3 is declared.

proc optmodel;
problem probl;
use problem probl;

var x >= 0; /* included in probl =*/
min zl = (x-1)**2; /* included in probl =*/
expand; /* probl contains x, zl %/

problem prob2 from probl;

use problem prob2; /* includes x, zl */

min z2 = (x-2)**2; /* resets prob2 objective to z2 */
expand; /* prob2 contains x, z2 */

use problem _start_; /* don't modify prob2 x/

min z3 = (x-3)*%2;

problem prob3 include x z3;
use problem prob3;
expand; /* prob3 contains x, z3 */

See the section “Multiple Subproblems” on page 148 for more details about problem processing.

VAR Declaration
VAR var-decl |, ...var-decl] ;

The VAR statement declares one or more optimization variables. Multiple VAR statements are permitted. A
variable is not allowed to have the same name as a parameter or constraint.

Each var-decl specifies a variable name. The name can be followed by an array index-set specification and
then variable options. Dummy parameters declared in the index set specification can be used in the following
variable options.

Here is the syntax for a var-dec!:

name [{ index-set } | [var-options]

For example, the following statements declare a group of 100 variables, x[1]-x[100]:

proc optmodel;
var x{1..100};

52 4 Chapter 5: The OPTMODEL Procedure

Here are the available variable options:

INIT expression
sets an initial value for the variable. The expression is used only the first time the value is
required. If no initial value is specified, then O is used by default.

>= expression
sets a lower bound for the variable value. The default lower bound is —oo.

<= expression
sets an upper bound for the variable value. The default upper bound is co.

INTEGER
requests that the solver assign the variable an integer value.

BINARY
requests that the solver assign the variable a value of either O or 1.

For example, the following statements declare a variable that has an initial value of 0.5. The variable is
bounded between 0 and 1:

proc optmodel;
var x init 0.5 >= 0 <= 1;

The values of the bounds can be determined later by using suffixed references to the variable. For example,
the upper bound for variable x can be referred to as x.ub. In addition the bounds options can be overridden by
explicit assignment to the suffixed variable name. Suffixes are described further in the section “Suffixes” on
page 132.

When used in an expression, an unsuffixed variable name refers to the current value of the variable. Unsuffixed
variables are not allowed in the expressions for options that define variable bounds or initial values. Such
expressions have values that must be fixed during execution of the solver.

Programming Statements

PROC OPTMODEL supports several programming statements. You can perform various actions with these
statements, such as reading or writing data sets, setting parameter values, generating text output, or invoking
a solver.

Statements are read from the input and are executed immediately when complete. Certain statements can
contain one or more substatements. The execution of substatements is held until the statements that contain
them are submitted. Parameter values that are used by expressions in programming statements are resolved
when the statement is executed; this resolution might cause errors to be detected. For example, the use of
undefined parameters is detected during resolution of the symbolic expressions from declarations.

A statement is terminated by a semicolon. The positions at which semicolons are placed are shown explicitly
in the following statement syntax descriptions.

The programming statements can be grouped into the categories shown in Table 5.7.

Programming Statements 4 53

Table 5.7 Types of Programming Statements in PROC OPTMODEL

Control Looping General Input/Output Model
DO COFOR Assignment CLOSEFILE DROP
IF CONTINUE CALL CREATE DATA EXPAND
Null ;) DO Iterative PERFORMANCE FILE FIX
QUIT DO UNTIL RESET OPTIONS PRINT RESTORE
STOP DO WHILE SUBMIT PUT SOLVE
FOR READ DATA UNFIX
LEAVE SAVE MPS USE PROBLEM
SAVE QPS

Assignment Statement
identifier-expression = expression ;

The assignment statement assigns a variable or parameter value. The type of the target identifier-expression
must match the type of the right-hand-side expression.

For example, the following statements set the current value for variable x to 3:

proc optmodel;
var x;
x = 3;

NOTE: Parameters that were declared with the equal sign (=) initialization forms must not be reassigned a
value with an assignment statement. If this occurs, PROC OPTMODEL reports an error.

CALL Statement
CALL name (argument-1 [, ...argument-n]) ;

The CALL statement invokes the named library subroutine. The values that are determined for each argument
expression are passed to the subroutine when the subroutine is invoked. The subroutine can update the
values of PROC OPTMODEL parameters and variables when an argument is an identifier-expression (see
the section “Identifier Expressions” on page 100). For example, the following statements set the parameter
array a to a random permutation of 1 to 4:

proc optmodel;
number a{i in 1..4} init i;
number seed init -1;
call ranperm(seed, a[l], al[2], a[3], al[4]);

NOTE: The maximum length of the string value returned from an output argument is equal to the character
length of the argument before the call. An undefined STRING parameter that is used as an output argument
has a character length of 8.

For a list of CALL routines, see SAS Functions and CALL Routines: Reference. You can also call subroutines
that are compiled by the FCMP procedure. For more information, see the section “FCMP Routines” on
page 153.

54 4 Chapter 5: The OPTMODEL Procedure

CLOSEFILE Statement
CLOSEFILE file-specifications ;

The CLOSEFILE statement closes files that were opened by the FILE statement. Each file is specified
by a logical name, a physical filename in quotation marks, or an expression enclosed in parentheses that
evaluates to a physical filename. See the section “FILE Statement” on page 70 for more information about
file specifications.

The following example shows how the CLOSEFILE statement is used with a logical filename:

filename greet 'hello.txt';
proc optmodel;

file greet;

put 'Hi!';

closefile greet;

Generally you must close a file with a CLOSEFILE statement before external programs can access the file.
However, any open files are automatically closed when PROC OPTMODEL terminates.

COFOR Statement
COFOR { index-set } statement ;

The COFOR statement executes its statement for each member of the specified index-set, similar to how the
FOR statement executes. However, in a COFOR statement, PROC OPTMODEL can execute the SOLVE
statement concurrently with other statements. The execution of the COFOR substatement is interleaved
between loop iterations so that other iterations can be processed while an iteration waits for a SOLVE
statement to complete. Multiple solvers can run concurrently. This interleaving is managed so that in many
cases a FOR loop can be replaced by a COFOR loop to achieve concurrency with minimal or no other
changes to the code.

The following code shows a simple example:

proc optmodel printlevel=0;
var x {1..6} >= 0;

minimize z = sum {j in 1..6} x[]j];

con al: x[1] + x[2] + x[3] <= 4;
con a2: x[4] + x[5] + x[6] <= 6;
con a3: x[1] + x[4] >= 5;
con a4: x[2] + x[5] >= 2;
con a5: x[3] + x[6] >= 3;

cofor{i in 3..5} do;

fix x[1]=1i;

solve;

put i= x[1]= _solution_status_=;
end;

Figure 5.7 shows the PROC OPTMODEL output. The order of the output from different iterations can vary
between runs, depending on the order in which the SOLVE statements complete. A FOR statement could
have been used instead of COFOR; the FOR statement would produce a consistent output order but only one

Programming Statements 4 55

solver would execute at a time. Note that because the solver execution in this example is trivial, the benefits
from concurrency are limited.

Figure 5.7 A Simple COFOR Loop

i=4 x[1]=4 _SOLUTION_STATUS_=OPTIMAL
i=5 x[1]=5 _SOLUTION_STATUS_ =INFEASIBLE
i=3 x[1]=3 _SOLUTION_STATUS_=OPTIMAL

A COFOR statement can contain other control and looping statements, including nested COFOR loops. The
maximum number of threads that can be used is controlled by the PERFORMANCE statement and SAS
options that are in effect when the outermost COFOR loop is entered, as described in the section “Threaded
Processing” on page 157. Within a COFOR statement, each background solve uses a single thread, overriding
the number of threads that are specified in the PERFORMANCE statement.

The COFOR statement supports simultaneous processing of several SOLVE statements. Processing proceeds
through the iteration body statements as it would through a FOR loop until a SOLVE statement that uses
the LP, MILP, network, NLP, or QP solver is executed. After the problem is generated, the solver starts
processing in a background thread and the COFOR loop switches execution to another iteration of the loop,
assuming enough threads and iterations are available. Execution could switch to an existing iteration where
the solver has completed. Alternatively, a new iteration of a COFOR loop could be started. All output from
an iteration, except within a SUBMIT block, is displayed together after the iteration has completed. Output
from a SUBMIT block is displayed as the block is executed.

The order in which the solvers complete is unpredictable. So it is usually not useful for a problem that is
solved within an iteration to depend on the results of SOLVE statements that are executed in other iterations of
the COFOR loop. It is advisable to limit global parameter updates to operations where order is not important,
such as accumulating counts, sums, or unions or writing mutually exclusive subsets of an array. It is possible
to execute multiple SOLVE statements within a loop iteration, and subsequent solver invocations within an
iteration can use results from prior solvers in the same iteration.

In many cases, a COFOR loop iteration solves a specialized version of a common problem structure. This
requires it to modify problem attributes that are also used in other iterations, such as coefficient values or the
fixed status of variables. Changes to problem attributes are not made visible to other iterations of a COFOR
loop in order to avoid confusing behavior due to interleaved execution. For example, the value printed for x[1]
in Figure 5.7 is the local value for the iteration, not the most recent global value. Changes to these attributes
create or update a copy of the value that is local to the iteration. These attribute values along with the local
dummy parameters provide a local context for the iteration.

The following problem attributes are automatically made local to the modifying iteration when they are
changed within a COFOR loop:

* the current problem, selected by USE PROBLEM
* the value of variables and their suffix values
* the fixed status of variables

* the constraint suffix values

56 4 Chapter 5: The OPTMODEL Procedure

* the dropped status of constraints
* the .LABEL suffix

* NUMBER, STRING, and SET parameters that determine values that are used in the bounds or body
expressions of problem declarations (CONSTRAINT, IMPVAR, MIN, MAX, or VAR)

* NUMBER, STRING, and SET parameters that determine values that are used in solver arguments
within the same outermost COFOR loop

* the predeclared string parameters _SOLVER_OPTIONS_ and _solver_OPTIONS_ (for each solver)

To illustrate these rules, consider the following code, which uses the NLP solver to solve a MINLP portfolio
optimization problem by selecting random subsets of the assets to optimize:

proc optmodel printlevel=0;
/* assets and related parameters x*/
set ASSETS;
num return {ASSETS};
num cov {ASSETS, ASSETS} init O;
read data means into ASSETS=[_n_] return;
read data covdata into [assetl asset2] cov cov[asset2,assetl]=cov;
num riskLimit init 0.00025;
num minThreshold init 0.1;
num numTrials = 10;

/* number of random trials */
set TRIALS = 1..numTrials;

/* declare NLP problem for fixed set of assets */
set ASSETS_THIS;
var AssetPropVar {ASSETS} >= minThreshold <= 1;
max ExpectedReturn = sum {i in ASSETS} return[i] x AssetPropVar[i];
con RiskBound:

sum {i in ASSETS_THIS, j in ASSETS_THIS}

cov[i,j] * AssetPropVar[i] * AssetPropVar[j] <= riskLimit;

con TotalPortfolio:

sum {asset in ASSETS} AssetPropVar[asset] = 1;

/* parameters to track best solution */
num infinity = constant ('BIG');

num best_objective init -infinity;

set INCUMBENT,;

/* iterate over trials */
num start {TRIALS};
num finish {TRIALS};
num overall_start;
overall start = time();
cofor {trial in TRIALS} do;
start[trial] = time() - overall_start;
put;
put trial=;
ASSETS_THIS = {i in ASSETS: ranuni(l) < 0.5};

Programming Statements 4 57

put ASSETS_THIS=;
for {i in ASSETS diff ASSETS_THIS}
fix AssetPropVar[i] = O;
solve with NLP / logfreq=0;
put _solution_status_=;
if _solution status_ ne 'INFEASIBLE' then do;
if best_objective < ExpectedReturn then do;
best_objective = ExpectedReturn;
INCUMBENT = ASSETS_THIS;
end;
end;
finish[trial] = time() - overall_start;
end;

put best_objective= INCUMBENT=;
create data ganttdata from [trial] e_start=start e _finish=finish;

proc gantt data=ganttdata;

id trial;

chart / compress nolegend nojobnum mindate=0 top height=1.8;
run;

All the COFOR loop iterations use the same problem, _START_. However, the changes to the problem are
local to the iteration that makes them. For example, the FIX statement does not affect variables in other
iterations. The value of the ASSETS_THIS parameter is used by the RiskBound constraint, so the change to
it is local. Because AssetPropVar is a VAR, the changes to its value are also local.

On the other hand, the values of the best_objective and INCUMBENT parameters do not affect any problem
declarations. Therefore, their global values are used, enabling the code in the COFOR loop to select and
save the best result. Similarly, the start and finish parameters are not used in the problem and allow the
overlapping of iterations to be illustrated. Figure 5.8 from the GANTT procedure shows how the iterations
have overlapped execution times.

58 4 Chapter 5: The OPTMODEL Procedure

Figure 5.8 Overlapped COFOR lterations

tial 0 2 4 6 8 10 12 14 16 18 20 22 24 26
I R N B

O ©W 00 N OO0 1 A W N =

—

Changes to problem attributes from completed iterations are made visible after the loop is finished. They
appear in the context that contained the COFOR statement. If multiple iterations modify the same problem
attribute value, then the value from the iteration that completed last is the one made visible.

The LEAVE statement can be used to terminate execution of a COFOR loop. This completes the current
iteration of the COFOR loop. The currently active solvers for the COFOR loop are terminated, and the output
of the incomplete iterations is discarded. The CONTINUE statement within a COFOR loop can also be used
to complete the current iteration, but it has no effect on other iterations.

Using the LEAVE statement to terminate is useful, for example, when a sufficiently good solution is found
for a problem. The preceding code has been modified as follows to keep generating solutions until a time
limit is reached. The code sets a time limit and then executes the LEAVE statement to stop processing when
the limit is exceeded. The COFOR loop uses a very large iteration range to allow it to run indefinitely.

Programming Statements 4 59

proc optmodel printlevel=0;
set ASSETS;
num return {ASSETS};
num cov {ASSETS, ASSETS} init O;
read data means into ASSETS=[_n_] return;
read data covdata into [assetl asset2] cov cov|[asset2,assetl]=cov;
num riskLimit init 0.00025;
num minThreshold init 0.1;

/* declare NLP problem for fixed set of assets */
set ASSETS_THIS;
var AssetPropVar {ASSETS} >= minThreshold <= 1;
max ExpectedReturn = sum {i in ASSETS} return[i] x AssetPropVar[i];
con RiskBound:

sum {i in ASSETS_THIS, j in ASSETS_THIS}

cov[i,j] * AssetPropVar[i] * AssetPropVar[j] <= riskLimit;

con TotalPortfolio:

sum {asset in ASSETS} AssetPropVar[asset] = 1;

num infinity = constant ('BIG');
num best_objective init -infinity;
set INCUMBENT;

/* run for 30 seconds x/
num last_time;
last_time = time() + 30;
num n_trials init O;
cofor {trial in 1..1le9} do;
put;
put trial=;
ASSETS_THIS = {i in ASSETS: ranuni(l) < 0.5},
put ASSETS_THIS=;
for {i in ASSETS diff ASSETS_THIS} fix AssetPropVar[i] = O;
solve with NLP / logfreq=0;
put _solution_status_=;
if _solution_status_ ne 'INFEASIBLE' then do;
if best_objective < ExpectedReturn then do;
best_objective = ExpectedReturn;
INCUMBENT = ASSETS_THIS;
end;
end;
n_trials = n_trials + 1;
if time() >= last_time then leave;
end;

put n_trials=;
put best_objective= INCUMBENT=;
quit;

60 4 Chapter 5: The OPTMODEL Procedure

CONTINUE Statement
CONTINUE ;

The CONTINUE statement terminates the current iteration of the loop statement (iterative DO, DO UNTIL,
DO WHILE, FOR, or COFOR) that immediately contains the CONTINUE statement. Execution resumes at
the start of the loop after checking WHILE or UNTIL tests. The FOR, COFOR, or iterative DO loops apply
new iteration values.

CREATE DATA Statement
CREATE DATA SAS-data-set FROM [[key-columns] [= key-set] | columns ;

The CREATE DATA statement creates a new SAS data set and copies data into it from PROC OPTMODEL
parameters and variables. The CREATE DATA statement can create a data set with a single observation or a

data set with observations for every location in one or more arrays. The data set is closed after the execution
of the CREATE DATA statement.

The arguments to the CREATE DATA statement are as follows:

SAS-data-set
specifies the output data set name and options.

key-columns
declares index values and their corresponding data set variables. The values are used to
index array locations in columns.

key-set
specifies a set of index values for the key-columns.

columns
specifies data set variables as well as the PROC OPTMODEL source data for the variables.

Each column or key-column defines output data set variables and a data source for a column. For example,
the following statement generates the output SAS data set resdata from the PROC OPTMODEL array opt,
which is indexed by the set indset:

create data resdata from [solns]=indset opt;

The output data set variable solns contains the index elements in indset.

Columns
Columns can have the following forms:

identifier-expression [| options |

transfers data from the PROC OPTMODEL parameter or variable specified by the
identifier-expression. The output data set variable has the same name as the name
part of the identifier-expression (see the section “Identifier Expressions” on page 100). If
the identifier-expression refers to an array, then the index can be omitted when it matches
the key-columns. The options enable formats and labels to be associated with the data
set variable. See the section “Column Options” on page 62 for more information. The
following example creates a data set with the variables m and n:

Programming Statements 4 61

proc optmodel;
number m = 7, n = 5;
create data example from m n;

name = expression [/ options |

transfers the value of a PROC OPTMODEL expression to the output data set variable
name. The expression is reevaluated for each observation. If the expression contains any
operators or function calls, then it must be enclosed in parentheses. If the expression is
an identifier-expression that refers to an array, then the index can be omitted if it matches
the key-columns. The options enable formats and labels to be associated with the data
set variable. See the section “Column Options” on page 62 for more information. The
following example creates a data set with the variable ratio:

proc optmodel;
number m = 7, n = 5;
create data example from ratio=(m/n);

COL(name-expression) = expression [/ options |

transfers the value of a PROC OPTMODEL expression to the output data set variable
named by the string expression name-expression. The PROC OPTMODEL expression is
reevaluated for each observation. If this expression contains any operators or function
calls, then it must be enclosed in parentheses. If the PROC OPTMODEL expression is an
identifier-expression that refers to an array, then the index can be omitted if it matches
the key-columns. The options enable formats and labels to be associated with the data
set variable. See the section “Column Options” on page 62 for more information. The
following example uses the COL expression to form the variable s5:

proc optmodel;
number m = 7, n = 5;
create data example from col("s"||n)=(m+n);

{ index-set } < columns >

performs the transfers by iterating each column specified by < columns > for each member
of the index set. If there are n columns and m index set members, then #n x m columns
are generated. The dummy parameters from the index set can be used in the columns
to generate distinct output data set variable names in the iterated columns, using COL
expressions. The columns are expanded when the CREATE DATA statement is executed,
before any output is performed. This form of columns cannot be nested. In other words,
the following form of columns is NOT allowed:

{ index-set } < { index-set } < columns > >

The following example demonstrates the use of the iterated columns form:

proc optmodel;
set<string> alph = {'a', 'b', 'c'};
var x{1..3, alph} init 2;
create data example from [i]=(1..3)
{j in alph}<col ("x"||3)=x[i, 31>;

The data set created by these statements is shown in Figure 5.9.

62 4 Chapter 5: The OPTMODEL Procedure

Figure 5.9 CREATE DATA with COL Expression

Obs i xa xb xc
1 1 2 2 2
2 2 2 2 2
3 3 2 2 2

NOTE: When no key-columns are specified, the output data set has a single observation.
The following statements incorporate several of the preceding examples to create and print a data set by using

PROC OPTMODEL parameters:

proc optmodel;
number m = 7, n = 5;
create data example from m n ratio=(m/n) col("s"||n)=(m+n);

proc print;
run;

The output from the PRINT procedure is shown in Figure 5.10.

Figure 5.10 CREATE DATA for Single Observation

Obs m n ratio s5

1 7 5 1.4 12

Column Options
Each column or key-column that defines a data set variable can be followed by zero or more of the following

modifiers:

FORMAT =format.
associates a format with the current column.

INFORMAT =informat.
associates an informat with the current column.

LABEL="label’
associates a label with the current column. The label can be specified by a quoted string

or an expression in parentheses.

LENGTH=/ength
specifies a length for the current column. The length can be specified by a numeric
constant or a parenthesized expression. The range for character variables is 1 to 32,767
bytes. The range for numeric variables depends on the operating environment and has a
minimum of 2 or 3.

TRANSCODE=YES | NO
specifies whether character variables can be transcoded. The default value is YES. See

Programming Statements 4 63

the TRANSCODE=option of the ATTRIB statement in SAS Statements: Reference for
more information.

The following statements demonstrate the use of column options, including the use of multiple options for a
single column:

proc optmodel;
num sqg{i in 1..10} = ixi;
create data squares from [i/format=hex2./length=3] sq/format=6.2;

proc print;
run;

The output from the PRINT procedure is shown in Figure 5.11.

Figure 5.11 CREATE DATA for Single Observation

Obs i sq
1 01 1.00
2 02 4.00
3 03 9.00
4 04 16.00
5 05 25.00
6 06 36.00
7 07 49.00
8 08 64.00
9 09 81.00

10 oa 100.00

Key Columns

Key-columns declare index values that enable multiple observations to be written from array columns. An
observation is created for each unique index value combination. The index values supply the index for array
columns that do not have an explicit index.

Key-columns define the data set variables where the index value elements are written. They can also declare
local dummy parameters for use in expressions in the columns. Key-columns are syntactically similar to
columns, but are more restricted in form. The following forms of key-columns are allowed:

name [/ options |
transfers an index element value to the data set variable name. A local dummy parameter,
name, is declared to hold the index element value. The options enable formats and labels
to be associated with the data set variable. See the section “Column Options” on page 62
for more information.

COL(name-expression) | = index-name | [/ options |
transfers an index element value to the data set variable named by the string-valued name-
expression. The argument index-name optionally declares a local dummy parameter to
hold the index element value. The options enable formats and labels to be associated with
the data set variable. See the section “Column Options” on page 62 for more information.

64 4 Chapter 5: The OPTMODEL Procedure

A key-set in the CREATE DATA statement explicitly specifies the set of index values. key-set can be
specified as a set expression, although it must be enclosed in parentheses if it contains any function calls
or operators. key-setf can also be specified as an index set expression, in which case the index-set dummy
parameters override any dummy parameters that are declared in the key-columns items. The following
statements create a data set from the PROC OPTMODEL parameter m, a matrix whose only nonzero entries
are located at (1, 1) and (4, 1):

proc optmodel;
number m{1..5, 1..3} = [[1 1] 1 [4 1] 1];
create data example
from [i j] = {setof{i in 1..2}<ixx2>, {1, 2}} m;

proc print data=example noobs;

run;
The dummy parameter i in the SETOF expression takes precedence over the dummy parameter i declared in
the key-columns item. The output from these statements is shown in Figure 5.12.

Figure 5.12 CREATE: key-set with SETOF Aggregation Expression

i j m
1 1 1
1 2 0
4 1 1
4 2 0

If no key-set is specified, then the set of index values is formed from the union of the index sets of the
implicitly indexed columns. The number of index elements for each implicitly indexed array must match the
number of key-columns. The type of each index element (string versus numeric) must match the element of
the same position in other implicit indices.

The arrays for implicitly indexed columns in a CREATE DATA statement do not need to have identical index
sets. A missing value is supplied for the value of an implicitly indexed array location when the implied index
value is not in the array’s index set.

In the following statements, the key-set is unspecified. The set of index values is {1, 2, 3}, which is the union
of the index sets of x and y. These index sets are not identical, so missing values are supplied when necessary.
The results of these statements are shown in Figure 5.13.

proc optmodel;
number x{1..2} init 2;
var y{2..3} init 3;
create data exdata from [keycol] x y;

proc print;
run;

Programming Statements 4 65

Figure 5.13 CREATE: Unspecified key-set

Obs

1
2
3

keycol

1
2
3

X

The types of the output data set variables match the types of the source values. The output variable type for a
key-columns matches the corresponding element type in the index value tuple. A numeric element matches
a NUMERIC data set variable, while a string element matches a CHAR variable. For regular columns
the source expression type determines the output data set variable type. A numeric expression produces a
NUMERIC variable, while a string expression produces a CHAR variable.

Lengths of character variables in the output data set are determined automatically. The length is set to
accommodate the longest string value output in that column.

You can use the iterated columns form to output selected rows of multiple arrays, assigning a different
data set variable to each column. For example, the following statements output the last two rows of the
two-dimensional array, a, along with corresponding elements of the one-dimensional array, b:

proc optmodel;

/* number of rows/observations =x/

/* number of columns in a x*/
/* compute a */
/* compute b */

num m = 3;

num n = 4;

num a{i in 1..m, j in 1..n}
num b{i in 1..m} = i*%2;
set<num> subset = 2..m;

create data out
from [i]=subset {j in 1..n}<col("a"||j)=ali,j]l> b;

=i

*3;

/* used to omit first row =*/

The preceding statements create a data set out, which has m — 1 observations and n + 2 variables. The
variables are named i, a1 through an, and b, as shown in Figure 5.14.

Figure 5.14 CREATE DATA Set: The Iterated Column Form

Obs i
1 2
2 3

al

a2

a

3 a4 b

6 8 4
9 12 9

See the section “Data Set Input/Output” on page 116 for more examples of using the CREATE DATA

statement.

DO Statement

DO ; statements

; END ;

The DO statement groups a sequence of statements together as a single statement. Each statement within the
list is executed sequentially. The DO statement can be used for grouping with the IF, FOR, and COFOR

statements.

66 4 Chapter 5: The OPTMODEL Procedure

DO Statement, lterative
DO name = specification-1 [, ... specification-n| ; statements ; END ;

The iterative DO statement assigns the values from the sequence of specification items to a previously
declared parameter or variable, name. The specified statement sequence is executed after each assignment.
This statement corresponds to the iterative DO statement of the DATA step.

Each specification provides either a single number or a single string value, or a sequence of such values.
Each specification takes the following form:

expression [WHILE(logic-expression) | UNTIL(logic-expression) |

The expression in the specification provides a single value or set of values to assign to the target name.
Multiple values can be provided for the loop by giving multiple specification items that are separated by
commas. For example, the following statements output the values 1, 3, and 5:

proc optmodel;
number i;
do i=1,3,5;
put i;
end;
In this case, the same effect can be achieved with a single range expression in place of the explicit list of
values, as in the following statements:

proc optmodel;

number 1i;
do i=1 to 5 by 2;

put 'value of i assigned by the DO loop = ' i;

i=ix*x2;

put 'value of i assigned in the body of the loop = ' i;
end;

The output of these statements is shown in Figure 5.15.

Figure 5.15 DO Loop: Name Parameter Unaffected

value of i assigned by the DO loop =1

value of i assigned in the body of the loop =1

value of i assigned by the DO loop = 3

value of i assigned in the body of the loop = 9

value of i assigned by the DO loop = 5

value of i assigned in the body of the loop = 25

Unlike the DATA step, a range expression requires the limit to be specified. Additionally the BY part, if any,
must follow the limit expression. Moreover, although the name parameter can be reassigned in the body of
the loop, the sequence of values that is assigned by the DO loop is unaffected.

The argument expression can also be an expression that returns a set of numbers or strings. For example,
the following statements produce the same sequence of values for i as the previous statements but use a set
parameter value:

Programming Statements 4 67

proc optmodel;

set s = {1,3,5};

number i;

do i = s;

put i;

end;
Each specification can include a WHILE or UNTIL clause. A WHILE or UNTIL clause applies to the
expression that immediately precedes the clause. The sequence that is specified by an expression can be
terminated early by a WHILE or UNTIL clause. A WHILE /ogic-expression is evaluated for each sequence
value before the nested statements. If the logic-expression returns a false (zero or missing) value, then the
current sequence is terminated immediately. An UNTIL logic-expression is evaluated for each sequence value
after the nested statements. The sequence from the current specification is terminated if the logic-expression
returns a true value (nonzero and nonmissing). After early termination of a sequence due to a WHILE or
UNTIL expression, the DO loop execution continues with the next specification, if any.

To demonstrate use of the WHILE clause, the following statements output the values 1, 2, and 3. In this case
the sequence of values from the set s is stopped when the value of i reaches 4.

proc optmodel;
set s = {1,2,3,4,5};
number i;
do i = s while(i NE 4);
put i;
end;

DO UNTIL Statement
DO UNTIL (/ogic-expression) statements ; END ;

The DO UNTIL loop executes the specified sequence of statements repeatedly until the /logic-expression,
evaluated after the stafements, returns true (a nonmissing nonzero value).

For example, the following statements output the values 1 and 2:

proc optmodel;
number 1i;
i=1;
do until (i=3);
put i;
i=i+1;
end;

Multiple criteria can be introduced using expression operators, as in the following example:
do until (i=3 and 3j=7);

For a list of expression operators, see Table 5.10.

68 4 Chapter 5: The OPTMODEL Procedure

DO WHILE Statement
DO WHILE (/logic-expression) statements ; END ;

The DO WHILE loop executes the specified sequence of statements repeatedly as long as the logic-expression,
evaluated before the statements, returns true (a nonmissing nonzero value).

For example, the following statements output the values 1 and 2:

proc optmodel;
number i;
i=1;
do while (i<3);
put i;
i=i+l;
end;

Multiple criteria can be introduced using expression operators, as in the following example:

do while (i<3 and j<7);
For a list of expression operators, see Table 5.10.

DROP Statement
DROP identifier-list ;

The DROP statement causes the solver to ignore a list of constraints, constraint arrays, or constraint array
locations. The space-delimited identifier-list specifies the names of the dropped constraints. Each constraint,
constraint array, or constraint array location is named by an identifier-expression. An entire constraint array
is dropped if an identifier-expression omits the index for an array name.

The following example statements use the DROP statement:

proc optmodel;
var x{1..10};
con cl: x[1] + x[2] <= 3;
con disp{i in 1..9}: x[i+1l] >= x[i] + 0.1;

drop cl; /* drops the cl constraint =/
drop disp[5]; /* drops just disp[5] */
drop disp; /* drops all disp constraints =*/

The constraint can be added back to the model with the RESTORE statement.

The following line drops both the ¢1 and disp[5] constraints:

drop cl disp[5];

EXPAND Statement
EXPAND | identifier-expression | | | options] ;

The EXPAND statement prints the specified constraint, variable, implicit variable, or objective declaration
expressions in the current problem after expanding aggregation operators, substituting the current value for

Programming Statements 4 69

parameters and indices, and resolving constant subexpressions. identifier-expression is the name of a variable,
objective, or constraint. If the name is omitted and no options are specified, then all variables, objectives,
implicit variables, and undropped constraints in the current problem are printed. The following statements
show an example EXPAND statement:

proc optmodel;
number n=2;
var x{1..n};
min zl=sum{i in 1..n} (x[i]-i)**2;
max z2=sum{i in 1..n} (i-x[i])**3;
con c{i in 1..n}: x[i]>=0;
fix x[2]=3;
expand;

These statements produce the output in Figure 5.16.

Figure 5.16 EXPAND Statement Output

Var x[1]

Fix x[2] = 3

Maximize z2=(-x[1] + 1)**3 + (—-x[2] + 2)**3
Constraint c[1]: x[1] >= 0

Constraint c[2]: x[2] >= 0

Specifying an identifier-expression restricts output to the specified declaration. A non-array name prints only
the specified item. If an array name is used with a specific index, then information for the specified array
location is output. Using an array name without an index restricts output to all locations in the array.

You can use the following options to further control the EXPAND statement output:

SOLVE

causes the EXPAND statement to print the variables, objectives, and constraints in the
same form that would be seen by the solver if a SOLVE statement were executed. This
includes any transformations by the PROC OPTMODEL presolver (see the section
“Presolver” on page 143). In this form any fixed variables are replaced by their values.
Unless an identifier-expression specifies a particular non-array item or array location,
the EXPAND output is restricted to only the variables, the constraints, and the current
problem objective.

The following options restrict the types of declarations output when no specific non-array item or array
location is requested. By default, all types of declarations are output. Only the requested declaration types
are output when one or more of the following options are used.

CONSTRAINT | CON
requests the output of undropped constraints.

FIX
requests the output of fixed variables. These variables might have been fixed by the FIX
statement (or by the presolver if the SOLVE option is specified). The FIX option can also
be used in combination with the name of a variable array to display just the fixed elements
of the array.

70 4 Chapter 5: The OPTMODEL Procedure

s

IMPVAR

restricts the display to items found in the irreducible infeasible set (IIS) after the most
recent SOLVE performed by the LP solver with the IIS=ON option. The IIS option for
the EXPAND statement can also be used in combination with the name of a variable or
constraint array to display only the elements of the array in the IIS. For more information
about IIS, see the section “Irreducible Infeasible Set” on page 210.

requests the output of implicit variables referenced in the current problem.

OBJECTIVE | OBJ

OMITTED

VAR

requests the output of objectives used in the current problem. This includes the current
problem objective and any objectives referenced as implicit variables.

requests the output of variables that are referenced by problem equations but were not
included in the current USE PROBLEM instance. The OPTMODEL procedure omits
these variables from the generated problem.

requests the output of unfixed variables. The VAR option can also be used in combination
with the name of a variable array to display just the unfixed elements of the array.

For example, you can see the effect of a FIX statement on the problem that is presented to the solver by using
the SOLVE option. You can modify the previous example as follows:

proc optmodel;
number n=2;
var x{1..n};
min zl=sum{i in 1..n} (x[i]-i)**2;
max z2=sum{i in 1..n} (i-x[1i])**3;
con c{i in 1..n}: x[i]>=0;
fix x[2]=3;
expand / solve;

These statements produce the output in Figure 5.17.

Figure 5.17 Expansion with Fixed Variable

Var x[1]
Fix x[2]

Maximize z2=(-x[1] + 1)**3 - 1

>= 0
=3

Compare the results in Figure 5.17 to those in Figure 5.16. The constraint c[1] has been converted to a
variable bound. The subexpression that uses the fixed variable has been resolved to a constant.

FILE Statement

FILE file-specification | LRECL=value | ;

The FILE statement selects the current output file for the PUT statement. By default PUT output is sent to the
SAS log. Use the FILE statement to manage a group of output files. The specified file is opened for output if
it is not already open. The output file remains open until it is closed with the CLOSEFILE statement.

Programming Statements 4 71

file-specification names the output file. It can use any of the following forms:

‘external-file’
specifies the physical name of an external file in quotation marks. The interpretation of
the filename depends on the operating environment.

file-name
specifies the logical name associated with a file by the FILENAME statement or by the
operating environment. The names PRINT and LOG are reserved to refer to the SAS
listing and log files, respectively.

NOTE: Details about the FILENAME statement can be found in SAS Statements: Refer-
ence.

(expression)
specifies an expression that evaluates to a string that contains the physical name of an
external file.

The LRECL= option sets the line length of the output file. The LRECL= option is ignored if the file is already
open or if the PRINT or LOG file is specified.
The LRECL= value can be specified in these forms:
integer
specifies the desired line length.

identifier-expression
specifies the name of a numeric parameter that contains the length.

(expression)
specifies a numeric expression in parentheses that returns the line length.

The LRECL= value cannot exceed the largest four-byte signed integer, which is 231 — 1.

The following example shows how to use the FILE statement to handle multiple files:

proc optmodel;

file 'file.txt' lrecl=80; /* opens file.txt */
put 'This is line 1 of file.txt.';

file print; /* selects the listing */
put 'This goes to the listing.';

file 'file.txt'; /* reselects file.txt */
put 'This is line 2 of file.txt.';

closefile 'file.txt'; /* closes file.txt */
file log; /* selects the SAS log */

put 'This goes to the log.';

/* using expression to open and write a collection of files */
str ofile;

num i;

num 1 = 40;

do i =1 to 3;
ofile = ('file' || i || '.txt');
file (ofile) lrecl=(1lxi);
put ('This goes to ' || ofile);

closefile (ofile);
end;

72 4 Chapter 5: The OPTMODEL Procedure

The following statements illustrate the usefulness of using a logical name associated with a file by FILENAME
statement:

proc optmodel;
/* assigns a logical name to file.txt x*/
/* see FILENAME statement in */
/* SAS Statements: Reference */
filename myfile 'file.txt' mod;

file myfile;

put 'This is line 3 of file.txt.';
closefile myfile;

file myfile;

put 'This is line 4 of file.txt.';
closefile myfile;

Notice that the FILENAME statement opens the file referenced for append. Therefore, new data are appended
to the end every time the logical name, myfile, is used in the FILE statement.

FIX Statement
FIX identifier-list [= (expression)] ;

The FIX statement causes the solver to treat a list of variables, variable arrays, or variable array locations as
fixed in value. The identifier-list consists of one or more variable names separated by spaces. Each member
of the identifier-list is fixed to the same expression. For example, the following statements fix the variables x
and y to 3:

proc optmodel;
var x, y;
num a = 2;
fix x y=(a+l);

A variable is specified with an identifier-expression (see the section “Identifier Expressions” on page 100).
An entire variable array is fixed if the identifier-expression names an array without providing an index. A
new value can be specified with the expression. If the expression is a constant, then the parentheses can be
omitted. For example, the following statements fix all locations in array x to 0 except x[10], which is fixed to
1:

proc optmodel;
var x{1..10};
fix x = 0;
fix x[10] = 1;

If expression is omitted, the variable is fixed at its current value. For example, you can fix some variables to
be their optimal values after the SOLVE statement is invoked. NOTE: The fixed value is equal to the current
value for a fixed variable. The fixed value is updated if a new value is assigned to a fixed variable.

The effect of FIX can be reversed by using the UNFIX statement.

Programming Statements 4 73

FOR Statement
FOR { index-set } statement ;

The FOR statement executes its substatement for each member of the specified index-set. The index set can
declare local dummy parameters. You can reference the value of these parameters in the substatement. For
example, consider the following statements:

proc optmodel;
for {i in 1..2, j in {'a', 'b'}} put i= j=;

These statements produce the output in Figure 5.18.

Figure 5.18 FOR Statement Output

uoueu U
o n
p O W

|
lop

As another example, the following statements set the current values for variable x to random values between
0 and 1:

proc optmodel;
var x{1..10};
for {i in 1..10}
x[i] = ranuni(-1);

Multiple statements can be controlled by specifying a DO statement group for the substatement.

CAUTION: Avoid modifying the parameters that are used by the FOR or COFOR statement index set from
within the substatement. The set value that is used for the left-most index set item is not affected by such
changes. However, the effect of parameter changes on later index set items cannot be predicted.

IF Statement
IF logic-expression THEN statement | ELSE statement] ;

The IF statement evaluates the logical expression and then conditionally executes the THEN or ELSE
substatements. The substatement that follows the THEN keyword is executed when the logical expression
result is nonmissing and nonzero. The ELSE substatement, if any, is executed when the logical expression
result is a missing value or zero. The ELSE part is optional and must immediately follow the THEN
substatement. When IF statements are nested, an ELSE is always matched to the nearest incomplete
unmatched IF-THEN. Multiple statements can be controlled by using DO statements with the THEN or
ELSE substatements.

NOTE: When an IF-THEN statement is used without an ELSE substatement, substatements of the IF
statement are executed when possible as they are entered. Under certain circumstances, such as when an
IF statement is nested in a FOR loop, the statement is not executed during interactive input until the next
statement is seen. By following the IF-THEN statement with an extra semicolon, you can cause it to be
executed upon submission, since the extra semicolon is handled as a null statement.

74 4 Chapter 5: The OPTMODEL Procedure

LEAVE Statement
LEAVE ;

The LEAVE statement terminates the execution of the entire loop body (iterative DO, DO UNTIL, DO
WHILE, FOR, or COFOR) that immediately contains the LEAVE statement. Execution resumes at the
statement that follows the loop. The following example demonstrates a simple use of the LEAVE statement:

proc optmodel;
number i, j;
do i =1..5;
do j =1..4;
if i >= 3 and j = 2 then leave;
end;
print i j;
end;

The results from these statements are displayed in Figure 5.19.

Figure 5.19 LEAVE Statement Output

i 3
1 4
i 3
2 4
i 3
3 2
i 3
4 2
i 3
5 2

For values of i equal to 1 or 2, the inner loop continues uninterrupted, leaving j with a value of 5. For values
of i equal to 3, 4, or 5, the inner loop terminates early, leaving j with a value of 2.

Null Statement
The null statement is treated as a statement in the PROC OPTMODEL syntax, but its execution has no effect.
It can be used as a placeholder statement.

Programming Statements 4 75

PERFORMANCE Statement
PERFORMANCE options ;

The PERFORMANCE statement controls the multithreaded execution features of PROC OPTMODEL and
the multithreaded and distributed execution features of PROC OPTMODEL solvers. The options that you
specify in the PERFORMANCE statement are applied each time the statement is executed; they replace any
previously specified options. For details about the options available for the PERFORMANCE statement, see
the section “PERFORMANCE Statement” on page 21.

PRINT Statement
PRINT print-items ;

The PRINT statement outputs string and numeric data in tabular form. The statement specifies a list of arrays
or other data items to print. Multiple items can be output together as data columns in the same table.

If no format is specified, the PRINT statement handles the details of formatting automatically (see the section
“Formatted Output” on page 120 for details). The default format for a numerical column is the fixed-point
format (w.d format), which is chosen based on the values of the PDIGITS= and PWIDTH= options (see the
section “PROC OPTMODEL Statement” on page 40) and on the values in the column. The PRINT statement
uses scientific notation (the Ew. format) when a value is too large or too small to display in fixed format. The
default format for a character column is the $w. format, where the width is set to be the length of the longest
string (ignoring trailing blanks) in the column.

print-item can be specified in the following forms:

identifier-expression | format |
specifies a data item to output. identifier-expression can name an array. In that case all
defined array locations are output. format specifies a SAS format that overrides the default
format.

(expression) [format |
specifies a data value to output. format specifies a SAS format that overrides the default
format.

{ index-set } identifier-expression | format |
specifies a data item to output under the control of an index set. The item is printed as if
it were an array with the specified set of indices. This form can be used to print a subset
of the locations in an array, such as a single column. If the identifier-expression names an
array, then the indices of the array must match the indices of the index-set. The format
argument specifies a SAS format that overrides the default format.

{ index-set } (expression) | format |
specifies a data item to output under the control of an index set. The item is printed as if
it were an array with the specified set of indices. In this form the expression is evaluated
for each member of the index-set to create the array values for output. format specifies a
SAS format that overrides the default format.

string
specifies a string value to print.

PAGE
specifies a page break.

76 4 Chapter 5: The OPTMODEL Procedure

The following example demonstrates the use of several print-ifem forms:

proc optmodel;
num x = 4.3;
var y{j in 1..4} init j*3.68;
print y; /* identifier-expression */

print (x * .265) dollaré6.2; /* (expression)

[format] =*/

print {i in 2..4} y; /* {index-set} identifier-—-expression =*/
print {i in 1..3}(i + ix.2345692) best7.;
/* {index-set} (expression) [format] =*/

print "Line 1"; /% string */

The output is displayed in Figure 5.20.

Figure 5.20 Print-item Forms

[1]

S W N R

$1.14

[1]

w

[1]

N

Line 1

.68
.36
11.
14.

04
72

.36
11.
.72

04

1 1.23457
2.46914
3 3.70371

Adjacent print items that have similar indexing are grouped together and output in the same table. Items have
similar indexing if they specify arrays that have the same number of indices and have matching index types
(numeric versus string). Nonarray items are considered to have the same indexing as other nonarray items.
The resulting table has a column for each array index followed by a column for each print item value. This

format is called list form. For example, the following statements produce a list form table:

proc optmodel;
num a{i in 1..3}
num b{i in 3..5}
print a b;

ixi;
4xi;

These statements produce the listing output in Figure 5.21.

Programming Statements 4 77

Figure 5.21 List Form PRINT Table

[1] a b
1 1
2 4
3 9 12
4 16
5 20

The array index columns show the set of valid index values for the print items in the table. The array index
column for the ith index is labeled [i]. There is a row for each combination of index values that was used.
The index values are displayed in sorted ascending order.

The data columns show the array values that correspond to the index values in each row. If a particular array
index is invalid or the array location is undefined, then the corresponding table entry is displayed as blank
for numeric arrays and as an empty string for string arrays. If the print items are scalar, then the table has a
single row and no array index columns.

If a table contains a single array print item, the array is two-dimensional (has two indices), and the array
is dense enough, then the array is shown in matrix form. In this format there is a single index column that
contains the row index values. The label of this column is blank. This column is followed by a column for
every unique column index value for the array. The latter columns are labeled by the column value. These
columns contain the array values for that particular array column. Table entries that correspond to array
locations that have invalid or undefined combinations of row and column indices are blank or (for strings)
printed as an empty string.

The following statements generate a simple example of matrix output:

proc optmodel;
print {i in 1..6, j in i..6} (ix10+j);

The PRINT statement produces the output in Figure 5.22.

Figure 5.22 Matrix Form PRINT Table

1 11 12 13 14 15 16
2 22 23 24 25 26
3 33 34 35 36
4 44 45 46
5 55 56
6 66

The PRINT statement prints single two-dimensional arrays in the form that uses fewer table cells (headings
are ignored). Sparse arrays are normally printed in list form, and dense arrays are normally printed in matrix
form. In a PROC OPTMODEL statement, the PMATRIX= option enables you to tune how the PRINT
statement displays a two-dimensional array. The value of this option scales the total number of nonempty
array elements, which is used to compute the tables cells needed for list form display. Specifying values for

78 4 Chapter 5: The OPTMODEL Procedure

the PMATRIX= option less than 1 causes the list form to be used in more cases, while specifying values
greater than 1 causes the matrix form to be used in more cases. If the value is 0, then the list form is always
used. The default value of the PMATRIX= option is 1. Changing the default can be done with the RESET
OPTIONS statement.

The following statements illustrate how the PMATRIX= option affects the display of the PRINT statement:

proc optmodel;

num a{i in 1..6, i..i} = i;

num b{i in 1..3, j in 1..3} = ix*j;
print a;

print b;

reset options pmatrix=3;

print a;

reset options pmatrix=0.5;

print b;

The output is shown in Figure 5.23.

Figure 5.23 PRINT Statement: Effects of PMATRIX= Option

[1] [2]

[\

o Ul d WN K
o Uld WN PR
o Ul WN R

N
N
'
o

o Ul d WN PR
[y

Programming Statements 4 79

Figure 5.23 continued

o

[1] [2]

W wwdNdDNNMNDNDRLRRPBRP
WINERF WDNMDKFE WDNDR
WoWwWwo dDNWNDHR

From Figure 5.23, you can see that, by default, the PRINT statement tries to make the display compact.
However, you can change the default by using the PMATRIX= option.

PUT Statement
PUT [put-items | [@ | @@ | ;

The PUT statement writes text data to the current output file. The syntax of the PUT statement in PROC
OPTMODEL is similar to the syntax of the PROC IML and DATA step PUT statements. The PUT statement
contains a list of items that specify data for output and provide instructions for formatting the data.

The current output file is initially the SAS log. This can be overridden with the FILE statement. An output
file can be closed with the CLOSEFILE statement.

Normally the PUT statement outputs the current line after processing all items. Final @ or @ @ operators
suppress this automatic line output and cause the current column position to be retained for use in the next
PUT statement.

put-item can take any of the following forms.

identifier-expression [= | [format]
outputs the value of the parameter or variable that is specified by the identifier-expression.
The equal sign (=) causes a name for the location to be printed before each location value.

Normally each item value is printed in a default format. Any leading and trailing blanks
in the formatted value are removed, and the value is followed by a blank space. When an
explicit format is specified, the value is printed within the width determined by the format.

name[*] [.suffix] [=] [format]
outputs each defined location value for an array parameter. The array name is specified as
in the identifier-expression form except that the index list is replaced by an asterisk (*).
The equal sign (=) causes a name for the location to be printed before each location value
along with the actual index values to be substituted for the asterisk.

Each item value normally prints in a default format. Any leading and trailing blanks in
the formatted value are removed, and the value is followed by a blank space. When an
explicit format is specified, the value is printed within the width determined by the format.

(expression) [=] [format]
outputs the value of the expression enclosed in parentheses. This produces similar results

80 4 Chapter 5: The OPTMODEL Procedure

to the identifier-expression form except that the equal sign (=) uses the expression to form
the name.

’quoted-string’
copies the string to the output file.

@integer | identifier-expression | (expression) sets the absolute column position within the current line.
The literal or expression value determines the new column position.

+integer lidentifier-expressionl(expression) sets the relative column position within the current line. The
literal or expression value determines the amount to update the column position.

outputs the current line and moves to the first column of the next line.

PAGE
outputs any pending line data and moves to the top of the next page.

QUIT Statement
QUIT ;

The QUIT statement terminates the OPTMODEL execution. The statement is executed immediately, so it
cannot be a nested statement. A QUIT statement is implied when a DATA or PROC statement is read.

READ DATA Statement
READ DATA SAS-data-set | NOMISS | INTO [[set-name = | [read-key-columns]| [read-columns | ;

The READ DATA statement reads data from a SAS data set into PROC OPTMODEL parameter and variable
locations. The arguments to the READ DATA statement are as follows:

SAS-data-set
specifies the input data set name and options.

set-name

specifies a set parameter in which to save the set of observation key values read from the
input data set.

read-key-columns
provide the index values for array destinations.

read-columns
specify the data values to read and the destination locations.

The following example uses the READ DATA statement to copy data set variables j and k from the SAS data
set indata into parameters of the same name. The READ= data set option specifies a password.

proc optmodel;
number j, k;
read data indata(read=secret) into j k;

Programming Statements 4 81

Key Columns

If any read-key-columns are specified, then the READ DATA statement reads all observations from the input
data set. If no read-key-columns are specified, then only the first observation of the data set is read. The data
set is closed after reading the requested information.

Each read-key-column declares a local dummy parameter and specifies a data set variable that supplies the
column value. The values of the specified data set variables from each observation are combined into a key
tuple. This combination is known as the observation key. The observation key is used to index array locations
specified by the read-columns items. The observation key is expected to be unique for each observation read
from the data set.

The syntax for a read-key-column is as follows:

name [= source-name | [/ trim-option |

A read-key-column creates a local dummy parameter named name that holds an element of the observation
key tuple. The dummy parameter can be used in subsequent read-columns items to reference the element
value. If a source-name is given, then it specifies the data set variable that supplies the value. Otherwise the
source data set variable has the same name as the dummy parameter, name. Use the special data set variable
name _N_ to refer to the number identification of the observations.

You can specify a set-name to save the set of observation keys into a set parameter. If the observation key
consists of a single scalar value, then the set member type must match the scalar type. Otherwise the set
member type must be a tuple with element types that match the corresponding observation key element types.

The READ DATA statement initially assigns an empty set to the target set-name parameter. As observations
are read, a tuple for each observation key is added to the set. A set used to index an array destination in the
read-columns can be read at the same time as the array values. Consider a data set, invdata, created by the
following statements:

data invdata;
input item $ invcount;
datalines;

table 100

sofa 250

chair 80

The following statements read the data set invdata, which has two variables, item and invcount. The READ
DATA statement constructs a set of inventory items, ltems. At the same time, the parameter location
invcount[item] is assigned the value of the data set variable invcount in the corresponding observation.

proc optmodel;
set<string> Items;
number invcount{Items};
read data invdata into Items=[item] invcount;
print invcount;

The output of these statements is shown in Figure 5.24.

82 4 Chapter 5: The OPTMODEL Procedure

Figure 5.24 READ DATA Statement: Key Column

[1] invcount
chair 80
sofa 250
table 100

When observations are read, the values of data set variables are copied to parameter locations. Numeric
values are copied unchanged. For character values, trim-option controls how leading and trailing blanks are
processed. trim-option is ignored when the value type is numeric. Specify any of the following keywords for
trim-option:

TRIM | TR
removes leading and trailing blanks from the data set value. This is the default behavior.
LTRIM | LT
removes only leading blanks from the data set value.
RTRIM | RT
removes only trailing blanks from the data set value.
NOTRIM | NT
copies the data set value with no changes.
Columns

read-columns specify data set variables to read and PROC OPTMODEL parameter locations to which to
assign the values. The types of the input data set variables must match the types of the parameters. Array
parameters can be implicitly or explicitly indexed by the observation key values.

Normally, missing values from the data set are assigned to the parameters that are specified in the read-
columns. The NOMISS keyword suppresses the assignment of missing values, leaving the corresponding
parameter locations unchanged. Note that the parameter location does not need to have a valid index in this
case. This permits a single statement to read data into multiple arrays that have different index sets.

read-columns have the following forms:

identifier-expression [= name | COL(name-expression) | [/ trim-option]

transfers an input data set variable to a target parameter or variable. identifier-expression
specifies the target. If the identifier-expression specifies an array without an explicit
index, then the observation key provides an implicit index. The name of the input data
set variable can be specified with a name or a COL expression. Otherwise the data set
variable name is given by the name part of the identifier-expression. For COL expressions,
the string-valued name-expression is evaluated to determine the data set variable name.
trim-option controls removal of leading and trailing blanks in the incoming data. For
example, the following statements read the data set variables column1 and column2 from
the data set exdata into the PROC OPTMODEL parameters p and g, respectively. The
observation numbers in exdata are read into the set indx, which indexes p and g.

Programming Statements 4 83

data exdata;
input columnl column2;
datalines;

12

34

4

proc optmodel;
number n init 2;
set<num> indx;
number p{indx}, q{indx};
read data exdata into
indx=[_N_] p=columnl g=col ("column"| |n);
print p q;

The output is shown in Figure 5.25.

Figure 5.25 READ DATA Statement: Identifier Expressions

{ index-set } < read-columns >

performs the transfers by iterating each column specified by <read-columns> for each
member of the index-set. If there are n columns and m index set members, then n x m
columns are generated. The dummy parameters from the index set can be used in the
columns to generate distinct input data set variable names in the iterated columns, using
COL expressions. The columns are expanded when the READ DATA statement is
executed, before any observations are read. This form of read-columns cannot be nested.
In other words, the following form of read-columns is NOT allowed:

{ index-set } < { index-set } < read-columns > >

An example that demonstrates the use of the iterated column read-option follows.

You can use an iterated column read-option to read multiple data set variables into the same array. For
example, a data set might store an entire row of array data in a group of data set variables. The following
statements demonstrate how to read a data set that contains demand data divided by day:

data dmnd;
input loc $ dayl day2 day3 day4 day5;
datalines;
East 1.1 2.3 1.3 3.6 4.7
West 7.0 2.1 6.1 5.8 3.2

’

84 4 Chapter 5: The OPTMODEL Procedure

proc optmodel;
set DOW = 1..5; /% days of week, 1l=Monday, 5=Friday */
set<string> LOCS; /* locations */
number demand{LOCS, DOW};
read data dmnd
into LOCS=[loc]
{d in DOW} < demand[loc, d]=col("day"||d) >;
print demand;

These statements read a set of demand variables named DAY 1-DAY5 from each observation, filling in the
two-dimensional array demand. The output is shown in Figure 5.26.

Figure 5.26 Demand Data

demand
1 2 3 4 5
East 1.1 2.3 1.3 3.6 4.7
West 7.0 2.1 6.1 5.8 3.2

RESET OPTIONS Statement
RESET OPTIONS options ;
RESET OPTION options ;

The RESET OPTIONS statement sets PROC OPTMODEL option values or restores them to their defaults.
Options can be specified by using the same syntax as in the PROC OPTMODEL statement. The RESET
OPTIONS statement provides two extensions to the option syntax. If an option normally requires a value
(specified with an equal sign (=) operator), then specifying the option name alone resets it to its default
value. You can also specify an expression enclosed in parentheses in place of a literal value. See the section
“OPTMODEL Options” on page 150 for an example.

The RESET OPTIONS statement can be placed inside loops or conditional statements. The statement is
applied each time it is executed.

RESTORE Statement
RESTORE identifier-list ;

The RESTORE statement adds a list of constraints, constraint arrays, or constraint array locations that were
dropped by the DROP statement back into the solver model, or includes constraints in a problem where
they were not previously present. The space-delimited identifier-list specifies the names of the constraints.
Each constraint, constraint array, or constraint array location is named by an identifier-expression. An entire
constraint array is restored if an identifier-expression omits the index from an array name. For example, the
following statements declare a constraint array and then drop it:

con c{i in 1..4}: x[i] + y[i] <=1;
drop c;

The following statement restores the first constraint:

Programming Statements 4 85

restore c[1l];

The following statement restores the second and third constraints:

restore c[2] c[3];

If you want to restore all of the constraints, you can submit the following statement:

restore c;

SAVE MPS Statement
SAVE MPS SAS-data-set [(OBJECTIVE | OBJ) name] ;

The SAVE MPS statement saves the structure and coefficients for a linear programming model into a SAS
data set. This data set can be used as input data for the OPTLP or OPTMILP procedure.

NOTE: The OPTMODEL presolver (see the section “Presolver” on page 143) is automatically bypassed so
that the statement saves the original model without eliminating fixed variables, tightening bounds, and so on.

The SAS-data-set argument specifies the output data set name and options. The output data set uses the MPS
format described in Chapter 16. The generated data set contains observations that define different parts of the
linear program.

Variables, constraints, and objectives are referenced in the data set by using label text from the corresponding
Jabel suffix value. The default text is based on the name in the model. See the section “Suffixes” on page 132
for more details. Labels are limited by default to 32 characters and are abbreviated to fit. You can change
the maximum length for labels by using the MAXLABLEN= option. When needed, a programmatically
generated number is added to labels to avoid duplication.

The current problem objective is included in the data set. If the OBJECTIVE keyword is used, then the
problem objective becomes the specified objective.

When an integer variable has been assigned a nondefault branching priority or direction, the MPS data set
includes a BRANCH section. See Chapter 16, “The MPS-Format SAS Data Set,” for more details.

The following statements show an example of the SAVE MPS statement. The model is specified using the
OPTMODEL procedure. Then it is saved as the MPS data set MPSData, as shown in Figure 5.27. Next,
PROC OPTLP is used to solve the resulting linear program.

proc optmodel;
var x >= 0, y >= 0;
con C: x >= y;
con bx: x <= 2;
con by: y <= 1;
min obj=0.5*x-y;
save mps MPSData;
quit;

proc optlp data=MPSData pout=PrimalOut dout=DualOut;
run;

86 4 Chapter 5: The OPTMODEL Procedure

Figure 5.27 The MPS Data Set Generated by SAVE MPS Statement

Obs FIELD1 FIELD2 FIELD3 FIELD4 FIELDS FIELD6
1 NAME MPSData
2 ROWS
3 N obj
4 G c
5 L bx
6 L by
7 COLUMNS . .
8 x obj 0.5 c 1
9 x bx 1.0 .
10 v obj -1.0 c -1
11 y by 1.0
12 RHS .
13 .RHS. bx 2.0
14 .RHS. by 1.0
15 ENDATA

SAVE QPS Statement
SAVE QPS SAS-data-set [(OBJECTIVE | OBJ) name] ;

The SAVE QPS statement saves the structure and coefficients for a quadratic programming model into a SAS
data set. This data set can be used as input data for the OPTQP procedure.

NOTE: The OPTMODEL presolver (see the section “Presolver” on page 143) is automatically bypassed so
that the statement saves the original model without eliminating fixed variables, tightening bounds, and so on.

The SAS-data-set argument specifies the output data set name and options. The output data set uses the QPS
format described in Chapter 16. The generated data set contains observations that define different parts of the
quadratic program.

Variables, constraints, and objectives are referenced in the data set by using label text from the corresponding
Jabel suffix value. The default text is based on the name in the model. See the section “Suffixes” on page 132
for more details. Labels are limited by default to 32 characters and are abbreviated to fit. You can change
the maximum length for labels by using the MAXLABLEN= option. When needed, a programmatically
generated number is added to labels to avoid duplication.

The current problem objective is included in the data set. If the OBJECTIVE keyword is used, then the
problem objective becomes the specified objective. The coefficients of the objective function appear in the
QSECTION section of the output data set.

The following statements show an example of the SAVE QPS statement. The model is specified using the
OPTMODEL procedure. Then it is saved as the QPS data set QPSData, as shown in Figure 5.28. Next,
PROC OPTQP is used to solve the resulting quadratic program.

proc optmodel;
var x{1..2} >= 0;
min z = 2%x[1] + 3 * x[2] + x[1]**2 + 10*x[2]**2
+ 2.5%xx[1]*x[2];
con cl: x[1] - x[2] <= 1;

Programming Statements 4 87

con c2: x[1] + 2*x[2] >= 100;
save gps QPSData;
quit;

proc optgp data=QPSData pout=PrimalOut dout=DualOut;
run;

Figure 5.28 QPS Data Set Generated by the SAVE QPS Statement

Obs FIELD1 FIELD2 FIELD3 FIELD4 FIELDS FIELD6

1 NAME QOPSData
2 ROWS
3 N z
4 L cl
5 G c2
6 COLUMNS . .
7 x[1] z 2.0 cl 1
8 x[1] c2 1.0 .
9 x[2] z 3.0 cl -1

10 x[2] c2 2.0

11 RHS .

12 .RHS cl 1.0

13 .RHS c2 100.0

14 QSECTION .

15 x[1] x[1] 2.0

16 x[1] x[2] 2.5

17 x[2] x[2] 20.0

18 ENDATA

SOLVE Statement
SOLVE [WITH solver] [(OBJECTIVE | OBJ) name | [RELAXINT] [/ options] ;

The SOLVE statement invokes a PROC OPTMODEL solver. The current model is first resolved to the
numeric form that is required by the solver. The resolved model and possibly the current values of any
optimization variables are passed to the solver. After the solver finishes executing, the SOLVE statement
prints a short table that shows a summary of results from the solver (see the section “ODS Table and Variable
Names” on page 122) and updates the _OROPTMODEL_ macro variable.

Here are the arguments to the SOLVE statement:

solver
selects the named solver: LP, MILP, NETWORK, NLP, or QP (see corresponding chapters
in this book for details). If you do not specify a WITH clause, PROC OPTMODEL
chooses a solver that depends on the problem type. Table 5.8 lists the default solver for
each problem type.!

The OPTMODEL procedure never uses the network solver as a default. If the QP solver detects nonconvexity (nonconcavity)
for a minimization (maximization) problem, then PROC OPTMODEL calls the NLP solver instead.

88 4 Chapter 5: The OPTMODEL Procedure

Table 5.8 Default Solvers and Algorithms in PROC OPTMODEL

Problem Solver Algorithm

Linear programming LP Dual simplex
Mixed integer linear programming MILP Branch-and-cut
Quadratic programming QP Interior point QP
General nonlinear programming NLP Interior point NLP

name
specifies the objective to use. This sets the current objective for the problem. You can
abbreviate the OBJECTIVE keyword as OBJ. If this argument is not specified, then the
problem objective is unchanged.
RELAXINT requests that any integral variables be relaxed to be continuous. RELAXINT can be used
with linear and nonlinear problems in addition to any solver.
options specifies solver options. You can specify solver options directly only when you use the
WITH clause. A list of the options available with the solver is provided in the individual
chapters that describe each solver. Table 5.9 lists the available option types. You can use
an expression in parentheses in place of a literal option value for numeric and keyword
options. A string expression is matched to a keyword. OPTMODEL parameters that are
changed by the solver must must be specified by a parameter or array option.
Table 5.9 Solver Option Types
Type Syntax Example
Boolean option | NOoption solve with nlp / NOMULTISTART;
Keyword option=name solve with Ip / ALGORITHM=PS;
Numeric option=number solve with nlp / OPTTOL=1E—4;
Parameter option=identifier-expression solve with network / links=(INCLUDE=LINKS) concomp;
Array option=array-name | .suffix] solve with network / links=(WEIGHT=WEIGHT) tsp;

The SOLVE statement uses the value of the predeclared _SOLVER_OPTIONS_ and _solver_OPTIONS_
string parameters to provide default solver options. Any options that are specified by these parameters are
added before options that are specified in the SOLVE statement, with options from _SOLVER_OPTIONS _
appearing first. These options are included even when the SOLVE statement does not contain a WITH clause
to specify a solver; in this case, solver is the name of the default solver as shown in Table 5.8.

Initially the predeclared string parameters _SOLVER_OPTIONS_ and _solver_OPTIONS_ (for each solver)
are empty strings, but you can assign them. You must use keywords or literal values to specify option values
in these strings. Redundant white space is allowed. For example, the following statements set up some simple

defaults:

_SOLVER_OPTIONS_ = "MAXTIME = 600"; /* options for all solvers *x/
_LP_OPTIONS_ = "PRESOLVER=AGGRESSIVE"; /% options for LP solver x*/

Programming Statements 4 89

Optimization techniques that use initial values obtain them from the current values of the optimization
variables unless the NOINITVAR option is specified. When the solver finishes executing, the current value of
each optimization variable is replaced by the optimal value found by the solver. These values can then be
used as the initial values for subsequent solver invocations. The .init suffix location for each variable saves
the initial value used for the most recent SOLVE statement.

NOTE: If a solver fails, any currently pending statement is stopped and processing continues with the next
complete statement read from the input. For example, if a SOLVE statement that is enclosed in a DO group
(see the section “DO Statement” on page 65) fails, then the subsequent statements in the group are not
executed and processing resumes at the point immediately following the DO group. Neither an infeasible
result, an unbounded result, nor reaching an iteration limit is considered to be a solver failure.

NOTE: The information that appears in the macro variable _OROPTMODEL_ (see the section “Macro
Variable _OROPTMODEL_” on page 158) varies by solver.

NOTE: The RELAXINT keyword is applied immediately before the problem is passed to the solver, after
any processing by the PROC OPTMODEL presolver. So the problem presented to the solver might not be
equivalent to the one produced by setting the .RELAX suffix of all variables to a nonzero value. In particular,
the bounds of integer variables are still adjusted to be integral, and PROC OPTMODEL’s presolver might use
integrality to tighten bounds further.

STOP Statement
STOP ;

The STOP statement halts the execution of all statements that contain it, including DO statements and other
control or looping statements. Execution continues with the next top-level source statement. The following
statements demonstrate a simple use of the STOP statement:

proc optmodel;
number i, j;
doi=1..5;
do j =1..4;
if i = 3 and j = 2 then stop;
end;
end;
print i j;

The output is shown in Figure 5.29.

Figure 5.29 STOP Statement: Output

When the counters i and j reach 3 and 2, respectively, the STOP statement terminates both loops. Execution
continues with the PRINT statement.

90 4 Chapter 5: The OPTMODEL Procedure

SUBMIT Statement
SUBMIT arguments [/ options] ;

SAS statements ;
ENDSUBMIT ;

The SUBMIT statement allows SAS code to be executed before PROC OPTMODEL processing continues.
For example, you can use the SUBMIT statement to invoke other SAS procedures to perform analysis or to
display results. The following statements use PROC SORT to order a list of nodes by decreasing priority; the
nodes can be used for further processing:

proc optmodel;
set<str> NODES;
num priority{NODES};

/* set up priority data... */

/* sort nodes by descending priority x/
create data temppri from [id] priority;
submit;
proc sort;
by descending priority;
run;
endsubmit;

/* load nodes by priority =*/
str nodesByPri{i in 1..card(NODES)};
read data temppri into [_n_] nodesByPri=id;

/* use the sorted list... */

The SUBMIT statement must appear as the last or only statement on a line. It is followed by lines of SAS
statements, terminated by the ENDSUBMIT statement on a line of its own. The SAS statements between the
SUBMIT and ENDSUBMIT statements are referred to as a SUBMIT block. The SUBMIT block is sent to
the SAS language processor each time the SUBMIT statement is executed.

The SUBMIT block can include SAS global statements and procedure and invocations. Macros are not
expanded until the SUBMIT block is executed. So you can change macro variables to modify the behavior of
the SUBMIT block each time it is processed.

The arguments list specifies macro variables to initialize in the SUBMIT block environment before the
SUBMIT block is executed. List items are separated by spaces. Each of the arguments takes one of the
following forms:

name
copies the value of the PROC OPTMODEL parameter name to the macro variable that
has the same name.

name = identifier-expression
copies the value of the PROC OPTMODEL parameter specified by identifier-expression
to the macro variable name.

name = number | “string” | ‘string’
copies the value of the specified number or string constant to the macro variable name.

Programming Statements 4 91

name = (expression)
copies the result of evaluating expression to the macro variable name.

The following statements use a SUBMIT argument to modify the output each time the SUBMIT block is
invoked:

for {i in 1..5}
submit a=i;
$put Value of a is &a..;
endsubmit;

The options in the SUBMIT statement are used to retrieve status information after a SUBMIT block is
executed. Each item in the space-delimited options list has one of the following forms:

OK = identifier-expression
specifies a PROC OPTMODEL numeric parameter location, identifier-expression, that
is updated to indicate the success of the SUBMIT block execution. The location is set
to 1 if execution is successful or 0 if errors are detected. PROC OPTMODEL continues
execution when the SUBMIT block encounters errors only if the OK= option is specified.

OUT [= | output-argument
specifies a single output-argument for retrieving macro variable values from the SUBMIT
block environment after each execution of the block.

OUT [= | (output-argument)
specifies a list of space-delimited output-arguments for retrieving macro variable values
from the SUBMIT block environment after the block is executed.

Each output-argument item specifies a macro variable to copy out of the SUBMIT block environment after
the block is executed. Each item takes one of the following two forms:

identifier-expression
copies the macro variable specified by the name portion of the identifier-expression into
the PROC OPTMODEL parameter location specified by identifier-expression.

identifier-expression = name
copies the macro variable specified by name into the PROC OPTMODEL parameter
location specified by identifier-expression.

The following statements show how to use the options in the SUBMIT statement to retrieve the result of a
SUBMIT block execution:

proc optmodel;
num success, SYySCC;
submit / OK = success out syscc;
data example;
set notfound;
J = ixi;
run;
endsubmit;
print success syscc;

92 4 Chapter 5: The OPTMODEL Procedure

The DATA step fails, so the success parameter is set to 0 and syscc is set to the error code in the &SYSCC
macro variable. The output is shown in Figure 5.30.

Figure 5.30 SUBMIT Statement Error Handling

success syscc

0 1012

NOTE: The SUBMIT block runs in an environment that is nested in the environment that the OPTMODEL
procedure is running in. Resources from the PROC OPTMODEL environment are initially visible in the
nested environment. However, the nested environment can have its own local values for options, LIBNAME
librefs, FILENAME filerefs, titles, footnotes, and macros. For example, the nested environment has its own
global macro scope, which can hide macros visible in the outer environment. The oufput-arguments of the
SUBMIT statement options can retrieve the values of macros defined in this scope.

NOTE: A SUBMIT block can reset the ODS environment of the OPTMODEL procedure. For example, the
ODS SELECT and EXCLUDE lists could be cleared after the SUBMIT block executes.

NOTE: A SUBMIT statement can appear only in open code. An error message is displayed if the SUBMIT
statement is read from a macro. You can avoid this limitation by placing the SUBMIT statement, SUBMIT
block, and ENDSUBMIT in a separate file and by using the %INCLUDE statement to include the file in the
macro.

UNFIX Statement
UNFIX identifier-list [= (expression) | ;

The UNFIX statement reverses the effect of FIX statements. The solver can vary the specified variables,
variable arrays, or variable array locations specified by identifier-list. The identifier-list consists of one or
more variable names separated by spaces.

Each variable name in the identifier-list is an identifier expression (see the section “Identifier Expressions”
on page 100). The UNFIX statement affects an entire variable array if the identifier expression omits the
index from an array name. The expression specifies a new initial value that is stored in each element of the
identifier-list.

The following example demonstrates the UNFIX command:

proc optmodel;
var x{1..3};

fix x; /* fixes entire array to 0 */
unfix x[1]; /* x[1] can now be varied again */
unfix x[2] = 2; /* x[2] is given an initial value 2 */

/* and can be varied now x*/
unfix x; /% all x indices can now be varied */

After the following statements are executed, the variables x[1] and x[2] are not fixed. They each hold the
value 4. The variable x[3] is fixed at a value of 2.

Details: OPTMODEL Procedure 4 93

proc optmodel;
var x{1..3} init 2;
num a = 1;
fix x;
unfix x[1] x[2]=(a+3);

USE PROBLEM Statement
USE PROBLEM identifier-expression ;

The USE PROBLEM programming statement makes the problem specified by the identifier-expression be the
current problem. If the problem has not been previously used, the problem is created using the PROBLEM
declaration corresponding to the name. The problem must have been previously declared.

Details: OPTMODEL Procedure

Named Parameters

In the example described in the section “An Unconstrained Optimization Example” on page 30, all the
numeric constants that describe the behavior of the objective function were specified directly in the objective
expression. This is a valid way to formulate the objective expression. However, in many cases it is
inconvenient to specify the numeric constants directly. Direct specification of numeric constants can also hide
the structure of the problem that is being solved. The objective expression text would need to be modified
when the numeric values in the problem change. This can be very inconvenient with large models.

In PROC OPTMODEL, you can create named numeric values that behave as constants in expressions. These
named values are called parameters. You can write an expression by using mnemonic parameter names in
place of numeric literals. This produces a clearer formulation of the optimization problem. You can easily
modify the values of parameters, define them in terms of other parameters, or read them from a SAS data set.

The model from this same example can be reformulated in a more general polynomial form, as follows:

data coeff;
input ¢ xx ¢ x c y c_xy c_yy;
datalines;
1 -1 -2-11
;
proc optmodel;
var x, y;
number c_xx, c_x, C_y, C_Xy, C_YY;
read data coeff into c_xx c_x c_y c_xy c_yy;
min z=c_xX*X**2 + C_X*X + C_y*y + C_Xy*xX*xy + C_yy*y*x2;
solve;

These statements read the coefficients from a data set, COEFF. The NUMBER statement declares the
parameters. The READ DATA statement reads the parameters from the data set. You can apply this model
easily to coefficients that you have generated by various means.

94 4 Chapter 5: The OPTMODEL Procedure

Indexing

Many models have large numbers of variables or parameters that can be categorized into families of similar
purpose or behavior. Such families of items can be compactly represented in PROC OPTMODEL by using
indexing. You can use indexing to assign each item in such families to a separate value location.

PROC OPTMODEL indexing is similar to array indexing in the DATA step, but it is more flexible. Index
values can be numbers or strings, and are not required to fit into some rigid sequence. PROC OPTMODEL
indexing is based on index sets, described further in the section “Index Sets” on page 102. For example, the
following statement declares an indexed parameter:

number p{l..3};

The construct that follows the parameter name p, “{1..3},” is a simple index set that uses a range expression
(see “Range Expression” on page 107). The index set contains the numeric members 1, 2, and 3. The
parameter has distinct value locations for each of the index set members. The first such location is referenced
as p[1], the second as p[2], and the third as p[3].

The following statements show an example of indexing:

proc optmodel;
number p{l..3};
pl11=5;
pl2]=7;
pl31=9;
put p[*]=;

The preceding statements produce a line such as the one shown in Figure 5.31 in the log.

Figure 5.31 Indexed Parameter Output

pl11=5 pl[2]1=7 p[3]=9

Index sets can also specify local dummy parameters. A dummy parameter can be used as an operand in the
expressions that are controlled by the index set. For example, the assignment statements in the preceding
statements could be replaced by an initialization in the parameter declaration, as follows:

number p{i in 1..3} init 3 + 2%i;

The initialization value of the parameter location p[1] is evaluated with the value of the local dummy parameter
i equal to 1. So the initialization expression 3 + 2*i evaluates to 5. Similarly for location p[2], the value of i is
2 and the initialization expression evaluates to 7.

The OPTMODEL modeling language supports aggregation operators that combine values of an expression
where a local dummy parameter (or parameters) ranges over the members of a set. For example, the SUM
aggregation operator combines expression values by adding them together. The following statements output
21, since p[1] + p[2] + p[3]=5+7 +9=21:

Types 4 95

proc optmodel;
number p{i in 1..3} init 3 + 2*i;
put (sum{i in 1..3} p[i]);

Aggregation operators like SUM are especially useful in objective expressions because they can combine a
large number of similar expressions into a compact representation. As an example, the following statements
define a trivial least squares problem:

proc optmodel;
number n init 100000;
var x{1..n};
min z = sum{i in 1..n}(x[i] - log(i)) **2;
solve;

The objective function in this case is

n
z = Z (x; —logi)?

i=1

Effectively, the objective expression expands to the following large expression:

min z = (x[1] - log(l)) 2

+ (x[2] - log(2))#*2
+ (x[99999] - 10g(99999)) x*2
+ (x[100000] - 1og(100000)) *x*2;

Even though the problem has 100,000 variables, the aggregation operator SUM enables a compact objective
expression.

NOTE: PROC OPTMODEL classifies as mathematically impure any function that returns a different value
each time it is called. The RAND function, for example, falls into this category. PROC OPTMODEL
disallows impure functions inside array index sets, objectives, and constraint expressions. The values of
expressions that are specified in the declaration of a parameter are resolved in a nondeterministic order during
threaded problem generation. Therefore, the values are also nondeterministic when these expressions use
impure functions.

Types

In PROC OPTMODEL, parameters and expressions can have numeric or character values. These correspond
to the elementary types named NUMBER and STRING, respectively. The NUMBER type is the same as
the SAS data set numeric type. The NUMBER type includes support for missing values. The STRING type
corresponds to the SAS character type, except that strings can have lengths up to a maximum of 65,534
characters (versus 32,767 for SAS character-type variables). The length for a STRING can change as needed.
The NUMBER and STRING types together are called the scalar types. You can abbreviate the type names as
NUM and STR, respectively.

PROC OPTMODEL also supports set types for parameters and expressions. Sets represent collections of
values of a member type, which can be a NUMBER, a STRING, or a vector of scalars (the latter is called a

96 4 Chapter 5: The OPTMODEL Procedure

tuple and described in the following paragraphs). Members of a set all have the same member type. Members
that have the same value are stored only once. For example, PROC OPTMODEL stores the set 2, 2, 2 as the
set 2.

Specify a set of numbers with SET<NUMBER>. Similarly, specify a set of strings as SET<STRING>.

A set can also contain a collection of tuples, all of the same fixed length. A tuple is an ordered collection that
contains a fixed number of elements. Each element in a tuple contains a scalar value. In PROC OPTMODEL,
tuples of length 1 are equivalent to scalars. Two tuples have equal values if the elements at corresponding
positions in each tuple have the same value. Within a set of tuples, the element type at a particular position
in each tuple is the same for all set members. The element types are part of the set type. For example, the
following statement declares parts as a set of tuples that have a string in the first element position and a
number in the second element position and then initializes its elements to be <R 1>, <R 2>, <C 1>, and <C
2>.

set<string, number> parts = /<R 1> <R 2> <C 1> <C 2>/;

To create a compact model, use sets to take advantage of the structure of the problem being modeled. For
example, a model might contain various values that specify attributes for each member of a group of suppliers.
You could create a set that contains members that represent each supplier. You can then model the attribute
values by using arrays that are indexed by members of the set.

The section “Parameters” on page 96 has more details and examples.

Names

Names are used in the OPTMODEL modeling language to refer to various entities such as parameters or
variables. Names must follow the usual rules for SAS names. Names can be up to 32 characters long and are
not case sensitive. They must be declared before they are used.

Avoid declarations with names that begin with an underscore (_). These names can have special uses in
PROC OPTMODEL.

Parameters

In the OPTMODEL modeling language, parameters are named locations that hold constant values. Parameter
declarations specify the parameter type followed by a list of parameter names to declare. For example, the
following statement declares numeric parameters named a and b:

number a, b;

Similarly, the following statements declare a set s of strings, a set n of numbers, and a set sn of tuples:

set<string> s;
set<number> n;
set<string, number> sn;

Parameters 4 97

You can assign values to parameters in various ways. A parameter can be assigned a value with an assignment
statement. For example, the following statements assign values to the parameter s, n, and sn in the preceding
declaration:

%}
[}

{lal, lbl, lcl};
= {1, 2, 3};
sn = {<'a',1l>, <'b',2>, <'c',3>};

=}
|

Parameter values can also be assigned using a READ DATA statement (see the section “READ DATA
Statement” on page 80).

A parameter declaration can provide an explicit value. To specify the value, follow the parameter name with
an equal sign (=) and an expression. The value expression can be written in terms of other parameters. The
declared parameter takes on a new value each time a parameter that is used in the expression changes. This
automatic value update is shown in the following example:

proc optmodel;
number pi=4xatan(l);

number r;

number circum=2*pix*r;

r=1;

put circum; /* prints 6.2831853072 */
r=2;

put circum; /* prints 12.566370614 x/

The automatic update of parameter values makes it easy to perform “what if” analysis since, after the solver
finds a solution, you can change parameters and reinvoke the solver. You can easily examine the effects of
the changes on the optimal values.

If you declare a set parameter that has only the SET type specifier, then the element type is determined from
the initialization expression. If the initialization expression is omitted or if the expression is an empty set,
then the set type defaults to SET<NUMBER>. For example, the following statement implicitly declares s1
as a set of numbers:

set sl;

The following statement declares s2 as a set of strings:
set s2 = {'A'};

You can declare an array parameter by following the parameter name with an index set specification (see the
section “Index Sets” on page 102). For example, declare an array of 10 numbers as follows:

number c{1l..10};

Individual locations of a parameter array can be referred to with an indexing expression. For example, you
can refer to the third location of parameter c as c[3]. Array index sets cannot be specified using a function
such as RAND that returns a different value each time it is called.

98 4 Chapter 5: The OPTMODEL Procedure

Parameter names must be declared before they are used. Nonarray names become available at the end of the
parameter declaration item. Array names become available after the index set specification. The latter case
permits some forms of recursion in the optional initialization expression that can be supplied for a parameter.

You do not need to assign values to parameters before they are referenced. Most information in PROC
OPTMODEL is stored symbolically and resolved when necessary. Values are resolved in certain statements.
For example, PROC OPTMODEL resolves a parameter used in the objective during the execution of a
SOLVE statement. If no value is available during resolution, then an error is diagnosed.

Expressions

Expressions are grouped into three categories based on the types of values they can produce: logical, set, and
scalar (that is, numeric or character).

Logical expressions test for a Boolean (true or false) condition. As in the DATA step, logical operators
produce a value equal to either O or 1. A value of 0 represents a false condition, while a value of 1 represents
a true condition.

Logical expression operators are not allowed in certain contexts due to syntactic considerations. For example,
in the VAR statement a logical operator might indicate the start of an option. Enclose a logical expression
in parentheses to use it in such contexts. The difference is illustrated by the output (Figure 5.32) of the
following statements, where two variables, x and y, are declared with initial values. The PRINT statement
and the EXPAND statement are used to check the initial values and the variable bounds, respectively.

proc optmodel;
var x init 0.5 >= 0 <= 1;
var y init (0.5 >= 0) <= 1;
print x y;
expand;

Figure 5.32 Logical Expression in the VAR Statement

Var x >= 0 <=1
Var y <=1

Contexts that expect a logical expression also accept numeric expressions. In such cases zero or missing
values are interpreted as false, and all nonzero nonmissing numeric values are interpreted as true.

Set expressions return a set value. PROC OPTMODEL supports a number of operators that create and
manipulate sets. See the section “OPTMODEL Expression Extensions” on page 103 for a description of the
various set expressions. Index-set syntax is described in the section “Index Sets” on page 102.

Scalar expressions are similar to the expressions in the DATA step except for PROC OPTMODEL extensions.
PROC OPTMODEL provides an IF expression (described in the section “IF-THEN/ELSE Expression” on

Expressions 4 99

page 104). String lengths are assigned dynamically, so there is generally no padding or truncation of string
values.

Table 5.10 shows the expression operators from lower to higher precedence (a higher precedence is given a
larger number). Operators that have higher precedence are applied in compound expressions before operators
that have lower precedence. The table also gives the order of evaluation that is applied when multiple
operators of the same precedence are used together. Operators available in both PROC OPTMODEL and the
DATA step have compatible precedences, except that in PROC OPTMODEL the NOT operator has a lower
precedence than the relational operators. This means that, for example, NOT 1 < 2 isequal to NOT (1 < 2)
(which is 0), rather than (NOT 1) < 2 (whichis 1).

Table 5.10 Expression Operator Table

Precedence Associativity Operator Alternates
Logic Expression Operators
1 Left toright ©orR | !
2 Unary OR({index-set}
AND {index-set}
3 Lefttoright AND &
4 Unary NOT ~" =
5 Lefttoright < LT
GT
<= LE
>= GE
= EOQO
~= NE "= -—=
6 Left toright 1IN
NOT IN
7 Left toright WITHIN

NOT WITHIN

Set Expression Operators

11 IF 1 THEN sl ELSE s2
12 Left toright uNION
DIFF
SYMDIFF
13 Unary UNION {index-set}
14 Left toright INTER
15 Unary INTER{index-set}
16 Left toright Ccross
17 Unary SETOF {index-set}
Right to left .. TO
e BY TO e BY

Scalar Expression Operators
21 IF 1 THEN e
IF 1 THEN el ELSE e2

22 Left to right I I
23 Lefttoright + -
24 Unary SUM({index-set}

PROD {index-set}

100 % Chapter 5: The OPTMODEL Procedure

Table 5.10 (continued)

Precedence Associativity Operator Alternates
MIN {index-set}
MAX { index-set }

25 Lefttoright » /
26 Unary + -
Rightto left ><
<>

* *

Primary expressions are the individual operands that are combined using the expression operators. Simple
primary expressions can represent constants or named parameter and variable values. More complex primary
expressions can be used to call functions or construct sets.

Table 5.11 Primary Expression Table

Expression Description

identifier-expression Parameter/variable reference; see the section “Identi-
fier Expressions” on page 100

name (arg-list) Function call; arg-list is O or more expressions sepa-
rated by commas

n Numeric constant

.or.c Missing value constant

“string” or ‘string’ String constant

{ member-list } Set constructor; member-list is 0 or more scalar ex-
pressions or tuple expressions separated by commas

{ index-set } Index set expression; returns the set of all index set
members

! members | Set literal expression; compactly specifies a simple
set value

(expression) Expression enclosed in parentheses

< expr-list > Tuple expression; used with set operations; contains

one or more scalar expressions separated by commas

Identifier Expressions

Use an identifier-expression to refer to a variable, objective, constraint, parameter or problem location in
expressions or initializations. This is the syntax for identifier-expressions:

name [[expression-1 |, ...expression-n]]1] [. suffix |

To refer to a location in an array, follow the array name with a list of scalar expressions in square brackets ([
). The expression values are compared to the index set that was used to declare name. If there is more than
one expression, then the values are formed into a tuple. The expression values for a valid array location must

Function Expressions 4 101

match a member of the array’s index set. For example, the following statements define a parameter array A
that has two valid indices that match the tuples <1,2> and <3,4>:

proc optmodel;
set<number, number> ISET = {<1,2>, <3,4>};
number A{ISET};
a[l,2] = 0; /% OK */
a[3,2] = 0; /% invalid index =*/

The first assignment is valid with this definition of the index set, but the second fails because <3,2> is not a
member of the set parameter ISET.

Specify a suffix to refer to auxiliary locations for variables or objectives. See the section “Suffixes” on
page 132 for more information.

Function Expressions

Most functions that can be invoked from the DATA step or the %SYSFUNC macro can be used in PROC
OPTMODEL expressions. Certain functions are specific to the DATA step and cannot be used in PROC
OPTMODEL. Functions specific to the DATA step include these:

¢ functions in the LAG, DIF, and DIM families
* functions that access the DATA step program data vector

* functions that access symbol attributes

The CALL statement can invoke SAS library subroutines. These subroutines can read and update the values
of the parameters and variables that are used as arguments. See the section “CALL Statement” on page 53
for an example.

OPTMODEL arrays can be passed to SAS library functions and subroutines using the argument syntax:

OF array-name[*] [. suffix |

The array-name is the name of an array symbol. The optional suffix allows auxiliary values to be referenced,
as described in section “Suffixes” on page 132.

The OF argument form is resolved into a sequence of arguments, one for each index in the array. The array
elements appear in order of the array’s index set. The OF array form is a compact alternative to listing the
array elements explicitly.

As an example, the following statements use the CALL SORTN function to sort the elements of a numeric
array:

proc optmodel;
number original{i in 1..8} = sin(i);
number sorted{i in 1..8} init original[i];
call sortn(of sorted[=*]);
print original sorted;

The output is shown in Figure 5.33. Eight arguments are passed to the SORTN routine. The original column
shows the original order, and the sorted column has the sorted order.

102 4 Chapter 5: The OPTMODEL Procedure

Figure 5.33 Sorting Using an OF Array Argument

[1] original sorted
1 0.84147 -0.95892
2 0.90930 -0.75680
3 0.14112 -0.27942
4 -0.75680 0.14112
5 -0.95892 0.65699
6 -0.27942 0.84147
7 0.65699 0.90930
8 0.98936 0.98936

NOTE: OF array arguments cannot be used with function calls in declarations when any of the function
arguments depend on variables, objectives, or implicit variables.

Index Sets

An index set represents a set of combinations of members from the component set expressions. The index set
notation is used in PROC OPTMODEL to describe collections of valid array indices and to specify sets of
values with which to perform an operation. Index sets can declare local dummy parameters and can further
restrict the set of combinations by a selection expression.

In an index-set specification, the index set consists of one or more index-set-items that are separated by
commas. Each index-set-item can include local dummy parameter declarations. An optional selection
expression follows the list of index-set-items. The following syntax, which describes an index set, usually
appears in braces ({ }):

index-set-item [, ... index-set-item | [: logic-expression |

index-set-item has these forms:

set-expression
name IN set-expression
< name-1 [, ...name-n| > IN set-expression

Names that precede the IN keyword in index-set-items declare local dummy parameter names. Dummy
parameters correspond to the dummy index variables in mathematical expressions. For example, the following
statements output the number 385:

proc optmodel;
put (sum{i in 1..10} ixx2);

The preceding statements evaluate this summation:

10
Zi2:385

i=1

OPTMODEL Expression Extensions 4 103

In both the statements and the summation, the index name is 7.

The last form of index-set-item in the list can be modified to use the SLICE expression implicitly. See the
section “More on Index Sets” on page 156 for details.

Array index sets cannot be defined using functions that return different values each time the functions are
called. See the section “Indexing” on page 94 for details.

OPTMODEL Expression Extensions

PROC OPTMODEL defines several new types of expressions for the manipulation of sets. Aggregation
operators combine values of an expression that is evaluated over the members of an index set. Other operators
create new sets by combining existing sets, or they test relationships between sets. PROC OPTMODEL
also supports an IF expression operator that can conditionally evaluate expressions. These and other such
expressions are described in this section.

AND Aggregation Expression
AND { index-set } logic-expression

The AND aggregation operator evaluates the logical expression logic-expression jointly for each member of
the index set index-set. The index set enumeration finishes early if the logic-expression evaluation produces
a false value (zero or missing). The expression returns 0 if a false value is found or returns 1 otherwise. The
following statements demonstrate both a true and a false result:

proc optmodel;
put (and{i in 1..5} i < 10); /* returns 1 x/
put (and{i in 1..5} i NE 3); /% returns 0 x/

CARD Function
CARD (set-expression)

The CARD function returns the number of members of its set operand. For example, the following statements
produce the output 3 since the set has 3 members:

proc optmodel;
put (card(1l..3));

CROSS Expression
set-expression-1 CROSS set-expression-2

The CROSS expression returns the crossproduct of its set operands. The result is the set of tuples formed by
concatenating the tuple value of each member of the left operand with the tuple value of each member of the
right operand. Scalar set members are treated as tuples of length 1. The following statements demonstrate the
CROSS operator:

proc optmodel;
set s1 = 1..2;
set<string> s2 = {'a', 'b'};

104 4 Chapter 5: The OPTMODEL Procedure

set<number, string> s3=sl cross s2;

put 's3 is ' s3;

set<number, string, number> s4 = s3 cross 4..5;
put 's4 is ' s4;

This code produces the output in Figure 5.34.

Figure 5.34 CROSS Expression Output

s3 is {<1,'a'>,<1,'b'>,<2,'a'>,<2, 'b'>}
s4 is {<1,'a',4>,<1,'a',5>,<1,'b',4>,<1,'b',5>,<2,"'a',4>,<2,"'a',5>,<2,'b"',4>,<2,
'b',5>}

DIFF Expression
set-expression-1 DIFF set-expression-2

The DIFF operator returns a set that contains the set difference of the left and right operands. The result set
contains values that are members of the left operand but not members of the right operand. The operands
must have compatible set types. The following statements evaluate and print a set difference:

proc optmodel;
put ({1,3} diff {2,3}); /* outputs {1} =/

IF-THEN/ELSE Expression
IF logic-expression THEN expression-2 | ELSE expression-3 |

The IF-THEN/ELSE expression evaluates the logical expression logic-expression and returns the result of
evaluating the second or third operand expression according to the logical test result. If the logic-expression is
true (nonzero and nonmissing), then the result of evaluating expression-2 is returned. If the logic-expression
is false (zero or missing), then the result of evaluating expression-3 is returned. The other subexpression that
is not selected is not evaluated.

An ELSE clause is matched during parsing with the nearest IF-THEN clause that does not have a matching
ELSE. The ELSE clause can be omitted for numeric expressions; the resulting IF-THEN is handled as if a
default ELSE 0 clause were supplied.

Use the IF-THEN/ELSE expression to handle special cases in models. For example, an inventory model
based on discrete time periods might require special handling for the first or last period. In the following
example the initial inventory for the first period is assumed to be fixed:

proc optmodel;
number T;
var inv{l..T}, order{l..T};
number sell{l..T};
number inv0;

/* balance inventory flow */
con iflow{i in 1..T}:

OPTMODEL Expression Extensions 4 105

inv[i] = order[i] - sell[i] +
if i=1 then inv0 else inv[i-1];

The IF-THEN/ELSE expression in the example models the initial inventory for a time period i. Usually the
inventory value is the inventory at the end of the previous period, but for the first time period the inventory
value is given by the invO parameter. The iflow constraints are linear because the IF-THEN/ELSE test
subexpression does not depend on variables and the other subexpressions are linear.

IF-THEN/ELSE can be used as either a set expression or a scalar expression. The type of expression depends
on the subexpression between the THEN and ELSE keywords. The type used affects the parsing of the
subexpression that follows the ELSE keyword because the set form has a lower operator precedence. For
example, the following two expressions are equivalent because the numeric IF-THEN/ELSE has a higher
precedence than the range operator (..):

IF logic THEN 1 ELSE 2 .. 3

(IF logic THEN 1 ELSE 2) .. 3

But the set form of IF-THEN/ELSE has lower precedence than the range expression operator. So the
following two expressions are equivalent:
IF logic THEN 1 .. 2 ELSE 3 .. 4

IF logic THEN (1 .. 2) ELSE (3 .. 4)

The IF-THEN and IF-THEN/ELSE operators always have higher precedence than the logic operators. So, for
example, the following two expressions are equivalent:

IF logic THEN numericl < numeric2

(IF logic THEN numericl) < numeric2

It is best to use parentheses when in doubt about precedence.

IN Expression
expression IN set-expression
expression NOT IN set-expression

The IN expression returns 1 if the value of the left operand is a member of the right operand set. Otherwise,
the IN expression returns 0. The NOT IN operator logically negates the returned value. Unlike the DATA step,
the right operand is an arbitrary set expression. The left operand can be a tuple expression. The following
example demonstrates the IN and NOT IN operators:

106 4 Chapter 5: The OPTMODEL Procedure

proc optmodel;
set s = 1..10;

put (5 in s); /* outputs 1 x/
put (-1 not in s); /* outputs 1 x/
set<num, str> t = {<1,'a'>, <2,'b'>, <2,'c'>};

put (<2, 'b'> in t); /* outputs 1 x/
put (<1, 'b'> in t); /* outputs 0 */
Index Set Expression
{ index-set }

The index set expression returns the set of members of an index set. This expression is distinguished from a
set constructor (see the section “Set Constructor Expression” on page 108) because it contains a list of set
expressions.

The following statements use an index set with a selection expression that excludes the value 3:

proc optmodel;
put ({i in 1..5 : i NE 3}); /* outputs {1,2,4,5} */
INTER Expression
set-expression-1 INTER set-expression-2

The INTER operator returns a set that contains the intersection of the left and right operands. This is the set
that contains values that are members of both operand sets. The operands must have compatible set types.

The following statements evaluate and print a set intersection:

proc optmodel;
put ({1,3} inter {2,3}); /* outputs {3} =*/
INTER Aggregation Expression
INTER { index-set } set-expression

The INTER aggregation operator evaluates the set-expression for each member of the index set index-set.
The result is the set that contains the intersection of the set of values that were returned by the set-expression
for each member of the index set. An empty index set causes an expression evaluation error.

The following statements use the INTER aggregation operator to compute the value of {1,2,3,4} N {2,3,4,5}
N {3.4,5,6}:

proc optmodel;
put (inter{i in 1..3} i..i+3); /* outputs {3,4} x/
MAX Aggregation Expression
MAX { index-set } expression

The MAX aggregation operator evaluates the numeric expression expression for each member of the index
set index-set. The result is the maximum of the values that are returned by the expression. Missing values
are handled with the SAS numeric sort order; a missing value is treated as smaller than any nonmissing

OPTMODEL Expression Extensions 4 107

value. If the index set is empty, then the result is the negative number that has the largest absolute value
representable on the machine.

The following example produces the output 0. 5:

proc optmodel;
put (max{i in 2..5} 1/i);

MIN Aggregation Expression
MIN { index-set } expression

The MIN aggregation operator evaluates the numeric expression expression for each member of the index set
index-set. The result is the minimum of the values that are returned by the expression. Missing values are
handled with the SAS numeric sort order; a missing value is treated as smaller than any nonmissing value. If
the index set is empty, then the result is the largest positive number representable on the machine.

The following example produces the output 0. 2:

proc optmodel;
put (min{i in 2..5} 1/i);

OR Aggregation Expression
OR { index-set } logic-expression

The OR aggregation operator evaluates the logical expression logic-expression for each member of the index
set index-set. The index set enumeration finishes early if the logic-expression evaluation produces a true
value (nonzero and nonmissing). The result is 1 if a true value is found, or O otherwise. The following
statements demonstrate both a true and a false result:

proc optmodel;
put (or{i in 1..5} i = 2); /% returns 1 x/
put (or{i in 1..5} i 7); /* returns 0 %/

PROD Aggregation Expression
PROD { index-set } expression

The PROD aggregation operator evaluates the numeric expression expression for each member of the index
set index-set. The result is the product of the values that are returned by the expression. This operator is
analogous to the [| operator used in mathematical notation. If the index set is empty, then the result is 1.

The following example uses the PROD operator to evaluate a factorial:

proc optmodel;
number n = 5;
put (prod{i in 1..n} i); /* outputs 120 =*/

Range Expression
expression-1 .. expression-n [BY expression |

The range expression returns the set of numbers from the specified arithmetic progression. The sequence
proceeds from the left operand value up to the right operand limit. The increment between numbers is 1

108 4 Chapter 5: The OPTMODEL Procedure

unless a different value is specified with a BY clause. If the increment is negative, then the progression is
from the left operand down to the right operand limit. The result can be an empty set.

For compatibility with the DATA step iterative DO loop construct, the keyword TO can substitute for the
range (..) operator.

The limit value is not included in the resulting set unless it belongs in the arithmetic progression. For example,
the following range expression does not include 30:

proc optmodel;
put (10..30 by 7); /* outputs {10,17,24} */

The actual numbers that the range expression “f..| by i’ produces are in the arithmetic sequence

ff4i f+2i,....f +ni

where
n= \\# + «/EJ

and € represents the relative machine precision. The limit is adjusted to avoid arithmetic roundoff errors.

PROC OPTMODEL represents the set specified by a range expression compactly when the value is stored in
a parameter location, used as a set operand of an IN or NOT IN expression, used by an iterative DO loop, or
used in an index set. For example, the following expression is evaluated efficiently:

999998.5 IN 1..1000000000

Set Constructor Expression
{ [expression-1[, ...expression-n]]}

The set constructor expression returns the set of the expressions in the member list. Duplicated values are
added to the set only once. A warning message is produced when duplicates are detected. The constructor
expression consists of zero or more subexpressions of the same scalar type or of tuple expressions that match
in length and in element types.

The following statements output a three-member set and warn about the duplicated value 2:

proc optmodel;
put ({1,2,3,2}); /* outputs {1,2,3} */

The following example produces a three-member set of tuples, using PROC OPTMODEL parameters and
variables. The output is displayed in Figure 5.35.

proc optmodel;
number m = 3, n = 4;
var x{1..4} init 1;
string y = 'c';
put ({<'a', x[3]>, <'b', m>, <y, m/n>});

OPTMODEL Expression Extensions 4 109

Figure 5.35 Set Constructor Expression Output

{<'a',1>,<'b',3>,<'c',0.75>}

Set Literal Expression
[members /

The set literal expression provides compact specification of simple set values. It is equivalent in function to
the set constructor expression but minimizes typing for sets that contain numeric and string constant values.
The set members are specified by members, which are literal values. As with the set constructor expression,
each member must have the same type.

The following statement specifies a simple numeric set:

/1 2.5 4/

The set contains the members 1, 2.5, and 4. A string set could be specified as follows:

/Miami 'San Francisco' Seattle 'Washington, D.C.'/

This set contains the strings 'Miami’, ' San Francisco’, ’Seattle’, and 'Washington, D.C.’. You
can specify string values in set literals without quotation marks when the text follows the rules for a SAS
name. Strings that begin with a digit or contain blanks or other special characters must be specified with
quotation marks.

Specify tuple members of a set by enclosing the tuple elements within angle brackets (<elements>). The
tuple elements can be specified with numeric and string literals. The following example includes the tuple
elements <’ New York’, 4.5>and <’Chicago’, -5.7>:

/<'New York' 4.5> <Chicago -5.7>/

SETOF Aggregation Expression
SETOF { index-set } expression

The SETOF aggregation operator evaluates the expression expression for each member of the index set
index-set. The result is the set that is formed by collecting the values returned by the operand expression.
The operand can be a tuple expression. For example, the following statements produce a set of tuples of
numbers with their squared and cubed values:

proc optmodel;
put (setof{i in 1..3}<i, ixi, ixx3>);

Figure 5.36 shows the displayed output.

110 4 Chapter 5: The OPTMODEL Procedure

Figure 5.36 SETOF Aggregation Expression Output

{<1,1,1>,<2,4,8>,<3,9,27>}

SLICE Expression
SLICE (< element-1, ... element-n > , set-expression)

The SLICE expression produces a new set by selecting members in the operand set that match a pattern tuple.
The pattern tuple is specified by the element list in angle brackets. Each element in the pattern tuple must
specify a numeric or string expression. The expressions are used to match the values of the corresponding
elements in the operand set member tuples. You can also specify an element by using an asterisk (¥*). The
sequence of element values that correspond to asterisk positions in each matching tuple is combined into a
tuple of the result set. At least one asterisk element must be specified.

The following statements demonstrate the SLICE expression:

proc optmodel;
put (slice(<1l,x*>, {<1,3>, <1,0>, <3,1>}));
put (slice(<x,2,*>, {<1,2,3>, <2,4,3>, <2,2,5>}));

These statements produce the output in Figure 5.37.

Figure 5.37 SLICE Expression Output

{3,0}
{<1,3>,<2,5>}

For the first PUT statement, <1,*> matches set members <1,3> and <1,0> but not <3,1>. The second element
of each matching set tuple, corresponding to the asterisk element, becomes the value of the resulting set
member. In the second PUT statement, the values of the first and third elements of the operand set member
tuple are combined into a two-position tuple in the result set.

The following statements use the SLICE expression to help compute the transitive closure of a set of tuples
representing a relation by using Warshall’s algorithm. In these statements the set parameter dep represents a
direct dependency relation.

proc optmodel;
set<str,str> dep = {<'B','A'>, <'C','B'>, <'D','C'>};
set<str,str> cl;
set<str> c¢n;
cl = dep;
cn = (setof{<i,j> in dep} i) inter (setof{<i, j> in dep} jJj);
for {node in cn}
cl = cl union (slice(<*,node>,cl) cross slice(<node, *>,cl));
put cl;

The local dummy parameter node in the FOR statement iterates over the set cn of possible intermediate
nodes that can connect relations transitively. At the end of each FOR iteration, the set parameter cl contains
all tuples from the original set in addition to all transitive tuples found in the current or previous iterations.

OPTMODEL Expression Extensions 4 111

The output in Figure 5.38 includes the indirect and direct transitive dependencies from the set dep.

Figure 5.38 Warshall's Algorithm Output

(<le, 'A'>,<’C', 'B'>,<’D', 'C'>,<’C', 'A'>,<'D', 'B'>,<'D', ’A'>}

A special form of index-set-item uses the SLICE expression implicitly. See the section “More on Index Sets”
on page 156 for details.
SUM Aggregation Expression
SUM { index-set } expression

The SUM aggregation operator evaluates the numeric expression expression for each member in the index
set index-set. The result is the sum of the values that are returned by the expression. If the index set is empty,
then the result is 0. This operator is analogous to the) operator that is used in mathematical notation. The
following statements demonstrate the use of the SUM aggregation operator:

proc optmodel;
put (sum {i in 1..10} i); /* outputs 55 */

SYMDIFF Expression
set-expression-1 SYMDIFF set-expression-2

The SYMDIFF expression returns the symmetric set difference of the left and right operands. The result set
contains values that are members of either the left or right operand but are not members of both operands.
The operands must have compatible set types.

The following example demonstrates a symmetric difference:

proc optmodel;
put ({1,3} symdiff {2,3}); /* outputs {1,2} */

Tuple Expression

< expression-1, ... expression-n >

A tuple expression represents the value of a member in a set of tuples. Each scalar subexpression inside
the angle brackets represents the value of a tuple element. This form is used only with IN, SETOF, and set
constructor expressions.

The following statements demonstrate the tuple expression:

proc optmodel;
put (<1,2,3> in setof{i in 1..2}<i,i+1,i+2>);
put ({<1,'a'>, <2,'b'>} cross {<3,'c'>, <4,'d'>});

The first PUT statement checks whether the tuple <1, 2, 3> is a member of a set of tuples. The second PUT
statement outputs the cross product of two sets of tuples that are constructed by the set constructor.

112 4 Chapter 5: The OPTMODEL Procedure

These statements produce the output in Figure 5.39.

Figure 5.39 Tuple Expression Output

1
{<1,'a',3,'e'>,<1,'a',4,'d'>,<2,'b',3,'c'>,<2,'b',4,'d'>}

UNION Expression
set-expression-1 UNION set-expression-2

The UNION expression returns the set union of the left and right operands. The result set contains values that

are members of either the left or right operand. The operands must have compatible set types. The following
example performs a set union:

proc optmodel;
put ({1,3} union {2,3}); /* outputs {1,3,2} */

UNION Aggregation Expression
UNION { index-set } set-expression

The UNION aggregation expression evaluates the set-expression for each member of the index set index-set.

The result is the set union of the values that are returned by the set-expression. If the index set is empty, then
the result is an empty set.

The following statements demonstrate a UNION aggregation. The output is the value of {1,2,3,4} U {2,3,4,5}
U {3.,4,5,6}.

proc optmodel;

put (union{i in 1..3} i..i+3); /* outputs {1,2,3,4,5,6} */
WITHIN Expression

set-expression-1 WITHIN set-expression-2

set-expression NOT WITHIN set-expression

The WITHIN expression returns 1 if the left operand set is a subset of the right operand set and returns 0
otherwise. (That is, the operator returns true if every member of the left operand set is a member of the

right operand set.) The NOT WITHIN form logically negates the result value. The following statements
demonstrate the WITHIN and NOT WITHIN operators:

proc optmodel;
put ({1,3} within {2,3}); /* outputs 0 x/
put ({1,3} not within {2,3}); /* outputs 1 */
put ({1,3} within {1,2,3}); /* outputs 1 */

Conditions of Optimality 4 113

Conditions of Optimality
Linear Programming

A standard linear program has the following formulation:

minimize ¢!x

subjectto Ax>Db

x>0
where
x € R is the vector of decision variables
A € R™" isthe matrix of constraints
c € R is the vector of objective function coefficients
b € R™" is the vector of constraints right-hand sides (RHS)

This formulation is called the primal problem. The corresponding dual problem (see the section “Dual Values”
on page 136) is

maximize bly
subjectto ATy <¢
y=0

where y € R™ is the vector of dual variables.

The vectors x and y are optimal to the primal and dual problems, respectively, only if there exist primal slack
variables s = Ax — b and dual slack variables w = ATy — ¢ such that the following Karush-Kuhn-Tucker
(KKT) conditions are satisfied:

Ax+s = b, x>0, s>0
ATy+w = ¢ y>0, w>0
slTy = 0
wlix = 0

The first line of equations defines primal feasibility, the second line of equations defines dual feasibility, and
the last two equations are called the complementary slackness conditions.

Nonlinear Programming

To facilitate discussion of optimality conditions in nonlinear programming, you write the general form of
nonlinear optimization problems by grouping the equality constraints and inequality constraints. You also
write all the general nonlinear inequality constraints and bound constraints in one form as “>" inequality
constraints. Thus, you have the following formulation:

minimize f(x)
xeRn
subjectto ¢j(x) =0, ie€f&
ci(x)>0, iel

114 4 Chapter 5: The OPTMODEL Procedure

where £ is the set of indices of the equality constraints, Z is the set of indices of the inequality constraints,
and m = |E| + |Z|.

A point x is feasible if it satisfies all the constraints ¢;(x) = 0,i € £ and ¢;(x) > 0,i € Z. The feasible
region JF consists of all the feasible points. In unconstrained cases, the feasible region F is the entire R”
space.

A feasible point x™* is a local solution of the problem if there exists a neighborhood N of x* such that
f(x)> f(x*) forall x e NN F

Further, a feasible point x* is a strict local solution if strict inequality holds in the preceding case; that is,
f(x)> f(x*) forall x e NNF

A feasible point x* is a global solution of the problem if no point in F has a smaller function value than
f(x*); that is,

f(x)> f(x*) forall x € F

Unconstrained Optimization
The following conditions hold true for unconstrained optimization problems:

¢ First-order necessary conditions: If x* is a local solution and f(x) is continuously differentiable in
some neighborhood of x*, then

Vix*) =0
* Second-order necessary conditions: If x* is a local solution and f(x) is twice continuously differ-
entiable in some neighborhood of x*, then V2f(x*) is positive semidefinite.

* Second-order sufficient conditions: If f(x) is twice continuously differentiable in some neighbor-
hood of x*, V£(x*) = 0, and V£ (x*) is positive definite, then x* is a strict local solution.

Constrained Optimization
For constrained optimization problems, the Lagrangian function is defined as follows:

L(x.)= f(x)— > hici(x)

iegVUT

where A;,i € £ UZ, are called Lagrange multipliers. Vi L(x, 1) is used to denote the gradient of the
Lagrangian function with respect to x, and VxZL(x, A) is used to denote the Hessian of the Lagrangian
function with respect to x. The active set at a feasible point x is defined as

Ax)=EU{i €Z:¢ci(x) =0}

You also need the following definition before you can state the first-order and second-order necessary
conditions:

Conditions of Optimality 4 115

* Linear independence constraint qualification and regular point: A point x is said to satisfy the
linear independence constraint qualification if the gradients of active constraints

Vei(x), i€ Ax)

are linearly independent. Such a point x is called a regular point.

You now state the theorems that are essential in the analysis and design of algorithms for constrained
optimization:

¢ First-order necessary conditions: Suppose that x* is a local minimum and also a regular point. If
f(x)and ¢;(x),i € £UZ, are continuously differentiable, there exist Lagrange multipliers A* € R

such that the following conditions hold:

VeL(x*A%) = Vf(x*) = > AFVei(x*) =0

iefUT
ci(x*y = 0, i €&
ci(x*)y = 0, ieT
Af > 0, i€l
Afci(x*) = 0, iel

The preceding conditions are often known as the Karush-Kuhn-Tucker conditions, or KKT conditions
for short.

» Second-order necessary conditions: Suppose that x* is a local minimum and also a regular point.
Let A* be the Lagrange multipliers that satisfy the KKT conditions. If f(x) and ¢;(x),i € £ UZ, are
twice continuously differentiable, the following conditions hold:

ZIV2ZL(x* A%z >0
for all z € R” that satisfy

Vei(x*)Tz =0, ieAxY)

* Second-order sufficient conditions: Suppose there exist a point x* and some Lagrange multipliers
A* such that the KKT conditions are satisfied. If

TV2L(x*,A%)z > 0
for all z € R” that satisfy
Vei(x)Tz =0, ieA@x*)

then x™ is a strict local solution.

Note that the set of all such z’s forms the null space of the matrix [Vci (x*)T]l. cAG*)" Thus, you
can search for strict local solutions by numerically checking the Hessian of the Lagrangian function
projected onto the null space. For a rigorous treatment of the optimality conditions, see Fletcher (1987)
and Nocedal and Wright (1999).

116 4 Chapter 5: The OPTMODEL Procedure

Data Set Input/Output

You can use the CREATE DATA and READ DATA statements to exchange PROC OPTMODEL data
with SAS data sets. The statements can move data into and out of PROC OPTMODEL parameters and
variables. For example, the following statements use a CREATE DATA statement to save the results from an
optimization into a data set:

proc optmodel;
var x;
min z = (x-5)*%x2;
solve;
create data optdata from xopt=x z;

These statements write a single observation into the data set OPTDATA. The data set contains two variables,
xopt and z, and the values contain the optimized values of the PROC OPTMODEL variable x and objective z,
respectively. The statement “xopt=x" renames the variable X to xopt.

The group of values held by a data set variable in different observations of a data set is referred to as a column.
The READ DATA and CREATE DATA statements specify a set of columns for a data set and define how data
are to be transferred between the columns and PROC OPTMODEL parameters.

Columns in square brackets ([]) are handled specially. Such columns are called key columns. Key columns
specify element values that provide an implicit index for subsequent array columns. The following example
uses key columns with the CREATE DATA statement to write out variable values from an array:

proc optmodel;
set LOCS = {'New York', 'Washington', 'Boston'}; /% locations */
set DOW = 1..7; /% day of week */
var s{LOCS, DOW} init 1;
create data soldata from [location day of week]={LOCS, DOW} sale=s;

In this case the optimization variable s is initialized to a value of 1 and is indexed by values from the set
parameters LOCS and DOW. The output data set contains an observation for each combination of values
in these sets. The output data set contains three variables, location, day_of week, and sale. The data set
variables location and day_of week save the index element values for the optimization variable s that is
written in each observation. The data set created is shown in Figure 5.40.

Data Set Input/Output 4 117

Figure 5.40 Data Sets Created

Data Set: SOLDATA
day_of__

Obs location week sale
1 New York 1 1
2 New York 2 1
3 New York 3 1
4 New York 4 1
5 New York 5 1
6 New York 6 1
7 New York 7 1
8 Washington 1 1
9 Washington 2 1

10 Washington 3 1
11 Washington 4 1
12 Washington 5 1
13 Washington 6 1
14 Washington 7 1
15 Boston 1 1
16 Boston 2 1
17 Boston 3 1
18 Boston 4 1
19 Boston 5 1
20 Boston 6 1
21 Boston 7 1

Note that the key columns in the preceding example do not name existing PROC OPTMODEL variables. They
create new local dummy parameters, location and day_of week, in the same manner as dummy parameters in
index sets. These local parameters can be used in subsequent columns. For example, the following statements
demonstrate how to use a key column value in an expression for a later column value:

proc optmodel;
create data tab
from [i]=(1..10)
Square=(ixi) Cube=(ixi=*i);

These statements create a data set that has 10 observations that hold squares and cubes of the numbers from 1
to 10. The key column variable here is named i and is explicitly assigned the values from 1 to 10, while the
data set variables Square and Cube hold the square and cube, respectively, of the corresponding value of i.

In the preceding example the key column values are simply the numbers from 1 to 10. The value is the same
as the observation number, so the variable i is redundant. You can remove the data set variable for a key
column via the DROP data set option, as follows:

proc optmodel;
create data tab2 (drop=i)
from [i] =(1..10)
Square=(ixi) Cube=(ixi=*i);

118 4 Chapter 5: The OPTMODEL Procedure

The local parameters declared by key columns receive their values in various ways. For a READ DATA
statement, the key column values come from the data set variables for the column. In a CREATE DATA
statement, the values can be defined explicitly, as shown in the previous example. Otherwise, the CREATE
DATA statement generates a set of values that combines the index sets of array columns that need implicit
indexing. The statements that produce the output in Figure 5.40 demonstrate implicit indexing.

Use a suffix (“Suffixes” on page 132) to read or write auxiliary values, such as variable bounds or constraint
duals. For example, consider the following statements:

data pdat;
input p $ maxprod cost;
datalines;

ABQ 12 0.7

MIA 9 0.6

CHI 14 0.5

run;

proc optmodel;
set<string> plants;
var prod{plants} >= O0;
number cost{plants};
read data pdat into plants=[p] prod.ub=maxprod cost;

The statement “plants=[p]” in the READ DATA statement declares p as a key column and instructs PROC
OPTMODEL to store the set of plant names from the data set variable p into the set parameter plants. The
statement assigns the upper bound for the variable prod indexed by p to be the value of the data set variable
maxprod. The cost parameter location indexed by p is also assigned to be the value of the data set variable
cost.

The target variables prod and cost in the preceding example use implicit indexing. Indexing can also be
performed explicitly. The following version of the READ DATA statement makes the indices explicit:

read data pdat into plants=[p] prod[p].ub=maxprod cost[p];

Explicit indexing is useful when array indices need to be transformed from the key column values in the data
set. For example, the following statements reverse the order in which elements from the data set are stored in
an array:

data abcd;
input letter $ QQ;
datalines;

abcd

’

proc optmodel;
set<num> subscripts=1..4;
string letter{subscripts};
read data abcd into [_N_] letter[5-_N_];
print letter;

The output from this example appears in Figure 5.41.

Control Flow 4 119

Figure 5.41 READ DATA Statement: Explicit Indexing

[1] letter

B WN R
[e B o I o

The following example demonstrates the use of explicit indexing to save sequential subsets of an array in
individual data sets:

data revdata;
input month rev @Q;
datalines;

1 200 2 345 3 362 4 958

5 659 6 804 7 487 8 146

9 683 10 732 11 652 12 469

4

proc optmodel;
set m =1..3;
var revenue{l..1l2};
read data revdata into [_N_] revenue=rev;
create data gqtrl from [month]=m revenue[month];
create data gtr2 from [month]=m revenue[month+3];
create data qtr3 from [month]=m revenue[month+6];
create data gqtr4 from [month]=m revenue[month+9];

Each CREATE DATA statement generates a data set that represents one quarter of the year. Each data set
contains the variables month and revenue. The data set gtr2 is shown in Figure 5.42.

Figure 5.42 CREATE DATA Statement: Explicit Indexing

Obs month revenue
1 1 958
2 2 659
3 3 804

Control Flow

Most of the control flow statements in PROC OPTMODEL are familiar to users of the DATA step or the IML
procedure. PROC OPTMODEL supports the IF statement, DO blocks, the iterative DO statement, the DO
WHILE statement, and the DO UNTIL statement. You can also use the CONTINUE, LEAVE, and STOP
statements to modify control flow.

120 4 Chapter 5: The OPTMODEL Procedure

PROC OPTMODEL adds the FOR statement. This statement is similar in operation to an iterative DO loop.
However, the iteration is performed over the members of an index set. This form is convenient for iteration
over all the locations in an array, since the valid array indices are also defined using an index set. For example,
the following statements initialize the array parameter A, indexed by i and j, to random values sampled from a
normal distribution with mean 0 and variance 1:

proc optmodel;
set R=1..10;
set C=1..5;
number A{R, C};
for {i in R, j in C}
A[i, jl=rannor(-1);

The FOR statement provides a convenient way to perform a statement such as the preceding assignment
statement for each member of a set.

Formatted Output

PROC OPTMODEL provides two primary means of producing formatted output. The PUT statement
provides output of data values with detailed format control. The PRINT statement handles arrays and
produces formatted output in tabular form.

The PUT statement is similar in syntax to the PUT statement in the DATA step and in PROC IML. The
PUT statement can output data to the SAS log, the SAS listing, or an external file. Arguments to the PUT
statement specify the data to output and provide instructions for formatting. The PUT statement provides
enough control to create reports within PROC OPTMODEL. However, typically the PUT statement is used
to produce output for debugging or to quickly check data values.

The following example demonstrates some features of the PUT statement:

proc optmodel;
number a=1.7, b=2.8;
set s={a,b};
put a b; /* list output */
put a= b=; /* named output */
put 'Value A: ' a 8.1 @30 'Value B: ' b 8.; /* formatted */
string str='Ratio (A/B) is:';
put str (a/b); /* strings and expressions */
put s=; /* named set output */

These statements produce the output in Figure 5.43.

Figure 5.43 PUT Statement Output

1.7 2.8

a=1.7 b=2.8

Value A: 1.7 Value B: 3
Ratio (A/B) is: 0.6071428571

s={1.7,2.8}

Formatted Output 4 121

The first PUT statement demonstrates list output. The numeric data values are output in a default format,
BEST12., with leading and trailing blanks removed. A blank space is inserted after each data value is output.
The second PUT statement uses the equal sign (=) to request that the variable name be output along with the
regular list output.

The third PUT statement demonstrates formatted output. It uses the @ operator to position the output in a
specific column. This style of output can be used in report generation. The format specification “8.” causes
the displayed value of parameter b to be rounded.

The fourth PUT statement shows the output of a string value, str. It also outputs the value of an expression
enclosed in parentheses. The final PUT statement outputs a set along with its name.

The default destination for PUT statement output is the SAS log. The FILE and CLOSEFILE statements can
be used to send output to the SAS listing or to an external data file. Multiple files can be open at the same
time. The FILE statement selects the current destination for PUT statement output, and the CLOSEFILE
statement closes the corresponding file. See the section “FILE Statement” on page 70 for more details.

The PRINT statement is designed to output numeric and string data in the form of tables. The PRINT
statement handles the details of formatting automatically. However, the output format can be overridden by
PROC OPTMODEL options and through Output Delivery System (ODS) facilities.

The PRINT statement can output array data in a table form that contains a row for each combination of array
index values. This form uses columns to display the array index values for each row and uses other columns
to display the value of each requested data item. The following statements demonstrate the table form:

proc optmodel;
number square{i in 0..5} = ixi;
number recip{i in 1..5} = 1/i;
print square recip;

The PRINT statement produces the output in Figure 5.44.

Figure 5.44 PRINT Statement Output (List Form)

[1] square recip
0 0

1 1 1.00000
2 4 0.50000
3 9 0.33333
4 16 0.25000
5 25 0.20000

The first table column, labeled “[1],” contains the index values for the parameters square and recip. The
columns that are labeled “square” and “recip” contain the parameter values for each array index. For example,
the last row corresponds to the index 5 and the value in the last column is 0.2, which is the value of recip[5].

Note that the first row of the table contains no value in the recip column. Parameter location recip[0] does not
have a valid index, so no value is printed. The PRINT statement does not display variables that are undefined
or have invalid indices. This permits arrays that have similar indexing to be printed together. The sets of
defined indices in the arrays are combined to generate the set of indices shown in the table.

122 4 Chapter 5: The OPTMODEL Procedure

Also note that the PRINT statement has assigned formats and widths that differ between the square and recip
columns. The PRINT statement assigns a default fixed-point format to produce the best overall output for
each data column. The format that is selected depends on the PDIGITS= and PWIDTH= options.

The PDIGITS= and PWIDTH= options specify the desired significant digits and formatted width, respectively.
If the range of magnitudes is large enough that no suitable format can be found, then the data item is displayed
in scientific format. The table in the preceding example displays the last column with five decimal places in
order to display the five significant digits that were requested by the default PDIGITS= value. The square
column, on the other hand, does not need any decimal places.

The PRINT statement can also display two-dimensional arrays in matrix form. If the list following the PRINT
statement contains only a single array that has two index elements, then the array is displayed in matrix
form when it is sufficiently dense (otherwise the display is in table form). In this form the left-most column
contains the values of the first index element. The remaining columns correspond to and are labeled by the
values of the second index element. The following statements print an example of matrix form:

proc optmodel;
set R=1..6;
set C=1..4;
number a{i in R, j in C} = 10xi+j;
print a;

The PRINT statement produces the output in Figure 5.45.

Figure 5.45 PRINT Statement Output (Matrix Form)

11 12 13 14
21 22 23 24
31 32 33 34
41 42 43 44
51 52 53 54
61 62 63 64

o Ul WIN R

In the example the first index element ranges from 1 to 6 and corresponds to the table rows. The second index
element ranges from 1 to 4 and corresponds to the table columns. Array values can be found based on the
row and column values. For example, the value of parameter a[3,2] is 32. This location is found in the table
in the row labeled “3” and the column labeled “2.”

ODS Table and Variable Names

PROC OPTMODEL assigns a name to each table it creates. You can use these names to reference the table
when you use the Output Delivery System (ODS) to select tables and create output data sets. The names of
tables common to all solvers are listed in Table 5.12. Some solvers can generate additional tables; see the
individual solver chapters for more information. For more information about ODS, see SAS Output Delivery
System: User’s Guide.

ODS Table and Variable Names 4 123

Table 5.12 ODS Tables Produced in PROC OPTMODEL

ODS Table Name Description Statement/Option
DerivMethods List of derivatives used by the solver, SOLVE

including the method of computation
OptStatistics Solver-dependent description of the SOLVE

resources required for solution, in-

cluding function evaluations and

solver time
PrintTable Specified parameter or variable val- PRINT

ues
ProblemSummary Description of objective, variables, SOLVE

and constraints
SolutionSummary Overview of solution, including SOLVE

solver-dependent solution quality

values
SolverOptions List of solver options and their values SOLVE
Performancelnfo List of performance options and their SOLVE

values
Timing Detailed solution timing PERFORMANCE / DE-

TAILS

To guarantee that ODS output data sets contain information from all executed statements, use the PERSIST=
option in the ODS OUTPUT statement. For details, see SAS Output Delivery System: User’s Guide.
NOTE: The SUBMIT statement resets ODS SELECT and EXCLUDE lists.

Table 5.13 lists the variable names of the preceding tables used in the ODS template of the OPTMODEL

procedure.

Table 5.13 Variable Names for the ODS Tables Produced in PROC OPTMODEL

ODS Table Name Variables

DerivMethods Labell, cValuel, and nValuel

OptStatistics Labell, cValuel, and nValuel

PrintTable (matrix form) ROW, COL1 - COLn

PrintTable (table form) COL1 - COLn, identifier-expression(_suffix)
ProblemSummary Labell, cValuel, and nValuel

SolutionSummary Labell, cValuel, and nValuel

SolverOptions Labell, cValuel, nValuel, cValue2, and nValue2
Performancelnfo Labell, cValuel, and nValuel

Timing Labell, cValuel, nValuel, cValue2, and nValue2

The PRINT statement produces an ODS table named PrintTable. The variable names that are used depend
on the display format used. See the section “Formatted Output” on page 120 for details about choosing the

display format.

For the PRINT statement with table format, the columns that display array indices are named COL1-COL#n,
where n is the number of index elements. Columns that display values from identifier expressions are named
using the expression’s name and suffix. The identifier name becomes the output variable name if no suffix is
used. Otherwise the variable name is formed by appending an underscore (_) and the suffix to the identifier

124 4 Chapter 5: The OPTMODEL Procedure

name. Columns that display the value of expressions are named COL#n, where 7 is the column number in the
table.

For the PRINT statement with matrix format, the first column has the variable name ROW. The remaining
columns are named COL1-COL#n, where n is the number of distinct column indices. When an ODS table
displays values from identifier expressions, a label is generated based on the expression’s name and suffix, as
described for column names in the case of table format.

The PRINTLEVEL= option controls the ODS tables produced by the SOLVE statement. When PRINT-
LEVEL=0, the SOLVE statement produces no ODS tables. When PRINTLEVEL=1, the SOLVE state-
ment produces the ODS tables ProblemSummary, SolutionSummary, and Performancelnfo. When PRINT-
LEVEL=2, the SOLVE statement produces the ODS tables ProblemSummary, SolverOptions, DerivMethods,
SolutionSummary, OptStatistics, and Performancelnfo.

The PERFORMANCE statement controls additional ODS tables that can be produced by the SOLVE
statement. The Performancelnfo table displays options that are controlled by the PERFORMANCE statement.
If you specify the DETAILS option in the PERFORMANCE statement, then the SOLVE statement also
produces the ODS table Timing.

The following statements generate several ODS tables and write each table to a SAS data set:

proc optmodel printlevel=2;

ods output PrintTable=expt ProblemSummary=exps DerivMethods=exdm
SolverOptions=exso SolutionSummary=exss OptStatistics=exos
Timing=exti;

performance details;

var x{1..2} >= 0;

min z = 2%x[1] + 3 * x[2] + x[1]**2 + 10*x[2]**2

+ 2.5%¥x[1]*x[2] + x[1]**3;

con cl: x[1] - x[2] <= 1;

con c2: x[1] + 2*x[2] >= 100;

solve;

print x;

The data set expt contains the PrintTable table and is shown in Figure 5.46. The variable names are COL1
and x.

Figure 5.46 PrintTable ODS Table

PrintTable
Obs COL1 X
1 1 10.448
2 2 44.776

The data set exps contains the ProblemSummary table and is shown in Figure 5.47. The variable names
are Labell, cValuel, and nValuel. The rows describe the instance, and the description depends on the form
of the problem. In most solvers, the rows describe the objective function, variables, and constraints. In the
network solver, the rows describe the number of nodes, the number of edges, the directedness of the graph,
and the type of problem solved over the graph.

ODS Table and Variable Names 4 125

Figure 5.47 ProblemSummary ODS Table

ProblemSummary
Obs Labell cValuel nValuel

1 Objective Sense Minimization

2 Objective Function z

3 Objective Type Nonlinear

4 .
5 Number of Variables 2 2.000000
6 Bounded Above 0 0
7 Bounded Below 2 2.000000
8 Bounded Below and Above 0 0
9 Free 0 0
10 Fixed 0 0
11 .
12 Number of Constraints 2 2.000000
13 Linear LE (<=) 1 1.000000
14 Linear EQ (=) 0 0
15 Linear GE (>=) 1 1.000000
16 Linear Range 0 0

The data set exso contains the SolverOptions table and is shown in Figure 5.48. The variable names are
Labell, cValuel, nValuel, cValue2, and nValue2. The rows, which depend on the solver called by PROC
OPTMODEL, list the values taken by each of the solver options. The presence of an asterisk (*) next to an
option indicates that a value has been specified for that option.

Figure 5.48 SolverOptions ODS Table

SolverOptions
c
Obs Labell cValuel nValuel Value2 nValue2

1 ALGORITHM INTERIORPOINT .

2 FEASTOL 1E-6 0.000001000

3 HESSTYPE FULL .

4 LOGFREQ 1 1.000000

5 MAXITER 5000 5000.000000

6 MAXTIME I I

7 NOMULTISTART .

8 OBJLIMIT 1E20 1E20

9 OPTTOL 1E-6 0.000001000
10 SOLTYPE 1 1.000000
11 TIMETYPE REAL

The data set exdm contains the DerivMethods table, which displays the methods of derivative computation,
and is shown in Figure 5.49. The variable names are Labell, cValuel, and nValuel. The rows, which depend
on the derivatives used by the solver, specify the method used to calculate each derivative.

126 4 Chapter 5: The OPTMODEL Procedure

Figure 5.49 DerivMethods ODS Table

Obs

DerivMethods
Labell cval

Objective Gradient
Objective Hessian

uel

Analytic Formulas
Analytic Formulas

nValuel

The data set exss contains the SolutionSummary table and is shown in Figure 5.50. The variable names are
Labell, cValuel, and nValuel. The rows give an overview of the solution, including the solver chosen, the
objective value, and the solution status. Depending on the values returned by the solver, the SolutionSummary
table might also include some solution quality values such as optimality error and infeasibility. The values
in the SolutionSummary table appear in the _OROPTMODEL _ macro variable; each solver chapter has a
section that describes the solver’s contribution to this macro variable.

Figure 5.50 SolutionSummary ODS Table

Obs

O VWooJoULd WDN R

SolutionSummary
Labell cValu
Solver NLP
Algorithm
Objective Function z
Solution Status Optimal
Objective Value 22623.34
Optimality Error
Infeasibility
Iterations 5
Presolve Time
Solution Time

el

Interior Point

7101

5E-7

nValuel

22623

0.000000500
0

5.000000
0
0.017000

The data set exos contains the OptStatistics table, which displays the optimization statistics, and is shown in
Figure 5.51. The variable names are Labell, cValuel, and nValuel. The rows, which depend on the solver
called by PROC OPTMODEL, describe the amount of time and the function evaluations that are used by
the solver and associated processing. Times are displayed in seconds of clock or CPU time according to the

value of the TIMETYPE= option that is used by the solver.

ODS Table and Variable Names 4 127

Figure 5.51 OptStatistics ODS Table

OptStatistics
Obs Labell cValuel nValuel
1 Function Evaluations 28 28.000000
2 Gradient Evaluations 28 28.000000
3 Hessian Evaluations 6 6.000000
4 Problem Generation Time 0.00 0.001000
5 Code Generation Time 0.01 0.014000
6 Presolve Time 0.00 0
7 Solution Time 0.02 0.017000
8 Total Time 0.15 0.153000

Problem generation is the process of combining the model with the data into a format that solvers can
use. This includes computing equation coefficients, but it does not include reading data or evaluating other
programming statements. Code generation is compiles code for nonlinear equations in the model and
performs other analysis that is needed prior to solver evaluations. The time required for problem generation
will be negligible if the model contains only linear equations. The presolve time in this table includes the
time used by the PROC OPTMODEL presolver and any presolver that is part of the solver. Solution time
is the sum of the times used by the presolvers and the solver. The presolve and solution times also appear
in the SolutionSummary table. The OptStatistics table includes a total time, which is the sum of times for
problem generation, code generation, solution, and overhead in the SOLVE statement. Overhead includes
solver setup, postprocessing, and ODS table output.

The Timing table provides an alternate breakdown of SOLVE statement timing. Times in this table are shown
in seconds of clock time. The data set exti, which is shown in Figure 5.52, contains the Timing table data
and statistics. The variable names are Labell, cValuel, nValuel, cValue2, and nValue2. The values present
depend on the solver and on the context of the SOLVE statement.

Figure 5.52 Timing ODS Table

Timing
c

Obs Labell Valuel nValuel cValue2 nValue2
1 Problem Generation 0.001 0.00 0.0065359477 0.65%
2 OPTMODEL Presolver 0 0.00 0 0.00%
3 Solver Initialization 0.121 0.12 0.7908496732 79.08%
4 Code Generation 0.014 0.01 0.091503268 9.15%
5 Solver 0.017 0.02 0.1111111111 11.11%
6 Solver Postprocessing 0 0.00 0 0.00%

Some of the Timing table values have already been described for the OptStatistics table. Solver initialization
time is overhead in the SOLVE statement before the solver starts. Solver time includes execution of the
solver and its associated preprocessor, if any. A “Wait after Solver” time appears when a SOLVE statement is
executed within a COFOR loop. It represents the time between solver completion and the resumption of the

128 4 Chapter 5: The OPTMODEL Procedure

SOLVE statement in the invoking loop iteration for processing of the results. Solver postprocessing time is

overhead in the SOLVE statement after the solver has completed.

Constraints

You can add constraints to a PROC OPTMODEL model. The solver tries to satisfy the specified constraints

while minimizing or maximizing the objective.

Constraints in PROC OPTMODEL have names. By using the name, you can examine various attributes of
the constraint, such as the dual value that is returned by the solver (see the section “Suffixes” on page 132 for
details). A constraint is not allowed to have the same name as any other model component.

PROC OPTMODEL provides a default name if none is supplied by the constraint declaration. The predefined
array _ ACON_ provides names for otherwise anonymous constraints. The predefined numeric parameter

NACON contains the number of such constraints. The constraints are assigned integer indices in sequence,
so _ACON_[1] refers to the first unnamed constraint declared, while _ACON_[NACON_] refers to the newest.

Consider the following example of a simple model that has a constraint:

proc optmodel;
var x, y;
min r = x*%x2 + y**2;
con c: x+y >= 1;
solve;
print x y;

Without the constraint named c, the solver would find the point x = y = 0 that has an objective value of 0.
However, the constraint makes this point infeasible. The resulting output is shown in Figure 5.53.

Figure 5.53 Constrained Model Solution

Number

Free
Fixed

Number
Linear
Linear
Linear
Linear

Problem Summary

Objective Sense
Objective Function
Objective Type

of Variables

Bounded Above
Bounded Below
Bounded Below and Above

of Constraints
LE (<=)

EQ (=)

GE (>=)

Range

Constraint Coefficients

Minimization
r
Quadratic

ONOOON

oOr oowr

Constraints 4 129

Figure 5.53 continued

Performance Information
Execution Mode Single—-Machine
Number of Threads 4

Solution Summary

Solver QP
Algorithm Interior Point
Objective Function r
Solution Status Optimal
Objective Value 0.4999995397
Primal Infeasibility 2.3014762E-7
Dual Infeasibility 2.3570226E-7
Bound Infeasibility 0
Duality Gap 1.9575231E-7
Complementarity 0
Iterations 3
Presolve Time 0.00
Solution Time 0.01

x Y

0.5 0.5

The solver has found the point where the objective function is minimized in the region x + y > 1. This is
actually on the border of the region: the constraint c is active (see the section “Dual Values” on page 136 for
details).

In the preceding example the constraint ¢ had only a lower bound. You can specify constraints that have
both upper and lower bounds. For example, replacing the constraint ¢ in the previous example would further
restrict the feasible region:

con c: 3 >= x+ty >= 1;

PROC OPTMODEL standardizes constraints to collect the expression terms that depend on variables and
to separate the expression terms that are constant. When there is a single equality or inequality operator,
the separable constant terms are moved to the right operand while the variable terms are moved to the left
operand. For range constraints, the separable constant terms from the middle expression are subtracted from
the lower and upper bounds. You can see the standardized constraints with the use of the EXPAND statement
in the following example. Consider the following PROC OPTMODEL statements:

proc optmodel;
var x{1..3};
con b: sum{i in 1..3}(x[i] - i) = O;
expand b;

130 4 Chapter 5: The OPTMODEL Procedure

These statements produce an optimization problem with the following constraint:

(x[1] - 1) + (x[2] - 2) + (x[3] - 3) =0

The EXPAND statement produces the output in Figure 5.54.

Figure 5.54 Expansion of a Standardized Constraint

Constraint b:

x[1] + x[2] + x[3] = 6

Here the i separable constant terms in the operand of the SUM operation were moved to the right-hand side

of the constraint. The sum of these i values is 6.

After standardization the constraint expression that contains all the variables is called the body of the
constraint. You can reference the current value of the body expression by attaching the .body suffix to the
constraint name. Similarly, the upper and lower bound expressions can be referenced by using the .ub and .Ib

suffixes, respectively. (See the section “Suffixes” on page 132 for more information.)

As aresult of standardization, the value of a body expression depends on how the corresponding constraint is
entered. The following example demonstrates how using equivalent relational syntax can result in different

.body values:

proc optmodel;

var x init 1;
con cl: xxx2 <= 5;
con c2: 5 >= xxx2;

con c3: —-xx*x2 >= -=5;
con cd: -5 <= —x*%x2;

expand;

print cl.body c2.body c3.body c4.body;
The EXPAND and PRINT statements produce the output in Figure 5.55.

Figure 5.55 Expansion and Body Values of Standardized Constraints

Var x

Constraint cl:
Constraint c2:
Constraint c3:
Constraint c4:

xX**x2 <= 5

-X**%2 >= -5
—-X*%x2 >= -5
——X*%¥2 <= 5

cl.BODY c2.BODY c3.BODY

1 -1 -1

c4 .BODY

CAUTION: Each constraint has an associated dual value (see “Dual Values” on page 136). As a result of
standardization, the sign of a dual value depends in some instances on the way in which the corresponding
constraint is entered into PROC OPTMODEL. In the case of a minimization objective with one-sided

Constraints 4 131

constraint g(x) > L, avoid entering the constraint as L. < g(x). For example, the following statements
produce a value of 2:

proc optmodel;
var Xx;
min ol = x**2;
con cl: x >= 1;
solve;
print (cl.dual);

Replacing the constraint as follows results in a value of —2:

con cl: 1 <= x;

In the case of a maximization objective with the one-sided constraint g(x) < U, avoid entering the constraint
as U > g(x).

When a constraint has variables on both sides, the sign of the dual value depends on the direction of the
inequality. For example, you can enter the following constraint:

con cl: xxx5 — y + 8 <= 5%x + y**x2;

This is a < constraint, so ¢1.dual is nonpositive. If you enter the same constraint as follows, then c1.dual is
nonnegative:

con cl: 5%x + y**2 >= x*xx5 — y + 8;

It is also important to note that the signs of the dual values are negated in the case of maximization. The
following statements output a value of 2:

proc optmodel;
var x;
min ol = x*x*x2;
con cl: 1 <= x <= 2;
solve;
print (cl.dual);

Changing the objective function as follows yields the same value of x, but ¢1.dual now holds the value —2:

max ol = —x*x%2;

NOTE: A simple bound constraint on a decision variable x can be entered either by using a CONSTRAINT
declaration or by assigning values to x.Ib and x.ub. If you require dual values for simple bound constraints,
use the CONSTRAINT declaration.

Constraints can be linear or nonlinear. PROC OPTMODEL determines the type of constraint automatically
by examining the form of the body expression. Subexpressions that do not involve variables are treated as
constants. Constant subexpressions that are multiplied by or added to linear subexpressions produce new
linear subexpressions. For example, constraint A in the following statements is linear:

132 4 Chapter 5: The OPTMODEL Procedure

proc optmodel;
var x{1..3};
con A: 0.5%x(x[1]-x[2]) + x[3] >= O;

Suffixes

Use suffixes with identifier-expressions to retrieve and modify various auxiliary values maintained by the
solver. The values of the suffixes can come from expressions in the declaration of the name that is suffixed.
For example, the following declaration of variable v provides the values of several suffixes of v at the same
time:

var v >= 0 <= 2 init 1;

The values of the suffixes also come from the solver or from values assigned by assignment or READ DATA
statements (see an example in the section “Data Set Input/Output” on page 116).

You must use suffixes with names of the appropriate type. For example, the .init suffix cannot be used with
the name of an objective. In particular, local dummy parameter names cannot have suffixes.

Table 5.14 shows the names of the available suffixes.

Table 5.14 Suffix Names

Name Kind Suffix Modifiable Description

any .name No Name text for any non-dummy symbol
Constraint .active No Active status in current problem
Constraint .block Yes Block ID for decomposition
Constraint .body No Current constraint body value
Constraint .dual No Dual value from the solver
Constraint label Yes Label text for the solver
Constraint Ib Yes Current lower bound

Constraint .status Yes Status information from solver
Constraint .ub Yes Current upper bound

Implicit Variable .sol No Current solution value
Objective .active No Active status in current problem
Objective .sol No Current objective value
Objective Jlabel Yes Label text for the solver
Problem .active No Active status of problem
Problem label Yes Label text for the solver
Variable .active No Active status in current problem
Variable .direction Yes Branching direction for MILP
Variable .dual No Alias for .rc

Variable fixed No Fixed status

Variable .nit No Initial value for the solver
Variable label Yes Label text for the solver
Variable b Yes Lower bound

Variable .msinit No Numeric value at the best starting point re-

ported by multistart solver

Suffixes 4 133

Table 5.14 (continued)

Name Kind Suffix Modifiable Description

Variable .priority Yes Branching priority for MILP

Variable .Ic No Reduced cost (LP) or gradient of Lagrangian
function

Variable .relax Yes Relaxation of integrality restriction

Variable .sol No Current solution value

Variable .status Yes Status information from solver

Variable .ub Yes Upper bound

NOTE: The .init value of a variable represents the value it had before the most recent SOLVE statement that
used the variable. The value is zero before a successful completion of a SOLVE statement that uses the
variable.

The .sol suffix for a variable, implicit variable, or objective can be used within a declaration to reference the
current value of the symbol. It is treated as a constant in such cases. When processing a SOLVE statement,
the value is fixed at the start of the SOLVE. Outside of declarations, a variable, implicit variable, or objective
name with the .sol suffix is equivalent to the unsuffixed name.

The .status suffix reports status information from the solver. Currently, only the LP solver provides status
information. The .status suffix takes on the same character values that are found in the STATUS variable of
the PRIMALOUT and DUALOUT data sets for the OPTLP procedure, including values set by the 11S= option.
See the section “Variable and Constraint Status” on page 209 and the section “Irreducible Infeasible Set” on
page 210, both in Chapter 6, “The Linear Programming Solver,” for more information. For other solvers, the
.status values default to a single blank character.

If you choose to modify the .status suffix for a variable or constraint, the assigned suffix value can be a single
character or an empty string. The LP solver rejects invalid status characters. Blank or empty strings are
treated as new row or column entries for the purpose of “warm starting” the solver.

The .active suffix reports the current activity status for names in the problem. The value is 1 if the element is
active or 0 otherwise. A PROBLEM name is considered active if it is the current problem (that is, it was
selected by the most recent USE PROBLEM statement). A constraint is considered active if it is included in
the current problem and not dropped. An objective is considered active if it is the selected objective for the
current problem. A variable is considered active if it is included in the current problem, independent of the
fixed status.

The .fixed suffix reports the fixed status of a variable. The value is 1 if the variable is fixed using the FIX
statement for the current problem or O otherwise. Variables that are not included in the current problem are
treated as unfixed.

The .msinit suffix reports the numeric value of a variable at the best starting point, as reported by the NLP
solver when the MULTISTART option is specified. If the solver does not report a best starting point, then
the value is missing. The value is tracked independently for each problem to support multiple subproblems.
See the section “Multistart” on page 433 in Chapter 9, “The Nonlinear Programming Solver,” for more
information.

The .block suffix identifies the subproblem for constraints when used with the METHOD=USER option
of the decomposition algorithm. The value must be numeric and is initially assigned a missing value. A
constraint with a missing value for the .block suffix is part of the master problem. Otherwise constraints

134 4 Chapter 5: The OPTMODEL Procedure

belong to the same subproblem if and only if they have the same .block suffix values. See Chapter 14, “The
Decomposition Algorithm,” for more information.

The .label suffix represents the text passed to the solver to identify a variable, constraint, or objective. Some
solvers can display this label in their output. The maximum text length passed to the solver is controlled by
the MAXLABLEN= option. The default text is based on the name in the model, abbreviated to fit within
MAXLABLEN. For example, a model variable x[1] would be labeled “x[1]”. This label text can be reassigned.
The .label suffix value is also used to create MPS labels stored in the output data set for the SAVE MPS and
SAVE QPS statements.

The .name suffix represents the name of a symbol as a text string. The .name suffix can be used with any
declared name except for local dummy parameters. This suffix is primarily useful when applied to problem
symbols (see the section “Problem Symbols” on page 149), since the .name suffix returns the name of
the referenced symbol, not the problem symbol name. The name text is based on the name in the model,
abbreviated to fit in 256 characters.

Suffixed names can be used wherever a parameter name is accepted, provided only the value is required.
However, you are not allowed to change the value of certain suffixes. Table 5.14 marks these suffixes as not
modifiable. Suffixed names that are used as a target in an assignment or READ DATA statement must be
modifiable.

The following statements formulate a trivial linear programming problem. The objective value is unbounded,
which is reported after the execution of the SOLVE statement. The PRINT statements illustrate the corre-
sponding default auxiliary values. This is shown in Figure 5.56.

proc optmodel;
var x, y;
min z = x + y;
con c: x + 2xy <= 3;
solve;
print x.lb x.ub x.init x.sol;
print y.lb y.ub y.init y.sol;
print c.lb c.ub c.body c.dual;

Figure 5.56 Using a Suffix: Retrieving Auxiliary Values

x.LB x.UB x.INIT x.SOL
-1.7977E+308 1.7977E+308 0 0
y.LB y.UB y.INIT y.SOL
-1.7977E+308 1.7977E+308 0 0
c.LB c.UB c.BODY c.DUAL
-1.7977E+308 3 0

Integer Variable Suffixes 4 135

Next, continue to submit the following statements to change the default bounds and solve again. The output
is shown in Figure 5.57.

x.1b=0;

y.1lb=0;

c.lb=1;

solve;

print x.lb x.ub x.init x.sol;
print y.lb y.ub y.init y.sol;
print c.lb c.ub c.body c.dual;

Figure 5.57 Using a Suffix: Modifying Auxiliary Values

x.LB x.UB x.INIT x.SOL
0 1.7977E+308 0 0
y.LB y.UB y.INIT y.SOL
0 1.7977E+308 0 0.5
c.LB c.UB c.BODY c.DUAL
1 3 1 0.5

NOTE: Spaces are significant. The form NAME._TAG is treated as a SAS format name followed by the tag
name, not as a suffixed identifier. The forms NAME.TAG, NAME_ . TAG, and NAME_.TAG (note the location
of spaces) are interpreted as suffixed references.

Integer Variable Suffixes
The suffixes .relax, .priority, and .direction are applicable to integer variables.

For an integer variable X, setting x.relax to a nonzero, nonmissing value relaxes the integrality restriction.
The value of x.relax is read as either 1 or 0, depending on whether or not integrality is relaxed. This suffix is
ignored for noninteger variables.

The value contained in x.priority sets the branching priority of an integer variable x for use with the MILP
solver. This value can be any nonnegative, nonmissing number. The default value is 0, which indicates
default branching priority. Variables with positive .priority values are assigned greater priority than the default.
Variables with the highest .priority values are assigned the highest priority. Variables with the same .priority
value are assigned the same branching priority.

The value of x.direction assigns a branching direction to an integer variable x. This value should be an integer
in the range —1 to 3. A noninteger value in this range is rounded on assignment. The default value is 0. The
significance of each integer is found in Table 5.15.

136 4 Chapter 5: The OPTMODEL Procedure

Table 5.15 Branching Directions

Value Direction

-1 Round down to nearest integer
Default

Round up to nearest integer
Round to nearest integer

Round to closest presolved bound

W N = O

Suppose the solver branches next on an integer variable x whose last LP relaxation solution is 3.3. Suppose
also that after passing through the presolver, the lower bound of x is 0 and the upper bound of x is 10. If the
value in x.direction is —1 or 2, then the solver sets x to 3 for the next iteration. If the value in x.direction is 1,
then the solver sets x to 4. If the value in x.direction is 3, then the solver sets x to 0.

The MPS data set created by the SAVE MPS statement (“SAVE MPS Statement” on page 85) includes a
BRANCH section if any nondefault .priority or .direction values have been specified for integer variables.

Dual Values

A dual value is associated with each constraint. To access the dual value of a constraint, use the constraint
name followed by the suffix .dual.

For linear programming problems, the dual value associated with a constraint is also known as the dual price
(also called the shadow price). The shadow price is usually interpreted economically as the rate at which the
optimal value changes with respect to a change in some right-hand side that represents a resource supply or
demand requirement.

For nonlinear programming problems, the dual values correspond to the values of the optimal Lagrange
multipliers. For more details about duality in nonlinear programming, see Bazaraa, Sherali, and Shetty
(1993).

From the dual value associated with the constraint, you can also tell whether the constraint is active or not. A
constraint is said to be active (tight at a point) if it holds with equality at that point. It can be informative to
identify active constraints at the optimal point and check their corresponding dual values. Relaxing the active
constraints might improve the objective value.

Background on Duality in Mathematical Programming

For a minimization problem, there exists an associated problem with the following property: any feasible
solution to the associated problem provides a lower bound for the original problem, and conversely any
feasible solution to the original problem provides an upper bound for the associated problem. The original
and the associated problems are referred to as the primal and the dual problem, respectively. More specifically,
consider the primal problem,

minimize f(x)
X
subjectto ¢j(x) =0, €&
ci(x) <0, iel
ci(x)>0, ieg

Dual Values 4 137

where £, £, and G denote the sets of equality, < inequality, and > inequality constraints, respectively.
Variables x € R” are called the primal variables. The Lagrangian function of the primal problem is defined as

LA,) = f() = D hici(x) = Y pici(x) = Y vici(x)

ieg iel ieg

where A; € R, u; <0, and v; > 0. By convention, the Lagrange multipliers for inequality constraints have
to be nonnegative. Hence A, —u, and v correspond to the Lagrange multipliers in the preceding Lagrangian
function. It can be seen that the Lagrangian function is a linear combination of the objective function and
constraints of the primal problem.

The Lagrangian function plays a fundamental role in nonlinear programming. It is used to define the
optimality conditions that characterize a local minimum of the primal problem. It is also used to formulate
the dual problem of the preceding primal problem. To this end, consider the following dual function:

d(A,p,v) =inf L(x,A, pn,v)
X
The dual problem is defined as

maximize d(A, u,v)
NTRY

subjectto u <0
v > 0.

The variables A, u, and v are called the dual variables. Note that the dual variables associated with the
equality constraints (1) are free, whereas those associated with < inequality constraints () have to be
nonpositive and those associated with > inequality constraints (v) have to be nonnegative.

The relation between the primal and the dual problems provides a nice connection between the optimal
solutions of the problems. Suppose x* is an optimal solution of the primal problem and (A*, u*, v*) is an
optimal solution of the dual problem. The difference between the objective values of the primal and dual
problems, § = f(x*) —d(A*, u*,v*) > 0, is called the duality gap. For some restricted class of convex
nonlinear programming problems, both the primal and the dual problems have an optimal solution and the
optimal objective values are equal—that is, the duality gap § = 0. In such cases, the optimal values of the
dual variables correspond to the optimal Lagrange multipliers of the primal problem with the correct signs.

A maximization problem is treated analogously to a minimization problem. For the maximization problem

maximize f(x)
X
subjectto ¢;(x) =0, €€
ci(x) <0, iel
ci(x) =0, i€g,

the dual problem is

minimize d(A, i, v)
AL,y
subjectto u >0

v <0.
where the dual function is defined as d(A, u,v) = sup L(x,A,u,v) and the Lagrangian function
X

L(x, A, u,v) is defined the same as earlier. In this case, A, i, and —v correspond to the Lagrange multipliers
in L(x,A, u,v).

138 4 Chapter 5: The OPTMODEL Procedure

Minimization Problems

For inequality constraints in minimization problems, a positive optimal dual value indicates that the associated
> inequality constraint is active at the solution, and a negative optimal dual value indicates that the associated
< inequality constraint is active at the solution. In PROC OPTMODEL, the optimal dual value for a range
constraint (a constraint with both upper and lower bounds) is the sum of the dual values associated with the
upper and lower inequalities. Since only one of the two inequalities can be active, the sign of the optimal
dual value, if nonzero, identifies which one is active.

For equality constraints in minimization problems, the optimal dual values are unrestricted in sign. A positive
optimal dual value for an equality constraint implies that, starting close enough to the primal solution, the
same optimum could be found if the equality constraint were replaced with a > inequality constraint. A
negative optimal dual value for an equality constraint implies that the same optimum could be found if the
equality constraint were replaced with a < inequality constraint.

The following is an example where simple linear programming is considered:

proc optmodel;
var x, y;
min z = 6*x + T*xy;
con

solve;

print x y;

expand _ACON_ ;

print _ACON_.dual _ACON_.body;

The PRINT statements generate the output shown in Figure 5.58.

Figure 5.58 Dual Values in Minimization Problem: Display

Problem Summary

Objective Sense Minimization
Objective Function z
Objective Type Linear

Number of Variables
Bounded Above

Bounded Below

Bounded Below and Above
Free

Fixed

oONMNOOON

Number of Constraints
Linear LE (<=)

Linear EQ (=)

Linear GE (>=)

Linear Range

oORr oOoODMNMDW

Constraint Coefficients 6

Dual Values 4 139

Figure 5.58 continued

Performance Information

Execution Mode Single—-Machine
Number of Threads 1

Solution Summary

Solver LP
Algorithm Dual Simplex
Objective Function z
Solution Status Optimal
Objective Value 13
Primal Infeasibility 0
Dual Infeasibility 0
Bound Infeasibility 0
Iterations 4
Presolve Time 0.00
Solution Time 0.02

x Y

1 1

Constraint _ACON_[1]: y + 4xx >= 5
Constraint _ACON_[2]: - 3xy — x <= -4
Constraint _ACON_|[3]: y + x <= 4

ACON. _ACON_.
[1] DUAL BODY
1 1 5
2 -2 -4
3 0 2

It can be seen that the first and second constraints are active, with dual values 1 and —2. Continue to submit
the following statements. Notice how the objective value is changed in Figure 5.59.

ACON[1].1b
solve;
ACON[2].ub
solve;

ACON[1].1b - 1;

ACON[2].ub + 1;

140 4 Chapter 5: The OPTMODEL Procedure

Figure 5.59 Dual Values in Minimization Problem: Interpretation

Problem Summary
Objective Sense Minimization
Objective Function z
Objective Type Linear
Number of Variables 2
Bounded Above 0
Bounded Below 0
Bounded Below and Above 0
Free 2
Fixed 0
Number of Constraints 3
Linear LE (<=) 2
Linear EQ (=) 0
Linear GE (>=) 1
Linear Range 0
Constraint Coefficients 6
Performance Information
Execution Mode Single-Machine
Number of Threads 1
Solution Summary
Solver LP
Algorithm Dual Simplex
Objective Function z
Solution Status Optimal
Objective Value 12
Primal Infeasibility 0
Dual Infeasibility 0
Bound Infeasibility 0
Iterations 4
Presolve Time 0.00
Solution Time 0.02

Figure 5.59 continued

Dual Values 4 141

Problem Summary

Objective Sense Minimization
Objective Function z
Objective Type Linear
Number of Variables 2
Bounded Above 0
Bounded Below 0
Bounded Below and Above 0
Free 2
Fixed 0
Number of Constraints 3
Linear LE (<=) 2
Linear EQ (=) 0
Linear GE (>=) 1
Linear Range 0
Constraint Coefficients 6
Performance Information
Execution Mode Single-Machine
Number of Threads 1
Solution Summary
Solver LP
Algorithm Dual Simplex
Objective Function z
Solution Status Optimal
Objective Value 10
Primal Infeasibility 4.440892E-16
Dual Infeasibility 0
Bound Infeasibility 0
Iterations 4
Presolve Time 0.00
Solution Time 0.00

The change is just as the dual values imply. After the first constraint is relaxed by one unit, the objective
value is improved by one unit. For the second constraint, the relaxation and improvement are one unit and

two units, respectively.

NOTE: The signs of dual values produced by PROC OPTMODEL depend, in some instances, on the way in
which the corresponding constraints are entered. See the section “Constraints” on page 128 for details.

142 4 Chapter 5: The OPTMODEL Procedure

Maximization Problems

For inequality constraints in maximization problems, a positive optimal dual value indicates that the associated
< inequality constraint is active at the solution, and a negative optimal dual value indicates that the associated
> inequality constraint is active at the solution. The optimal dual value for a range constraint is the sum of
the dual values associated with the upper and lower inequalities. The sign of the optimal dual value identifies
which inequality is active.

For equality constraints in maximization problems, the optimal dual values are unrestricted in sign. A positive
optimal dual value for an equality constraint implies that, starting close enough to the primal solution, the
same optimum could be found if the equality constraint were replaced with a < inequality constraint. A
negative optimal dual value for an equality constraint implies that the same optimum could be found if the
equality constraint were replaced with a > inequality constraint.

CAUTION: The signs of dual values produced by PROC OPTMODEL depend, in some instances, on the way
in which the corresponding constraints are entered. See the section “Constraints” on page 128 for details.

Reduced Costs

In linear programming problems, each variable has a corresponding reduced cost. To access the reduced cost
of a variable, add the suffix .rc or .dual to the variable name. These two suffixes are interchangeable.

The reduced cost of a variable is the rate at which the objective value changes when the value of that variable
changes. At optimality, basic variables have a reduced cost of zero; a nonbasic variable with zero reduced
cost indicates the existence of multiple optimal solutions.

In nonlinear programming problems, the reduced cost interpretation does not apply. The .dual and .rc variable
suffixes represent the gradient of the Lagrangian function, computed using the values returned by the solver.

The following example illustrates the use of the .rc suffix:

proc optmodel;
var x >= 0, y >= 0, z >= 0;
max cost = 4xx + 3*xy — 5xz;
con
-x + y + 5%z <= 15,
3xx — 2xy - z <= 12,
2xx + 4xy + 2%z <= 16;
solve;
print x y z;
print x.rc y.rc z.rc;

The PRINT statements generate the output shown in Figure 5.60.

Figure 5.60 Reduced Cost in Maximization Problem: Display

Presolver 4 143

Figure 5.60 continued

x.RC y.RC z.RC

0 0 -6.5

In this example, x and y are basic variables, while z is nonbasic. The reduced cost of z is —6.5, which implies
that increasing z from O to 1 decreases the optimal value from 24.5 to 18.

Presolver

PROC OPTMODEL includes a simple presolver that processes linear constraints to produce tighter bounds
on variables. The presolver can reduce the number of variables and constraints that are presented to the solver.
These changes can result in reduced solution times.

Linear constraints that involve only a single variable are converted into variable bounds. The presolver then
eliminates redundant linear constraints for which variable bounds force the constraint to always be satisfied.
Tightly bounded variables where upper and lower bounds are within the range specified by the VARFUZZ=
option (see the section “PROC OPTMODEL Statement” on page 40) are automatically fixed to the average
of the bounds. The presolver also eliminates variables that are fixed by the user or by the presolver.

The presolver can infer tighter variable bounds from linear constraints when all variables in the constraint
or all but one variable have known bounds. For example, when given the following PROC OPTMODEL
declarations, the presolver can determine the bound y < 4:

proc optmodel;
var x >= 3;
var y;
con c: x +y <=17;

The presolver makes multiple passes and rechecks linear constraints after bounds are tightened for the
referenced variables. The number of passes is controlled by the PRESOLVER= option. After the passes are
finished, the presolver attempts to fix the value of all variables that are not used in the updated objective
and constraints. The current value of such a variable is used if the value lies between the variable’s upper
and lower bounds. Otherwise, the value is adjusted to the nearer bound. The value of an integer variable is
rounded before being checked against its bounds.

In some cases the solver might perform better without the presolve transformations, so almost all such trans-
formations are unavailable when the option PRESOLVER=BASIC is specified. However, the presolver still
eliminates variables that have values that have been fixed by the FIX statement. To disable the OPTMODEL
presolver entirely, use PRESOLVER=NONE. The solver assigns values to any unused, unfixed variables
when the option PRESOLVER=NONE is specified.

Model Update

The PROC OPTMODEL modeling language provides several means of modifying a model after it is first
specified. You can change the parameter values of the model. You can add new model components. The

144 4 Chapter 5: The OPTMODEL Procedure

FIX and UNFIX statements can fix variables to specified values or rescind previously fixed values. The
DROP and RESTORE statements can deactivate and reactivate constraints. See also the section “Multiple
Subproblems” on page 148 for information on how to maintain multiple models.

To illustrate how these statements work, reconsider the following example from the section “Constraints” on
page 128:

proc optmodel;
var x, y;
min r = x**x2 + y*x*2;
con c: x+y >= 1;
solve;
print x y;

As described previously, the solver finds the optimal point x =y = 0.5 with r = 0.5. You can see the effect of

the constraint ¢ on the solution by temporarily removing it. You can add the following statements:

drop c;
solve;
print x y;

This change produces the output in Figure 5.61.

Figure 5.61 Solution with Dropped Constraint

Problem Summary

Objective Sense Minimization
Objective Function r
Objective Type Quadratic

Number of Variables
Bounded Above

Bounded Below

Bounded Below and Above
Free

Fixed

ONOOONDN

Number of Constraints 0

Constraint Coefficients 0

Performance Information

Execution Mode Single-Machine
Number of Threads 4

Model Update 4 145

Figure 5.61 continued

Solution Summary

Solver QP
Algorithm Interior Point
Objective Function r
Solution Status Optimal
Objective Value 0
Primal Infeasibility 0
Dual Infeasibility 0
Bound Infeasibility 0
Duality Gap 0
Complementarity 0
Iterations 0
Presolve Time 0.00
Solution Time 0.01

x y

0 0

The optimal point is x = y = 0, as expected.

You can restore the constraint ¢ with the RESTORE statement, and you can also investigate the effect of
forcing the value of variable x to 0.3. This requires the following statements:

restore c;

fix x=0.3;

solve;

print x y c.dual;

This produces the output in Figure 5.62.

146 4 Chapter 5: The OPTMODEL Procedure

Figure 5.62 Solution with Fixed Variable

Problem Summary
Objective Sense Minimization
Objective Function r
Objective Type Quadratic
Number of Variables 2
Bounded Above 0
Bounded Below 0
Bounded Below and Above 0
Free 1
Fixed 1
Number of Constraints 1
Linear LE (<=) 0
Linear EQ (=) 0
Linear GE (>=) 1
Linear Range 0
Constraint Coefficients 0
Performance Information
Execution Mode Single-Machine
Number of Threads 4
Solution Summary
Solver QP
Algorithm Interior Point
Objective Function r
Solution Status Optimal
Objective Value 0.58
Primal Infeasibility 0
Dual Infeasibility 0
Bound Infeasibility 0
Duality Gap 0
Complementarity 0
Iterations 0
Presolve Time 0.00
Solution Time 0.01
X y c.DUAL
0.3 0.7 1.4

The variable x still has the value that was defined in the FIX statement. The objective value has increased
by 0.08 from its constrained optimum 0.5 (see Figure 5.53). The constraint c is active, as confirmed by the
positive dual value.

Model Update 4 147

You can return to the original optimization problem by allowing the solver to vary variable x with the UNFIX

statement, as follows:

unfix x;
solve;
print x y c.dual;

This produces the output in Figure 5.63. The model was returned to its original conditions.

Figure 5.63 Solution with Original Model

Objective Sense
Objective Function
Objective Type

Number of Variables
Bounded Above

Bounded Below

Bounded Below and Above
Free

Fixed

Number of Constraints
Linear LE (<=)

Linear EQ (=)

Linear GE (>=)

Linear Range

Constraint Coefficients

Execution Mode
Number of Threads

Solver

Algorithm
Objective Function
Solution Status
Objective Value

Primal Infeasibility
Dual Infeasibility
Bound Infeasibility
Duality Gap
Complementarity

Iterations
Presolve Time
Solution Time

Problem Summary

Minimization
r
Quadratic

ONOOOND

oOr OOo-®Rr

Performance Information

Single—-Machine

Solution Summary

QP

Interior Point
r

Optimal
0.4999995397

2.3014762E-7
2.3570226E-7

0
1.9575231E-7
0

3

0.00

0.01

148 4 Chapter 5: The OPTMODEL Procedure

Figure 5.63 continued

X y c.DUAL

Multiple Subproblems

The OPTMODEL procedure enables multiple models to be manipulated easily by using named problems to
switch the active model components. Problems keep track of an objective, a set of included variables and
constraints, and some status information that is associated with the variables and constraints. Other data,
such as parameter values, bounds, and the current value of variables, are shared by all problems.

Problems are declared with the PROBLEM declaration. You can easily switch between problems by using
the USE PROBLEM statement. The USE PROBLEM statement makes the specified problem become the
current problem. The various statements that generate problem data, such as SOLVE, EXPAND, and SAVE
MPS, always operate using the model components included in the current problem.

A problem declaration can specify the problem’s initial objective by copying it from the problem named in a
FROM clause or by including the objective symbol. This objective can be overridden while the problem is
current by declaring a new non-array objective or by executing programming statements that specify a new
objective.

Variables can also be included when the problem is current by declaring them or by using the FIX or UNFIX
statement. Similarly, constraints can be included when the problem is current by declaring them or by using
the RESTORE or DROP statement. There is no way to exclude a variable or constraint item after it has been
included in a problem, although the variable or constraint can be fixed or dropped.

Variables that are declared but not included in a problem are treated as constants when a problem is generated,
while constraints that are declared but not included are ignored. The solver does not update the values and
status for these model components.

A problem also tracks certain other status information that is associated with its included symbols, and this
information can be changed without affecting other problems. This information includes the fixed status
for variables, and the dropped status for constraints. The following additional data that are tracked by the
problem are available through variable and constraint suffixes:

* var.STATUS (including IIS status)

* var.INIT

* var MSINIT

* var.RC

e var.DUAL (alias of var.RC)

e var.FIXED

Problem Symbols 4 149

* con.STATUS (including IIS status)

e con.DUAL

The initial problem when OPTMODEL starts is predeclared with the name _START_. This problem can be
reinstated again (after other USE PROBLEM statements) with the statement

use problem _start_;

See “Example 5.5: Multiple Subproblems” on page 172 for example statements that use multiple subprob-
lems.

Problem Symbols

The OPTMODEL procedure declares a number of symbols that are aliases for model components in the
current problem. These symbols allow the model components to be accessed uniformly. These symbols are
described in Table 5.16.

Table 5.16 Problem Symbols

Symbol Indexing Description

NVAR Number of variables

VAR {1.._NVAR_} Variable array

_NCON _ Number of constraints
CON {1.._NCON_} Constraint array

_S_NVAR_ Number of presolved variables
_S_VAR_ {1.._S_VAR_} Presolved variable array
_S_NCON_ Number of presolved constraints
S CON_ {1.._S_CON_} Presolved constraint array
OBJ Current objective

_PROBLEM _ Current problem

If the table specifies indexing, then the corresponding symbol is accessed as an array. For example, if the
problem includes two variables, x and y, then the value of _NVAR_ is 2 and the current variable values
can be accessed as _var_[1] and _var_[2]. The problem variables prefixed with _S are restricted to model
components in the problem after processing by the OPTMODEL presolver.

The following statements define a simple linear programming model and then use the problem symbols to
print out some of the problem results. The .name suffix is used in the PRINT statements to display the actual
variable and constraint names. Any of the suffixes that apply to a model component can be applied to the
corresponding generic symbol.

proc optmodel printlevel=0;
var x1 >= 0, x2 >= 0, x3 >= 0, x4 >= 0, x5 >= 0;

minimize z = x1 + x2 + x3 + x4;

150 4 Chapter 5: The OPTMODEL Procedure

con al: x1 + x2 + x3 <= 4;
con a2: x4 + x5 <= 6;
con a3: x1 + x4 >= 5;
con a4: x2 + x5 >= 2;
con a5: x3 >= 3;

solve with 1lp;

print _var_ .name _var_ _var_ .rc _var_.status;

print _con_.name _con_.lb _con_.body _con_.ub _con_.dual _con_.status;

The PRINT statement output is shown in Figure 5.64.

Figure 5.64 Problem Symbol Output

_VAR . _VAR .

[11] NAME _VAR_ _VAR_.RC STATUS

1 x1 1 0 B

2 x2 0 1 L

3 x3 3 0 B

4 x4 4 0 B

5 x5 2 0 B

CON. _CON_. _CON_. _CON_.
[1] NAME _CON_.LB BODY _CON_.UB DUAL STATUS
1 al -1.7977E308 4 4.0000E+00 0 L
2 a2 -1.7977E308 6 6.0000E+00 0 B
3 a3 5 5 1.7977E+308 1 U
4 a4 2 2 1.7977E+308 0 U
5 a5 3 3 1.7977E+308 1 U
OPTMODEL Options

All PROC OPTMODEL options can be specified in the PROC statement (see the section “PROC OPTMODEL
Statement” on page 40 for more information). However, it is sometimes necessary to change options after
other PROC OPTMODEL statements have been executed. For example, if an optimization technique had
trouble with convergence, then it might be useful to vary the PRESOLVER= option value. This can be done
with the RESET OPTIONS statement.

The RESET OPTIONS statement accepts options in the same form used by the PROC OPTMODEL statement.
The RESET OPTIONS statement is also able to reset option values and to change options programmatically.
For example, the following statements print the value of parameter n at various precisions:

proc optmodel;
number n = 1/7;
for {i in 1..9 by 4}
do;

Automatic Differentiation 4 151

reset options pdigits=(i);
print n;
end;
reset options pdigits; /* reset to default =*/

The output generated is shown in Figure 5.65. The RESET OPTIONS statement in the DO loop sets the
PDIGITS option to the value of i. The final RESET OPTIONS statement restores the default option value,
because the value was omitted.

Figure 5.65 Changing the PDIGITS Option Value

n

0.14286

n

0.142857143

Automatic Differentiation

PROC OPTMODEL automatically generates statements to evaluate the derivatives for most objective
expressions and nonlinear constraints. PROC OPTMODEL generates analytic derivatives for objective and
constraint expressions written in terms of the procedure’s mathematical operators and most standard SAS
library functions.

NOTE: Some functions, such as ABS, FLOOR, and SIGN, and some operators, such as IF-THEN, <>
(element minimum operator), and >< (element maximum operator), must be used carefully in modeling
expressions because functions including such components are not continuously differentiable or even
continuous.

Expressions that reference user-defined functions or some SAS library functions might require numerical
approximation of derivatives. PROC OPTMODEL uses either forward-difference approximation or central-
difference approximation as specified by the FD= option (see the section “PROC OPTMODEL Statement”
on page 40).

NOTE: The numerical gradient approximations are significantly slower than automatically generated deriva-
tives when the number of optimization variables is large.
Forward-Difference Approximations

The FD=FORWARD option requests the use of forward-difference derivative approximations. For a function
f of n variables, the first-order derivatives are approximated by

152 4 Chapter 5: The OPTMODEL Procedure

_of _ f(x+eihi) - f(x)
’_ax,-_ hi

Notice that up to n additional function calls are needed here. The step lengths 4;,i = 1,...,n, are based on
the assumed function precision, DIGITS:

hi — IO—DIGITS/Z(I + |Xi|)

You can use the FDIGITS= option to specify the function precision, DIGITS, for the objective function. For
constraints, use the CDIGITS= option.

The second-order derivatives are approximated by using up to n(n + 3)/2 extra function calls (Dennis and
Schnabel 1983, pp. 80, 104):

FPf fx+hie)—2f(x) + f(x —hie;)

dax? h?
f SO +hiei+hjej) = fx+hiei) = f(x + hjej) + f(x)
dxiox; hih;

Notice that the diagonal of the Hessian uses a central-difference approximation (Abramowitz and Stegun
1972, p. 884). The step lengths are

Central-Difference Approximations

The FD=CENTRAL option requests the use of central-difference derivative approximations. Generally,
central-difference approximations are more accurate than forward-difference approximations, but they require
more function evaluations. For a function f of n variables, the first-order derivatives are approximated by

- % _ f(x+eihi)— f(x—eih;i)
8gi = o T

Notice that up to 2n additional function calls are needed here. The step lengths h;,7 = 1, ..., n, are based
on the assumed function precision, DIGITS:

Conversions 4 153

You can use the FDIGITS= option to specify the function precision, DIGITS, for the objective function. For
constraints, use the CDIGITS= option.

The second-order derivatives are approximated by using up to 2n(n + 1) extra function calls (Abramowitz
and Stegun 1972, p. 884):

FPf —f(x+2hie;) +16f(x + hie;) —30f(x) + 16 f(x — hje;) — f(x — 2h;e;)
x? 1252
O f _ SOt hiei+hjej) — f(x +hiei —hjej) — f(x —hiei + hjej) + f(x —hiei —hje;)
0x; 0x 4hih

The step lengths are

hi — 10—D1GITS/3(1 + |Xi|)

Conversions

Numeric values are implicitly converted to strings when needed for function arguments or operands to the
string concatenation operator (Il). A warning message is generated when the conversion is applied to a
function argument. The conversion uses BEST12. format. Unlike the DATA step, the conversion trims
blanks.

Implicit conversion of strings to numbers is not permitted. Use the INPUT function to explicitly perform
such conversions.

FCMP Routines

The OPTMODEL procedure can call functions and subroutines that are compiled by the FCMP procedure.
You can use FCMP functions wherever a function expression is allowed in PROC OPTMODEL. Use the
CALL statement to call FCMP subroutines. The following example defines a function in the FCMP procedure
and calls it within PROC OPTMODEL.:

proc fcmp outlib=work.funcs.test;
/* arithmetic geometric mean =*/
function agm(a0, bO);
a=al0; b = b0;
if a<=0 or b<=0 then return(0);
do until(a - b < a/lel2);
al = 0.5xa + 0.5%b;
bl = sqrt (axb);
a =al; b = bl;

154 4 Chapter 5: The OPTMODEL Procedure

end;
return(a);
endsub;
run;

/* libraries must be specified with the CMPLIB option =*/
option cmplib=work. funcs;

proc optmodel;
print (agm(1,2));

/* find x where agm(l,x) == 23 %/
var x init 1;

num c = 23;

min z=(agm(1l,x)-c)*2;

solve;

print x;

FCMP subroutines can return data by updating OPTMODEL numeric and string parameters, which are
passed as arguments in a CALL statement. These arguments are declared using the OUTARGS statement
in the PROC FCMP subroutine definition. The OPTMODEL argument must be specified with an identifier
expression. The following code shows a simple example of output arguments. The maximum length of
output strings from OUTARGS arguments is restricted to the argument length before the call, as described in
the section “CALL Statement” on page 53.

proc fcmp outlib=work.funcs.test;
subroutine do_sqgr(x, sq, text §);
outargs sq, text;
Sq = X*X;
text = 'This is an example of output arguments’';
endsub;
run;

option cmplib=work. funcs;

proc optmodel;
string s init repeat(' ', 79); /* reserve 80 bytes x/
number n;
call do_sqr(7, n, s);
print s n;

This code produces the output in Figure 5.66.

Figure 5.66 FCMP Output Arguments

This is an example of output arguments 49

You can pass OPTMODEL arrays to FCMP functions and subroutines that accept matrix arguments. The array
must match the type and dimensions of the FCMP argument declaration. The argument in the OPTMODEL
CALL statement must be specified using the following syntax:

FCMP Routines 4 155

array-name | . suffix |

The following code passes a constant matrix to an FCMP function. The array coeff contains the coefficients
of a polynomial, which in this case defines a simple quadratic formula, x? — 2x + 1.

proc fcmp outlib=work.funcs.test;
function evalpoly(x, coeff[x]);
z = 0;
do i = diml (coeff) to 1 by -1;
z =z *x X + coeff[i];
end;
return (z);
endsub;
run;

option cmplib=work. funcs;

proc optmodel;
num coeff{l..3} = [1, -2, 1];
var x;
min z=evalpoly(x, coeff);
solve;
print x;

The array that is used for a matrix argument must be structured like an FCMP matrix. In other words, the
array index set must be the crossproduct of one or more range expressions (such as 1..N) where the lower
bound and step size are literally 1. The following code shows some examples of suitable and unsuitable array
declarations:

proc optmodel;
/* the following arrays can be used as matrices x/

num N;

num matl{l..N}; /* OK x/
set S1 = 1..5;

num mat2{S1l}; /* OK =/
set S2 = {S1,S1};

num mat3{S2}; /* OK x/

num mat4{S2 cross S2}; /*x OK */

/* the following arrays cannot be used as matrices x*/

num L init 1;

num arrl{L..N}; /* lower bound is not literally 1 =*/

num arr2{1l..10 by 3}; /* step size is not 1 %/

set S3 init S1;

num arr3{S3}; /* S3 is modifiable */

S3 = {3, 5, 7};

num arr4{i in 1..N, j in 1..N: j >= i}; /% selection expression used */
num arr5{i in 1..N, j in 1..i}; /* index dependency on 'i' */

Not all PROC FCMP functionality is compatible with PROC OPTMODEL; in particular, the following FCMP
functions are not supported and should not be called within your FCMP function definitions: READ_ARRAY,

WRITE_ARRAY, RUN_MACRO, and RUN_SASFILE. In many cases, OPTMODEL capabilities can replace
these functions. Matrix arguments can be used in place of the READ_ARRAY function by using the READ

156 4 Chapter 5: The OPTMODEL Procedure

DATA statement to load the matrix in PROC OPTMODEL. Similarly, you can replace the WRITE_ARRAY
function in an FCMP subroutine by copying the matrix to an output argument and using the OPTMODEL
procedure to write the matrix. You can use the SUBMIT statement in place of the RUN_MACRO and
RUN_SASFILE functions.

The SAS CMPLIB= system option specifies where to look for previously compiled functions and subroutines.
For more information about the CMPLIB= system option, see SAS System Options: Reference. FCMP
functions can be used in distributed mode with the NLP multistart solver. The needed PROC FCMP compiled
routines are automatically packaged and distributed. For more information about the multistart solver, see
Chapter 9, “The Nonlinear Programming Solver,” in this book.

NOTE: Distributed mode requires SAS High-Performance Optimization.

PROC OPTMODEL uses derivatives values that are provided by FCMP when they are available. FCMP can-
not provide derivatives with respect to array arguments, so PROC OPTMODEL must use finite differences to
compute these derivatives. Also, if the CMPOPT= SAS system option specifies the FUNCDIFFERENCING
value, then PROC OPTMODEL uses its own finite differencing for FCMP functions.

More on Index Sets

Dummy parameters behave like parameters but are assigned values only when an index set is evaluated. You
can reference the declared dummy parameters from index set expressions that follow the index set item. You
can also reference the dummy parameters in the expression or statement controlled by the index set. As the
members of the set expression of an index set item are enumerated, the element values of the members are
assigned to the local dummy parameters.

The number of names in a dummy parameter declaration must match the element length of the corresponding
set expression in the index set item. A single name is allowed when the set member type is scalar (numeric or
string). If the set members are tuples that have n > 1 elements, then n names are required between the angle
brackets (< >) that precede the IN keyword.

Multiple index set items in an index set are nominally processed in a left-to-right order. That is, a set
expression from an index set item is evaluated as though the index set items that precede it have already been
evaluated. The left-hand index set items can assign values to local dummy parameters that are used by the set
expressions that follow them. After each member from the set expression is enumerated, any index set items
to the right are reevaluated as needed. The actual order in which index set items are evaluated can vary, if
necessary, to allow more efficient enumeration. PROC OPTMODEL generates the same set of values in any
case, although possibly in a different order than strict left-to-right evaluation.

You can view the element combinations that are generated from an index set as tuples. This is especially true
for index set expressions (see the section “Index Set Expression” on page 106). However, in most cases no
tuple set is actually formed, and the element values are assigned only to local dummy parameters.

You can specify a selection expression following a colon (:). The index set generates only those combinations
of values for which the selection expression is true. For example, the following statements produce a set of
upper triangular indices:

proc optmodel;
put (setof {i in 1..3, j in 1..3 : j >= i} <i, j>);

These statements produce the output in Figure 5.67.

Threaded Processing 4 157

Figure 5.67 Upper Triangular Index Set

{<1,1>,<1,2>,<1,3>,<2,2>,<2,3>,<3,3>}

You can use the left-to-right evaluation of index set items to express the previous set more compactly. The
following statements produce the same output as the previous statements:

proc optmodel;
put ({i in 1..3, i..3});

In this example, the first time the second index set item is evaluated, the value of the dummy parameter i is 1,
so the item produces the set {1,2,3}. At the second evaluation the value of i is 2, so the second item produces
the set {2,3}. At the final evaluation the value of i is 3, so the second item produces the set {3}.

In many cases it is useful to combine the SLICE operator with index sets. A special form of index set item
uses the SLICE operator implicitly. Normally an index set item that is applied to a set of tuples of length
greater than one must be of the form

< name-1[,...name-n] > IN set-expression

In the special form, one or more of the name elements are replaced by expressions. The expressions select
tuple elements by using the SLICE operator. An expression that consists of a single name must be enclosed
in parentheses to distinguish it from a dummy parameter. The remaining names are the dummy parameters
for the index set item that is applied to the SLICE result. The following example demonstrates the use of
implicit set slicing:

proc optmodel;
number N = 3;
set<num,str> S = {<1,'a'>,<2,'b'>,<3,'a'>,<4, 'b'>};
put ({i in 1..N, <(i),J> in S});
put ({i in 1..N, j in slice(<i,*>, S)});

The two PUT statements in this example are equivalent.

Threaded Processing

The OPTMODEL procedure can take advantage of the multiple CPUs that are available in many computers.
PROC OPTMODEL automatically uses multithreaded execution to divide problem generation among the
multiple CPUs of the computer that is running the procedure. Hessian and Jacobian matrix evaluation is
automatically parallelized across threads of execution on multiple CPUs. Threading can decrease the amount
of clock time required to perform a task, although the total CPU time required might increase.

If you use the PERFORMANCE statement and specify an NTHREADS option, and the statement does not
request distributed computing, then threading in the OPTMODEL procedure is controlled by the NTHREADS
option. Otherwise, threading in the OPTMODEL procedure is controlled by the following SAS system
options:

158 4 Chapter 5: The OPTMODEL Procedure

CPUCOUNT=number | ACTUAL
specifies the maximum number of CPUs that can be used.

THREADS | NOTHREADS
enables or disables the use of threading.

Good performance is usually obtained with the default option settings (THREADS and CPU-
COUNT=ACTUAL). See the option descriptions in SAS System Options: Reference for more details.

The PERFORMANCE statement and the SAS system options set the maximum number of threads. The
number of threads that PROC OPTMODEL actually uses depends on the characteristics of the problem that
is being solved. In particular, threading is not used when the problem is simple enough that threading offers
no advantage.

Macro Variable _OROPTMODEL _

The OPTMODEL procedure creates a macro variable named _OROPTMODEL_. You can inspect the
execution of the most recently invoked solver from the value of the macro variable. The macro variable is
defined at the start of the procedure and updated after each SOLVE statement is executed. The OPTMODEL
procedure also updates the macro variable when an error is detected.

The _OROPTMODEL._ value is a string that consists of several “KEY WORD=value” items in sequence,
separated by blanks; for example:

STATUS=OK SOLUTION_STATUS=OPTIMAL OBJECTIVE=9 ITERATIONS=1
PRESOLVE_TIME=0 SOLUTION_TIME=0

The information contained in _OROPTMODEL_ varies according to which solver was last called. For lists
of keywords and possible values, see the individual solver chapters.

If a value has not been computed, then the corresponding element is not included in the value of the macro
variable. When PROC OPTMODEL starts, for example, the macro variable value is set to “STATUS=0K”
because no SOLVE statement has been executed. If the STATUS= indicates an error, then the other values
from the solver might not be available, depending on when the error occurred.

_STATUS and SOLUTION_STATUS Parameters

In addition to generating the macro variable _OROPTMODEL_, the OPTMODEL procedure generates the
predeclared string parameters _STATUS_ and _SOLUTION_STATUS _.

The value of _STATUS_ is equal to the STATUS= component of the _ OROPTMODEL_ macro variable. The
value of _STATUS_ is initially “OK”. The value is updated during the SOLVE statement and after statement
execution errors.

The value of _SOLUTION_STATUS_ is equal to the SOLUTION_STATUS= component of the _OROPT-
MODEL_ macro variable. The value is initially an empty string. The value is updated during the SOLVE
statement.

Rewriting PROC NLP Models for PROC OPTMODEL 4 159

Macro and Statement Evaluation Order

PROC OPTMODEL reads a complete statement, such as a DO statement, before executing any code in it.
But macro language statements are processed as the code is read. So you must be careful when using the
OROPTMODEL macro variable in code that involves SOLVE statements nested in loops or DO statements.
The following statements demonstrate one example of this behavior:

proc optmodel;
var x, y;
min z=x**x2 + (x*xy—-1)**2;
for {n in 1..3} do;

fix x=n;

solve;

$put Line 1 &_ OROPTMODEL_;

put 'Line 2 ' (symget ("_OROPTMODEL_"));
end;

quit;

In the preceding statements the %PUT statement is executed once, before any SOLVE statements are executed.
It displays PROC OPTMODEL’s initial setting of the macro variable. But the PUT statement is executed
after each SOLVE statement and indicates the expected solution status.

Rewriting PROC NLP Models for PROC OPTMODEL

This section describes techniques for converting PROC NLP models to PROC OPTMODEL models. Exam-
ple 5.8 also demonstrates how to rewrite a PROC NLP model for use with PROC OPTMODEL.

To illustrate the basics, consider the following first version of the PROC NLP model for the example “Simple
Pooling Problem” in Chapter 7, “The NLP Procedure” (SAS/OR User’s Guide: Mathematical Programming
Legacy Procedures):

proc nlp all;
parms amountx amounty amounta amountb amountc
pooltox pooltoy ctox ctoy pools = 1;
bounds 0 <= amountx amounty amounta amountb amountc,
amountx <= 100,
amounty <= 200,
0 <= pooltox pooltoy ctox ctoy,
1 <= pools <= 3;
lincon amounta + amountb = pooltox + pooltoy,
pooltox + ctox = amountx,
pooltoy + ctoy = amounty,

ctox + ctoy = amountc;
nlincon nlcl-nlc2 >= 0.,

nle3 = 0.;
max f;
costa = 6; costb = 16; costc = 10;

costx = 9; costy = 15;
f = costx * amountx + costy * amounty

— costa * amounta - costb * amountb - costc * amountc;
nlcl = 2.5 * amountx - pools * pooltox - 2. * ctox;

160 4 Chapter 5: The OPTMODEL Procedure

nlc2 1.5 * amounty — pools * pooltoy - 2. * ctoy;
nlc3 = 3 * amounta + amountb - pools * (amounta + amountb);
run;

These statements define a model that has bounds, linear constraints, nonlinear constraints, and a simple
objective function. The following statements are a straightforward conversion of the PROC NLP statements
to PROC OPTMODEL form:

proc optmodel;

var amountx init
amounty init

var amounta init
amountb init
amountc init

var pooltox init
pooltoy init

var ctox init 1 >= 0,
ctoy init 1 >= 0;

var pools init 1 >=1 <= 3;

con amounta + amountb = pooltox + pooltoy,
pooltox + ctox = amountx,
pooltoy + ctoy amounty,
ctox + ctoy = amountc;

number costa, costb, costc, costx, costy;

costa 6; costb = 16; costc = 10;

costx 9; costy = 15;

max £ = costx * amountx + costy * amounty

A
]

100,
200;

A
]

~

~.

~

H R R R R RR
v
]
cOcoooooo

~.

— costa * amounta - costb * amountb - costc * amountc;

con nlcl: 2.5 * amountx — pools * pooltox - 2. x ctox >= 0,

nlc2: 1.5 * amounty - pools * pooltoy - 2. x ctoy >= O,

nlc3: 3 * amounta + amountb - pools * (amounta + amountb)

= 0;
solve;
print amountx amounty amounta amountb amountc
pooltox pooltoy ctox ctoy pools;

The PROC OPTMODEL variable declarations are split into individual declarations because PROC OPT-
MODEL does not permit name lists in its declarations. In the OPTMODEL procedure, you specify variable
bounds as part of the variable declaration instead of in a separate BOUNDS statement. The PROC NLP
statements are as follows:

parms amountx amounty amounta amountb amountc
pooltox pooltoy ctox ctoy pools = 1;
bounds 0 <= amountx amounty amounta amountb amountc,
amountx <= 100,
amounty <= 200,
0 <= pooltox pooltoy ctox ctoy,
1l <= pools <= 3;

The following PROC OPTMODEL statements are equivalent to the preceding PROC NLP statements:

var amountx init 1 >= 0 <= 100,
amounty init 1 >= 0 <= 200;

var amounta
amountb
amountc
var pooltox
pooltoy

init
init
init
init
init

B R R RPR

var ctox init 1 >=
ctoy init 1 >=
var pools init 1 >= 1

Rewriting PROC NLP Models for PROC OPTMODEL 4 161

~ e 0~ 0~

O O O oo

~

<= 3;

The linear constraints are declared in the PROC NLP model by using the following statement:

lincon amounta + amountb = pooltox + pooltoy,
pooltox + ctox
pooltoy + ctoy
ctox + ctoy

= amountx,
= amounty,
= amountc;

The following linear constraint declarations in the PROC OPTMODEL model are quite similar to the PROC
NLP LINCON declarations:

con amounta + amountb
pooltox + ctox
pooltoy + ctoy
ctox + ctoy

= pooltox + pooltoy,
amountx,
amounty,
amountc;

But PROC OPTMODEL provides much more flexibility in defining linear constraints. For example, a
coefficient can be a named parameter or any other expression that evaluates to a constant.

The cost parameters are declared explicitly in the PROC OPTMODEL model. Unlike the DATA step or the
NLP procedure, PROC OPTMODEL requires names to be declared before they are used. There are multiple
ways to set the values of these parameters. The preceding example uses assignments. You could make the
values part of the declaration by using the INIT expression clause or the = expression clause. You could also
read the values from a data set by using the READ DATA statement.

In the original PROC NLP statements, the assignment to a parameter such as costa occurs every time
the objective function is evaluated. However, the assignment occurs just once in the PROC OPTMODEL
statements, when the assignment statement is processed. This works because the values are constant. But the
PROC OPTMODEL statements permit the parameters to be reassigned later so that you can interactively
modify the model.

The following statements define the objective f in the PROC NLP model:

max f£;

f = costx * amountx + costy * amounty
— costa * amounta - costb * amountb - costc * amountc;

The PROC OPTMODEL version of the objective is defined by using the same expression text, as follows:

max £ = costx * amountx + costy * amounty
— costa * amounta - costb * amountb - costc * amountc;

162 4 Chapter 5: The OPTMODEL Procedure

But the MAX statement and the assignment to the name f in the PROC NLP statements are combined in
PROC OPTMODEL. There are advantages and disadvantages to this approach. The PROC OPTMODEL
formulation is much closer to the mathematical formulation of the model. However, if multiple intermediate
variables are used to structure the objective, then multiple IMPVAR declarations are required.

In the PROC NLP model, the nonlinear constraints use the following syntax:

nlincon nlcl-nlc2 >= 0.,

nle3 = 0.;
nlcl = 2.5 x amountx — pools * pooltox - 2. * ctox;
nlc2 = 1.5 x amounty — pools *x pooltoy — 2. * ctoy;
nlc3 = 3 * amounta + amountb - pools * (amounta + amountb);

In the PROC OPTMODEL model, the equivalent statements are as follows:

con nlcl: 2.5 * amountx — pools * pooltox — 2. * ctox >= 0,
nlc2: 1.5 * amounty - pools * pooltoy - 2. x ctoy >= 0,
nlc3: 3 x amounta + amountb - pools * (amounta + amountb)

= 0;

The nonlinear constraints in PROC OPTMODEL use the same syntax as linear constraints. In fact, if the
variable pools were declared as a parameter, then all the preceding constraints would be linear. The nonlinear
constraint in PROC OPTMODEL combines the NLINCON statement of PROC NLP with the assignment in
the PROC NLP statements. Objective names can be used in nonlinear constraint expressions to structure the
formula as they are in objective expressions,

The PROC OPTMODEL model does not use a RUN statement to invoke the solver. Instead the solver
is invoked interactively by the SOLVE statement in PROC OPTMODEL. By default, the OPTMODEL
procedure prints much less information about the optimization process. Generally this information consists of
messages from the solver (such as the termination reason) and a short status display. The PROC OPTMODEL
statements add a PRINT statement in order to display the variable estimates from the solver.

Examples: OPTMODEL Procedure

Example 5.1: Matrix Square Root

This example demonstrates the use of PROC OPTMODEL array parameters and variables. The following
statements create a randomized positive definite symmetric matrix and define an optimization model to find
the matrix square root of the generated matrix:

proc optmodel;
number n = 5; /% size of matrix x/
/* random original array =*/
number A{l..n, 1..n} = 10 - 20*ranuni(-1);
/* compute upper triangle of the
* symmetric matrix Axtranspose (A) */

Example 5.1: Matrix Square Root 4 163

/* should be positive def unless A is singular =*/
number P{i in 1..n, j in i..n};
for {i in 1..n, j in i..n}
P[i,j] = sum{k in 1..n} A[i,k]*A[], k];
/* coefficients of square root array
* (upper triangle of symmetric matrix) =*/
var g{i in 1..n, i..n};
/* The default initial value q[i, j]=0 is
* a local minimum of the objective,
* so you must move it away from that point. =*/
ql1,1] = 1;
/* minimize difference of square of q from P */
min r = sum{i in 1..n, j in i..n}
(sum{k in 1..i} gq[k,i]l*qlk, j]
+ sum{k in i+1l..3j} ql[i,k]l=*ql[k, j]
+ sum{k in j+1..n} q[i,k]l*xqg[j, k]
- P[i,3])*2;
solve;
print q;

These statements define a random array A of size n x n. The product P is defined as the matrix product
AAT . The product is symmetric, so the declaration of the parameter P gives it upper triangular indexing. The
matrix represented by P should be positive definite unless A is singular. But singularity is unlikely because
of the random generation of A. If P is positive definite, then it has a well-defined square root, Q, such that

P=00T.
The objective r simply minimizes the sum of squares of the coefficients as

r=) R

1<i<j=<n

where R = QQT — P. (This technique for computing matrix square roots is intended only for the
demonstration of PROC OPTMODEL capabilities. Better methods exist.)

Output 5.1.1 shows part of the output from running these statements. The values that are actually displayed
depend on the random numbers generated.

Output 5.1.1 Matrix Square Root Results

a
1 2 3 4 5
1 12.73442 -8.02268 -6.47717 -0.38734 1.69419
2 -2.17993 -8.31832 5.31951 -8.13848
3 9.23661 2.36430 2.15739
4 1.87689 —-0.44664
5 8.15989

164 4 Chapter 5: The OPTMODEL Procedure

Example 5.2: Reading From and Creating a Data Set

This example demonstrates how to use the READ DATA statement to read parameters from a SAS data set.

The objective is the Bard function, which is the following least squares problem with / = {1,2,...,15}:
1 k 2
=l (o s)|

x = (x1,x2,x3), ¥y =(1,Y2,...,)15)
where v = 16 — k, wy = min(k, vg) (k € 1), and

y = (0.14,0.18,0.22,0.25,0.29,0.32,0.35,0.39,0.37,0.58, 0.73, 0.96, 1.34,2.10, 4.39)

The minimum function value f(x*) = 4.107E—3 is at the point (0.08, 1.13,2.34). The starting point
x% = (1,1, 1) is used. This problem is identical to the example “Using the DATA= Option” in Chapter 7,
“The NLP Procedure” (SAS/OR User’s Guide: Mathematical Programming Legacy Procedures). The
following statements use the READ DATA statement to input parameter values and the CREATE DATA
statement to save the solution in a SAS data set:

data bard;
input y @@Q;
datalines;
.14 .18 .22 .25 .29 .32 .35 .39
.37 .58 .73 .96 1.34 2.10 4.39
;
proc optmodel;
set I = 1..15;
number y{I};
read data bard into [_n_] y;
number v{k in I} = 16 - k;
number w{k in I} = min(k, v[k]);
var x{1..3} init 1;
min £ = 0.5«
sum{k in I}
(y[k] - (x[1] + k /
(vik]*x[2] + w[k]*x[3])))**2;
solve;
print x;
create data xdata from [i] =xd=x;

In these statements the values for parameter y are read from the BARD data set. The set | indexes the terms
of the objective in addition to the y array.

The preceding statements define two utility parameters that contain coefficients used in the objective function.
These coefficients could have been defined in the expression for the objective, f, but it was convenient to give
them names and simplify the objective expression.

The result is shown in Output 5.2.1.

Example 5.3: Model Construction 4 165

Output 5.2.1 Bard Function Solution

[1] x
1 0.08241
2 1.13303
3 2.34370

The final CREATE DATA statement saves the solution values determined by the solver into the data set
XDATA. The data set contains an observation for each x index. Each observation contains two variables. The
output variable i contains the index, while xd contains the value for the indexed entry in the array x. The
resulting data can be seen by using the PRINT procedure as follows:

proc print data=xdata;
run;

The output from PROC PRINT is shown in Output 5.2.2.

Output 5.2.2 Output Data Set Contents

Obs i xd
1 1 0.08241
2 2 1.13303
3 3 2.34370

Example 5.3: Model Construction

This example uses PROC OPTMODEL features to simplify the construction of a mathematically formulated
model. The model is based on the example “An Assignment Problem” in Chapter 5, “The LP Procedure’
(SAS/OR User’s Guide: Mathematical Programming Legacy Procedures). A single invocation of PROC
OPTMODEL replaces several steps in the PROC LP statements.

>

The model assigns production of various grades of cloth to a set of machines in order to maximize profit while
meeting customer demand. Each machine has different capacities to produce the various grades of cloth.
(See the PROC LP example “An Assignment Problem” for more details.) The mathematical formulation,
where x; i represents the amount of cloth of grade ;j to produce on machine k for customer 7, follows:

max D ijk TijkXijk

subject to Y x;jk = djj for all i and j
> CjkXijk <ag forallk
Xijk =0 forall i, j, and k

The OBJECT, DEMAND, and RESOURCE data sets are the same as in the PROC LP example. A new data
set, GRADE, is added to help separate the data from the model.

166 4 Chapter 5: The OPTMODEL Procedure

title 'An Assignment Problem';

data grade (drop=i);
do i =1 to 6;
grade = 'grade'||put(i,1l.);
output;
end;
run;

data object;
input machine customer
gradel grade2 grade3 grade4 grade5 gradeé6;
datalines;

11 102 140 105 105 125 148
1 2 115 133 118 118 143 166
13 70 108 83 83 88 86
14 79 117 87 87 107 105
15 77 115 90 90 105 148
2 1 123 150 125 124 154

2 2 130 157 132 131 166

2 3 103 130 115 114 129

2 4 101 128 108 107 137

2 5 118 145 130 129 154 .
31 83 . . 97 122 147
3 2 119 . . 133 163 180
33 67 . . 91 101 101
34 85 . . 104 129 129
35 90 . . 114 134 179
4 1 108 121 79 . 112 132
4 2 121 132 92 . 130 150
4 3 78 91 59 .77 72
4 4 100 113 76 . 109 104
4 5 96 109 77 . 105 145

~.

data demand;
input customer
gradel grade2 grade3 grade4 grade5 grade6;

datalines;
100 100 150 150 175 250
300 125 300 275 310 325
400 0 400 500 340 0
250 0 750 750 0 0

0 600 300 0 210 360

b WwbNhPR

data resource;
input machine
gradel grade2 grade3 graded4 grade5 grade6 avail;

datalines;
1 .250 .275 .300 .350 .310 .295 744
2 .300 .300 .305 .315 .320 . 244

3 .350 . . .320 .315 .300 790

Example 5.3: Model Construction 4 167

4 .280 .275 .260 . .250 .295 672
The following PROC OPTMODEL statements read the data sets, build the linear programming model, solve
the model, and output the optimal solution to a SAS data set called SOLUTION:

proc optmodel;
/* declare index sets */
set CUSTOMERS;
set <str> GRADES;
set MACHINES;

/* declare parameters x*/

num return {CUSTOMERS, GRADES, MACHINES} init O;
num demand {CUSTOMERS, GRADES};

num cost {GRADES, MACHINES} init O;

num avail {MACHINES};

/* read the set of grades x/
read data grade into GRADES=[grade];

/* read the set of customers and their demands =*/
read data demand

into CUSTOMERS=[customer]

{j in GRADES} <demand[customer, j]=col(j)>;

/* read the set of machines, costs, and availability */
read data resource nomiss

into MACHINES=[machine]

{j in GRADES} <cost[j,machine]=col(j)>

avail;

/* read objective data */
read data object nomiss
into [machine customer]
{j in GRADES} <return[customer, j,machine]=col (j)>;

/* declare the model */
var AmountProduced {CUSTOMERS, GRADES, MACHINES} >= 0;
max TotalReturn = sum {i in CUSTOMERS, j in GRADES, k in MACHINES}
return[i, j, k] * AmountProducedl|i, j, k];
con req demand {i in CUSTOMERS, Jj in GRADES}:
sum {k in MACHINES} AmountProduced[i, j, k] = demandl[i, j];
con req avail {k in MACHINES}:
sum {i in CUSTOMERS, j in GRADES}
cost[j,k] * AmountProduced|i, j, k] <= avail[k];

/* call the solver and save the results =*/
solve;
create data solution
from [customer grade machine] = {i in CUSTOMERS, j in GRADES,
k in MACHINES: AmountProducedl[i, j,k].sol ne 0}
amount=AmountProduced;

168 4 Chapter 5: The OPTMODEL Procedure

/* print optimal solution */
print AmountProduced;
quit;

The statements use both numeric (NUM) and character (STR) index sets, which are populated from the
corresponding data set variables in the READ DATA statements. The OPTMODEL parameters can be either
single-dimensional (AVAIL) or multiple-dimensional (COST, DEMAND, RETURN). The RETURN and
COST parameters are given initial values of 0, and the NOMISS option in the READ DATA statement tells
PROC OPTMODEL to read only the nonmissing values from the input data sets. The model declaration
is nearly identical to the mathematical formulation. The logical condition AmountProduced[i, j, k] .sol
ne 0 in the CREATE DATA statement ensures that only the nonzero parts of the solution appear in the
SOLUTION data set. In the PROC LP example, the creation of this data set required postprocessing of the
PROC LP output data set.

The solver produces the following problem summary and solution summary:

Output 5.3.1 LP Solver Result

An Assignment Problem
Problem Summary
Objective Sense Maximization
Objective Function TotalReturn
Objective Type Linear
Number of Variables 120
Bounded Above 0
Bounded Below 120
Bounded Below and Above 0
Free 0
Fixed 0
Number of Constraints 34
Linear LE (<=) 4
Linear EQ (=) 30
Linear GE (>=) 0
Linear Range 0
Constraint Coefficients 220

Example 5.3: Model Construction 4 169

Output 5.3.1 continued

Solution Summary

Solver

Algorithm
Objective Function
Solution Status
Objective Value

Primal Infeasibility
Dual Infeasibility
Bound Infeasibility

Iterations
Presolve Time
Solution Time

LP

Dual Simplex
TotalReturn
Optimal
871426.03763

The SOLUTION data set can be processed by PROC TABULATE as follows to create a compact representation

of the solution:

proc tabulate data=solution;
class customer grade machine;

var

table (machinexcustomer),

run;

These statements produce the table shown in Output 5.3.2.

amount;

(gradexamount="'"'xsum="'");

170 4 Chapter 5: The OPTMODEL Procedure

Output 5.3.2 An Assignment Problem

An Assignment Problem

grade

gradel grade2 grade3 grade4

machine |customer

+
+

|1
I
12
I
13
I
|14
I
|5

1
+

2 13
|
|5

3 12
|
13
|
|14
I
15

1
T

4 11
|
|12
|
I3
|
|4
|
|5

[y

100.00 150.00 150.00]|
I
-
|
210.31]

300.00

256.72

750.00

92.27

143.28

I

I

I

I

-1

I

300.00 I
I

275.00]|
I
289.69|
I
750.00]
I

:
+
N
T
"
+
+
+
N
T
N
+
+
+
N
T
N
T
+
+
:
T
"
T

100.00]

+
+

300.00] 125.00

+
T

400.00]

250.00]

+
+

—+ — + — + — + — + — F — F — F — F — F+ — F+ — F — F — F — F = — — f — — —

—F — + — + — + — =+ — =+ — F — F — F — F — F — F — F+ — — — + —

+
+
N
4
N
+
+
+
I
T
:
+
+
+
N
T
:
+
+
+
I
T
:
+
+
+
+
T
:
T
+
+

N 507.73

(Continued)

Example 5.4: Set Manipulation 4 171

Output 5.3.2 continued

An Assignment Problem

grade

grade5 grade6

machine |customer

+
+

1 1
I
12
I
13
|
14
I
I5

1
+

2 13
|
I5

3 12
|
13
|
|4
I
15

"
T

4 1
I
12
I
I3
I
14
I
I5

175.00 250.00

340.00

310.00 325.00

210.00 360.00

—+ — 4+ — + — + — F — F — F — F — F — F — F — = = — 4 — — —

—+t — =+ — + — =+ — F — + — F+ — F — F — = — — 4 —

—_+ — + — +
-+ — + — +

Example 5.4: Set Manipulation

This example demonstrates PROC OPTMODEL set manipulation operators. These operators are used to
compute the set of primes up to a given limit. This example does not solve an optimization problem, but
similar set manipulation could be used to set up an optimization model. Here are the statements:

proc optmodel;
number maxprime; /% largest number to consider x*/
set composites =
union {i in 3..sqrt (maxprime) by 2} i*i..maxprime by 2xi;

172 4 Chapter 5: The OPTMODEL Procedure

set primes = {2} union (3..maxprime by 2 diff composites);

maxprime = 500;

put primes;
The set composites contains the odd composite numbers up to the value of the parameter maxprime. The even
numbers are excluded here to reduce execution time and memory requirements. The UNION aggregation
operation is used in the definition to combine the sets of odd multiples of i fori = 3,5, Any composite
number less than the value of the parameter maxprime has a divisor < 4/maxprime, so the range of i can be
limited. The set of multiples of i can also be started at i x i since smaller multiples are found in the set of
multiples for a smaller index.

You can then define the set primes. The odd primes are determined by using the DIFF operator to remove the
composites from the set of odd numbers no greater than the parameter maxprime. The UNION operator adds
the single even prime, 2, to the resulting set of primes.

The PUT statement produces the result in Output 5.4.1.

Output 5.4.1 Primes less than or equal to 500

{2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,
107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199, 211,
223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,
337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,
457,461,463,467,479,487,491,499}

Note that you were able to delay the definition of the value of the parameter maxprime until just before the
PUT statement. Since the defining expressions of the SET declarations are handled symbolically, the value
of maxprime is not necessary until you need the value of the set primes. Because the sets composites and
primes are defined symbolically, their values reflect any changes to the parameter maxprime. You can see
this update by appending the following statements to the preceding statements:

maxprime = 50;

put primes;
The additional statements produce the results in Output 5.4.2. The value of the set primes has been recomputed
to reflect the change to the parameter maxprime.

Output 5.4.2 Primes less than or equal to 50

{2,3,5,7,11,13,17,19,23,29,31,37,41,43,47}

Example 5.5: Multiple Subproblems

Many important optimization problems cannot be solved directly using a standard solver, either because the
problem has constraints that cannot be modeled directly or because the resulting model would be too large to
be practical. For these types of problems, you can use PROC OPTMODEL to synthesize solution methods
by using a combination of the existing solvers and the modeling language programming constructions. This
example demonstrates the use of multiple subproblems to solve the cutting stock problem.

Example 5.5: Multiple Subproblems 4 173

The cutting stock problem determines how to efficiently cut raw stock into finished widths based on the
demands for the final product. Consider the example from page 195 of Chvétal (1983), where raw stock has
a width of 100 inches and the demands are shown in Table 5.17.

Table 5.17 Cutting Stock Demand

Finished Width Demand

45 inches 97

35 inches 610
31 inches 395
14 inches 211

A portion of the demand can be satisfied using a cutting pattern. For example, with the demands in Table 5.17
a possible pattern cuts one final of width 35 inches, one final of width 31 inches, and two finals of width 14
inches. This gives:

100 =0%454+ 135+ 1 %31 + 2 % 14 4 waste.

The cutting stock problem can be formulated as follows, where x ; represents the number of times pattern j
appears, a;; represents the number of times demand item i appears in pattern j, d; is the demand for item 7,
w; is the width of item i, N represents the set of patterns, M represents the set of items, and W is the width
of the raw stock:

minimize) ey X/
subject to ZjeN ajjx; >d; foralli e M
X; integer, > 0 forall j e N

Also for each feasible pattern j you must have:

E wiaij < W

ieM

The difficulty with this formulation is that the number of patterns can be very large, with too many columns
x; to solve efficiently. But you can use column generation, as described on page 198 of Chvital (1983), to
generate a smaller set of useful patterns, starting from an initial feasible set.

The dual variables, 7;, of the demand constraints are used to price out the columns. From linear programming
(LP) duality theory, a column that improves the primal solution must have a negative reduced cost. For this
problem the reduced cost for column x; is

1— Z Tidij
ieM
Using this observation produces a knapsack subproblem:

minimize 1 —) ¢y Wi
subject to Y ;jcp wiai < W
a; integer, > 0 forall j e N

174 4 Chapter 5: The OPTMODEL Procedure

where the objective is equivalent to:

maximize) ;cps i

The pattern is useful if the associated reduced cost is negative:

I—Zma;‘<0

ieM
So you can use the following steps to generate the patterns and solve the cutting stock problem:

1. Initialize a set of trivial (one item) patterns.

2. Solve the problem using the LP solver.

3. Minimize the reduced cost using a knapsack solver.

4. Include the new pattern if the reduced cost is negative.

5. Repeat steps 2 through 4 until there are no more negative reduced cost patterns.

These steps are implemented in the following statements. Since adding columns preserves primal feasibility,
the statements use the primal simplex solver to take advantage of a warm start. The statements also solve the
LP relaxation of the problem, but you want the integer solution. So the statements finish by using the MILP
solver with the integer restriction applied. The result is not guaranteed to be optimal, but lower and upper
bounds can be provided for the optimal objective.

/* cutting-stock problem =*/
/* uses delayed column generation from
Chvatal's Linear Programming (1983), page 198 */

$macro csp (capacity);
proc optmodel printlevel=0;
/* declare parameters and sets x*/
num capacity = &capacity;
set ITEMS;
num demand {ITEMS};
num width {ITEMS};
num num_patterns init card(ITEMS);
set PATTERNS = 1..num_patterns;
num a {ITEMS, PATTERNS};
num c¢ {ITEMS} init O;
num epsilon = 1lE-6;

/* read input data =*/
read data indata into ITEMS=[_N_] demand width;

/* generate trivial initial columns %/
for {i in ITEMS, Jj in PATTERNS}
af[i,j] = (if (i = j) then floor(capacity/width[i]) else 0);

/* define master problem */

Example 5.5: Multiple Subproblems 4 175

var x {PATTERNS} >= 0 integer;
minimize NumberOfRaws = sum {j in PATTERNS} x[]j];
con demand_con {i in ITEMS}:

sum {j in PATTERNS} a[i, j] * x[j] >= demand[i];
problem Master include x NumberOfRaws demand_con;

/* define column generation subproblem =*/
var y {ITEMS} >= 0 integer;
maximize KnapsackObjective = sum {i in ITEMS} c[i] * yI[i];
con knapsack_con:
sum {i in ITEMS} width[i] * y[i] <= capacity;
problem Knapsack include y KnapsackObjective knapsack_con;

/* main loop */
do while (1),
print _page_ a;

/* master problem x*/
/* minimize sum_j x[]]
subj. to sum_j al[i,j] * x[j] >= demand[i]
x[j] >= 0 and integer x/
use problem Master;
put "solve master problem";
solve with 1lp relaxint /
presolver=none solver=ps basis=warmstart printfreq=1;
print x;
print demand_con.dual;
for {i in ITEMS} c[i] = demand con[i] .dual;

/* knapsack problem x*/
/* maximize sum_i c[i] * y[i]
subj. to sum_i width[i] * y[i] <= capacity

y[i] >= 0 and integer x/

use problem Knapsack;

put "solve column generation subproblem";

solve with milp / printfreq=0;

for {i in ITEMS} y[i] = round(y[i]);

print y;

print KnapsackObjective;

if KnapsackObjective <= 1 + epsilon then leave;

/* include new pattern =/

num_patterns = num patterns + 1;

for {i in ITEMS} a[i,num_patterns] = yl[i];
end;

/* solve IP, using rounded-up LP solution as warm start =*/
use problem Master;

for {j in PATTERNS} x[j] = ceil(x[j].sol);

put "solve (restricted) master problem as IP";

solve with milp / primalin;

/* cleanup solution and save to output data set x/

176 4 Chapter 5: The OPTMODEL Procedure

for {j in PATTERNS} x[j] = round(x[j].sol);
create data solution from [pattern]={j in PATTERNS: x[j] > 0}
raws=x {i in ITEMS} <col('i'||i)=al[i, j]l>;
quit;
$mend csp;

/* Chvatal, p.199 =*/

data indata;
input demand width;
datalines;

78 25.5

40 22.5

30 20

30 15

run;

%csp (91)

/* LP solution is integer x/

/* Chvatal, p.195 */

data indata;
input demand width;
datalines;

97 45

610 36

395 31

211 14

;

run;

%$csp (100)

/* LP solution is fractional =*/

The contents of the output data set for the second problem instance are shown in Output 5.5.1.

Output 5.5.1 Cutting Stock Solution

Obs pattern raws i1l i2 i3 i4
1 1 49 2 0 0 0
2 2 100 0 2 0 0
3 5 106 0 2 0 2
4 6 198 0 1 2 0

Example 5.6: Traveling Salesman Problem

This example demonstrates the use of the SUBMIT statement to execute a block of SAS statements from
within a PROC OPTMODEL session. In this case, the SUBMIT block calls the GPLOT procedure to display
intermediate results during the solution of an instance of the traveling salesman problem (TSP). The problem
is described in Example 7.4. See the “Examples” section in Chapter 2, “The OPTNET Procedure” (SAS/OR
User’s Guide: Network Optimization Algorithms), for an example of how to use PROC OPTNET to solve the
TSP.

Example 5.6: Traveling Salesman Problem 4 177

The following DATA step converts a TSPLIB instance of type EUC_2D into a SAS data set that contains the
coordinates of the vertices:

/* convert the TSPLIB instance into a data set =*/
data tspData (drop=H) ;

infile "&tsplib";

input H $1. @;

if H not in ('N','T','C','D','E');

input @1 varl-var3;
run;

The following macro generates plots of the solution and objective value:

$macro plotTSP;
/* create Annotate data set to draw subtours */
data anno (drop=xi yi xj yJj);
%$SYSTEM(2, 2, 2);
set solData(keep=xi yi xj yJj);
$LINE (xi, yi, xj, yj, =, 1, 1);
run;

titlel h=2 "TSP: Iter = &i, Objective = &&obj&i";
title2;

proc gplot data=tspData anno=anno;
axisl label=none;
symboll value=dot interpol=none
pointlabel=("#varl" nodropcollisions height=1) cv=black;
plot var3xvar2 / haxis=axisl vaxis=axisl;

run;

quit;

$mend plotTSP;

$annomac;

The following PROC OPTMODEL statements solve the TSP by using the subtour formulation and iteratively
adding subtour constraints. The SUBMIT statement calls the $plotTsSP macro to plot the solution and
objective value at each stage.

/* iterative solution using the subtour formulation =*/
proc optmodel;
set VERTICES;
set EDGES = {i in VERTICES, Jj in VERTICES: i > j};
num xc {VERTICES};
num yc {VERTICES};

num numsubtour init O;
set SUBTOUR {1l..numsubtour};

/* read in the instance and customer coordinates (xc, yc) */
read data tspData into VERTICES=[varl] xc=var2 yc=var3;

/* the cost is the euclidean distance rounded to the nearest integer x*/
num c {<i, j> in EDGES}

178 4 Chapter 5: The OPTMODEL Procedure

init floor(sqrt(((xc[i]-xc[j])**2 + (yc[i]-yc[j])=**2)) + 0.5);
var x {EDGES} binary;

/* minimize the total cost */
min obj =
sum {<i,j> in EDGES} c[i,j] » x[i,3jl;

/* each vertex has exactly one in-edge and one out-edge */
con two_match {i in VERTICES}:

sum {j in VERTICES: i > j} x[i,J]

+ sum {j in VERTICES: i < j} xI[j,i] = 2;

/* no subtours (these constraints are generated dynamically) */
con subtour elim {s in 1. .numsubtour}:
sum {<i, j> in EDGES: (i in SUBTOUR[s] and j not in SUBTOUR[s])
or (i not in SUBTOUR[s] and j in SUBTOUR[s])} x[i,]j] >= 2;

/* this starts the algorithm to find violated subtours x*/
set <num,num> EDGES];

set INITVERTICES = setof{<i, j> in EDGES1l} i;

set VERTICES];

set NEIGHBORS;

set <num, num> CLOSURE;

num component {INITVERTICES};

num numcomp init 2;

num iter init 1;

call symput ('i',trim(left (put (round(iter) , best.))));
num numiters init 1;

/* initial solve with just matching constraints x/

solve;

call symput (compress('obj'| |put (iter,best.)),
trim(left (put (round(obj) ,best.))));

/* create a data set for use by PROC GPLOT =*/
create data solData from
[i jl={<i,3j> in EDGES: x[i, j].sol > 0.5}
xi=xc[i] yi=yec[i] =xj=xc[]j] yj=ycljl;
submit;
$plotTSP;
endsubmit;
/* while the solution is disconnected, continue x/
do while (numcomp > 1);
iter = iter + 1;
call symput('i',trim(left (put (round(iter) , best.))));

/* find connected components of support graph */
EDGES1 = {<i, j> in EDGES: round(x[i, j].sol) = 1};
EDGES1 = EDGES1 union {setof {<i,j> in EDGES1l} <j,i>};
VERTICES1 = INITVERTICES;

CLOSURE = EDGESI;

Example 5.6: Traveling Salesman Problem 4 179

for {i in INITVERTICES} component[i] = O0;
for {i in VERTICESl} do;

NEIGHBORS = slice (<i, *>,CLOSURE) ;

CLOSURE = CLOSURE union (NEIGHBORS cross NEIGHBORS) ;
end;

numcomp = 0;
do while (card(VERTICES1l) > 0);
numcomp = numcomp + 1;
for {i in VERTICES1l} do;
NEIGHBORS = slice(<i, *>, CLOSURE) ;
for {j in NEIGHBORS} component[j] = numcomp;
VERTICES1 = VERTICES1l diff NEIGHBORS;
leave;
end;
end;

if numcomp = 1 then leave;

numiters = iter;
numsubtour = numsubtour + numcomp;
for {comp in 1..numcomp} do;
SUBTOUR [numsubtour—numcomp+comp]
= {i in VERTICES: component[i] = comp};
end;

solve;
call symput (compress('obj'| |put (iter,best.)),
trim(left (put (round(obj) ,best.))));

/* create a data set for use by PROC GPLOT x*/
create data solData from
[i j]l={<i,3j> in EDGES: x[i, j].sol > 0.5}
xi=xc[i] yi=yc[i] xj=xc[j] yi=ycl]l;

call symput ('numiters', put (numiters,best.));
submit;
$plotTSP;
endsubmit;
end;
quit;

The plot in Output 5.6.1 shows the solution and objective value at each stage. Each stage restricts some
subset of subtours. When you reach the final stage, you have a valid tour.

180 4 Chapter 5: The OPTMODEL Procedure

Output 5.6.1 lterative Solution of Traveling Salesman Problem

TSP: Tter =1, Objective = 625

TSP Tter = 2, Objective = 652

—

TSP: lter =3, Objective = 673

TSP: lter = 4, Objective =674

TSP: lter =5, O

bjective =675

Example 5.7: Sparse Modeling

This example demonstrates how to rewrite certain models for more efficient processing. Sometimes optimiza-
tion models that run out of memory during problem generation can be rewritten to take advantage of sparsity
to use memory more efficiently. This often occurs when a large array is modeled in a dense format but most
of its entries are zeros. Usually, the array provides problem coefficients or it contains optimization variables.

The model for this example solves the facility location problem that is described in Example 7.3. This
example is concerned with the resources that are required for PROC OPTMODEL problem generation and
solver initialization. So the size of the problem has been increased, but the model has also been modified to
make it easier to solve. In order to handle the larger problem size, the model eliminates a large number of the

potential assignments of customers to facilities based on distance, making the problem sparse.

The following code generates a random instance of the facility location problem:

%let NumCustomers 1500;
%$let NumSites = 250;
%$let SiteCapacity 50;
%$let MaxDemand = 10;

%$let xmax = 200;
%$let ymax = 100;
%$let seed = 938;

/* generate random customer locations */
data cdata (drop=i);
length name $8;
do i = 1 to &NumCustomers;
name = compress('C'||put(i,best.));
X = ranuni (&seed) * &xmax;

y = ranuni (&seed) * &ymax;
demand = 1;
output;

end;

run;

Example 5.7: Sparse Modeling 4+ 181

/* generate random site locations and fixed charge x*/

data sdata (drop=i);
length name $8;
do i = 1 to &NumSites;
name = compress ('SITE'| |put(i,best.));
X = ranuni (&seed) * &xmax;
y = ranuni (&seed) * &ymax;
fixed charge =
output;
end;
run;

proc optmodel;
performance details;
set <str> CUSTOMERS;
set <str> SITES init ({};

/* x and y coordinates of CUSTOMERS and SITES x*/

num x {CUSTOMERS union SITES};
num y {CUSTOMERS union SITES};
num demand {CUSTOMERS};
num fixed_charge {SITES},;
/* distance from customer i to site j */
num dist {i in CUSTOMERS, j in SITES}

= sqrt ((x[i] - x[J]1)*2 + (y[i] - y[31)*2);

read data cdata into CUSTOMERS=[name] x y demand;

300 * (abs(&xmax/2-x)/&xmax + abs (&ymax/2-y)/&ymax);

The following code uses a dense version of the facility location model. This model is equivalent to the model
from Example 7.3 except for the added constraint distance_at_most_30. This constraint eliminates from
consideration the assignment of customers to facilities over long distances by forcing the corresponding
Assign variables to 0. The RELOBJGAP= option prevents the solver from stopping close to the optimal
solution because of the relatively large fixed costs.

read data sdata into SITES=[name] x y fixed_ charge;

var Assign {CUSTOMERS, SITES} binary;
var Build {SITES} binary;

182 4 Chapter 5: The OPTMODEL Procedure

min CostNoFixedCharge
= sum {i in CUSTOMERS, j in SITES} dist[i, j] * Assignl[i, j];
min CostFixedCharge
= CostNoFixedCharge + sum {j in SITES} fixed_ charge[]j] * Build[j];

/* each customer assigned to exactly one site */
con assign_def {i in CUSTOMERS}:
sum {j in SITES} Assignl[i,j] = 1;

/* if customer i assigned to site j, then facility must be built at j */
con link {i in CUSTOMERS, j in SITES}:
Assign[i, j] <= Buildl[j];

/* each site can handle at most &SiteCapacity demand =/
con capacity {j in SITES}:
sum {i in CUSTOMERS} demand[i] * Assign[i, j] <=
&SiteCapacity * Build[j];

/* do not assign customer to site more than 30 units away =*/
con distance_at_most_30 {i in CUSTOMERS, j in SITES: dist[i,j] > 30}:
Assign[i, j] = O;

/* solve the MILP x/
solve with milp/timetype=real relobjgap=le-8;

quit;
If you inspect the log after running the preceding code, then you will see that the OPTMILP presolver has
pruned down the problem size considerably. If also you run the code with the SAS option FULLSTIMER

enabled on a 64-bit system, then you will notice that about 1.3GB of memory is required for the OPTMODEL
step.

The solution and timing results for the dense model are shown in Output 5.7.1. The PERFORMANCE
DETAILS statement from the model requests display of the task timing table.

Example 5.7: Sparse Modeling 4+ 183

Output 5.7.1 Dense Model Results

Solution Summary

Solver

Algorithm
Objective Function
Solution Status
Objective Value

Relative Gap

Absolute Gap

Primal Infeasibility
Bound Infeasibility
Integer Infeasibility

Best Bound
Nodes
Iterations
Presolve Time
Solution Time

Procedure Task Timing

Task

Problem Generation
Solver Initialization
Code Generation
Solver

Solver Postprocessing

Br

CostFixedCharge

T
(se

o w v

212

MILP
anch and Cut

Optimal
17994.210085

0
0
6.3360056E-7
7.0958916E-7
1.0737316E-6

17994.210085

3

13491

14.52

211.44

ime

c.) %$ Time
.58 4.23%
.25 1.44%
.21 0.09%
.32 93.74%
.15 0.51%

proc optmodel;

performance details;
set <str> CUSTOMERS;
set <str> SITES init ({};

The best approach for reducing the memory requirements is to eliminate the Assign variables that are always
going to be 0. This is accomplished in the following sparse version of the code. Instead of indexing Assign
over the crossproduct of CUSTOMERS and SITES, now the code defines a new set of pairs that satisfy the
distance requirement, CUSTOMERS_SITES. This set replaces the constraint distance_at_most_30 in the
dense model. The objective and constraints have been modified to use the new indexing scheme, with implicit
set slicing (as described in the section “More on Index Sets” on page 156) for constraints assign_def and
capacity.

/* x and y coordinates of CUSTOMERS and SITES x*/

num
num
num

x {CUSTOMERS union SITES};
y {CUSTOMERS union SITES};
demand {CUSTOMERS};

num fixed_charge {SITES},;

/* distance from customer i to

num dist {i in CUSTOMERS, j in SITES}

site j */

184 4 Chapter 5: The OPTMODEL Procedure

= sqrt ((x[i] - x[j])"2 + (y[i] - y[3])"2);

read data cdata into CUSTOMERS=[name] x y demand;
read data sdata into SITES=[name] x y fixed_charge;

set CUSTOMERS_SITES = {i in CUSTOMERS, j in SITES: dist[i, j] <= 30};
var Assign {CUSTOMERS_SITES} binary;
var Build {SITES} binary;

min CostNoFixedCharge
= sum {<i, j> in CUSTOMERS_SITES} dist[i, j] * Assign[i, j];
min CostFixedCharge
= CostNoFixedCharge + sum {j in SITES} fixed charge[]j] * Build[]j];

/* each customer assigned to exactly one site x/
con assign_def {i in CUSTOMERS}:
sum {<(i), j> in CUSTOMERS_SITES} Assign[i, j] = 1;

/* if customer i assigned to site j, then facility must be built at j */
con link {<i, j> in CUSTOMERS_SITES}:
Assign[i, j] <= Build[j];

/* each site can handle at most &SiteCapacity demand */
con capacity {j in SITES}:
sum {<i, (j)> in CUSTOMERS_SITES} demand[i] * Assign[i, j] <=
&SiteCapacity * Build[j];

/* solve the MILP x/
solve with milp/timetype=real relobjgap=le-8;

quit;
The log from running the preceding code shows that the OPTMILP presolver does not find anything to

improve with this version of the model. On a 64-bit system, the FULLSTIMER option shows that memory
requirements have been reduced to about S80MB, less than half the requirements of the previous model.

The solution and timing results for the dense model are shown in Output 5.7.2. Note that the dense model
(Output 5.7.1) and the sparse model (Output 5.7.2) are equivalent after presolver processing and generate the
same result using similar amounts of solver time. On the other hand, problem generation time is significantly
reduced as are other times including presolve time. Both models used the solver option TIMETYPE=REAL
so that all times are reported in seconds of real time.

Example 5.8: Chemical Equilibrium 4 185

Output 5.7.2 Sparse Model Results

Solution Summary

Solver

Algorithm
Objective Function
Solution Status
Objective Value

Relative Gap

Absolute Gap

Primal Infeasibility
Bound Infeasibility
Integer Infeasibility

Best Bound
Nodes
Iterations
Presolve Time
Solution Time

Procedure Task Timing

Task

Problem Generation
Solver Initialization
Code Generation
Solver

Solver Postprocessing

Br

CostFixedCharge

T
(se

2.

0

0.
215.

MILP
anch and Cut

Optimal
17994.210085

0
0
6.3360056E-7
7.0958916E-7
1.0737316E-6

17994.210085

3

13491

10.39

215.41

ime

c.) %$ Time
43 1.11%
.39 0.18%
03 0.01%
73 98.65%
.09 0.04%

Example 5.8: Chemical Equilibrium

This example illustrates how to convert PROC NLP code that handles arrays into PROC OPTMODEL form.
The following PROC NLP model finds an equilibrium state for a mixture of chemicals. The same model is
used in “Example 7.8: Chemical Equilibrium” in Chapter 7, “The NLP Procedure” (SAS/OR User’s Guide:
Mathematical Programming Legacy Procedures).

proc nlp tech=tr pall;

array c[10]

-6.089 -17.164 -34.054

-5.914 -24.721

-22.179;

-14.986 -24.100 -10.708 -26.662
array x[10] x1-x10;
min y;
parms x1-x10 = .1;
bounds 1l.e-6 <= x1-x10;
lincon 2. = x1 + 2. * x2 + 2. *» x3 + x6 + x10,
1. = x4 + 2. » x5 + x6 + x7,
1. = x3 + x7 + x8 + 2. » x9 + x10;
s = x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9

+ x10;

186 4 Chapter 5: The OPTMODEL Procedure

do j =1 to 10;
y =y + x[3] * (c[3] + log(x[3j] / s));
end;
run;

The following statements show a corresponding PROC OPTMODEL model:

proc optmodel;
set CMP = 1..10;
number c{CMP} = [-6.089 -17.164 -34.054 -5.914 -24.721
-14.986 -24.100 -10.708 —-26.662 -22.179];
var x{CMP} init 0.1 >= 1l.e-6;
con 2. = x[1] + 2. * x[2] + 2. * x[3] + x[6] + x[10],
1. x[4] + 2. * x[5] + x[6] + x[7],
1. = x[3] + x[7] + x[8] + 2. » x[9] + x[10];
/* replace the variable s in the PROC NLP model =*/

impvar s = sum{i in CMP} x[i];

min y = sum{j in CMP} x[3j] * (c[j] + log(x[3j] / s));
solve;

print x y;

The PROC OPTMODEL model uses the set CMP to represent the set of compounds, which are numbered 1
to 10 in the example. The array ¢ was initialized by using the equivalent PROC OPTMODEL syntax. The
individual array locations could also have been initialized by assignment or by READ DATA statements.

The VAR declaration for variable x combines the VAR and BOUNDS statements of the PROC NLP model.
The index set of the array is based on the set of compounds CMP to simplify changes to the model.

The linear constraints are similar in form to the PROC NLP model. However, the PROC OPTMODEL
version uses the array form of the variable names because it treats arrays as distinct variables, not as aliases
of lists of scalar variables.

The implicit variable s replaces the intermediate variable of the same name in the PROC NLP model. This
is an example of translating an intermediate variable from the other models to PROC OPTMODEL. An
alternative way is to use an additional constraint for every intermediate variable. Instead of declaring objective
s as in the preceding statements, you can use the following statements:

var s;
con s = sum{i in CMP} x[i];

Note that this alternative formulation passes an extra variable and constraint to the solver. This formulation
can sometimes be solved more efficiently, depending on the characteristics of the model.

The PROC OPTMODEL version uses a SUM operator over the set CMP, which enhances the flexibility of
the model to accommodate possible changes in the set of compounds.

In the PROC NLP model, the objective function y is determined by an explicit loop. The DO loop in PROC
NLP is replaced by a SUM aggregation operation in PROC OPTMODEL. The accumulation in the PROC
NLP model is now performed by PROC OPTMODEL by using the SUM operator.

This PROC OPTMODEL model can be generalized further. Note that the array initialization and constraints
assume a fixed set of compounds. You can rewrite the model to handle an arbitrary number of compounds

Example 5.8: Chemical Equilibrium 4 187

and chemical elements. The new model loads the linear constraint coefficients from a data set along with the
objective coefficients for the parameter c, as follows:

data comp;
input ¢ a_1 a_2 a_3;
datalines;

-6.
-17
-34
-5.

-24.
-14.
-24.
-10.
-26.
-22.

4

089

.164
.054
914

721
986
100
708
662
179

1

2
2
0
0
1
0
0
0
1

data atom;
input b QQ;
datalines;

2.

’

1. 1.

0

oOookr LMK OO

FNRPRPFPLOOOHKODO

proc optmodel;
set CMP;
set ELT,;
number c{CMP};

number a{ELT,CMP};

number b{ELT};

read data atom into ELT=[_n_] b;

read data comp into CMP=[_n_]

{i in ELT} < a[i,_n_J]=col("a_"||i) >;

var x{CMP} init 0.1 >= 1l.e-6;

con bal{i in ELT}: b[i] = sum{j in CMP} ali, jl*x[j];

Cc

impvar s =
min y = sum{j in CMP} x[]j] * (c[j] + log(x[j] / s));
print a b;

solve;

print x;

sum{i in CMP} x[i];

This version adds coefficients for the linear constraints to the COMP data set. The data set variable a_n
represents the number of atoms in the compound for element n. The READ DATA statement for COMP uses
the iterated column syntax to read each of the data set variables a_n into the appropriate location in the array
a. In this example the expanded data set variable names are a_1, a_2, and a_3.

The preceding version also adds a new set, ELT, of chemical elements and a numeric parameter, b, that
represents the left-hand side of the linear constraints. The data values for the parameters ELT and b are read
from the data set ATOM. The model can handle varying sets of chemical elements because of this extra data
set and the new parameters.

The linear constraints have been converted to a single, indexed family of constraints. One constraint is applied
for each chemical element in the set ELT. The constraint expression uses a simple form that applies generally

188 4 Chapter 5: The OPTMODEL Procedure

to linear constraints. The following PRINT statement in the model shows the values that are read from the
data sets to define the linear constraints:

print a b;

The PRINT statements in the model produce the results shown in Output 5.8.1.

Output 5.8.1 PROC OPTMODEL Output

)
o
o
o
=
)
=
[y
o
o
o

[1] b

N
[y

—
[y

—
L]

.04066848
.14773067
.78315260
.00141459
.48524616
.00069358
.02739955
.01794757
.03731444
.09687143

O W oo JoULd WDNR
O OO O0OO0OO0OOoOOoOOoOOo

[

In the preceding model, the chemical elements and compounds are designated by numbers. So in the PRINT
output, for example, the row that is labeled “3” represents the amount of the compound HyO. PROC
OPTMODEL is capable of using more symbolic strings to designate array indices. The following version of
the model uses strings to index arrays:

data comp;
input name $ ¢ a_h a_n a_o;

datalines;
H -6.089 100
H2 -17.164 2 0 O
H20 -34.054 201
N -5.914 010
N2 -24.721 02 0
NH -14.986 110
NO -24.100 011
o] -10.708 001

Example 5.8: Chemical Equilibrium 4 189

02 -26.662 0
1

02
OH -22.179 01

data atom;
input name $ b;

datalines;
H 2.
N 1.

o 1.
proc optmodel;
set<string> CMP;
set<string> ELT;
number c{CMP};
number a{ELT,CMP};
number b{ELT};
read data atom into ELT=[name] b;
read data comp into CMP=[name]
¢ {i in ELT} < a[i,name]=col("a_"||i) >;
var x{CMP} init 0.1 >= 1l.e-6;
con bal{i in ELT}: b[i] = sum{j in CMP} ali, jl*x[]j];

impvar s = sum{i in CMP} x[i];

min y = sum{j in CMP} x[j] * (c[j] + log(x[j] / s));
solve;

print x;

In this model, the sets CMP and ELT are now sets of strings. The data sets provide the names of the compounds
and elements. The names of the data set variables for atom counts in the data set COMP now include the
chemical element symbol as part of their spelling. For example, the atom count for element H (hydrogen)
is named a_h. Note that these changes did not require any modification to the specifications of the linear
constraints or of the objective.

The PRINT statement in the preceding statements produces the results shown in Output 5.8.2. The indices of
variable x are now strings that represent the actual compounds.

Output 5.8.2 PROC OPTMODEL Output with Strings

[1] x
H 0.04066848
H2 0.14773067
H20 0.78315260
N 0.00141459
N2 0.48524616
NH 0.00069358
NO 0.02739955
o) 0.01794757
02 0.03731444
OH 0.09687143

190 4 Chapter 5: The OPTMODEL Procedure

References
Abramowitz, M. and Stegun, 1. A. (1972), Handbook of Mathematical Functions, New York: Dover
Publications.

Bazaraa, M. S., Sherali, H. D., and Shetty, C. M. (1993), Nonlinear Programming: Theory and Algorithms,
New York: John Wiley & Sons.

Chvatal, V. (1983), Linear Programming, New York: W. H. Freeman.

Dennis, J. E. and Schnabel, R. B. (1983), Numerical Methods for Unconstrained Optimization and Nonlinear
Equations, Englewood Cliffs, NJ: Prentice-Hall.

Fletcher, R. (1987), Practical Methods of Optimization, 2nd Edition, Chichester, UK: John Wiley & Sons.

Nocedal, J. and Wright, S. J. (1999), Numerical Optimization, New York: Springer-Verlag.

Chapter 6

The Linear Programming Solver

Contents

Overview: LP Solver e
Getting Started: LP Solver
Syntax: LP Solver e e

Functional Summary L
LP Solver Options e e e
Details: LP Solver
Presolve

Pricing Strategies for the Primal and Dual Simplex Solvers

The Network Simplex Algorithm

The Interior Point Algorithm oo

Iteration Log for the Primal and Dual Simplex Solvers

Iteration Log for the Network Simplex Solver

Iteration Log for the Interior Point Solver

Iteration Log for the Crossover Algorithm

Concurrent LP e

Parallel Processing e

Problem Statistics e

Variable and Constraint Status e
Irreducible Infeasible Set
Macro Variable OROPTMODEL
Examples: LP Solver e

Example 6.1: DietProblem
Example 6.2: Reoptimizing the Diet Problem Using BASISSWARMSTART

Example 6.3: Two-Person Zero-Sum Game

Example 6.4: Finding an Irreducible Infeasible Set

Example 6.5: Using the Network Simplex Solver
Example 6.6: Migration to OPTMODEL: Generalized Networks
Example 6.7: Migration to OPTMODEL: Maximum Flow
Example 6.8: Migration to OPTMODEL: Production, Inventory, Distribution
Example 6.9: Migration to OPTMODEL: ShortestPath

References

192
192
195
195
196
202
202
202
202
203
205
206
206
207
208
208
208
209
210
211
214
214
216
223
226
229
237
241
244
253
256

192 4 Chapter 6: The Linear Programming Solver

Overview: LP Solver

The OPTMODEL procedure provides a framework for specifying and solving linear programs (LPs). A
standard linear program has the following formulation:

T

min c¢'x
subjectto Ax {>,=,<} b
I<x<u
where
x € R is the vector of decision variables
A € R™" jsthe matrix of constraints
c € R is the vector of objective function coefficients
b € R™" is the vector of constraints right-hand sides (RHS)
1 € R” is the vector of lower bounds on variables
u € R is the vector of upper bounds on variables

The following LP solvers are available in the OPTMODEL procedure:

 primal simplex solver
* dual simplex solver
* network simplex solver

* interior point solver

The primal and dual simplex solvers implement the two-phase simplex method. In phase I, the solver tries
to find a feasible solution. If no feasible solution is found, the LP is infeasible; otherwise, the solver enters
phase II to solve the original LP. The network simplex solver extracts a network substructure, solves this
using network simplex, and then constructs an advanced basis to feed to either primal or dual simplex. The
interior point solver implements a primal-dual predictor-corrector interior point algorithm. If any of the
decision variables are constrained to be integer-valued, then the relaxed version of the problem is solved.

Getting Started: LP Solver

The following example illustrates how you can use the OPTMODEL procedure to solve linear programs.
Suppose you want to solve the following problem:

max Xxi + X2 + X3
subjectto 3x; + 2x; — x3 < 1
—2x1 — 3x2» + 2x3 < 1
X1, X2, X3 > 0

Getting Started: LP Solver 4 193

You can use the following statements to call the OPTMODEL procedure for solving linear programs:

proc optmodel;
var x{i in 1..3} >= 0;

max f = x[1] + x[2] +

con cl: 3xx[1l] + 2*x[2]

x[3];
x[3] <= 1;

con c2: -2xx[1l] - 3*x[2] + 2*x[3] <= 1;
solve with 1lp / algorithm = ps presolver = none logfreq = 1;

print x;
quit;

The optimal solution and the optimal objective value are displayed in Figure 6.1.

Figure 6.1 Solution Summary

Number

Free
Fixed

Number
Linear
Linear
Linear
Linear

The

Objective Se
Objective Fu
Objective Ty

of Va

of Co
LE (<
EQ (=
GE (>
Range

Perf

OPTMODEL Procedure

Problem Summary

nse Maximization

Bounded Above
Bounded Below
Bounded Below and Above

nction 3
pe Linear
riables 3
0
3
0
0
0
nstraints 2
=) 2
) 0
=) 0
0
6

Constraint Coefficients

ormance Information

Execution Mode Single—-Machine
Number of Threads 1

194 4 Chapter 6: The Linear Programming Solver

Figure 6.1 continued

Solution Summary

Solver LP
Algorithm Primal Simplex
Objective Function £
Solution Status Optimal
Objective Value 8
Primal Infeasibility 0
Dual Infeasibility 0
Bound Infeasibility 0
Iterations 5
Presolve Time 0.00
Solution Time 0.00

[1] x

1 0

2 3

3 5

The iteration log displaying problem statistics, progress of the solution, and the optimal objective value is
shown in Figure 6.2.

Figure 6.2 Log

NOTE: Problem generation will use 4 threads.

NOTE: The problem has 3 variables (0 free, 0 fixed).

NOTE: The problem has 2 linear constraints (2 LE, 0 EQ, 0 GE, 0 range).

NOTE: The problem has 6 linear constraint coefficients.

NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).

NOTE: The LP presolver value NONE is applied.

NOTE: The LP presolver formulated the dual of the problem.

NOTE: The presolved problem has 2 variables, 3 constraints, and 6 constraint
coefficients.

NOTE: The LP solver is called.

NOTE: The Primal Simplex algorithm is used.

Objective Entering Leaving
Phase Iteration Value Time Variable Variable
P1 1 2.000000E+00 0 cl x[1] (S)
P1 2 1.500000E+00 0 c2 x[3] (S)
P1 3 1.000000E+00 0 x[1] (S) x[2] (S)
P1 4 0.000000E+00 0
P 2 5 8.000000E+00 0

NOTE: Optimal.
NOTE: Objective = 8.
NOTE: The Primal Simplex solve time is 0.00 seconds.

Syntax: LP Solver 4 195

Syntax: LP Solver

The following statement is available in the OPTMODEL procedure:
SOLVE WITH LP </ options> ;

Functional Summary

Table 6.1 summarizes the list of options available for the SOLVE WITH LP statement, classified by function.

Table 6.1 Options for the LP Solver
Description Option
Solver Options
Specifies the type of solver ALGORITHM=
Specifies the type of solver called after network ALGORITHM2=
simplex
Enables or disables IIS detection I1S=
Presolve Option
Specifies the type of presolve PRESOLVER=
Controls the dualization of the problem DUALIZE=
Control Options
Specifies the feasibility tolerance FEASTOL=
Specifies the frequency of printing solution progress LOGFREQ=
Specifies the detail of solution progress printed in log ~LOGLEVEL=
Specifies the maximum number of iterations MAXITER=
Specifies the time limit for the optimization process MAXTIME=
Specifies the optimality tolerance OPTTOL=
Specifies units of CPU time or real time TIMETYPE=
Simplex Algorithm Options
Specifies the type of initial basis BASIS=
Specifies the type of pricing strategy PRICETYPE=
Specifies the queue size for determining entering QUEUESIZE=
variable
Enables or disables scaling of the problem SCALE=
Specifies the initial seed for the random number SEED=
generator
Interior Point Algorithm Options
Enables or disables interior crossover CROSSOVER=
Specifies the stopping criterion based on duality gap STOP_DG=
Specifies the stopping criterion based on dual STOP_DI=
infeasibility
Specifies the stopping criterion based on primal STOP_PI=
infeasibility
Decomposition Algorithm Options
Enables decomposition algorithm and specifies general DECOMP=()

control options

196 4 Chapter 6: The Linear Programming Solver

Table 6.1 (continued)

Description Option

Specifies options for the master problem DECOMP_MASTER=()

Specifies options for the subproblem DECOMP_SUBPROB=()
LP Solver Options

This section describes the options recognized by the LP solver. These options can be specified after a forward
slash (/) in the SOLVE statement, provided that the LP solver is explicitly specified using a WITH clause.

If the LP solver terminates before reaching an optimal solution, an intermediate solution is available. You can
access this solution by using the .sol variable suffix in the OPTMODEL procedure. See the section “Suffixes”
on page 132 for details.

Solver Options

IS=number | string
specifies whether the LP solver attempts to identify a set of constraints and variables that form an
irreducible infeasible set (IIS). Table 6.2 describes the valid values of the IIS= option.

Table 6.2 Values for [IS= Option

number string Description
0 OFF Disables IIS detection.
1 ON Enables IIS detection.

If an IIS is found, information about the infeasibilities can be found in the .status values of the
constraints and variables. The default value of this option is OFF. See the section “Irreducible
Infeasible Set” on page 210 for details about the IIS= option. See “Suffixes” on page 132 for details
about the .status suffix.

ALGORITHM=o0ption
SOLVER=o0ption
SOL=option
specifies one of the following LP solvers:

Option Description

PRIMAL (PS) Uses primal simplex solver.

DUAL (DS) Uses dual simplex solver.

NETWORK (NS) Uses network simplex solver.

INTERIORPOINT (IP) Uses interior point solver.

CONCURRENT (CON) Uses several different algorithms
in parallel.

The valid abbreviated value for each option is indicated in parentheses. By default, the dual simplex

LP Solver Options 4 197

solver is used.

ALGORITHM2=0ption

SOLVER2=option
specifies one of the following LP solvers if ALGORITHM=NS:

Option Description
PRIMAL (PS) Uses primal simplex solver (after network simplex).
DUAL (DS) Uses dual simplex solver (after network simplex).

The valid abbreviated value for each option is indicated in parentheses. By default, the LP solver
decides which algorithm is best to use after calling the network simplex solver on the extracted network.

Presolve Options

PRESOLVER=number | string
specifies one of the following presolve options:

number string Description

-1 AUTOMATIC Applies presolver by using default settings.

0 NONE Disables the presolver.

1 BASIC Performs basic presolve such as removing empty
rows,
columns, and fixed variables.

2 MODERATE Performs basic presolve and applies other inexpensive
presolve techniques.

3 AGGRESSIVE Performs moderate presolve and applies other

aggressive (but expensive) presolve techniques.

The default option is AUTOMATIC. See the section “Presolve” on page 202 for details.

DUALIZE=number | string
controls the dualization of the problem:

number string Description
-1 AUTOMATIC The presolver uses a heuristic to decide whether to
dualize the problem or not.
0 OFF Disables dualization. The optimization problem is
solved in the form that you specify.
1 ON The presolver formulates the dual of the linear opti-

mization problem.

Dualization is usually helpful for problems that have many more constraints than variables. You can
use this option with all simplex algorithms in the SOLVE WITH LP statement, but it is most effective
with the primal and dual simplex algorithms.

The default option is AUTOMATIC.

198 4 Chapter 6: The Linear Programming Solver

Control Options

FEASTOL=¢
specifies the feasibility tolerance, € €[1E-9, 1E-4], for determining the feasibility of a variable. The
default value is 1E-6.

LOGFREQ=k

PRINTFREQ=k
specifies that the printing of the solution progress to the iteration log is to occur after every K iterations.
The print frequency, k, is an integer between zero and the largest four-byte signed integer, which is
231 — 1.

The value k = 0 disables the printing of the progress of the solution. If the primal or dual simplex
algorithms are used, the default value of this option is determined dynamically according to the problem
size. If the network simplex algorithm is used, the default value of this option is 10,000. If the interior
point algorithm is used, the default value of this option is 1.

LOGLEVEL=number | string

PRINTLEVEL2=number | string
controls the amount of information displayed in the SAS log by the LP solver, from a short description
of presolve information and summary to details at each iteration. Table 6.7 describes the valid values
for this option.

Table 6.7 Values for LOGLEVEL= Option

number string Description
0 NONE Turns off all solver-related messages to SAS log.
1 BASIC Displays a solver summary after stopping.

2 MODERATE Prints a solver summary and an iteration log by
using the interval dictated by the LOGFREQ= op-
tion.

3 AGGRESSIVE Prints a detailed solver summary and an itera-
tion log by using the interval dictated by the
LOGFREQ= option.

The default value is MODERATE.

MAXITER=K
specifies the maximum number of iterations. The value k can be any integer between one and the
largest four-byte signed integer, which is 23! — 1. If you do not specify this option, the procedure
does not stop based on the number of iterations performed. For network simplex, this iteration limit
corresponds to the solver called after network simplex (either primal or dual simplex).

MAXTIME=t
specifies an upper limit of ¢ units of time for the optimization process, including problem generation
time and solution time. The value of the TIMETYPE= option determines the type of units used. If you
do not specify the MAXTIME= option, the solver does not stop based on the amount of time elapsed.
The value of f can be any positive number; the default value is the positive number that has the largest
absolute value that can be represented in your operating environment.

LP Solver Options 4 199

OPTTOL=¢
specifies the optimality tolerance, € € [1E-9, 1E—4], for declaring optimality. The default value is
1E-6.

TIMETYPE=number | string
specifies the units of time used by the MAXTIME= option and reported by the PRESOLVE_TIME
and SOLUTION_TIME terms in the _ OROPTMODEL _ macro variable. Table 6.8 describes the valid
values of the TIMETYPE= option.

Table 6.8 Values for TIMETYPE= Option

number string Description
0 CPU Specifies units of CPU time.
1 REAL Specifies units of real time.

The “Optimization Statistics” table, an output of the OPTMODEL procedure if you specify PRINT-
LEVEL=2 in the PROC OPTMODEL statement, also includes the same time units for Presolver Time
and Solver Time. The other times (such as Problem Generation Time) in the “Optimization Statistics”
table are also in the same units.

The default value of the TIMETYPE= option depends on the algorithm used and on various options.
When the solver is used with distributed or multithreaded processing, then by default TIMETYPE=
REAL. Otherwise, by default TIMETYPE= CPU. Table 6.9 describes the detailed logic for determining
the default; the first context in the table that applies determines the default value. The NTHREADS= and
NODES= options are specified in the PERFORMANCE statement of the OPTMODEL procedure. For
more information about the NTHREADS= and NODES= options, see the section “PERFORMANCE
Statement” on page 21 in Chapter 4, “Shared Concepts and Topics.”

Table 6.9 Default Value for TIMETYPE= Option

Context Default
Solver is invoked in an OPTMODEL COFOR loop REAL
NODES-= value is nonzero for the decomposition algorithm REAL

NTHREADS= value is greater than 1 and NODES=0 for the de- REAL
composition algorithm

NTHREADS= value is greater than 1 and ALGORITHM=IP or REAL
ALGORITHM=CON

Otherwise CPU

Simplex Algorithm Options

BASIS=number | string
specifies the following options for generating an initial basis:

number string Description
0 CRASH Generate an initial basis by using crash
techniques (Maros 2003). The procedure creates a
triangular basic matrix consisting of both decision
variables and slack variables.

200 4 Chapter 6: The Linear Programming Solver

number string Description
1 SLACK Generate an initial basis by using all slack variables.
2 WARMSTART Start the primal and dual simplex solvers with avail-
able basis.

The default option is determined automatically based on the problem structure. For network simplex,
this option has no effect.

PRICETYPE=number | string
specifies one of the following pricing strategies for the primal and dual simplex solvers:

number string Description
0 HYBRID Use hybrid Devex and steepest-edge pricing
strategies. Available for primal simplex solver only.
1 PARTIAL Use partial pricing strategy. Optionally, you can

specify QUEUESIZE=. Available for primal
simplex solver only.
2 FULL Use the most negative reduced cost pricing strategy.
DEVEX Use Devex pricing strategy.
4 STEEPESTEDGE Use steepest-edge pricing strategy.

W

The default option is determined automatically based on the problem structure. For the network simplex
solver, this option applies only to the solver specified by the ALGORITHM?2= option. See the section
“Pricing Strategies for the Primal and Dual Simplex Solvers” on page 202 for details.

QUEUESIZE=k
specifies the queue size, k € [1, n], where n is the number of decision variables. This queue is used for
finding an entering variable in the simplex iteration. The default value is chosen adaptively based on
the number of decision variables. This option is used only when PRICETYPE=PARTIAL.

SCALE=number | string
specifies one of the following scaling options:

number string Description
0 NONE Disable scaling.
-1 AUTOMATIC Automatically apply scaling procedure if necessary.

The default option is AUTOMATIC.

SEED=number
specifies the initial seed for the random number generator. Because the seed affects the perturbation
in the simplex algorithms, the result might be a different optimal solution and a different solver path,
but the effect is usually negligible. The value of number can be any positive integer up to the largest
four-byte signed integer, which is 23! — 1. By default, SEED=100.

LP Solver Options 4 201

Interior Point Algorithm Options

CROSSOVER=number | string
specifies whether to convert the interior point solution to a basic simplex solution. The values of this

option are:
number string Description
0 OFF Disable crossover.
1 ON Apply the crossover algorithm to the interior point

solution.

If the interior point algorithm terminates with a solution, the crossover algorithm uses the interior
point solution to create an initial basic solution. After performing primal fixing and dual fixing, the
crossover algorithm calls a simplex algorithm to locate an optimal basic solution. The default value of
the CROSSOVER-= option is OFF.

STOP_DG=§
specifies the desired relative duality gap, § €[1E-9, 1E-4]. This is the relative difference between the
primal and dual objective function values and is the primary solution quality parameter. The default
value is 1E-6. See the section “The Interior Point Algorithm” on page 203 for details.

STOP_DI=j
specifies the maximum allowed relative dual constraints violation, 8 € [1E-9, 1E—4]. The default
value is 1E-6. See the section “The Interior Point Algorithm™ on page 203 for details.

STOP_Pl:CY
specifies the maximum allowed relative bound and primal constraints violation, @ €[1E-9, 1E-4]. The
default value is 1E-6. See the section “The Interior Point Algorithm” on page 203 for details.

Decomposition Algorithm Options

The following options are available for the decomposition algorithm in the LP solver. For information about
the decomposition algorithm, see Chapter 14, “The Decomposition Algorithm.”

DECOMP=(options)
enables the decomposition algorithm and specifies overall control options for the algorithm. For more
information about this option, see Chapter 14, “The Decomposition Algorithm.”

DECOMP_MASTER=(options)
specifies options for the master problem. For more information about this option, see Chapter 14, “The
Decomposition Algorithm.”

DECOMP_SUBPROB=(options)
specifies option for the subproblem. For more information about this option, see Chapter 14, “The
Decomposition Algorithm.”

202 4 Chapter 6: The Linear Programming Solver

Details: LP Solver

Presolve

Presolve in the simplex LP solvers of PROC OPTMODEL uses a variety of techniques to reduce the problem
size, improve numerical stability, and detect infeasibility or unboundedness (Andersen and Andersen 1995;
Gondzio 1997). During presolve, redundant constraints and variables are identified and removed. Presolve
can further reduce the problem size by substituting variables. Variable substitution is a very effective
technique, but it might occasionally increase the number of nonzero entries in the constraint matrix.

In most cases, using presolve is very helpful in reducing solution times. You can enable presolve at different
levels or disable it by specifying the PRESOLVER= option.

Pricing Strategies for the Primal and Dual Simplex Solvers

Several pricing strategies for the primal and dual simplex solvers are available. Pricing strategies determine
which variable enters the basis at each simplex pivot. These can be controlled by specifying the PRICETYPE=
option.

The primal simplex solver has the following five pricing strategies:

PARTIAL scans a queue of decision variables to find an entering variable. You can optionally
specify the QUEUESIZE= option to control the length of this queue.

FULL uses Dantzig’s most violated reduced cost rule (Dantzig 1963). It compares the
reduced cost of all decision variables, and selects the variable with the most violated
reduced cost as the entering variable.

DEVEX implements the Devex pricing strategy developed by Harris (1973).
STEEPESTEDGE uses the steepest-edge pricing strategy developed by Forrest and Goldfarb (1992).
HYBRID uses a hybrid of the Devex and steepest-edge pricing strategies.

The dual simplex solver has only three pricing strategies available: FULL, DEVEX, and STEEPESTEDGE.

The Network Simplex Algorithm

The network simplex solver in PROC OPTMODEL attempts to leverage the speed of the network simplex
algorithm to more efficiently solve linear programs by using the following process:

1. It heuristically extracts the largest possible network substructure from the original problem.

2. It uses the network simplex algorithm to solve for an optimal solution to this substructure.

3. It uses this solution to construct an advanced basis to warm-start either the primal or dual simplex
solver on the original linear programming problem.

The Interior Point Algorithm 4 203

The network simplex algorithm is a specialized version of the simplex algorithm that uses spanning-tree
bases to more efficiently solve linear programming problems that have a pure network form. Such LPs can
be modeled using a formulation over a directed graph, as a minimum-cost flow problem. Let G = (N, A) be
a directed graph, where N denotes the nodes and A denotes the arcs of the graph. The decision variable x;;
denotes the amount of flow sent between node i and node j. The cost per unit of flow on the arcs is designated
by ¢;j, and the amount of flow sent across each arc is bounded to be within [/;;, u;;]. The demand (or supply)
at each node is designated as b;, where b; > 0 denotes a supply node and b; < 0 denotes a demand node.
The corresponding linear programming problem is as follows:

min (i, j)ed CijXij
subject to Z(i,j)eA Xij — Z(j,i)eA Xj; = b VieN
Xij < Ujj V(i,j)GA
Xij > l,'j V@i, j) e A.

The network simplex algorithm used in PROC OPTMODEL is the primal network simplex algorithm. This
algorithm finds the optimal primal feasible solution and a dual solution that satisfies complementary slackness.
Sometimes the directed graph G is disconnected. In this case, the problem can be decomposed into its weakly
connected components, and each minimum-cost flow problem can be solved separately. After solving each
component, the optimal basis for the network substructure is augmented with the non-network variables and
constraints from the original problem. This advanced basis is then used as a starting point for the primal or
dual simplex method. The solver automatically selects the solver to use after network simplex. However, you
can override this selection with the ALGORITHM?2= option.

The network simplex algorithm can be more efficient than the other solvers on problems that have a large
network substructure. The size of this network structure can be seen in the log.

The Interior Point Algorithm

The interior point LP solver in PROC OPTMODEL implements an infeasible primal-dual predictor-corrector
interior point algorithm. To illustrate the algorithm and the concepts of duality and dual infeasibility, consider
the following LP formulation (the primal):

min c¢Tx

subjectto Ax>Db
x>0

The corresponding dual is as follows:

max bly
subjectto ATy + w = ¢
y =20
w > 0

where y € R™ refers to the vector of dual variables and w € R” refers to the vector of dual slack variables.

204 4 Chapter 6: The Linear Programming Solver

The dual makes an important contribution to the certificate of optimality for the primal. The primal and
dual constraints combined with complementarity conditions define the first-order optimality conditions, also
known as KKT (Karush-Kuhn-Tucker) conditions, which can be stated as follows:

Ax—s = b (Primal Feasibility)
ATy +w = ¢ (Dual Feasibility)
WXe = 0 (Complementarity)
SYe = 0 (Complementarity)
x,y,w,s > 0
where e = (1,...,1)T of appropriate dimension and s € R™ is the vector of primal slack variables.

NOTE: Slack variables (the s vector) are automatically introduced by the solver when necessary; it is therefore
recommended that you not introduce any slack variables explicitly. This enables the solver to handle slack
variables much more efficiently.

The letters X, Y, W, and S denote matrices with corresponding x, y, w, and s on the main diagonal and zero
elsewhere, as in the following example:

X1 0 0

0 X2 0
X=)

0 O Xn

If (x*,y*, w*, s*) is a solution of the previously defined system of equations representing the KK T conditions,
then x* is also an optimal solution to the original LP model.

At each iteration the interior point algorithm solves a large, sparse system of linear equations as follows:

YIS A Ay | | &
AT XT'W || Ax | T | ©
where Ax and Ay denote the vector of search directions in the primal and dual spaces, respectively; ® and

& constitute the vector of the right-hand sides.

The preceding system is known as the reduced KKT system. The interior point solver uses a preconditioned
quasi-minimum residual algorithm to solve this system of equations efficiently.

An important feature of the interior point solver is that it takes full advantage of the sparsity in the constraint
matrix, thereby enabling it to efficiently solve large-scale linear programs.

The interior point algorithm works simultaneously in the primal and dual spaces. It attains optimality when
both primal and dual feasibility are achieved and when complementarity conditions hold. Therefore it is of
interest to observe the following four measures:

* Relative primal infeasibility measure o:

_ IAx—b—s]s
bl + 1

Iteration Log for the Primal and Dual Simplex Solvers 4 205

* Relative dual infeasibility measure j:

g o= ATy —wl
ez + 1

* Relative duality gap §:
_ le"x—bTy|
[cTx| + 1

* Absolute complementarity y:

n m
Yy = inwi +Z)’i3i

i=1 i=1

where ||v||, is the Euclidean norm of the vector v. These measures are displayed in the iteration log.

Iteration Log for the Primal and Dual Simplex Solvers

The primal and dual simplex solvers implement a two-phase simplex algorithm. Phase I finds a feasible
solution, which phase II improves to an optimal solution.

When LOGFREQ=1, the following information is printed in the iteration log:

Algorithm indicates which simplex method is running by printing the letter P (primal) or D (dual).
Phase indicates whether the solver is in phase I or phase II of the simplex method.

Iteration indicates the iteration number.

Objective Value indicates the current amount of infeasibility in phase I and the primal objective value of

the current solution in phase II.
Time indicates the time elapsed (in seconds).

Entering Variable indicates the entering pivot variable. A slack variable that enters the basis is indicated
by the corresponding row name followed by “(S)”. If the entering nonbasic variable
has distinct and finite lower and upper bounds, then a “bound swap” can take place in
the primal simplex method.

Leaving Variable indicates the leaving pivot variable. A slack variable that leaves the basis is indicated
by the corresponding row name followed by “(S)”. The leaving variable is the same as
the entering variable if a bound swap has taken place.

When you omit the LOGFREQ= option or specify a value larger than 1, only the algorithm, phase, iteration,
objective value, and time information is printed in the iteration log.

The behavior of objective values in the iteration log depends on both the current phase and the chosen solver.
In phase I, both simplex methods have artificial objective values that decrease to O when a feasible solution is
found. For the dual simplex method, phase II maintains a dual feasible solution, so a minimization problem
has increasing objective values in the iteration log. For the primal simplex method, phase II maintains a
primal feasible solution, so a minimization problem has decreasing objective values in the iteration log.

During the solution process, some elements of the LP model might be perturbed to improve performance. In
this case the objective values that are printed correspond to the perturbed problem. After reaching optimality

206 4 Chapter 6: The Linear Programming Solver

for the perturbed problem, the LP solver solves the original problem by switching from the primal simplex
method to the dual simplex method (or from the dual simplex method to the primal simplex method). Because
the problem might be perturbed again, this process can result in several changes between the two algorithms.

Iteration Log for the Network Simplex Solver

After finding the embedded network and formulating the appropriate relaxation, the network simplex solver
uses a primal network simplex algorithm. In the case of a connected network, with one (weakly connected)
component, the log will show the progress of the simplex algorithm. The following information is displayed
in the iteration log:

Iteration indicates the iteration number.

PrimalObj indicates the primal objective value of the current solution.

Primal Infeas indicates the maximum primal infeasibility of the current solution.
Time indicates the time spent on the current component by network simplex.

The frequency of the simplex iteration log is controlled by the LOGFREQ= option. The default value of the
LOGFREQ-= option is 10,000.

If the network relaxation is disconnected, the information in the iteration log shows progress at the component
level. The following information is displayed in the iteration log:

Component indicates the component number being processed.

Nodes indicates the number of nodes in this component.

Arcs indicates the number of arcs in this component.

Iterations indicates the number of simplex iterations needed to solve this component.
Time indicates the time spent so far in network simplex.

The frequency of the component iteration log is controlled by the LOGFREQ= option. In this case, the
default value of the LOGFREQ= option is determined by the size of the network.

The LOGLEVEL= option adjusts the amount of detail shown. By default, LOGLEVEL=MODERATE
and reports as in the preceding description. If LOGLEVEL=NONE, no information is shown. If
LOGLEVEL=BASIC, the only information shown is a summary of the network relaxation and the time spent
solving the relaxation. If LOGLEVEL=AGGRESSIVE, in the case of one component, the log displays as
in the preceding description; in the case of multiple components, for each component, a separate simplex
iteration log is displayed.

Iteration Log for the Interior Point Solver

The interior point solver implements an infeasible primal-dual predictor-corrector interior point algorithm.
The following information is displayed in the iteration log:

Iteration Log for the Crossover Algorithm 4 207

Iter indicates the iteration number

Complement indicates the (absolute) complementarity

Duality Gap indicates the (relative) duality gap

Primal Infeas indicates the (relative) primal infeasibility measure
Bound Infeas indicates the (relative) bound infeasibility measure
Dual Infeas indicates the (relative) dual infeasibility measure

If the sequence of solutions converges to an optimal solution of the problem, you should see all columns
in the iteration log converge to zero or very close to zero. If they do not, it can be the result of insufficient
iterations being performed to reach optimality. In this case, you might need to increase the value specified in
the option MAXITER= or MAXTIME-=. If the complementarity and/or the duality gap do not converge, the
problem might be infeasible or unbounded. If the infeasibility columns do not converge, the problem might
be infeasible.

Iteration Log for the Crossover Algorithm

The crossover algorithm takes an optimal solution from the interior point solver and transforms it into
an optimal basic solution. The iterations of the crossover algorithm are similar to simplex iterations; this
similarity is reflected in the format of the iteration logs.

When LOGFREQ=1, the following information is printed in the iteration log:

Phase indicates whether the primal crossover (PC) or dual crossover (DC) technique is used.
Iteration indicates the iteration number.

Objective Value indicates the total amount by which the superbasic variables are off their bound. This
value decreases to 0 as the crossover algorithm progresses.

Time indicates the time elapsed (in seconds) since the beginning of the crossover algorithm.

Entering Variable indicates the entering pivot variable. A slack variable that enters the basis is indicated
by the corresponding row name followed by “(S)”.

Leaving Variable indicates the leaving pivot variable. A slack variable that leaves the basis is indicated by
the corresponding row name followed by “(S)”.

When you omit the LOGFREQ-= option or specify a value greater than 1, only the phase, iteration, objective
value, and time information are printed in the iteration log.

After all the superbasic variables have been eliminated, the crossover algorithm continues with regular primal
or dual simplex iterations.

208 4 Chapter 6: The Linear Programming Solver

Concurrent LP

The ALGORITHM=CON option starts several different linear optimization algorithms in parallel in a
single-machine mode. The LP solver automatically determines which algorithms to run and how many
threads to assign to each algorithm. If sufficient resources are available, the solver runs all four standard
algorithms. When the first algorithm finishes, the LP solver returns the results from that algorithm and
terminates any other algorithms that are still running. If you specify a value of DETERMINISTIC for
the PARALLELMODE-= option in the PERFORMANCE statement in the OPTMODEL procedure, the
algorithm for which the results are returned is not necessarily the one that finished first. The LP solver
deterministically selects the algorithm for which the results are returned. For more information about the
PERFORMANCE statement, see the section “PERFORMANCE Statement” on page 21. Regardless of which
mode (deterministic or nondeterministic) is in effect, terminating algorithms that are still running might take
a significant amount of time.

During concurrent optimization, the procedure displays the iteration log for the dual simplex algorithm. See
the section “Iteration Log for the Primal and Dual Simplex Solvers” on page 205 for more information about
this iteration log. Upon termination, the solver displays the iteration log for the algorithm that finishes first,
unless the dual simplex algorithm finishes first. If you specify LOGLEVEL=AGGRESSIVE, the LP solver
displays the iteration logs for all algorithms that were run concurrently.

If you specify PRINTLEVEL=2 in the PROC OPTMODEL statement and ALGORITHM=CON in the
SOLVE WITH LP statement, the LP solver produces an ODS table called ConcurrentSummary. This table
contains a summary of the solution statuses of all algorithms that are run concurrently.

Parallel Processing

The interior point and concurrent LP algorithms can be run in single-machine mode (in single-machine mode,
the computation is executed by multiple threads on a single computer). The decomposition algorithm can
be run in either single-machine or distributed mode (in distributed mode, the computation is executed on
multiple computing nodes in a distributed computing environment).

NOTE: Distributed mode requires SAS High-Performance Optimization.

You can specify options for parallel processing in the PERFORMANCE statement, which is documented in
the section “PERFORMANCE Statement” on page 21 in Chapter 4, “Shared Concepts and Topics.”

Problem Statistics

Optimizers can encounter difficulty when solving poorly formulated models. Information about data
magnitude provides a simple gauge to determine how well a model is formulated. For example, a model
whose constraint matrix contains one very large entry (on the order of 10%) can cause difficulty when the
remaining entries are single-digit numbers. The PRINTLEVEL=2 option in the OPTMODEL procedure
causes the ODS table “ProblemStatistics” to be generated when the LP solver is called. This table provides
basic data magnitude information that enables you to improve the formulation of your models.

The example output in Figure 6.3 demonstrates the contents of the ODS table “ProblemStatistics.”

Variable and Constraint Status 4 209

Figure 6.3 ODS Table ProblemStatistics

Maximum
Minimum
Average

Maximum
Minimum
Average

Maximum
Minimum
Average

RHS
RHS
RHS

Number
Number
Number

Number
Number
Number

The OPTMODEL Procedure

of
of
of

of
of
of

Number of RHS Nonzeros

Nonzeros
Nonzeros
Nonzeros

Nonzeros
Nonzeros
Nonzeros

Number of Objective Nonzeros

Maximum Objective Coefficient
Minimum Objective Coefficient
Average Objective Coefficient

per
per
per

per
per
per

Problem Statistics

Number of Constraint Matrix Nonzeros
Maximum Constraint Matrix
Minimum Constraint Matrix Coefficient
Average Constraint Matrix Coefficient

Coefficient

Column
Column
Column

Row
Row
Row

6
3
1
2.1666666667

N H R RN H R R W

N

w

Variable and Constraint Status

Upon termination of the LP solver, the .status suffix of each decision variable and constraint stores information
about the status of that variable or constraint. For more information about suffixes in the OPTMODEL
procedure, see the section “Suffixes” on page 132.

Variable Status

The .status suffix of a decision variable specifies the status of that decision variable. The suffix can take one

of the following values:

basic variable

free variable

= > M c - ™

nonbasic variable at its lower bound

nonbasic variable at its upper bound

For the interior point solver with IIS= OFF, .status is blank.

superbasic variable (a nonbasic variable that has a value strictly between its bounds)

LP model infeasible (all decision variables have .status equal to I)

210 4 Chapter 6: The Linear Programming Solver

The following values can appear only if IIS= ON. See the section “Irreducible Infeasible Set” on page 210
for details.

I L the lower bound of the variable is needed for the IIS
I_U the upper bound of the variable is needed for the IIS
I_F both bounds of the variable are needed for the IIS (the variable is fixed or has conflicting bounds)

Constraint Status

The .status suffix of a constraint specifies the status of the slack variable for that constraint. The suffix can
take one of the following values:

basic variable

nonbasic variable at its lower bound
nonbasic variable at its upper bound
free variable

superbasic variable (a nonbasic variable that has a value strictly between its bounds)

= > T c - ™

LP model infeasible (all decision variables have .status equal to I)

The following values can appear only if option IIS= ON. See the section “Irreducible Infeasible Set” on
page 210 for details.

I_L the “GE” (>) condition of the constraint is needed for the IIS

I_U the “LE” (<) condition of the constraint is needed for the IIS

I_F both conditions of the constraint are needed for the IIS (the constraint is an equality or a range constraint
with conflicting bounds)

Irreducible Infeasible Set

For a linear programming problem, an irreducible infeasible set (IIS) is an infeasible subset of constraints and
variable bounds that will become feasible if any single constraint or variable bound is removed. It is possible
to have more than one IIS in an infeasible LP. Identifying an IIS can help isolate the structural infeasibility in
an LP.

The presolver in the LP solvers can detect infeasibility, but it identifies only the variable bound or constraint
that triggers the infeasibility.

The IIS=ON option directs the LP solver to search for an IIS in a specified LP. You should specify the
OPTMODEL option PRESOLVER=NONE when you specify IIS=ON; otherwise the IIS results can be
incomplete. The LP solver does not apply the LP presolver to the problem during the IIS search. If the LP
solver detects an IIS, it updates the .status suffix of the decision variables and constraints, and then it stops.
The number of iterations that are reported in the macro variable and the ODS table is the total number of
simplex iterations. This total includes the initial LP solve and all subsequent iterations during the constraint
deletion phase.

Macro Variable _ OROPTMODEL 4 211

The IIS= option can add special values to the .status suffixes of variables and constraints. (For more
information, see the section “Variable and Constraint Status” on page 209.) For constraints, a status of “I_L”,
“I_U”, or “I_F” indicates that the “GE” (>), “LE” (=), or “EQ” (=) constraint, respectively, is part of the IIS.
For range constraints, a status of “I_L” or “I_U” indicates that the lower or upper bound, respectively, of
the constraint is needed for the IIS, and “I_F” indicates that the bounds in the constraint are conflicting. For
variables, a status of “I_L”, “I_U”, or “I_F” indicates that the lower, upper, or both bounds, respectively, of
the variable are needed for the IIS. From this information, you can identify both the names of the constraints
(variables) in the IIS and the corresponding bound where infeasibility occurs.

Making any one of the constraints or variable bounds in the IIS nonbinding removes the infeasibility from
the IIS. In some cases, changing a right-hand side or bound by a finite amount removes the infeasibility.
However, the only way to guarantee removal of the infeasibility is to set the appropriate right-hand side or
bound to oo or —oo. Because it is possible for an LP to have multiple irreducible infeasible sets, simply
removing the infeasibility from one set might not make the entire problem feasible. To make the entire
problem feasible, you can specify IIS=ON and rerun the LP solver after removing the infeasibility from an
IIS. Repeating this process until the LP solver no longer detects an IIS results in a feasible problem. This
approach to infeasibility repair can produce different end problems depending on which right-hand sides and
bounds you choose to relax.

The IIS= option in the LP solver uses two different methods to identify an IIS:

1. Based on the result of the initial solve, the sensitivity filter removes several constraints and variable
bounds immediately while still maintaining infeasibility. This phase is quick and dramatically reduces
the size of the IIS.

2. Next, the deletion filter removes each remaining constraint and variable bound one by one to check
which of them are needed to obtain an infeasible system. This second phase is more time consuming,
but it ensures that the IIS set that the LP solver returns is indeed irreducible. The progress of the
deletion filter is reported at regular intervals. The sensitivity filter might be called again during the
deletion filter to improve performance.

See Example 6.4 for an example that demonstrates the use of the IIS= option in locating and removing
infeasibilities.

Macro Variable OROPTMODEL _

The OPTMODEL procedure always creates and initializes a SAS macro called _OROPTMODEL _. This
variable contains a character string. After each PROC OROPTMODEL run, you can examine this macro by
specifying $put &_OROPTMODEL_; and check the execution of the most recently invoked solver from the
value of the macro variable. The various terms of the variable after the LP solver is called are interpreted as
follows.

STATUS
indicates the solver status at termination. It can take one of the following values:

OK The solver terminated normally.

SYNTAX_ ERROR Incorrect syntax was used.

212 4 Chapter 6: The Linear Programming Solver

DATA_ERROR The input data were inconsistent.

OUT_OF _MEMORY Insufficient memory was allocated to the procedure.

IO_ERROR A problem occurred in reading or writing data.

SEMANTIC_ERROR An evaluation error, such as an invalid operand type, occurred.

ERROR The status cannot be classified into any of the preceding categories.
ALGORITHM

indicates the algorithm that produces the solution data in the macro variable. This term appears only
when STATUS=0K. It can take one of the following values:

PS The primal simplex algorithm produced the solution data.
DS The dual simplex algorithm produced the solution data.

NS The network simplex algorithm produced the solution data.
1P The interior point algorithm produced the solution data.
DECOMP The decomposition algorithm produced the solution data.

When you run algorithms concurrently (ALGORITHM=CON), this term indicates which algorithm is

the first to terminate.

SOLUTION_STATUS

indicates the solution status at termination. It can take one of the following values:

OPTIMAL
CONDITIONAL_OPTIMAL

FEASIBLE

INFEASIBLE

UNBOUNDED
INFEASIBLE_OR_UNBOUNDED
BAD_PROBLEM_TYPE
ITERATION_LIMIT_REACHED

TIME_LIMIT_REACHED
FUNCTION_CALL_LIMIT_REACHED
INTERRUPTED

FAILED

The solution is optimal.

The solution is optimal, but some infeasibilities (primal,
dual or bound) exceed tolerances due to scaling or pre-
processing.

The problem is feasible.

The problem is infeasible.

The problem is unbounded.

The problem is infeasible or unbounded.

The problem type is unsupported by the solver.

The maximum allowable number of iterations was
reached.

The solver reached its execution time limit.
The solver reached its limit on function evaluations.
The solver was interrupted externally.

The solver failed to converge, possibly due to numerical
issues.

When SOLUTION_STATUS has a value of OPTIMAL, CONDITIONAL_OPTIMAL, ITERA-
TION_LIMIT_REACHED, or TIME_LIMIT_REACHED, all terms of the _OROPTMODEL_ macro
variable are present; for other values of SOLUTION_STATUS, some terms do not appear.

Macro Variable _ OROPTMODEL_ 4 213

OBJECTIVE
indicates the objective value obtained by the solver at termination.

PRIMAL_INFEASIBILITY
indicates, for the primal simplex and dual simplex solvers, the maximum (absolute) violation of the
primal constraints by the primal solution. For the interior point solver, this term indicates the relative
violation of the primal constraints by the primal solution.

DUAL_INFEASIBILITY
indicates, for the primal simplex and dual simplex solvers, the maximum (absolute) violation of the
dual constraints by the dual solution. For the interior point solver, this term indicates the relative
violation of the dual constraints by the dual solution.

BOUND_INFEASIBILITY
indicates, for the primal simplex and dual simplex solvers, the maximum (absolute) violation of the
lower or upper bounds by the primal solution. For the interior point solver, this term indicates the
relative violation of the lower or upper bounds by the primal solution.

DUALITY_GAP
indicates the (relative) duality gap. This term appears only if the option ALGO-
RITHM=INTERIORPOINT is specified in the SOLVE statement.

COMPLEMENTARITY
indicates the (absolute) complementarity. This term appears only if the option ALGO-
RITHM=INTERIORPOINT is specified in the SOLVE statement.

ITERATIONS
indicates the number of iterations taken to solve the problem. When the network simplex algorithm is
used, this term indicates the number of network simplex iterations taken to solve the network relaxation.
When crossover is enabled, this term indicates the number of interior point iterations taken to solve the
problem.

ITERATIONS2
indicates the number of simplex iterations performed by the secondary solver. The network simplex
solver selects the secondary solver automatically unless a value has been specified for the ALGO-
RITHM2= option. When crossover is enabled, the secondary solver is selected automatically. This
term appears only if the network simplex solver is used or if crossover is enabled.

PRESOLVE_TIME
indicates the time (in seconds) used in preprocessing.

SOLUTION_TIME
indicates the time (in seconds) taken to solve the problem, including preprocessing time.

NOTE: The time reported in PRESOLVE_TIME and SOLUTION_TIME is either CPU time or real time.
The type is determined by the TIMETYPE= option.

When SOLUTION_STATUS has a value of OPTIMAL, CONDITIONAL_OPTIMAL, ITERA-
TION_LIMIT_REACHED, or TIME_LIMIT_REACHED, all terms of the _OROPTMODEL_ macro
variable are present; for other values of SOLUTION_STATUS, some terms do not appear.

214 4 Chapter 6: The Linear Programming Solver

Examples: LP Solver

Example 6.1: Diet Problem

Consider the problem of diet optimization. There are six different foods: bread, milk, cheese, potato, fish,
and yogurt. The cost and nutrition values per unit are displayed in Table 6.14.

Table 6.14 Cost and Nutrition Values

Bread Milk Cheese Potato Fish Yogurt
Cost 2.0 3.5 8.0 1.5 11.0 1.0
Protein,g 4.0 8.0 7.0 1.3 8.0 9.2
Fat, g 1.0 5.0 9.0 0.1 7.0 1.0
Carbohydrates, g 15.0 11.7 0.4 22.6 0.0 17.0
Calories 90 120 106 97 130 180

The following SAS code creates the data set fooddata of Table 6.14:

data fooddata;
infile datalines;
input name $ cost prot fat carb cal;

datalines;
Bread 2 4 1 15 90
Milk 3.5 8 5 11.7 120
Cheese 8 7 9 0.4 106
Potato 1.5 1.3 0.1 22.6 97
Fish 11 8 7 0 130
9.2 1 17 180

Yogurt 1

’

The objective is to find a minimum-cost diet that contains at least 300 calories, not more than 10 grams of
protein, not less than 10 grams of carbohydrates, and not less than 8 grams of fat. In addition, the diet should
contain at least 0.5 unit of fish and no more than 1 unit of milk.

You can model the problem and solve it by using PROC OPTMODEL as follows:

proc optmodel;
/* declare index set */
set<str> FOOD;

/* declare variables =*/
var diet {FOOD} >= 0;

/* objective function x*/
num cost{FOOD};
min f=sum{i in FOOD}cost[i]*diet[i];

/* constraints */
num prot {FOOD};
num fat{FOOD};

Example 6.1: Diet Problem 4 215

num carb{FOOD};

num cal{FOOD};

num min_cal, max_prot, min_carb, min_fat;

con cal_con: sum{i in FOOD}cal[i] xdiet[i] >= 300;
con prot_con: sum{i in FOOD}prot[i]*diet[i] <= 10;
con carb _con: sum{i in FOOD}carb[i]*diet[i] >= 10;
con fat_con: sum{i in FOOD}fat[i]*xdiet[i] >= 8;

/* read parameters */
read data fooddata into FOOD=[name] cost prot fat carb cal;

/* bounds on variables x/

diet['Fish'].1lb = 0.5;

diet['Milk'].ub = 1.0;

/* solve and print the optimal solution =*/

solve with lp/logfreq=1l; /* print each iteration to log =*/
print diet;

The optimal solution and the optimal objective value are displayed in Output 6.1.1.

Output 6.1.1 Optimal Solution to the Diet Problem

The OPTMODEL Procedure

Problem Summary

Objective Sense Minimization
Objective Function £
Objective Type Linear

Number of Variables
Bounded Above

Bounded Below

Bounded Below and Above
Free

Fixed

O O BRr U oo

Number of Constraints
Linear LE (<=)

Linear EQ (=)

Linear GE (>=)

Linear Range

O woras

Constraint Coefficients 23

Performance Information

Execution Mode Single-Machine
Number of Threads 1

216 4 Chapter 6: The Linear Programming Solver

Output 6.1.1 continued

Solution Summary
Solver LP
Algorithm Dual Simplex
Objective Function £
Solution Status Optimal
Objective Value 12.081337881
Primal Infeasibility 0
Dual Infeasibility 0
Bound Infeasibility 0
Iterations 6
Presolve Time 0.00
Solution Time 0.00

[1] diet

Bread 0.000000

Cheese 0.449499

Fish 0.500000

Milk 0.053599

Potato 1.865168

Yogurt 0.000000

Example 6.2: Reoptimizing the Diet Problem Using BASIS=WARMSTART

After an LP is solved, you might want to change a set of the parameters of the LP and solve the problem again.
This can be done efficiently in PROC OPTMODEL. The warm start technique uses the optimal solution of
the solved LP as a starting point and solves the modified LP problem faster than it can be solved again from
scratch. This example illustrates reoptimizing the diet problem described in Example 6.1.

Assume the optimal solution is found by the SOLVE statement. Instead of quitting the OPTMODEL
procedure, you can continue to solve several variations of the original problem.

Suppose the cost of cheese increases from 8 to 10 per unit and the cost of fish decreases from 11 to 7 per
serving unit. You can change the parameters and solve the modified problem by submitting the following
code:

cost['Cheese']=10; cost['Fish']=7;

solve with lp/presolver=none
basis=warmstart
algorithm=ps
logfreqg=1;

print diet;

Note that the primal simplex solver is preferred because the primal solution to the last-solved LP is still
feasible for the modified problem in this case. The solutions to the original diet problem and the modified
problem are shown in Output 6.2.1.

Example 6.2: Reoptimizing the Diet Problem Using BASIS=WARMSTART 4 217

Output 6.2.1 Optimal Solutions to the Original Diet Problem and the Diet Problem with Modified Objective

Function

The OPTMODEL Procedure
Problem Summary
Objective Sense Minimization
Objective Function £
Objective Type Linear
Number of Variables 6
Bounded Above 0
Bounded Below 5
Bounded Below and Above 1
Free 0
Fixed 0
Number of Constraints 4
Linear LE (<=) 1
Linear EQ (=) 0
Linear GE (>=) 3
Linear Range 0
Constraint Coefficients 23
Performance Information
Execution Mode Single-Machine
Number of Threads 1
Solution Summary
Solver LP
Algorithm Dual Simplex
Objective Function £
Solution Status Optimal
Objective Value 12.081337881
Primal Infeasibility 0
Dual Infeasibility 0
Bound Infeasibility 0
Iterations 6
Presolve Time 0.00
Solution Time 0.00
[1] diet
Bread 0.000000
Cheese 0.449499
Fish 0.500000
Milk 0.053599
Potato 1.865168
Yogurt 0.000000

218 4 Chapter 6: The Linear Programming Solver

Output 6.2.1 continued

Problem Summary
Objective Sense Minimization
Objective Function £
Objective Type Linear
Number of Variables 6
Bounded Above 0
Bounded Below 5
Bounded Below and Above 1
Free 0
Fixed 0
Number of Constraints 4
Linear LE (<=) 1
Linear EQ (=) 0
Linear GE (>=) 3
Linear Range 0
Constraint Coefficients 23
Performance Information
Execution Mode Single-Machine
Number of Threads 1
Solution Summary

Solver LP
Algorithm Primal Simplex
Objective Function £
Solution Status Optimal
Objective Value 10.980335514
Primal Infeasibility 0
Dual Infeasibility 0
Bound Infeasibility 0
Iterations 1
Presolve Time 0.00
Solution Time 0.00

[1] diet

Bread 0.000000

Cheese 0.449499

Fish 0.500000

Milk 0.053599

Potato 1.865168

Yogurt 0.000000

The following iteration log indicates that it takes the LP solver no more iterations to solve the modified

Example 6.2: Reoptimizing the Diet Problem Using BASIS=WARMSTART 4 219

problem by using BASIS=WARMSTART, since the optimal solution to the original problem remains optimal
after the objective function is changed.

Output 6.2.2 Log

NOTE:
NOTE:
NOTE:
NOTE:
NOTE:
NOTE:
NOTE:
NOTE:
NOTE:
NOTE:

NOTE:
NOTE:

NOTE:
NOTE:
NOTE:
NOTE:
NOTE:
NOTE:
NOTE:
NOTE:
NOTE:
NOTE:
NOTE:

NOTE:
NOTE:
NOTE:

There were 6 observations read from the data set WORK.FOODDATA.
Problem generation will use 4 threads.

problem has 6 variables (0 free, 0 fixed).

problem has 4 linear constraints (1 LE, 0 EQ, 3 GE, 0 range).
problem has 23 linear constraint coefficients.

problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).
LP presolver value AUTOMATIC is applied.

LP presolver removed 0 variables and 0 constraints.

LP presolver removed 0 constraint coefficients.

presolved problem has 6 variables, 4 constraints, and 23 constraint
coefficients.

The LP solver is called.

The Dual Simplex algorithm is used.

The
The
The
The
The
The
The
The

Objective
Phase Iteration Value Time
D1 1 0.000000E+00 0
D 2 2 0.000000E+00 0
D 2 6 9.503132E+00 0
Optimal.
Objective = 9.5031323959.

The Dual Simplex solve time is 0.00 seconds.

Problem generation will use 4 threads.

problem has 6 variables (0 free, 0 fixed).

problem has 4 linear constraints (1 LE, 0 EQ, 3 GE, 0 range).

The
The

The problem has 23 linear constraint coefficients.
The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).
The LP presolver value NONE is applied.
The LP solver is called.
The Primal Simplex algorithm is used.
Objective Entering Leaving
Phase Iteration Value Time Variable Variable
P 2 1 1.098034E+01 0
Optimal.
Objective = 10.980335514.

The Primal Simplex solve time is 0.00 seconds.

Next, restore the original coefficients of the objective function and consider the case that you need a diet that
supplies at least 150 calories. You can change the parameters and solve the modified problem by submitting

the following code:

cost['Cheese']=8; cost['Fish']=11l;cal_con.1lb=150;
solve with lp/presolver=none

print diet;

basis=warmstart

algorithm=ds
logfreqg=1;

Note that the dual simplex solver is preferred because the dual solution to the last-solved LP is still feasible
for the modified problem in this case. The solution is shown in Output 6.2.3.

220 4 Chapter 6: The Linear Programming Solver

Output 6.2.3 Optimal Solution to the Diet Problem with Modified RHS

The OPTMODEL Procedure
Problem Summary
Objective Sense Minimization
Objective Function £
Objective Type Linear
Number of Variables 6
Bounded Above 0
Bounded Below 5
Bounded Below and Above 1
Free 0
Fixed 0
Number of Constraints 4
Linear LE (<=) 1
Linear EQ (=) 0
Linear GE (>=) 3
Linear Range 0
Constraint Coefficients 23
Performance Information
Execution Mode Single—-Machine
Number of Threads 1
Solution Summary
Solver LP
Algorithm Dual Simplex
Objective Function £
Solution Status Optimal
Objective Value 9.1744131985
Primal Infeasibility 0
Dual Infeasibility 0
Bound Infeasibility 0
Iterations 5
Presolve Time 0.00
Solution Time 0.00
[1] diet
Bread 0.00000
Cheese 0.18481
Fish 0.50000
Milk 0.56440
Potato 0.14702
Yogurt 0.00000

Example 6.2: Reoptimizing the Diet Problem Using BASIS=WARMSTART 4 221

The following iteration log indicates that it takes the LP solver just one more phase Il iteration to solve the
modified problem by using BASIS=WARMSTART.

Output 6.2.4 Log

NOTE: There were 6 observations read from the data set WORK.FOODDATA.

NOTE: Problem generation will use 4 threads.

NOTE: The problem has 6 variables (0 free, 0 fixed).

NOTE: The problem has 4 linear constraints (1 LE, 0 EQ, 3 GE, 0 range).

NOTE: The problem has 23 linear constraint coefficients.

NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).

NOTE: No basis information is available. The BASIS=WARMSTART option is ignored.
NOTE: The LP presolver value NONE is applied.

NOTE: The LP solver is called.

NOTE: The Dual Simplex algorithm is used.

Objective Entering Leaving

Phase Iteration Value Time Variable Variable
D1 1 0.000000E+00 0

D 2 2 5.500000E+00 0 diet [Milk]

fat_con (S)

D 2 3 8.650000E+00 0 diet [Cheese]
prot_con (S)

D 2 4 8.925676E+00 0 diet [Potato]

carb_con (S)

D 2 5 9.174413E+00 0

NOTE: Optimal.
NOTE: Objective = 9.1744131985.
NOTE: The Dual Simplex solve time is 0.02 seconds.

Next, restore the original constraint on calories and consider the case that you need a diet that supplies no
more than 550 mg of sodium per day. The following row is appended to Table 6.14.

Bread Milk Cheese Potato Fish Yogurt
sodium, mg 148 122 337 186 56 132

You can change the parameters, add the new constraint, and solve the modified problem by submitting the
following code:

cal_con.1b=300;
num sod{FOOD}=[148 122 337 186 56 132];
con sodium: sum{i in FOOD}sod[i]*diet[i] <= 550;
solve with lp/presolver=none
basis=warmstart
logfreqg=1;
print diet;

The solution is shown in Output 6.2.5.

222 4 Chapter 6: The Linear Programming Solver

Output 6.2.5 Optimal Solution to the Diet Problem with Additional Constraint

The OPTMODEL Procedure
Problem Summary
Objective Sense Minimization
Objective Function £
Objective Type Linear
Number of Variables 6
Bounded Above 0
Bounded Below 5
Bounded Below and Above 1
Free 0
Fixed 0
Number of Constraints 5
Linear LE (<=) 2
Linear EQ (=) 0
Linear GE (>=) 3
Linear Range 0
Constraint Coefficients 29
Performance Information
Execution Mode Single—-Machine
Number of Threads 1
Solution Summary
Solver LP
Algorithm Dual Simplex
Objective Function £
Solution Status Optimal
Objective Value 12.081337881
Primal Infeasibility 0
Dual Infeasibility 0
Bound Infeasibility 0
Iterations 6
Presolve Time 0.00
Solution Time 0.00
[1] diet
Bread 0.000000
Cheese 0.449499
Fish 0.500000
Milk 0.053599
Potato 1.865168
Yogurt 0.000000

Example 6.3: Two-Person Zero-Sum Game 4 223

The following iteration log indicates that it takes the LP solver no more iterations to solve the modified
problem by using the BASISSWARMSTART option, since the optimal solution to the original problem
remains optimal after one more constraint is added.

Output 6.2.6 Log

NOTE: There were 6 observations read from the data set WORK.FOODDATA.

NOTE: Problem generation will use 4 threads.

NOTE: The problem has 6 variables (0 free, 0 fixed).

NOTE: The problem has 5 linear constraints (2 LE, 0 EQ, 3 GE, 0 range).

NOTE: The problem has 29 linear constraint coefficients.

NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).

NOTE: No basis information is available. The BASIS=WARMSTART option is ignored.
NOTE: The LP presolver value NONE is applied.

NOTE: The LP solver is called.

NOTE: The Dual Simplex algorithm is used.

Objective Entering Leaving

Phase Iteration Value Time Variable Variable
D1 1 0.000000E+00 0

D 2 2 5.500000E+00 0 diet [Milk]

fat_con (S)

D 2 3 8.650000E+00 0 diet [Yogurt]

cal_con (S)

D 2 4 8.894231E+00 0 diet [Potato]
prot_con (S)

D 2 5 1.155221E+01 0 diet [Cheese]

diet [Yogurt]

D 2 6 1.208134E+01 0

NOTE: Optimal.
NOTE: Objective = 12.081337881.
NOTE: The Dual Simplex solve time is 0.00 seconds.

Example 6.3: Two-Person Zero-Sum Game

Consider a two-person zero-sum game (where one person wins what the other person loses). The players
make moves simultaneously, and each has a choice of actions. There is a payoff matrix that indicates the
amount one player gives to the other under each combination of actions:

Player II plays j
1 2 3 4
1 -5 3 1 8
Player I playsi 2 55 46
3 -4 6 0 5

If player I makes move i and player II makes move j, then player I wins (and player II loses) a;;. What is the
best strategy for the two players to adopt? This example is simple enough to be analyzed from observation.
Suppose player I plays 1 or 3; the best response of player Il is to play 1. In both cases, player I loses and
player II wins. So the best action for player I is to play 2. In this case, the best response for player Il is to
play 3, which minimizes the loss. In this case, (2, 3) is a pure-strategy Nash equilibrium in this game.

224 4 Chapter 6: The Linear Programming Solver

For illustration, consider the following mixed strategy case. Assume that player I selects i with probability
pi, I = 1,2,3, and player II selects j with probability g;, j = 1,2, 3,4. Consider player II's problem of
minimizing the maximum expected payout:

4 4
mqin rnlaxZa,-jqj subject to Zq,-j=1, q=>0

This is equivalent to
4
. . < .
ralylvnv subject to Za,]q] < v Vi
Jj=1
4
>4 =1
Jj=1
q = 0

The problem can be transformed into a more standard format by making a simple change of variables:
X; = qj/v. The preceding LP formulation now becomes

4
min v subject to ZaiJ-Xj

< 1 Vi
X,V
j=1
4
ij = 1/v
Jj=1
q = 0
which is equivalent to
4
. ; <1 >
m}z{xx ;xj subjectto Ax <1, x>0
J:

where A is the payoff matrix and 1 is a vector of 1’s. It turns out that the corresponding optimization problem
from player I’s perspective can be obtained by solving the dual problem, which can be written as

3
min Zy,- subject to ATy >1, y>0
Y i=1

You can model the problem and solve it by using PROC OPTMODEL as follows:

proc optmodel;
num a{l..3, 1..4}=[-

var x{1..4} >= 0;
max £ = sum{i in 1..4}x[i];
con c{i in 1..3}: sum{j in 1..4}ali,jl*x[j] <= 1;
solve with lp / algorithm = ps presolver = none logfreq = 1;
print x;
print c.dual;
quit;
The optimal solution is displayed in Output 6.3.1.

Example 6.3: Two-Person Zero-Sum Game 4 225

Output 6.3.1 Optimal Solutions to the Two-Person Zero-Sum Game

The OPTMODEL Procedure
Problem Summary
Objective Sense Maximization
Objective Function £
Objective Type Linear
Number of Variables 4
Bounded Above 0
Bounded Below 4
Bounded Below and Above 0
Free 0
Fixed 0
Number of Constraints 3
Linear LE (<=) 3
Linear EQ (=) 0
Linear GE (>=) 0
Linear Range 0
Constraint Coefficients 11
Performance Information
Execution Mode Single—-Machine
Number of Threads 1
Solution Summary

Solver LP
Algorithm Primal Simplex
Objective Function £
Solution Status Optimal
Objective Value 0.25
Primal Infeasibility 0
Dual Infeasibility 0
Bound Infeasibility 0
Iterations 3
Presolve Time 0.00
Solution Time 0.00

[1] x

1 0.00

2 0.00

3 0.25

4 0.00

226 4 Chapter 6: The Linear Programming Solver

Output 6.3.1 continued

[1] c.DUAL
1 0.00
2 0.25
3 0.00

The optimal solution x* = (0, 0, 0.25, 0) with an optimal value of 0.25. Therefore the optimal strategy for
player Il is ¢* = x*/0.25 = (0,0, 1, 0). You can check the optimal solution of the dual problem by using
the constraint suffix “.dual”. So y* = (0, 0.25, 0) and player I’s optimal strategy is (0, 1, 0). The solution is
consistent with our intuition from observation.

Example 6.4: Finding an Irreducible Infeasible Set

This example demonstrates the use of the IIS= option to locate an irreducible infeasible set. Suppose you
want to solve a linear program that has the following simple formulation:

min X1 + x2 4+ x3 (cost)
subject to X1 4+ x2 > 10 (conl)
X1 + x3 < 4 (con2)
4 < X2 + x3 < 5 (con3)

X1, X2 = 0

0 = x3 = 3

It is easy to verify that the following three constraints (or rows) and one variable (or column) bound form an
IIS for this problem:

X1 + x2 > 10 (conl)
X1 4+ x3 < 4 (con2)
X2 + x3 < 5 (con3)

X3 = 0

You can formulate the problem and call the LP solver by using the following statements:

proc optmodel presolver=none;
/* declare variables *x/
var x{1..3} >=0;

/* upper bound on variable x[3] */
x[3].ub = 3;

/* objective function x*/
min obj = x[1] + x[2] + x[3];

Example 6.4: Finding an Irreducible Infeasible Set 4 227

/* constraints */

con cl: x[1] + x[2] >= 10;
con c2: x[1] + x[3] <= 4;
con c3: 4 <= x[2] + x[3] <= 5;

solve with 1lp / iis = on;

print x.status;
print cl.status c2.status c3.status;

The notes printed in the log appear in Output 6.4.1.

Output 6.4.1 Finding an 11S: Log

NOTE:
NOTE:
NOTE:
NOTE:
NOTE:
NOTE:

NOTE:
NOTE:
NOTE:
NOTE:
NOTE:

NOTE:

NOTE:
NOTE:
NOTE:

NOTE:

Problem generation will use 4 threads.

The problem has 3 variables (0 free, 0 fixed).
The problem has 3 linear constraints (1 LE, 0 EQ, 1 GE, 1 range).
The problem has 6 linear constraint coefficients.
The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).
The IIS option is enabled.
Objective
Phase Iteration Value Time
P1 1 1.400000E+01 0
P1 3 1.000000E+00 0

The IIS option found the problem to be infeasible.

Applying the IIS sensitivity filter.

The sensitivity filter removed 1 constraints and 3 variable bounds.
Applying the IIS deletion filter.

Processing constraints.

Processed Removed Time
0 0 0
1 0 0
2 0 0
3 0 0

Processing variable bounds.

Processed Removed Time
0 0 0
1 0 0
2 0 0
3 0 0

The deletion filter removed 0 constraints and 0 variable bounds.

The IIS option found the problem to be infeasible.

The IIS option found an irreducible infeasible set with 1 variables and 3
constraints.

The IIS solve time is 0.00 seconds.

The output of the PRINT statements appears in Output 6.4.2. The value of the .status suffix for the variables
x[1] and x[2] is “I,” which indicates an infeasible problem. The value I is not one of those assigned by the
IIS= option to members of the IIS, however, so the variable bounds for x[1] and x[2] are not in the IIS.

228 4 Chapter 6: The Linear Programming Solver

Output 6.4.2 Solution Summary, Variable Status, and Constraint Status

The OPTMODEL Procedure

Solution Summary
Solver LP
Algorithm Primal Simplex
Objective Function obj
Solution Status Infeasible
Iterations 13
Presolve Time 0.00
Solution Time 0.00

[1] x.STATUS

1

2

3 I_L
cl.STATUS c2.STATUS c3.STATUS
I_L IU IU

The value of ¢3.status is I_U, which indicates that x, +x3 < 5is an element of the IIS. The original constraint
is ¢3, a range constraint with a lower bound of 4. If you choose to remove the constraint x, + x3 < 5, you
can change the value of ¢3.ub to the largest positive number representable in your operating environment.
You can specify this number by using the MIN aggregation expression in the OPTMODEL procedure. See
“MIN Aggregation Expression” on page 107 for details.

The modified LP problem is specified and solved by adding the following lines to the original PROC
OPTMODEL call.

/* relax upper bound on constraint c3 x/
c3.ub = min{{}}0;

solve with 1lp / iis = on;

/* print solution =*/
print x;

Because one element of the IIS has been removed, the modified LP problem should no longer contain the
infeasible set. Due to the size of this problem, there should be no additional irreducible infeasible sets.

The notes shown in Output 6.4.3 are printed to the log.

Example 6.5: Using the Network Simplex Solver 4 229

Output 6.4.3 Infeasibility Removed: Log

NOTE:
NOTE:
NOTE:
NOTE:
NOTE:
NOTE:

NOTE:
NOTE:

Problem generation will use 4 threads.

The problem has 3 variables (0 free, 0 fixed).
The problem has 3 linear constraints (1 LE, 0 EQ,
The problem has 6 linear constraint coefficients.
The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE,
The IIS option is enabled.
Objective
Phase Iteration Value Time
P1 1 1.400000E+01 0
P1 3 0.000000E+00 0

The IIS option found the problem to be feasible.
The IIS solve time is 0.00 seconds.

2 GE, 0 range).

0 range).

The solution summary and primal solution are displayed in Output 6.4.4.

Output 6.4.4 Infeasibility Removed: Solution

The OPTMODEL Procedure

Solution Summary

Solver
Algorithm

Objective Function

Solution Status
Iterations

Presolve Time
Solution Time

[1]

N

LP

Primal Simplex
obj

Feasible

o

Example 6.5: Using the Network Simplex Solver

This example demonstrates how you can use the network simplex solver to find the minimum-cost flow in
a directed graph. Consider the directed graph in Figure 6.4, which appears in Ahuja, Magnanti, and Orlin

(1993).

230 4 Chapter 6: The Linear Programming Solver

Figure 6.4 Minimum Cost Network Flow Problem: Data

20

W

0
(c=6,u=10)
6

You can use the following SAS statements to create the input data sets nodedata and arcdata:

data nodedata;

0 Jdo Ul WDN K

~.

input _node_ $ _sd_;
datalines;

10

20

-5

-15
-10

data arcdata;
input _tail_$ _head_ $ _lo_ _capac_ _cost_;
datalines;

SJo 0ol WWINDNDNMDDNDR

~.

4

0 00 JoJdJ U bdoYWR

0 15
10
10
10

5
10
10
20
15
10
15

O OO O0OO0OO0OO0OOoOOoOOo
WO JdJNMNOOB_KFEFONNOKENDN

Example 6.5: Using the Network Simplex Solver 4 231

You can use the following call to PROC OPTMODEL to find the minimum-cost flow:

proc optmodel;
set <str> NODES;
num supply demand {NODES};

set <str,str> ARCS;

num arcLower {ARCS};
num arcUpper {ARCS};
num arcCost {ARCS};

read data arcdata into ARCS=[_tail_ _head_]
arcLower=_lo_ arcUpper=_capac_ arcCost=_cost_;
read data nodedata into NODES=[_node_] supply_demand=_sd_;

var flow {<i, j> in ARCS} >= arclLower|[i, j] <= arcUpper|[i, jl;
min obj = sum {<i, j> in ARCS} arcCost[i,j] * flowl[i, j];
con balance {i in NODES}:
sum {<(i), j> in ARCS} flow[i, j] - sum {<j, (i)> in ARCS} flow[j, i]
= supply_demand[i];
solve with lp / algorithm=ns scale=none logfreg=1l;
print flow;
quit;
$put & OROPTMODEL_;

The optimal solution is displayed in Output 6.5.1.

Output 6.5.1 Network Simplex Solver: Primal Solution Output

The OPTMODEL Procedure

Problem Summary

Objective Sense Minimization
Objective Function obj
Objective Type Linear
Number of Variables 11
Bounded Above 0
Bounded Below 0
Bounded Below and Above 11
Free 0
Fixed 0

Number of Constraints
Linear LE (<=)

Linear EQ (=)

Linear GE (>=)

Linear Range

O O W O ™

Constraint Coefficients 22

232 4 Chapter 6: The Linear Programming Solver

Output 6.5.1 continued

Performance Information
Execution Mode Single—-Machine
Number of Threads 1

Solution Summary
Solver LP
Algorithm Network Simplex
Objective Function obj
Solution Status Optimal
Objective Value 270
Primal Infeasibility 0
Dual Infeasibility 0
Bound Infeasibility 0
Iterations 8
Iterations2 0
Presolve Time 0.00
Solution Time 0.00

[1] [2] flow

1 4 10

2 1 0

2 3 10

2 6 10

3 4 5

3 5 5

4 7 10

5 6 0

5 7 5

6 8 10

7 8 0

The optimal solution is represented graphically in Figure 6.5.

Figure 6.5 Minimum Cost Network Flow Problem: Optimal Solution
10

The iteration log is displayed in Output 6.5.2.

Example 6.5: Using the Network Simplex Solver 4 233

Output 6.5.2 Log: Solution Progress

NOTE: There were 11 observations read from the data set WORK.ARCDATA.
NOTE: There were 8 observations read from the data set WORK.NODEDATA.
NOTE: Problem generation will use 4 threads.
NOTE: The problem has 11 variables (0 free, 0 fixed).
NOTE: The problem has 8 linear constraints (0 LE, 8 EQ, 0 GE, 0 range).
NOTE: The problem has 22 linear constraint coefficients.
NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).
NOTE: The problem is a pure network instance; PRESOLVER=NONE is used.
NOTE: The LP presolver value NONE is applied.
NOTE: The LP solver is called.
NOTE: The Network Simplex algorithm is used.
NOTE: The network has 8 rows (100.00%), 11 columns (100.00%), and 1 component.
NOTE: The network extraction and setup time is 0.00 seconds.
Primal Primal Dual
Iteration Objective Infeasibility Infeasibility Time
1 0.000000E+00 2.000000E+01 8.900000E+01 0.00
2 0.000000E+00 2.000000E+01 8.900000E+01 0.00
3 5.000000E+00 1.500000E+01 8.400000E+01 0.00
4 5.000000E+00 1.500000E+01 8.300000E+01 0.00
5 7.500000E+01 1.500000E+01 8.300000E+01 0.00
6 7.500000E+01 1.500000E+01 7.900000E+01 0.00
7 1.300000E+02 1.000000E+01 7.600000E+01 0.00
8 2.700000E+02 0.000000E+00 0.000000E+00 0.00
NOTE: The Network Simplex solve time is 0.00 seconds.
NOTE: The total Network Simplex solve time is 0.00 seconds.
NOTE: Optimal.
NOTE: Objective = 270.
NOTE: The PROCEDURE OPTMODEL printed pages 46-47.
STATUS=0OK ALGORITHM=NS SOLUTION_STATUS=OPTIMAL OBJECTIVE=270
PRIMAL INFEASIBILITY=0 DUAL_ INFEASIBILITY=0 BOUND_INFEASIBILITY=0 ITERATIONS=8
ITERATIONS2=0 PRESOLVE_TIME=0.00 SOLUTION_TIME=0.00

Now, suppose there is a budget on the flow that comes out of arc 2: the total arc cost of flow that comes out
of arc 2 cannot exceed 50. You can use the following call to PROC OPTMODEL to find the minimum-cost
flow:

proc optmodel;
set <str> NODES;
num supply_demand {NODES};

set
num
num
num

<str, str> ARCS;

{ARCS};
{ARCS};
{ARCS};

arcLower
arcUpper
arcCost

read data arcdata into ARCS=[_tail__head_]
arcLower=_lo_ arcUpper=_capac_ arcCost=_cost_;
read data nodedata into NODES=[_node_] supply_demand=_sd_;

234 4 Chapter 6: The Linear Programming Solver

var flow {<i, j> in ARCS} >= arclower|[i, j] <= arcUpper|[i, jl;
min obj = sum {<i, j> in ARCS} arcCost[i,j] * flowl[i, j];
con balance {i in NODES}:
sum {<(i), j> in ARCS} flow[i, j] - sum {<j, (i)> in ARCS} flow[j, i]
= supply demand[i];
con budgetOn2:
sum {<i, j> in ARCS: i='2'} arcCost[i, j] * flow[i, j] <= 50;
solve with 1lp / algorithm=ns scale=none logfreq=1;
print flow;
quit;
$put &_ OROPTMODEL_;

The optimal solution is displayed in Output 6.5.3.

Output 6.5.3 Network Simplex Solver: Primal Solution Output

The OPTMODEL Procedure

Problem Summary

Objective Sense Minimization
Objective Function obj
Objective Type Linear
Number of Variables 11
Bounded Above 0
Bounded Below 0
Bounded Below and Above 11
Free 0
Fixed 0
Number of Constraints 9
Linear LE (<=) 1
Linear EQ (=) 8
Linear GE (>=) 0
Linear Range 0
Constraint Coefficients 24

Performance Information

Execution Mode Single—-Machine
Number of Threads 1

Example 6.5: Using the Network Simplex Solver 4 235

Output 6.5.3 continued

Solution Summary
Solver LP
Algorithm Network Simplex
Objective Function obj
Solution Status Optimal
Objective Value 274
Primal Infeasibility 0
Dual Infeasibility 0
Bound Infeasibility 0
Iterations 7
Iterations2 2
Presolve Time 0.00
Solution Time 0.00

[1] [2] flow

1 4 12

2 1 2

2 3 10

2 6 8

3 4 3

3 5 7

4 7 10

5 6 2

5 7 5

6 8 10

7 8 0

The optimal solution is represented graphically in Figure 6.6.

Figure 6.6 Minimum Cost Network Flow Problem: Optimal Solution (with
Budget Constraint)

The iteration log is displayed in Output 6.5.4. Note that the network simplex solver extracts a subnetwork in
this case.

236 4 Chapter 6: The Linear Programming Solver

Output 6.5.4 Log: Solution Progress

NOTE:
NOTE:
NOTE:
NOTE:
NOTE:
NOTE:
NOTE:
NOTE:
NOTE:
NOTE:
NOTE:

NOTE:
NOTE:
NOTE:
NOTE:

NOTE:
NOTE:
NOTE:
NOTE:
NOTE:

NOTE:
NOTE:
NOTE:
NOTE:
STATUS=OK ALGORITHM=NS SOLUTION_STATUS=OPTIMAL OBJECTIVE=274
PRIMAL_INFEASIBILITY=0 DUAL_INFEASIBILITY=0 BOUND_INFEASIBILITY=0 ITERATIONS=7
ITERATIONS2=2 PRESOLVE_TIME=0.00 SOLUTION_TIME=0.00

There were 11 observations read from the data set WORK.ARCDATA.

There were 8 observations read from the data set WORK.NODEDATA.
Problem generation will use 4 threads.

The problem has 11 variables (0 free, 0 fixed).

The problem has 9 linear constraints (1 LE, 8 EQ, 0 GE, 0 range).

The problem has 24 linear constraint coefficients.

The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).
The LP presolver value AUTOMATIC is applied.

The LP presolver removed 4 variables and 4 constraints.

The LP presolver removed 7 constraint coefficients.

The presolved problem has 7 variables, 5 constraints, and 17 constraint
coefficients.

The LP solver is called.

The Network Simplex algorithm is used.

The network has 4 rows (80.00%), 7 columns (100.00%), and 1 component.
The network extraction and setup time is 0.00 seconds.

Primal Primal Dual
Iteration Objective Infeasibility Infeasibility Time
1 8.015000E+01 1.006000E+01 5.500000E+01 0.00
2 1.053000E+02 5.030000E+00 5.400000E+01 0.00
3 1.053000E+02 5.030000E+00 5.400000E+01 0.00
4 1.353000E+02 3.000000E-02 4.900000E+01 0.00
5 1.356300E+02 0.000000E+00 4.700000E+01 0.00
6 1.356300E+02 0.000000E+00 0.000000E+00 0.00
7 2.700000E+02 0.000000E+00 0.000000E+00 0.00
The Network Simplex solve time is 0.00 seconds.
The total Network Simplex solve time is 0.00 seconds.
Optimal.
Objective = 270.
The Dual Simplex algorithm is used.
Objective Entering Leaving
Phase Iteration Value Time Variable Variable
D 2 1 2.700000E+02 0 flow['5','6"']
budgetOn2 (S)
D 2 2 2.740000E+02 0
Optimal.

Objective = 274.
The Simplex solve time is 0.00 seconds.
The PROCEDURE OPTMODEL printed pages 53-54.

Example 6.6: Migration to OPTMODEL: Generalized Networks 4 237

Example 6.6: Migration to OPTMODEL: Generalized Networks

The following example shows how to use PROC OPTMODEL to solve the example “Generalized Networks:
Using the EXCESS= Option” in Chapter 6, “The NETFLOW Procedure” (SAS/OR User’s Guide: Mathe-
matical Programming Legacy Procedures). The input data sets are the same as in the PROC NETFLOW
example.

title 'Generalized Networks';

data garcs;
input _from_$ _to_ $ _cost_ _mult_;
datalines;

1.

sl
sl
s2
s2
s2
s3
s3

’

dl
d2
dl
d2
d3
d2
d3

S 0L N B
O ONMNMNDNDN:
(S, B8}

data gnodes;
input _node_ $ _sd_ ;
datalines;

sl
s2
s3
dl
d2
d3

’

5
20
10
-5
-10
-20

The following PROC OPTMODEL statements read the data sets, build the linear programming model, solve
the model, and output the optimal solution to a SAS data set called GENETOUT:

proc optmodel;
set <str> NODES;

num

sd {NODES} init O;

read data gnodes into NODES=[_node_] _sd_;

set <str,str> ARCS;

num _lo_ {ARCS} init O;

num _capac_ {ARCS} init .;

num _cost_ {ARCS};

num _mult_{ARCS} init 1;

read data garcs nomiss into ARCS=[_from _to_] _cost_ _mult_;

NODES

NODES union (union {<i,j> in ARCS} {i,j});

238 4 Chapter 6: The Linear Programming Solver

var Flow {<i,j> in ARCS} >= _lo_[i, j];
min obj = sum {<i, j> in ARCS} _cost_[i,j] * Flowl[i, j];

con balance {i in NODES}:

num infinity = constant ('BIG');
/* change equality constraint to le constraint for supply nodes */
for {i in NODES: _sd_[i] > 0} balance[i] .1lb = -infinity;

solve;

num _supply {<i,j> in ARCS}
num _demand_ {<i, j> in ARCS}
num _fcost_ {<i, j> in ARCS}

(if _sd [i] ne 0 then _sd [i] else

sum {<(i), j> in ARCS} Flow]li, j]

- sum {<j, (i)> in ARCS} _mult_[j,i] * Flow[j,i] = _sd_[i];

2)i

(if _sd_[j] ne 0 then —_sd_[]j] else
cost[i,j] * Flow[i, j].sol;

create data gnetout from [_from_

_cost__ _capac_

quit;

lo

to]
mult _supply _demand _flow_=Flow _fcost_;

2)i

To solve a generalized network flow problem, the usual balance constraint is altered to include the arc
multiplier “_mult_[i,j]” in the second sum. The balance constraint is initially declared as an equality, but to
mimic the EXCESS=SUPPLY option in PROC NETFLOW, the sense of this constraint is changed to “<” by
relaxing the constraint’s lower bound for supply nodes. The output data set is displayed in Output 6.6.1.

Output 6.6.1 Optimal Solution with Excess Supply

Obs _from

sl
sl
s2
s2
s2
s3
s3

SJo o WN R

_to

dl
d2
dl
d2
d3
d2
d3

o 0 RN B R

cost _capac_

lo

O OO oo oo

mult _supply _demand_ _flow_ _fcost_

O ONDNDDNDRLR
U Ul O OO0 oo

5

5
20
20
20
10
10

5
10

5
10
20
10
20

O OO uLoowm

[
oOcooooouwm

The log is displayed in Output 6.6.2.

Example 6.6: Migration to OPTMODEL: Generalized Networks 4 239

Output 6.6.2 OPTMODEL Log

NOTE: There were 6 observations read from the data set WORK.GNODES.
NOTE: There were 7 observations read from the data set WORK.GARCS.
NOTE: Problem generation will use 4 threads.
NOTE: The problem has 7 variables (0 free, 0 fixed).
NOTE: The problem has 6 linear constraints (3 LE, 3 EQ, 0 GE, 0 range).
NOTE: The problem has 14 linear constraint coefficients.
NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).
NOTE: The OPTMODEL presolver is disabled for linear problems.
NOTE: The LP presolver value AUTOMATIC is applied.
NOTE: The LP presolver removed 2 variables and 2 constraints.
NOTE: The LP presolver removed 4 constraint coefficients.
NOTE: The presolved problem has 5 variables, 4 constraints, and 10 constraint
coefficients.
NOTE: The LP solver is called.
NOTE: The Dual Simplex algorithm is used.
Objective
Phase Iteration Value Time
D1 1 0.000000E+00 0
D 2 2 1.500000E+01 0
D 2 3 2.500000E+01 0
NOTE: Optimal.
NOTE: Objective = 25.
NOTE: The Dual Simplex solve time is 0.02 seconds.
NOTE: The data set WORK.GNETOUT has 7 observations and 10 variables.

Now consider the previous example but with a slight modification to the arc multipliers, as in the PROC
NETFLOW example:

data garcsl

7

input _from_ $§ _to_ $ _cost_ _mult_;

datalines;
sl dl1 1 0.5
sl d2 8 0.5
s2 dl 4
s2 d2 2
s2 d3 1
s3 d2 5 0.5
s3 d3 4 0.5

’

The following PROC OPTMODEL statements are identical to the preceding example, except for the balance
constraint. The balance constraint is still initially declared as an equality, but to mimic the PROC NETFLOW
EXCESS=DEMAND option, the sense of this constraint is changed to “>" by relaxing the constraint’s upper

bound for demand nodes.
proc optmodel;

set <str> NODES;
num

set <str,str> ARCS;

sd {NODES} init O;
read data gnodes into NODES=[_node_] _sd

-

240 4 Chapter 6: The Linear Programming Solver

num _lo_ {ARCS} init O;

num _capac_ {ARCS} init .;

num _cost_ {ARCS};

num _mult_ {ARCS} init 1;

read data garcsl nomiss into ARCS=[_from_ _to_] _cost_ _mult_;
NODES = NODES union (union {<i, j> in ARCS} {i, j});

var Flow {<i,Jj> in ARCS} >= _lo_I[1i, j];
for {<i,j> in ARCS: _capac_[i,j] ne .} Flow[i, j].ub = _capac_[i, j];
min obj = sum {<i, j> in ARCS} _cost_[i,j] * Flow[i, j];
con balance {i in NODES}: sum {<(i),Jj> in ARCS} Flowl[i, j]
- sum {<j, (1)> in ARCS} _mult_[j,i] * Flow[j,i] = _sd _[i];

num infinity = constant ('BIG');
/* change equality constraint to ge constraint =*/

for {i in NODES: _sd _[i] < 0} balance[i] .ub = infinity;

solve;

num _supply_ {<i, j> in ARCS} (if _sd [i] ne 0 then _sd_[i] else .);
num _demand_ {<i, j> in ARCS} (if _sd_[j] ne 0 then —_sd_[]j] else .);
num _fcost_ {<i,j> in ARCS} = _cost_[i,]Jj] * Flow[i, j].sol;

create data gnetoutl from [_from _to_]
cost _capac_ _lo_ _mult_ _supply _demand _flow_=Flow _fcost_;

quit;
The output data set is displayed in Output 6.6.3.

Output 6.6.3 Optimal Solution with Excess Demand

Obs _from _to_ _cost_ _capac_ _lo_ _mult__supply _demand _flow_ _fcost_
1 sl d1l 1 0 0.5 5 5 5 5
2 sl d2 8 0 0.5 5 10 0 0
3 s2 dl 4 0 1.0 20 5 0 0
4 s2 d2 2 0 1.0 20 10 5 10
5 s2 d3 1 0 1.0 20 20 15 15
6 s3 d2 5 0 0.5 10 10 0 0
7 s3 d3 4 0 0.5 10 20 10 40

The log is displayed in Output 6.6.4.

Example 6.7: Migration to OPTMODEL: Maximum Flow 4 241

Output 6.6.4 OPTMODEL Log

NOTE:
NOTE:
NOTE:
NOTE:
NOTE:
NOTE:
NOTE:
NOTE:
NOTE:
NOTE:
NOTE:
NOTE:

NOTE:
NOTE:

NOTE:
NOTE:
NOTE:
NOTE:
NOTE:

There were 6 observations read from the data set WORK.GNODES.
There were 7 observations read from the data set WORK.GARCS1.
Problem generation will use 4 threads.

The
The
The
The
The
The
The
The

The presolved problem has 5 variables, 4 constraints, and 10 constraint
coefficients.
The LP solver is called.
The Dual Simplex algorithm is used.
Objective
Phase Iteration Value Time
D1 1 0.000000E+00 0
D 2 2 4.997000E+01 0
D 2 4 7.000000E+01 0
Optimal.
Objective = 70.
The Dual Simplex solve time is 0.00 seconds.
The data set WORK.GNETOUT1l has 7 observations and 10 variables.
The PROCEDURE OPTMODEL printed pages 58-59.

problem has 7 variables (0 free, 0 fixed).

problem has 6 linear constraints (0 LE, 3 EQ, 3 GE, 0 range).
problem has 14 linear constraint coefficients.

problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).
OPTMODEL presolver is disabled for linear problems.

LP presolver value AUTOMATIC is applied.

LP presolver removed 2 variables and 2 constraints.

LP presolver removed 4 constraint coefficients.

Example 6.7: Migration to OPTMODEL: Maximum Flow

The following example shows how to use PROC OPTMODEL to solve the example “Maximum Flow
Problem” in Chapter 6, “The NETFLOW Procedure” (SAS/OR User’s Guide: Mathematical Programming
Legacy Procedures). The input data set is the same as in that example.

title

data arcs;
input _from_ $ _to_ $ _cost_ _capac_;
datalines;

O HOQQUDTO TP ONN®
Yo e B T R o PR o P o B o N © I]
W oo Jo Ul dWDN B -
[y
(8}

'Maximum Flow Problem';

242 4 Chapter 6: The Linear Programming Solver

fh
g T
h T

The following PROC OPTMODEL statements read the data sets, build the linear programming model, solve
the model, and output the optimal solution to a SAS data set called GOUT3:

proc optmodel;
str source = 'S’';
str sink = 'T"';

set <str> NODES;
num _supdem_ {i in NODES} = (if i in {source, sink} then . else 0);

set <str,str> ARCS;

num _lo_ {ARCS} init O;

num _capac_ {ARCS} init .;

num _cost_ {ARCS} init O;

read data arcs nomiss into ARCS=[_from_ _to_] _cost_ _capac_;
NODES = (union {<i,j> in ARCS} {i, j});

var Flow {<i, j> in ARCS} >= _lo_[i, j];
for {<i,j> in ARCS: _capac_[i,]] ne .} Flow[i, j].ub = _capac_[i, j];
max obj = sum {<i, j> in ARCS: j = sink} Flow][i, j];
con balance {i in NODES diff {source, sink}}:
sum {< (i), j> in ARCS} Flow[i, j]
- sum {<j, (1i)> in ARCS} Flow[j,i] = _supdem [i];

solve;

num _supply_ {<i, j> in ARCS} =
(if _supdem_ [i] ne O then _supdem [i] else .);
num _demand_ {<i, j> in ARCS} =
(if _supdem [j] ne O then —_supdem_ [j] else .);
num _fcost_ {<i, j> in ARCS} = _cost_[i,]j] * Flow][i, j].sol;

create data gout3 from [_from_ _to_]
cost _capac_ _lo_ _supply _demand _flow =Flow _fcost_;

quit;
To solve a maximum flow problem, you solve a network flow problem that has a zero supply or demand at
all nodes other than the source and sink nodes, as specified in the declaration of the _SUPDEM_ numeric
parameter and the balance constraint. The objective declaration uses the logical condition J = SINK to
maximize the flow into the sink node. The output data set is displayed in Output 6.7.1.

Example 6.7: Migration to OPTMODEL: Maximum Flow 4 243

Output 6.7.1 Optimal Solution

Obs _from__to_ _cost_ _capac_ _lo_ _supply__demand _flow_ _fcost_
1 S a 0 0 12 0
2 S b 0 . 0 13 0
3 a c 1 7 0 7 7
4 b c 2 9 0 8 16
5 a d 3 5 0 5 15
6 b d 4 8 0 5 20
7 c e 5 15 0 15 75
8 d £ 6 20 0 10 60
9 e g 7 11 0 3 21

10 £ g 8 6 0 6 48
11 e h 9 12 0 12 108
12 £ h 10 4 0 4 40
13 g T 0 0 9 0
14 h T 0 0 16 0

The log is displayed in Output 6.7.2.

Output 6.7.2 OPTMODEL Log

NOTE: There were 14 observations read from the data set WORK.ARCS.

NOTE: Problem generation will use 4 threads.

NOTE: The problem has 14 variables (0 free, 0 fixed).

NOTE: The problem has 8 linear constraints (0 LE, 8 EQ, 0 GE, 0 range).

NOTE: The problem has 24 linear constraint coefficients.

NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).

NOTE: The OPTMODEL presolver is disabled for linear problems.

NOTE: The problem is a pure network instance. The ALGORITHM=NETWORK option is
recommended for solving problems with this structure.

NOTE: The LP presolver value AUTOMATIC is applied.

NOTE: The LP presolver removed 10 variables and 6 constraints.

NOTE: The LP presolver removed 20 constraint coefficients.

NOTE: The presolved problem has 4 variables, 2 constraints, and 4 constraint
coefficients.

NOTE: The LP solver is called.

NOTE: The Dual Simplex algorithm is used.

Objective
Phase Iteration Value Time
D1 1 0.000000E+00 0
D 2 2 2.500000E+01 0
P 2 5 2.500000E+01 0

NOTE: Optimal.

NOTE: Objective = 25.

NOTE: The Dual Simplex solve time is 0.00 seconds.

NOTE: The data set WORK.GOUT3 has 14 observations and 9 variables.
NOTE: The PROCEDURE OPTMODEL printed pages 62-63.

244 4 Chapter 6: The Linear Programming Solver

Example 6.8: Migration to OPTMODEL: Production, Inventory, Distribution

The following example shows how to use PROC OPTMODEL to solve the example “Production, Inventory,
Distribution Problem” in Chapter 6, “The NETFLOW Procedure” (SAS/OR User’s Guide: Mathematical
Programming Legacy Procedures). The input data sets are the same as in that example.

title 'Minimum Cost Flow Problem';
title2 'Production Planning/Inventory/Distribution’;

data node0;
input _node_ $ _supdem_ ;
datalines;
factl 1 1000
fact2_1 850
factl_2 1000
fact2_2 1500
shopl_1 -900
shop2_1 -900
shopl_2 -900
shop2_2 -1450

’

data arcO;
input _tail $ _head $ _cost_ _capac_ _lo_
diagonal factory key_id $10. mth_made $ _name &$17.;
datalines;

factl 1 £f1 mar_1 127.9 500 50 19 1 production March prod £f1 19 mar
factl 1 f£f1 apr 1 78.6 600 50 19 1 production April prod f1 19 apl
factl 1 f£f1 may 1 95.1 400 50 19 1 production May

fl mar 1 f1_apr_1 15 50 . 19 1 storage March

fl apr 1 f1 may 1 12 50 . 19 1 storage April .

fl apr 1 f1 mar 1 28 20 . 19 1 backorder April back f1l 19 apl
fl may 1 f1 apr 1 28 20 . 19 1 backorder May back f1 19 may
fl mar 1 £f2 mar 1 11 . . 19 . f1 to_2 March

fl apr 1 £2_apr_1 11 . . 19 . f1 to_2 April

fl may 1 £2 may 1 16 . . 19 . f1 to_2 May

fl mar 1 shopl_1 -327.65 250 . 19 1 sales March

fl _apr 1 shopl_1 -300 250 . 19 1 sales April

fl may 1 shopl 1 -285 250 . 19 1 sales May

fl mar 1 shop2_ 1 -362.74 250 . 19 1 sales March

f1l _apr 1 shop2_1 -300 250 . 19 1 sales April

fl may 1 shop2_1 -245 250 . 19 1 sales May .

fact2. 1 £f2 mar 1 88.0 450 35 19 2 production March prod £2 19 mar
fact2 1 £f2 apr 1 62.4 480 35 19 2 production April prod £2 19 apl
fact2. 1 £f2 may 1 133.8 250 35 19 2 production May

f2 mar 1 £2_apr_1 18 30 . 19 2 storage March

f2_apr 1 £2 may 1 20 30 . 19 2 storage April .

f2_apr 1 £f2 mar 1 17 15 . 19 2 backorder April back £f2 19 apl
f2 may 1 £2 apr 1 25 15 . 19 2 backorder May back £f2 19 may
f2 mar 1 f1 mar 1 10 40 . 19 . f2 to_ 1 March

f2 _apr 1 f1 _apr_1 11 40 . 19 . £f2 to_ 1 April

f2 may 1 f1 may 1 13 40 . 19 . £f2 to_1 May

Example 6.8: Migration to OPTMODEL : Production, Inventory, Distribution 4 245

f2 mar 1 shopl_1 -297.4 250 . 19 2 sales March
£f2_apr_1 shopl_1 -290 250 . 19 2 sales April
£f2 may 1 shopl_ 1 -292 250 . 19 2 sales May
f2 mar 1 shop2_1 -272.7 250 . 19 2 sales March
f2_apr 1 shop2_1 -312 250 . 19 2 sales April
f2 may 1 shop2_1 -299 250 . 19 2 sales May .
factl 2 £f1 mar 2 217.9 400 40 25 1 production March prod fl1 25 mar
factl 2 £l apr 2 174.5 550 50 25 1 production April prod f1 25 apl
factl 2 f1 may 2 133.3 350 40 25 1 production May
fl mar 2 f1_apr_2 20 40 . 25 1 storage March
fl apr 2 f1 may 2 18 40 . 25 1 storage April .
fl _apr 2 fl mar 2 32 30 . 25 1 backorder April back f1l 25 apl
fl may 2 fl _apr 2 41 15 . 25 1 backorder May back fl1 25 may
fl mar 2 £f2 mar 2 23 . . 25 . f1l to_2 March
fl apr 2 £f2_apr_2 23 . . 25 . fl_to_2 April
fl may 2 £2 may 2 26 . . 25 . f1l to_2 May
fl _mar 2 shopl_2 -559.76 . . 25 1 sales March
fl _apr 2 shopl_2 -524.28 . . 25 1 sales April
fl may 2 shopl 2 -475.02 . . 25 1 sales May
fl mar 2 shop2 2 -623.89 . . 25 1 sales March
fl_apr 2 shop2_2 -549.68 . . 25 1 sales April
fl may 2 shop2_2 -460.00 . . 25 1 sales May .
fact2. 2 £f2 mar 2 182.0 650 35 25 2 production March prod £f2 25 mar
fact2 2 £2 apr 2 196.7 680 35 25 2 production April prod £2 25 apl
fact2_ 2 £f2 may 2 201.4 550 35 25 2 production May
f2 mar 2 f£f2 apr 2 28 50 . 25 2 storage March
f2_apr 2 f2 may 2 38 50 . 25 2 storage April .
f2_apr 2 f2 mar 2 31 15 . 25 2 backorder April back f2 25 apl
f2 may 2 £2_apr 2 54 15 . 25 2 backorder May back £f2 25 may
f2 mar 2 f1 mar 2 20 25 . 25 . f2 to_1 March
f2_apr 2 fl1 _apr_2 21 25 . 25 . f2 to_1 April
f2 may 2 f1 may 2 43 25 . 25 . £f2 to_1 May
f2_mar 2 shopl_2 -567.83 500 . 25 2 sales March
£f2_apr 2 shopl_2 -542.19 500 . 25 2 sales April
£f2 may 2 shopl 2 -461.56 500 . 25 2 sales May
f2 mar 2 shop2 2 -542.83 500 . 25 2 sales March
f2_apr 2 shop2_2 -559.19 500 . 25 2 sales April
2 sales May

£f2 may 2 shop2_2 -489.06 500 . 25

4

The following PROC OPTMODEL statements read the data sets, build the linear programming model, solve
the model, and output the optimal solution to SAS data sets called ARC1 and NODEZ2:

proc optmodel;
set <str> NODES;
num _supdem_ {NODES} init O;
read data node0O into NODES=[_node_] _supdem_;

set <str,str> ARCS;

num _lo_ {ARCS} init O;
num _capac_ {ARCS} init .;
num _cost_ {ARCS};

num diagonal {ARCS};

num factory {ARCS};

246 4 Chapter 6: The Linear Programming Solver

str key_id {ARCS};

str mth_made {ARCS};

str _name_ {ARCS};

read data arcO nomiss into ARCS=[_tail__head_] _lo_ _capac_ _cost_
diagonal factory key_id mth_made _name_;

NODES = NODES union (union {<i, j> in ARCS} {i, j});

var Flow {<i,Jj> in ARCS} >= _lo_I[1i, j];
for {<i,j> in ARCS: _capac_[i,j] ne .} Flow[i, j].ub = _capac_[i, j];
min obj = sum {<i, j> in ARCS} _cost_[i,j] * Flow[i, j];
con balance {i in NODES}: sum {<(i),Jj> in ARCS} Flowl[i, j]
- sum {<j, (1)> in ARCS} Flow[j,i] = _supdem [i];

num infinity = constant ('BIG');

num excess = sum {i in NODES} _supdem_[i];

if (excess > 0) then do;
/* change equality constraint to le constraint for supply nodes */
for {i in NODES: _supdem_ [i] > 0} balance[i].lb = -infinity;

end;

else if (excess < 0) then do;
/* change equality constraint to ge constraint for demand nodes */
for {i in NODES: _supdem_ [i] < 0} balance[i] .ub = infinity;

end;

solve;

num _supply_ {<i, j> in ARCS} =
(if _supdem [i] ne O then _supdem_ [i] else .);
num _demand_ {<i, j> in ARCS} =
(if _supdem_[j] ne 0 then —_supdem [j] else .);
num _fcost_ {<i, j> in ARCS} = _cost_[i,]j] * Flow][i, j].sol;

create data arcl from [_tail__head]
cost _capac_ _lo_ _name_ _supply _demand_ _flow =Flow _fcost_
rcost =

(if Flow[_tail head_].rc ne 0 then Flow[_tail

—r

head] .rc else .)

—r

status = Flow.status diagonal factory key_id mth_made;

create data node2 from [_node_]
supdem = (if _supdem_[_node_] ne 0 then _supdem [_node_] else .)
dual = balance.dual;

quit;

Example 6.8: Migration to OPTMODEL: Production, Inventory, Distribution 4 247

The PROC OPTMODEL statements use both single-dimensional (NODES) and multiple-dimensional (ARCS)
index sets, which are populated from the corresponding data set variables in the READ DATA statements.
The _SUPDEM_, _LO_, and _CAPAC_ parameters are given initial values, and the NOMISS option in the
READ DATA statement tells PROC OPTMODEL to read only the nonmissing values from the input data
set. The balance constraint is initially declared as an equality, but depending on the total supply or demand,
the sense of this constraint is changed to “<” or “>" by relaxing the constraint’s lower or upper bound,
respectively. The ARC1 output data set contains most of the same information as in the NETFLOW example,
including reduced cost, basis status, and dual values. The _ANUMB_ and _TNUMB_ values do not apply
here.

The PROC PRINT statements are similar to the PROC NETFLOW example:

options 1s=80 ps=54;

proc print data=arcl heading=h width=min;
var _tail__head _cost_ _capac_ _lo_ _name_
_supply _demand _flow_ _fcost_;
sum _fcost_;

run;
proc print data=arcl heading=h width=min;

var _rcost_ _status_ diagonal factory key_id mth_made;
run;
proc print data=node2;
run;

The output data sets are displayed in Output 6.8.1.

248 4 Chapter 6: The Linear Programming Solver

Output 6.8.1 Output Data Sets

Obs

W o0 Jo Ul d WDKK

NNMNNNMNNRERRRRRARRBRR
B WNROWVWONOU & WNRO

Obs

W o0 Jo Ul d WD R

NNMNNNMNNHEHRRRRRERRRRR
B WNROWVWONIOU & WNKRO

tail

factl_1

factl 1

factl_1

fl mar_1
fl apr_ 1
fl apr_ 1
fl may 1
fl mar 1
fl apr_ 1
fl may 1
fl mar 1
fl apr 1
fl may 1
fl mar 1
fl apr_ 1
fl may 1
fact2_1

fact2_1

fact2_1

f2 mar 1
f2_apr_ 1
f2_apr_ 1
f2 may 1
f2 mar_1

_supply__

1000
1000
1000

850
850
850

head

fl mar 1
fl apr 1
fl may 1
fl _apr 1
fl may 1
fl mar 1
fl apr 1
f2 mar_ 1
f2_apr 1
f2 may 1
shopl_1
shopl_1
shopl_1
shop2_1
shop2_1
shop2_1
f2 mar_ 1
£f2_apr 1
f2 may 1
f2_apr 1
f2 may 1
f2 mar 1
f2_apr 1
fl mar 1

_demand

900
900
900
900
900
9200

cost

127.90
78.60
95.10
15.00
12.00
28.00
28.00
11.00
11.00
16.00
-327.65
-300.00
-285.00
-362.74
-300.00
-245.00

88.00

62.40

133.80
18.00
20.00
17.00
25.00
10.00

flow

345
600
50
0
50
20
0

0
30
100
155
250

250
250

290
480
35

15

40

_Ccapac__

500
600
400
50
50
20
20

250
250
250
250
250
250
450
480
250
30
30
15
15
40

fcost

44125.50
47160.00
4755.00

600.00
560.00

330.00
1600.00
-50785.75
-75000.00

-90685.00
-75000.00

25520.00
29952.00
4683.00

300.00

400.00

50

(S,]
o o

O OO0 O0OO0OO0OO0OO0OO0OOoOOoOOoOOoO

w ww
(6,0, B¢

O O o oo

lo_

_name__

prod f1
prod f1

back f1
back f1

prod f2
prod f£2

back f2
back f2

19
19

19
19

19
19

19
19

mar
apl

apl
may

mar
apl

apl
may

Example 6.8: Migration to OPTMODEL : Production, Inventory, Distribution 4 249

Output 6.8.1 continued

Obs _tail_ _head_ _cost_ _capac_ _lo _name__
25 f2_apr_ 1 fl apr 1 11.00 40 0

26 f2 may 1 fl may 1 13.00 40 0

27 f2 mar_1 shopl_1 -297.40 250 0

28 £f2 _apr 1 shopl_1 -290.00 250 0

29 f2 may 1 shopl_1 -292.00 250 0

30 f2 mar_1 shop2_1 -272.70 250 0

31 f2_apr_ 1 shop2_1 -312.00 250 0

32 f2 may 1 shop2_1 -299.00 250 0

33 factl 2 fl mar_ 2 217.90 400 40 prod f1 25 mar
34 factl_2 fl _apr 2 174.50 550 50 prod f1 25 apl
35 factl_2 fl may 2 133.30 350 40

36 fl mar_ 2 fl _apr 2 20.00 40 0

37 fl_apr_2 fl_may 2 18.00 40 0

38 fl_apr 2 fl mar 2 32.00 30 0 back f1 25 apl
39 fl may 2 fl _apr 2 41.00 15 0 back f1 25 may
40 fl mar 2 f2_mar 2 23.00 0

41 fl_apr 2 f2_apr 2 23.00 0

42 fl may 2 £f2_may 2 26.00 0

43 fl _mar 2 shopl_2 -559.76 0

44 fl_apr 2 shopl_2 -524.28 0

45 fl may 2 shopl_2 -475.02 0

46 fl _mar 2 shop2_2 -623.89 0

47 fl_apr_ 2 shop2_2 -549.68 0

48 fl may 2 shop2_2 -460.00 0
Obs _supply__ _demand _flow_ _fcost__

25 . . 0 0.00

26 . . 0 0.00

27 . 900 250 -74350.00

28 . 900 245 -71050.00

29 . 900 0 0.00

30 . 900 0 0.00

31 . 900 250 -78000.00

32 . 900 150 -44850.00

33 1000 . 400 87160.00

34 1000 . 550 95975.00

35 1000 . 40 5332.00

36 . . 0 0.00

37 . . 0 0.00

38 . . 30 960.00

39 . . 15 615.00

40 0 0.00

41 0 0.00

42 . . 0 0.00

43 . 900 0 0.00

44 . 900 0 0.00

45 . 900 25 -11875.50

46 . 1450 455 -283869.95

47 . 1450 535 -294078.80

48 . 1450 0 0.00

250 4 Chapter 6: The Linear Programming Solver

Output 6.8.1 continued

Obs

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

Obs

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

tail

fact2_2
fact2_2
fact2_2
f2_mar 2
f2_apr 2
f2_apr_2
£f2_may 2
f2 mar 2
f2_apr_ 2
£f2_may 2
f2 mar 2
f2_apr_ 2
£f2_may_ 2
f2 mar 2
£f2_apr_ 2
£f2_may 2

supply

1500
1500
1500

head

f2_mar 2
f2_apr 2
£f2_may 2
f2_apr 2
£f2_may 2
f2_mar 2
f2_apr 2
fl mar 2
fl _apr 2
fl _may 2
shopl_2
shopl_2
shopl_2
shop2_2
shop2_2
shop2_2

_demand__

900
900
900
1450
1450
1450

cost

182.00
196.70
201.40
28.00
38.00
31.00
54.00
20.00
21.00
43.00
-567.83
-542.19
-461.56
-542.83
-559.19
-489.06

_flow__

645
680
35
0

0

0
15
25
0

0
500
375

120
320
20

_capac

650
680
550
50
50
15
15
25
25
25
500
500
500
500
500
500

fcost

117390.
133756.
7049.

0.

0.

0.

810.
500.

0.

0.
-283915.
.25
0.
-65139.
-178940.
-9781.

-1281110.

-203321

00
00
00
00
00
00
00
00
00
00
00

00

lo_

35

w w
(S0,]

O OO0 O0OO0OO0OO0OO0OO0OOoOOoOOoOOo

_name__

prod f2 25
prod £f2 25

back f2 25
back f2 25

mar
apl

apl
may

Example 6.8: Migration to OPTMODEL : Production, Inventory, Distribution 4 251

Output 6.8.1 continued

Obs _rcost_ _status_ diagonal factory key_id mth_made
1 . B 19 1 production March
2 -0.65 U 19 1 production April
3 0.85 L 19 1 production May
4 63.65 L 19 1 storage March
5 -3.00 U 19 1 storage April
6 -20.65 U 19 1 backorder April
7 43.00 L 19 1 backorder May
8 50.90 L 19 . fl to_ 2 March
9 B 19 . fl to_2 April

10 B 19 . fl to_2 May
11 . B 19 1 sales March
12 -21.00 U 19 1 sales April
13 9.00 L 19 1 sales May
14 -46.09 U 19 1 sales March
15 -32.00 U 19 1 sales April
16 38.00 L 19 1 sales May
17 . B 19 2 production March
18 -27.85 U 19 2 production April
19 23.55 L 19 2 production May
20 15.75 L 19 2 storage March
21 . B 19 2 storage April
22 19.25 L 19 2 backorder April
23 45.00 L 19 2 backorder May
24 -29.90 U 19 . f2 to_ 1 March
25 22.00 L 19 . £f2 to_1 April
26 29.00 L 19 . f2_to_1 May
27 -9.65 U 19 2 sales March
28 . B 19 2 sales April
29 18.00 L 19 2 sales May
30 4.05 L 19 2 sales March
31 -33.00 U 19 2 sales April
32 . B 19 2 sales May
33 -45.16 U 25 1 production March
34 -14.35 U 25 1 production April
35 2.11 L 25 1 production May
36 94.21 L 25 1 storage March
37 75.66 L 25 1 storage April
38 -42.21 U 25 1 backorder April
39 -16.66 U 25 1 backorder May
40 104.06 L 25 . fl to_2 March
41 13.49 L 25 . fl to_2 April
42 28.96 L 25 . fl to_2 May
43 47.13 L 25 1 sales March
44 8.40 L 25 1 sales April
45 B 25 1 sales May
46 B 25 1 sales March
47 . B 25 1 sales April
48 32.02 L 25 1 sales May
49 . B 25 2 production March
50 -1.66 U 25 2 production April
51 73.17 L 25 2 production May
52 11.64 L 25 2 storage March

252 4 Chapter 6: The Linear Programming Solver

Output 6.8.1 continued

Obs

53
54
55
56
57
58
59
60
61
62
63
64

rcost

108.
.36

47

-16.
-61.
.51

40.
-42.

30

10

13

13
06

04
00

.50

Obs

W oo Jo Ul dbWDNRK

NRHERRRRRBRBRR
CWVWoONOUd WNKO

status

bwwEHwWaEHEEHECGAG BB

_node__

factl_ 1
fact2_1
factl 2
fact2_2
shopl_1
shop2_1
shopl_2
shop2_2
fl mar 1
fl apr 1
fl _may 1
f2 mar_ 1
f2_apr 1
f2 may 1
fl mar 2
fl _apr 2
fl _may 2
f2 mar_ 2
£f2_apr 2
£f2_may 2

diagonal

25
25
25
25
25
25
25
25
25
25
25
25

_supdem__

1000
850
1000
1500
-900
-900
-900
-1450

factory

N

NDNMNNMNNMDDNMDDN-

_du

O O oo

199.
188.
343.
360.
-127.
-79.

-94

-88.

-90
-110

-263.
-188.
-131.
-182.
-198.

-128

key_id

storage
backorder
backorder
f2_to_1
f2 to 1
f2 to_ 1
sales
sales
sales
sales
sales
sales

al_

.00
.00
.00
.00
75
75
83
83
90
25
.25
00
.25
.25
06
85
19
00
36
.23

mth_made

April
April
May
March
April
May
March
April
May
March
April
May

The log is displayed in Output 6.8.2.

Example 6.9: Migration to OPTMODEL: Shortest Path 4 253

Output 6.8.2 OPTMODEL Log

NOTE: There were 8 observations read from the data set WORK.NODEO.

NOTE: There were 64 observations read from the data set WORK.ARCO.

NOTE: Problem generation will use 4 threads.

NOTE: The problem has 64 variables (0 free, 0 fixed).

NOTE: The problem has 20 linear constraints (4 LE, 16 EQ, 0 GE, 0 range).

NOTE: The problem has 128 linear constraint coefficients.

NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).

NOTE: The OPTMODEL presolver is disabled for linear problems.

NOTE: The LP presolver value AUTOMATIC is applied.

NOTE: The LP presolver removed 0 variables and 0 constraints.

NOTE: The LP presolver removed 0 constraint coefficients.

NOTE: The presolved problem has 64 variables, 20 constraints, and 128
constraint coefficients.

NOTE: The LP solver is called.

NOTE: The Dual Simplex algorithm is used.

Objective
Phase Iteration Value Time
D1 1 0.000000E+00 0
D 2 2 —-4.020320E+06 0
D 2 32 -1.281110E+06 0

NOTE: Optimal.

NOTE: Objective = -1281110.35.

NOTE: The Dual Simplex solve time is 0.00 seconds.

NOTE: The data set WORK.ARC1l has 64 observations and 16 variables.
NOTE: The data set WORK.NODE2 has 20 observations and 3 variables.
NOTE: The PROCEDURE OPTMODEL printed pages 66-67.

Example 6.9: Migration to OPTMODEL: Shortest Path

The following example shows how to use PROC OPTMODEL to solve the example “Shortest Path Problem”
in Chapter 6, “The NETFLOW Procedure” (SAS/OR User’s Guide: Mathematical Programming Legacy
Procedures). The input data set is the same as in that example.

title 'Shortest Path Problem';
title2 'How to get Hawaiian Pineapples to a London Restaurant';

data aircostl;
input ffrom&$13. tto&$1l5. _cost_;

datalines;
Honolulu Chicago 105
Honolulu San Francisco 75
Honolulu Los Angeles 68
Chicago Boston 45
Chicago New York 56
San Francisco Boston 71
San Francisco New York 48
San Francisco Atlanta 63
Los Angeles New York 44
Los Angeles Atlanta 57

Boston Heathrow London 88

254 4 Chapter 6: The Linear Programming Solver

New York Heathrow London 65
Atlanta Heathrow London 76

’

The following PROC OPTMODEL statements read the data sets, build the linear programming model, solve
the model, and output the optimal solution to a SAS data set called SPATH:

proc optmodel;
str sourcenode = 'Honolulu';
str sinknode = 'Heathrow London';

set <str> NODES;
num _supdem_ {i in NODES} = (if i = sourcenode then 1
else if i = sinknode then -1 else 0);

set <str,str> ARCS;

num _lo_ {ARCS} init O;

num _capac_ {ARCS} init .;

num _cost_ {ARCS};

read data aircostl into ARCS=[ffrom tto] _cost_;
NODES = (union {<i,j> in ARCS} {i, j});

var Flow {<i, j> in ARCS} >= _lo_[i, j];

min obj = sum {<i, j> in ARCS} _cost_[i,j] * Flow[i, j];

con balance {i in NODES}: sum {<(i),j> in ARCS} Flow[i, j]
- sum {<j, (i)> in ARCS} Flow[j,i] = _supdem_ [i];

solve;

num _supply_ {<i, j> in ARCS} =
(if _supdem_[i] ne O then _supdem [i] else .);
num _demand_ {<i, j> in ARCS} =
(if _supdem_[j] ne 0 then —_supdem [j] else .);
num _fcost_ {<i,j> in ARCS} = _cost_[i,]j] * Flow][i, j].sol;

create data spath from [ffrom tto]
cost _capac_ _lo_ _supply__demand _flow =Flow _fcost_
rcost=(if Flow[ffrom,tto].rc ne 0 then Flow[ffrom,tto].rc else .)
status=Flow.status;

quit;

The statements use both single-dimensional (NODES) and multiple-dimensional (ARCS) index sets. The
ARCS index set is populated from the ffrom and tto data set variables in the READ DATA statement. To solve
a shortest path problem, you solve a minimum cost network flow problem that has a supply of one unit at
the source node, a demand of one unit at the sink node, and zero supply or demand at all other nodes, as
specified in the declaration of the _SUPDEM_ numeric parameter. The SPATH output data set contains most
of the same information as in the PROC NETFLOW example, including reduced cost and basis status. The
ANUMB and _TNUMB_ values do not apply here.

The PROC PRINT statements are similar to the PROC NETFLOW example:

proc print data=spath;
sum _fcost_;
run;

Example 6.9: Migration to OPTMODEL: Shortest Path 4 255

The output is displayed in Output 6.9.1.

Output 6.9.1 Output Data Set

_ s d _ _ s
_ c u e _ £ r t
£ c a P m £ c c a
£ o P _ P a 1 o o t
(o] r t s a 1 1 n o s s u
b o t t c o v d w t t s
s m o _ _ _ _ _ _ _ _ _
1 Honolulu Chicago 105 0 1 0 0 B
2 Honolulu San Francisco 75 0 1 0 0 B
3 Honolulu Los Angeles 68 0 1 1 68 . B
4 Chicago Boston 45 0 0 0 61 L
5 Chicago New York 56 0 0 0 49 L
6 San Francisco Boston 71 0 0 0 57 L
7 San Francisco New York 48 0 0 0 11 L
8 San Francisco Atlanta 63 0 0 0 37 L
9 Los Angeles New York 44 0 1 44 . B
10 Los Angeles Atlanta 57 0 . 0 0 24 L
11 Boston Heathrow London 88 0 1 0 0 B
12 New York Heathrow London 65 0 1 1 65 B
13 Atlanta Heathrow London 76 0 1 0 0 B
177

The log is displayed in Output 6.9.2.

Output 6.9.2 OPTMODEL Log

NOTE: There were 13 observations read from the data set WORK.AIRCOST1.

NOTE: Problem generation will use 4 threads.

NOTE: The problem has 13 variables (0 free, 0 fixed).

NOTE: The problem has 8 linear constraints (0 LE, 8 EQ, 0 GE, 0 range).

NOTE: The problem has 26 linear constraint coefficients.

NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).

NOTE: The OPTMODEL presolver is disabled for linear problems.

NOTE: The problem is a pure network instance. The ALGORITHM=NETWORK option is
recommended for solving problems with this structure.

NOTE: The LP presolver value AUTOMATIC is applied.

NOTE: The LP presolver removed all variables and constraints.

NOTE: Optimal.

NOTE: Objective = 177.

NOTE: The data set WORK.SPATH has 13 observations and 11 variables.

NOTE: The PROCEDURE OPTMODEL printed pages 75-76.

256 4 Chapter 6: The Linear Programming Solver

References
Ahuja, R. K., Magnanti, T. L., and Orlin, J. B. (1993), Network Flows: Theory, Algorithms, and Applications,
Englewood Cliffs, NJ: Prentice-Hall.

Andersen, E. D. and Andersen, K. D. (1995), “Presolving in Linear Programming,” Mathematical Program-
ming, 71, 221-245.

Dantzig, G. B. (1963), Linear Programming and Extensions, Princeton, NJ: Princeton University Press.

Forrest, J. J. and Goldfarb, D. (1992), “Steepest-Edge Simplex Algorithms for Linear Programming,” Mathe-
matical Programming, 5, 1-28.

Gondzio, J. (1997), “Presolve Analysis of Linear Programs prior to Applying an Interior Point Method,”
INFORMS Journal on Computing, 9, 73-91.

Harris, P. M. 1. (1973), “Pivot Selection Methods in the Devex LP Code,” Mathematical Programming, 57,
341-374.

Maros, 1. (2003), Computational Techniques of the Simplex Method, Boston: Kluwer Academic.

Chapter 7
The Mixed Integer Linear Programming Solver

Contents
Overview: MILP Solver e 257
Getting Started: MILP Solver 258
Syntax: MILP Solver e 259
Functional Summary L 259
MILP Solver Options 261
Details: MILP Solver 270
Branch-and-Bound Algorithm L 270
Controlling the Branch-and-Bound Algorithm 272
Presolve and Probingo oL 273
Cutting Planes o e e 274
Primal Heuristics 275
Parallel Processing L 276
NodeLog o o e 276
Problem Statistics 277
Macro Variable _ OROPTMODEL_ 278
Examples: MILP Solver e 281
Example 7.1: Scheduling 281
Example 7.2: Multicommodity Transshipment Problem with Fixed Charges 286
Example 7.3: Facility Location 292
Example 7.4: Traveling Salesman Problem 301
References 307

Overview: MILP Solver

The OPTMODEL procedure provides a framework for specifying and solving mixed integer linear programs
(MILPs). A standard mixed integer linear program has the formulation

min ¢!'x

subjectto Ax {>,=,<} b (MILP)
I<x<u
x;,€Z VieS

258 4 Chapter 7: The Mixed Integer Linear Programming Solver

where
x € R”
A e Rmxn
c € R
b € R™
1 € R
u € R
S
The MILP solver,

is the vector of structural variables

is the matrix of technological coefficients

is the vector of objective function coefficients

is the vector of constraints right-hand sides (RHS)
is the vector of lower bounds on variables

is the vector of upper bounds on variables

is a nonempty subset of the set {1...,n} of indices

available in the OPTMODEL procedure, implements an linear-programming-based branch-

and-cut algorithm. This divide-and-conquer approach attempts to solve the original problem by solving
linear programming relaxations of a sequence of smaller subproblems. The MILP solver also implements
advanced techniques such as presolving, generating cutting planes, and applying primal heuristics to improve
the efficiency of the overall algorithm.

The MILP solver provides various control options and solution strategies. In particular, you can enable,
disable, or set levels for the advanced techniques previously mentioned. It is also possible to input an
incumbent solution; see the section “Warm Start Option” on page 261 for details.

Getting Started: MILP Solver

The following example illustrates how you can use the OPTMODEL procedure to solve mixed integer linear
programs. For more examples, see the section “Examples: MILP Solver” on page 281. Suppose you want to
solve the following problem:

min 2xi
S.t.
X1
X1

— 3XZ — 4X3
— 2x2 - 3x3 > =5 (R1)
4+ x2 + 2x3 < 4 (R2)
+ 2x2 + 3x3 < 7 (R3)
X1, X2, X3 > 0
X1, X2, X3 e”Z

You can use the following statements to call the OPTMODEL procedure for solving mixed integer linear

programs:

proc optmodel;

var x{1.
min £ =
con rl:

con r2:
con r3:

.3} >= 0 integer;
2x*x[1l] - 3*x[2] - 4*x[3];
-2*xx[2] - 3*x[3] >= -5;

x[1] + x[2] + 2*x[3] <= 4;
x[1] + 2xx[2] + 3*x[3] <= 7;

solve with milp / presolver = automatic heuristics = automatic;

print x;
quit;

Syntax: MILP Solver 4 259

The PRESOLVER= and HEURISTICS= options specify the levels for presolving and applying heuristics,
respectively. In this example, each option is set to its default value, AUTOMATIC, meaning that the solver
automatically determines the appropriate levels for presolve and heuristics.

The optimal value of x is shown in Figure 7.1.

Figure 7.1 Solution Output

The OPTMODEL Procedure

[1] x
1 0
2 1
3 1

The solution summary stored in the macro variable _OROPTMODEL_ can be viewed by issuing the following
statement:

%$put & OROPTMODEL_;

This statement produces the output shown in Figure 7.2.

Figure 7.2 Macro Output

STATUS=OK ALGORITHM=BAC SOLUTION_STATUS=OPTIMAL OBJECTIVE=-7 RELATIVE_GAP=0
ABSOLUTE_GAP=0 PRIMAL_ INFEASIBILITY=0 BOUND_INFEASIBILITY=0
INTEGER_INFEASIBILITY=0 BEST BOUND=-7 NODES=1 ITERATIONS=4 PRESOLVE_TIME=0.00
SOLUTION_TIME=0.00

Syntax: MILP Solver

The following statement is available in the OPTMODEL procedure:
SOLVE WITH MILP </ options > ;

Functional Summary
Table 7.1 summarizes the options available for the SOLVE WITH MILP statement, classified by function.

Table 7.1 Options for the MILP Solver

Description Option
Presolve Option
Specifies the type of presolve PRESOLVER=

Warm Start Option
Specifies the input primal solution (warm start) PRIMALIN

260 4 Chapter 7: The Mixed Integer Linear Programming Solver

Table 7.1 (continued)
Description Option
Control Options
Specifies the stopping criterion based on absolute objective gap ABSOBJGAP=
Specifies the cutoff value for node removal CUTOFF=
Emphasizes feasibility or optimality EMPHASIS=
Specifies the maximum violation on variables and constraints =~ FEASTOL=
Specifies the maximum allowed difference between an integer INTTOL=
variable’s value and an integer
Specifies the frequency of printing the node log LOGFREQ=
Specifies the detail of solution progress printed in log LOGLEVEL=
Specifies the maximum number of nodes to be processed MAXNODES=
Specifies the maximum number of solutions to be found MAXSOLS=
Specifies the time limit for the optimization process MAXTIME=
Specifies the tolerance used in determining the optimality of OPTTOL=
nodes in the branch-and-bound tree
Specifies whether to enable or disable parallel processing of the PARALLEL=
branch-and-cut algorithm
Specifies the probing level PROBE=
Specifies the stopping criterion based on relative objective gap RELOBJGAP=
Specifies the scale of the problem matrix SCALE=
Specifies the initial seed for the random number generator SEED=
Specifies the stopping criterion based on target objective value TARGET=
Specifies whether time units are CPU time or real time TIMETYPE=
Heuristics Option
Specifies the primal heuristics level HEURISTICS=
Search Options
Specifies the level of conflict search CONFLICTSEARCH=
Specifies the node selection strategy NODESEL=
Enables use of variable priorities PRIORITY=
Specifies the number of simplex iterations performed on each STRONGITER=
variable in strong branching strategy
Specifies the number of candidates for strong branching STRONGLEN=
Specifies the level of symmetry detection SYMMETRY=
Specifies the rule for selecting branching variable VARSEL=
Cut Options
Specifies the cut level for all cuts ALLCUTS=
Specifies the clique cut level CUTCLIQUE=
Specifies the flow cover cut level CUTFLOWCOVER=
Specifies the flow path cut level CUTFLOWPATH=
Specifies the Gomory cut level CUTGOMORY=
Specifies the generalized upper bound (GUB) cover cut level CUTGUB=
Specifies the implied bounds cut level CUTIMPLIED=
Specifies the knapsack cover cut level CUTKNAPSACK=
Specifies the lift-and-project cut level CUTLAP=
Specifies the mixed lifted 0-1 cut level CUTMILIFTED=
Specifies the mixed integer rounding (MIR) cut level CUTMIR=

MILP Solver Options 4 261

Table 7.1 (continued)

Description Option

Specifies the row multiplier factor for cuts CUTSFACTOR=
Specifies the overall cut aggressiveness CUTSTRATEGY=
Specifies the zero-half cut level CUTZEROHALF=

Decomposition Algorithm Options
Enables decomposition algorithm and specifies general control DECOMP=()

options

Specifies options for the master problem DECOMP_MASTER=()

Specifies options for the master problem solved as a MILP DECOMP_MASTER_IP=()

Specifies options for the subproblem DECOMP_SUBPROB=()
MILP Solver Options

This section describes the options that are recognized by the MILP solver in PROC OPTMODEL. These
options can be specified after a forward slash (/) in the SOLVE statement, provided that the MILP solver is
explicitly specified using a WITH clause. For example, the following line could appear in PROC OPTMODEL
statements:

solve with milp / allcuts=aggressive maxnodes=10000 primalin;

Presolve Option

PRESOLVER=number | string
specifies a presolve string or its corresponding value number, as listed in Table 7.2.

Table 7.2 Values for PRESOLVER= Option

number string Description
-1 AUTOMATIC Applies the default level of presolve processing
0 NONE Disables presolver
1 BASIC Performs minimal presolve processing
2 MODERATE Applies a higher level of presolve processing
3 AGGRESSIVE Applies the highest level of presolve processing

The default value is AUTOMATIC.

Warm Start Option

PRIMALIN
enables you to input a starting solution in PROC OPTMODEL before invoking the MILP solver.
Adding the PRIMALIN option to the SOLVE statement requests that the MILP solver use the current
variable values as a starting solution (warm start). If the MILP solver finds that the input solution is
feasible, then the input solution provides an incumbent solution and a bound for the branch-and-bound

262 4 Chapter 7: The Mixed Integer Linear Programming Solver

algorithm. If the solution is not feasible, the MILP solver tries to repair it. It is possible to set a variable
value to the missing value ‘" to mark a variable for repair. When it is difficult to find a good integer
feasible solution for a problem, warm start can reduce solution time significantly.

NOTE: If the MILP solver produces a feasible solution, the variable values from that run can be
used as the warm start solution for a subsequent run. If the warm start solution is not feasible for the
subsequent run, the solver automatically tries to repair it.

Control Options

ABSOBJGAP=number
specifies a stopping criterion. When the absolute difference between the best integer objective and the
objective of the best remaining node falls below the value of number, the solver stops. The value of
number can be any nonnegative number; the default value is 1E-6.

CUTOFF=number
cuts off any nodes in a minimization (maximization) problem with an objective value above (below)
number. The value of number can be any number; the default value is the positive (negative) number
that has the largest absolute value representable in your operating environment.

EMPHASIS=number | string
specifies a search emphasis string or its corresponding value number as listed in Table 7.3.

Table 7.3 Values for EMPHASIS= Option

number string Description
0 BALANCE Performs a balanced search
1 OPTIMAL Emphasizes optimality over feasibility
2 FEASIBLE Emphasizes feasibility over optimality

The default value is BALANCE.

FEASTOL=number
specifies the tolerance used to check the feasibility of a solution. This tolerance applies both to the
maximum violation of bounds on variables and to the difference between the right-hand sides and
left-hand sides of constraints. The value of number can be any value between (and including) 1E—4
and 1E-9. The default value is 1E-6.

If the MILP solver fails to find a feasible solution within this tolerance but does find a solution with
a slightly larger violation, then the solver ends with a solution status of OPTIMAL_COND (see the
section “Macro Variable _OROPTMODEL_ ” on page 278).

INTTOL=number
specifies the amount by which an integer variable value can differ from an integer and still be considered
integer feasible. The value of number can be any number between 0.0 and 0.5. The MILP solver
attempts to find an optimal solution whose integer infeasibility is less than number. If you assign a
value smaller than 1E-10 to number and the best solution found by the solver has integer infeasibility
between number and 1E—10, then the solver terminates with a solution status of OPTIMAL_COND
(see the section “Macro Variable _OROPTMODEL_ ” on page 278). The default value is 1E-5.

MILP Solver Options 4 263

LOGFREQ=number

PRINTFREQ=number
specifies how often information is printed in the node log. The value of number can be any nonnegative
number up to the largest four-byte signed integer, which is 23! — 1. The default value of number is
100. If number is set to 0, then the node log is disabled. If number is positive, then an entry is made in
the node log at the first node, at the last node, and at intervals dictated by the value of number. An
entry is also made each time a better integer solution is found.

LOGLEVEL=number | string

PRINTLEVEL2=number | string
controls the amount of information displayed in the SAS log by the MILP solver, from a short
description of presolve information and summary to details at each node. Table 7.4 describes the valid
values for this option.

Table 7.4 Values for LOGLEVEL= Option

number string Description
0 NONE Turns off all solver-related messages to SAS log
1 BASIC Displays a solver summary after stopping

2 MODERATE Prints a solver summary and a node log by using
the interval dictated by the LOGFREQ= option

3 AGGRESSIVE Prints a detailed solver summary and a node log
by using the interval dictated by the LOGFREQ=
option

The default value is MODERATE.

MAXNODES=number
specifies the maximum number of branch-and-bound nodes to be processed. The value of number can
be any nonnegative integer up to the largest four-byte signed integer, which is 23! — 1. The default
value of number is 231 — 1.

MAXSOLS=number
specifies a stopping criterion. If number solutions have been found, then the solver stops. The value of
number can be any positive integer up to the largest four-byte signed integer, which is 23! — 1. The
default value of number is 231 — 1.

MAXTIME=t
specifies an upper limit of ¢ units of time for the optimization process, including problem generation
time and solution time. The value of the TIMETYPE= option determines the type of units used. If you
do not specify the MAXTIME= option, the solver does not stop based on the amount of time elapsed.
The value of f can be any positive number; the default value is the positive number that has the largest
absolute value that can be represented in your operating environment.

OPTTOL=number
specifies the tolerance used to determine the optimality of nodes in the branch-and-bound tree. The
value of number can be any value between (and including) 1E—4 and 1E-9. The default is 1E-6.

264 4 Chapter 7: The Mixed Integer Linear Programming Solver

PARALLEL=number | string (Experimental)
indicates whether to enable parallel processing of the branch-and-cut algorithm. Table 7.5 describes
the valid values of the PARALLEL= option.

Table 7.5 Values for PARALLEL= Option

number string Description
0 OFF Disables parallel processing of the branch-and-cut algorithm
1 ON Enables parallel processing of the branch-and-cut algorithm

The default value is 0. You can specify options for controlling parallel processing in the PERFOR-
MANCE statement, which is documented in the section “PERFORMANCE Statement” on page 21
in Chapter 4, “Shared Concepts and Topics.” The PARALLEL= option is ignored when the solver is
invoked inside a COFOR loop of the OPTMODEL procedure.

PROBE=number | string
specifies a probing string or its corresponding value number, as listed in the following table:

Table 7.6 Values for PROBE= Option

number string Description
-1 AUTOMATIC Uses the probing strategy determined by the MILP solver
0 NONE Disables probing
1 MODERATE Uses probing moderately
2 AGGRESSIVE Uses probing aggressively

The default value is AUTOMATIC.

RELOBJGAP=number
specifies a stopping criterion based on the best integer objective (BestInteger) and the objective of the
best remaining node (BestBound). The relative objective gap is equal to

| BestInteger — BestBound | / (1IE—10 + | BestBound |)

When this value becomes smaller than the specified gap size number, the solver stops. The value of
number can be any nonnegative number; the default value is 1E—4.

SCALE=option
indicates whether to scale the problem matrix. SCALE= can take either of the values AUTOMATIC
(-1) and NONE (0). SCALE=AUTOMATIC scales the matrix as determined by the MILP solver;
SCALE=NONE disables scaling. The default value is AUTOMATIC.

SEED=number
specifies the initial seed of the random number generator. This option affects the perturbation in the
simplex solvers; thus it might result in a different optimal solution and a different solver path. This
option usually has a significant, but unpredictable, effect on the solution time. The value of number
can be any positive integer up to the largest four-byte signed integer, which is 23! — 1. The default
value of the seed is 100.

MILP Solver Options 4 265

TARGET=number
specifies a stopping criterion for minimization (maximization) problems. If the best integer objective
is better than or equal to number, the solver stops. The value of number can be any number; the
default value is the negative (positive) number that has the largest absolute value representable in your
operating environment.

TIMETYPE=string | number
specifies the units of time used by the MAXTIME= option and reported by the PRESOLVE_TIME
and SOLUTION_TIME terms in the _OROPTMODEL_ macro variable. Table 7.7 describes the valid
values of the TIMETYPE= option.

Table 7.7 Values for TIMETYPE= Option

number string Description
0 CpPU Specifies units of CPU time
1 REAL Specifies units of real time

The “Optimization Statistics” table, an output of PROC OPTMODEL if you specify PRINTLEVEL=2
in the PROC OPTMODEL statement, also includes the same time units for Presolver Time and Solver
Time. The other times (such as Problem Generation Time) in the “Optimization Statistics” table are
also in the same units.

The default value of the TIMETYPE= option depends on the algorithm used and on various options.
When the solver is used with distributed or multithreaded processing, then by default TIMETYPE=
REAL. Otherwise, by default TIMETYPE= CPU. Table 7.8 describes the detailed logic for determining
the default; the first context in the table that applies determines the default value. The NTHREADS= and
NODES= options are specified in the PERFORMANCE statement of the OPTMODEL procedure. For
more information about the NTHREADS= and NODES= options, see the section “PERFORMANCE
Statement” on page 21 in Chapter 4, “Shared Concepts and Topics.”

Table 7.8 Default Value for TIMETYPE= Option

Context Default
Solver is invoked in an OPTMODEL COFOR loop REAL
NODES-= value is nonzero for the decomposition algorithm REAL

NTHREADS= value is greater than 1 and NODES=0 for the de- REAL
composition algorithm

NTHREADS= value is greater than 1 and PARALLEL=0ON REAL
Otherwise CPU

Heuristics Option

HEURISTICS=number | string
controls the level of primal heuristics applied by the MILP solver. This level determines how frequently
primal heuristics are applied during the branch-and-bound tree search. It also affects the maximum
number of iterations allowed in iterative heuristics. Some computationally expensive heuristics might
be disabled by the solver at less aggressive levels. The values of string and the corresponding values of
number are listed in Table 7.9.

266 4 Chapter 7: The Mixed Integer Linear Programming Solver

Table 7.9 Values for HEURISTICS= Option

number string Description
-1 AUTOMATIC Applies default level of heuristics, similar to MODERATE
0 NONE Disables all primal heuristics
1 BASIC Applies basic primal heuristics at low frequency
2 MODERATE Applies most primal heuristics at moderate frequency
3 AGGRESSIVE Applies all primal heuristics at high frequency

Setting HEURISTICS=NONE does not disable the heuristics that repair an infeasible input solution
that is specified by using the PRIMALIN option.

The default value is AUTOMATIC. For details about primal heuristics, see the section “Primal
Heuristics” on page 275.

Search Options

CONFLICTSEARCH=number | string
specifies the level of conflict search performed by the MILP solver. Conflict finds clauses resulting
from infeasible subproblems that arise in the search tree. The values of string and the corresponding

values of number are listed in Table 7.10.

Table 7.10 Values for CONFLICTSEARCH= Option

number string Description
-1 AUTOMATIC Performs conflict search based on a strategy deter-
mined by the MILP solver
0 NONE Disables conflict search
1 MODERATE Performs a moderate conflict search

2 AGGRESSIVE Performs an aggressive conflict search

The default value is AUTOMATIC.

NODESEL=number | string
specifies the node selection strategy string or its corresponding value number as listed in Table 7.11.

Table 7.11 Values for NODESEL= Option

number string Description
-1 AUTOMATIC Uses automatic node selection
0 BESTBOUND Chooses the node with the best relaxed objective

(best-bound-first strategy)
1 BESTESTIMATE Chooses the node with the best estimate of the in-
teger objective value (best-estimate-first strategy)
2 DEPTH Chooses the most recently created node (depth-
first strategy)

The default value is AUTOMATIC. For details about node selection, see the section
“Node Selection” on page 272.

MILP Solver Options 4 267

PRIORITY=0 | 1
indicates whether to use specified branching priorities for integer variables. PRIORITY=0 ignores
variable priorities; PRIORITY=1 uses priorities when they exist. The default value is 1. See the section
“Branching Priorities” on page 273 for details.

STRONGITER=number | AUTOMATIC
specifies the number of simplex iterations performed for each variable in the candidate list when the
strong branching variable selection strategy is used. The value of number can be any positive integer
up to the largest four-byte signed integer, which is 23! — 1. If you specify the keyword AUTOMATIC
or the value —1, the MILP solver uses the default value; this value is calculated automatically.

STRONGLEN=number | AUTOMATIC
specifies the number of candidates used when the strong branching variable selection strategy is
performed. The value of number can be any positive integer up to the largest four-byte signed integer,
which is 23! — 1. If you specify the keyword AUTOMATIC or the value —1, the MILP solver uses the
default value; this value is calculated automatically.

SYMMETRY=number | string
specifies the level of symmetry detection. Symmetry detection identifies groups of equivalent decision
variables and uses this information to solve the problem more efficiently. The values of string and the
corresponding values of number are listed in Table 7.12.

Table 7.12 Values for SYMMETRY= Option

number string Description
-1 AUTOMATIC Performs symmetry detection based on a strategy
that is determined by the MILP solver
NONE Disables symmetry detection
BASIC Performs a basic symmetry detection
MODERATE Performs a moderate symmetry detection
AGGRESSIVE Performs an aggressive symmetry detection

W = O

The default value is AUTOMATIC. For more information about symmetry detection, see (Ostrowski
2008).

VARSEL=number | string
specifies the rule for selecting the branching variable. The values of string and the corresponding
values of number are listed in Table 7.13.

Table 7.13 Values for VARSEL= Option

number string Description

-1 AUTOMATIC Uses automatic branching variable selection
MAXINFEAS Chooses the variable with maximum infeasibility
MININFEAS Chooses the variable with minimum infeasibility
PSEUDO Chooses a branching variable based on pseudocost
STRONG Uses strong branching variable selection strategy

[V S)

268 4 Chapter 7: The Mixed Integer Linear Programming Solver

The default value is AUTOMATIC. For details about variable selection, see the section “Variable
Selection” on page 272.

Cut Options

Table 7.14 describes the string and number values for the cut options in the OPTMODEL procedure.

Table 7.14 Values for Individual Cut Options

number string Description
-1 AUTOMATIC Generates cutting planes based on a strategy deter-
mined by the MILP solver
0 NONE Disables generation of cutting planes
1 MODERATE Uses a moderate cut strategy
2 AGGRESSIVE Uses an aggressive cut strategy

You can specify the CUTSTRATEGY= option to set the overall aggressiveness of the cut generation in
the MILP solver. Alternatively, you can use the ALLCUTS= option to set all cut types to the same level.
You can override the ALLCUTS= value by using the options that correspond to particular cut types. For
example, if you want the MILP solver to generate only Gomory cuts, specify ALLCUTS=NONE and
CUTGOMORY=AUTOMATIC. If you want to generate all cuts aggressively but generate no lift-and-project
cuts, set ALLCUTS=AGGRESSIVE and CUTLAP=NONE.

ALLCUTS=number | string

provides a shorthand way of setting all the cuts-related options in one setting. In other words, ALL-
CUTS=number is equivalent to setting each of the individual cuts parameters to the same value
number. Thus, ALLCUTS=-1 has the effect of setting CUTCLIQUE=-1, CUTFLOWCOVER=-1,
CUTFLOWPATH=-1, ..., CUTMIR=-1, and CUTZEROHALF=-1. Table 7.14 lists the values that
can be assigned to option and number. In addition, you can override levels for individual cuts with the
CUTCLIQUE=, CUTFLOWCOVER=, CUTFLOWPATH=, CUTGOMORY=, CUTGUB=, CUTIM-
PLIED=, CUTKNAPSACK=, CUTLAP=, CUTMILIFTED=, CUTMIR=, and CUTZEROHALF=
options. If the ALLCUTS= option is not specified, then all the cuts-related options are either at their
individually specified values (if the corresponding option is specified) or at their default values (if that
option is not specified).

CUTCLIQUE=number | string
specifies the level of clique cuts that are generated by the MILP solver. Table 7.14 lists the values that
can be assigned to option and number. The CUTCLIQUE= option overrides the ALLCUTS= option.
The default value is AUTOMATIC.

CUTFLOWCOVER=number | string
specifies the level of flow cover cuts that are generated by the MILP solver. Table 7.14 lists the
values that can be assigned to option and number. The CUTFLOWCOVER= option overrides the
ALLCUTS= option. The default value is AUTOMATIC.

CUTFLOWPATH=number | string
specifies the level of flow path cuts that are generated by the MILP solver. Table 7.14 lists the values
that can be assigned to option and number. The CUTFLOWPATH= option overrides the ALLCUTS=
option. The default value is AUTOMATIC.

MILP Solver Options 4 269

CUTGOMORY=number | string
specifies the level of Gomory cuts that are generated by the MILP solver. Table 7.14 lists the values
that can be assigned to option and number. The CUTGOMORY = option overrides the ALLCUTS=
option. The default value is AUTOMATIC.

CUTGUB=number | string
specifies the level of generalized upper bound (GUB) cover cuts that are generated by the MILP solver.
Table 7.14 lists the values that can be assigned to option and number. The CUTGUB= option overrides
the ALLCUTS= option. The default value is AUTOMATIC.

CUTIMPLIED=number | string
specifies the level of implied bound cuts that are generated by the MILP solver. Table 7.14 lists
the values that can be assigned to option and number. The CUTIMPLIED= option overrides the
ALLCUTS= option. The default value is AUTOMATIC.

CUTKNAPSACK=number | string
specifies the level of knapsack cover cuts that are generated by the MILP solver. Table 7.14 lists
the values that can be assigned to option and number. The CUTKNAPSACK= option overrides the
ALLCUTS= option. The default value is AUTOMATIC.

CUTLAP=number | string
specifies the level of lift-and-project (LAP) cuts that are generated by the MILP solver. Table 7.14 lists
the values that can be assigned to option and number. The CUTLAP= option overrides the ALLCUTS=
option. The default value is NONE.

CUTMILIFTED=number | string
specifies the level of mixed lifted O-1 cuts that are generated by the MILP solver. Table 7.14 lists
the values that can be assigned to option and number. The CUTMILIFTED= option overrides the
ALLCUTS= option. The default value is AUTOMATIC.

CUTMIR=number | string
specifies the level of mixed integer rounding (MIR) cuts that are generated by the MILP solver.
Table 7.14 lists the values that can be assigned to option and number. The CUTMIR= option overrides
the ALLCUTS= option. The default value is AUTOMATIC.

CUTSFACTOR=number
specifies a row multiplier factor for cuts. The number of cuts that are added is limited to number times
the original number of rows. The value of number can be any nonnegative number less than or equal
to 100; the default value is automatically calculated by the MILP solver.

CUTSTRATEGY=number | string

CUTS=number | string
specifies the overall aggressiveness of the cut generation in the solver. Setting a nondefault value
adjusts a number of cut parameters such that the cut generation is basic, moderate, or aggressive
compared to the default value.

CUTZEROHALF=number | string
specifies the level of zero-half cuts that are generated by the MILP solver. Table 7.14 lists the values
that can be assigned to option and number.The CUTZEROHALF= option overrides the ALLCUTS=
option. The default value is AUTOMATIC.

270 4 Chapter 7: The Mixed Integer Linear Programming Solver

Decomposition Algorithm Options

The following options are available for the decomposition algorithm in the MILP solver. For information
about the decomposition algorithm, see Chapter 14, “The Decomposition Algorithm.”

DECOMP=(options)
enables the decomposition algorithm and specifies overall control options for the algorithm. For more
information about this option, see Chapter 14, “The Decomposition Algorithm.”

DECOMP_MASTER=(options)
specifies options for the master problem. For more information about this option, see Chapter 14, “The
Decomposition Algorithm.”

DECOMP_MASTER_IP=(options)
specifies options for the (restricted) master problem solved as a MILP with the current set of columns in
an effort to obtain an integer feasible solution. For more information about this option, see Chapter 14,
“The Decomposition Algorithm.”

DECOMP_SUBPROB=(options)
specifies option for the subproblem. For more information about this option, see Chapter 14, “The
Decomposition Algorithm.”

Details: MILP Solver

Branch-and-Bound Algorithm

The branch-and-bound algorithm, first proposed by Land and Doig (1960), is an effective approach to solving
mixed integer linear programs. The following discussion outlines the approach and explains how to enhance
its progress by using several advanced techniques.

The branch-and-bound algorithm solves a mixed integer linear program by dividing the search space and
generating a sequence of subproblems. The search space of a mixed integer linear program can be represented
by a tree. Each node in the tree is identified with a subproblem derived from previous subproblems on the
path that leads to the root of the tree. The subproblem (MILP®) associated with the root is identical to the
original problem, which is called (MILP), given in the section “Overview: MILP Solver” on page 257.

The linear programming relaxation (LP?) of (MILP®) can be written as

min ¢!'x

subjectto Ax {>,=,<} b
I<x<u

The branch-and-bound algorithm generates subproblems along the nodes of the tree by using the following
scheme. Consider x°, the optimal solution to (LP?), which is usually obtained by using the dual simplex
algorithm. If)E? is an integer for all i € S, then X is an optimal solution to (MILP). Suppose that for some
i €S,)EZ.O is nonintegral. In that case the algorithm defines two new subproblems (MILP') and (MILP?),

Branch-and-Bound Algorithm 4 271

descendants of the parent subproblem (MILP?). The subproblem (MILP!) is identical to (MILP?) except for
the additional constraint

xi < %]
and the subproblem (MILP?) is identical to (MILP?) except for the additional constraint

xi > [%]

The notation | y | represents the largest integer that is less than or equal to y, and the notation [y] represents
the smallest integer that is greater than or equal to y. The two preceding constraints can be handled by
modifying the bounds of the variable x; rather than by explicitly adding the constraints to the constraint
matrix. The two new subproblems do not have x° as a feasible solution, but the integer solution to (MILP)
must satisfy one of the preceding constraints. The two subproblems thus defined are called active nodes in
the branch-and-bound tree, and the variable x; is called the branching variable.

In the next step the branch-and-bound algorithm chooses one of the active nodes and attempts to solve the
linear programming relaxation of that subproblem. The relaxation might be infeasible, in which case the
subproblem is dropped (fathomed). If the subproblem can be solved and the solution is integer feasible
(that is, x; is an integer for all i € §), then its objective value provides an upper bound for the objective
value in the minimization problem (MILP); if the solution is not integer feasible, then it defines two new
subproblems. Branching continues in this manner until there are no active nodes. At this point the best
integer solution found is an optimal solution for (MILP). If no integer solution has been found, then (MILP)
is integer infeasible. You can specify other criteria to stop the branch-and-bound algorithm before it processes
all the active nodes; see the section “Controlling the Branch-and-Bound Algorithm” on page 272 for details.

Upper bounds from integer feasible solutions can be used to fathom or cut off active nodes. Since the
objective value of an optimal solution cannot be greater than an upper bound, active nodes with lower bounds
higher than an existing upper bound can be safely deleted. In particular, if z is the objective value of the
current best integer solution, then any active subproblems whose relaxed objective value is greater than or
equal to z can be discarded.

It is important to realize that mixed integer linear programs are non-deterministic polynomial-time hard
(NP-hard). Roughly speaking, this means that the effort required to solve a mixed integer linear program
grows exponentially with the size of the problem. For example, a problem with 10 binary variables can
generate in the worst case 2! = 1,024 nodes in the branch-and-bound tree. A problem with 20 binary
variables can generate in the worst case 220 — 1,048, 576 nodes in the branch-and-bound tree. Although
it is unlikely that the branch-and-bound algorithm has to generate every single possible node, the need to
explore even a small fraction of the potential number of nodes for a large problem can be resource-intensive.

A number of techniques can speed up the search progress of the branch-and-bound algorithm. Heuristics
are used to find feasible solutions, which can improve the upper bounds on solutions of mixed integer linear
programs. Cutting planes can reduce the search space and thus improve the lower bounds on solutions of
mixed integer linear programs. When using cutting planes, the branch-and-bound algorithm is also called the
branch-and-cut algorithm. Preprocessing can reduce problem size and improve problem solvability. The
MILP solver in PROC OPTMODEL employs various heuristics, cutting planes, preprocessing, and other
techniques, which you can control through corresponding options.

272 4 Chapter 7: The Mixed Integer Linear Programming Solver

Controlling the Branch-and-Bound Algorithm

There are numerous strategies that can be used to control the branch-and-bound search (see Linderoth and
Savelsbergh 1998, Achterberg, Koch, and Martin 2005). The MILP solver in PROC OPTMODEL implements
the most widely used strategies and provides several options that enable you to direct the choice of the next
active node and of the branching variable. In the discussion that follows, let (LPK) be the linear programming
relaxation of subproblem (MILPk). Also, let

filk) = x¥ — |xF]

where x* is the optimal solution to the relaxation problem (LPk) solved at node k.

Node Selection

The NODESEL-= option specifies the strategy used to select the next active node. The valid keywords for this
option are AUTOMATIC, BESTBOUND, BESTESTIMATE, and DEPTH. The following list describes the
strategy associated with each keyword:

AUTOMATIC enables the MILP solver to choose the best node selection strategy based on problem
characteristics and search progress. This is the default setting.

BESTBOUND chooses the node with the smallest (or largest, in the case of a maximization problem)
relaxed objective value. The best-bound strategy tends to reduce the number of nodes
to be processed and can improve lower bounds quickly. However, if there is no good
upper bound, the number of active nodes can be large. This can result in the solver
running out of memory.

BESTESTIMATE chooses the node with the smallest (or largest, in the case of a maximization problem)
objective value of the estimated integer solution. Besides improving lower bounds,
the best-estimate strategy also attempts to process nodes that can yield good feasible
solutions.

DEPTH chooses the node that is deepest in the search tree. Depth-first search is effective in
locating feasible solutions, since such solutions are usually deep in the search tree.
Compared to the costs of the best-bound and best-estimate strategies, the cost of
solving LP relaxations is less in the depth-first strategy. The number of active nodes is
generally small, but it is possible that the depth-first search will remain in a portion
of the search tree with no good integer solutions. This occurrence is computationally
expensive.

Variable Selection

The VARSEL= option specifies the strategy used to select the next branching variable. The valid keywords
for this option are AUTOMATIC, MAXINFEAS, MININFEAS, PSEUDO, and STRONG. The following list
describes the action taken in each case when x¥, a relaxed optimal solution of (MILPk), is used to define two
active subproblems. In the following list, “INTTOL” refers to the value assigned using the INTTOL= option.
For details about the INTTOL= option, see the section “Control Options” on page 262.

Presolve and Probing 4 273

AUTOMATIC enables the MILP solver to choose the best variable selection strategy based on problem
characteristics and search progress. This is the default setting.

MAXINFEAS chooses as the branching variable the variable x; such that i maximizes
{min{ f; (k),1 — fi(k)} | i € Sand
INTTOL < f;(k) <1—INTTOL}
MININFEAS chooses as the branching variable the variable x; such that i minimizes
{min{ fi (k),1 — fi(k)} | i € S and
INTTOL < f;(k) <1—INTTOL}

PSEUDO chooses as the branching variable the variable x; such that i maximizes the weighted up
and down pseudocosts. Pseudocost branching attempts to branch on significant variables
first, quickly improving lower bounds. Pseudocost branching estimates significance based
on historical information; however, this approach might not be accurate for future search.

STRONG chooses as the branching variable the variable x; such that i maximizes the estimated
improvement in the objective value. Strong branching first generates a list of candidates,
then branches on each candidate and records the improvement in the objective value.
The candidate with the largest improvement is chosen as the branching variable. Strong
branching can be effective for combinatorial problems, but it is usually computationally
expensive.

Branching Priorities

In some cases, it is possible to speed up the branch-and-bound algorithm by branching on variables in a
specific order. You can accomplish this in PROC OPTMODEL by attaching branching priorities to the integer
variables in your model by using the .priority suffix. More information about this suffix is available in the
section “Integer Variable Suffixes” on page 135 in Chapter 5. For an example in which branching priorities
are used, see Example 7.3.

Presolve and Probing

The MILP solver in PROC OPTMODEL includes a variety of presolve techniques to reduce problem
size, improve numerical stability, and detect infeasibility or unboundedness (Andersen and Andersen 1995;
Gondzio 1997). During presolve, redundant constraints and variables are identified and removed. Presolve
can further reduce the problem size by substituting variables. Variable substitution is a very effective
technique, but it might occasionally increase the number of nonzero entries in the constraint matrix. Presolve
might also modify the constraint coefficients to tighten the formulation of the problem.

In most cases, using presolve is very helpful in reducing solution times. You can enable presolve at different
levels by specifying the PRESOLVER= option.

Probing is a technique that tentatively sets each binary variable to O or 1, then explores the logical conse-
quences (Savelsbergh 1994). Probing can expedite the solution of a difficult problem by fixing variables and
improving the model. However, probing is often computationally expensive and can significantly increase the
solution time in some cases. You can enable probing at different levels by specifying the PROBE= option.

274 4 Chapter 7: The Mixed Integer Linear Programming Solver

Cutting Planes

The feasible region of every linear program forms a polyhedron. Every polyhedron in n-space can be
written as a finite number of half-spaces (equivalently, inequalities). In the notation used in this chapter, this
polyhedron is defined by the set @ = {x € R" | Ax < b,] < x < u}. After you add the restriction that
some variables must be integral, the set of feasible solutions, 7 = {x € Q | x; € Z Vi € S}, no longer
forms a polyhedron.

The convex hull of a set X is the minimal convex set that contains X. In solving a mixed integer linear program,
in order to take advantage of LLP-based algorithms you want to find the convex hull, conv(F), of F. If you
can find conv(F) and describe it compactly, then you can solve a mixed integer linear program with a linear
programming solver. This is generally very difficult, so you must be satisfied with finding an approximation.
Typically, the better the approximation, the more efficiently the LP-based branch-and-bound algorithm can
perform.

As described in the section “Branch-and-Bound Algorithm” on page 270, the branch-and-bound algorithm
begins by solving the linear programming relaxation over the polyhedron Q. Clearly, Q contains the convex
hull of the feasible region of the original integer program; that is, conv(F) € Q.

Cutting plane techniques are used to tighten the linear relaxation to better approximate conv(F). Assume
you are given a solution X to some intermediate linear relaxation during the branch-and-bound algorithm. A
cut, or valid inequality (wx < 7?), is some half-space with the following characteristics:

* The half-space contains conv(F); that is, every integer feasible solution is feasible for the cut (mx <
0
7%, Vx € F).

« The half-space does not contain the current solution X; that is, ¥ is not feasible for the cut (X > 7°).

Cutting planes were first made popular by Dantzig, Fulkerson, and Johnson (1954) in their work on the
traveling salesman problem. The two major classifications of cutting planes are generic cuts and structured
cuts. Generic cuts are based solely on algebraic arguments and can be applied to any relaxation of any integer
program. Structured cuts are specific to certain structures that can be found in some relaxations of the mixed
integer linear program. These structures are automatically discovered during the cut initialization phase of the
MILP solver. Table 7.15 lists the various types of cutting planes that are built into the MILP solver. Included
in each type are algorithms for numerous variations based on different relaxations and lifting techniques.
For a survey of cutting plane techniques for mixed integer programming, see Marchand et al. (1999). For a
survey of lifting techniques, see Atamturk (2004).

Table 7.15 Cutting Planes in the MILP Solver

Generic Cutting Planes Structured Cutting Planes

Gomory mixed integer Cliques

Lift-and-project Flow cover

Mixed integer rounding ~ Flow path

Mixed lifted 0-1 Generalized upper bound cover
Zero-half Implied bound

Knapsack cover

Primal Heuristics 4 275

You can set levels for individual cuts by using the CUTCLIQUE=, CUTFLOWCOVER=, CUTFLOWPATH=,
CUTGOMORY=, CUTGUB=, CUTIMPLIED=, CUTKNAPSACK=, CUTLAP=, CUTMILIFTED=, CUT-
MIR=, and CUTZEROHALF= options. The valid levels for these options are listed in Table 7.14.

The cut level determines the internal strategy that is used by the MILP solver for generating the cutting planes.
The strategy consists of several factors, including how frequently the cut search is called, the number of cuts
allowed, and the aggressiveness of the search algorithms.

Sophisticated cutting planes, such as those included in the MILP solver, can take a great deal of CPU time.
Usually, additional tightening of the relaxation helps speed up the overall process because it provides better
bounds for the branch-and-bound tree and helps guide the LP solver toward integer solutions. In rare cases,
shutting off cutting planes completely might lead to faster overall run times.

The default settings of the MILP solver have been tuned to work well for most instances. However, problem-
specific expertise might suggest adjusting one or more of the strategies. These options give you that flexibility.

Primal Heuristics

Primal heuristics, an important component of the MILP solver in PROC OPTMODEL, are applied during the
branch-and-bound algorithm. They are used to find integer feasible solutions early in the search tree, thereby
improving the upper bound for a minimization problem. Primal heuristics play a role that is complementary
to cutting planes in reducing the gap between the upper and lower bounds, thus reducing the size of the
branch-and-bound tree.

Applying primal heuristics in the branch-and-bound algorithm assists in the following areas:

* finding a good upper bound early in the tree search (this can lead to earlier fathoming, resulting in
fewer subproblems to be processed)

* locating a reasonably good feasible solution when that is sufficient (sometimes a reasonably good
feasible solution is the best the solver can produce within certain time or resource limits)

* providing upper bounds for some bound-tightening techniques

The MILP solver implements several heuristic methodologies. Some algorithms, such as rounding and
iterative rounding (diving) heuristics, attempt to construct an integer feasible solution by using fractional
solutions to the continuous relaxation at each node of the branch-and-cut tree. Other algorithms start with an
incumbent solution and attempt to find a better solution within a neighborhood of the current best solution.

The HEURISTICS= option enables you to control the level of primal heuristics that are applied by the MILP
solver. This level determines how frequently primal heuristics are applied during the tree search. Some
expensive heuristics might be disabled by the solver at less aggressive levels. Setting the HEURISTICS=
option to a lower level also reduces the maximum number of iterations that are allowed in iterative heuristics.
The valid values for this option are listed in Table 7.9.

276 4 Chapter 7: The Mixed Integer Linear Programming Solver

Parallel Processing

The branch-and-cut algorithm can be run in single-machine mode (in single-machine mode, the computation
is executed by multiple threads on a single computer). To enable parallel processing of the branch-and-cut
algorithm, you need to specify PARALLEL=1 in the MILP solver invocation.

The decomposition algorithm can be run in either single-machine or distributed mode (in distributed mode,
the computation is executed on multiple computing nodes in a distributed computing environment).

NOTE: Distributed mode requires SAS High-Performance Optimization.

You can specify options for parallel processing in the PERFORMANCE statement, which is documented in
the section “PERFORMANCE Statement” on page 21 in Chapter 4, “Shared Concepts and Topics.”

Node Log
The following information about the status of the branch-and-bound algorithm is printed in the node log:
Node indicates the sequence number of the current node in the search tree.
Active indicates the current number of active nodes in the branch-and-bound tree.
Sols indicates the number of feasible solutions found so far.
BestInteger indicates the best upper bound (assuming minimization) found so far.
BestBound indicates the best lower bound (assuming minimization) found so far.
Gap indicates the relative gap between BestInteger and BestBound, displayed as a percentage.

If the relative gap is larger than 1,000, then the absolute gap is displayed. If no active
nodes remain, the value of Gap is 0.

Time indicates the elapsed real time.

The LOGFREQ= option can be used to control the amount of information printed in the node log. By default
a new entry is included in the log at the first node, at the last node, and at 100-node intervals. A new entry is
also included each time a better integer solution is found. The LOGFREQ= option enables you to change the
interval between entries in the node log. Figure 7.3 shows a sample node log.

Problem Statistics 4 277

Figure 7.3 Sample Node Log

NOTE: Problem generation will use 4 threads.

NOTE: The problem has 10 variables (0 free, 0 fixed).

NOTE: The problem has 0 binary and 10 integer variables.

NOTE: The problem has 2 linear constraints (2 LE, 0 EQ, 0 GE, 0 range).
NOTE: The problem has 20 linear constraint coefficients.

NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).
NOTE: The OPTMODEL presolver is disabled for linear problems.

NOTE: The MILP presolver value AUTOMATIC is applied.

NOTE: The MILP presolver removed 0 variables and 0 constraints.

NOTE: The MILP presolver removed 0 constraint coefficients.

NOTE: The MILP presolver modified 0 constraint coefficients.

NOTE: The presolved problem has 10 variables, 2 constraints, and 20 constraint

coefficients.
NOTE: The MILP solver is called.
Node Active Sols BestInteger BestBound Gap Time
0 1 3 85.0000000 178.0000000 52.25% 0
0 1 3 85.0000000 88.0955497 3.51% 0
0 1 3 85.0000000 88.0626822 3.48% 0
0 1 3 85.0000000 87.9666563 3.37% 0
0 1 3 85.0000000 87.9661593 3.37% 0
0 1 3 85.0000000 87.8181818 3.21% 0
NOTE: The MILP solver added 2 cuts with 13 cut coefficients at the root.
3 2 5 87.0000000 87.4545455 0.52% 0

NOTE: Optimal.
NOTE: Objective = 87.

Problem Statistics

Optimizers can encounter difficulty when solving poorly formulated models. Information about data
magnitude provides a simple gauge to determine how well a model is formulated. For example, a model
whose constraint matrix contains one very large entry (on the order of 10°) can cause difficulty when the
remaining entries are single-digit numbers. The PRINTLEVEL=2 option in the OPTMODEL procedure
causes the ODS table ProblemStatistics to be generated when the MILP solver is called. This table provides
basic data magnitude information that enables you to improve the formulation of your models.

The example output in Figure 7.4 demonstrates the contents of the ODS table ProblemStatistics.

278 4 Chapter 7: The Mixed Integer Linear Programming Solver

Figure 7.4 ODS Table ProblemStatistics

ProblemStatistics

Obs Labell cValuel nValuel
1 Number of Constraint Matrix Nonzeros 8 8.000000
2 Maximum Constraint Matrix Coefficient 3 3.000000
3 Minimum Constraint Matrix Coefficient 1 1.000000
4 Average Constraint Matrix Coefficient 1.875 1.875000
5 .
6 Number of Objective Nonzeros 3 3.000000
7 Maximum Objective Coefficient 4 4.000000
8 Minimum Objective Coefficient 2 2.000000
9 Average Objective Coefficient 3 3.000000
10 .
11 Number of RHS Nonzeros 3 3.000000
12 Maximum RHS 7 7.000000
13 Minimum RHS 4 4.000000
14 Average RHS 5.3333333333 5.333333
15 .
16 Maximum Number of Nonzeros per Column 3 3.000000
17 Minimum Number of Nonzeros per Column 2 2.000000
18 Average Number of Nonzeros per Column 2 2.000000
19 .
20 Maximum Number of Nonzeros per Row 3 3.000000
21 Minimum Number of Nonzeros per Row 2 2.000000
22 Average Number of Nonzeros per Row 2 2.000000

The variable names in the ODS table ProblemStatistics are Labell, cValuel, and nValuel.

Macro Variable _ OROPTMODEL _

The OPTMODEL procedure defines a macro variable named _OROPTMODEL_. This variable contains a
character string that indicates the status of the solver upon termination. The contents of the macro variable
depend on which solver was invoked. For the MILP solver, the various terms of _OROPTMODEL _ are
interpreted as follows.

STATUS
indicates the solver status at termination. It can take one of the following values:

OK The solver terminated normally.
SYNTAX_ERROR Syntax was used incorrectly.
DATA_ERROR The input data was inconsistent.

OUT_OF_MEMORY Insufficient memory was allocated to the solver.

I0O_ERROR A problem occurred in reading or writing data.
SEMANTIC_ERROR An evaluation error, such as an invalid operand type, was found.
ERROR The status cannot be classified into any of the preceding categories.

ALGORITHM

Macro Variable _ OROPTMODEL 4 279

indicates the algorithm that produced the solution data in the macro variable. This term only appears
when STATUS=0K. It can take one of the following values:

BAC
DECOMP

SOLUTION_STATUS

The branch-and-cut algorithm produced the solution data.

The decomposition algorithm produced the solution data.

indicates the solution status at termination. It can take one of the following values:

OPTIMAL
OPTIMAL_AGAP

OPTIMAL_RGAP

OPTIMAL_COND

TARGET

INFEASIBLE

UNBOUNDED
INFEASIBLE_OR_UNBOUNDED
BAD_PROBLEM_TYPE
SOLUTION_LIM

NODE_LIM_SOL

NODE_LIM_NOSOL

TIME_LIM_SOL

TIME_LIM_NOSOL

ABORT_SOL
ABORT_NOSOL
OUTMEM_SOL
OUTMEM_NOSOL

FAIL_SOL
FAIL_NOSOL

The solution is optimal.

The solution is optimal within the absolute gap specified by the
ABSOBJGAP= option.

The solution is optimal within the relative gap specified by the
RELOBJGAP= option.

The solution is optimal, but some infeasibilities (primal, bound,
or integer) exceed tolerances due to scaling or choice of small
INTTOL= value.

The solution is not worse than the target specified by the TAR-
GET= option.

The problem is infeasible.

The problem is unbounded.

The problem is infeasible or unbounded.
The problem type is unsupported by solver.

The solver reached the maximum number of solutions specified
by the MAXSOLS= option.

The solver reached the maximum number of nodes specified by
the MAXNODES= option and found a solution.

The solver reached the maximum number of nodes specified by
the MAXNODES= option and did not find a solution.

The solver reached the execution time limit specified by the
MAXTIME= option and found a solution.

The solver reached the execution time limit specified by the
MAXTIME= option and did not find a solution.

The solver was stopped by user but still found a solution.
The solver was stopped by user and did not find a solution.
The solver ran out of memory but still found a solution.

The solver ran out of memory and either did not find a solution
or failed to output the solution due to insufficient memory.

The solver stopped due to errors but still found a solution.

The solver stopped due to errors and did not find a solution.

280 4 Chapter 7: The Mixed Integer Linear Programming Solver

OBJECTIVE
indicates the objective value obtained by the solver at termination.

RELATIVE_GAP
specifies the relative gap between the best integer objective (BestInteger) and the objective of the best
remaining node (BestBound) upon termination of the MILP solver. The relative gap is equal to

| BestInteger — BestBound | / (1IE—10 + | BestBound |)

ABSOLUTE_GAP
specifies the absolute gap between the best integer objective (BestInteger) and the objective of the
best remaining node (BestBound) upon termination of the MILP solver. The absolute gap is equal to
| BestInteger — BestBound |.

PRIMAL_INFEASIBILITY
indicates the maximum (absolute) violation of the primal constraints by the solution.

BOUND_INFEASIBILITY
indicates the maximum (absolute) violation by the solution of the lower or upper bounds (or both).

INTEGER_INFEASIBILITY
indicates the maximum (absolute) violation of the integrality of integer variables returned by the MILP
solver.

BEST_BOUND
specifies the best LP objective value of all unprocessed nodes on the branch-and-bound tree at the end
of execution. A missing value indicates that the MILP solver has processed either all or none of the
nodes on the branch-and-bound tree.

NODES
specifies the number of nodes enumerated by the MILP solver by using the branch-and-bound algo-
rithm.

ITERATIONS
indicates the number of simplex iterations taken to solve the problem.

PRESOLVE_TIME
indicates the time (in seconds) used in preprocessing.

SOLUTION_TIME
indicates the time (in seconds) taken to solve the problem, including preprocessing time.

NOTE: The time reported in PRESOLVE_TIME and SOLUTION_TIME is either CPU time or real time.
The type is determined by the TIMETYPE= option.

When SOLUTION_STATUS has a value of OPTIMAL, CONDITIONAL_OPTIMAL, ITERA-
TION_LIMIT_REACHED, or TIME_LIMIT REACHED, all terms of the _OROPTMODEL_ macro
variable are present; for other values of SOLUTION_STATUS, some terms do not appear.

Examples: MILP Solver 4+ 281

Examples: MILP Solver

This section contains examples that illustrate the options and syntax of the MILP solver in PROC OPT-
MODEL. Example 7.1 illustrates the use of PROC OPTMODEL to solve an employee scheduling problem.
Example 7.2 discusses a multicommodity transshipment problem with fixed charges. Example 7.3 demon-
strates how to warm start the MILP solver. Example 7.4 shows the solution of an instance of the traveling
salesman problem in PROC OPTMODEL. Other examples of mixed integer linear programs, along with
example SAS code, are given in Chapter 12.

Example 7.1: Scheduling

The following example has been adapted from the example “A Scheduling Problem” in Chapter 5, “The LP
Procedure” (SAS/OR User’s Guide: Mathematical Programming Legacy Procedures).

Scheduling is a common application area in which mixed integer linear programming techniques are used. In
this example, you have eight one-hour time slots in each of five days. You have to assign four employees to
these time slots so that each slot is covered every day. You allow the employees to specify preference data for
each slot on each day. In addition, the following constraints must be satisfied:

* Each employee has some time slots for which he or she is unavailable (OneEmpPerSlot).
* Each employee must have either time slot 4 or time slot 5 off for lunch (EmpMustHaveLunch).
» Each employee can work at most two time slots in a row (AtMost2ConSlots).

* Each employee can work only a specified number of hours in the week (WeeklyHoursLimit).

To formulate this problem, let i denote a person, j denote a time slot, and k denote a day. Then, let x;;; = 1
if person i is assigned to time slot j on day k, and O otherwise. Let p;;x denote the preference of person i
for slot j on day k. Let h; denote the number of hours in a week that person i will work. The formulation of
this problem follows:

max Z PijkXijk

ijk

s.t. injk = 1 Vjk (OneEmpPerSlot)
x§~4k + Xisk < 1 Vik (EmpMustHaveLunch)
Xigk T Xigv1k T Xigy2k = 2 Vik,andl <6 (AtMost2ConSlots)
Z Xijk < h; Vi (WeeklyHoursLimit)
jk
Xijk =0 Vl,],k s.t. pijk>0
Xijk G{O,l} Vi,j,k

The following data set preferences gives the preferences for each individual, time slot, and day. A 10
represents the most desirable time slot, and a 1 represents the least desirable time slot. In addition, a 0
indicates that the time slot is not available. The data set maxhours gives the maximum number of hours each
employee can work per week.

282 4 Chapter 7: The Mixed Integer Linear Programming Solver

data preferences;
input name $ slot mon tue wed thu fri;

datalines;
marc 1 10 10 10 10 10
marc 2 9 9 9 9 9
marc 3 8 8 8 8 8
marc 4 1 1 1 1 1
marc 5 1 1 1 1 1
marc 6 1 1 1 1 1
marc 7 1 1 1 1 1
marc 8 1 1 1 1 1
mike 1 10 9 8 7 6
mike 2 10 9 8 7 6
mike 3 10 9 8 7 6
mike 4 10 3 3 3 3
mike 5 1 1 1 1 1
mike 6 1 2 3 4 5
mike 7 1 2 3 4 5
mike 8 1 2 3 4 5
bill 1 10 10 10 10 10
bill 2 9 9 9 9 9
bill 3 8 8 8 8 8
bill 4 0O 0 0 O O
bill 5 1 1 1 1 1
bill 6 1 1 1 1 1
bill 7 1 1 1 1 1
bill 8 1 1 1 1 1
bob 1 10 9 8 7 6
bob 2 10 9 8 7 6
bob 3 10 9 8 7 6
bob 4 10 3 3 3 3
bob 5 1 1 1 1 1
bob 6 1 2 3 4 5
bob 7 1 2 3 4 5
bob 8 1 2 3 4 5

4

data maxhours;
input name $ hour;

datalines;
marc 20
mike 20
bill 20

bob 20

’

Example 7.1: Scheduling 4 283

Using PROC OPTMODEL, you can model and solve the scheduling problem as follows:
proc optmodel;
/* read in the preferences and max hours from the data sets x/

set <string,num> DailyEmployeeSlots;
set <string> Employees;

set <num> TimeSlots (setof {<name, slot> in DailyEmployeeSlots} slot);
set <string> WeekDays = {"mon", "tue","wed","thu","fri"};

num WeeklyMaxHours{Employees};
num PreferenceWeights{DailyEmployeeSlots, Weekdays};
num NSlots = card(TimeSlots);

read data preferences into DailyEmployeeSlots=[name slot]
{day in Weekdays} <PreferenceWeights[name, slot,day] = col (day)>;
read data maxhours into Employees=[name] WeeklyMaxHours=hour;

/* declare the binary assignment variable x[i, j, k] */
var Assign{<name, slot> in DailyEmployeeSlots, day in Weekdays} binary;

/* for each p[i,j, k] = 0, fix x[i,j, k] = 0 */
for {<name,slot> in DailyEmployeeSlots, day in Weekdays:
PreferenceWeights[name, slot,day] = 0}
fix Assign[name, slot,day] = O;

/* declare the objective function =*/
max TotalPreferenceWeight =
sum{<name, slot> in DailyEmployeeSlots, day in Weekdays}
PreferenceWeights[name, slot,day] * Assign[name, slot,day];

/* declare the constraints x/
con OneEmpPerSlot{slot in TimeSlots, day in Weekdays}:
sum{name in Employees} Assign[name,slot,day] = 1;

con EmpMustHaveLunch{name in Employees, day in Weekdays}:
Assign[name, 4,day] + Assign[name, 5,day] <= 1;

con AtMost2ConsSlots{name in Employees, start in 1..NSlots-2,
day in Weekdays}:
Assign[name, start,day] + Assign[name, start+1l,day]
+ Assign[name, start+2,day] <= 2 ;

con WeeklyHoursLimit{name in Employees}:
sum{slot in TimeSlots, day in Weekdays} Assign[name, slot, day]
<= WeeklyMaxHours [name];

/* solve the model */
solve with milp;

/* clean up the solution =%/
for {<name,slot> in DailyEmployeeSlots, day in Weekdays}
Assign[name, slot,day] = round(Assign[name, slot,day],le-6);

284 4 Chapter 7: The Mixed Integer Linear Programming Solver

create data report from [name slot]={<name,slot> in DailyEmployeeSlots:
max {day in Weekdays} Assign|[name, slot,day] > 0}
{day in Weekdays} <col (day)=(if Assign[name,slot,day] > 0
then Assign|[name, slot,day] else .)>;
quit;
The following statements demonstrate how to use the TABULATE procedure to display a schedule that shows
how the eight time slots are covered for the week:

title 'Reported Solution’;
proc format;
value xfmt 1=' xxx '
run;
proc tabulate data=report;
class name slot;
var mon—--fri;
table (slot * name), (mon tue wed thu fri)*sum=' 'xf=xfmt.
/misstext=' ';
run;

The output from the preceding code is displayed in Output 7.1.1.

Example 7.1: Scheduling 4 285

Output 7.1.1 Scheduling Reported Solution

Reported Solution

e %]]]]]] %
] %]]]]]] %
W] B E] E] B B ® »
|||||| + —+ -4+ —+ —+ —+ —+ —+ —+ —+ —+ —+ —+ —+ —+ —+ — + — + —
3 X u] % % % % %
Kl]]]]]]]]
H H H] »® »® E] H] H »®
IIIIII + — 4+ — 4+ —+ —+ —F+ —+ —+ — F —+ —F —F —+ — F — F — + — 4 — 4 —
- %]]]]] % %
0 % % X X] X]]
2 H E] ® H] H] E] H H
IIIIII + —+ — 4+ —+ —+ —+ —+ —+ —F+ —+ —+ —F+ —+ —+ —+ — + — + — + —
(0]]]] %]] %]
=] %]] %]]]]
» B »® »® » By »® %]
|||||| + —+ -4+ —+ —+ —+ —+ —+ —+ —+ —+ —+ —+ —+ —+ —+ — + — + —
<]]] %] %]] %
[o]]]]]]]]]
g ® ® H] H H] H H H]
IIIIII + — 4+ — 4+ —+ —+ —F+ —+ —+ — F —+ —F+ —F —+ — F —+ — + — 4 — 4 —
Q — — 9] [} - 0] - 9] 9] - [} 9] [}
g] - 1]] — Q Q ~ — Q o Q 1] — Q ~ Q 1] A
) - - m - - o o - o [3} o [} o - [} - 0 o -
S Q Q 5 Q Q Q g Q Q g Q 5 Q Q 5 Q g 5
—+ =+ === == + - - m -2+ === + === == + === ==
Fi)
o
—
n - N o™ < n © r~ o]

286 4 Chapter 7: The Mixed Integer Linear Programming Solver

Example 7.2: Multicommodity Transshipment Problem with Fixed Charges

The following example has been adapted from the example “A Multicommodity Transshipment Problem
with Fixed Charges” in Chapter 5, “The LP Procedure” (SAS/OR User’s Guide: Mathematical Programming
Legacy Procedures).

This example illustrates the use of PROC OPTMODEL to generate a mixed integer linear program to solve
a multicommodity network flow model with fixed charges. Consider a network with nodes N, arcs A, and
a set C of commodities to be shipped between the nodes. The commodities are defined in the data set
COMMODITY_DATA, as follows:

title 'Multicommodity Transshipment Problem with Fixed Charges';

data commodity_ data;
do c =1 to 4;
output;
end;
run;

Shipping cost s;j is for each of the four commodities ¢ across each of the arcs (7, j). In addition, there is a
fixed charge f;; for the use of each arc (i, j). The shipping costs and fixed charges are defined in the data set
ARC_DATA, as follows:

data arc_data;
input from $ to $ cl c2 c3 c4d f£x;
datalines;
farm-a Chicago 20 15 17 22 100
farm-b Chicago 15 15 15 30 75
farm-c Chicago 30 30 10 10 100
farm—-a StLouis 30 25 27 22 150
farm-c StLouis 10 9 11 10 75

Chicago NY 75 75 75 75 200
StLouis NY 80 80 80 80 200
run;

The supply (positive numbers) or demand (negative numbers) d;. at each of the nodes for each commodity ¢
is shown in the data set SUPPLY DATA, as follows:

data supply_data;
input node $ sdl sd2 sd3 sd4;
datalines;
farm-a 100 100 40
farm-b 100 200 50 50
farm-c 40 100 75 100
NY -150 -200 -50 -75
run;
Let x;jc define the flow of commodity c across arc (i, j). Let y;; = 1 if arc (7, j) is used, and O otherwise.
Since the total flow on an arc (i, j) must be at most the total demand across all nodes k € N, you can define
the trivial upper bound u;;. as

Example 7.2: Multicommodity Transshipment Problem with Fixed Charges 4 287

Xije Suije = Y (—dic)

keN|dk.<0

This model can be represented using the following mixed integer linear program:

min Z Zsijcxijc+ Z Jijyij

(i,j)eAceC (i,j)eA
s.t. Z Xije — Z Xjic =< di¢ Vie NceC (balance_con)
JEN|(,j)eA JEN|(j,i)eA
Xije < ujjeyij Y(@,j)€ A ceC (fixed_charge_con)
Xije > 0 Y(i,j)e A,ceC
yijG{O,l} V(i,j)GA
Constraint (balance_con) ensures conservation of flow for both supply and demand. Constraint
(fixed_charge_con) models the fixed charge cost by forcing y;; = 1 if x;5c > 0 for some commodity
ceC.

The PROC OPTMODEL statements follow:

proc optmodel;
set COMMODITIES;
read data commodity_data into COMMODITIES=|[c];

set <str,str> ARCS;

num unit_cost {ARCS, COMMODITIES};

num fixed charge {ARCS};

read data arc_data into ARCS=[from to] {c in COMMODITIES}
<unit_cost[from,to,c]=col('c'||c)> fixed charge=fx;

print unit_cost fixed_ charge;

set <str> NODES = union {<i, j> in ARCS} {i, j};

num supply {NODES, COMMODITIES} init O0;

read data supply_data nomiss into [node] {c in COMMODITIES}
<supply[node,c]=col('sd'| |c)>;

print supply;

var AmountShipped {ARCS, c in COMMODITIES} >= 0 <= sum {i in NODES}
max (supply[i,c],0);

/* UseArc[i,j] = 1 if arc (i,]j) is used, 0 otherwise */
var UseArc {ARCS} binary;

/* TotalCost = variable costs + fixed charges */

min TotalCost = sum {<i, j> in ARCS, c in COMMODITIES}
unit_cost[i, j,c] * AmountShipped[i, j, c]
+ sum {<i, j> in ARCS} fixed chargel[i, j] * UseArcl|i, j];

con flow_balance {i in NODES, c¢c in COMMODITIES}:
sum {<(i), j> in ARCS} AmountShipped[i, j,c] -

288 4 Chapter 7: The Mixed Integer Linear Programming Solver

sum {<j, (i)> in ARCS} AmountShipped[j,i,c] <= supplyli,c];

/* if AmountShipped[i,j,c] > 0 then UseArc[i,j] = 1 */
con fixed charge_def {<i, j> in ARCS, c in COMMODITIES}:
AmountShipped|[i, j,c] <= AmountShipped[i, j,c].ub x UseArc]|i, j];

solve;
print AmountShipped;

create data solution from [from to commodity]={<i, j> in ARCS,
c in COMMODITIES: AmountShipped[i, j,c].sol ne 0} amount=AmountShipped;
quit;

Although the PROC LP example used M = 1.0e6 in the FIXED_CHARGE_DEEF constraint that links the
continuous variable to the binary variable, it is numerically preferable to use a smaller, data-dependent
value. Here, the upper bound on AmountShipped[i, j, c] is used instead. This upper bound is calculated
in the first VAR statement as the sum of all positive supplies for commodity ¢. The logical condition
AmountShipped[i, j, k] .sol ne 0 inthe CREATE DATA statement ensures that only the nonzero parts
of the solution appear in the SOLUTION data set.

The problem summary, solution summary, and the output from the two PRINT statements are shown in
Output 7.2.1.

Example 7.2: Multicommodity Transshipment Problem with Fixed Charges 4 289

Output 7.2.1 Multicommodity Transshipment Problem with Fixed Charges Solution Summary

Multicommodity Transshipment Problem with Fixed Charges
The OPTMODEL Procedure
[1] [2] [3] unit_cost
Chicago NY 1 75
Chicago NY 2 75
Chicago NY 3 75
Chicago NY 4 75
StLouis NY 1 80
StLouis NY 2 80
StLouis NY 3 80
StLouis NY 4 80
farm-a Chicago 1 20
farm-a Chicago 2 15
farm-a Chicago 3 17
farm-a Chicago 4 22
farm-a StLouis 1 30
farm-a StLouis 2 25
farm-a StLouis 3 27
farm-a StLouis 4 22
farm-b Chicago 1 15
farm-b Chicago 2 15
farm-b Chicago 3 15
farm-b Chicago 4 30
farm-c Chicago 1 30
farm-c Chicago 2 30
farm-c Chicago 3 10
farm-c Chicago 4 10
farm-c StLouis 1 10
farm-c StLouis 2 9
farm-c StLouis 3 11
farm-c StLouis 4 10
fixed
[1] [2] charge
Chicago NY 200
StLouis NY 200
farm-a Chicago 100
farm-a StLouis 150
farm-b Chicago 75
farm-c Chicago 100
farm-c StLouis 75

290 4 Chapter 7: The Mixed Integer Linear Programming Solver

Output 7.2.1 continued

supply

1 2 3 4
Chicago 0 0 0 0
NY -150 -200 -50 =75
StLouis 0 0 0 0
farm-a 100 100 40 0
farm-b 100 200 50 50
farm-c 40 100 75 100

Problem Summary

Objective Sense Minimization
Objective Function TotalCost
Objective Type Linear
Number of Variables 35
Bounded Above 0
Bounded Below 0
Bounded Below and Above 35
Free 0
Fixed 0
Binary 7
Integer 0
Number of Constraints 52
Linear LE (<=) 52
Linear EQ (=) 0
Linear GE (>=) 0
Linear Range 0
Constraint Coefficients 112

Performance Information

Execution Mode Single—-Machine
Number of Threads 1

Example 7.2: Multicommodity Transshipment Problem with Fixed Charges 4 291

Output 7.2.1 continued

Solution Summary

Solver MILP
Algorithm Branch and Cut
Objective Function TotalCost
Solution Status Optimal within Relative Gap
Objective Value 42825
Relative Gap 2.3350852E-7
Absolute Gap 0.01
Primal Infeasibility 0
Bound Infeasibility 0
Integer Infeasibility 1.110223E-16
Best Bound 42824.99
Nodes 1
Iterations 26
Presolve Time 0.00
Solution Time 0.02

Amount

[1] [2] [3] Shipped

Chicago NY 1 110

Chicago NY 2 100

Chicago NY 3 50

Chicago NY 4 75

StLouis NY 1 40

StLouis NY 2 100

StLouis NY 3 0

StLouis NY 4 0

farm-a Chicago 1 10

farm-a Chicago 2 10

farm-a Chicago 3 0

farm-a Chicago 4 0

farm-a StLouis 1 0

farm-a StLouis 2 0

farm-a StLouis 3 0

farm-a StLouis 4 0

farm-b Chicago 1 100

farm-b Chicago 2 920

farm-b Chicago 3 0

farm-b Chicago 4 0

farm-c Chicago 1 0

farm-c Chicago 2 0

farm-c Chicago 3 50

farm-c Chicago 4 75

farm-c StLouis 1 40

farm-c StLouis 2 100

farm-c StLouis 3 0

farm-c StLouis 4 0

292 4 Chapter 7: The Mixed Integer Linear Programming Solver

Example 7.3: Facility Location

Consider the classic facility location problem. Given a set L of customer locations and a set F of candidate
facility sites, you must decide on which sites to build facilities and assign coverage of customer demand to
these sites so as to minimize cost. All customer demand ¢; must be satisfied, and each facility has a demand
capacity limit C. The total cost is the sum of the distances ¢;; between facility j and its assigned customer i,
plus a fixed charge f; for building a facility at site j. Let y; = 1 represent choosing site j to build a facility,
and 0 otherwise. Also, let x;; = 1 represent the assignment of customer i to facility j, and O otherwise. This
model can be formulated as the following integer linear program:

min Y cijxij+ Y fiy;

ieL jeF jeF

s.t. Z Xij = 1 Viel (assign_def)
jeF
Xij < yj VielL,jeF (link)
Zdixij < Cy; VjeF (capacity)
ieL
xij €10,1} VielL,jeF
v; €10,1} VjeF

Constraint (assign_def) ensures that each customer is assigned to exactly one site. Constraint (link) forces a
facility to be built if any customer has been assigned to that facility. Finally, constraint (capacity) enforces
the capacity limit at each site.

Consider also a variation of this same problem where there is no cost for building a facility. This problem is
typically easier to solve than the original problem. For this variant, let the objective be

min E Z CijXij

ieL jeF
First, construct a random instance of this problem by using the following DATA steps:

title 'Facility Location Problem';

%$let NumCustomers = 50;
%$let NumSites = 10;
%$let SiteCapacity = 35;
%$let MaxDemand = 10;
%$let xmax = 200;
%$let ymax = 100;
%$let seed = 938;

/* generate random customer locations */
data cdata (drop=i);
length name $8;
do i = 1 to &NumCustomers;
name = compress('C'||put(i,best.));
X = ranuni (&seed) * &xmax;
y = ranuni (&seed) * &ymax;

Example 7.3: Facility Location 4 293

demand = ranuni (&seed) * &MaxDemand;
output;
end;
run;

/* generate random site locations and fixed charge x*/
data sdata (drop=i);
length name $8;
do i = 1 to &NumSites;
name = compress ('SITE'||put(i,best.));
X = ranuni (&seed) * &xmax;
y = ranuni (&seed) * &ymax;
fixed charge = 30 * (abs(&xmax/2-x) + abs(&ymax/2-y));
output;
end;
run;

The following PROC OPTMODEL statements first generate and solve the model with the no-fixed-charge
variant of the cost function. Next, they solve the fixed-charge model. Note that the solution to the model with
no fixed charge is feasible for the fixed-charge model and should provide a good starting point for the MILP

solver. Use the PRIMALIN option to provide an incumbent solution (warm start).

proc optmodel;
set <str> CUSTOMERS;
set <str> SITES init ({};
/* x and y coordinates of CUSTOMERS and SITES x/
num x {CUSTOMERS union SITES};
num y {CUSTOMERS union SITES};
num demand {CUSTOMERS};
num fixed_charge {SITES},;
/* distance from customer i to site j */
num dist {i in CUSTOMERS, j in SITES}
= sqrt ((x[i] - x[3])*2 + (y[i] - y[3i])*2);
read data cdata into CUSTOMERS=[name] x y demand;
read data sdata into SITES=[name] x y fixed_charge;
var Assign {CUSTOMERS, SITES} binary;
var Build {SITES} binary;
min CostNoFixedCharge
= sum {i in CUSTOMERS, Jj in SITES} dist[i, j] * Assignl[i, j];
min CostFixedCharge
= CostNoFixedCharge + sum {j in SITES} fixed_charge[]j] * Build[j];
/* each customer assigned to exactly one site */
con assign_def {i in CUSTOMERS}:
sum {j in SITES} Assignl[i,j] = 1;
/* if customer i assigned to site j, then facility must be built at j */
con link {i in CUSTOMERS, j in SITES}:
Assign[i, j] <= Build[j];
/* each site can handle at most &SiteCapacity demand =/
con capacity {j in SITES}:
sum {i in CUSTOMERS} demand[i] * Assign[i, j] <=
&SiteCapacity * Build[j];
/* solve the MILP with no fixed charges x*/
solve obj CostNoFixedCharge with milp / logfreq = 500;

294 4 Chapter 7: The Mixed Integer Linear Programming Solver

/* clean up the solution */

for {i in CUSTOMERS, j in SITES} Assign[i, j] = round(Assign[i, j]);

for {j in SITES} Build[j] = round(Build[j]);

call symput ('varcostNo', put (CostNoFixedCharge, 6.1));

/* create a data set for use by GPLOT x*/

create data CostNoFixedCharge_Data from
[customer site]={i in CUSTOMERS, Jj in SITES: Assign[i, j] = 1}
xi=x[i] yi=y[i] xj=x[3]] yi=yI[3l;

/* solve the MILP, with fixed charges with warm start =*/

solve obj CostFixedCharge with milp / primalin logfreq = 500;

/* clean up the solution */

for {i in CUSTOMERS, j in SITES} Assign[i, j] = round(Assign[i, j]);

for {j in SITES} Build[j] = round(Build[j]);

num varcost = sum {i in CUSTOMERS, j in SITES} dist[i, j] * Assign[i, j].sol;

num fixcost = sum {j in SITES} fixed_charge[j] * Build[j].sol;

call symput ('varcost', put(varcost,6.1));

call symput ('fixcost', put(fixcost,5.1));

call symput ('totalcost', put (CostFixedCharge,6.1));

/* create a data set for use by GPLOT x*/

create data CostFixedCharge Data from
[customer site]={i in CUSTOMERS, j in SITES: Assign[i,j] = 1}
xi=x[i] yi=y[i] xj=x[3] yi=y[3l;

quit;
The information printed in the log for the no-fixed-charge model is displayed in Output 7.3.1.

Output 7.3.1 OPTMODEL Log for Facility Location with No Fixed Charges

NOTE: Problem generation will use 4 threads.

NOTE: The problem has 510 variables (0 free, 0 fixed).

NOTE: The problem has 510 binary and 0 integer variables.

NOTE: The problem has 560 linear constraints (510 LE, 50 EQ, O GE, 0 range).

NOTE: The problem has 2010 linear constraint coefficients.

NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).

NOTE: The MILP presolver value AUTOMATIC is applied.

NOTE: The MILP presolver removed 10 variables and 500 constraints.

NOTE: The MILP presolver removed 1010 constraint coefficients.

NOTE: The MILP presolver modified 0 constraint coefficients.

NOTE: The presolved problem has 500 variables, 60 constraints, and 1000
constraint coefficients.

NOTE: The MILP solver is called.

Node Active Sols BestInteger BestBound Gap Time
0 1 2 972.1737321 0 972.2 0
0 1 2 972.1737321 961.2403449 1.14% 0
0 1 2 972.1737321 966.4826332 0.59% 0
0 1 3 966.4832160 966.4826332 0.00% 0

NOTE: The MILP solver added 2 cuts with 85 cut coefficients at the root.
NOTE: Optimal within relative gap.
NOTE: Objective = 966.48321599.

The results from the warm start approach are shown in Output 7.3.2.

Example 7.3: Facility Location 4 295

Output 7.3.2 OPTMODEL Log for Facility Location with Fixed Charges, Using Warm Start

NOTE: Problem generation will use 4 threads.

NOTE: The problem has 510 variables (0 free, 0 fixed).

NOTE: The problem uses 1 implicit variables.

NOTE: The problem has 510 binary and 0 integer variables.

NOTE: The problem has 560 linear constraints (510 LE, 50 EQ, 0O GE, 0 range).

NOTE: The problem has 2010 linear constraint coefficients.

NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).

NOTE: The MILP presolver value AUTOMATIC is applied.

NOTE: The MILP presolver removed 0 variables and 0 constraints.

NOTE: The MILP presolver removed 0 constraint coefficients.

NOTE: The MILP presolver modified 0 constraint coefficients.

NOTE: The presolved problem has 510 variables, 560 constraints, and 2010
constraint coefficients.

NOTE: The MILP solver is called.

Node Active Sols BestInteger BestBound Gap Time
0 1 3 16070.0150023 0 16070 0

0 1 3 16070.0150023 9946.2514269 61.57% 0

0 1 3 16070.0150023 9962.4849932 61.31% 0

0 1 3 16070.0150023 9971.2514492 61.16% 0

0 1 3 16070.0150023 9974.9275328 61.10% 0

0 1 3 16070.0150023 9978.5731345 61.05% 0

0 1 3 16070.0150023 9979.3745788 61.03% 0

0 1 5 10974.7644641 9979.3923019 9.97% 0

0 1 5 10974.7644641 9979.5208558 9.97% 0

0 1 5 10974.7644641 9979.5208558 9.97% 0

NOTE: The MILP solver added 20 cuts with 546 cut coefficients at the root.

110 16 7 10956.0630650 10943.2807444 0.12% 0
157 17 8 10949.9022613 10945.3967331 0.04% 0
232 2 9 10948.4603465 10948.4432751 0.00% 0

NOTE: Optimal within relative gap.
NOTE: Objective = 10948.460346.

The following two SAS programs produce a plot of the solutions for both variants of the model, using data
sets produced by PROC OPTMODEL:

titlel h=1.5 "Facility Location Problem";
title2 "TotalCost = &varcostNo (Variable = &varcostNo, Fixed = 0)";

data csdata;
set cdata(rename=(y=cy)) sdata (rename=(y=sy));
run;

/* create Annotate data set to draw line between customer and assigned site */
%$annomac;
data anno (drop=xi yi xj yJj);
%$SYSTEM(2, 2, 2);
set CostNoFixedCharge_Data (keep=xi yi xj yj);
SLINE (xi, yi, x3j, y3j, *, 1, 1);
run;

proc gplot data=csdata anno=anno;
axisl label=none order=(0 to &xmax by 10);

296 4 Chapter 7: The Mixed Integer Linear Programming Solver

axis2 label=none order=(0 to &ymax by 10);
symboll value=dot interpol=none
pointlabel=("#name" nodropcollisions height=1) cv=black;
symbol2 value=diamond interpol=none
pointlabel=("#name" nodropcollisions color=blue height=1) cv=blue;
plot cy*x sy*x / overlay haxis=axisl vaxis=axis2;
run;
quit;

The output of the first program is shown in Output 7.3.3.

Output 7.3.3 Solution Plot for Facility Location with No Fixed Charges

Facility Location Problem
TotalCost = 966.5 (Variable = 966.5, Fixed = 0)

100

90 ca9

80

70

60

50

40

30 c30

20

C
SITE

The output of the second program is shown in Output 7.3.4.

titlel "Facility Location Problem";
title2 "TotalCost = &totalcost (Variable = &varcost, Fixed = &fixcost)";

/* create Annotate data set to draw line between customer and assigned site */
data anno (drop=xi yi xj yJj);
$SYSTEM (2, 2, 2);

Example 7.3: Facility Location 4 297

set CostFixedCharge_ Data (keep=xi yi xj yj);
$LINE (xi, yi, xj, yj, *, 1, 1);
run;

proc gplot data=csdata anno=anno;
axisl label=none order=(0 to &xmax by 10);
axis2 label=none order=(0 to &ymax by 10);
symboll value=dot interpol=none
pointlabel=("#name" nodropcollisions height=1) cv=black;
symbol2 value=diamond interpol=none
pointlabel=("#name" nodropcollisions color=blue height=1) cv=blue;
plot cy*x sy*x / overlay haxis=axisl vaxis=axis2;

run;
quit;
Output 7.3.4 Solution Plot for Facility Location with Fixed Charges
Facility Location Problem
TotalCost = 10948 (Variable = 1329.8, Fixed = 9619)
100
c8
90 cag
80
70 Cc23
C3
60
50
7
E10
40
C2
SITE2
10 M 3
C34
20 cﬁ1
10
0
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

The economic trade-off for the fixed-charge model forces you to build fewer sites and push more demand to
each site.

298 4 Chapter 7: The Mixed Integer Linear Programming Solver

It is possible to expedite the solution of the fixed-charge facility location problem by choosing appropriate
branching priorities for the decision variables. Recall that for each site j, the value of the variable y;
determines whether or not a facility is built on that site. Suppose you decide to branch on the variables y ;
before the variables x;;. You can set a higher branching priority for y; by using the .priority suffix for the
Build variables in PROC OPTMODEL, as follows:

for{j in SITES} Build[j] .priority=10;

Setting higher branching priorities for certain variables is not guaranteed to speed up the MILP solver, but
it can be helpful in some instances. The following program creates and solves an instance of the facility
location problem, giving higher priority to the variables y ;. The LOGFREQ= option is used to abbreviate
the node log.

%$let NumCustomers 45;
%$let NumSites = 8;

%$let SiteCapacity = 35;
%$let MaxDemand = 10;
%$let xmax = 200;
%$let ymax = 100;
%$let seed = 2345;

/* generate random customer locations */
data cdata (drop=i);
length name $8;

do i = 1 to &NumCustomers;
name = compress('C'||put(i,best.));
X = ranuni (&seed) * &xmax;

y = ranuni (&seed) * &ymax;
demand = ranuni (&seed) * &MaxDemand;
output;
end;
run;

/* generate random site locations and fixed charge x*/
data sdata (drop=i);
length name $8;
do i = 1 to &NumSites;
name = compress ('SITE'||put(i,best.));
X = ranuni (&seed) * &xmax;

y = ranuni (&seed) * &ymax;
fixed charge = (abs(&xmax/2-x) + abs (&ymax/2-y)) / 2;
output;

end;

run;

Example 7.3: Facility Location 4 299

proc optmodel;
set <str> CUSTOMERS;
set <str> SITES init ({};

/* x and y coordinates of CUSTOMERS and SITES */
num x {CUSTOMERS union SITES};

num y {CUSTOMERS union SITES};

num demand {CUSTOMERS};

num fixed_charge {SITES},;

/* distance from customer i to site j */
num dist {i in CUSTOMERS, j in SITES}
= sqrt ((x[1i] - x[j])"*2 + (y[i] - y[3])"2);

read data cdata into CUSTOMERS=[name] x y demand;
read data sdata into SITES=[name] x y fixed_charge;

var Assign {CUSTOMERS, SITES} binary;
var Build {SITES} binary;

min CostFixedCharge
= sum {i in CUSTOMERS, Jj in SITES} dist[i, j] * Assign[i, j]
+ sum {j in SITES} fixed_charge[j] * Build[j];

/* each customer assigned to exactly one site */
con assign_def {i in CUSTOMERS}:
sum {j in SITES} Assignl[i,j] = 1;

/* if customer i assigned to site j, then facility must be built at j */
con link {i in CUSTOMERS, j in SITES}:
Assign[i, j] <= Build[j];

/* each site can handle at most &SiteCapacity demand */
con capacity {j in SITES}:
sum {i in CUSTOMERS} demand[i] * Assign[i, j] <= &SiteCapacity * Build[j];

/* assign priority to Build variables (y) */
for{j in SITES} Build[j].priority=10;

/* solve the MILP with fixed charges, using branching priorities =*/
solve obj CostFixedCharge with milp / logfreq=1000;

quit;
The resulting output is shown in Output 7.3.5.

300 4 Chapter 7: The Mixed Integer Linear Programming Solver

Output 7.3.5 PROC OPTMODEL Log for Facility Location with Branching Priorities

NOTE:
NOTE:
NOTE:
NOTE:
NOTE:
NOTE:
NOTE:
NOTE:
NOTE:
NOTE:
NOTE:
NOTE:
NOTE:

NOTE:

There were 45 observations read from the data set WORK.CDATA.

There were 8 observations read from the data set WORK.SDATA.

Problem generation will use 4 threads.

problem has 368 variables (0 free, 0 fixed).

problem has 368 binary and 0 integer variables.

problem has 413 linear constraints (368 LE, 45 EQ, 0 GE, 0 range).
problem has 1448 linear constraint coefficients.

problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).

The
The
The
The
The
The
The
The
The
The

NOTE: The MILP

MILP presolver
MILP presolver
MILP presolver
MILP presolver

value AUTOMATIC is applied.

removed 0 variables and 0 constraints.
removed 0 constraint coefficients.
modified 0 constraint coefficients.

presolved problem has 368 variables, 413 constraints, and 1448
constraint coefficients.
The MILP solver is called.

Node Active Sols BestInteger BestBound Gap Time

0 1 3 2823.1827978 0 2823.2 0

0 1 3 2823.1827978 1727.0208789 63.47% 0

0 1 3 2823.1827978 1752.0649013 61.13% 0

0 1 3 2823.1827978 1764.4145599 60.01% 0

0 1 3 2823.1827978 1772.1103410 59.31% 0

0 1 5 1901.7158207 1775.7196392 7.10% 0

0 1 5 1901.7158207 1782.0311725 6.72% 0

0 1 7 1860.3020611 1783.3253964 4.32% 0

0 1 7 1860.3020611 1783.8655567 4.28% 0

0 1 7 1860.3020611 1783.8819691 4.28% 0

0 1 7 1860.3020611 1783.9113985 4.28% 0

0 1 7 1860.3020611 1783.9116757 4.28% 0

0 1 7 1860.3020611 1783.9187823 4.28% 0

0 1 8 1859.8875965 1783.9187823 4.26% 0

0 1 8 1859.8875965 1783.9187823 4.26% 0

solver added 25 cuts with 728 cut coefficients at the root.

2 1 9 1851.2505744 1788.6383067 3.50% 0
179 160 10 1831.8034161 1802.8444208 1.61% 0
591 404 11 1825.5361998 1807.7993862 0.98% 0
602 267 12 1819.9124342 1807.7993862 0.67% 0
885 40 13 1819.9124341 1815.8095962 0.23% 1
949 0 13 1819.9124341 1819.9124341 0.00% 1

NOTE: Optimal.
NOTE: Objective = 1819.9124341.

Example 7.4: Traveling Salesman Problem 4 301

Example 7.4: Traveling Salesman Problem

The traveling salesman problem (TSP) is that of finding a minimum cost four in an undirected graph G with
vertex set V' = {1,...,|V|} and edge set E. A tour is a connected subgraph for which each vertex has degree
two. The goal is then to find a tour of minimum total cost, where the total cost is the sum of the costs of the
edges in the tour. With each edge e € E we associate a binary variable x., which indicates whether edge
e is part of the tour, and a cost c, € R. Let §(S) = {{i,j} € E|i € S, j ¢ S}. Then an integer linear
programming (ILP) formulation of the TSP is as follows:

eckE
s.t. Z Xe = 2 VieV (two_match)
ees(i)
Z Xe > 2 VSCV, 2<|§S|<|V|-=1 (subtour_elim)
e€é(S)
Xe € 40,1} Vee E

The equations (two_match) are the matching constraints, which ensure that each vertex has degree two in the
subgraph, while the inequalities (subtour_elim) are known as the subtour elimination constraints (SECs) and
enforce connectivity.

Since there is an exponential number O(2|V|) of SECs, it is impossible to explicitly construct the full TSP
formulation for large graphs. An alternative formulation of polynomial size was introduced by Miller, Tucker,
and Zemlin (1960) (MTZ):

min Z CijXij

(i.))€E

st Y X = 1 VieV (assign_i)
Vi34
> xij = 1 VjieV (assign_j)
ieV
ui—u;j+1 = ([V[-DA—x5) VG j)eV.i#1lj#1 (mtz)
25”1' = |V| Vi 6{2,..,|V|},
xij €1{0,1} V(i,j)e E

This formulation uses a directed graph. Constraints (assign_i) and (assign_j) now enforce that each vertex
has degree two (one edge in, one edge out). The MTZ constraints (mtz) enforce that no subtours exist.

TSPLIB, located at http://elib.zib.de/pub/Packages/mp-testdata/tsp/tsplib/tsplib.html, is a set of benchmark
instances for the TSP. The following DATA step converts a TSPLIB instance of type EUC_2D into a SAS
data set that contains the coordinates of the vertices:

/* convert the TSPLIB instance into a data set =*/
data tspData (drop=H) ;

infile "st70.tsp";

input H $1. @;

if H not in ('N','T','C','D','E');

input @1 varl-var3;
run;

302 4 Chapter 7: The Mixed Integer Linear Programming Solver

The following PROC OPTMODEL statements attempt to solve the TSPLIB instance st70.tsp by using the
MTZ formulation:

/* direct solution using the MTZ formulation =*/
proc optmodel;
set VERTICES;
set EDGES = {i in VERTICES, j in VERTICES: i ne j};
num xc {VERTICES};
num yc {VERTICES};
/* read in the instance and customer coordinates (xc, yc) =*/
read data tspData into VERTICES=[_n_] xc=var2 yc=var3;
/* the cost is the euclidean distance rounded to the nearest integer x*/
num ¢ {<i, j> in EDGES}
init floor(sqrt(((xc[i]-xc[j])**2 + (yc[i]-yc[j]l)=*x2)) + 0.5);
var x {EDGES} binary;
var u {i in 2..card(VERTICES)} >= 2 <= card(VERTICES);
/* each vertex has exactly one in-edge and one out-edge */
con assign_i {i in VERTICES}:
sum {j in VERTICES: i ne j} x[i,]j] = 1;
con assign_j {j in VERTICES}:
sum {i in VERTICES: i ne j} x[i,]j] = 1;
/* minimize the total cost */
min obj
= sum {<i, j> in EDGES} (if i > j then c[i, j] else c[j,i]) * x[i,]];
/* no subtours */
con mtz {<i,j> in EDGES : (i ne 1) and (j ne 1)}:
u[i] - u[j] + 1 <= (card(VERTICES) - 1) * (1 - x[i,3]);
solve with milp / maxtime = 600;
quit;
It is well known that the MTZ formulation is much weaker than the subtour formulation. The exponential
number of SECs makes it impossible, at least in large instances, to use a direct call to the MILP solver with
the subtour formulation. For this reason, if you want to solve the TSP with one SOLVE statement, you must
use the MTZ formulation and rely strictly on generic cuts and heuristics. Except for very small instances,
this is unlikely to be a good approach.

A much more efficient way to tackle the TSP is to dynamically generate the subtour inequalities as cuts. Typi-
cally this is done by solving the LP relaxation of the two-matching problem, finding violated subtour cuts,
and adding them iteratively. The problem of finding violated cuts is known as the separation problem. In this
case, the separation problem takes the form of a minimum cut problem, which is nontrivial to implement
efficiently. Therefore, for the sake of illustration, an integer program is solved at each step of the process.

The initial formulation of the TSP is the integral two-matching problem. You solve this by using PROC
OPTMODEL to obtain an integral matching, which is not necessarily a tour. In this case, the separation
problem is trivial. If the solution is a connected graph, then it is a tour, so the problem is solved. If the
solution is a disconnected graph, then each component forms a violated subtour constraint. These constraints
are added to the formulation, and the integer program is solved again. This process is repeated until the
solution defines a tour.

The following PROC OPTMODEL statements solve the TSP by using the subtour formulation and iteratively
adding subtour constraints:

Example 7.4: Traveling Salesman Problem 4 303

/* iterative solution using the subtour formulation =*/
proc optmodel;

set VERTICES;

set EDGES = {i in VERTICES, j in VERTICES: i > j};
num xc {VERTICES};

num yc {VERTICES};

num numsubtour init O;
set SUBTOUR {1..numsubtour};

/* read in the instance and customer coordinates (xc, yc) =*/
read data tspData into VERTICES=[varl] xc=var2 yc=var3;

/* the cost is the euclidean distance rounded to the nearest integer =/
num c¢ {<i, j> in EDGES}
init floor(sqrt(((xc[i]-xc[j])**2 + (yc[i]-yc[jl)**2)) + 0.5);

var x {EDGES} binary;

/* minimize the total cost */
min obj =
sum {<i,j> in EDGES} c[i,j] » x[i,Jl;

/* each vertex has exactly one in-edge and one out-edge */
con two_match {i in VERTICES}:
sum {j in VERTICES: i > j} x[i, j]
+ sum {j in VERTICES: i < j} x[j,i] = 2;

/* no subtours (these constraints are generated dynamically) =*/
con subtour elim {s in 1. .numsubtour}:
sum {<i, j> in EDGES: (i in SUBTOUR[s] and j not in SUBTOUR[s])
or (i not in SUBTOUR[s] and j in SUBTOUR[s])} x[i,]j] >= 2;

/* this starts the algorithm to find violated subtours x*/
set <num,num> EDGES];

set INITVERTICES = setof{<i,j> in EDGES1l} i;
set VERTICES];

set NEIGHBORS;

set <num, num> CLOSURE;

num component {INITVERTICES};

num numcomp init 2;

num iter init 1;

num numiters init 1;

set ITERS = 1. .numiters;

num sol {ITERS, EDGES};

/* initial solve with just matching constraints x/

solve;

call symput (compress('obj'| |put (iter,best.)),
trim(left (put (round(obj) ,best.))));

for {<i,j> in EDGES} sol[iter,i,j] = round(x[i, j]);

/* while the solution is disconnected, continue */

304 4 Chapter 7: The Mixed Integer Linear Programming Solver

do while (numcomp > 1);
iter = iter + 1;

/* find connected components of support graph */
EDGES1 = {<i, j> in EDGES: round(x[i, j].sol) = 1};
EDGES1 = EDGES1 union {setof {<i,j> in EDGES1l} <j,i>};
VERTICES1 = INITVERTICES;
CLOSURE = EDGESI1;
for {i in INITVERTICES} component[i] = O;
for {i in VERTICES1l} do;

NEIGHBORS = slice(<i, *>,CLOSURE);

CLOSURE = CLOSURE union (NEIGHBORS cross NEIGHBORS) ;
end;

numcomp = 0;
do while (card(VERTICES1l) > O0);
numcomp = numcomp + 1;
for {i in VERTICES1l} do;
NEIGHBORS = slice(<i, *>,CLOSURE);
for {j in NEIGHBORS} component[j] = numcomp;
VERTICES1 = VERTICES1 diff NEIGHBORS;
leave;
end;
end;

if numcomp = 1 then leave;
numiters = iter;
numsubtour = numsubtour + numcomp;
for {comp in 1..numcomp} do;
SUBTOUR [numsubtour—numcomp+comp]
= {i in VERTICES: component[i] = comp};
end;

solve;
call symput (compress('obj'| |put (iter,best.)),
trim(left (put (round(obj) ,best.))));
for {<i,j> in EDGES} soll[iter,i,j] = round(x[i, j]);
end;

/* create a data set for use by gplot =*/
create data solData from
[iter i j]={it in ITERS, <i, j> in EDGES: sol[it,i,j] = 1}
xi=xc[i] yi=yc[i] xj=xc[j] yi=yeclil;
call symput ('numiters', put (numiters,best.));
quit;

Example 7.4: Traveling Salesman Problem 4 305

You can generate plots of the solution and objective value at each stage by using the following statements:

$macro plotTSP;
%$annomac;
$do i = 1 %to &numiters;
/* create annotate data set to draw subtours */
data anno(drop=iter xi yi xj yj);
$SYSTEM (2, 2, 2);
set solData(keep=iter xi yi xj yj);
where iter = &i;
SLINE(xi, yi, xj, yj, *, 1, 1);
run;

titlel h=2 "TSP: Iter = &i, Objective = &&obj&i";
title2;

proc gplot data=tspData anno=anno;
axisl label=none;
symboll value=dot interpol=none
pointlabel=("#varl" nodropcollisions height=1) cv=black;
plot var3xvar2 / haxis=axisl vaxis=axisl;

run;

quit;

%$end;
$mend plotTSP;

$plotTSP;

The plot in Output 7.4.1 shows the solution and objective value at each stage. Notice that each stage restricts
some subset of subtours. When you reach the final stage, you have a valid tour.

NOTE: An alternative way of approaching the TSP is to use a genetic algorithm. See the “Examples” section
in Chapter 4, “The GA Procedure” (SAS/OR User’s Guide: Local Search Optimization), for an example of
how to use PROC GA to solve the TSP.

NOTE: See the “Examples” section in Chapter 2, “The OPTNET Procedure” (SAS/OR User’s Guide: Network
Optimization Algorithms), for an example of how to use PROC OPTNET to solve the TSP.

306 4 Chapter 7: The Mixed Integer Linear Programming Solver

Output 7.4.1 Traveling Salesman Problem Iterative Solution

TSP Tter = 1, Objective = 625

;/

TSP Tter = 2. Objective = 652

TSP Tter = 3, Objective =673

TSP Tter = 4, Objective =674

TSP er =5,

bective = 675

References 4 307

References
Achterberg, T., Koch, T., and Martin, A. (2005), “Branching Rules Revisited,” Operations Research Letters,
33, 42-54.

Andersen, E. D. and Andersen, K. D. (1995), “Presolving in Linear Programming,” Mathematical Program-
ming, 71, 221-245.

Atamturk, A. (2004), “Sequence Independent Lifting for Mixed-Integer Programming,” Operations Research,
52, 487-490.

Dantzig, G. B., Fulkerson, R., and Johnson, S. M. (1954), “Solution of a Large-Scale Traveling Salesman
Problem,” Operations Research, 2, 393-410.

Gondzio, J. (1997), “Presolve Analysis of Linear Programs prior to Applying an Interior Point Method,”
INFORMS Journal on Computing, 9, 73-91.

Land, A. H. and Doig, A. G. (1960), “An Automatic Method for Solving Discrete Programming Problems,”
Econometrica, 28, 497-520.

Linderoth, J. T. and Savelsbergh, M. W. P. (1998), “A Computational Study of Search Strategies for Mixed
Integer Programming,” INFORMS Journal on Computing, 11, 173-187.

Marchand, H., Martin, A., Weismantel, R., and Wolsey, L. (1999), “Cutting Planes in Integer and Mixed
Integer Programming,” DP 9953, CORE, Université Catholique de Louvain, 1999.

Miller, C. E., Tucker, A. W., and Zemlin, R. A. (1960), “Integer Programming Formulations of Traveling
Salesman Problems,” Journal of the Association for Computing Machinery, 7, 326-329.

Ostrowski, J. (2008), Symmetry in Integer Programming, Ph.D. diss., Lehigh University.

Savelsbergh, M. W. P. (1994), “Preprocessing and Probing Techniques for Mixed Integer Programming
Problems,” ORSA Journal on Computing, 6, 445454,

308

Chapter 8

The Network Solver (Experimental)

Contents

Overview: Network Solver e
Getting Started: Network Solver L

Syntax: Network Solver L

Functional Summary oL o
SOLVE WITH NETWORK Statement

General Options o o o
Inputand Output Options
Algorithm Options

Details: Network Solver e

Input Data for the Network Solver, .

Solving over Subsets of Nodes and Links (Filters)

Biconnected Components and Articulation Points

Clique

Connected COMPONENtS oo v v vttt

Cycle
Linear

Assignment (Matching) oL oo

Minimum-Cost Network Flow

Minimum Cut e

Minimum Spanning Tree Lo
Shortest Path e
Transitive Closure e e e e e

Traveling Salesman Problem

Macro

Variable _ OROPTMODEL_

Examples: Network Solver

Example 8.1: Articulation Points in a Terrorist Network

Example 8.2: Cycle Detection for Kidney Donor Exchange

Example 8.3: Linear Assignment Problem for Minimizing Swim Times

Example 8.4: Linear Assignment Problem, Sparse Format versus Dense Format . . .

Example 8.5: Minimum Spanning Tree for Computer Network Topology

Example 8.6: Transitive Closure for Identification of Circular Dependencies in a Bug

Tracking System

Example 8.7: Traveling Salesman Tour through US Capital Cities

References

310
310
315
315
319
320
321
324
331
332
335
338
341
345
349
355
356
360
364
366
378
381
385
388
388
390
394
397
400

402
405
411

310 4 Chapter 8: The Network Solver (Experimental)

Overview: Network Solver

The network solver includes a number of graph theory, combinatorial optimization, and network analysis
algorithms. The algorithm classes are listed in Table 8.1.

Table 8.1 Algorithm Classes in the Network solver

Algorithm Class SOLVE WITH NETWORK Option
Biconnected components BICONCOMP

Maximal cliques CLIQUE=

Connected components CONCOMP

Cycle detection CYCLE=

Linear assignment (matching) LINEAR_ASSIGNMENT
Minimum-cost network flow ~ MINCOSTFLOW

Minimum cut MINCUT=

Minimum spanning tree MINSPANTREE

Shortest path SHORTPATH=

Transitive closure TRANSITIVE_CLOSURE
Traveling salesman TSP=

You can use the network solver to analyze relationships between entities. These relationships are typically
defined by using a graph. A graph, G = (N, A), is defined over a set N of nodes, and a set A of links.
A node is an abstract representation of some entity (or object), and an arc defines some relationship (or
connection) between two nodes. The terms node and vertex are often interchanged in describing an entity.
The term arc is often interchanged with the term edge or link in describing a relationship.

Unlike other solvers that the OPTMODEL procedure uses, the network solver operates directly on arrays
and sets. You do not need to explicitly define variables, constraints, and objectives to use the network solver.
The OPTMODEL procedure declares the appropriate objects internally as needed. You specify the names of
arrays and sets that define your inputs and outputs as options in the SOLVE WITH NETWORK statement.

Getting Started: Network Solver

This section shows an introductory example for getting started with the network solver. For more information
about the expected input formats and the various algorithms available, see the sections “Details: Network
Solver” on page 331 and “Examples: Network Solver” on page 388.

Consider the following road network between a SAS employee’s home in Raleigh, NC, and the SAS
headquarters in Cary, NC.

In this road network (graph), the links are the roads and the nodes are intersections between roads. For each
road, you assign a link attribute in the variable time_to_travel to describe the number of minutes that it takes
to drive from one node to another. The following data were collected using Google Maps (Google 2011):

Getting Started: Network Solver 4 311

data LinkSetInRoadNClOam;
input start_inter $1-20 end_inter $20-40 miles miles_per_hour;

datalines;
6l4CapitalBlvd Capital/WadeAve 0.6 25
6l4CapitalBlvd Capital/US70W 0.6 25
6l4CapitalBlvd Capital/UsS440W 3.0 45
Capital/WadeAve WadeAve/RaleighExpy 3.0 40
Capital/US70W US70W/US440W 3.2 60
US70W/US440W US440W/RaleighExpy 2.7 60
Capital/US440W US440W/RaleighExpy 6.7 60
US440W/RaleighExpy RaleighExpy/US40W 3.0 60
WadeAve/RaleighExpy RaleighExpy/US40W 3.0 60
RaleighExpy/US40W US40W/HarrisonAve 1.3 55
US40W/HarrisonAve SASCampusDrive 0.5 25

Using the network solver, you want to find the route that yields the shortest path between home (614 Capital

Blvd) and the SAS headquarters (SAS Campus Drive). This can be done by using the SHORTPATH= option
as follows:

proc optmodel;

set<str, str> LINKS;

num miles{LINKS};

num miles_per_ hour{LINKS};

num time_to_travel{<i, j> in LINKS} = miles[i,j]/ miles_per_ hour[i, j] * 60;

read data LinkSetInRoadNClOam into
LINKS=[start_inter end_inter]
miles miles_per_hour

/* You can compute paths between many pairs of source and destination,
so these parameters are declared as sets */

set HOME = /"614CapitalBlvd"/;

set WORK = /"SASCampusDrive"/;

/* The path is stored as a set of: Start, End, Sequence, Tail, Head */
set<str, str,num, str, str> PATH;

solve with network /

links = (weight = time_to_travel)
shortpath = (source = HOME

sink = WORK)
out = (sppaths = PATH)

create data ShortPath from [s t order start_inter end_inter]=PATH
time_to_travel[start_inter,end inter];
quit;
For more information about shortest path algorithms in the network solver, see the section “Shortest Path” on
page 366. Figure 8.1 displays the output data set ShortPath, which shows the best route to take to minimize
travel time at 10:00 a.m. This route is also shown in Google Maps in Figure 8.2.

312 4 Chapter 8: The Network Solver (Experimental)

Figure 8.1 Shortest Path for Road Network at 10:00 A.M.

time_to_
order start_inter end_inter travel

1 6l4CapitalBlvd Capital/WadeAve 1.4400

2 Capital/WadeAve WadeAve/RaleighExpy 4.5000

3 WadeAve/RaleighExpy RaleighExpy/US40W 3.0000

4 RaleighExpy/US40W US40W/HarrisonAve 1.4182

5 US40W/HarrisonAve SASCampusDrive 1.2000
11.5582

Figure 8.2 Shortest Path for Road Network at 10:00 A.M. in Google Maps

eb Images Videos Maps News Shopping Gmail more - Signin %

GO; ‘31\,’ Maps 614 Capital Boulevard, Raleigh, NC to 100 SAS Campus Drive, Raleigh, NC Search Maps

(@ Print| [Send @ Link
oy

Vap data €2011 Googlg - Te

@ Intemet | Protected Mode: Off

Now suppose that it is rush hour (5:00 p.m.) and the time to traverse the roads has changed because of traffic
patterns. You want to find the route that is the shortest path for going home from SAS headquarters under
different speed assumptions due to traffic.

The following statements are similar to the first network solver run, except that one miles_per_hour value is
modified and the SOURCE= and SINK= option values are reversed:

Getting Started: Network Solver 4 313

proc optmodel;
set<str, str> LINKS;
num miles{LINKS};
num miles_per_ hour{LINKS};
num time_to_travel{<i, j> in LINKS} = miles[i,j]/ miles_per_hour[i, j] * 60;
read data LinkSetInRoadNClOam into
LINKS=[start_inter end_inter]
miles miles_per_hour

/* high traffic */
miles_per_hour|['Capital/WadeAve', 'WadeAve/RaleighExpy'] = 25;

/* You can compute paths between many pairs of source and destination,
so these parameters are declared as sets */

set HOME = /"614CapitalBlvd"/;

set WORK = /"SASCampusDrive"/;

/* The path is stored as a set of: Start, End, Sequence, Tail, Head */
set<str, str, num, str, str> PATH;

solve with network /

links = (weight = time_to_travel)
shortpath = (source = WORK

sink = HOME)
out = (sppaths = PATH)

create data ShortPath from [s t order start_inter end inter]=PATH
time_to_travel[start_inter,end_ inter];
quit;
Now, the output data set ShortPath, shown in Figure 8.3, shows the best route for going home at 5:00 p.m.
Because the traffic on Wade Avenue is usually heavy at this time of day, the route home is different from the
route to work.

Figure 8.3 Shortest Path for Road Network at 5:00 P.M.

time_to_
order start_inter end_inter travel

1 US40W/HarrisonAve SASCampusDrive 1.2000

2 RaleighExpy/US40W US40W/HarrisonAve 1.4182

3 US440W/RaleighExpy RaleighExpy/US40W 3.0000

4 US70W/US440W US440W/RaleighExpy 2.7000

5 Capital/US70W US70W/US440W 3.2000

6 6l4CapitalBlvd Capital/US70W 1.4400
12.9582

314 4 Chapter 8: The Network Solver (Experimental)

This new route is shown in Google Maps in Figure 8.4.

Figure 8.4 Shortest Path for Road Network at 5:00 P.M. in Google Maps

Web Images Videos Maps News Shopping Gmail more~ Signin &
GOUSIE Maps 614 Capital Boulevard, Raleigh, NC to 100 SAS Campus Drive, Raleigh, NC Search Maps.
g ” eea r ~—_—
Crees Lok ool
Viora Park \ = Raligh Beting,.
(4 Stiatiors
: amege Par —
> .Y (] Camegi P 0= <5 ‘Sprng Hil
2 Buncombe Crablree
. X i . e T waamsboroion Trafic
% P) - 7 -
oo Stoneridge 27 Raiogn | oF HmPuE G Westchester _ Blenheim Wikamsoorugh & 2
Uakelang Ebenezer Church & Place! San)
Toniy / TheLakes lokeland gy
Famy/ AlUmsiesa 038 Foresy | _Rd Townhomes ™ Ferrell
& Weldon N\ Anders
e Tronn | RiBe e i Glenen | |Gl Fored
r Poie Wesindge Park TolTree. werean || o i, N
54 & suren S| (orceal
! L & Oak Valle v B C
4 Cart Awin [MGy o ok valley g County Cb
Senenci ca Ray e V4N
Dubin Memerd e Kenly Court PR
~) Wooss '
o & Lake Boone Trad Daiyland Runnymede Rd. el >
o Svet (!
st Court Cometery Ca My,
& Pl 3 s |
{ A 4 Placs ¢ Oberin Road
% ’ & o G Towthormes o, o ons
H ol Middeton \ e Ok vita Park
A Placs 3 s
i HA i Wake Hils i H g,
Triiy Crce @
& Retue) Five Points
5 Eost
i jonn s, : Leonarg
e subitien SRS *: : 2 M, Moo e o[il Hoon /
Prynmviosd > ¥ woses an Coun ViewTounes
i 3 reeree J i S H B T -
wereom || &
weoos Braciocn £ oo Tinty R st 4 /4 ‘\k
T \dhe=rsy -) == o
Place, of Cary. 0 / T Oberin i 1
Miaoe 3 Glenwood. /! $
e Ui Fred Fetcnir g Capial Park
v N o
o \ X Grove Pk ook
- vz g, £ Jy e N g B omont g @G &
20001 ey i 3 al S [©] V8892 1\ rookiyn Hil [=ita
i) é 2 b 211 Congrmaan data 02011 Goage - gy | Report o]
Done

@ Intemet | Protected Mode: Off fa v R100% -

Syntax: Network Solver 4 315

Syntax: Network Solver

SOLVE WITH NETWORK /
General and Diagnostic Options:
<GRAPH_DIRECTION=DIRECTED | UNDIRECTED >
<INCLUDE_SELFLINK >
<LOGFREQ=number>
<LOGLEVEL=number | string >
<MAXTIME=number>
<TIMETYPE=number | string >

Data Input and Output Options:
< LINKS=(suboptions) >
<NODES=(suboptions) >
<OUT=(suboptions) >
<SUBGRAPH=(suboptions) >

Algorithm Options:
<BICONCOMP >

< CLIQUE< =(suboption) > >

< CONCOMP< =(suboption) > >
<CYCLE< =(suboptions) > >
<LINEAR_ASSIGNMENT >
<MINCOSTFLOW >

<MINCUT< =(suboptions) > >
<MINSPANTREE >
<SHORTPATH< =(suboptions) > >
<TRANSITIVE_CLOSURE >
<TSP<=(suboptions) > > ;

There are three types of SOLVE WITH NETWORK statement options:

* General and diagnostic options have the same meaning for multiple algorithms.

* Data input and output options, such as the LINKS=, NODES=, and OUT= options, control the names
of the sets and variables that the network solver uses to build the graph and that the algorithms use for
output.

* Algorithm options select an algorithm to run, and where available, provide further algorithm-specific
configuration directives.

The section “Functional Summary” on page 315 provides a quick reference for each of the suboptions for
each option. Each option is then described in more detail in its own section, in alphabetical order.

Functional Summary
Table 8.2 summarizes the options and suboptions available in the SOLVE WITH NETWORK statement.

316 4 Chapter 8: The Network Solver (Experimental)

Table 8.2 Functional Summary of SOLVE WITH NETWORK Options

Description

Option
Suboption

General Options
Specifies directed or undirected graphs
Includes self links in the graph definition
Specifies the iteration log frequency
Controls the amount of information that is displayed in the SAS log
Specifies the maximum time spent calculating results
Specifies whether time units are in CPU time or real time
Input and Output Options
Groups link-indexed data
Names a set of links to include in the graph definition even if no
weights or bounds are available for them
Specifies the flow lower bound for each link
Specifies the flow upper bound for each link
Specifies link weights
Groups node-indexed data
Names a set of nodes to include in the graph definition even if no
weights are available for them
Specifies node weights
Specifies the input sets that enable you to solve a problem over a
subgraph
Specifies the subset of links to use
Specifies the subset of nodes to use
Specifies the output sets or arrays for each algorithm (see Table 8.4
for which OUT= suboptions you can specify for each algorithm)
Specifies the output set for articulation points
Specifies the output set for linear assignment
Specifies the array to contain the biconnected component of each
link
Specifies the output set for cliques
Specifies the output array for connected components
Specifies the output set for the cut-sets for minimum cuts
Specifies the output set for cycles
Specifies the output array for the flow on each link
Specifies the output set for the minimum spanning tree (forest)
Specifies the output set for the links that remain after the
SUBGRAPH= option is applied
Specifies the output set for the nodes that remain after the
SUBGRAPH= option is applied
Specifies the output array for the node order in the traveling
salesman problem
Specifies the output set for the partitions for minimum cuts
Specifies the set to contain the link sequence for each path

GRAPH_DIRECTION=
INCLUDE_SELFLINK=
LOGFREQ=
LOGLEVEL=
MAXTIME=
TIMETYPE=

LINKS=()
INCLUDE=

LOWER=
UPPER=
WEIGHT=
NODES=()
INCLUDE=

WEIGHT=
SUBGRAPH=()

LINKS=
NODES=
ouT=()

ARTPOINTS=
ASSIGNMENTS=
BICONCOMP=

CLIQUES=
CONCOMP=
CUTSETS=
CYCLES=
FLOW=
FOREST=
LINKS=

NODES=
ORDER=

PARTITIONS=
SPPATHS=

Table 8.2 (continued)

Functional Summary 4 317

Description Option
Suboption
Specifies the numeric array to contain the path weight for each SPWEIGHTS=
source and sink node pair
Specifies the output set for the tour in the traveling salesman TOUR=
problem
Specifies the set to contain the pairs (1, v) of nodes where v is TRANSCL=
reachable from u
Algorithm Options and Suboptions
Finds biconnected components and articulation points of an BICONCOMP
undirected input graph
Finds maximal cliques in the input graph CLIQUE=
Specifies the maximum number of cliques to return MAXCLIQUES=
Finds the connected components of the input graph CONCOMP=
Specifies the algorithm to use for calculating connected ALGORITHM=
components
Finds the cycles (or the existence of a cycle) in the input graph CYCLE=
Specifies the maximum number of cycles to return MAXCYCLES=
Specifies the maximum link count for the cycles to return MAXLENGTH=
Specifies the maximum link weight for the cycles to return MAXLINKWEIGHT=
Specifies the maximum sum of node weights to allow in a cycle MAXNODEWEIGHT=
Specifies the minimum link count for the cycles to return MINLENGTH=
Specifies the minimum link weight for the cycles to return MINLINKWEIGHT=
Specifies the minimum node weight for the cycles to return MINNODEWEIGHT=
Specifies whether to stop after finding the first cycle MODE=
Solves the minimal-cost linear assignment problem LINEAR_ASSIGNMENT
Solves the minimum-cost network flow problem MINCOSTFLOW
Finds the minimum link-weighted cut of an input graph MINCUT=
Specifies the maximum number of cuts to return from the algorithm MAXNUMCUTS=
Specifies the maximum weight of each cut to return from the MAXWEIGHT=
algorithm
Solves the minimum link-weighted spanning tree problem on an input MINSPANTREE
graph
Calculates shortest paths between sets of nodes on the input graph SHORTPATH=
Specifies the type of output for shortest paths results PATHS=
Specifies the set of sink nodes SINK=
Specifies the set of source nodes SOURCE=
Specifies whether to use weights in calculating shortest paths USEWEIGHT=
Calculates the transitive closure of an input graph TRANSITIVE_CLOSURE
Solves the traveling salesman problem TSP=
Requests that the stopping criterion be based on the absolute ABSOBIJGAP=
objective gap
Specifies the level of conflict search CONFLICTSEARCH=
Specifies the cutoff value for branch-and-bound node removal CUTOFF=
Specifies the level of cutting planes to be generated by the network CUTSTRATEGY=

solver

318 4 Chapter 8: The Network Solver (Experimental)

Table 8.2 (continued)

Description Option
Suboption

Emphasizes feasibility or optimality EMPHASIS=
Specifies the initial and primal heuristics level HEURISTICS=
Specifies the maximum number of branch-and-bound nodes to be MAXNODES=
processed
Specifies the maximum number of feasible tours to be identified MAXSOLS=
Specifies whether to use a mixed integer linear programming solver MILP=
Specifies the branch-and-bound node selection strategy NODESEL=
Specifies the probing level PROBE=
Requests that the stopping criterion be based on relative objective RELOBJGAP=
gap

Specifies the number of simplex iterations to be performed on each STRONGITER=
variable in the strong branching strategy

Specifies the number of candidates for the strong branching STRONGLEN=
strategy

Requests that the stopping criterion be based on the target objective TARGET=
value

Specifies the rule for selecting branching variable VARSEL=

Table 8.3 lists the valid GRAPH_DIRECTION= values for each algorithm option in the SOLVE WITH
NETWORK statement.

Table 8.3 Supported Graph Directions by Algorithm

Direction |
Algorithm Undirected | Directed
BICONCOMP X
CLIQUE X
CONCOMP X
CYCLE X
LINEAR_ASSIGNMENT
MINCOSTFLOW
MINCUT
MINSPANTREE
SHORTPATH
TRANSITIVE_CLOSURE
TSP

R A

ol Bol Bl Kol K

Table 8.4 indicates, for each algorithm option in the SOLVE WITH NETWORK statement, which output
options you can specify, and what their types can be. The types vary depending on whether nodes are of type
STRING or NUMBER.

SOLVE WITH NETWORK Statement 4 319

Table 8.4 Output Suboptions and Types by Algorithm

Algorithm Option

OUT= Suboption OPTMODEL Type
BICONCOMP

ARTPOINTS= SET<STRING> or SET<NUMBER>

BICONCOMP= NUMBER indexed over links (<NUMBER,NUMBER> or

<STRING,STRING>)

CLIQUE

CLIQUES= SET<NUMBER,NUMBER> or SET<NUMBER,STRING>
CONCOMP

CONCOMP= NUMBER indexed over nodes (NUMBER or STRING)
CYCLE

CYCLES= SET<NUMBER,NUMBER,NUMBER> or

SET<NUMBER,NUMBER,STRING>

LINEAR_ASSIGNMENT

ASSIGNMENTS= SET<NUMBER,NUMBER> or SET<STRING,STRING>
MINCOSTFLOW
FLOW= NUMBER indexed over links (<KNUMBER,NUMBER> or
<STRING,STRING>)
MINCUT
CUTSETS= SET<NUMBER,NUMBER,NUMBER> or
SET<NUMBER,STRING,STRING>
PARTITIONS= SET<NUMBER,NUMBER> or SET<NUMBER,STRING>
MINSPANTREE
FOREST= SET<NUMBER,NUMBER> or SET<STRING,STRING>
SHORTPATH
SPPATHS= SET<NUMBER,NUMBER,NUMBER,NUMBER,NUMBER> or
SET<STRING,STRING,NUMBER,STRING,STRING>
SPWEIGHTS= NUMBER indexed over sink and source node pairs

(<NUMBER,NUMBER> or <STRING,STRING>)

TRANSITIVE_CLOSURE
CLOSURE=

SET<NUMBER,NUMBER> or SET<STRING,STRING>

TSP
ORDER=
TOUR=

NUMBER indexed over nodes (NUMBER or STRING)
SET<NUMBER,NUMBER> or SET<STRING,STRING>

SOLVE WITH NETWORK Statement

SOLVE WITH NETWORK /< options > ;

The SOLVE WITH NETWORK statement invokes the network solver. You can specify the following options
to define various processing and diagnostic controls, the graph input and output, and the algorithm to run:

320 4 Chapter 8: The Network Solver (Experimental)

General Options

You can specify the following general options, which have the same meaning for multiple algorithms.

GRAPH_DIRECTION=DIRECTED | UNDIRECTED

DIRECTION=DIRECTED | UNDIRECTED
specifies directed or undirected graphs.

Table 8.5 Values for the GRAPH_DIRECTION= Option

Option Value Description

DIRECTED Requests a directed graph. In a directed graph, each link
(i, j) has a direction that defines how something (for exam-
ple, information) might flow over that link. In link (7, j),
information flows from node i to node j (i — j). The
node i is called the source (tail) node, and j is called the
sink (head) node.

UNDIRECTED Requests an undirected graph. In an undirected graph, each
link {i, j} has no direction and information can flow in
either direction. That is, {i, j} = {j,i}.

By default, GRAPH_DIRECTION=UNDIRECTED.

INCLUDE_SELFLINK
includes self links in the graph definition—for example, (i, i)—when an input graph is read. By
default, when the network solver reads the LINKS= data, it removes all self links.

LOGFREQ=number
controls the frequency with which an algorithm reports progress from its underlying solver. This
setting is recognized by the traveling salesman problem and minimum-cost flow algorithms. You can
set number to O to turn off log updates from underlying algorithms.

LOGLEVEL=number | string
controls the amount of information that is displayed in the SAS log. This setting sets the log level for
all algorithms. Table 8.6 describes the valid values for this option.

Table 8.6 Values for LOGLEVEL= Option

number string Description
0 NONE Turns off all procedure-related messages in the
SAS log
1 BASIC Displays a basic summary of the input, output, and

algorithmic processing

2 MODERATE Displays a summary of the input, output, and algo-
rithmic processing

3 AGGRESSIVE Displays a detailed summary of the input, output,
and algorithmic processing

SOLVE WITH NETWORK Statement 4 321

By default, LOGLEVEL=BASIC.

MAXTIME=number
specifies the maximum time spent calculating results. The type of time (either CPU time or real time) is
determined by the value of the TIMETYPE= option. The value of number can be any positive number;
the default value is the positive number that has the largest absolute value that can be represented in
your operating environment. The clique, cycle, minimum-cost network flow, and traveling salesman
problem algorithms recognize the MAXTIME= option.

TIMETYPE=number | string
specifies whether CPU time or real time is used for the MAXTIME= option for each applicable
algorithm. Table 8.7 describes the valid values of the TIMETYPE= option.

Table 8.7 Values for TIMETYPE= Option

number string Description
0 CPU Specifies units of CPU time
1 REAL Specifies units of real time

Input and Output Options

The following options enable you to specify the graph to run algorithms on. These options take array and set
names. They are known as identifier expressions in Chapter 5, “The OPTMODEL Procedure.” Also see
Table 8.4 for semantic requirements and the section “Input Data for the Network Solver” on page 332 for use
cases.

LINKS=(suboptions)
groups link-indexed data. For more information, see the section “Input Data for the Network Solver”
on page 332.

You can specify the following suboptions:

INCLUDE=set-name
names a set of links to include in the graph definition even if no weights or bounds are available
for them. For more information, see “Example 8.1: Articulation Points in a Terrorist Network.”
The array must be numeric, and it must be indexed over a subset of the links of the graph.

LOWER=array-name
specifies the flow lower bound for each link. The array must be numeric, and it must be indexed
over a subset of the links of the graph.

UPPER=array-name
specifies the flow upper bound for each link. The array must be numeric, and it must be indexed
over a subset of the links of the graph.

WEIGHT=array-name
specifies link weights. The array must be numeric, and it must be indexed over a subset of the
links of the graph. If you specify this suboption, then any link that does not appear in the index
set of the WEIGHT= array has weight 0. If you do not specify this suboption, then every link has
weight 1.

322 4 Chapter 8: The Network Solver (Experimental)

NODES=(suboptions)

OUT=

groups node-indexed data. For more information, see the section “Input Data for the Network Solver”
on page 332.

You can specify the following suboptions:

INCLUDE=set-name
names a set of nodes to include in the graph definition even if no weights are available for them.
For more information, see the section “Connected Components” on page 345.

WEIGHT=array-name
specifies node weights. The array must be numeric, and it must be indexed over a subset of the
nodes of the graph.

(suboptions)

specifies the output sets or arrays for each algorithm (see Table 8.4 for which OUT= suboptions you
can specify for each algorithm). You can use some of these options (even if you do not invoke any
algorithm) to see the filtering outcome that is produced by the SUBGRAPH= option.

If you do not specify a suboption that matches the algorithm option in the statement, the algorithm
runs and only updates the objective.

If you specify a suboption that does not match the algorithm option in the statement, OPTMODEL
issues a warning.

When you declare arrays that are indexed over nodes, over links, or over sets of nodes or links, you
must use the same type you used in your node definition.

See the various algorithm sections for examples of the use of these OUT= suboptions.

ARTPOINTS=set-name
specifies the output set for articulation points. Each element of the set represents a node ID. This
suboption matches the BICONCOMP algorithm option.

ASSIGNMENTS=set-name
specifies the output set for linear assignment. This suboption matches the LINEAR_ASSIGN-
MENT algorithm option.

BICONCOMP=array-name
specifies the array to contain the biconnected component of each link. This suboption matches
the BICONCOMP algorithm option.

CLIQUES=set-name
specifies the output set for cliques. Each tuple of the set represents clique ID and node ID. This
suboption matches the CLIQUE algorithm option.

CONCOMP=array-name
specifies the output array for connected components. This suboption matches the CONCOMP
algorithm option.

SOLVE WITH NETWORK Statement 4 323

CUTSETS=sef-name
specifies the output set for the cut-sets for minimum cuts. Each tuple of the set represents the
cut ID, the tail node ID, and the head node ID. This suboption matches the MINCUT algorithm
option.

CYCLES=set-name
specifies the output set for cycles. Each tuple of the set represents a cycle ID, the order within
that cycle, and the node ID. This suboption matches the CYCLE algorithm option.

FLOW=array-name
specifies the output array for the flow on each link. This suboption matches the MINCOSTFLOW
algorithm option.

FOREST=set-name
specifies the output set for the minimum spanning tree (forest). This suboption matches the
MINSPANTREE algorithm option.

LINKS=set-name
specifies the output set for the links that remain after the SUBGRAPH= option is applied. Each
element of the output set is a tuple that consists of the attributes you provide in the LINKS=
suboption of the SUBGRAPH= option. For more information, see the section “Solving over
Subsets of Nodes and Links (Filters)” on page 335.

NODES=set-name
specifies the output set for the nodes that remain after the SUBGRAPH= option is applied. Each
element of the output set is a tuple that consists of the attributes you provide in the NODES=
suboption of the SUBGRAPH= option. For more information, see the section “Solving over
Subsets of Nodes and Links (Filters)” on page 335.

ORDER=array-name
specifies the numeric array to contain the position of each node within the optimal tour. This
suboption matches the TSP algorithm option.

PARTITIONS=set-name
specifies the output set for the partitions for minimum cuts. The set contains, for each partition,
the node IDs in the smaller of the two subsets. Each tuple of the set represents a cut ID and a
node ID. This suboption matches the MINCUT algorithm option.

SPPATHS=set-name
specifies the set to contain the link sequence for each path. Each tuple of the set represents a
source node ID, a sink node ID, a sequence number, a tail node ID, and a head node ID. This
suboption matches the SHORTPATH algorithm option.

SPWEIGHTS=array-name
specifies the numeric array to contain the path weight for each source and sink node pair. This
suboption matches the SHORTPATH algorithm option.

TOUR=set-name
specifies the output set for the tour in the traveling salesman problem. This suboption matches
the TSP algorithm option.

324 4 Chapter 8: The Network Solver (Experimental)

TRANSCL=set-name
specifies the set to contain the pairs (1, v) of nodes where v is reachable from u. This suboption
matches the TRANSITIVE_CLOSURE algorithm option.

SUBGRAPH=(suboptions)
specifies the input sets that enable you to solve a problem over a subgraph. For more information, see
the section “Input Data for the Network Solver” on page 332.

You can specify the following suboptions:

LINKS=set-name
specifies the subset of links to use. If you specify a node pair that is not referenced in any of the
suboptions of the LINKS= option, then the network solver returns an error.

NODES=set-name
specifies the subset of nodes to use. If you specify a node that is not referenced in any of the
suboptions of the LINKS= option or the NODES= option, then the network solver returns an
error.

Algorithm Options

BICONCOMP
finds biconnected components and articulation points of an undirected input graph. For more informa-
tion, see the section “Biconnected Components and Articulation Points” on page 338.

CLIQUE< =(suboption) >
finds maximal cliques in the input graph. For more information, see the section “Clique” on page 341.

You can specify the following suboption:

MAXCLIQUES=number
specifies the maximum number of cliques to return. The default is the positive number that has
the largest absolute value that can be represented in your operating environment.

CONCOMP< =(suboption) >
finds the connected components of the input graph. For more information, see the section “Connected
Components” on page 345.

You can specify the following suboption:

ALGORITHM=DFS | UNION_FIND
specifies the algorithm to use for calculating connected components. Table 8.8 describes the valid
values for this option.

Table 8.8 Values for the ALGORITHM= Option

Option Value Description

DFS Uses the depth-first search algorithm for connected compo-
nents.

UNION_FIND Uses the union-find algorithm for connected components.

You can use ALGORITHM=UNION_FIND only with undi-
rected graphs.

SOLVE WITH NETWORK Statement 4 325

By default, ALGORITHM=DEFS.

CYCLE< =(suboptions) >
finds the cycles (or the existence of a cycle) in the input graph. For more information, see the section
“Cycle” on page 349.

You can specify the following suboptions in the CY CLE= option:

MAXCYCLES=number
specifies the maximum number of cycles to return. The default is the positive number that has
the largest absolute value that can be represented in your operating environment. This option
works only when you also specify MODE=ALL_CYCLES.

MAXLENGTH=number
specifies the maximum number of links to allow in a cycle. Any cycle whose length is greater
than number is removed from the results. The default is the positive number that has the largest
absolute value that can be represented in your operating environment. By default, nothing is
removed from the results. This option works only when you also specify MODE=ALL_CYCLES.

MAXLINKWEIGHT=number
specifies the maximum sum of link weights to allow in a cycle. Any cycle whose sum of link
weights is greater than number is removed from the results. The default is the positive number that
has the largest absolute value that can be represented in your operating environment. By default,
nothing is filtered. This option works only when you also specify MODE=ALL_CYCLES.

MAXNODEWEIGHT=number
specifies the maximum sum of node weights to allow in a cycle. Any cycle whose sum of node
weights is greater than number is removed from the results. The default is the positive number that
has the largest absolute value that can be represented in your operating environment. By default,
nothing is filtered. This option works only when you also specify MODE=ALL_CYCLES.

MINLENGTH=number
specifies the minimum number of links to allow in a cycle. Any cycle that has fewer links than
number is removed from the results. The default is 1. By default, only self-loops are filtered.
This option works only when you also specify MODE=ALL_CYCLES.

MINLINKWEIGHT=number
specifies the minimum sum of link weights to allow in a cycle. Any cycle whose sum of link
weights is less than number is removed from the results. The default the negative number that
has the largest absolute value that can be represented in your operating environment. By default,
nothing is filtered. This option works only when you also specify MODE=ALL_CYCLES.

MINNODEWEIGHT=number
specifies the minimum sum of node weights to allow in a cycle. Any cycle whose sum of node
weights is less than number is removed from the results. The default is the negative number that
has the largest absolute value that can be represented in your operating environment. By default,
nothing is filtered. This option works only when you also specify MODE=ALL_CYCLES.

326 4 Chapter 8: The Network Solver (Experimental)

MODE=ALL_CYCLES | FIRST_CYCLE
specifies whether to stop after finding the first cycle. Table 8.9 describes the valid values for this

option.
Table 8.9 Values for the MODE= Option
Option Value Description
ALL_CYCLES Returns all (unique, elementary) cycles found.
FIRST_CYCLE Returns the first cycle found.

By default, MODE=FIRST_CYCLE.

LINEAR_ASSIGNMENT

LAP
solves the minimal-cost linear assignment problem. In graph terms, this problem is also known as
the minimum link-weighted matching problem on a bipartite directed graph. The input data (the
cost matrix) is defined as a directed graph by specifying the LINKS= option in the SOLVE WITH
NETWORK statement, where the costs are defined as link weights. Internally, the graph is treated as a
bipartite directed graph.

For more information, see the section “Linear Assignment (Matching)” on page 355.

MINCOSTFLOW

MCF
solves the minimum-cost network flow problem.

For more information, see the section “Minimum-Cost Network Flow” on page 356.

MINCUT< =(suboptions) >
finds the minimum link-weighted cut of an input graph. For more information, see the section
“Minimum Cut” on page 360. You can specify the following suboptions in the MINCUT= option:

MAXNUMCUTS=number
specifies the maximum number of cuts to return from the algorithm. The minimal cut and any
others found during the search, up to number, are returned. By default, MAXNUMCUTS=1.

MAXWEIGHT=number
specifies the maximum weight of the cuts to return from the algorithm. Only cuts that have
weight less than or equal to number are returned. The default is the positive number that has the
largest absolute value that can be represented in your operating environment.

MINSPANTREE

MST
solves the minimum link-weighted spanning tree problem on an input graph. For more information,
see the section “Minimum Spanning Tree” on page 364.

SHORTPATH< =(suboptions) >
calculates shortest paths between sets of nodes on the input graph. For more information, see the
section “Shortest Path” on page 366.

You can specify the following suboptions:

SOLVE WITH NETWORK Statement 4 327

PATHS=ALL | SHORTEST | LONGEST
specifies the type of output for shortest paths results.

Table 8.10 lists the valid values for this suboption.

Table 8.10 Values for the PATHS= Option

Option Value Description

ALL Outputs shortest paths for all pairs of source-sinks.

LONGEST Outputs shortest paths for the source-sink pair that has the
longest (finite) length. If other source-sink pairs (up to 100)
have equally long length, they are also output.

SHORTEST Outputs shortest paths for the source-sink pair that has the
shortest length. If other source-sink pairs (up to 100) have
equally short length, they are also output.

By default, SHORTPATH=ALL.

SINK=set-name
specifies the set of sink nodes.

SOURCE-=set-name
specifies the set of source nodes.

USEWEIGHT=YES | NO
specifies whether to use weights in calculating shortest paths as listed in Table 8.11.

Table 8.11 Values for USEWEIGHT= Option

Option Value Description

YES Uses weights (if they exist) in shortest path calcu-
lations.
NO Does not use weights in shortest path calculations.

By default, USEWEIGHT=YES.

TRANSITIVE_CLOSURE

TRANSCL
calculates the transitive closure of an input graph. For more information, see the section “Transitive
Closure” on page 378.

TSP< =(suboptions) >
solves the traveling salesman problem. For more information, see the section “Traveling Salesman
Problem” on page 381.

The algorithm that is used to solve this problem is built around the same method as is used in PROC
OPTMILP: a branch-and-cut algorithm. Many of the following suboptions are the same as those
described for the OPTMILP procedure in the SAS/OR User’s Guide: Mathematical Programming.

You can specify the following suboptions:

328 4 Chapter 8: The Network Solver (Experimental)

ABSOBJGAP=number
specifies a stopping criterion. When the absolute difference between the best integer objective
and the objective of the best remaining branch-and-bound node becomes less than the value of
number, the solver stops. The value of number can be any nonnegative number. By default,
ABSOBJGAP=1E-6.

CONFLICTSEARCH=number | string
specifies the level of conflict search that the network solver performs. The solver performs a
conflict search to find clauses that result from infeasible subproblems that arise in the search tree.
Table 8.12 describes the valid values for this option.

Table 8.12 Values for CONFLICTSEARCH= Option

number string Description

-1 AUTOMATIC Performs a conflict search based on a strategy that
is determined by the network solver

NONE Disables conflict search

MODERATE Performs a moderate conflict search

AGGRESSIVE Performs an aggressive conflict search

N = O

By default, CONFLICTSEARCH=AUTOMATIC.

CUTOFF=number
cuts off any branch-and-bound nodes in a minimization problem that has an objective value that
is greater than number. The value of number can be any number.

The default value is the positive number that has the largest absolute value that can be represented
in your operating environment.

CUTSTRATEGY=number | string
specifies the level of cutting planes to be generated by the network solver. TSP-specific cutting
planes are always generated. Table 8.13 describes the valid values for this option.

Table 8.13 Values for CUTSTRATEGY= Option

number string Description

-1 AUTOMATIC Generates cutting planes based on a strategy deter-
mined by the mixed integer linear programming
solver

0 NONE Disables generation of mixed integer programming
cutting planes (some TSP-specific cutting planes
are still active for validity)

1 MODERATE Uses a moderate cut strategy

AGGRESSIVE Uses an aggressive cut strategy

By default, CUTSTRATEGY=NONE.

SOLVE WITH NETWORK Statement 4 329

EMPHASIS=number | string
specifies a search emphasis option. Table 8.14 describes the valid values for this option.

Table 8.14 Values for EMPHASIS= Option

number string Description
0 BALANCE Performs a balanced search
1 OPTIMAL Emphasizes optimality over feasibility
2 FEASIBLE Emphasizes feasibility over optimality

By default, EMPHASIS=BALANCE.

HEURISTICS=number | string
controls the level of initial and primal heuristics that the network solver applies. This level
determines how frequently the network solver applies primal heuristics during the branch-and-
bound tree search. It also affects the maximum number of iterations that are allowed in iterative
heuristics. Some computationally expensive heuristics might be disabled by the solver at less
aggressive levels. Table 8.15 lists the valid values for this option.

Table 8.15 Values for HEURISTICS= Option

number string Description
-1 AUTOMATIC Applies the default level of heuristics
0 NONE Disables all initial and primal heuristics
1 BASIC Applies basic initial and primal heuristics at low frequency
2 MODERATE Applies most initial and primal heuristics at moderate fre-
quency

3 AGGRESSIVE Applies all initial primal heuristics at high frequency

By default, HEURISTICS=AUTOMATIC.

MAXNODES=number
specifies the maximum number of branch-and-bound nodes to be processed. The value of number

can be any nonnegative integer up to the largest four-byte signed integer, which is 23! — 1.

By default, MAXNODES=23! — 1.

MAXSOLS=number
specifies the maximum number of feasible tours to be identified. If number solutions have been

found, then the solver stops. The value of number can be any positive integer up to the largest
four-byte signed integer, which is 231 — 1.

By default, MAXSOLS=23! — 1.

MILP=number | string
specifies whether to use a mixed integer linear programming (MILP) solver for solving the
traveling salesman problem. The MILP solver attempts to find the overall best TSP tour by
using a branch-and-bound based algorithm. This algorithm can be expensive for large-scale
problems. If MILP=OFF, then the network solver uses its initial heuristics to find a feasible, but
not necessarily optimal, tour as quickly as possible. Table 8.16 describes the valid values for this

option.

330 4 Chapter 8: The Network Solver (Experimental)

Table 8.16 Values for MILP= Option

number string Description
1 ON Uses a mixed integer linear programming solver
0 OFF Does not use a mixed integer linear programming solver

By default, MILP=ON

NODESEL=number | string
specifies the branch-and-bound node selection strategy option. For more information about node
selection, see Chapter 12, “The OPTMILP Procedure.” Table 8.17 describes the valid values for
this option.

Table 8.17 Values for NODESEL= Option

number string Description
-1 AUTOMATIC Uses automatic node selection
0 BESTBOUND Chooses the node that has the best relaxed objective (best-

bound-first strategy)

1 BESTESTIMATE Chooses the node that has the best estimate of the integer
objective value (best-estimate-first strategy)

2 DEPTH Chooses the most recently created node (depth-first strat-

egy)

By default, NODESEL=AUTOMATIC.

PROBE=number | string
specifies a probing option. Table 8.18 describes the valid values for this option.

Table 8.18 Values for PROBE= Option

number string Description

-1 AUTOMATIC Uses an automatic probing strategy
NONE Disables probing

MODERATE Uses the probing moderately
AGGRESSIVE Uses the probing aggressively

N = O

By default, PROBE=NONE.

RELOBJGAP=number
specifies a stopping criterion that is based on the best integer objective (BestInteger) and the
objective of the best remaining node (BestBound). The relative objective gap is equal to

| BestInteger — BestBound | / (1IE—10 + | BestBound |)

When this value becomes less than the specified gap size number, the solver stops. The value of
number can be any nonnegative number.

By default, RELOBJGAP=1E—4.

Details: Network Solver 4 331

STRONGITER=number | AUTOMATIC
specifies the number of simplex iterations that the network solver performs for each variable
in the candidate list when it uses the strong branching variable selection strategy. The value of
number can be any positive integer up to the largest four-byte signed integer, which is 23! — 1. If
you specify the keyword AUTOMATIC or the value —1, the network solver uses the default value,
which it calculates automatically.

STRONGLEN=number | AUTOMATIC
specifies the number of candidates that the network solver considers when it uses the strong
branching variable selection strategy. The value of number can be any positive integer up to the
largest four-byte signed integer, which is 23! — 1. If you specify the keyword AUTOMATIC or
the value —1, the network solver uses the default value, which it calculates automatically.

TARGET=number
specifies a stopping criterion for minimization problems. If the best integer objective is better
than or equal to number, the solver stops. The value of number can be any number.

By default, TARGET is the negative number that has the largest absolute value that can be
represented in your operating environment.

VARSEL=number | string
specifies the rule for selecting the branching variable. For more information about variable
selection, see Chapter 12, “The OPTMILP Procedure.” Table 8.19 describes the valid values for

this option.

Table 8.19 Values for VARSEL= Option

number string Description

-1 AUTOMATIC Uses automatic branching variable selection

0 MAXINFEAS Chooses the variable that has maximum infeasibility
1 MININFEAS Chooses the variable that has minimum infeasibility
2 PSEUDO Chooses a branching variable based on pseudocost

3 STRONG Uses the strong branching variable selection strategy

By default, VARSEL=AUTOMATIC.

Details: Network Solver

The network solver uses a collection of specialized algorithms that optimize specific types of common
problems. When you use the network solver, you specify variable arrays, numeric arrays, and sets, both to
define an instance and to get solutions, without explicitly formulating objectives and constraints.

332 4 Chapter 8: The Network Solver (Experimental)

Input Data for the Network Solver

This section describes how you can import and export node and link data from and to SAS data sets and how
you can solve problems over a subgraph without changing your original sets. The section “Graph Input Data”
on page 332 describes how to load node and link data in some common formats. The section “Solving over
Subsets of Nodes and Links (Filters)” on page 335 describes subgraphs.

Graph Input Data

This section describes how to input a graph for analysis by the network solver. Because the OPTMODEL
procedure uses node and link attributes that are indexed over the sets of nodes and links, you need to provide
only node and link attributes. PROC OPTMODEL infers the graph from the attributes you provide. When a
documented default value exists for the attribute of a link or a node, you need to provide only the values that
differ from the default. For example, the section “Minimum-Cost Network Flow” on page 356 assumes that
the link flow upper bound is co. You need to specify only the finite upper bounds.

Consider the directed graph shown in Figure 8.5.

Figure 8.5 A Simple Directed Graph

Notice that each node and link has associated attributes: a node label and a link weight.

Data Indexed by Nodes or Links

Nodes often represent entities, and links represent relationships between these entities. Therefore, it is
common to store a graph as a link-indexed table. When nodes have attributes beyond their name (label),
these attributes are stored in a node-indexed table. This section covers the more complex link-indexed case.
The node-indexed case is essentially identical to this one, except that the PROC OPTMODEL set has tuple
length of one when node-indexed data are read, whereas the PROC OPTMODEL set has tuple length two
when link-indexed data are read.

Let G = (N, A) define a graph with a set N of nodes and a set A of links. A link is an ordered pair of nodes.
Each node is defined by using either numeric or string labels.

Input Data for the Network Solver 4 333

The directed graph G shown in Figure 8.5 can be represented by the following links data set LinkSetlIn:

data LinkSetIn;
input from $ to $ weight Q@Q;

datalines;
AB1 AC2 AD 4 BCl1 B E 2
BF S5 CE1 DE 1 ED1 EF 2
F G 6 GHI1 GI1 HG 2 HIS3

The following statements read in this graph and print the resulting links and nodes sets. These statements do
not run any algorithms, so the resulting output contains only the input graph.

proc optmodel;
set<str, str> LINKS;
set NODES = union{<ni,nj> in LINKS} {ni,nj};
num weight {LINKS};

read data LinkSetIn into LINKS=[from to] weight;

print weight;
put NODES=; /* computed automatically by OPTMODEL */
quit;

The log output in Figure 8.6 shows the nodes that are read from the input link data set. In this example PROC
OPTMODEL computed the node set N (NODES) from its definition when it was needed. The ODS output
in Figure 8.7 shows the weights that are read from the input link data set, which is indexed by link. PUT is
used for NODES because PROC OPTMODEL sets are basic types such as number and string. Thus, you use
PUT to quickly inspect a set value. In contrast, you use PRINT to inspect an array, such as weight.

Figure 8.6 Node Set Printout of a Simple Directed Graph

NOTE: There were 15 observations read from the data set WORK.LINKSETIN.
NODES={'A','B', lcl, lDl, IEV’ lFl’lGI’lHI, lIl)

334 4 Chapter 8: The Network Solver (Experimental)

Figure 8.7 Link Set of a Simple Directed Graph That Includes Weights

The OPTMODEL Procedure

[1] [2] weight
A B 1
A o] 2
A D 4
B Cc 1
B E 2
B F 5
(o] E 1
D E 1
E D 1
E F 2
F G 6
G H 1
G I 1
H G 2
H I 3

As described in the GRAPH_DIRECTION= option, if the graph is undirected, the from and fo labels are
interchangeable. If you define this graph as undirected, then reciprocal links (for example, D — E and
E — D) are treated as the same link, and duplicates are removed. The network solver takes the first
occurrence of the link and ignores the others. To see warnings about duplicates, set LOGLEVEL=3. By
default, GRAPH_DIRECTION=UNDIRECTED, so to declare the graph as undirected you can just omit this
option.

After you read the data into PROC OPTMODEL sets, you pass link information to the solver by using the
LINKS= option. Node input is analogous to link input. You pass node information to the solver by using the
NODES= option.

The INCLUDE-= suboption is especially useful for algorithms that depend only on the graph topology, (such
as the connected components algorithm). If an algorithm requires a node or link property and that property is
not defined for a node or link that is added by the INCLUDE= suboption, the algorithm will not run.

Matrix Input Data

The contents of a table can be represented as a graph. The relationships between two sets of nodes, N1 and
N>, can be represented by a |N| by | N| incidence matrix A, in which N is the set of rows and N5 is the
set of columns.

To read a matrix that is stored in a data set into PROC OPTMODEL, you need to take two extra steps:

1. Determine the name of each numeric variable that you want to use. PROC CONTENTS can be useful
for this task.

2. Use an iterated READ DATA statement.

For more information, see “Example 8.3: Linear Assignment Problem for Minimizing Swim Times.”

Solving over Subsets of Nodes and Links (Filters) 4 335

Solving over Subsets of Nodes and Links (Filters)

You can solve a problem over a subgraph without declaring new link and node sets. You can specify
the LINKS= and NODES= suboptions of the SUBGRAPH= option to filter nodes and links before the
OPTMODEL procedure builds and solves the instance. If you want to see the resulting subgraph, you can
specify the LINKS= and NODES= suboptions of the OUT= option. If you just want to produce a subgraph,
you do not need to invoke an algorithm.

You can keep all the input and output arrays defined over the original graph and define a subgraph by providing
any combination of the LINKS= and NODES= suboptions of the SUBGRAPH= option. If you specify either
of the suboptions of the SUBGRAPH= option, then union semantics apply. PROC OPTMODEL uses the
following rules:

* Only the links that are included in the set named in the LINKS= option are used to create the instance.

* Only the nodes that appear either in the NODES= suboption of the SUBGRAPH= option or that appear
as the head or tail of a link in the LINKS= suboption are used to create the instance.

* A node or a link that appears only in the SUBGRAPH= option, but not in the original graph, is
discarded. To add nodes or links that do not have attributes, see the INCLUDE= suboption of the
LINKS= and NODE= options.

If the value of the LOGLEVEL= suboption is equal to or greater than 3, PROC OPTMODEL issues a
message for each of the nodes and links that it discards until the number of messages reaches the value of the
MSGLIMIT= option in the PROC OPTMODEL statement. If the value of the LOGLEVEL= suboption is
greater than 0, PROC OPTMODEL also issues a summary that shows the total count of discarded nodes and
links from each input array or set.

The following statements start a PROC OPTMODEL session and declare a five-node complete undirected
graph; a subset of links that contains all links between nodes 1, 2, 3, and 4; and a subset of nodes that contains
nodes 3, 4, and 5:

proc optmodel;
set NODES = 1..5;
set LINKS = {vi in NODES, vj in NODES: vi < vj};
num distance {<vi,vj> in LINKS} = 10xvi + vj;

set <num, num> TOUR;

/* Build a link set using only nodes 1..4 nodes */

set <num,num> LINKS_BETWEEN_1234 = {vi in 1..3, vj in (vi+l)..4};
/* Build a node subset consisting of nodes 3..5 x/

set NODES_345 = 3..5;

After the sets are declared, the statements in the following steps solve several traveling salesman problems
(TSPs) on subgraphs. For more information about TSPs, see the section “Traveling Salesman Problem” on
page 381.

1. The first SOLVE statement solves a TSP on the original graph. Note that the links in the tour (see
Figure 8.8 are returned with the same orientation that you provide in the input. For example, the second
step on the tour goes from node 4 to node 2 using link (2, 4). This guarantees that you do not need to
do extra processing of output to check for link orientation. You can just use the output directly.

336 4 Chapter 8: The Network Solver (Experimental)

/* Implicit network 1l: solve over nodes 1..5 —- The original networkx/
solve with NETWORK /

links=(weight=distance)

out=(tour=TOUR)

tsp
7

put TOUR=;

As shown in Figure 8.8, all links implied by the WEIGHT= suboption of the LINKS= option become
part of the graph.

Figure 8.8 SOLVE WITH NETWORK Log: Traveling Salesman Tour of an Unfiltered Graph

NOTE: The experimental Network solver is used.

NOTE: The number of nodes in the input graph is 5.

NOTE: The number of links in the input graph is 10.

NOTE: Processing the traveling salesman problem.

NOTE: The initial TSP heuristics found a tour with cost 111 using 0.03 (cpu:
NOTE: The MILP presolver value NONE is applied.

NOTE: The MILP solver is called.

NOTE: Optimal.

NOTE: Objective = 111.

NOTE: Processing the traveling salesman problem used 0.34 (cpu: 0.08) seconds.
TOUR={<1, 4>,<2,4>,<2,3>,<3,5>,<1,5>}

2. The next SOLVE statement solves a TSP on the subgraph that is defined by the link set
LINKS_BETWEEN_1234.

/* Filter on LINKS: solve over nodes 1..4 x/
solve with NETWORK /
links=(weight=distance)
subgraph=(links=LINKS_BETWEEN_1234)
out=(tour=TOUR)
tsp

put TOUR=;

As shown in Figure 8.9, the network solver now ignores node 5.

Figure 8.9 SOLVE WITH NETWORK Log: Traveling Salesman Tour over Nodes N = {1,2, 3, 4}

NOTE: The experimental Network solver is used.

NOTE: The SUBGRAPH= option filtered 4 elements from 'distance.'

NOTE: The number of nodes in the input graph is 4.

NOTE: The number of links in the input graph is 6.

NOTE: Processing the traveling salesman problem.

NOTE: The initial TSP heuristics found a tour with cost 74 using 0.00 (cpu:
NOTE: The MILP presolver value NONE is applied.

NOTE: The MILP solver is called.

NOTE: Optimal.

NOTE: Objective = 74.

NOTE: Processing the traveling salesman problem used 0.04 (cpu: 0.05) seconds.
TOUR={<1, 3>,<2,3>,<2,4>,<1, 4>}

Solving over Subsets of Nodes and Links (Filters) 4 337

3. The next SOLVE statement solves a TSP on the subgraph that is defined by the node set NODES_345.

/* Filter on NODES: solve over nodes 3..5 %/
solve with NETWORK /

links=(weight=distance)

subgraph=(nodes=NODES_345)

out=(tour=TOUR)

tsp
’

put TOUR=;

As shown in Figure 8.10, the network solver now ignores nodes 1 and 2, along with any links incident
to them.

Figure 8.10 SOLVE WITH NETWORK Log: Traveling Salesman Tour over Nodes N = {3, 4,5}

NOTE: The experimental Network solver is used.

NOTE: The SUBGRAPH= option filtered 7 elements from 'distance.'

NOTE: The number of nodes in the input graph is 3.

NOTE: The number of links in the input graph is 3.

NOTE: Processing the traveling salesman problem.

NOTE: The initial TSP heuristics found a tour with cost 114 using 0.00 (cpu:
NOTE: The MILP presolver value NONE is applied.

NOTE: The MILP solver is called.

NOTE: Optimal.

NOTE: Objective = 114.

NOTE: Processing the traveling salesman problem used 0.05 (cpu: 0.06) seconds.
TOUR={<3,4>,<4,5>,<3,5>}

4. The next SOLVE statement attempts to solve a TSP on the subgraph that is defined by the node set
NODES_345 and the link set that is defined by the links on the nodes {1, 2, 3, 4}. This subgraph creates
an infeasible instance because the links {(1,5), (2, 5), (3,5), (4, 5)} that were defined in the original
graph have been filtered out. Thus, node 5 is disconnected and no tour can exist.

/* Explicit nodes and links: semantic error over nodes 1..5
* Links <u, 5> are undefined and no documented default exists. */
solve with NETWORK /
links=(weight=distance)
subgraph=(nodes=NODES_345 1links=LINKS_BETWEEN_1234)
out=(tour=TOUR)
tsp

As shown in Figure 8.11, the network solver identifies that no tour exists over the surviving nodes and
links.

338 4 Chapter 8: The Network Solver (Experimental)

Figure 8.11 SOLVE WITH NETWORK Log: Infeasible Traveling Salesman Problem after Filtering

NOTE: The experimental Network solver is used.

NOTE: The SUBGRAPH= option filtered 4 elements from 'distance.'

NOTE: The number of nodes in the input graph is 5.

NOTE: The number of links in the input graph is 6.

NOTE: Processing the traveling salesman problem.

NOTE: Infeasible.

NOTE: Processing the traveling salesman problem used 0.03 (cpu: 0.00) seconds.

5. The last SOLVE statement uses the LINKS= suboption of the OUT= option to capture exactly which

nodes and links were generated and with which attributes. In this case, because the only attribute
defined is link weight, the set LINKS_OUT has tuples of length three.

/* make room for tail, head, and weight */
set<num, num, num> LINKS_ OUT,;
solve with NETWORK /
links=(weight=distance)
subgraph=(nodes=NODES_345 links=LINKS_BETWEEN_ 1234)
out=(tour=TOUR links=LINKS_OUT)
tsp
put LINKS_OUT=;
quit;

As shown in Figure 8.12, the network solver can return the graph after filtering. This feature can
sometimes help you identify why you might get counterintuitive results.

Figure 8.12 SOLVE WITH NETWORK Log: Remaining Links after Filtering

NOTE: The experimental Network solver is used.

NOTE: The SUBGRAPH= option filtered 4 elements from 'distance.'

NOTE: The number of nodes in the input graph is 5.

NOTE: The number of links in the input graph is 6.

NOTE: Processing the traveling salesman problem.

NOTE: Infeasible.

NOTE: Processing the traveling salesman problem used 0.00 (cpu: 0.00) seconds.
LINKS_OUT={<1,2,12>,<1,3,13>,<1,4,14>,<2,3,23>,<2,4,24>,<3,4,34>}

NOTE: The PROCEDURE OPTMODEL printed pages 5-14.

Biconnected Components and Articulation Points

A biconnected component of a graph G = (N, A) is a connected subgraph that cannot be broken into
disconnected pieces by deleting any single node (and its incident links). An articulation point is a node
of a graph whose removal would cause an increase in the number of connected components. Articulation
points can be important when you analyze any graph that represents a communications network. Consider an
articulation point i € N which, if removed, disconnects the graph into two components C ! and C2. All paths

Biconnected Components and Articulation Points 4 339

in G between some nodes in C ! and some nodes in C? must pass through node i. In this sense, articulation
points are critical to communication. Examples of where articulation points are important are airline hubs,
electric circuits, network wires, protein bonds, traffic routers, and numerous other industrial applications.

In the network solver, you can find biconnected components and articulation points of an input graph by
invoking the BICONCOMP option. This algorithm works only with undirected graphs.

The results for the biconnected components algorithm are written to the link-indexed numeric array that is
specified in the BICONCOMP= suboption in the OUT= option. For each link in the links array, the value in
this array identifies its component. The component identifiers are numbered sequentially starting from 1. The
articulation points are written to the set that is specified in the ARTPOINTS= suboption in the OUT= option.

The algorithm that the network solver uses to compute biconnected components is a variant of depth-first
search (Tarjan 1972). This algorithm runs in time O(|N| 4 |A|) and therefore should scale to very large
graphs.

Biconnected Components of a Simple Undirected Graph

This section illustrates the use of the biconnected components algorithm on the simple undirected graph G
that is shown in Figure 8.13.

Figure 8.13 A Simple Undirected Graph G

The undirected graph G can be represented by the links data set LinkSetInBiCC as follows:

data LinkSetInBiCC;
input from $ to $ Q@;
datalines;

AB AF AG BC

BE CD EF GTI

HI

B D
G H

4

340 4 Chapter 8: The Network Solver (Experimental)

The following statements calculate the biconnected components and articulation points and output the results
in the data sets LinkSetOut and NodeSetOut:

proc optmodel;
set<str, str> LINKS;
read data LinkSetInBiCC into LINKS=[from to];
set NODES = union{<i, j> in LINKS} {i,j};
num bicomponent {LINKS};
set<str> ARTPOINTS;

solve with NETWORK /
loglevel = moderate

links = (include=LINKS)
biconcomp
out = (biconcomp=bicomponent artpoints=ARTPOINTS)

print bicomponent;

put ARTPOINTS;

create data LinkSetOut from [from to] biconcomp=bicomponent;
create data NodeSetOut from [node]=ARTPOINTS artpoint=1;

quit;

The data set LinkSetOut now contains the biconnected components of the input graph, as shown in Figure 8.14.

Figure 8.14 Biconnected Components of a Simple Undirected Graph

from to biconcomp
A B 2
A F 2
A G 4
B C 1
B D 1
B E 2
C D 1
E F 2
G I 3
G H 3
H I 3

In addition, the data set NodeSetOut contains the articulation points of the input graph, as shown in
Figure 8.15.

Figure 8.15 Articulation Points of a Simple Undirected Graph

node artpoint
A 1
B 1

G 1

Clique 4 341

The biconnected components are shown graphically in Figure 8.16 and Figure 8.17.

Figure 8.16 Biconnected Components C! and C?

C!={B,C,D} C?={A,B,E,F}

Figure 8.17 Biconnected Components C3 and C*#

C3=1{G,H1I} C*={A,G)

For a more detailed example, see “Example 8.1: Articulation Points in a Terrorist Network.”

Clique

A clique of a graph G = (N, A) is an induced subgraph that is a complete graph. Every node in a clique is
connected to every other node in that clique. A maximal clique is a clique that is not a subset of the nodes of

342 4 Chapter 8: The Network Solver (Experimental)

any larger clique. That is, it is a set C of nodes such that every pair of nodes in C is connected by a link and
every node not in C is missing a link to at least one node in C. The number of maximal cliques in a particular
graph can be very large and can grow exponentially with every node added. Finding cliques in graphs has
applications in numerous industries including bioinformatics, social networks, electrical engineering, and
chemistry.

You can find the maximal cliques of an input graph by invoking the CLIQUE= option. The clique algorithm
works only with undirected graphs.

The results for the clique algorithm are written to the set that is specified in the CLIQUES= suboption in the
OUT= option. Each node of each clique is listed in the set along with a clique ID (the first argument of the
tuple) to identify the clique to which it belongs. A node can appear multiple times in this set if it belongs to
multiple cliques.

The algorithm that the network solver uses to compute maximal cliques is a variant of the Bron-Kerbosch
algorithm (Bron and Kerbosch 1973; Harley 2003). Enumerating all maximal cliques is NP-hard, so this
algorithm typically does not scale to very large graphs.

Maximal Cliques of a Simple Undirected Graph

This section illustrates the use of the clique algorithm on the simple undirected graph G that is shown in
Figure 8.18.

Figure 8.18 A Simple Undirected Graph G

The undirected graph G can be represented by the following links data set LinkSetIn:

data LinkSetIn;
input from to @Q;

datalines;
01 02 03 04 05
06 12 13 14 23
24 25 26 27 238
34 56 78 89

Clique 4 343

The following statements calculate the maximal cliques, output the results in the data set Cliques, and use the
CARD function and SLICE operator as a convenient way to compute the clique sizes, which are output to a
data set called CliqueSizes:

proc optmodel;
set<num, num> LINKS;
read data LinkSetIn into LINKS=[from to];
set<num, num> CLIQUES;

solve with NETWORK /

links = (include=LINKS)
clique
out = (cliques=CLIQUES)

put CLIQUES;
create data Cliques from [clique node]=CLIQUES;
num num_cliques = card(setof {<cid,node> in CLIQUES} cid);
set CLIQUE_IDS = 1. .num_cliques;
num size {cid in CLIQUE_IDS} = card(slice(<cid, *>, CLIQUES));
create data CliqueSizes from [clique] size;

quit;

The data set Cliques now contains the maximal cliques of the input graph; it is shown in Figure 8.19.

Figure 8.19 Maximal Cliques of a Simple Undirected Graph

clique node

BB WWWNNNNMNRRERRR
WO JdONOMNUINMNONMWERNDO

In addition, the data set CliqueSizes contains the number of nodes in each clique; it is shown in Figure 8.20.

344 4 Chapter 8: The Network Solver (Experimental)

Figure 8.20 Sizes of Maximal Cliques of a Simple Undirected Graph

clique size
1 5
2 4
3 3
4 2

The maximal cliques are shown graphically in Figure 8.21 and Figure 8.22.

Figure 8.21 Maximal Cliques C! and C?

C!=1{0,1,2,3,4} C?=1{0,2,5,6}

C3=1{2,7,8 C*=1{8,9

Connected Components 4 345

Connected Components

A connected component of a graph is a set of nodes that are all reachable from each other. That is, if two
nodes are in the same component, then there exists a path between them. For a directed graph, there are two
types of components: a strongly connected component has a directed path between any two nodes, and a
weakly connected component ignores direction and requires only that a path exists between any two nodes.

In the network solver, you can invoke connected components by using the CONCOMP= option.

The default algorithm for finding connected components is a depth-first search. For undirected graphs only,
you can also specify ALGORITHM=UNION_FIND. Given a graph G = (N, A), both algorithms run in
time O(|N| + |A|) and can usually scale to very large graphs, but sometimes the union-find algorithm can be
faster.

The results for the connected components algorithm are written to the node-indexed numeric array that is
specified in the CONCOMP= suboption in the OUT= option. For each node in the set, the value of this array
identifies its component. The component identifiers are numbered sequentially starting from 1.

Connected Components of a Simple Undirected Graph

This section illustrates the use of the connected components algorithm on the simple undirected graph G that
is shown in Figure 8.23.

Figure 8.23 A Simple Undirected Graph G

o) <,

) CO D
DR

<

The undirected graph G can be represented by the following links data set LinkSetIn:

data LinkSetIn;
input from $ to $ Q@Q;
datalines;
AB AC BC CH DE DF DG FE GI KL
The following statements calculate the connected components and output the results in the data set Node-
SetOut:

346 4 Chapter 8: The Network Solver (Experimental)

proc optmodel;
set<str,str> LINKS;
read data LinkSetIn into LINKS=[from to];
set NODES = union {<i,j> in LINKS} {i, j};
num component {NODES};

solve with NETWORK /

links = (include=LINKS)
concomp
out = (concomp=component)

print component;
create data NodeSetOut from [node] concomp=component;

quit;
The data set NodeSetOut contains the connected components of the input graph and is shown in Figure 8.24.

Figure 8.24 Connected Components of a Simple Undirected Graph

node concomp

ER"HQ®MEOIDmOQWDY
WWNNNMNNMNNDRERRR

Notice that the graph was defined by using only the links array. As seen in Figure 8.23, this graph also
contains a singleton node labeled J, which has no associated links. By definition, this node defines its own
component. But because the input graph was defined by using only the links array, it did not show up in the
results data set. To define a graph by using nodes that have no associated links, you should also define the
input nodes data set. In this case, define the nodes data set NodeSetIn as follows:

data NodeSetIn;
input node $ Q@;
datalines;
A B C D E F G H I J K L

I

Now, when you calculate the connected components, you define the input graph by using both the nodes
input data set and the links input data set:

Connected Components 4 347

proc optmodel;
set<str,str> LINKS;
read data LinkSetIn into LINKS=[from to];
set<str> NODES;
read data NodeSetIn into NODES=[node];
num component {NODES};

solve with NETWORK /

links = (include=LINKS)
nodes = (include=NODES)
concomp

out = (concomp=component)

print component;
create data NodeSetOut from [node] concomp=component;

quit;
The resulting data set, NodeSetOut, includes the singleton node J as its own component, as shown in
Figure 8.25.

Figure 8.25 Connected Components of a Simple Undirected Graph

node concomp

HERgHIEDQEEOOQWEP
BB WNRERNMNMNNNRRR

Connected Components of a Simple Directed Graph

This section illustrates the use of the connected components algorithm on the simple directed graph G that is
shown in Figure 8.26.

348 4 Chapter 8: The Network Solver (Experimental)

Figure 8.26 A Simple Directed Graph G

The directed graph G can be represented by the following links data set LinkSetIn:

data LinkSetIn;
input from $ to $ QQ@;
datalines;

A B BC BE B

The following statements calculate the connected components and output the results in the data set Node-
SetOut:

proc optmodel;
set<str, str> LINKS;
read data LinkSetIn into LINKS=[from to];
set NODES = union {<i,j> in LINKS} {i, j};
num component {NODES};

solve with NETWORK /
graph_direction = directed

links = (include=LINKS)
concomp
out = (concomp=component)

print component;
create data NodeSetOut from [node] concomp=component;
quit;

Cycle 4+ 349

The data set NodeSetOut, shown in Figure 8.27, now contains the connected components of the input graph.

Figure 8.27 Connected Components of a Simple Directed Graph

node concomp

oM EQD Y
MNNHFEFRPRWDNDWW

The connected components are represented graphically in Figure 8.28.

Figure 8.28 Strongly Connected Components of G

Cycle

A path in a graph is a sequence of nodes, each of which has a link to the next node in the sequence. A cycle
is a path in which the start node and end node are the same.

In the network solver, you can find the cycles (or just count the cycles) of an input graph by invoking the
CYCLE= algorithm option. To find the cycles and report them in a set, use the CYCLES= suboption in the
OUT= option. You do not need to use the CYCLES= suboption to simply count the cycles.

350 4 Chapter 8: The Network Solver (Experimental)

For undirected graphs, each link represents two directed links. For this reason, the following cycles are
filtered out: trivial cycles (A — B — A) and duplicate cycles that are found by traversing a cycle in both
directions (4 - B —-C - Aand A — C — B — A).

The results for the cycle detection algorithm are written to the set that is specified in the CYCLES= suboption
in the OUT= option. Each node of each cycle is listed in the CYCLES= set along with a cycle ID (the first
argument of the tuple) to identify the cycle to which it belongs. The second argument of the tuple defines the
order (sequence) of the node in the cycle.

The algorithm that the network solver uses to compute all cycles is a variant of the algorithm found in Johnson
1975. This algorithm runs in time O((|N| 4 |A])(c + 1)), where ¢ is the number of elementary cycles in the
graph. So the algorithm should scale to large graphs that contain few cycles. However, some graphs can have
a very large number of cycles, so the algorithm might not scale.

If MODE=ALL_CYCLES and there are many cycles, the CYCLES= set can become very large. It might
be beneficial to check the number of cycles before you try to create the CYCLES= set. When you specify
MODE=FIRST_CYCLE, the algorithm returns the first cycle it finds and stops processing. This should run
relatively quickly. On large-scale graphs, the MINLINKWEIGHT= and MAXLINKWEIGHT= suboptions
can be relatively expensive and might increase the computation time.

Cycle Detection of a Simple Directed Graph

This section provides a simple example for using the cycle detection algorithm on the simple directed
graph G that is shown in Figure 8.29. Two other examples are “Example 8.2: Cycle Detection for Kidney
Donor Exchange”, which shows the use of cycle detection for optimizing a kidney donor exchange, and
“Example 8.6: Transitive Closure for Identification of Circular Dependencies in a Bug Tracking System”,
which shows an application of cycle detection to dependencies between bug reports.

Figure 8.29 A Simple Directed Graph G

%

The directed graph G can be represented by the following links data set LinkSetIn:

data LinkSetIn;
input from $ to $ QQ;
datalines;
AB AE BC CA CD
DE DF EB EC FE

4

Cycle 4+ 351

The following statements check whether the graph has a cycle:

proc optmodel;
set<str, str> LINKS;
read data LinkSetIn into LINKS=[from to];
set<num, num, str> CYCLES;

solve with NETWORK /
graph _direction = directed
links (include=LINKS)
cycle (mode=first_cycle)

;
quit;

The result is written to the log of the procedure, as shown in Figure 8.30.

Figure 8.30 Network Solver Log: Check the Existence of a Cycle in a Simple Directed Graph

NOTE: There were 10 observations read from the data set WORK.LINKSETIN.
NOTE: The experimental Network solver is used.

NOTE: The number of nodes in the input graph is 6.

NOTE: The number of links in the input graph is 10.

NOTE: Processing cycle detection.

NOTE: The graph does have a cycle.

NOTE: Processing cycle detection used 0.00 (cpu: 0.00) seconds.

The following statements count the number of cycles in the graph:

proc optmodel;
set<str,str> LINKS;
read data LinkSetIn into LINKS=[from to];
set<num, num, str> CYCLES;

solve with NETWORK /
graph direction = directed
links (include=LINKS)
cycle (mode=all_cycles)

;
quit;

The result is written to the log of the procedure, as shown in Figure 8.31.

Figure 8.31 Network Solver Log: Count the Number of Cycles in a Simple Directed Graph

NOTE: There were 10 observations read from the data set WORK.LINKSETIN.
NOTE: The experimental Network solver is used.

NOTE: The number of nodes in the input graph is 6.

NOTE: The number of links in the input graph is 10.

NOTE: Processing cycle detection.

NOTE: The graph has 7 cycles.

NOTE: Processing cycle detection used 0.00 (cpu: 0.00) seconds.

352 4 Chapter 8: The Network Solver (Experimental)

The following statements return the first cycle found in the graph:

proc optmodel;
set<str, str> LINKS;
read data LinkSetIn into LINKS=[from to];
set<num, num, str> CYCLES;

solve with NETWORK /
graph _direction = directed

links = (include=LINKS)
cycle = (mode=first_cycle)
out = (cycles=CYCLES)

put CYCLES;
create data Cycles from [cycle order node]=CYCLES;
quit;

The data set Cycles now contains the first cycle found in the input graph; it is shown in Figure 8.32.

Figure 8.32 First Cycle Found in a Simple Directed Graph

cycle order node
1 1 A
1 2 B
1 3 Cc
1 4 A

The first cycle found in the input graph is shown graphically in Figure 8.33.

Figure833 A - B - C — 4

}‘c

Cycle 4+ 353

The following statements return all of the cycles in the graph:

proc optmodel;
set<str, str> LINKS;
read data LinkSetIn into LINKS=[from to];
set<num, num, str> CYCLES;

solve with NETWORK /
graph _direction = directed

links = (include=LINKS)
cycle = (mode=all_cycles)
out = (cycles=CYCLES)
;
put CYCLES;
create data Cycles from [cycle order node]=CYCLES;

quit;
The data set Cycles now contains all of the cycles in the input graph; it is shown in Figure 8.34.

Figure 8.34 All Cycles in a Simple Directed Graph

cycle order node

NNNNYdooooU0 oo dBAEDDREWWWWNNNNMNNRERRBBR
OB WNRAWNRPOUD®WNRUO®WNREBMWNROB®WNRESWNPR
HHMOOQOEBERROQORRODE®NOQAWOEOQAQW PP QHEPPQOEEPPOQEYP

354 4 Chapter 8: The Network Solver (Experimental)

The six additional cycles are shown graphically in Figure 8.35 through Figure 8.37.
Figure 8.35 Cycles

A—-FE—-B—->C—= A A—-FE—->C—> A

Oy T

Figure 8.36 Cycles

B—-C—-D-—-FE—B B—-C—-D—-F—F—RB

o= o=

Linear Assignment (Matching) 4 355

Figure 8.37 Cycles

E—-C—D-—E E—-C—-D—F—=E

T o=a

Linear Assignment (Matching)

The linear assignment problem (LAP) is a fundamental problem in combinatorial optimization that involves
assigning workers to tasks at minimal costs. In graph theoretic terms, the LAP is equivalent to finding a
minimum-weight matching in a weighted bipartite directed graph. In a bipartite graph, the nodes can be
divided into two disjoint sets S’ (workers) and T (tasks) such that every link connects a node in S to a node
in 7. That is, the node sets S and T are independent. The concept of assigning workers to tasks can be
generalized to the assignment of any abstract object from one group to some abstract object from a second

group.

The linear assignment problem can be formulated as an integer programming optimization problem. The
form of the problem depends on the sizes of the two input sets, S and 7. Let A represent the set of possible
assignments between sets S and 7. In the bipartite graph, these assignments are the links. If | S| > |T'|, then
the following optimization problem is solved:

minimize E CijXij

@i.j)ed

subject to Z xij <1 iefS
@i.j)eA

Y xj=1 jeT
@i.j)eA

xij € 40,1} (i,j)e A

356 4 Chapter 8: The Network Solver (Experimental)

This model allows for some elements of set S (workers) to go unassigned (if |S| > |T'|). However, if
|S| < |T|, then the following optimization problem is solved:

minimize E CijXij

(i,/)eA

subject to Z xij=1 1i€S8§
(i,/)eA

Y xij<1 jeT
(i,/)eA

Xij E{O,l} (i,j)e A
This model allows for some elements of set 7" (tasks) to go unassigned.

In the network solver, you can invoke the linear assignment problem solver by using the LIN-
EAR_ASSIGNMENT option. The algorithm that the network solver uses for solving a LAP is based
on augmentation of shortest paths (Jonker and Volgenant 1987). This algorithm can be applied as long as the
graph is bipartite.

The resulting assignment (or matching) is contained in the set that is specified in the ASSIGNMENTS=
suboption in the OUT= option.

For a detailed example, see “Example 8.3: Linear Assignment Problem for Minimizing Swim Times.”

Minimum-Cost Network Flow

The minimum-cost network flow problem (MCF) is a fundamental problem in network analysis that involves
sending flow over a network at minimal cost. Let G = (N, A) be a directed graph. For each link (i, j) € 4,
associate a cost per unit of flow, designated by ¢;;. The demand (or supply) at each node i € N is designated
as b;, where b; > 0 denotes a supply node and b; < 0 denotes a demand node. These values must be within
[bf . b!']. Define decision variables x;; that denote the amount of flow sent between node i and node j. The
amount of flow that can be sent across each link is bounded to be within [/;;,u;;]. The problem can be
modeled as a linear programming problem as follows:

minimize Z CijXij
@i,j)eA
subjectto bl < Z Xij — Z xji <b' ieN
@,j)eA (si)eA
lij < xij <uyj (i,j)e A

When b; = bf = b for all nodes i € N, the problem is called a pure network flow problem. For these
problems, the sum of the supplies and demands must be equal to O to ensure that a feasible solution exists.

In the network solver, you can invoke the minimum-cost network flow solver by using the MINCOSTFLOW
option.

The algorithm that the network solver uses for solving MCF is a variant of the primal network simplex
algorithm (Ahuja, Magnanti, and Orlin 1993). Sometimes the directed graph G is disconnected. In this case,
the problem is first decomposed into its weakly connected components, and then each minimum-cost flow
problem is solved separately.

Minimum-Cost Network Flow 4 357

The input for the network is the standard graph input, which is described in the section “Input Data for the
Network Solver” on page 332. The MCF option uses the following suboptions of the LINKS= input option
that specify link-indexed numeric arrays:

* The WEIGHT= suboption defines the link cost ¢;; per unit of flow. (The default is 0, but if the
WEIGHT= suboption is not specified, then the default is 1.)
» The LOWER= suboption defines the link flow lower bound /;;. (The default is 0.)
* The UPPER= suboption defines the link flow upper bound u;;. (The default is 0o.)
The MCF option uses the WEIGHT= suboption of the NODES= option to specify supply. The parameter is a
numeric array that is positive for supply nodes and negative for demand nodes.
The resulting optimal flow through the network is written to the link-indexed numeric array that is specified
in the FLOW= suboption in the OUT= option in the SOLVE WITH NETWORK statement.
Minimum Cost Network Flow for a Simple Directed Graph

The following example demonstrates how to use the network simplex solver to find a minimum-cost flow in a
directed graph. Consider the directed graph in Figure 8.38, which appears in Ahuja, Magnanti, and Orlin
(1993).

Figure 8.38 Minimum-Cost Network Flow Problem: Data

The directed graph G can be represented by the following links data set LinkSetIn and nodes data set
NodeSetIn:

data LinkSetIn;

input from to weight upper;
datalines;

2 15

110

0 10

6 10

1 5

W INDNDNMDDNDR
S oy Wk b

358 4 Chapter 8: The Network Solver (Experimental)

35410
4 7510
56 2 20
577 15
6 8 810
78 9 15

data NodeSetIn;

input node weight;
datalines;

10

20

-5
-15
-10

0 BN PR

’

You can use the following call to the network solver to find a minimum-cost flow:

proc optmodel;
set <num, num> LINKS;
num cost{LINKS};
num upper {LINKS};
read data LinkSetIn into LINKS=[from to] cost=weight upper;
set NODES = union {<i,j> in LINKS} {i, j};
num supply{NODES} init O;
read data NodeSetIn into [node] supply=weight;
num flow{LINKS};

solve with network /

loglevel = moderate
logfreq =1
graph_direction = directed
links = (upper=upper weight=cost)
nodes = (weight=supply)
mcf
out = (flow=flow)
4
print flow;

create data LinkSetOut from [from to] upper cost flow;
quit;

Minimum-Cost Network Flow 4 359

The progress of the procedure is shown in Figure 8.39.

Figure 8.39 Network Solver Log for Minimum-Cost Network Flow

NOTE: There were 11 observations read from the data set WORK.LINKSETIN.
NOTE: There were 5 observations read from the data set WORK.NODESETIN.
NOTE: The experimental Network solver is used.
NOTE: The number of nodes in the input graph is 8.
NOTE: The number of links in the input graph is 11.
NOTE: Processing the minimum cost network flow problem.
NOTE: The network has 1 connected component.
Primal Primal Dual
Iteration Objective Infeasibility Infeasibility Time
1 0.000000E+00 2.000000E+01 8.900000E+01 0.00
2 0.000000E+00 2.000000E+01 8.900000E+01 0.00
3 5.000000E+00 1.500000E+01 8.400000E+01 0.00
4 5.000000E+00 1.500000E+01 8.300000E+01 0.00
5 7.500000E+01 1.500000E+01 8.300000E+01 0.00
6 7.500000E+01 1.500000E+01 7.900000E+01 0.00
7 1.300000E+02 1.000000E+01 7.600000E+01 0.00
8 2.700000E+02 0.000000E+00 0.000000E+00 0.00
NOTE: The Network Simplex solve time is 0.00 seconds.
NOTE: The minimum cost network flow is 270.
NOTE: Processing the minimum cost network flow problem used 0.05 (cpu: 0.00)
seconds.
NOTE: The data set WORK.LINKSETOUT has 11 observations and 5 variables.

The optimal solution is displayed in Figure 8.40.

Figure 8.40 Minimum-Cost Network Flow Problem: Optimal Solution

Obs from to upper cost flow
1 1 4 15 2 10
2 2 1 10 1 0
3 2 3 10 0 10
4 2 6 10 6 10
5 3 4 5 1 5
6 3 5 10 4 5
7 4 7 10 5 10
8 5 6 20 2 0
9 5 7 15 7 5

10 6 8 10 8 10
11 7 8 15 9 0

360 4 Chapter 8: The Network Solver (Experimental)

The optimal solution is represented graphically in Figure 8.41.

Figure 8.41 Minimum-Cost Network Flow Problem: Optimal Solution

Minimum Cut

A cut is a partition of the nodes of a graph into two disjoint subsets. The cut-set is the set of links whose from
and 7o nodes are in different subsets of the partition. A minimum cut of an undirected graph is a cut whose
cut-set has the smallest link metric, which is measured as follows: For an unweighted graph, the link metric
is the number of links in the cut-set. For a weighted graph, the link metric is the sum of the link weights in
the cut-set.

In the network solver, you can invoke the minimum cut algorithm by using the MINCUT= option. This
algorithm can be used only on undirected graphs.

If the value of the MAXNUMCUTS= suboption is greater than 1, then the algorithm can return more than
one set of cuts. The resulting cuts can be described in terms of partitions of the nodes of the graph or the
links in the cut-sets. The node partition is specified in the PARTITIONS= suboption in the OUT= option in
the SOLVE WITH NETWORK statement. Each node is assigned the value 0 or 1, which defines the side of
the partition to which it belongs. The cut-set is specified in the CUTSETS= suboption in the OUT= option.
This set lists the cut ID and the corresponding list of links.

The network solver uses the Stoer-Wagner algorithm (Stoer and Wagner 1997) to compute the minimum cuts.
This algorithm runs in time O(|N||A| + |N|?log |N]).
Minimum Cut for a Simple Undirected Graph

As a simple example, consider the weighted undirected graph in Figure 8.42.

Minimum Cut 4 361

Figure 8.42 A Simple Undirected Graph

The links data set can be represented as follows:

data LinkSetIn;
input from to weight @@;
datalines;
153 233 252 262
472 482 563

o WK

S BN

R &N
w
~
N

~.

362 4 Chapter 8: The Network Solver (Experimental)

The following statements calculate minimum cuts in the graph and output the results in the data set MinCut:

proc optmodel;
set<num, num> LINKS;
num weight {LINKS};
read data LinkSetIn into LINKS=[from to] weight;
set<num> NODES = union {<i, j> in LINKS} {i, j};
set<num, num> PARTITIONS;
set<num, num, num> CUTSETS;

solve with NETWORK /
loglevel = moderate

links = (weight=weight)
mincut = (maxnumcuts=3)
out = (partitions=PARTITIONS cutsets=CUTSETS)

put PARTITIONS;
put CUTSETS;
set CUTS = setof {<cut,i,j> in CUTSETS} cut;
num minCutWeight {cut in CUTS} = sum {<(cut),i,j> in CUTSETS} weight[i, j];
print minCutWeight;
create data MinCut from [mincut from to]=CUTSETS weight[from, to];
num mincut {cut in CUTS, node in NODES} =
if <cut,node> in PARTITIONS then 0 else 1;
print mincut;
create data NodeSetOut from [node]=NODES
{cut in CUTS} <col('mincut_'| |cut)=mincut [cut, node]>;
quit;

The progress of the procedure is shown in Figure 8.43.

Figure 8.43 Network Solver Log for Minimum Cut

NOTE: There were 12 observations read from the data set WORK.LINKSETIN.
NOTE: The experimental Network solver is used.

NOTE: The number of nodes in the input graph is 8.

NOTE: The number of links in the input graph is 12.

NOTE: Processing the minimum cut problem.

NOTE: The minimum cut algorithm found 3 cuts.

NOTE: The cut 1 has weight 4.

NOTE: The cut 2 has weight 5.

NOTE: The cut 3 has weight 5.

NOTE: Processing the minimum cut problem used 0.00 (cpu: 0.00) seconds.
{<1,3>,<1,4>,<1,7>,<1,8>,<2,8>,<3,1>}
{<1,2,3>,<1,6,7>,<2,4,8>,<2,7,8>,<3,1,2>,<3,1,5>}

NOTE: The data set WORK.MINCUT has 6 observations and 4 variables.
NOTE: The data set WORK.NODESETOUT has 8 observations and 4 variables.

Minimum Cut 4 363

The data set NodeSetOut now contains the partition of the nodes for each cut, shown in Figure 8.44.

Figure 8.44 Minimum Cut Node Partition

node

00 J b oWUDNDR

mincut_1 mincut_2 mincut_3

OR KRR KRRERRKRE
H R RHRRKRERRBO

CoOOKHORRHR

The data set MinCut contains the links in the cut-sets for each cut. This data set is shown in Figure 8.45,

which also shows each cut separately.

Figure 8.45 Minimum Cut-sets

mincut from to weight
1 2 3 3
1 6 7 1
2 4 8 2
2 7 8 3
3 1 2 2
3 1 5 3
mincut=1
from to weight
2 3 3
6 7 1
mincut 4
mincut=2
from to weight
4 8 2
7 8 3
mincut 5

364 4 Chapter 8: The Network Solver (Experimental)

Figure 8.45 continued

mincut=3
from to weight
1 2 2
1 5 3
mincut s
==::==

Minimum Spanning Tree

A spanning tree of a connected undirected graph is a subgraph that is a tree that connects all the nodes
together. When weights have been assigned to the links, a minimum spanning tree (MST) is a spanning tree
whose sum of link weights is less than or equal to the sum of link weights of every other spanning tree. More
generally, any undirected graph (not necessarily connected) has a minimum spanning forest, which is a union
of minimum spanning trees of its connected components.

In the network solver, you can invoke the minimum spanning tree algorithm by using the MINSPANTREE
option. This algorithm can be used only on undirected graphs.

The resulting minimum spanning tree is contained in the set that is specified in the FOREST= suboption in
the OUT= option in the SOLVE WITH NETWORK statement.

The network solver uses Kruskal’s algorithm (Kruskal 1956) to compute the minimum spanning tree. This
algorithm runs in time O(|A|log |N|) and therefore should scale to very large graphs.

Minimum Spanning Tree for a Simple Undirected Graph

As a simple example, consider the weighted undirected graph in Figure 8.46.

Figure 8.46 A Simple Undirected Graph

Minimum Spanning Tree 4 365

The links data set can be represented as follows:

data LinkSetIn;
input from $ to $ weight Q@Q;
datalines;

AB 7 AD 5 BCS8 BDY9 BE?7
CE 5 DE15 DF 6 EF8 EG?9
FG11 HI 1 I J3 HJ2

The following statements calculate a minimum spanning forest and output the results in the data set MinSpan-
Forest:

proc optmodel;
set<str, str> LINKS;
num weight {LINKS};
read data LinkSetIn into LINKS=[from to] weight;
set<str, str> FOREST;

solve with NETWORK /

links = (weight=weight)
minspantree
out = (forest=FOREST)
;
put FOREST;
create data MinSpanForest from [from to]=FOREST weight;

quit;
The data set MinSpanForest now contains the links that belong to a minimum spanning forest, which is
shown in Figure 8.47.

Figure 8.47 Minimum Spanning Forest

from to weight
H I 1
H J 2
(o] E 5
A D 5
D F 6
B E 7
A B 7
E G 9
42

366 4 Chapter 8: The Network Solver (Experimental)

The minimal cost links are shown in green in Figure 8.48.

Figure 8.48 Minimum Spanning Forest

il

For a more detailed example, see “Example 8.5: Minimum Spanning Tree for Computer Network Topology.

Shortest Path

A shortest path between two nodes u and v in a graph is a path that starts at ¥ and ends at v and has the
lowest total link weight. The starting node is called the source node, and the ending node is called the sink
node.

In the network solver, shortest paths can be calculated by invoking the SHORTPATH= option.

By default, the network solver finds shortest paths for all pairs. That is, it finds a shortest path for each
possible combination of source and sink nodes. Alternatively, you can use the SOURCE= suboption to
fix a particular source node and find shortest paths from the fixed source node to all possible sink nodes.
Conversely, by using the SINK= suboption, you can fix a sink node and find shortest paths from all possible
source nodes to the fixed sink node. Using both suboptions together, you can request one particular shortest
path for a specific source-sink pair. In addition, you can use the SOURCE= and SINK= suboptions to define
a list of source-sink pairs to process. The following sections show examples of these suboptions.

The algorithm that the network solver uses for finding shortest paths is a variant of Dijkstra’s algorithm
(Ahuja, Magnanti, and Orlin 1993). For unweighted graphs, the network solver uses a variant of breadth-first
search. Dijkstra’s algorithm on weighted graphs runs in time O(|N |log|N| 4+ |A|) for each source node.
Breadth-first search runs in time O(|N| + | A|) for each source node.

For weighted graphs, the algorithm uses the parameter that is specified in the WEIGHT= suboption in the
SHORTPATH= option to evaluate a path’s total weight (cost).

Shortest Path 4 367

Outputs

The shortest path algorithm produces up to two outputs. The output set that is specified in the SPPATHS=
suboption contains the links of a shortest path for each source-sink pair combination. The output parameter
that is specified in the SPWEIGHTS= suboption contains the total weight for the shortest path for each
source-sink pair combination.

SPPATHS:= Set

This set contains the links present in the shortest path for each of the source-sink pairs. For large graphs and
a large requested number of source-sink pairs, this set can be extremely large. For extremely large graphs,
generating the output can sometimes take longer than computing the shortest paths. For example, using the
US road network data for the state of New York, the data contain a directed graph that has 264,346 nodes.
Finding the shortest path for all pairs from only one source node results in 140,969,120 observations, which
is a set of size 11 GB. Finding shortest paths for all pairs from all nodes would produce an enormous set.

The SPPATHS= set contains the following tuple members:

1. the source node of this shortest path

2. the sink node of this shortest path

3. for this source-sink pair, the order of this link in a shortest path
4. the tail node of this link in a shortest path

5. the head node of this link in a shortest path

SPWEIGHTS= Parameter
This parameter contains the total weight for the shortest path for each of the source-sink pairs.

Shortest Paths for All Pairs

This example illustrates the use of the shortest path algorithm for all source-sink pairs on the simple undirected
graph G that is shown in Figure 8.49.

368 4 Chapter 8: The Network Solver (Experimental)

Figure 8.49 A Simple Undirected Graph G

The undirected graph G can be represented by the following links data set LinkSetIn:

data LinkSetIn;
input from $ to $ weight @Q;

datalines;
AB3 AC2 ADG6 AE4 B
E

5
BF5 CE1 DE2 DF1 4

D
F

’

Shortest Path 4 369

The following statements calculate shortest paths for all source-sink pairs:

proc optmodel;
set <str,str> LINKS;
num weight {LINKS};
read data LinkSetIn into LINKS=[from to] weight;
set <str,str,num,str,str> PATHS; /* source, sink, order, from, to */
set NODES = union{<i, j> in LINKS} {i,j};
num path_length{NODES, NODES};

solve with NETWORK /

links = (weight=weight)

shortpath

out = (sppaths=PATHS spweights=path_length)
put PATHS;

print path_length;
create data ShortPathP from [source sink order from to]=PATHS
weight [from, to];
create data ShortPathW from [source sink]
path_weight=path_length;
quit;
The data set ShortPathP contains the shortest paths and is shown in Figure 8.50.

370 4 Chapter 8: The Network Solver (Experimental)

Figure 8.50 All-Pairs Shortest Paths

ShortPathP

sink order from to weight

source

Shortest Path 4 371

The data set ShortPathW contains the path weight for the shortest paths of each source-sink pair and is shown

in Figure 8.51.

Figure 8.51 All-Pairs Shortest Paths Summary

source

o EBREREEODOOODODODODOQOOQOQCOQOQOQQDEEEEWW®™M PP PP

ShortPathW

sink

HEHOQAWPPAROQAEPHAEOQOE PAIEROAQAWPARROQAE P AEU0O0E P

path_
weight

NFOWRN: WOOO_dKFW: UMM UO: WO WOULDND W -

WERrE & W -

When you are interested only in the source-sink pair that has the longest shortest path, you can use the
PATHS= suboption. This suboption affects only the output processing; it does not affect the computation. All
the designated source-sink shortest paths are calculated, but only the longest ones are written to the output

set.

372 4 Chapter 8: The Network Solver (Experimental)

The following statements display only the longest shortest paths:

proc optmodel;
set <str,str> LINKS;
num weight {LINKS};
read data LinkSetIn into LINKS=[from to] weight;
set <str,str,num,str,str> PATHS; /* source, sink, order, from, to */

solve with NETWORK /
links = (weight = weight)
shortpath = (paths = longest)
out (sppaths = PATHS)

put PATHS;
create data ShortPathlong from [source sink order from to]=PATHS
weight [from, to];
quit;
The data set ShortPathLong now contains the longest shortest paths and is shown in Figure 8.52.

Figure 8.52 Longest Shortest Paths

ShortPathLong
source sink order from to weight
A F 1 A C 2
A F 2 Cc E 1
A F 3 D E 2
A F 4 D F 1
B E 1 A B 3
B E 2 A C 2
B E 3 Cc E 1
E B 1 Cc E 1
E B 2 A C 2
E B 3 A B 3
F A 1 D F 1
F A 2 D E 2
F A 3 Cc E 1
F A 4 A Cc 2

Shortest Paths for a Subset of Source-Sink Pairs

This section illustrates the use of the SOURCE= and SINK= suboptions and the shortest path algorithm for
calculating shortest paths between a subset of source-sink pairs. If S denotes the nodes in the SOURCE= set
and T denotes the nodes in the SINK= set, the network solver calculates all the source-sink pairs in the cross
product of these two sets.

Shortest Path 4 373

For example, the following statements calculate a shortest path for the four combinations of source-sink pairs
inSxT ={A,C}x{B,F}:

proc optmodel;
set <str,str> LINKS;
num weight {LINKS};
read data LinkSetIn into LINKS=[from to] weight;
set <str,str,num, str,str> PATHS; /x source, sink, order, from, to */
set SOURCES = / A C /;
set SINKS =/ BF /;

solve with NETWORK /
links = (weight=weight)
shortpath = (source=SOURCES sink=SINKS)

out = (sppaths=PATHS)
i
put PATHS;
create data ShortPath from [source sink order from to]=PATHS weight[from, to];

quit;
The data set ShortPath contains the shortest paths and is shown in Figure 8.53.

Figure 8.53 Shortest Paths for a Subset of Source-Sink Pairs

ShortPath
source sink order from to weight
A B 1 A B 3
A F 1 A c 2
A F 2 (o} E 1
A F 3 D E 2
A F 4 D F 1
C B 1 A C 2
C B 2 A B 3
(o] F 1 (o] E 1
C F 2 D E 2
Cc F 3 D F 1

Shortest Paths for a Subset of Source or Sink Pairs

This section illustrates the use of the shortest path algorithm for calculating shortest paths between a subset
of source (or sink) nodes and all other sink (or source) nodes.

In this case, you designate the subset of source (or sink) nodes in the node set by specifying the SOURCE=
(or SINK=) suboption. By specifying only one of the suboptions, you indicate that you want the network
solver to calculate all pairs from a subset of source nodes (or to calculate all pairs to a subset of sink nodes).

374 4 Chapter 8: The Network Solver (Experimental)

For example, the following statements calculate all the shortest paths from nodes B and E.:

proc optmodel;
set <str,str> LINKS;
num weight {LINKS};
read data LinkSetIn into LINKS=[from to] weight;
set <str,str,num,str,str> PATHS; /* source, sink, order, from, to */
set SOURCES = / B E /;

solve with NETWORK /

links = (weight=weight)
shortpath = (source=SOURCES)
out = (sppaths=PATHS)
put PATHS;
create data ShortPath from [source sink order from to]=PATHS weight[from, to];

quit;
The data set ShortPath contains the shortest paths and is shown in Figure 8.54.

Figure 8.54 Shortest Paths for a Subset of Source Pairs

ShortPath
source sink order from to weight
B A 1 A B 3
B Cc 1 A B 3
B (o} 2 A C 2
B D 1 B D 5
B E 1 A B 3
B E 2 A C 2
B E 3 C E 1
B F 1 B F 5
E A 1 (o} E 1
E A 2 A C 2
E B 1 (o} E 1
E B 2 A C 2
E B 3 A B 3
E (o] 1 (o] E 1
E D 1 D E 2
E F 1 D E 2
E F 2 D F 1

Conversely, the following statements calculate all the shortest paths to nodes B and E.:

proc optmodel;
set <str,str> LINKS;
num weight {LINKS};
read data LinkSetIn into LINKS=[from to] weight;
set <str,str,num,str,str> PATHS; /* source, sink, order, from, to */
set SINKS = / B E /;

Shortest Path 4 375

solve with NETWORK /

links = (weight=weight)
shortpath = (sink=SINKS)
out = (sppaths=PATHS)
put PATHS;
create data ShortPath from [source sink order from to]=PATHS weight[from, to];

quit;
The data set ShortPath contains the shortest paths and is shown in Figure 8.55.

Figure 8.55 Shortest Paths for a Subset of Sink Pairs

ShortPath
source sink order from to weight
A B 1 A B 3
A E 1 A C 2
A E 2 Cc E 1
B E 1 A B 3
B E 2 A C 2
B E 3 Cc E 1
C B 1 A c 2
C B 2 A B 3
C E 1 Cc E 1
D B 1 B D 5
D E 1 D E 2
E B 1 Cc E 1
E B 2 A Cc 2
E B 3 A B 3
F B 1 B F 5
F E 1 D F 1
F E 2 D E 2

Shortest Paths for One Source-Sink Pair

This section illustrates the use of the shortest path algorithm for calculating shortest paths between one
source-sink pair by using the SOURCE= and SINK= suboptions.

The following statements calculate a shortest path between node C and node F':

proc optmodel;
set <str,str> LINKS;
num weight {LINKS};
read data LinkSetIn into LINKS=[from to] weight;
set <str,str,num,str,str> PATHS; /* source, sink, order, from, to */
set SOURCES = / C /;
set SINKS / F /;

solve with NETWORK /

links = (weight=weight)
shortpath = (source=SOURCES sink=SINKS)
out = (sppaths=PATHS)

376 4 Chapter 8: The Network Solver (Experimental)

put PATHS;
create data ShortPath from [source sink order from to]=PATHS weight[from,to];

quit;
The data set ShortPath contains this shortest path and is shown in Figure 8.56.

Figure 8.56 Shortest Paths for One Source-Sink Pair

ShortPath
source sink order from to weight
(o] F 1 (o] E 1
C F 2 D E 2
C F 3 D F 1

The shortest path is shown graphically in Figure 8.57.

Figure 8.57 Shortest Path between Nodes C and F

Shortest Path 4 377

Shortest Paths with Auxiliary Weight Calculation

This section illustrates the use of the shortest path algorithm, where auxiliary weights are used for calculating
the shortest paths between all source-sink pairs.

Consider a links data set in which the auxiliary weight is a counter for each link:

data LinkSetIn;
input from $ to $ weight count QQ@;
datalines;

AB31 AC2

1 A 1 AE41 BDS51
BF51 CE11 D 1 DF11 EF 41

N o

D
E
7

The following statements calculate shortest paths for all source-sink pairs:

proc optmodel;
set <str,str> LINKS;
num weight {LINKS};
num count {LINKS};
read data LinkSetIn into LINKS=[from to] weight count;
set <str,str,num, str,str> PATHS; /x source, sink, order, from, to */
set NODES = union{<i, j> in LINKS} {i, j};
num path_length{NODES, NODES};

solve with NETWORK /

links = (weight=weight)

shortpath

out = (sppaths=PATHS spweights=path_length)
7
put PATHS;

num path_weight2{source in NODES, sink in NODES} =
sum {<(source), (sink), order, from,to> in PATHS} count[from,6 to];
print path_length path_weight2;
create data ShortPathW from [source sink]
path_weight=path_length path weight2;
quit;
The data set ShortPathW contains the total path weight for shortest paths in each source-sink pair and is
shown in Figure 8.58. Because the variable count in LinkSetIn is 1 for all links, the value in the output data
set variable path_weights2 contains the number of links in each shortest path.

378 4 Chapter 8: The Network Solver (Experimental)

Figure 8.58 Shortest Paths Including Auxiliary Weights in Calculation

ShortPathW
path_ path_
source sink weight weight2
A A . 0
A B 3 1
A [¢] 2 1
A D 5 3
A E 3 2
A F 6 4
B A 3 1
B B . 0
B [¢] 5 2
B D 5 1
B E 6 3
B F 5 1
(o] A 2 1
C B 5 2
c [¢] 0
c D 3 2
Cc E 1 1
(o] F 4 3
D A 5 3
D B 5 1
D [¢] 3 2
D D . 0
D E 2 1
D F 1 1
E A 3 2
E B 6 3
E [¢] 1 1
E D 2 1
E E . 0
E F 3 2
F A 6 4
F B 5 1
F [¢] 4 3
F D 1 1
F E 3 2
F F 0

The section “Getting Started: Network Solver” on page 310 shows an example of using the shortest path
algorithm for minimizing travel to and from work based on traffic conditions.

Transitive Closure

The transitive closure of a graph G is a graph GT = (N, AT) such that for all i, j € N there is a link
(i, j) € AT if and only if there exists a path from i to j in G.

Transitive Closure 4 379

The transitive closure of a graph can help you efficiently answer questions about reachability. Suppose you
want to answer the question of whether you can get from node i to node j in the original graph G. Given
the transitive closure GT of G, you can simply check for the existence of link (i, j) to answer the question.
Transitive closure has many applications, including speeding up the processing of structured query languages,
which are often used in databases.

In the network solver, you can invoke the transitive closure algorithm by using the TRANSITIVE_CLOSURE
option.

The results for the transitive closure algorithm are written to the set that is specified in the CLOSURE=
suboption in the OUT= option.

The algorithm that the network solver uses to compute transitive closure is a sparse version of the Floyd-
Warshall algorithm (Cormen, Leiserson, and Rivest 1990). This algorithm runs in time O(| N |?) and therefore
might not scale to very large graphs.

Transitive Closure of a Simple Directed Graph

This example illustrates the use of the transitive closure algorithm on the simple directed graph G that is
shown in Figure 8.59.

Figure 8.59 A Simple Directed Graph G

The directed graph G can be represented by the links data set LinkSetIn as follows:

data LinkSetIn;
input from $ to $ Q@;
datalines;

BC BD CB DA DC

The following statements calculate the transitive closure and output the results in the data set TransClosure:

proc optmodel;
set<str,str> LINKS;
read data LinkSetIn into LINKS=[from to];
set<str, str> CAN_REACH;

380 4 Chapter 8: The Network Solver (Experimental)

solve with NETWORK /
links = (include = LINKS)
transc
out = (closure = CAN_REACH)

put CAN_REACH;
create data TransClosure from [from to]=CAN_REACH;

quit;

The data set TransClosure contains the transitive closure of G and is shown in Figure 8.60.

Figure 8.60 Transitive Closure of a Simple Directed Graph

Transitive Closure

from to

P OWWONUUOUWW
PP PWOOOP OO

The transitive closure of G is shown graphically in Figure 8.61.

Traveling Salesman Problem 4 381

Figure 8.61 Transitive Closure of G

For a more detailed example, see Example 8.6.

Traveling Salesman Problem

The traveling salesman problem (TSP) finds a minimum-cost tour in an undirected graph G that has a node
set, N, and link set, A. A tour is a connected subgraph for which each node has degree two. The goal is
then to find a tour of minimum total cost, where the total cost is the sum of the costs of the links in the tour.
Associated with each link (i, j) € A are a binary variable x;;, which indicates whether link x;; is part of
the tour, and a cost ¢;;. Let 6(S) = {(i,j) € A|i € S, j ¢ S}. Then an integer linear programming
formulation of the TSP is as follows:

minimize E CijXij

@i,j)eAd
subject to Z Xi,j = 2 i€N (two_match)
(i,/)€8(@)
xij = 2 SCN,2=<|S|=<|N|—-1 (subtour_elim)
(i,/)€8(S)
xij €40,1} (i,j)e A

The equations (two_match) are the matching constraints, which ensure that each node has degree two in the
subgraph. The inequalities (subtour_elim) are the subtour elimination constraints (SECs), which enforce
connectivity.

382 4 Chapter 8: The Network Solver (Experimental)

In practical terms, you can think of the TSP in the context of a routing problem in which each node is a city
and the links are roads that connect cities. Given the pairwise distances between each city, the goal is to find
the shortest possible route that visits each city exactly once. The TSP has applications in planning, logistics,
manufacturing, genomics, and many other areas.

In the network solver, you can invoke the traveling salesman problem solver by using the TSP= option.

The algorithm that the network solver uses for solving a TSP is based on a variant of the branch-and-cut
process described in Applegate et al. (2006).

The resulting tour is represented in two ways: In the numeric array that is specified in the ORDER= suboption

in the SOLVE WITH NETWORK statement, the tour is specified as a sequence of nodes. In the set that is

specified in the TOUR= suboption of the TSP option, the tour is specified as a list of links in the optimal tour.
Traveling Salesman Problem of a Simple Undirected Graph

As a simple example, consider the weighted undirected graph in Figure 8.62.

Figure 8.62 A Simple Undirected Graph

The links data set can be represented as follows:

data LinkSetIn;
input from $ to $ weight @Q;
datalines;

AB1.0 AC1.0 AD1.5 BC2.0 BD 4.0
BE 3.0 CcCD 3.0 CF 3.0 CHA4.0 DE1.5
DF 3.0 DG 4.0 EF 1.0 EG 1.0 FG2.0
FHA4.0 HI3.0 I1J1.0 cCJ5.0 FJ3.0
FI1l.0 HJ1.0

Traveling Salesman Problem 4 383

The following statements calculate an optimal traveling salesman tour and output the results in the data sets
TSPTour and NodeSetOut:

proc optmodel;
set<str, str> EDGES;
set<str> NODES = union{<i, j> in EDGES} {i, j};
num weight {EDGES};
read data LinkSetIn into EDGES=[from to] weight;
num tsp_order{NODES};
set<str, str> TOUR;

solve with NETWORK /
loglevel = moderate

links = (weight=weight)
tsp
out = (order=tsp_order tour=TOUR)

put TOUR;

print {<i, j> in TOUR} weight;

print tsp_order;

create data NodeSetOut from [node] tsp_order;

create data TSPTour from [from to]=TOUR weight;
quit;

The progress of the procedure is shown in Figure 8.63.

Figure 8.63 Network Solver Log: Optimal Traveling Salesman Tour of a Simple Undirected Graph

NOTE: There were 22 observations read from the data set WORK.LINKSETIN.

NOTE: The experimental Network solver is used.

NOTE: The number of nodes in the input graph is 10.

NOTE: The number of links in the input graph is 22.

NOTE: Processing the traveling salesman problem.

NOTE: The initial TSP heuristics found a tour with cost 16 using 0.00 (cpu:
0.00) seconds.

NOTE: The MILP presolver value NONE is applied.

NOTE: The MILP solver is called.

Node Active Sols BestInteger BestBound Gap Time
0 1 2 16.0000000 16.0000000 0.00% 0
0 0 2 16.0000000 16.0000000 0.00% 0

NOTE: Optimal.

NOTE: Objective = 16.

NOTE: Processing the traveling salesman problem used 0.05 (cpu: 0.03) seconds.
{<'a','B'>,<'B','C'>,<'C','H'>,<'H','J3"'>,<'T','J'>,<'F','I'>,<'F','G'>,<'E','G'>
,<'D','E'>,<'A','D'>}

NOTE: The data set WORK.NODESETOUT has 10 observations and 2 variables.

NOTE: The data set WORK.TSPTOUR has 10 observations and 3 variables.

384 4 Chapter 8: The Network Solver (Experimental)

The data set NodeSetOut now contains a sequence of nodes in the optimal tour and is shown in Figure 8.64.

Figure 8.64 Nodes in the Optimal Traveling Salesman Tour

Traveling Salesman Problem

tsp_

node order
A 1
B 2
C 3
H 4
J 5
I 6
F 7
G 8
E 9
D 10

The data set TSPTour now contains the links in the optimal tour and is shown in Figure 8.65.

Figure 8.65 Links in the Optimal Traveling Salesman Tour

Traveling Salesman Problem
from to weight
A B 1.0
B C 2.0
(o] H 4.0
H J 1.0
I J 1.0
F I 1.0
F G 2.0
E G 1.0
D E 1.5
A D 1.5

16.0

Macro Variable _ OROPTMODEL_ 4 385

The minimum-cost links are shown in green in Figure 8.66.

Figure 8.66 Optimal Traveling Salesman Tour

Macro Variable OROPTMODEL _

The OPTMODEL procedure always creates and initializes a SAS macro variable called _OROPTMODEL _,
which contains a character string. After each PROC OROPTMODEL run, you can examine this macro
variable by specifying $put &_OROPTMODEL_; and check the execution of the most recently invoked solver
from the value of the macro variable. You can also extract each keyword and value pair to obtain details
about the solution even if you do not specify an output destination in the OUT= option.

After the solver is called, the various keywords in the variable are interpreted as follows:

STATUS
indicates the solver status at termination. It can take one of the following values:

OK The solver terminated normally.
SYNTAX_ERROR The use of syntax is incorrect.
DATA_ERROR The input data is inconsistent.

OUT_OF_MEMORY Insufficient memory was allocated to the procedure.

I0_ERROR A problem in reading or writing of data has occurred.
SEMANTIC_ERROR An evaluation error, such as an invalid operand type, has occurred.
ERROR The status cannot be classified into any of the preceding categories.

SOLUTION_STATUS

386 4 Chapter 8: The Network Solver (Experimental)

indicates the solution status at termination. It can take one of the following values:

ABORT_NOSOL

ABORT_SOL

BAD_PROBLEM_TYPE
CONDITIONAL_OPTIMAL
ERROR

FAIL_NOSOL

FAIL_SOL
FAILED

HEURISTIC_NOSOL
HEURISTIC_SOL

INFEASIBLE
INFEASIBLE_OR_UNBOUNDED
INTERRUPTED

ITERATION_LIMIT_REACHED

NODE_LIM_NOSOL

NODE_LIM_SOL

OK
OPTIMAL
OPTIMAL_AGAP

OPTIMAL_COND

OPTIMAL_RGAP

OUTMEM_NOSOL

OUTMEM_SOL

The solver was stopped by the user and did not find a
solution.

The solver was stopped by the user but still found a solu-
tion.

The problem type is not supported by the solver.
The optimality of the solution cannot be proven.
The algorithm encountered an error.

The solver stopped due to errors and did not find a solu-
tion.

The solver stopped due to errors but still found a solution.

The solver failed to converge, possibly due to numerical
issues.

The solver used only heuristics and did not find a solution.
The solver used only heuristics and found a solution.
The problem is infeasible.

The problem is infeasible or unbounded.

The solver was interrupted by the system or the user
before completing its work.

The solver reached the maximum number of iterations
that is specified in the MAXITER= option.

The solver reached the maximum number of nodes spec-
ified in the MAXNODES= option and did not find a
solution.

The solver reached the maximum number of nodes speci-
fied in the MAXNODES= option and found a solution.

The algorithm terminated normally.
The solution is optimal.

The solution is optimal within the absolute gap that is
specified in the ABSOBJGAP= option.

The solution is optimal, but some infeasibilities (primal,
bound, or integer) exceed tolerances because of scaling.

The solution is optimal within the relative gap that is
specified in the RELOBJGAP= option.

The solver ran out of memory and either did not find a
solution or failed to output the solution due to insufficient
memory.

The solver ran out of memory but still found a solution.

SOLUTION_LIM

TARGET

TIME_LIM_NOSOL

TIME_LIM_SOL

TIME_LIMIT_REACHED
UNBOUNDED

PROBLEM_TYPE

Macro Variable_OROPTMODEL_ 4 387

The solver reached the maximum number of solutions
specified in the MAXCLIQUES=, MAXCYCLES=, or
MAXSOLS= option.

The solution is not worse than the target that is specified
in the TARGET= option.

The solver reached the execution time limit specified in
the MAXTIME-= option and did not find a solution.

The solver reached the execution time limit specified in
the MAXTIME= option and found a solution.

The solver reached its execution time limit.

The problem is unbounded.

indicates the type of problem solved. It can take one of the following values:

BICONCOMP
CLIQUE
CONCOMP
CYCLE

LAP

MCF
MINCUT
MST
SHORTPATH
TRANSCL
TSP

NONE

OBJECTIVE

Biconnected components
Maximal cliques

Connected components
Cycle detection

Linear assignment (matching)
Minimum-cost network flow
Minimum cut

Minimum spanning tree
Shortest path

Transitive closure

Traveling salesman

This value is used when you do not specify an algorithm
to run.

indicates the objective value that is obtained by the solver at termination. For problem classes that do
not have an explicit objective, such as cycle, the value of this keyword within the _OROPTMODEL,_

macro variable is missing (.).

PRESOLVE_TIME

indicates the real time taken for preprocessing (seconds).

SOLUTION_TIME

indicates the real time taken by the interior point algorithm to perform iterations for solving the problem

(seconds).

388 4 Chapter 8: The Network Solver (Experimental)

The following keywords within the _ OROPTMODEL_ macro variable appear only with certain algorithms.
The keywords convey information about the number of solutions each algorithm found:

NUM_ARTICULATION_POINTS
indicates the number of articulation points found. This term appears only for biconnected components.

NUM_CLIQUES
indicates the number of cliques found. This term appears only for clique.

NUM_COMPONENTS

indicates the number of components that match the definitions of the corresponding problem class.
This term appears only for connected components and biconnected components.

NUM_CYCLES

indicates the number of cycles found that satisfy the criteria you provide. This term appears only for
cycles.

Examples: Network Solver

Example 8.1: Articulation Points in a Terrorist Network

This example considers the terrorist communications network from the attacks on the United States on
September 11, 2001, described in Krebs 2002. Figure 8.67 shows this network, which was constructed after
the attacks, based on collected intelligence information. The image was created using SAS/GRAPH Network
Visualization Workshop 2.1. (See the SAS/GRAPH: Network Visualization Workshop User’s Guide.)

Example 8.1: Articulation Points in a Terrorist Network 4 389

Figure 8.67 Terrorist Communications Network from 9/11

Ramd_Hyar®
Mohand_Alzhehris
Maksi_al e hamdut_Watmed_Salim
Saoad_Alghamdm .
_Algh | _ Sotam sigariim——f——uleod_Alshoh
Enriad_Alnanim —Hames_Sgtemis " ,-f’ i
ted_Akghaniedm /
mDeama Swadala L1 i Fa'.-'u: &hﬂm ¥
Hawaf_ iz wal ..ih-rd'-:ih i H
mcdimzatar SHakh e ciz 4O stafa_Shmesl_a-Hisam
Fajad-Wiggades_ hmed_Bl Famae. , ,-"r 1 _alamcun_Darkazanli
e Solan BRI o A -
A = Pl arivaat B
Far_Honpishc— S end o
- . L™ L ﬂl
L =]
imed_ o Lot Ao r'm'“"'ﬂ;'fii'-‘-{' T Eaounic_E| Malassasag
#isal_A)-Salmi Tiiad_Jairehym— L s Budiman Samir_Kimbke
: Zakartya_Easabare. |
Bandar_Alhazmis: . wdahammed_Betigy T3 8_Shasm
Frayed_Mohamimad_Abdalahm gz Bin_al-Shibh Wil Sahrusc
Apdcighani Mzoude #EwiE_Sami_Flen_Kremas

Lazid B Hemm

Wmad_Eddm_| Enhﬂ_"l'rkm L= T
ﬂhl‘ﬂn‘.ﬁd Earazktia

I "“EHI_H}'anuF
Wik Magroui - —oetalsh_Ben_Hassiee

iaydar by Doba

Atemid_Khall_beahim_Sarir_AlAne

slacarias Wissami
Wb Caadieghmed Ressam

Daad_Courailias wilahared aita
Jerarma_Courailm: sl Dapud
kl]a mibii Wakd
freal_PFeghdl
whibii Tubida
Mizar_Trabesbs s -

sleantdane_Granddsin

The full network data include 153 links. The following statements show a small subset to illustrate the use of
the BICONCOMP option in this context:

data LinkSetInTerror91ll;
length from $25 to $32;
input from to;

datalines;

Abu_Zubeida Djamal_Beghal
Jean-Marc_Grandvisir Djamal_Beghal
Nizar Trabelsi Djamal_Beghal
Abu_Walid Djamal_ Beghal
Abu_Qatada Djamal_Beghal
Zacarias_Moussaoui Djamal_Beghal
Jerome_Courtaillier Djamal_Beghal
Kamel_ Daoudi Djamal_Beghal
Abu Walid Kamel_Daoudi
Abu_Walid Abu_Qatada

Kamel Daoudi Zacarias_Moussaoui

390 4 Chapter 8: The Network Solver (Experimental)

. more lines

Nawaf Alhazmi Khalid Al-Mihdhar
Osama_Awadallah Khalid Al-Mihdhar
Abdussattar Shaikh Khalid Al-Mihdhar

Abdussattar_ Shaikh Osama_Awadallah

4

Suppose that this communications network had been discovered before the attack on 9/11. If the investigators’
goal was to disrupt the flow of communication between different groups within the organization, then they
would want to focus on the people who are articulation points in the network.

To find the articulation points, use the following statements:

proc optmodel;
set<str,str> LINKS;
read data LinkSetInTerror91l into LINKS=[from to];
set NODES = union{<i, j> in LINKS} {i, j};
set<str> ARTPOINTS;

solve with NETWORK /

links = (include=LINKS)
biconcomp
out = (artpoints=ARTPOINTS)

put ARTPOINTS;
create data ArtPoints from [node]=ARTPOINTS artpoint=1;

quit;
The data set ArtPoints contains members of the network who are articulation points. Focusing investigations

on cutting off these particular members could have caused a great deal of disruption in the terrorists’ ability
to communicate when formulating the attack.

Output 8.1.1 Articulation Points of Terrorist Communications Network from 9/11

node artpoint

Djamal_ Beghal
Zacarias_Moussaoui
Essid Sami_Ben_Khemais
Mohamed_ Atta
Mamoun_Darkazanli
Nawaf Alhazmi

H R RRRR

Example 8.2: Cycle Detection for Kidney Donor Exchange

This example looks at an application of cycle detection to help create a kidney donor exchange. Suppose
someone needs a kidney transplant and a family member is willing to donate one. If the donor and recipient
are incompatible (because of blood types, tissue mismatch, and so on), the transplant cannot happen. Now

Example 8.2: Cycle Detection for Kidney Donor Exchange 4 391

suppose two donor-recipient pairs A and B are in this situation, but donor A is compatible with recipient B
and donor B is compatible with recipient A. Then two transplants can take place in a two-way swap, shown
graphically in Figure 8.68. More generally, an n-way swap can be performed involving n donors and n
recipients (Willingham 2009).

Figure 8.68 Kidney Donor Exchange Two-Way Swap

donor A donor B
pair A C) >< (D pair B
recipient A recipient B

To model this problem, define a directed graph as follows. Each node is an incompatible donor-recipient
pair. Link (7, j) exists if the donor from node i is compatible with the recipient from node j. The link
weight is a measure of the quality of the match. By introducing dummy links whose weight is 0, you can
also include altruistic donors who have no recipients or recipients who have no donors. The idea is to find a
maximum-weight node-disjoint union of directed cycles. You want the union to be node-disjoint so that no
kidney is donated more than once, and you want cycles so that the donor from node i gives up a kidney if
and only if the recipient from node i receives a kidney.

Without any other constraints, the problem could be solved as a linear assignment problem, as described in
the section “Linear Assignment (Matching)” on page 355. But doing so would allow arbitrarily long cycles
in the solution. Because of practical considerations (such as travel) and to mitigate risk, each cycle must have
no more than L links. The kidney exchange problem is to find a maximum-weight node-disjoint union of
short directed cycles.

One way to solve this problem is to explicitly generate all cycles whose length is at most L and then solve
a set packing problem. You can use PROC OPTMODEL to generate the cycles, formulate the set packing
problem, call the mixed integer linear programming solver, and output the optimal solution.

The following DATA step sets up the problem, first creating a random graph on 7 nodes with link probability
p and Uniform(0,1) weight:

/* create random graph on n nodes with arc probability p
and uniform(0,1) weight =*/
%$let n = 100;
$let p = 0.02;
data LinkSetIn;
do from = 0 to &n - 1;
do to = 0 to &n - 1;
if from eq to then continue;
else if ranuni(l) < &p then do;
weight = ranuni (2);
output;
end;

392 4 Chapter 8: The Network Solver (Experimental)

end;
end;
run;

The following statements declare parameters and then read the input data:

%$let max length = 10;

proc optmodel;
/* declare index sets and parameters, and read data =*/
set <num, num> ARCS;
num weight {ARCS};
read data LinkSetIn into ARCS=[from to] weight;
set<num, num, num> ID ORDER_NODE;

The following statements use the network solver to generate all cycles whose length is greater than or equal
to 2 and less than or equal to 10:

/* generate all cycles with 2 <= length <= max_length */
solve with NETWORK /

loglevel = moderate

graph_direction = directed

links = (include=ARCS)
cycle = (mode=all_cycles minlength=2 maxlength=&max length)
out = (cycles=ID_ORDER_NODE)

4

The network solver finds 224 cycles of the appropriate length, as shown in Output 8.2.1.

Output 8.2.1 Cycles for Kidney Donor Exchange Network Solver Log

NOTE: There were 194 observations read from the data set WORK.LINKSETIN.
NOTE: The experimental Network solver is used.

NOTE: The number of nodes in the input graph is 97.

NOTE: The number of links in the input graph is 194.

NOTE: Processing cycle detection.

NOTE: The graph has 224 cycles.

NOTE: Processing cycle detection used 14.49 (cpu: 14.48) seconds.

From the resulting set ID_ORDER_NODE, use the following statements to convert to one tuple per cycle-arc
combination:

/* extract <cid, from,to> triples from <cid, order,node> triples =*/
set <num,num,num> ID_FROM TO init {};
num last init ., from, to;
for {<cid, order,node> in ID_ORDER_NODE} do;
from = last;

to = node;

last = to;

if order ne 1 then ID_FROM TO = ID_FROM TO union {<cid, from,to>};
end;

Given the set of cycles, you can now formulate a mixed integer linear program (MILP) to maximize the total
cycle weight. Let C be the set of cycles of appropriate length, N, be the set of nodes in cycle ¢, A, be the

Example 8.2: Cycle Detection for Kidney Donor Exchange 4 393

set of links in cycle ¢, and w;; be the link weight for link (i, j). Define a binary decision variable x.. Set x,
to 1 if cycle c is used in the solution; otherwise, set it to 0. Then, the following MILP defines the problem
that you want to solve (to maximize the quality of the kidney exchange):

minimize E E wij | Xe

ceC \(i,j)eA,

subject to Z xe <1 ieN (incomp_pair)
ceC:ieN,
xc €4{0,1} ceC

The constraint (incomp_pair) ensures that each node (incompatible pair) in the graph is intersected at most
once. That is, a donor can donate a kidney only once. You can use PROC OPTMODEL to solve this mixed
integer linear programming problem as follows:

/* solve set packing problem to find maximum weight node-disjoint union
of short directed cycles */

set CYCLES = setof {<c,i,j> in ID_FROM_TO} c;

set ARCS_c {c in CYCLES} = setof {<(c),i,j> in ID_FROM TO} <i, j>;

set NODES_c {c in CYCLES} = union {<i, j> in ARCS_c|[c]} {i,3]};

set NODES = union {c in CYCLES} NODES_c|[c];

num cycle_weight {c in CYCLES} = sum {<i, j> in ARCS_c|[c]} weight][1i, j];

/* UseCycle[c] = 1 if cycle c is used, 0 otherwise x/
var UseCycle {CYCLES} binary;

/* declare objective */
max TotalWeight
= sum {c in CYCLES} cycle_weight[c] * UseCyclelc];

/* each node appears in at most one cycle */
con node_packing {i in NODES}:
sum {c in CYCLES: i in NODES_c|[c]} UseCycle[c] <= 1;

/* call solver */
solve with milp;

/* output optimal solution =*/
create data Solution from [c]={c in CYCLES: UseCycle[c].sol > 0.5}
cycle_weight;
quit;
$put & OROPTMODEL_;
PROC OPTMODEL solves the problem by using the mixed integer linear programming solver. As shown in
Output 8.2.2, it was able to find a total weight (quality level) of 26.02.

394 4 Chapter 8: The Network Solver (Experimental)

Output 8.2.2 Cycles for Kidney Donor Exchange PROC OPTMODEL Log

NOTE: Problem generation will use 4 threads.

NOTE: The problem has 224 variables (0 free, 0 fixed).

NOTE: The problem has 224 binary and 0 integer variables.

NOTE: The problem has 63 linear constraints (63 LE, 0 EQ, 0 GE, 0 range).
NOTE: The problem has 1900 linear constraint coefficients.

NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).
NOTE: The MILP presolver value AUTOMATIC is applied.

NOTE: The MILP presolver removed 0 variables and 35 constraints.

NOTE: The MILP presolver removed 518 constraint coefficients.

NOTE: The MILP presolver modified 116 constraint coefficients.

NOTE: The presolved problem has 224 variables, 28 constraints, and 1382
NOTE: The MILP solver is called.

NOTE: The MILP solver added 4 cuts with 392 cut coefficients at the root.
NOTE: Optimal.

NOTE: Objective = 26.020287142.

NOTE: The data set WORK.SOLUTION has 6 observations and 2 variables.
STATUS=OK ALGORITHM=BAC SOLUTION_STATUS=OPTIMAL OBJECTIVE=26.020287142
RELATIVE_GAP=0 ABSOLUTE_GAP=0 PRIMAL_INFEASIBILITY=0 BOUND_INFEASIBILITY=0
INTEGER_INFEASIBILITY=0 BEST_ BOUND=26.020287142 NODES=1 ITERATIONS=94
PRESOLVE_TIME=0.02 SOLUTION_TIME=0.12

The data set Solution, shown in Output 8.2.3, now contains the cycles that define the best exchange and their
associated weight (quality).

Output 8.2.3 Maximum Quality Solution for Kidney Donor Exchange

cycle_

c weight
12 5.84985
43 3.90015
71 5.44467
124 7.42574
222 2.28231
224 1.11757

Example 8.3: Linear Assignment Problem for Minimizing Swim Times

A swimming coach needs to assign male and female swimmers to each stroke of a medley relay team. The
swimmers’ best times for each stroke are stored in a SAS data set. The LINEAR_ASSIGNMENT option
evaluates the times and matches strokes and swimmers to minimize the total relay swim time.

The data are stored in matrix format, where the row identifier is the swimmer’s name (variable name) and
each swimming event is a column (variables: back, breast, fly, and free). In the following DATA step, the
relay times are split into two categories, male and female:

Example 8.3: Linear Assignment Problem for Minimizing Swim Times 4 395

data RelayTimes;
input name $ sex $ back breast fly free;

datalines;

Sue F 35.1 36.7 28.3 36.1
Karen F 34.6 32.6 26.9 26.2
Jan F 31.3 33.9 27.1 31.2
Andrea F 28.6 34.1 29.1 30.3
Carol F 32.9 32.2 26.6 24.0
Ellen F 27.8 32.5 27.8 27.0
Jim M 26.3 27.6 23.5 22.4
Mike M 29.0 24.0 27.9 25.4
Sam M 27.2 33.8 25.2 24.1

M 27.0 29.2 23.0 21.9

Clayton

’

The following statements solve the linear assignment problem for both male and female relay teams:

proc contents data=RelayTimes
out=stroke_data (rename=(name=stroke) where=(type=1));
run;

proc optmodel;
set <str> STROKES;
read data stroke_data into STROKES=[stroke];
set <str> SWIMMERS;
str sex {SWIMMERS};
num time {SWIMMERS, STROKES};
read data RelayTimes into SWIMMERS=[name] sex
{stroke in STROKES} <time[name, stroke]=col (stroke)>;

set FEMALES = {i in SWIMMERS: sex[i] = 'F'};
set FNODES = FEMALES union STROKES;
set MALES = {i in SWIMMERS: sex[i] = 'M'};

set MNODES = MALES union STROKES;
set <str,str> PAIRS;

solve with NETWORK /
graph_direction = directed

links = (weight=time)
subgraph = (nodes=FNODES)
lap
out = (assignments=PAIRS)
;
put PAIRS;

create data LinearAssignF from [name assign]=PAIRS sex[name] cost=time;

solve with NETWORK /
graph_direction = directed

links = (weight=time)
subgraph = (nodes=MNODES)
lap
out = (assignments=PAIRS)
;
put PAIRS;

create data LinearAssignM from [name assign]=PAIRS sex[name] cost=time;

quit;

396 4 Chapter 8: The Network Solver (Experimental)

The progress of the two SOLVE WITH NETWORK calls is shown in Output 8.3.1.

Output 8.3.1 Network Solver Log: Linear Assignment for Swim Times

NOTE: The data set WORK.STROKE_ DATA has 4 observations and 41 variables.
NOTE: There were 4 observations read from the data set WORK.STROKE_DATA.
NOTE: There were 10 observations read from the data set WORK.RELAYTIMES.
NOTE: The experimental Network solver is used.

NOTE: The SUBGRAPH= option filtered 16 elements from 'time.'

NOTE: The number of nodes in the input graph is 10.

NOTE: The number of links in the input graph is 24.

NOTE: Processing the linear assignment problem.

NOTE: The minimum cost linear assignment is 111.5.

NOTE: Processing the linear assignment problem used 0.00 (cpu: 0.00) seconds.
{<'Karen', 'breast'>,<'Jan', 'fly'>,<'Carol’', 'free'>,<'Ellen’', 'back'>}
NOTE: The data set WORK.LINEARASSIGNF has 4 observations and 4 variables.
NOTE: The experimental Network solver is used.

NOTE: The SUBGRAPH= option filtered 24 elements from 'time.'

NOTE: The number of nodes in the input graph is 8.

NOTE: The number of links in the input graph is 16.

NOTE: Processing the linear assignment problem.

NOTE: The minimum cost linear assignment is 96.6.

NOTE: Processing the linear assignment problem used 0.00 (cpu: 0.00) seconds.
{<'Jim', 'free'>,<'Mike', 'breast'>,<'Sam', 'back'>, <'Clayton’', 'fly'>}

NOTE: The data set WORK.LINEARASSIGNM has 4 observations and 4 variables.

The data sets LinearAssignF and LinearAssignM contain the optimal assignments. Note that in the case of the
female data, there are more people (set S) than there are strokes (set 7). Therefore, the solver allows for
some members of S to remain unassigned.

Output 8.3.2 Optimal Assignments for Best Female Swim Times

name assign sex cost
Karen breast F 32.6
Jan fly F 27.1
Carol free F 24.0
Ellen back F 27.8

111.5

Output 8.3.3 Optimal Assignments for Best Male Swim Times

name assign sex cost
Jim free M 22.4
Mike breast M 24.0
Sam back M 27.2
Clayton fly M 23.0

96.6

Example 8.4: Linear Assignment Problem, Sparse Format versus Dense Format 4 397

Example 8.4: Linear Assignment Problem, Sparse Format versus Dense
Format
This example looks at the problem of assigning swimmers to strokes based on their best times. However, in

this case certain swimmers are not eligible to perform certain strokes. A missing (.) value in the data matrix
identifies an ineligible assignment. For example:

data RelayTimesMatrix;
input name $ sex $ back breast fly free;

datalines;
Sue F . 36.7 28.3 36.1
Karen F 34.6 . . 26.2
Jan F 31.3 . 27.1
Andrea F 28.6 . 29.1
Carol F 32.9 . 26.6

Recall that the linear assignment problem can also be interpreted as the minimum-weight matching in a

bipartite directed graph. The eligible assignments define links between the rows (swimmers) and the columns
(strokes), as in Figure 8.69.

Figure 8.69 Bipartite Graph for Linear Assignment Problem

398 4 Chapter 8: The Network Solver (Experimental)

You can represent the same data in RelayTimesMatrix by using a links data set as follows:

data RelayTimesLinks;
input name $ attr $ cost;

Carol back 32.
Carol fly 26.

4

datalines;

Sue breast 36.7
Sue fly 28.3
Sue free 36.1
Karen back 34.6
Karen free 26.2
Jan back 31.3
Jan fly 27.1
Andrea back 28.6
Andrea fly 29.1

9

6

This graph must be bipartite (such that S and T are disjoint). If it is not, the network solver returns an error.

Now, you can use either input format to solve the same problem, as follows:

proc contents data=RelayTimesMatrix
out=stroke_data (rename=(name=stroke) where=(type=1));
run;

proc optmodel;
set <str> STROKES;
read data stroke_data into STROKES=[stroke];
set <str> SWIMMERS;
str sex {SWIMMERS};
num time {SWIMMERS, STROKES};
read data RelayTimesMatrix into SWIMMERS=[name]
sex
{stroke in STROKES} <time[name, stroke]=col (stroke)>;
set SWIMMERS_STROKES =
{name in SWIMMERS, stroke in STROKES: time[name, stroke] ne .};
set <str,str> PAIRS;

solve with NETWORK /
graph_direction = directed

links = (weight=time)
subgraph = (links=SWIMMERS_STROKES)
lap
out = (assignments=PAIRS)
;
put PAIRS;

create data LinearAssignMatrix from [name assign]=PAIRS
sex[name] cost=time;
quit;

proc sql;
create table stroke_data as
select distinct attr as stroke

Example 8.4: Linear Assignment Problem, Sparse Format versus Dense Format 4 399

from RelayTimesLinks;
quit;

proc optmodel;
set <str> STROKES;
read data stroke_data into STROKES=[stroke];
set <str> SWIMMERS;
str sex {SWIMMERS};
set <str,str> SWIMMERS_ STROKES;
num time {SWIMMERS_STROKES};
read data RelayTimesLinks into SWIMMERS_STROKES=[name attr] time=cost;
set <str,str> PAIRS;

solve with NETWORK /
graph direction = directed

links = (weight=time)

lap

out = (assignments=PAIRS)
i
put PAIRS;

create data LinearAssignLinks from [name attr]=PAIRS cost=time;
quit;
The data sets LinearAssignMatrix and LinearAssignLinks now contain the optimal assignments, as shown in
Output 8.4.1 and Output 8.4.2.

Output 8.4.1 Optimal Assignments for Swim Times (Dense Input)

name assign sex cost
Sue breast F 36.7
Karen free F 26.2
Andrea back F 28.6
Carol fly F 26.6

118.1

Output 8.4.2 Optimal Assignments for Swim Times (Sparse Input)

name attr cost
Sue breast 36.7
Karen free 26.2
Andrea back 28.6
Carol fly 26.6

400 4 Chapter 8: The Network Solver (Experimental)

The optimal assignments are shown graphically in Figure 8.70.

Figure 8.70 Optimal Assignments for Swim Times

28.6

26.2 fly

26.6 free

For large problems where a number of links are forbidden, the sparse format can be faster and can save a
great deal of memory. Consider an example that uses the dense format with 15,000 columns (|.S| = 15, 000)
and 4,000 rows (|T'| = 4, 000). To store the dense matrix in memory, the network solver needs to allocate
approximately |S| - |T|-8/1024/1024 = 457 MB. If the data have mostly ineligible links, then the sparse
(graph) format is much more efficient with respect to memory. For example, if the data have only 5% of the
eligible links (15,000 - 4,000 - 0.05 = 3,000, 000), then the dense storage would still need 457 MB. The
sparse storage for the same example needs approximately |S|-|7'|-0.05-12/1024 /1024 = 34 MB. If the
problem is fully dense (all links are eligible), then the dense format is more efficient.

Example 8.5: Minimum Spanning Tree for Computer Network Topology

Consider the problem of designing a small network of computers in an office. In designing the network, the
goal is to make sure that each machine in the office can reach every other machine. To accomplish this goal,
Ethernet lines must be constructed and run between the machines. The construction costs for each possible
link are based approximately on distance and are shown in Figure 8.71. Besides distance, the costs also
reflect some restrictions due to physical boundaries. To connect all the machines in the office at minimal cost,
you need to find a minimum spanning tree on the network of possible links.

Example 8.5: Minimum Spanning Tree for Computer Network Topology 4 401

Figure 8.71 Potential Office Computer Network

Define the link data set as follows:

data LinkSetInCompNet;
input from $ to $ weight Q@Q;

datalines;
AB1l.0 AC1.0 AD1.5 BC2.0 BD 4.0
BE3.0 CD3.0 CF3.0 CH4.0 DE1.5
DF 3.0 DG4.0 EF 1.0 EG1.0 FG 2.0
FH4.0 HI 1.0 I J1.0

’

The following statements find a minimum spanning tree:

proc optmodel;
set<str,str> LINKS;
num weight {LINKS};
read data LinkSetInCompNet into LINKS=[from to] weight;
set<str, str> FOREST;

solve with NETWORK /

links = (weight=weight)
minspantree
out = (forest=FOREST)
;
put FOREST;

put (sum {<i, j> in FOREST} weight[i, j]);
create data MinSpanTree from [from to]=FOREST weight;

quit;

402 4 Chapter 8: The Network Solver (Experimental)

Output 8.5.1 shows the resulting data set MinSpanTree, which is displayed graphically in Figure 8.72 with
the minimal cost links shown in green.

Figure 8.72 Minimum Spanning Tree for Office Computer Network

Output 8.5.1 Minimum Spanning Tree of a Computer Network Topology

from to weight
H I 1.0
E G 1.0
E F 1.0
A B 1.0
A C 1.0
I J 1.0
D E 1.5
A D 1.5
(o] H 4.0

13.0

Example 8.6: Transitive Closure for Identification of Circular Dependencies
in a Bug Tracking System

Most software bug tracking systems have some notion of duplicate bugs in which one bug is declared to be
the same as another bug. If bug A is considered a duplicate (DUP) of bug B, then a fix for B would also fix A.
You can represent the DUPs in a bug tracking system as a directed graph where you add a link A — B if Ais
a DUP of B.

The bug tracking system needs to check for two situations when users declare a bug to be a DUP. The first
situation is called a circular dependence. Consider bugs A, B, C, and D in the tracking system. The first user
declares that A is a DUP of B and that C is a DUP of D. Then, a second user declares that B is a DUP of C,
and a third user declares that D is a DUP of A. You now have a circular dependence, and no primary bug is

Example 8.6: Transitive Closure for Identification of Circular Dependencies 4 403

defined on which the development team should focus. You can easily see this circular dependence in the
graph representation, because A —- B — C — D — A. Finding such circular dependencies can be done
using cycle detection, which is described in the section “Cycle” on page 349. However, the second situation
that needs to be checked is more general. If a user declares that A is a DUP of B and another user declares
that B is a DUP of C, this chain of duplicates is already an issue. The bug tracking system needs to provide
one primary bug to which the rest of the bugs are duplicated. The existence of these chains can be identified
by calculating the transitive closure of the directed graph that is defined by the DUP links.

Given the original directed graph G (defined by the DUP links) and its transitive closure G, any link in GT
that is not in G exists because of some chain that is present in G.

Consider the following data that define some duplicated bugs (called defects) in a small sample of the bug
tracking system:

data DefectLinks;

input defectId $ linkedDefect $ linkType $ when datetimel6.;

format when datetimel6.;

datalines;
D0096978 S0711218 DUPTO 200CT10:00:00:00
S0152674 sS0153280 DUPTO 30MAY02:00:00:00
S0153280 S0153307 DUPTO 30MAY02:00:00:00
S0153307 S0152674 DUPTO 30MAY02:00:00:00
S0162973 S0162978 DUPTO 29NOV10:16:13:16
S0162978 S0165405 DUPTO 29NOV10:16:13:16
S0325026 S0575748 DUPTO 01JUN10:00:00:00
S0347945 S0346582 DUPTO 03MAR06:00:00:00
S0350596 S0346582 DUPTO 21MAR06:00:00:00
S0539744 S0643230 DUPTO 10MAY10:00:00:00
S0575748 S0643230 DUPTO 15JUN10:00:00:00
S0629984 S0643230 DUPTO 01JUN10:00:00:00

4

The following statements calculate cycles in addition to the transitive closure of the graph G that is defined
by the duplicated defects in DefectLinks. The output data set Cycles contains any circular dependencies, and
the data set TransClosure contains the transitive closure G . To identify the chains, you can use PROC SQL
to identify the links in G7 that are not in G.

proc optmodel;
set<str, str> LINKS;
read data DefectLinks into LINKS=[defectId linkedDefect];
set<num, num, str> CYCLES;
set<str, str> CLOSURE;

solve with NETWORK /

loglevel = moderate
graph_direction = directed

links = (include=LINKS)
cycle = (mode=first_cycle)
out = (cycles=CYCLES)

404 4 Chapter 8: The Network Solver (Experimental)

put CYCLES;
create data Cycles from [cycle order node]=CYCLES;

solve with NETWORK /

loglevel = moderate
graph_direction = directed
links = (include=LINKS)

transitive_closure
out

(closure=CLOSURE)

put CLOSURE;
create data TransClosure from [defectId linkedDefect]=CLOSURE;
quit;

proc sql;
create table Chains as
select defectId, linkedDefect from TransClosure
except
select defectId, linkedDefect from DefectLinks;
quit;
The progress of the procedure is shown in Output 8.6.1.

Output 8.6.1 Network Solver Log: Transitive Closure for Identification of Circular Dependencies in a Bug
Tracking System

NOTE: There were 12 observations read from the data set WORK.DEFECTLINKS.
NOTE: The experimental Network solver is used.

NOTE: The number of nodes in the input graph is 16.

NOTE: The number of links in the input graph is 12.

NOTE: Processing cycle detection.

NOTE: The graph does have a cycle.

NOTE: Processing cycle detection used 0.00 (cpu: 0.00) seconds.
{<1,1,'s0152674'>,<1,2,'S0153280'>,<1,3, 'S0153307'>,<1,4, 'S0152674"'>}
NOTE: The data set WORK.CYCLES has 4 observations and 3 variables.

NOTE: The experimental Network solver is used.

NOTE: The number of nodes in the input graph is 16.

NOTE: The number of links in the input graph is 12.

NOTE: Processing the transitive closure.

NOTE: Processing the transitive closure used 0.00 (cpu: 0.00) seconds.
{<'D0096978"', 's0711218"'>,<'S0152674"', 'S0153280'>,<'S0153280"', 'S0153307'>, <
'S0153307', 'S0152674'>,<'S0162973"', 'S0162978'>,<'S0162978"', 'S0165405'>, <
'S0325026"', 'S0575748"'>,<'S0347945"', 'S0346582'>,<'S0350596"', 'S0346582'>, <
'S0539744"','s0643230'>,<'S0575748"', 'S0643230'>,<'S0629984"', 's0643230'>, <
'S0153307', 'Ss0153280'>,<'S0152674"', 'S0153307'>,<'S0153307"', 'S0153307'>, <
'S0152674"', 's0152674'>,<'S0153280"', 'S0152674'>,<'S0153280"', 'S0153280'>, <
'S0162973"', 'S0165405'>,<'S0325026"', 'S0643230"'>}

NOTE: The data set WORK.TRANSCLOSURE has 20 observations and 2 variables.
NOTE: Table WORK.CHAINS created, with 8 rows and 2 columns.

Example 8.7: Traveling Salesman Tour through US Capital Cities 4 405

The data set Cycles contains one case of a circular dependence in which the DUPs start and end at S0152674.

Output 8.6.2 Cycle in Bug Tracking System

cycle order node
1 1 S0152674
1 2 S0153280
1 3 S0153307
1 4 S0152674

The data set Chains contains the chains in the bug tracking system that come from the links in G7 that are
notin G.

Output 8.6.3 Chains in Bug Tracking System

linked
defectId Defect

S0152674 S0152674
S0152674 S0153307
S0153280 S0152674
S0153280 S0153280
S0153307 S0153280
S0153307 S0153307
S0162973 S0165405
S0325026 S0643230

Example 8.7: Traveling Salesman Tour through US Capital Cities

Consider a cross-country trip where you want to travel the fewest miles to visit all of the capital cities in
all US states except Alaska and Hawaii. Finding the optimal route is an instance of the traveling salesman
problem, which is described in section “Traveling Salesman Problem” on page 381.

The following PROC SQL statements use the built-in data set maps.uscity to generate a list of the capital
cities and their latitude and longitude:

/* Get a list of the state capital cities (with lat and long) =*/
proc sql;
create table Cities as
select unique statecode as state, city, lat, long
from maps.uscity
where capital='Y' and statecode not in ('AK' 'PR' 'HI');

quit;

406 4 Chapter 8: The Network Solver (Experimental)

From this list, you can generate a links data set CitiesDist that contains the distances, in miles, between each
pair of cities. The distances are calculated by using the SAS function GEODIST.

/* Create a list of all the possible pairs of cities */
proc sql;
create table CitiesDist as
select
a.city as cityl, a.lat as latl, a.long as longl,
b.city as city2, b.lat as lat2, b.long as long2,
geodist (latl, longl, lat2, long2, 'DM') as distance
from Cities as a, Cities as b
where a.city < b.city;
quit;
The following PROC OPTMODEL statements find the optimal tour through each of the capital cities:

/* Find optimal tour by using the network solver x*/
proc optmodel;
set<str,str> CAPPAIRS;
set<str> CAPITALS = union {<i, j> in CAPPAIRS} {i, j};
num distance{i in CAPITALS, j in CAPITALS: i < j};
read data CitiesDist into CAPPAIRS=[cityl city2] distance;
set<str, str> TOUR;
num order {CAPITALS};

solve with NETWORK /

loglevel = moderate

links = (weight=distance)

tsp

out = (order=order tour=TOUR)

put (sum{<i, j> in TOUR} distanceli, j]l);
/* Create tour-ordered pairs (rather than input-ordered pairs) =*/
str CAPbyOrder{l..card(CAPITALS)};
for {i in CAPITALS} CAPbyOrder|[order[i]] = i;
set TSPEDGES init
setof{i in 2..card(CAPITALS)} <CAPbyOrder[i-1],CAPbyOrder[i]>
union {<CAPbyOrder[card(CAPITALS)],CAPbyOrder[1l]>};
num distance2{<i, j> in TSPEDGES} =
if i < j then distance[i, j] else distancel[j,i];
create data TSPTourNodes from [node] tsp_order=order;
create data TSPTourLinks from [cityl city2]=TSPEDGES distance=distance2;

quit;

Example 8.7: Traveling Salesman Tour through US Capital Cities 4 407

The progress of the procedure is shown in Output 8.7.1. The total mileage needed to optimally traverse the
capital cities is 10, 627.75 miles.

Output 8.7.1 Network Solver Log: Traveling Salesman Tour through US Capital Cities

NOTE: There were 1176 observations read from the data set WORK.CITIESDIST.

NOTE: The experimental Network solver is used.

NOTE: The number of nodes in the input graph is 49.

NOTE: The number of links in the input graph is 1176.

NOTE: Processing the traveling salesman problem.

NOTE: The initial TSP heuristics found a tour with cost 10645.918753 using 0.13
(cpu: 0.11) seconds.

NOTE: The MILP presolver value NONE is applied.

NOTE: The MILP solver is called.

Node Active Sols BestInteger BestBound Gap Time
0 1 1 10645.9187534 10040.5139714 6.03% 0
0 1 2 10645.9187534 10241.6970024 3.95% 0
0 1 2 10645.9187534 10262.9074205 3.73% 0
0 1 2 10645.9187534 10293.2995080 3.43% 0
0 1 2 10645.9187534 10350.0790852 2.86% 0
0 1 2 10645.9187534 10513.9746901 1.25% 0
0 1 2 10645.9187534 10529.8732447 1.10% 0
0 1 2 10645.9187534 10544.6071247 0.96% 0
0 1 2 10645.9187534 10544.7657451 0.96% 0
0 1 2 10645.9187534 10590.9748294 0.52% 0
0 1 2 10645.9187534 10607.8528157 0.36% 0
0 1 4 10645.9187534 10607.8528157 0.36% 0
NOTE: The MILP solver added 16 cuts with 4753 cut coefficients at the root.
1 1 5 10627.7543183 10607.8528157 0.19% 0
2 0 5 10627.7543183 10627.7543183 0.00% 0

NOTE: Optimal.

NOTE: Objective = 10627.754318.

NOTE: Processing the traveling salesman problem used 0.62 (cpu: 0.58) seconds.
10627.754318

NOTE: The data set WORK.TSPTOURNODES has 49 observations and 2 variables.
NOTE: The data set WORK.TSPTOURLINKS has 49 observations and 3 variables.

The following PROC GPROJECT and PROC GMAP statements produce a graphical display of the solution:

/* Merge latitude and longitude =*/
proc sql;
/* merge in the lat & long for cityl x/
create table TSPTourLinksAnnol as
select unique TSPTourlinks.*, cities.lat as latl, cities.long as longl
from TSPTourLinks left join cities
on TSPTourLinks.cityl=cities.city;
/* merge in the lat & long for city2 x/
create table TSPTourLinksAnno2 as
select unique TSPTourLinksAnnol.*, cities.lat as lat2, cities.long as long2
from TSPTourLinksAnnol left join cities
on TSPTourLinksAnnol.city2=cities.city;

quit;

408 4 Chapter 8: The Network Solver (Experimental)

/* Create the annotated data set to draw the path on the map

(convert lat & long degrees to radians,

data anno_path;

set TSPTourLinksAnno2;

length function color $8;

xsys='2"'; ysys='2'; hsys='3'; when='a';

function="move';

x=atan (1) /45 * longl;

y=atan (1) /45 * latl;

output;

function='draw';

color="blue"; size=0.8;

x=atan (1) /45 * long2;

y=atan (1) /45 * lat2;

output;
run;

since the map is in radians) */

anno_flag=1;

/* Get a map with only the contiguous 48 states x*/

data states;

set maps.states (where=(fipstate(state) not in ('HI'

run;

data combined;
set states anno_path;
run;

/* Project the map and annotate the data x/

'BK' 'BR')));

proc gproject data=combined out=combined dupok;

id state;
run;

data states anno_path;
set combined;
if anno_flag=1 then output anno_path;
else output states;

run;

/* Get a list of the endpoints locations */

proc sql;
create table anno_dots as
select unique x, y from anno_path;

quit;

/* Create the final annotate data set */
data anno_dots;

set anno_dots;

length function color $8;

xsys='2"'; ysys='2'; when='a'; hsys='3"';
function='pie';

rotate=360; size=0.8; style='psolid';
output;

style='pempty'; color="black";

output;

color="red";

Example 8.7: Traveling Salesman Tour through US Capital Cities 4 409

run;

/* Generate the map with GMAP x/
patternl v=s c=cxccffcc repeat=100;
proc gmap data=states map=states anno=anno_path all;

id state;
choro state / levels=1l nolegend coutline=black
anno=anno_dots des='' name="tsp";

run;

The minimal cost tour through the capital cities is shown on the US map in Output 8.7.2.

Output 8.7.2 Optimal Traveling Salesman Tour through US Capital Cities

The data set TSPTourLinks contains the links in the optimal tour. To display the links in the order they are to
be visited, you can use the following DATA step:

/* Create the directed optimal tour */
data TSPTourLinksDirected (drop=next);
set TSPTourLlinks;
retain next;
if N_ne 1 and cityl ne next then do;
city2 = cityl;
cityl = next;
end;
next = city2;
run;

410 4 Chapter 8: The Network Solver (Experimental)

The data set TSPTourLinksDirected is shown in Figure 8.73.

Figure 8.73 Links in the Optimal Traveling Salesman Tour

cityl

Montgomery
Tallahassee
Columbia
Raleigh
Richmond
Washington
Annapolis
Dover
Trenton
Hartford
Providence
Boston
Concord
Augusta
Montpelier
Albany
Harrisburg
Charleston
Columbus
Lansing
Madison
Saint Paul
Bismarck
Pierre
Cheyenne
Denver

Salt Lake City
Helena

Boise City
Olympia
Salem
Sacramento
Carson City
Phoenix
Santa Fe
Oklahoma City
Austin
Baton Rouge
Jackson
Little Rock
Jefferson City
Topeka
Lincoln

Des Moines
Springfield
Indianapolis
Frankfort
Nashville-Davidson
Atlanta

city2

Tallahassee
Columbia
Raleigh
Richmond
Washington
Annapolis
Dover
Trenton
Hartford
Providence
Boston
Concord
Augusta
Montpelier
Albany
Harrisburg
Charleston
Columbus
Lansing
Madison
Saint Paul
Bismarck
Pierre
Cheyenne
Denver

Salt Lake City
Helena
Boise City
Olympia
Salem
Sacramento
Carson City
Phoenix
Santa Fe
Oklahoma City
Austin
Baton Rouge
Jackson
Little Rock
Jefferson City
Topeka
Lincoln

Des Moines
Springfield
Indianapolis
Frankfort
Nashville-Davidson
Atlanta
Montgomery

distance

177.
.23
182.
.58

97.

27.

54.

83.
151.
.56
.41
.30
.36
.32
.19
.24
.34
.64
.08
.88
.25
.25
.27
.90
.33
.05
.40
.20
.31
.00
.40
.51
.84
.27
.92
.38
.78
.75
.87
.75
.67
.94
.10
.02
.46
.90

311

135

65

14

99

96
89
01
88
65

References 4 411

References

Ahuja, R. K., Magnanti, T. L., and Orlin, J. B. (1993), Network Flows: Theory, Algorithms, and Applications,
Englewood Cliffs, NJ: Prentice-Hall.

Applegate, D. L., Bixby, R. E., Chvétal, V., and Cook, W. J. (20006), The Traveling Salesman Problem: A
Computational Study, Princeton Series in Applied Mathematics, Princeton, NJ: Princeton University Press.

Bron, C. and Kerbosch, J. (1973), “Algorithm 457: Finding All Cliques of an Undirected Graph,” Communi-
cations of the ACM, 16, 48-50.

Cormen, T. H., Leiserson, C. E., and Rivest, R. L. (1990), Introduction to Algorithms, Cambridge, MA, and
New York: MIT Press and McGraw-Hill.

Google (2011), “Google Maps,” http://maps.google.com, accessed March 16, 2011.

Harley, E. R. (2003), Graph Algorithms for Assembling Integrated Genome Maps, Ph.D. diss., University of
Toronto.

Johnson, D. B. (1975), “Finding All the Elementary Circuits of a Directed Graph,” SIAM Journal on
Computing, 4, 77-84.

Jonke