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Overview
SAS/OR 12.1 delivers a broad range of new capabilities and enhanced features, encompassing optimization,
constraint programming, and discrete-event simulation. SAS/OR 12.1 enhancements significantly improve
performance and expand your tool set for building, analyzing, and solving operations research models.

In previous years, SAS/OR software was updated only with new releases of Base SAS software, but this is no
longer the case. This means that SAS/OR software can be released to customers when enhancements are
ready, and the goal is to update SAS/OR every 12 to 18 months. To mark this newfound independence, the
release numbering scheme for SAS/OR changed starting with SAS/OR 12.1. This new numbering scheme
will be maintained when new versions of Base SAS and SAS/OR are shipped at the same time.

SAS/OR 12.2 is a maintenance release that does not contain any new features. SAS/OR 12.3 is another
maintenance release that includes two new features that are now production, as described in the next section.
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Highlights of Enhancements in SAS/OR 12.3
In SAS/OR 12.3, two important distributed-computing features become production: the option tuner for the
OPTMILP procedure and the nonlinear optimization multistart algorithm for the NLP solver. The option
tuner helps determine the most productive combinations of option settings for the OPTMILP procedure, and
the NLP multistart algorithm is instrumental in addressing nonconvex nonlinear optimization problems.

SAS/OR 12.3 also adds the OPTLSO procedure, which performs parallel hybrid derivative-free optimization
for optimization problems in which any or all of the functions involved can be nonsmooth, discontinuous, or
computationally expensive to evaluate directly. The OPTLSO procedure permits both continuous and integer
decision variables, and can operate in single-machine mode or distributed mode.

NOTE: Distributed mode requires SAS High-Performance Optimization.

Highlights of Enhancements in SAS/OR 12.1
Highlights of the SAS/OR enhancements include the following:

• multithreading is used to improve performance in these three areas:

– PROC OPTMODEL problem generation

– multistart for nonlinear optimization

– option tuning for mixed integer linear optimization

• concurrent solve capability (experimental) for linear programming (LP) and nonlinear programming
(NLP)

• improvements to all simplex LP algorithms and mixed integer linear programming (MILP) solver

• new decomposition (DECOMP) algorithm for LP and MILP

• new option for controlling MILP cutting plane strategy

• new conflict search capability for MILP solver

• option tuning for PROC OPTMILP

• new procedure, PROC OPTNET, for network optimization and analysis

• new SUBMIT block for invoking SAS code within PROC OPTMODEL

• SAS Simulation Studio improvements:

– one-click connection of remote blocks in large models

– autoscrolling for navigating large models

– new search capability for block types and label content

– alternative Experiment window configuration for large experiments

– selective animation capability

– new submodel component (experimental)
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The CLP Procedure
In SAS/OR 12.1, the CLP procedure adds two classes of constraints that expand its capabilities and can
accelerate its solution process. The LEXICO statement imposes a lexicographic ordering between pairs of
variable lists. Lexicographic order is essentially analogous to alphabetical order but expands the concept to
include numeric values. One vector (list) of values is lexicographically less than another if the corresponding
elements are equal up to a certain point and immediately after that point the next element of the first vector
is numerically less than the second. Lexicographic ordering can be useful in eliminating certain types of
symmetry that can arise among solutions to constraint satisfaction problems (CSPs). Imposing a lexicographic
ordering eliminates many of the mutually symmetric solutions, reducing the number of permissible solutions
to the problem and in turn shortening the solution process.

Another constraint class that is added to PROC CLP for SAS/OR 12.1 is the bin-packing constraint, imposed
via the PACK statement. A bin-packing constraint directs that a specified number of items must be placed
into a specified number of bins, subject to the capacities (expressed in numbers of items) of the bins. The
PACK statement provides a compact way to express such constraints, which can often be useful components
of larger CSPs or optimization problems.

The DTREE, GANTT, and NETDRAW Procedures
In SAS/OR 12.1 the DTREE, GANTT, and NETDRAW procedures each add procedure-specific graph styles
that control fonts, line colors, bar and node fill colors, and background images.

Supporting Technologies for Optimization
The underlying improvements in optimization in SAS/OR 12.1 are chiefly related to multithreading, which
denotes the use of multiple computational cores to enable computations to be executed in parallel rather than
serially. Multithreading can provide dramatic performance improvements for optimization because these
underlying computations are performed many times in the course of an optimization process.

The underlying linear algebra operations for the linear, quadratic, and nonlinear interior point optimization
algorithms are now multithreaded. The LP, QP, and NLP solvers can be used by PROC OPTMODEL, PROC
OPTLP, and PROC OPTQP in SAS/OR. For nonlinear optimization with PROC OPTMODEL, the evaluation
of nonlinear functions is multithreaded for improved performance.

Finally, the process of creating an optimization model from PROC OPTMODEL statements has been
multithreaded. PROC OPTMODEL contains powerful declarative and programming statements and is adept
at enabling data-driven definition of optimization models, with the result that a rather small section of PROC
OPTMODEL code can create a very large optimization model when it is executed. Multithreading can
dramatically shorten the time that is needed to create an optimization model.

In SAS/OR 12.1 you can use the NTHREADS= option in the PERFORMANCE statement in PROC OPT-
MODEL and other SAS/OR optimization procedures to specify the number of cores to be used. Otherwise,
SAS detects the number of cores available and uses them.
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PROC OPTMODEL: Nonlinear Optimization
The nonlinear optimization solver that PROC OPTMODEL uses builds on the introduction of multithreading
for its two most significant improvements in SAS/OR 12.1. First, in addition to the nonlinear solver
options ALGORITHM=ACTIVESET and ALGORITHM=INTERIORPOINT, SAS/OR 12.1 introduces
the ALGORITHM=CONCURRENT option (experimental), with which you can invoke both the active
set and interior point algorithms for the specified problem, running in parallel on separate threads. The
solution process terminates when either of the algorithms terminates. For repeated solves of a number of
similarly structured problems or simply for problems for which the best algorithm isn’t readily apparent,
ALGORITHM=CONCURRENT should prove useful and illuminating.

Second, multithreading is central to the nonlinear optimization solver’s enhanced multistart capability, which
now takes advantage of multiple threads to execute optimizations from multiple starting points in parallel. The
multistart capability is essential for problems that feature nonconvex nonlinear functions in either or both of
the objective and the constraints because such problems might have multiple locally optimal points. Starting
optimization from several different starting points helps to overcome this difficulty, and multithreading this
process helps to ensure that the overall optimization process runs as fast as possible.

Linear Optimization with PROC OPTMODEL and PROC OPTLP
Extensive improvements to the primal and dual simplex linear optimization algorithms produce better
performance and better integration with the crossover algorithm, which converts solutions that are found
by the interior point algorithm into more usable basic optimal solutions. The crossover algorithm itself has
undergone extensive enhancements that improve its speed and stability.

Paralleling developments in nonlinear optimization, SAS/OR 12.1 linear optimization introduces a concurrent
algorithm, invoked with the ALGORITHM=CONCURRENT option, in the SOLVE WITH LP statement for
PROC OPTMODEL or in the PROC OPTLP statement. The concurrent LP algorithm runs a selection of
linear optimization algorithms in parallel on different threads, with settings to suit the problem at hand. The
optimization process terminates when the first algorithm identifies an optimal solution. As with nonlinear
optimization, the concurrent LP algorithm has the potential to produce significant reductions in the time
needed to solve challenging problems and to provide insights that are useful when you solve a large number
of similarly structured problems.

Mixed Integer Linear Optimization with PROC OPTMODEL and
PROC OPTMILP
Mixed integer linear optimization in SAS/OR 12.1 builds on and extends the advances in linear optimization.
Overall, solver speed has increased by over 50% (on a library of test problems) compared to SAS/OR 9.3. The
branch-and-bound algorithm has approximately doubled its ability to evaluate and solve component linear
optimization problems (which are referred to as nodes in the branch-and-bound tree). These improvements
have significantly reduced solution time for difficult problems.
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The Decomposition Algorithm
The most fundamental change to both linear and mixed integer linear optimization in SAS/OR 12.1 is the
addition of the decomposition (DECOMP) algorithm, which is invoked with a specialized set of options in
the SOLVE WITH LP and SOLVE WITH MILP statements for PROC OPTMODEL or in the DECOMP
statement for PROC OPTLP and PROC OPTMILP. For many linear and mixed integer linear optimization
problems, most of the constraints apply only to a small set of decision variables. Typically there are many
such sets of constraints, complemented by a small set of linking constraints that apply to all or most of
the decision variables. Optimization problems with these characteristics are said to have a “block-angular”
structure, because it is easy to arrange the rows of the constraint matrix so that the nonzero values, which
correspond to the local sets of constraints, appear as blocks along the main diagonal.

The DECOMP algorithm exploits this structure, decomposing the overall optimization problem into a set
of component problems that can be solved in parallel on separate computational threads. The algorithm
repeatedly solves these component problems and then cycles back to the overall problem to update key
information that is used the next time the component problems are solved. This process repeats until it
produces a solution to the complete problem, with the linking constraints present. The combination of
parallelized solving of the component problems and the iterative coordination with the solution of the overall
problem can greatly reduce solution time for problems that were formerly regarded as too time-consuming to
solve practically.

To use the DECOMP algorithm, you must either manually or automatically identify the blocks of the
constraint matrix that correspond to component problems. The METHOD= option controls the means by
which blocks are identified. METHOD=USER enables you to specify the blocks yourself, using the .block
suffix to declare blocks. This is by far the most common method of defining blocks. If your problem has a
significant or dominant network structure, you can use METHOD=NETWORK to identify the blocks in the
problem automatically. Finally, if no linking constraints are present in your problem, then METHOD=AUTO
identifies the blocks automatically.

The DECOMP algorithm uses a number of detailed options that specify how the solution processes for the
component problems and the overall problem are configured and how they coordinate with each other. You
can also specify the number of computational threads to make available for processing component problems
and the level of detail in the information to appear in the SAS log. Options specific to the linear and mixed
integer linear solvers that are used by the DECOMP algorithm are largely identical to those for the respective
solvers.

Setting the Cutting Plane Strategy
Cutting planes are a major component of the mixed integer linear optimization solver, accelerating its progress
by removing fractional (not integer feasible) solutions. SAS/OR 12.1 adds the CUTSTRATEGY= option in
the PROC OPTMILP statement and in the SOLVE WITH MILP statement for PROC OPTMODEL, enabling
you to determine the aggressiveness of your overall cutting plane strategy. This option complements the
individual cut class controls (CUTCLQUE=, CUTGOMORY=, CUTMIR=, and so on), with which you can
enable or disable certain cut types, and the ALLCUTS= option, which enables or disables all cutting planes.
In contrast, the CUTSTRATEGY= option controls cuts at a higher level, creating a profile for cutting plane
use. As the cut strategy becomes more aggressive, more effort is directed toward creating cutting planes and
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more cutting planes are applied. The available values of the CUTSTRATEGY= option are AUTOMATIC,
BASIC, MODERATE, and AGGRESSIVE; the default is AUTOMATIC. The precise cutting plane strategy
that corresponds to each of these settings can vary from problem to problem, because the strategy is also
tuned to suit the problem at hand.

Conflict Search
Another means of accelerating the solution process for mixed integer linear optimization takes information
from infeasible linear optimization problems that are encountered during an initial exploratory phase of
the branch-and-bound process. This information is analyzed and ultimately is used to help the branch-and-
bound process avoid combinations of decision variable values that are known to lead to infeasibility. This
approach, known as conflict analysis or conflict search, influences presolve operations on branch-and-bound
nodes, cutting planes, computation of decision variable bounds, and branching. Although the approach is
complex, its application in SAS/OR 12.1 is straightforward. The CONFLICTSEARCH= option in the PROC
OPTMILP statement or the SOLVE WITH MILP statement in PROC OPTMODEL enables you to specify
the level of conflict search to be performed. The available values for the CONFLICTSEARCH= option are
NONE, AUTOMATIC, MODERATE, and AGGRESSIVE. A more aggressive search strategy explores more
branch-and-bound nodes initially before the branch-and-bound algorithm is restarted with information from
infeasible nodes included. The default value is AUTOMATIC, which enables the solver to choose the search
strategy.

PROC OPTMILP: Option Tuning
The final SAS/OR 12.1 improvement to the mixed integer linear optimization solver is option tuning, which
helps you determine the best option settings for PROC OPTMILP. There are many options and settings
available, including controls on the presolve process, branching, heuristics, and cutting planes. The TUNER
statement enables you to investigate the effects of the many possible combinations of option settings on
solver performance and determine which should perform best. The PROBLEMS= option enables you
to submit several problems for tuning at once. The OPTIONMODE= option specifies the options to be
tuned. OPTIONMODE=USER indicates that you will supply a set of options and initial values via the
OPTIONVALUES= data set, OPTIONMODE=AUTO (the default) tunes a small set of predetermined options,
and OPTIONMODE=FULL tunes a much more extensive option set.

Option tuning starts by using an initial set of option values to solve the problem. The problem is solved
repeatedly with different option values, with a local search algorithm to guide the choices. When the tuning
process terminates, the best option values are output to a data set specified by the SUMMARY= option.
You can control the amount of time used by this process by specifying the MAXTIME= option. You can
multithread this process by using the NTHREADS= option in the PERFORMANCE statement for PROC
OPTMILP, permitting analyses of various settings to occur simultaneously.



PROC OPTMODEL: The SUBMIT Block F 7

PROC OPTMODEL: The SUBMIT Block
In SAS/OR 12.1, PROC OPTMODEL adds the ability to execute other SAS code nested inside PROC
OPTMODEL syntax. This code is executed immediately after the preceding PROC OPTMODEL syntax
and before the syntax that follows. Thus you can use the SUBMIT block to, for example, invoke other SAS
procedures to perform analyses, to display results, or for other purposes, as an integral part of the process of
creating and solving an optimization model with PROC OPTMODEL. This addition makes it even easier to
integrate the operation of PROC OPTMODEL with other SAS capabilities.

To create a SUBMIT block, use a SUBMIT statement (which must appear on a line by itself) followed by the
SAS code to be executed, and terminate the SUBMIT block with an ENDSUBMIT statement (which also
must appear on a line by itself). The SUBMIT statement enables you to pass PROC OPTMODEL parameters,
constants, and evaluated expressions to the SAS code as macro variables.

Network Optimization with PROC OPTNET
PROC OPTNET, new in SAS/OR 12.1, provides several algorithms for investigating the characteristics of
networks and solving network-oriented optimization problems. A network, sometimes referred to as a graph,
consists of a set of nodes that are connected by a set of arcs, edges, or links. There are many applications of
network structures in real-world problems, including supply chain analysis, communications, transportation,
and utilities problems. PROC OPTNET addresses the following classes of network problems:

• biconnected components

• maximal cliques

• connected components

• cycle detection

• weighted matching

• minimum-cost network flow

• minimum cut

• minimum spanning tree

• shortest path

• transitive closure

• traveling salesman

PROC OPTNET syntax provides a dedicated statement for each problem class in the preceding list.

The formats of PROC OPTNET input data sets are designed to fit network-structured data, easing the process
of specifying network-oriented problems. The underlying algorithms are highly efficient and can successfully
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address problems of varying levels of detail and scale. PROC OPTNET is a logical destination for users
who are migrating from some of the legacy optimization procedures in SAS/OR. Former users of PROC
NETFLOW can turn to PROC OPTNET to solve shortest-path and minimum-cost network flow problems,
and former users of PROC ASSIGN can instead use the LINEAR_ASSIGNMENT statement in PROC
OPTNET to solve assignment problems.

SAS Simulation Studio 12.1
SAS Simulation Studio 12.1, a component of SAS/OR 12.1 for Windows environments, adds several features
that improve your ability to build, explore, and work with large, complex discrete-event simulation models.
Large models present a number of challenges to a graphical user interface such as that of SAS Simulation
Studio. Connection of model components, navigation within a model, identification of objects or areas of
interest, and management of different levels of modeling are all tasks that can become more difficult as the
model size grows significantly beyond what can be displayed on one screen. An indirect effect of model
growth is an increased number of factors and responses that are needed to parameterize and investigate the
performance of the system being modeled.

Improvements in SAS Simulation Studio 12.1 address each of these issues. In SAS Simulation Studio, you
connect blocks by dragging the cursor to create links between output and input ports on regular blocks and
Connector blocks. SAS Simulation Studio 12.1 automatically scrolls the display of the Model window as
you drag the link that is being created from its origin to its destination, thus enabling you to create a link
between two blocks that are located far apart (additionally you can connect any two blocks by clicking on
the OutEntity port of the first block and then clicking on the InEntity port of the second block). Automatic
scrolling also enables you to navigate a large model more easily. To move to a new area in the Model window,
you can simply hold down the left mouse button and drag the visible region of the model to the desired area.
This works for simple navigation and for moving a block to a new, remote location in the model.

SAS Simulation Studio 12.1 also enables you to search among the blocks in a model and identify the blocks
that have a specified type, a certain character string in their label, or both. From the listing of identified
blocks, you can open the Properties dialog box for each identified block and edit its settings. Thus, if you
can identify a set of blocks that need similar updates, then you can make these updates without manually
searching through the model for qualifying blocks and editing them individually. For very large models, this
capability not only makes the update process easier but also makes it more thorough because you can identify
qualifying blocks centrally.

When you design experiments for large simulation models, you often need a large number of factors to
parameterize the model and a large number of responses to track system performance in sufficient detail.
This was a challenge prior to SAS Simulation Studio 12.1 because the Experiment window displayed factors
and responses in the header row of a table, with design points and their replications’ results displayed in the
rows below. A very large number of factors and responses did not fit on one screen in this display scheme,
and you had to scroll across the Experiment window to view all of them.

SAS Simulation Studio 12.1 provides you with two alternative configurations for the Experiment window.
The Design Matrix tab presents the tabular layout described earlier. The Design Point tab presents each
design point in its own display. Factors and responses (summarized over replications) are displayed in
separate tables, each with the factor or response names appearing in one column and the respective values in
a second column. This layout enables a large number of factors and responses to be displayed. Response
values for each replication of the design point can be displayed in a separate window.
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SAS Simulation Studio 12.1 enhances its multilevel model management features by introducing the submodel
component (experimental). Like the compound block, the submodel encapsulates a group of SAS Simulation
Studio blocks and their connections, but the submodel outpaces the compound block in some important ways.
The submodel, when expanded, opens in its own window. This means a submodel in its collapsed form
can be placed close to other blocks in the Model window without requiring space for its expanded form (as
is needed for compound blocks). The most important property of the submodel is its ability to be copied
and instantiated in several locations simultaneously, whether in the same model, in different models in the
same project, or in different projects. Each such instance is a direct reference to the original submodel, not a
disconnected copy. Thus you can edit the submodel by editing any of its instances; changes that are made to
any instance are propagated to all current and future instances of the submodel. This feature enables you to
maintain consistency across your models and projects.

Finally, SAS Simulation Studio 12.1 introduces powerful new animation controls that should prove highly
useful in debugging simulation models. In the past, animation could be switched on or off and its speed
controlled, but these choices were made for the entire model. If you needed to animate a particular segment
of the model, perhaps during a specific time span for the simulation clock, you had to focus your attention
on that area and pay special attention when the time period of interest arrived. In SAS Simulation Studio
12.1 you can select both the area of the model to animate (by selecting a block or a compound block) and the
time period over which animation should occur (by specifying the start and end times for animation). You
can also control simulation speed for each such selection. Multiple selections are supported so that you can
choose to animate several areas of the model, each during its defined time period and at its chosen speed.
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Purpose
SAS/OR User’s Guide: Mathematical Programming provides a complete reference for the mathematical
programming procedures in SAS/OR software. This book serves as the primary documentation for the
OPTLP, OPTMILP, OPTMODEL, and OPTQP procedures, the various solvers used by PROC OPTMODEL,
and the MPS-format SAS data set specification.

This chapter describes the organization of this book and the conventions used in the text and example code.
To gain full benefit from using this book, you should familiarize yourself with the information presented in
this section and refer to it when needed. The section “Additional Documentation for SAS/OR Software” on
page 14 refers to other documents that contain related information.

Organization
Chapter 3, “Introduction to Optimization,” contains a brief overview of the mathematical programming
procedures in SAS/OR software and provides an introduction to optimization and the use of the optimization
tools in the SAS System. That chapter also describes the flow of data between the procedures and how the
components of the SAS System fit together.

After the introductory chapter, the next chapter describes the OPTMODEL procedure. The four subsequent
chapters describe the linear programming, mixed integer linear programming, nonlinear programming, and
quadratic programming solvers, which are used by the OPTMODEL procedure. The next chapter is the
specification of the newly introduced MPS-format SAS data set. The last three chapters describe the new
OPTLP, OPTMILP, and OPTQP procedures for solving linear programming, mixed linear programming, and
quadratic programming problems, respectively. Each procedure description is self-contained; you need to be
familiar with only the basic features of the SAS System and SAS terminology to use most procedures. The
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statements and syntax necessary to run each procedure are presented in a uniform format throughout this
book.

The following list summarizes the types of information provided for each procedure:

Overview provides a general description of what the procedure does.
It outlines major capabilities of the procedure and lists all
input and output data sets that are used with it.

Getting Started illustrates simple uses of the procedure using a few short
examples. It provides introductory hands-on information
for the procedure.

Syntax constitutes the major reference section for the syntax of the
procedure. First, the statement syntax is summarized. Next,
a functional summary table lists all the statements and
options in the procedure, classified by function. In addition,
the online version includes a Dictionary of Options, which
provides an alphabetical list of all options. Following these
tables, the PROC statement is described, and then all other
statements are described in alphabetical order.

Details describes the features of the procedure, including algorith-
mic details and computational methods. It also explains
how the various options interact with each other. This sec-
tion describes input and output data sets in greater detail,
with definitions of the output variables, and explains the
format of printed output, if any.

Examples consists of examples that are designed to illustrate the use
of the procedure. Each example includes a description of
the problem and lists the options that are highlighted by
the example. The example shows the data and the SAS
statements needed, and includes the output produced. You
can duplicate the examples by copying the statements and
data and running the SAS program. The SAS Sample
Library contains the code used to run the examples shown
in this book; consult your SAS Software representative for
specific information about the Sample Library.

References lists references that are relevant to the chapter.
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Typographical Conventions
The printed version of SAS/OR User’s Guide: Mathematical Programming uses various type styles, as
explained by the following list:

roman is the standard type style used for most text.

UPPERCASE ROMAN is used for SAS statements, options, and other SAS lan-
guage elements when they appear in the text. However,
you can enter these elements in your own SAS code in
lowercase, uppercase, or a mixture of the two. This style
is also used for identifying arguments and values (in the
syntax specifications) that are literals (for example, to
denote valid keywords for a specific option).

UPPERCASE BOLD is used in the “Syntax” section to identify SAS keywords,
such as the names of procedures, statements, and options.

VariableName is used for the names of SAS variables and data sets when
they appear in the text.

oblique is used to indicate an option variable for which you must
supply a value (for example, DUPLICATE=dup indicates
that you must supply a value for dup).

italic is used for terms that are defined in the text, for emphasis,
and for publication titles.

monospace is used to show examples of SAS statements. In most
cases, this book uses lowercase type for SAS code. You
can enter your own SAS code in lowercase, uppercase, or
a mixture of the two.

Conventions for Examples
Most of the output shown in this book is produced with the following SAS System options:

options linesize=80 pagesize=60 nonumber nodate;

Accessing the SAS/OR Sample Library
The SAS/OR sample library includes many examples that illustrate the use of SAS/OR software, including
the examples used in this documentation. To access these sample programs from the SAS windowing
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environment, select Help from the main menu and then select Getting Started with SAS Software. On the
Contents tab, expand the Learning to Use SAS, Sample SAS Programs, and SAS/OR items. Then click
Samples.

Online Documentation
This documentation is available online with the SAS System. To access SAS/OR documentation from the SAS
windowing environment, select Help from the main menu and then select SAS Help and Documentation.
On the Contents tab, expand the SAS Products and SAS/OR items. Then expand the book you want to
view. You can search the documentation by using the Search tab.

You can also access the documentation by going to http://support.sas.com/documentation.

Additional Documentation for SAS/OR Software
In addition to SAS/OR User’s Guide: Mathematical Programming, you might find the following documents
helpful when using SAS/OR software:

SAS/OR User’s Guide: Bill of Material Processing
provides documentation for the BOM procedure and all bill of material postprocessing SAS macros.
The BOM procedure and SAS macros provide the ability to generate different reports and to perform
several transactions to maintain and update bills of material.

SAS/OR User’s Guide: Constraint Programming
provides documentation for the constraint programming procedure in SAS/OR software. This book
serves as the primary documentation for the CLP procedure.

SAS/OR User’s Guide: Local Search Optimization
provides documentation for the local search optimization procedures in SAS/OR software. This book
serves as the primary documentation for the GA procedure, which uses genetic algorithms to solve
optimization problems, and the OPTLSO procedure, which performs parallel hybrid derivative-free
optimization.

SAS/OR User’s Guide: Mathematical Programming Examples
supplements the SAS/OR User’s Guide: Mathematical Programming with additional examples that
demonstrate best practices for building and solving linear programming, mixed integer linear program-
ming, and quadratic programming problems. The problem statements are reproduced with permission
from the book Model Building in Mathematical Programming by H. Paul Williams.

SAS/OR User’s Guide: Mathematical Programming Legacy Procedures
provides documentation for the older mathematical programming procedures in SAS/OR software. This
book serves as the primary documentation for the INTPOINT, LP, NETFLOW, and NLP procedures.
Guidelines are also provided on migrating from these older procedures to the newer OPTMODEL
family of procedures.

http://support.sas.com/documentation
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SAS/OR User’s Guide: Network Optimization Algorithms
provides documentation for a set of algorithms that can be used to investigate the characteristics of
networks and to solve network-oriented optimization problems. This book also documents PROC
OPTNET, which invokes these algorithms and provides network-structured formats for input and
output data.

SAS/OR User’s Guide: Project Management
provides documentation for the project management procedures in SAS/OR software. This book serves
as the primary documentation for the CPM, DTREE, GANTT, NETDRAW, and PM procedures, in
addition to the PROJMAN Application, a graphical user interface for project management.

SAS/OR Software: Project Management Examples, Version 6
contains a series of examples that illustrate how to use SAS/OR software to manage projects. Each
chapter contains a complete project management scenario and describes how to use PROC GANTT,
PROC CPM, and PROC NETDRAW, in addition to other reporting and graphing procedures in the
SAS System, to perform the necessary project management tasks.

SAS Simulation Studio: User’s Guide
provides documentation about using SAS Simulation Studio, a graphical application for creating and
working with discrete-event simulation models. This book describes in detail how to build and run
simulation models and how to interact with SAS software for analysis and with JMP software for
experimental design and analysis.
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Overview
Operations research tools are directed toward the solution of resource management and planning problems.
Models in operations research are representations of the structure of a physical object or a conceptual or
business process. Using the tools of operations research involves the following:

• defining a structural model of the system under investigation

• collecting the data for the model

• solving the model

• interpreting the results

SAS/OR software is a set of procedures for exploring models of distribution networks, production systems,
resource allocation problems, and scheduling problems using the tools of operations research.
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The following list suggests some of the application areas in which optimization-based decision support
systems have been used. In practice, models often contain elements of several applications listed here.

• Product-mix problems find the mix of products that generates the largest return when several products
compete for limited resources.

• Blending problems find the mix of ingredients to be used in a product so that it meets minimum
standards at minimum cost.

• Time-staged problems are models whose structure repeats as a function of time. Production and
inventory models are classic examples of time-staged problems. In each period, production plus
inventory minus current demand equals inventory carried to the next period.

• Scheduling problems assign people to times, places, or tasks so as to optimize people’s preferences
or performance while satisfying the demands of the schedule.

• Multiple objective problems have multiple, possibly conflicting, objectives. Typically, the objectives
are prioritized, and the problems are solved sequentially in a priority order.

• Capital budgeting and project selection problems ask for the project or set of projects that yield the
greatest return.

• Location problems seek the set of locations that meets the distribution needs at minimum cost.

• Cutting stock problems find the partition of raw material that minimizes waste and fulfills demand.

The basic optimization problem is that of minimizing or maximizing an objective function subject to
constraints imposed on the variables of that function. The objective function and constraints can be linear or
nonlinear; the constraints can be bound constraints, equality or inequality constraints, or integer constraints.
Traditionally, optimization problems are divided into various types depending on the sets of values that the
variables are restricted to (real, integer, or binary, or a combination) and the nature of functional form of the
constraints and objectives (linear, quadratic, or general nonlinear). An expression of an optimization problem
in mathematical form is called a mathematical program.

When the complete description of a mathematical program is supplied to an appropriate algorithm (such as one
of the solvers described in this book), the algorithm determines the optimal values for the decision variables
so the objective is either maximized or minimized, the optimal values that are assigned to decision variables
are on or between allowable bounds, and the constraints are obeyed. This process of solving mathematical
programs is called mathematical programming, mathematical optimization, or just optimization.

When the constraints in an optimization problem are linear and the objective is either linear or quadratic, the
optimization problem can be encapsulated in SAS data sets and then solved using the appropriate SAS/OR
procedure: the OPTLP, OPTMILP, or OPTQP procedure.

Often optimization problems, and especially those with nonlinear elements, are formalized in an algebraic
model that represents the problem. When formulated in its most abstract form, such an algebraic model is
independent of problem data. A specific optimization problem instance (including the original problem)
is then just an instantiation of the algebraic model with the specific data associated with that instance. An
optimization modeling language (also called an algebraic modeling language) is a programming environment
that has syntax, structures, and operations that enable you to express a mathematical program in a form that
corresponds in a natural and transparent way to its algebraic model. The syntax, structures, and operations
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also enable you to populate an algebraic model with a specific data instance and then solve the resulting
optimization problem instance with an appropriate solver. The OPTMODEL procedure is such an algebraic
modeling language in SAS/OR software and can be viewed as a single, unified environment to formulate and
solve mathematical programming problems of many different types.

Whether mathematical programs are represented in SAS data sets or in an algebraic model in PROC
OPTMODEL, they can be saved, easily changed, and solved again. The SAS/OR procedures also output
SAS data sets that contain the solutions. These data sets can then be used to produce customized reports or as
input to other SAS procedures. This structure enables you to use the tools of operations research and other
SAS tools as building blocks to build decision support systems.

This chapter describes how to use SAS/OR software to solve a wide variety of optimization problems. It
describes various types of optimization problems, indicates which SAS/OR procedures you can use, and
shows how you provide data, run the procedure, and obtain optimal solutions. For additional examples
that demonstrate the features of the OPTMODEL procedure, see SAS/OR User’s Guide: Mathematical
Programming Examples.

The next section broadly classifies the SAS/OR procedures based on the types of mathematical programming
problems they can solve.

Linear Programming Problems

The OPTLP Procedure
The OPTLP procedure solves linear programming problems that are submitted in a SAS data set that uses a
mathematical programming system (MPS) format.

The MPS file format is a format commonly used for describing linear programming (LP) and integer
programming (IP) problems (Murtagh 1981; IBM 1988). MPS-format files are in text format and have
specific conventions for the order in which the different pieces of the mathematical model are specified.
The MPS-format SAS data set corresponds closely to the MPS file format and is used to describe linear
programming problems for PROC OPTLP. For more details, see Chapter 15, “The MPS-Format SAS Data
Set.”

PROC OPTLP provides three solvers to solve general LPs: primal simplex, dual simplex, and interior point.
The simplex solvers implement a two-phase simplex method, and the interior point solver implements a
primal-dual predictor-corrector algorithm. For pure network LPs or LPs with significant network structure
and additional linear side constraints, PROC OPTLP also provides a network simplex based solver. For more
details about solving LPs with PROC OPTLP, see Chapter 10, “The OPTLP Procedure.”

The OPTMODEL Procedure
The OPTMODEL procedure, a general purpose optimization modeling language, can also be used for
concisely modeling linear programming problems. If an LP has special network structure, the structure is
typically natural and evident in a well-formulated model of the problem in PROC OPTMODEL.
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Within PROC OPTMODEL you can declare a model, pass it directly to various solvers, and review the solver
result. You can also save an instance of a linear model in data set form for use by the OPTLP procedure. For
more details, see Chapter 5, “The OPTMODEL Procedure.”

Mixed Integer Linear Problems

The OPTMILP Procedure
The OPTMILP procedure solves general mixed integer linear programs (MILPs) —linear programs in which
a subset of the decision variables are constrained to be integers. The OPTMILP procedure solves MILPs
with an LP-based branch-and-bound algorithm augmented by advanced techniques such as cutting planes
and primal heuristics. For more details about the OPTMILP procedure, see Chapter 11, “The OPTMILP
Procedure.”

The OPTMILP procedure requires a MILP to be specified by a SAS data set that adheres to the MPS format.
See Chapter 15, “The MPS-Format SAS Data Set,” for details about the MPS-format data set.

The OPTMODEL Procedure
The OPTMODEL procedure, a general purpose optimization modeling language, can also be used for
concisely modeling mixed integer linear programming problems. In fact, except for the declaration of some
subset of variables to be integer or binary, modeling these problems is quite analogous to modeling LPs.
Within OPTMODEL you can declare a model, pass it directly to various solvers, and review the solver result.
You can also save an instance of a mixed integer linear model in data set form for use by PROC OPTMILP.
For more details, see Chapter 5, “The OPTMODEL Procedure.”

Quadratic Programming Problems

The OPTQP Procedure
The OPTQP procedure solves quadratic programs—problems with a quadratic objective function and a
collection of linear constraints, including general linear constraints along with lower or upper bounds (or
both) on the decision variables.

You can specify the problem input data in one SAS data set that uses a quadratic programming system (QPS)
format. For details about the QPS-format data specification, see Chapter 15, “The MPS-Format SAS Data
Set.” For more details about the OPTQP procedure, see Chapter 12, “The OPTQP Procedure.”
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The OPTMODEL Procedure
The OPTMODEL procedure, a general purpose optimization modeling language, can also be used for
concisely modeling quadratic programming problems. Within OPTMODEL you can declare a model, pass it
directly to various solvers, and review the solver result. You can also save an instance of a quadratic model in
data set form for use by PROC OPTQP. For more details, see Chapter 5, “The OPTMODEL Procedure.”

Nonlinear Problems

The OPTMODEL Procedure
The OPTMODEL procedure, a general purpose optimization modeling language, can also be used for
concisely modeling nonlinear programming problems. Within OPTMODEL you can declare a nonlinear
optimization model, pass it directly to various solvers, and review the solver result. For more details, see
Chapter 5, “The OPTMODEL Procedure.”

You can solve many different types of nonlinear programming problems with PROC OPTMODEL using its
nonlinear solver functionality. For more details about the nonlinear programming solver, see Chapter 8, “The
Nonlinear Programming Solver.”

Model Building with PROC OPTMODEL
Model generation and maintenance are often difficult and expensive aspects of applying mathematical
programming techniques. The richly expressive syntax and features of PROC OPTMODEL, in addition to
the flexible data input and output capabilities, simplify this task considerably. Although PROC OPTMODEL
offers almost unlimited latitude in how a particular optimization problem is formulated, the most effective
use of OPTMODEL is achieved when the model is abstracted away from the data. This aspect makes PROC
OPTMODEL somewhat unusual among SAS procedures and is important enough to illustrate with a simple
example.

A small product-mix problem serves as a starting point for a discussion of two different ways of modeling
with PROC OPTMODEL.

A candy manufacturer makes two products: chocolate and toffee. What combination of chocolate and toffee
should be produced in a day in order to maximize the company’s profit? Chocolate contributes $0.25 per
pound to profit, and toffee contributes $0.75 per pound. The decision variables are chocolate and toffee.

Four processes are used to manufacture the candy:

1. Process 1 combines and cooks the basic ingredients for both chocolate and toffee.

2. Process 2 adds colors and flavors to the toffee, then cools and shapes the confection.
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3. Process 3 chops and mixes nuts and raisins, adds them to the chocolate, and then cools and cuts the
bars.

4. Process 4 is packaging: chocolate is placed in individual paper shells; toffee is wrapped in cellophane
packages.

During the day, there are 7.5 hours (27,000 seconds) available for each process.

Firm time standards have been established for each process. For Process 1, mixing and cooking take 15
seconds for each pound of chocolate, and 40 seconds for each pound of toffee. Process 2 takes 56.25
seconds per pound of toffee. For Process 3, each pound of chocolate requires 18.75 seconds of processing.
In packaging, a pound of chocolate can be wrapped in 12 seconds, whereas a pound of toffee requires 50
seconds. These data are summarized as follows:

Available Required per Pound
Time chocolate toffee

Process (sec) (sec) (sec)
1 Cooking 27,000 15 40
2 Color/Flavor 27,000 56.25
3 Condiments 27,000 18.75
4 Packaging 27,000 12 50

The objective is to maximize the company’s total profit, which is represented as

Maximize: 0.25(chocolate) + 0.75(toffee)

The production of the candy is limited by the time available for each process. The limits placed on production
by Process 1 are expressed by the following inequality:

Process 1: 15(chocolate) + 40(toffee)� 27,000

Process 1 can handle any combination of chocolate and toffee that satisfies this inequality.

The limits on production by other processes generate constraints described by the following inequalities:

Process 2: 56.25(toffee) � 27,000

Process 3: 18.75(chocolate) � 27,000

Process 4: 12(chocolate) + 50(toffee) � 27,000

This linear program illustrates an example of a product mix problem. The mix of products that maximizes
the objective without violating the constraints is the solution.

First, the following statements demonstrate a way of representing the optimization model in PROC OPT-
MODEL that is almost a verbatim translation of the mathematical model:

proc optmodel;
/* declare variables */
var choco >= 0, toffee >= 0;

/* maximize objective function (profit) */
maximize profit = 0.25*choco + 0.75*toffee;
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/* subject to constraints */
con process1: 15*choco + 40*toffee <= 27000;
con process2: 56.25*toffee <= 27000;
con process3: 18.75*choco <= 27000;
con process4: 12*choco + 50*toffee <= 27000;

/* solve LP using primal simplex solver */
solve with lp / solver = primal_spx;

/* display solution */
print choco toffee;

quit;

The optimal objective value and the optimal solution are displayed in Figure 3.1:

Figure 3.1 Solution Summary

The OPTMODEL Procedure

Solution Summary

Solver LP
Algorithm Primal Simplex
Objective Function profit
Solution Status Optimal
Objective Value 475
Iterations 7

Primal Infeasibility 0
Dual Infeasibility 0
Bound Infeasibility 0

choco toffee

1000 300

You can observe from the preceding example that PROC OPTMODEL provides an easy and very direct way
of modeling and solving mathematical programming models. Although this way of modeling, where the data
are intertwined heavily with model elements, is correct, has significant practical limitations. The model is not
easy to explain, it is hard to generalize, and clearly this approach does not scale to large problems of the same
similar type. To overcome these issues, you need to separate the data from the essential algebraic structure of
the model. Along those lines, you can make the reasonable assumption that you have the following two data
sets (one for the products and one for processes that capture the parameters and data elements of this product
mix problem):

data Products;
length Name $10.;
input Name $ Profit;

datalines;
Chocolate 0.25
Toffee 0.75
;
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data Processes;
length Name $15.;
input Name $ Available_time Chocolate Toffee;

datalines;
Cooking 27000 15 40
Color/Flavor 27000 0 56.25
Condiments 27000 18.75 0
Packaging 27000 12 50
;

The following alternative model in PROC OPTMODEL can solve the same problem by taking these data sets
as input:

proc optmodel;
/* declare sets and data indexed by sets */
set <string> Products;
set <string> Processes;
num Profit{Products};
num AvailableTime{Processes};
num RequiredTime{Products,Processes};

/* declare the variable */
var Amount{Products};

/* maximize objective function (profit) */
maximize TotalProfit = sum{p in Products} Profit[p]*Amount[p];
/* subject to constraints */
con Availability{r in Processes}:

sum{p in Products} RequiredTime[p,r]*Amount[p] <= AvailableTime[r];

/* abstract algebraic model that captures the structure of the */
/* optimization problem has been defined without referring */
/* to a single data constant */

/* populate model by reading in the specific data instance */
read data Products into Products=[name] Profit;
read data Processes into Processes=[name] AvailableTime=Available_time

{p in Products} <RequiredTime[p,name]= col(p)>;

/* solve LP using primal simplex solver */
solve with lp / solver = primal_spx;
/* display solution */
print Amount;

quit;

The details of the syntax and elements of the PROC OPTMODEL language are discussed in Chapter 5, “The
OPTMODEL Procedure.” The key observation here is that the preceding version of the PROC OPTMODEL
statements capture the essence of the optimization model concisely, but completely, and the model can be
explained, modified, and maintained easily. It also achieves total separation of the data from the model in that
the same PROC OPTMODEL statements can be applied to any other specific problem of this type (and of any
size) by simply changing the data sets appropriately and rerunning the same PROC OPTMODEL statements.
Also, because of PROC OPTMODEL’s ability to read data very flexibly and from any number of data sets,
the problem data can be in its most natural form, making the model easier to explain and understand.
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Parallel Computing
Although the speed of a single-core processor has increased considerably over the decades, further gains
in computing power are possible through the use of multiple cores or processors. Using multiple cores or
processors is called parallel computing. In parallel computing, certain computations are partitioned into
independent smaller subcomputations, which are then processed on separate cores or processors simultane-
ously. Consumer-grade PCs and servers are often equipped with multicore processors, and configurations
that consist of multiple processors are becoming relatively common and inexpensive. As a result, parallel
computing is becoming increasingly important.

One type of parallel computing is multithreaded computing on a single machine; this execution mode is
called single-machine mode. In single-machine mode, several threads use the processors of a single computer
to work concurrently on subtasks. These threads share the random access memory (RAM) of that computer.

Another type of parallel computing is distributed computing, in which computation is parallelized over a
number of processors on different computers. This mode is called distributed mode. In distributed mode,
each computer owns an independent memory allocation, and computation can be multithreaded on each
computer.
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Syntax

PERFORMANCE Statement
PERFORMANCE < performance-options > ;

The PERFORMANCE statement is available in the OPTMODEL, OPTLP, OPTMILP, OPTQP, and OPTLSO
procedures. You can use this statement to control the parallel execution of parallel features, such as the
concurrent LP algorithm and the OPTMILP option tuner. For an example that demonstrates the use of the
PERFORMANCE statement in the OPTMODEL procedure, see Example 8.5 in Chapter 8, “The Nonlinear
Programming Solver.”

The PERFORMANCE statement is available in both single-machine mode and distributed mode. This section
focuses on single-machine mode. For information about the PERFORMANCE statement in distributed mode,
see Chapter 2, “Shared Concepts and Topics” (Base SAS Procedures Guide: High-Performance Procedures).

NOTE: Distributed mode requires SAS High-Performance Optimization.

In single-machine mode, the PERFORMANCE statement enables you to control the number of threads used
and the output of the ODS table that reports procedure timing. When you specify the PERFORMANCE
statement, the PerformanceInfo ODS table is produced. This table lists performance characteristics such
as execution mode and number of threads. You can specify the following performance-options in the
PERFORMANCE statement:

DETAILS
Produces the Timing ODS table. This table shows a breakdown of the time used in each step of the
procedure.

NTHREADS=number
specifies the number of threads that the procedure can use. The value of number can be any integer
between 1 and 256 inclusive. This option overrides the SAS system option THREADS | NOTHREADS
and the SAS system option CPUCOUNT=. If you do not specify the NTHREADS= option, the number
of threads is determined by the SAS sytem option CPUCOUNT=.

Setting the NTHREADS= option to a number greater than the actual number of available physical
cores might result in reduced performance. Specifying a high NTHREADS= value does not guarantee
shorter solution time; the actual change in solution time depends on the computing hardware and
the scalability of the underlying algorithms in the specified procedure. In some circumstances, the
procedure might use fewer threads than the specified value of the NTHREADS= option because the
procedure’s internal algorithms have determined that a smaller number is better.

The SAS system options THREADS | NOTHREADS and CPUCOUNT= are documented in SAS
System Options: Reference.

PARALLELMODE=number | string
specifies the parallel processing mode. This option affects the solution results that are obtained from
running the same model and the same option values on the same platform multiple times.

The values of number and the corresponding values of string are listed in Table 4.1.
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Table 4.1 Values for PARALLELMODE= Option

number string Description
0 DETERMINISTIC Requires algorithms to produce the same results

every time.
1 NONDETERMINISTIC Permits algorithms to produce different solution

results. This mode requires less synchronization
in parallel processing and might attain better per-
formance than DETERMINISTIC mode.

Some procedures support only one mode; the modes that a procedure supports are detailed in its
chapter.

ODS Tables
Anytime you specify the PERFORMANCE statement in a procedure, the procedure generates an ODS table
called PerformanceInfo that summarizes the performance characteristics of the procedure. The information
comes from the actual characteristics used and does not necessarily match the option values specified in the
PERFORMANCE statement. When you specify the DETAILS option in the PERFORMANCE statement,
the procedure generates an additional ODS table called Timing.

Output 4.1 shows a typical PerformanceInfo table in multithreaded computing mode.

Figure 4.1 PerformanceInfo Table

The OPTLP Procedure

Performance Information

Execution Mode Single-Machine
Number of Threads 4

If you specify the NOTHREADS system option and do not specify the NTHREADS= option in the PER-
FORMANCE statement, then the PerformanceInfo table contains the information shown in Output 4.2.

Figure 4.2 PerformanceInfo Table: NOTHREADS Option Specified

The OPTLP Procedure

Performance Information

Execution Mode Single-Machine
Number of Threads Disabled

Output 4.3 demonstrates the contents of a typical Timing table.
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Figure 4.3 Timing Table

Procedure Task Timing
Time

Task (sec.) % Time

Presolve Time 0.00 0.00%
Solver Time 0.03 22.40%
Wait Time 0.10 77.60%

Memory Limit
The system option MEMSIZE sets a limit on the amount of memory that the SAS System uses. If you do not
specify a value for this option, then the SAS System sets a default memory limit. Your operating environment
determines the actual size of the default memory limit set by the SAS System, which is sufficient for many
applications. However, the solution of many realistic optimization problems can require more memory than
the default. It is therefore recommended that the memory limit be increased above the default when you are
solving optimization problems. This reduces the chance of a procedure failing because of an out-of-memory
error.

NOTE: The MEMSIZE system option is not available in some operating environments. See the documentation
for your operating environment for more information.

You can specify -MEMSIZE 0 to indicate that all available memory can be used, but use this setting with
caution. In most operating environments, it is better to specify an adequate amount of memory than to specify
-MEMSIZE 0. For example, if you are running PROC OPTLP to solve LP problems with only a few hundred
thousand variables and constraints, -MEMSIZE 500M might be sufficient to enable the procedure to run
without an out-of-memory error. When a problem has millions of variables, -MEMSIZE 2G or higher might
be needed. These are rules of thumb; problems with atypical structure, density, or other characteristics can
increase the optimizer’s memory requirements.

No matter how much memory is installed, 32-bit Windows operating systems permit the SAS System to use
at most 4 gigabytes of memory. This memory limit might be lower, depending on which version of Windows
you are running. The limit is enforced by the Windows operating system, not the SAS System.

You can specify the MEMSIZE option at system invocation, on the SAS command line, or in a configuration
file. The syntax is described in the SAS Companion book for your operating environment.

To report a procedure’s memory consumption, you can use the FULLSTIMER option. The syntax is described
in the SAS Companion book for your operating environment.
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Numerical Difficulties
Extremely large or extremely small numerical values might cause computational difficulties (singularities,
stalled solution progress, false infeasibilities, and so on) for optimization solvers, but the occurrence of such
difficulties is hard to predict. For this reason, solvers issue a data error message when they detect model
data that exceed a specific threshold number. The value of the threshold number depends on your operating
environment and is printed in the log as part of the data error message.

The following conditions produce a data error:

• The absolute value of an objective coefficient, constraint coefficient, or range (difference between the
upper and lower bounds on a constraint) is greater than the threshold number.

• A variable’s lower bound, a � orD constraint’s right-hand side, or a range constraint’s lower bound is
greater than the threshold number.

• A variable’s upper bound, a � orD constraint’s right-hand side, or a range constraint’s upper bound is
smaller than the negative threshold number.

If a variable’s upper bound is greater than 1E20, then solvers treats the bound as1. Similarly, if a variable’s
lower bound is less than –1E20, then LP solver treats the bound as �1.

If a solver fails or experiences numerical difficulties when solving a problem, try one of the following
remedies:

• Improve the input data: Rescale very large and very small numbers in constraints, objectives, right-hand
sides, and variable bounds. It is recommended that the magnitudes of the largest and smallest constraint
coefficients not exceed 1E6.

• Specify different algorithms or options (or both): For example, to solve a linear program, you can
choose from the primal simplex, dual simplex, interior point, and network simplex algorithms. Using
available options, you can tighten or relax feasibility or optimality tolerances.

References

Andrews, G. R. (1999), Foundations of Multithreaded, Parallel, and Distributed Programming, Reading,
MA: Addison-Wesley.
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Overview: OPTMODEL Procedure
The OPTMODEL procedure includes the powerful OPTMODEL modeling language and state-of-the-art
solvers for several classes of mathematical programming problems. The problems and their solvers are listed
in Table 5.1.

Table 5.1 Solvers in PROC OPTMODEL

Problem Solver
Linear programming LP
Mixed integer linear programming MILP
Quadratic programming QP
General nonlinear programming NLP

The OPTMODEL modeling language provides a modeling environment tailored to building, solving, and
maintaining optimization models. This makes the process of translating the symbolic formulation of an
optimization model into OPTMODEL virtually transparent since the modeling language mimics the symbolic
algebra of the formulation as closely as possible. The OPTMODEL language also streamlines and simplifies
the critical process of populating optimization models with data from SAS data sets. All of this transparency
produces models that are more easily inspected for completeness and correctness, more easily corrected, and
more easily modified, whether through structural changes or through the substitution of new data for old.

In addition to invoking optimization solvers directly with PROC OPTMODEL as already mentioned, you can
use the OPTMODEL language purely as a modeling facility. You can save optimization models built with the
OPTMODEL language in SAS data sets that can be submitted to other SAS/OR optimization procedures. In
general, the OPTMODEL language serves as a common point of access for many of the SAS/OR optimization
capabilities, whether providing both modeling and solver access or acting as a modeling interface for other
optimization procedures.

For details and examples of the problems addressed and corresponding solvers, please see the dedicated chap-
ters in this book. This chapter aims to give you a comprehensive understanding of the OPTMODEL procedure
by discussing the framework provided by the OPTMODEL modeling language. For additional examples
that demonstrate the features of the OPTMODEL procedure, see SAS/OR User’s Guide: Mathematical
Programming Examples.

The OPTMODEL modeling language features automatic differentiation, advanced flow control, optimization-
oriented syntax (parameters, variables, arrays, constraints, objective functions), dynamic model generation,
model-data separation, and transparent access to SAS data sets.

Getting Started: OPTMODEL Procedure
Optimization or mathematical programming is a search for a maximum or minimum of an objective function
(also called a cost function), where search variables are restricted to particular constraints. Constraints are
said to define a feasible region (see Figure 5.1).
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Figure 5.1 Examples of Feasible Regions

A more rigorous general formulation of such problems is as follows.

Let

f W S ! R

be a real-valued function. Find x� such that

• x� 2 S

• f .x�/ � f .x/; 8x 2 S

Note that the formulation is for the minimum of f and that the maximum of f is simply the negation of the
minimum of �f .

Here, function f is the objective function, and the variable in the objective function is called the optimization
variable (or decision variable). S is the feasible region. Typically S is a subset of the Euclidean space Rn

specified by the set of constraints, which are often a set of equalities (D) or inequalities (�;�) that every
element in S is required to satisfy simultaneously. For the special case where S D Rn, the problem is an
unconstrained optimization. An element x of S is called a feasible solution to the optimization problem, and
the value f .x/ is called the objective value. A feasible solution x� that minimizes the objective function is
called an optimal solution to the optimization problem, and the corresponding objective value is called the
optimal value.

In mathematics, special notation is used to denote an optimization problem. Generally, you can write an
optimization problem as follows:

minimize f .x/

subject to x 2 S
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Normally, an empty body of constraint (the part after “subject to”) implies that the optimization is un-
constrained (that is, the feasible region is the whole space Rn). The optimal solution (x�) is denoted
as

x� D argmin
x2S

f .x/

The optimal value (f .x�/) is denoted as

f .x�/ D min
x2S

f .x/

Optimization problems can be classified by the forms (linear, quadratic, nonlinear, and so on) of the functions
in the objective and constraints. For example, a problem is said to be linearly constrained if the functions
in the constraints are linear. A linear programming problem is a linearly constrained problem with a linear
objective function. A nonlinear programming problem occurs where some function in the objective or
constraints is nonlinear, and so on.

An Unconstrained Optimization Example
An unconstrained optimization problem formulation is simply

minimize f .x/

For example, suppose you wanted to find the minimum value of this polynomial:

z.x; y/ D x2 � x � 2y � xy C y2

You can compactly specify and solve the optimization problem by using the OPTMODEL modeling language.
Here is the program:

/* invoke procedure */
proc optmodel;

var x, y; /* declare variables */

/* objective function */
min z=x**2 - x - 2*y - x*y + y**2;

/* now run the solver */
solve;

print x y;
quit;

This program produces the output in Figure 5.2.
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Figure 5.2 Optimizing a Simple Polynomial

The OPTMODEL Procedure

Problem Summary

Objective Sense Minimization
Objective Function z
Objective Type Quadratic

Number of Variables 2
Bounded Above 0
Bounded Below 0
Bounded Below and Above 0
Free 2
Fixed 0

Number of Constraints 0

Constraint Coefficients 0

Performance Information

Execution Mode Single-Machine
Number of Threads 4

Solution Summary

Solver QP
Algorithm Interior Point
Objective Function z
Solution Status Optimal
Objective Value -2.333333333

Primal Infeasibility 0
Dual Infeasibility 6.861556E-17
Bound Infeasibility 0
Duality Gap 0
Complementarity 0

Iterations 0
Presolve Time 0.00
Solution Time 0.01

x y

1.3333 1.6667

In PROC OPTMODEL you specify the mathematical formulas that describe the behavior of the optimization
problem that you want to solve. In the preceding example there were two independent variables in the
polynomial, x and y. These are the optimization variables of the problem. In PROC OPTMODEL you
declare optimization variables with the VAR statement. The formula that defines the quantity that you
are seeking to optimize is called the objective function, or objective. The solver varies the values of the
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optimization variables when searching for an optimal value for the objective.

In the preceding example the objective function is named z, declared with the MIN statement. The keyword
MIN is an abbreviation for MINIMIZE. The expression that follows the equal sign (=) in the MIN statement
defines the function to be minimized in terms of the optimization variables.

The VAR and MIN statements are just two of the many available PROC OPTMODEL declaration and
programming statements. PROC OPTMODEL processes all such statements interactively, meaning that each
statement is processed as soon as it is complete.

After PROC OPTMODEL has completed processing of declaration and programming statements, it processes
the SOLVE statement, which submits the problem to a solver and prints a summary of the results. The PRINT
statement displays the optimal values of the optimization variables x and y found by the solver.

It is worth noting that PROC OPTMODEL does not use a RUN statement but instead operates on an
interactive basis throughout. You can continue to interact with PROC OPTMODEL even after invoking a
solver. For example, you could modify the problem and issue another SOLVE statement (see the section
“Model Update” on page 142).

The Rosenbrock Problem
You can use parameters to produce a clear formulation of a problem. Consider the Rosenbrock problem,

minimize f .x1; x2/ D ˛ .x2 � x21/
2
C .1 � x1/

2

where ˛ D 100 is a parameter (constant), x1 and x2 are optimization variables (whose values are to be
determined), and f .x1; x2/ is an objective function.

Here is a PROC OPTMODEL program that solves the Rosenbrock problem:

proc optmodel;
number alpha = 100; /* declare parameter */
var x {1..2}; /* declare variables */
/* objective function */
min f = alpha*(x[2] - x[1]**2)**2 +

(1 - x[1])**2;
/* now run the solver */
solve;

print x;
quit;

The PROC OPTMODEL output is shown in Figure 5.3.
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Figure 5.3 Rosenbrock Function Results

The OPTMODEL Procedure

Problem Summary

Objective Sense Minimization
Objective Function f
Objective Type Nonlinear

Number of Variables 2
Bounded Above 0
Bounded Below 0
Bounded Below and Above 0
Free 2
Fixed 0

Number of Constraints 0

Performance Information

Execution Mode Single-Machine
Number of Threads 4

Solution Summary

Solver NLP
Algorithm Interior Point
Objective Function f
Solution Status Optimal
Objective Value 8.206033E-23

Optimality Error 9.707102E-11
Infeasibility 0

Iterations 14
Presolve Time 0.00
Solution Time 0.01

[1] x

1 1
2 1



A Transportation Problem F 41

A Transportation Problem
You can easily translate the symbolic formulation of a problem into the OPTMODEL procedure. Consider
the transportation problem, which is mathematically modeled as the following linear programming problem:

minimize
X

i2O;j2D

cijxij

subject to
X
j2D

xij D ai ; 8i 2 O .SUPPLY/X
i2O

xij D bj ; 8j 2 D .DEMAND/

xij � 0; 8.i; j / 2 O �D

where O is the set of origins, D is the set of destinations, cij is the cost to transport one unit from i to j , ai
is the supply of origin i , bj is the demand of destination j , and xij is the decision variable for the amount of
shipment from i to j .

Here is a very simple example. The cities in the set O of origins are Detroit and Pittsburgh. The cities in the
set D of destinations are Boston and New York. The cost matrix, supply, and demand are shown in Table 5.2.

Table 5.2 A Transportation Problem

Boston New York Supply
Detroit 30 20 200

Pittsburgh 40 10 100
Demand 150 150

The problem is compactly and clearly formulated and solved by using the OPTMODEL procedure with the
following statements:

proc optmodel;

/* specify parameters */
set O={'Detroit','Pittsburgh'};
set D={'Boston','New York'};
number c{O,D}=[30 20

40 10];
number a{O}=[200 100];
number b{D}=[150 150];
/* model description */
var x{O,D} >= 0;
min total_cost = sum{i in O, j in D}c[i,j]*x[i,j];
constraint supply{i in O}: sum{j in D}x[i,j]=a[i];
constraint demand{j in D}: sum{i in O}x[i,j]=b[j];
/* solve and output */
solve;
print x;

The output is shown in Figure 5.4.
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Figure 5.4 Solution to the Transportation Problem

The OPTMODEL Procedure

Problem Summary

Objective Sense Minimization
Objective Function total_cost
Objective Type Linear

Number of Variables 4
Bounded Above 0
Bounded Below 4
Bounded Below and Above 0
Free 0
Fixed 0

Number of Constraints 4
Linear LE (<=) 0
Linear EQ (=) 4
Linear GE (>=) 0
Linear Range 0

Constraint Coefficients 8

Performance Information

Execution Mode Single-Machine
Number of Threads 1

Solution Summary

Solver LP
Algorithm Dual Simplex
Objective Function total_cost
Solution Status Optimal
Objective Value 6500

Primal Infeasibility 0
Dual Infeasibility 0
Bound Infeasibility 0

Iterations 0
Presolve Time 0.00
Solution Time 0.00

x
New

Boston York

Detroit 150 50
Pittsburgh 0 100
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OPTMODEL Modeling Language: Basic Concepts
As seen from the examples in the previous section, a PROC OPTMODEL model consists of one or more
declarations of variables, objectives, constraints, and parameters, in addition to possibly intermixed program-
ming statements, which use the components that are created by the declarations. The declarations define
the mathematical form of the problem to solve. The programming statements define data values, invoke the
solver, or print the results. This section describes some basic concepts, such as variables, indices, and so on,
which are used in the section “Syntax: OPTMODEL Procedure” on page 52.

Named Parameters
In the example described in the section “An Unconstrained Optimization Example” on page 37, all the
numeric constants that describe the behavior of the objective function were specified directly in the objective
expression. This is a valid way to formulate the objective expression. However, in many cases it is
inconvenient to specify the numeric constants directly. Direct specification of numeric constants can also hide
the structure of the problem that is being solved. The objective expression text would need to be modified
when the numeric values in the problem change. This can be very inconvenient with large models.

In PROC OPTMODEL, you can create named numeric values that behave as constants in expressions. These
named values are called parameters. You can write an expression by using mnemonic parameter names in
place of numeric literals. This produces a clearer formulation of the optimization problem. You can easily
modify the values of parameters, define them in terms of other parameters, or read them from a SAS data set.

The model from this same example can be reformulated in a more general polynomial form, as follows:

data coeff;
input c_xx c_x c_y c_xy c_yy;
datalines;
1 -1 -2 -1 1
;

proc optmodel;
var x, y;
number c_xx, c_x, c_y, c_xy, c_yy;
read data coeff into c_xx c_x c_y c_xy c_yy;
min z=c_xx*x**2 + c_x*x + c_y*y + c_xy*x*y + c_yy*y**2;
solve;

These statements read the coefficients from a data set, COEFF. The NUMBER statement declares the
parameters. The READ DATA statement reads the parameters from the data set. You can apply this model
easily to coefficients that you have generated by various means.

Indexing
Many models have large numbers of variables or parameters that can be categorized into families of similar
purpose or behavior. Such families of items can be compactly represented in PROC OPTMODEL by using
indexing. You can use indexing to assign each item in such families to a separate value location.
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PROC OPTMODEL indexing is similar to array indexing in the DATA step, but it is more flexible. Index
values can be numbers or strings, and are not required to fit into some rigid sequence. PROC OPTMODEL
indexing is based on index sets, described further in the section “Index Sets” on page 52. For example, the
following statement declares an indexed parameter:

number p{1..3};

The construct that follows the parameter name p, “{1..3},” is a simple index set that uses a range expression
(see “Range Expression” on page 107). The index set contains the numeric members 1, 2, and 3. The
parameter has distinct value locations for each of the index set members. The first such location is referenced
as p[1], the second as p[2], and the third as p[3].

The following statements show an example of indexing:

proc optmodel;
number p{1..3};
p[1]=5;
p[2]=7;
p[3]=9;
put p[*]=;

The preceding statements produce a line such as the one shown in Figure 5.5 in the log.

Figure 5.5 Indexed Parameter Output

p[1]=5 p[2]=7 p[3]=9

Index sets can also specify local dummy parameters. A dummy parameter can be used as an operand in the
expressions that are controlled by the index set. For example, the assignment statements in the preceding
statements could be replaced by an initialization in the parameter declaration, as follows:

number p{i in 1..3} init 3 + 2*i;

The initialization value of the parameter location p[1] is evaluated with the value of the local dummy parameter
i equal to 1. So the initialization expression 3 + 2*i evaluates to 5. Similarly for location p[2], the value of i is
2 and the initialization expression evaluates to 7.

The OPTMODEL modeling language supports aggregation operators that combine values of an expression
where a local dummy parameter (or parameters) ranges over the members of a set. For example, the SUM
aggregation operator combines expression values by adding them together. The following statements output
21, since p[1] + p[2] + p[3] = 5 + 7 + 9 = 21:

proc optmodel;
number p{i in 1..3} init 3 + 2*i;
put (sum{i in 1..3} p[i]);

Aggregation operators like SUM are especially useful in objective expressions because they can combine a
large number of similar expressions into a compact representation. As an example, the following statements
define a trivial least squares problem:
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proc optmodel;
number n init 100000;
var x{1..n};
min z = sum{i in 1..n}(x[i] - log(i))**2;
solve;

The objective function in this case is

z D

nX
iD1

.xi � log i/2

Effectively, the objective expression expands to the following large expression:

min z = (x[1] - log(1))**2
+ (x[2] - log(2))**2
. . .
+ (x[99999] - log(99999))**2
+ (x[100000] - log(100000))**2;

Even though the problem has 100,000 variables, the aggregation operator SUM enables a compact objective
expression.

NOTE: PROC OPTMODEL classifies as mathematically impure any function that returns a different value
each time it is called. The RAND function, for example, falls into this category. PROC OPTMODEL
disallows impure functions inside array index sets, objectives, and constraint expressions.

Types
In PROC OPTMODEL, parameters and expressions can have numeric or character values. These correspond
to the elementary types named NUMBER and STRING, respectively. The NUMBER type is the same as
the SAS data set numeric type. The NUMBER type includes support for missing values. The STRING type
corresponds to the SAS character type, except that strings can have lengths up to a maximum of 65,534
characters (versus 32,767 for SAS character-type variables). The NUMBER and STRING types together are
called the scalar types. You can abbreviate the type names as NUM and STR, respectively.

PROC OPTMODEL also supports set types for parameters and expressions. Sets represent collections of
values of a member type, which can be a NUMBER, a STRING, or a vector of scalars (the latter is called a
tuple and described in the following paragraphs). Members of a set all have the same member type. Members
that have the same value are stored only once. For example, PROC OPTMODEL stores the set 2, 2, 2 as the
set 2.

Specify a set of numbers with SET<NUMBER>. Similarly, specify a set of strings as SET<STRING>.

A set can also contain a collection of tuples, all of the same fixed length. A tuple is an ordered collection that
contains a fixed number of elements. Each element in a tuple contains a scalar value. In PROC OPTMODEL,
tuples of length 1 are equivalent to scalars. Two tuples have equal values if the elements at corresponding
positions in each tuple have the same value. Within a set of tuples, the element type at a particular position
in each tuple is the same for all set members. The element types are part of the set type. For example, the
following statement declares parts as a set of tuples that have a string in the first element position and a
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number in the second element position and then initializes its elements to be <R 1>, <R 2>, <C 1>, and <C
2>.

set<string,number> parts = /<R 1> <R 2> <C 1> <C 2>/;

To create a compact model, use sets to take advantage of the structure of the problem being modeled. For
example, a model might contain various values that specify attributes for each member of a group of suppliers.
You could create a set that contains members that represent each supplier. You can then model the attribute
values by using arrays that are indexed by members of the set.

The section “Parameters” on page 46 has more details and examples.

Names
Names are used in the OPTMODEL modeling language to refer to various entities such as parameters or
variables. Names must follow the usual rules for SAS names. Names can be up to 32 characters long and are
not case sensitive. They must be declared before they are used.

Avoid declarations with names that begin with an underscore (_). These names can have special uses in
PROC OPTMODEL.

Parameters
In the OPTMODEL modeling language, parameters are named locations that hold constant values. Parameter
declarations specify the parameter type followed by a list of parameter names to declare. For example, the
following statement declares numeric parameters named a and b:

number a, b;

Similarly, the following statements declare a set s of strings, a set n of numbers, and a set sn of tuples:

set<string> s;
set<number> n;
set<string, number> sn;

You can assign values to parameters in various ways. A parameter can be assigned a value with an assignment
statement. For example, the following statements assign values to the parameter s, n, and sn in the preceding
declaration:

s = {'a', 'b', 'c'};
n = {1, 2, 3};
sn = {<'a',1>, <'b',2>, <'c',3>};

Parameter values can also be assigned using a READ DATA statement (see the section “READ DATA
Statement” on page 89).



Parameters F 47

A parameter declaration can provide an explicit value. To specify the value, follow the parameter name with
an equal sign (=) and an expression. The value expression can be written in terms of other parameters. The
declared parameter takes on a new value each time a parameter that is used in the expression changes. This
automatic value update is shown in the following example:

proc optmodel;
number pi=4*atan(1);
number r;
number circum=2*pi*r;
r=1;
put circum; /* prints 6.2831853072 */
r=2;
put circum; /* prints 12.566370614 */

The automatic update of parameter values makes it easy to perform “what if” analysis since, after the solver
finds a solution, you can change parameters and reinvoke the solver. You can easily examine the effects of
the changes on the optimal values.

If you declare a set parameter that has only the SET type specifier, then the element type is determined from
the initialization expression. If the initialization expression is omitted or if the expression is an empty set,
then the set type defaults to SET<NUMBER>. For example, the following statement implicitly declares s1
as a set of numbers:

set s1;

The following statement declares s2 as a set of strings:

set s2 = {'A'};

You can declare an array parameter by following the parameter name with an index set specification (see the
section “Index Sets” on page 52). For example, declare an array of 10 numbers as follows:

number c{1..10};

Individual locations of a parameter array can be referred to with an indexing expression. For example, you
can refer to the third location of parameter c as c[3]. Array index sets cannot be specified using a function
such as RAND that returns a different value each time it is called.

Parameter names must be declared before they are used. Nonarray names become available at the end of the
parameter declaration item. Array names become available after the index set specification. The latter case
permits some forms of recursion in the optional initialization expression that can be supplied for a parameter.

You do not need to assign values to parameters before they are referenced. Most information in PROC
OPTMODEL is stored symbolically and resolved when necessary. Values are resolved in certain statements.
For example, PROC OPTMODEL resolves a parameter used in the objective during the execution of a
SOLVE statement. If no value is available during resolution, then an error is diagnosed.
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Expressions
Expressions are grouped into three categories based on the types of values they can produce: logical, set, and
scalar (that is, numeric or character).

Logical expressions test for a Boolean (true or false) condition. As in the DATA step, logical operators
produce a value equal to either 0 or 1. A value of 0 represents a false condition, while a value of 1 represents
a true condition.

Logical expression operators are not allowed in certain contexts due to syntactic considerations. For example,
in the VAR statement a logical operator might indicate the start of an option. Enclose a logical expression in
parentheses to use it in such contexts. The difference is illustrated by the output (Figure 5.6) of the following
statements, where two variables, x and y, are declared with initial values. The PRINT statement and the
EXPAND statement are used to check the initial values and the variable bounds, respectively.

proc optmodel;
var x init 0.5 >= 0 <= 1;
var y init (0.5 >= 0) <= 1;
print x y;
expand;

Figure 5.6 Logical Expression in the VAR Statement

x y

0.5 1

Var x >= 0 <= 1
Var y <= 1

Contexts that expect a logical expression also accept numeric expressions. In such cases zero or missing
values are interpreted as false, and all nonzero nonmissing numeric values are interpreted as true.

Set expressions return a set value. PROC OPTMODEL supports a number of operators that create and
manipulate sets. See the section “OPTMODEL Expression Extensions” on page 102 for a description of the
various set expressions. Index-set syntax is described in the section “Index Sets” on page 52.

Scalar expressions are similar to the expressions in the DATA step except for PROC OPTMODEL extensions.
PROC OPTMODEL provides an IF expression (described in the section “IF-THEN/ELSE Expression” on
page 103). String lengths are assigned dynamically, so there is generally no padding or truncation of string
values.

Table 5.3 shows the expression operators from lower to higher precedence (a higher precedence is given a
larger number). Operators that have higher precedence are applied in compound expressions before operators
that have lower precedence. The table also gives the order of evaluation that is applied when multiple
operators of the same precedence are used together. Operators available in both PROC OPTMODEL and the
DATA step have compatible precedences, except that in PROC OPTMODEL the NOT operator has a lower
precedence than the relational operators. This means that, for example, NOT 1 < 2 is equal to NOT (1 < 2)

(which is 0), rather than (NOT 1) < 2 (which is 1).
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Table 5.3 Expression Operator Table

Precedence Associativity Operator Alternates
Logic Expression Operators

1 Left to right OR | !

2 Unary OR{index-set}
AND{index-set}

3 Left to right AND &

4 Unary NOT � ˆ :

5 Left to right < LT

> GT

<= LE

>= GE

= EQ

�= NE ˆ= :=
6 Left to right IN

NOT IN

7 Left to right WITHIN

NOT WITHIN

Set Expression Operators
11 IF l THEN s1 ELSE s2

12 Left to right UNION

DIFF

SYMDIFF

13 Unary UNION{index-set}
14 Left to right INTER

15 Unary INTER{index-set}
16 Left to right CROSS

17 Unary SETOF{index-set}
Right to left .. TO

.. e BY TO e BY

Scalar Expression Operators
21 IF l THEN e

IF l THEN e1 ELSE e2

22 Left to right || !!

23 Left to right + -

24 Unary SUM{index-set}
PROD{index-set}
MIN{index-set}
MAX{index-set}

25 Left to right * /

26 Unary + -

Right to left ><

<>

** ˆ
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Primary expressions are the individual operands that are combined using the expression operators. Simple
primary expressions can represent constants or named parameter and variable values. More complex primary
expressions can be used to call functions or construct sets.

Table 5.4 Primary Expression Table

Expression Description
identifier-expression Parameter/variable reference; see the section “Identi-

fier Expressions” on page 50
name (arg-list) Function call; arg-list is 0 or more expressions sepa-

rated by commas
n Numeric constant
. or .c Missing value constant
“string” or ‘string’ String constant
{ member-list } Set constructor; member-list is 0 or more scalar ex-

pressions or tuple expressions separated by commas
{ index-set } Index set expression; returns the set of all index set

members
/ members / Set literal expression; compactly specifies a simple

set value
( expression ) Expression enclosed in parentheses
< expr-list > Tuple expression; used with set operations; contains

one or more scalar expressions separated by commas

Identifier Expressions
Use an identifier-expression to refer to a variable, objective, constraint, parameter or problem location in
expressions or initializations. This is the syntax for identifier-expressions:

name Œ [ expression-1 Œ, . . . expression-n � ] � Œ . suffix � ;

To refer to a location in an array, follow the array name with a list of scalar expressions in square brackets ([
]). The expression values are compared to the index set that was used to declare name. If there is more than
one expression, then the values are formed into a tuple. The expression values for a valid array location must
match a member of the array’s index set. For example, the following statements define a parameter array A
that has two valid indices that match the tuples <1,2> and <3,4>:

proc optmodel;
set<number, number> ISET = {<1,2>, <3,4>};
number A{ISET};
a[1,2] = 0; /* OK */
a[3,2] = 0; /* invalid index */

The first assignment is valid with this definition of the index set, but the second fails because <3,2> is not a
member of the set parameter ISET.

Specify a suffix to refer to auxiliary locations for variables or objectives. See the section “Suffixes” on
page 131 for more information.
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Function Expressions
Most functions that can be invoked from the DATA step or the %SYSFUNC macro can be used in PROC
OPTMODEL expressions. Certain functions are specific to the DATA step and cannot be used in PROC
OPTMODEL. Functions specific to the DATA step include these:

• functions in the LAG, DIF, and DIM families

• functions that access the DATA step program data vector

• functions that access symbol attributes

The CALL statement can invoke SAS library subroutines. These subroutines can read and update the values
of the parameters and variables that are used as arguments. See the section “CALL Statement” on page 68
for an example.

OPTMODEL arrays can be passed to SAS library functions and subroutines using the argument syntax:

OF array-name[*] Œ . suffix � ;

The array-name is the name of an array symbol. The optional suffix allows auxiliary values to be referenced,
as described in section “Suffixes” on page 131.

The OF argument form is resolved into a sequence of arguments, one for each index in the array. The array
elements appear in order of the array’s index set. The OF array form is a compact alternative to listing the
array elements explicitly.

As an example, the following statements use the CALL SORTN function to sort the elements of a numeric
array:

proc optmodel;
number original{i in 1..8} = sin(i);
number sorted{i in 1..8} init original[i];
call sortn(of sorted[*]);
print original sorted;

The output is shown in Figure 5.7. Eight arguments are passed to the SORTN routine. The original column
shows the original order, and the sorted column has the sorted order.

Figure 5.7 Sorting Using an OF Array Argument

[1] original sorted

1 0.84147 -0.95892
2 0.90930 -0.75680
3 0.14112 -0.27942
4 -0.75680 0.14112
5 -0.95892 0.65699
6 -0.27942 0.84147
7 0.65699 0.90930
8 0.98936 0.98936
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NOTE: OF array arguments cannot be used with function calls in declarations when any of the function
arguments depend on variables, objectives, or implicit variables.

Index Sets
An index set represents a set of combinations of members from the component set expressions. The index set
notation is used in PROC OPTMODEL to describe collections of valid array indices and to specify sets of
values with which to perform an operation. Index sets can declare local dummy parameters and can further
restrict the set of combinations by a selection expression.

In an index-set specification, the index set consists of one or more index-set-items that are separated by
commas. Each index-set-item can include local dummy parameter declarations. An optional selection
expression follows the list of index-set-items. The following syntax, which describes an index set, usually
appears in braces ({}):

index-set-item Œ, . . . index-set-item � Œ : logic-expression � ;

index-set-item has these forms:

set-expression ;

name IN set-expression ;

< name-1 Œ, . . . name-n � > IN set-expression ;

Names that precede the IN keyword in index-set-items declare local dummy parameter names. Dummy
parameters correspond to the dummy index variables in mathematical expressions. For example, the following
statements output the number 385:

proc optmodel;
put (sum{i in 1..10} i**2);

The preceding statements evaluate this summation:

10X
iD1

i2 D 385

In both the statements and the summation, the index name is i .

The last form of index-set-item in the list can be modified to use the SLICE expression implicitly. See the
section “More on Index Sets” on page 151 for details.

Array index sets cannot be defined using functions that return different values each time the functions are
called. See the section “Indexing” on page 43 for details.

Syntax: OPTMODEL Procedure
PROC OPTMODEL statements are divided into three categories: the PROC statement, the declaration
statements, and the programming statements. The PROC statement invokes the procedure and sets initial
option values. The declaration statements declare optimization model components. The programming
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statements read and write data, invoke the solver, and print results. In the following text, the statements are
listed in the order in which they are grouped, with declaration statements first.

NOTE: Solver specific options are described in the individual chapters that correspond to the solvers.

PROC OPTMODEL options ;

Declaration Statements:
CONSTRAINT constraints ;
IMPVAR optimization expression declarations ;
MAX objective ;
MIN objective ;
NUMBER parameter declarations ;
PROBLEM problem declaration ;
SET Œ < types > � parameter declarations ;
STRING parameter declarations ;
VAR variable declarations ;

Programming Statements:
Assignment parameter = expression ;
CALL name Œ ( expressions ) � ;
CLOSEFILE files ;
CONTINUE ;
CREATE DATA SAS-data-set FROM columns ;
DO ; statements ; END ;
DO variable = specifications ; statements ; END ;
DO UNTIL ( logic ) ; statements ; END ;
DO WHILE ( logic ) ; statements ; END ;
DROP constraint ;
EXPAND name Œ / options � ;
FILE file ;
FIX variable Œ = expression � ;
FOR { index-set } statement ;
IF logic THEN statement ; Œ ELSE statement � ;
LEAVE ;
.null statement/ ;
PERFORMANCE options ;
PRINT print items ;
PUT put items ;
QUIT ;
READ DATA SAS-data-set INTO columns ;
RESET OPTIONS options ;
RESTORE constraint ;
SAVE MPS SAS-data-set Œ ( OBJECTIVE | OBJ ) name � ;
SAVE QPS SAS-data-set Œ ( OBJECTIVE | OBJ ) name � ;
SOLVE Œ WITH solver � Œ OBJECTIVE name � Œ RELAXINT � Œ / options � ;
STOP ;
SUBMIT arguments Œ / options � ;
UNFIX variable Œ = expression � ;
USE PROBLEM problem ;
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Functional Summary
The statements and options available with PROC OPTMODEL are summarized by purpose in Table 5.5.

Table 5.5 Functional Summary

Description Statement Option

Declaration Statements:
Declares a constraint CONSTRAINT
Declares optimization expressions IMPVAR
Declares a maximization objective MAX
Declares a minimization objective MIN
Declares a number type parameter NUMBER
Declares a problem PROBLEM
Declares a set type parameter SET
Declares a string type parameter STRING
Declares optimization variables VAR

Programming Statements:
Assigns a value to a variable or parameter =
Invokes a library subroutine CALL
Closes the opened file CLOSEFILE
Terminates one iteration of a loop statement CONTINUE
Creates a new SAS data set and copies data into
it from PROC OPTMODEL parameters and vari-
ables

CREATE DATA

Groups a sequence of statements together as a sin-
gle statement

DO

Executes statements repeatedly DO (iterative)
Executes statements repeatedly until some condi-
tion is satisfied

DO UNTIL

Executes statements repeatedly as long as some
condition is satisfied

DO WHILE

Ignores the specified constraint DROP
Prints the specified constraint, variable, or objec-
tive declaration expressions after expanding aggre-
gation operators, and so on

EXPAND

Selects a file for the PUT statement FILE
Treats a variable as fixed in value FIX
Executes the statement repeatedly FOR
Executes the statement conditionally IF
Terminates the execution of the entire loop body LEAVE
Null statement ;
Controls parallel execution PERFORMANCE
Outputs string and numeric data PRINT
Writes text data to the current output file PUT
Terminates the PROC OPTMODEL session QUIT
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Description Statement Option

Reads data from a SAS data set into PROC OPT-
MODEL parameters and variables

READ DATA

Sets PROC OPTMODEL option values or restores
them to their defaults

RESET OPTIONS

Adds a constraint that was previously dropped
back into the model

RESTORE

Saves the structure and coefficients for a linear
programming model into a SAS data set

SAVE MPS

Saves the structure and coefficients for a quadratic
programming model into a SAS data set

SAVE QPS

Invokes a PROC OPTMODEL solver SOLVE
Halts the execution of all statements that contain it STOP
Submits SAS code for execution SUBMIT
Reverses the effect of FIX statement UNFIX
Selects the current problem USE PROBLEM

PROC OPTMODEL Options:
Specifies the accuracy for nonlinear constraints PROC OPTMODEL CDIGITS=
Specifies the maximum number of error messages
displayed

PROC OPTMODEL ERRORLIMIT=

Specifies the method used to approximate numeric
derivatives

PROC OPTMODEL FD=

Specifies the accuracy for the objective function PROC OPTMODEL FDIGITS=
Passes initial values for variables to the solver PROC OPTMODEL INITVAR/NOINITVAR
Specifies the tolerance for rounding the bounds on
integer and binary variables

PROC OPTMODEL INTFUZZ=

Specifies the maximum length for MPS row and
column labels

PROC OPTMODEL MAXLABLEN=

Checks missing values PROC OPTMODEL MISSCHECK/NOMISSCHECK
Specifies the maximum number of non-error mes-
sages displayed

PROC OPTMODEL MSGLIMIT=

Specifies the number of digits to display PROC OPTMODEL PDIGITS=
Adjusts how two-dimensional array is displayed PROC OPTMODEL PMATRIX=
Specifies the type of presolve performed by the
PROC OPTMODEL presolver

PROC OPTMODEL PRESOLVER=

Specifies the tolerance, enabling the PROC OPT-
MODEL presolver to remove slightly infeasible
constraints

PROC OPTMODEL PRESTOL=

Enables or disables printing summary PROC OPTMODEL PRINTLEVEL=
Specifies the width to display numeric columns PROC OPTMODEL PWIDTH=
Specifies the smallest difference that is permitted
by the PROC OPTMODEL presolver between the
upper and lower bounds of an unfixed variable

PROC OPTMODEL VARFUZZ=
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PROC OPTMODEL Statement
PROC OPTMODEL Œ options � ;

The PROC OPTMODEL statement invokes the OPTMODEL procedure. You can specify options to control
how the optimization model is processed and how results are displayed. You can specify the following
options (these options can also be specified in the RESET statement).

CDIGITS=number
specifies the expected number of decimal digits of accuracy for nonlinear constraints. The value can
be fractional. PROC OPTMODEL uses this option to choose a step length when numeric derivative
approximations are required to evaluate the Jacobian of nonlinear constraints. The default value
depends on your operating environment. It is assumed that constraint values are accurate to the limits
of machine precision.

See the section “Automatic Differentiation” on page 149 for more information about numeric derivative
approximations.

ERRORLIMIT=number | NONE
specifies the maximum number of error messages that can be displayed. Specifying a value of number
in the range 1 to 231 � 1 sets a specific limit. Specifying ERRORLIMIT=NONE removes any existing
limit.

NOTE: Some errors abort processing immediately.

FD=FORWARD | CENTRAL
selects the method used to approximate numeric derivatives when analytic derivatives are unavailable.
Most solvers require the derivatives of the objective and constraints. The methods available are as
follows:

FD=FORWARD use forward differences

FD=CENTRAL use central differences

The default value is FORWARD. See the section “Automatic Differentiation” on page 149 for more
information about numeric derivative approximations.

FDIGITS=number
specifies the expected number of decimal digits of accuracy for the objective function. The value can
be fractional. PROC OPTMODEL uses the value to choose a step length when numeric derivatives
are required. The default value depends on your operating environment. It is assumed that objective
function values are accurate to the limits of machine precision.

See the section “Automatic Differentiation” on page 149 for more information about numeric derivative
approximations.

INITVAR | NOINITVAR
selects whether or not to pass initial values for variables to the solver when the SOLVE statement is
executed. INITVAR enables the current variable values to be passed. NOINITVAR causes the solver
to be invoked without any specific initial values for variables. The INITVAR option is the default.

The LP and QP solvers always ignore initial values. The NLP solvers attempt to use specified initial
values. The MILP solver uses initial values only if the PRIMALIN option is specified.
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INTFUZZ=number
specifies the tolerance for rounding the bounds on integer and binary variables to integer values.
Bounds that differ from an integer by at most number are rounded to that integer. Otherwise lower
boundsare rounded up to the next greater integer and upper bounds are rounded down to the next lesser
integer. The value of number can range between 0 and 0.5. The default value is 0.00001.

MAXLABLEN=number
specifies the maximum length for MPS row and column labels. The allowed range is 8 to 256, with 32
as the default. This option can also be used to control the length of row and column names displayed
by solvers, such as those found in the LP solver iteration log. See also the description of the .label
suffix in the section “Suffixes” on page 131.

MISSCHECK | NOMISSCHECK
enables detailed checking of missing values in expressions. MISSCHECK requests that a message
be produced each time PROC OPTMODEL evaluates an arithmetic operation or built-in function
that has missing value operands (except when the operation or function specifically supports missing
values). The MISSCHECK option can increase processing time. NOMISSCHECK turns off this
detailed reporting. NOMISSCHECK is the default.

MSGLIMIT=number | NONE
specifies the maximum number of non-error messages that can be displayed, including notes and
warnings. Specifying a value of number in the range 0 to 231 � 1 sets a specific limit. Specifying
MSGLIMIT=NONE removes any existing limit.

PDIGITS=number
requests that the PRINT statement display number significant digitsfor numeric columns for which no
format is specified. The value can range from 1 to 9. The default is 5.

PMATRIX=number
adjusts the density evaluation of a two-dimensional array to affect how it is displayed. The value
number scales the total number of nonempty array elements and is used by the PRINT statement
to evaluate whether a two-dimensional array is “sparse” or “dense.”Tables that contain a single two-
dimensional array are printed in list form if they are sparse and in matrix form if they are dense.
Any nonnegative value can be assigned to number ; the default value is 1. Specifying a value for the
PMATRIX= option that is less than 1 causes the list form to be used in more cases, while specifying a
value greater than 1 causes the matrix form to be used in more cases. If the value is 0, then the list
form is always used. See the section “PRINT Statement” on page 84 for more information.

PRESOLVER=number | string
specifies a presolve string or its corresponding value number, as listed in Table 5.6.

Table 5.6 Values for the PRESOLVER= Option

number string Description
–1 AUTOMATIC Applies presolver using default setting.
0 NONE Disables presolver.
1 BASIC Performs minimal processing, only substituting

fixed variables and removing empty feasible con-
straints.

2 MODERATE Applies a higher level of presolve processing.
3 AGGRESSIVE Applies the highest level of presolve processing.
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The OPTMODEL presolver tightens variable bounds and eliminates redundant constraints. In general,
this improves the performance of any solver. The AUTOMATIC option is intermediate between the
MODERATE and AGGRESSIVE levels.

NOTE: The OPTMODEL presolver is bypassed when using the LP, QP, or MILP solvers and when
saving problem data with the SAVE MPS and SAVE QPS statements.

PRESTOL=number
provides a tolerance so that slightly infeasible constraints can be eliminated by the OPTMODEL
presolver. If the magnitude of the infeasibility is no greater than num.jXj C 1/, where X is the value of
the original bound, then the empty constraint is removed from the presolved problem. OPTMODEL’s
presolver does not print messages about infeasible constraints and variable bounds when the infeasibility
is within the PRESTOL tolerance. The value of PRESTOL can range between 0 and 0.1; the default
value is 1E�12.

PRINTLEVEL=number
controls the level of listing output during a SOLVE command. The Output Delivery System (ODS)
tables printed at each level are listed in Table 5.7. Some solvers can produce additional tables; see the
individual solver chapters for more information.

Table 5.7 Values for the PRINTLEVEL= Option

number Description
0 Disables all tables.
1 Prints Problem Summary and Solution Summary.
2 Prints Problem Summary, Solution Summary, Methods of Derivative Com-

putation (for NLP solvers), Solver Options, Optimization Statistics, and
solver-specific ODS tables.

For more details about the ODS tables produced by PROC OPTMODEL, see the section “ODS Table
and Variable Names” on page 122.

PWIDTH=number
sets the width used by the PRINT statement to display numeric columns when no format is specified.
The smallest value number can take is the value of the PDIGITS= option plus 7; the largest value
number can take is 16. The default value is equal to the value of the PDIGITS= option plus 7.

VARFUZZ=number
specifies the smallest difference that is permitted by the OPTMODEL presolver between the upper and
lower bounds of an unfixed variable. If the difference is smaller than number, then the variable isfixed
to the average of the upper and lower bounds before it is presented to the solver. Any nonnegative
value can be assigned to number ; the default value is 0.

Declaration Statements
The declaration statements define the parameters, variables, constraints, and objectives that describe a PROC
OPTMODEL optimization model. Declarations in the PROC OPTMODEL input are saved for later use.
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Unlike programming statements, declarations cannot be nested in other statements. Declaration statements
are terminated by a semicolon.

Many declaration attributes, such as variable bounds, are defined using expressions. Expressions in declara-
tions are handled symbolically and are resolved as needed. In particular, expressions are generally reevaluated
when one of the parameter values they use has been changed.

CONSTRAINT Declaration

CONSTRAINT constraint Œ , . . . constraint � ;

CON constraint Œ , . . . constraint � ;

The constraint declaration defines one or more constraints on expressions in terms of the optimization
variables. You can specify multiple constraint declaration statements.

Constraints can have an upper bound, a lower bound, or both bounds. The allowed forms are as follows:

Œ name Œ { index-set } � : � expression = expression
declares an equality constraint or, when an index-set is specified, a family of equality
constraints. The solver attempts to assign values to the optimization variables to make the
two expressions equal.

Œ name Œ { index-set } � : � expression relation expression
declares an inequality constraint that has a single upper or lower bound. index-set declares
a family of inequality constraints. relation is the <= or >= operator. When relation is
the <= operator, the solver tries to assign optimization variable values so that the left
expression has a value less than or equal to the right expression. When relation is the >=
operator, the solver tries to assign optimization variable values so that the left expression
has a value greater than or equal to the right expression.

Œ name Œ { index-set } � : � bound relation body relation bound
declares an inequality constraint that is bounded on both sides, called a range constraint.
index-set declares a family of range constraints. relation is the <= or >= operator. The
same operator must be used in both positions. The first bound expression defines the
lower bound (if the <= operator is used) or the upper bound (if the >= operator is used).
The second bound defines the upper bound (if the <= operator is used) or the lower bound
(if the >= operator is used). The solver tries to assign optimization variables so that the
value of the body expression is in the range between the upper and lower bounds.

name defines the name for the constraint. Use the name to reference constraint attributes, such as the bounds,
elsewhere in the PROC OPTMODEL model. If no name is provided, then a default name is created of the
form _ACON_[n], where n is an integer. See the section “Constraints” on page 126 for more information.

Here is a simple example that defines a constraint with a lower bound:

proc optmodel;
var x, y;
number low;
con a: x+y >= low;
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The following example adds an upper bound:

var x, y;
number low;
con a: low <= x+y <= low+10;

Indexed families of constraints can be defined by specifying an index-set after the name. Any dummy
parameters that are declared in the index-set can be referenced in the expressions that define the constraint.
A particular member of an indexed family can be specified by using an identifier-expression with a bracketed
index list, in the same fashion as array parameters and variables. For example, the following statements
create an indexed family of constraints named incr:

proc optmodel;
number n;
var x{1..n}
/* require nondecreasing x values */
con incr{i in 1..n-1}: x[i+1] >= x[i];

The CON statement in the example creates constraints incr[1] through incr[n�1].

Constraint expressions cannot be defined using functions that return different values each time they are called.
See the section “Indexing” on page 43 for details.

IMPVAR Declaration

IMPVAR impvar-decl Œ , . . . impvar-decl � ;

The IMPVAR statement declares one or more names that refer to optimization expressions in the model. The
declared name is called an implicit variable. An implicit variable is useful for structuring models so that
complex expressions do not need to be repeated each time they are used. The value of an implicit variable
needs to be computed only once instead of at each place where the original expression is used, which helps
reduce computational overhead. Implicit variables are evaluated without intervention from the solver.

Multiple IMPVAR statements are allowed. The names of implicit variables must be distinct from other model
declarations, such as variables and constraints. Implicit variables can be used in model expressions in the
same places where ordinary variables are allowed.

This is the syntax for an impvar-decl:

name Œ { index-set } � = expression ;

Each impvar-decl declares a name for an implicit variable. The name can be followed by an index-set
specification to declare a family of implicit variables. The expression that the name refers to follows. Dummy
parameters that are declared in the index-set specification can be used in the expression. The expression
can refer to other model components, including variables, the current implicit variable, and other implicit
variables.

As an example, in the following model statements the implicit variable total_weight is used in multiple
constraints to set a limit on various product quantities, represented by locations in array x:

impvar total_weight = sum{p in PRODUCTS} Weight[p]*x[p];

con prod1_limit: Weight['Prod1'] * x['Prod1'] <= 0.3 * total_weight;
con prod2_limit: Weight['Prod2'] * x['Prod2'] <= 0.25 * total_weight;
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MAX and MIN Objective Declarations

MAX name Œ { index-set } � = expression ;

MIN name Œ { index-set } � = expression ;

The MAX or MIN declaration specifies an objective for the solver. The name names the objective function
for later reference. When a non-array objective declaration is read, the declaration becomes the new objective
of the current problem, replacing any previous objective. The solver maximizes an objective that is specified
with the MAX keyword and minimizes an objective that is specified with the MIN keyword. An objective is
not allowed to have the same name as a parameter or variable. Multiple objectives are permitted, but the
solver processes only one objective at a time.

expression specifies the numeric function to maximize or minimize in terms of the optimization-variables.
Specify an index-set to declare a family of objectives. Dummy parameters declared in the index-set
specification can be used in the following expression.

Objectives can also be used as implicit variables. When used in an expression, an objective name refers to
the current value of the named objective function. The value of an unsuffixed objective name can depend
on the value of optimization variables, so objective names cannot be used in constant expressions such as
variable bounds. You can reference objective names in objective or constraint expressions. For example, the
following statements declare two objective names, q and l, which are immediately referred to in the objective
declaration of z and the declarations of the constraints.

proc optmodel;
var x, y;
min q=(x+y)**2;
max l=x+2*y;
min z=q+l;
con c1: q<=4;
con c2: l>=2;

Objectives cannot be defined using functions that return different values each time they are called. See the
section “Indexing” on page 43 for details.

NUMBER, STRING, and SET Parameter Declarations

NUMBER parameter-decl Œ , . . . parameter-decl � ;

STRING parameter-decl Œ , . . . parameter-decl � ;

SET Œ < scalar-type, . . . scalar-type > � parameter-decl Œ , . . . parameter-decl � ;

Parameters provide names for constants. Parameters are declared by specifying the parameter type followed
by a list of parameter names. Declarations of parameters that have NUMBER or STRING types start with a
scalar-type specification:

NUMBER | NUM ;

STRING | STR ;

The NUM and STR keywords are abbreviations for the NUMBER and STRING keywords, respectively.
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The declaration of a parameter that has the set type begins with a set-type specification:

SET Œ < scalar-type, . . . scalar-type > � ;

In a set-type declaration, the SET keyword is followed by a list of scalar-type items that specify the member
type. A set with scalar members is specified with a single scalar-type item. A set with tuple members has a
scalar-type item for each tuple element. The scalar-type items specify the types of the elements at each tuple
position.

If the SET keyword is not followed by a list of scalar-type items, then the set type is determined from the type
of the initialization expression. The declared type defaults to SET<NUMBER> if no initialization expression
is given or if the expression type cannot be determined.

For any parameter type, the type declaration is followed by a list of parameter-decl items that specify the
names of the parameters to declare. In a parameter-decl item the parameter name can be followed by an
optional index specification and any necessary options, as follows:

name Œ { index-set } � Œ parameter-options � ;

The parameter name and index-set can be followed by a list of parameter-options. Dummy parameters
declared in the index-set can be used in the parameter-options. The parameter options can be specified with
the following forms:

= expression
provides an explicit value for each parameter location. In this case the parameter acts like
an alias for the expression value.

INIT expression
specifies a default value that is used when a parameter value is required but no other value
has been supplied. For example:

number n init 1;
set s init {'a', 'b', 'c'};

PROC OPTMODEL evaluates the expression for each parameter location the first time the
parameter needs to be resolved. The expression is not used when the parameter already
has a value.

= [ initializers ]
provides a compact means to define the values for an array, in which each array location
value can be individually specified by the initializers.

INIT [ initializers ]
provides a compact means to define multiple default values for an array. Each array
location value can be individually specified by the initializers. With this option the array
values can still be updated outside the declaration.

The =expression parameter option defines a parameter value by using a formula. The formula can refer to
other parameters. The parameter value is updated when the referenced parameters change. The following
example shows the effects of the update:

proc optmodel;
number n;
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set<number> s = 1..n;
number a{s};
n = 3;
a[1] = 2; /* OK */
a[7] = 19; /* error, 7 is not in s */
n = 10;
a[7] = 19; /* OK now */

In the preceding example the value of set s is resolved for each use of array a that has an index. For the first
use of a[7], the value 7 is not a member of the set s. However, the value 7 is a member of s at the second use
of a[7].

The INIT expression parameter option specifies a default value for a parameter. The following example
shows the usage of this option:

proc optmodel;
num a{i in 1..2} init i**2;
a[1] = 2;
put a[*]=;

When the value of a parameter is needed but no other value has been supplied, the default value specified by
INIT expression is used, as shown in Figure 5.8.

Figure 5.8 INIT Option: Output

a[1]=2 a[2]=4

NOTE: Parameter values can also be read from files or specified with assignment statements. However, the
value of a parameter that is assigned with the =expression or =[initializers] forms can be changed only by
modifying the parameters used in the defining expressions. Parameter values specified by the INIT option
can be reassigned freely.

Initializing Arrays
Arrays can be initialized with the =[initializers] or INIT [initializers] forms. These forms are convenient when
array location values need to be individually specified. The forms behave the same way, except that the INIT
[initializers] form allows the array values to be modified after the declaration. These forms of initialization
are used in the following statements:

proc optmodel;
number a{1..3} = [5 4 7];
number b{1..3} INIT [5 4 7];
put a[*]=;
b[1] = 1;
put b[*]=;

Each array location receives a different value, as shown in Figure 5.9. The displayed values for b are a
combination of the default values from the declaration and the assigned value in the statements.
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Figure 5.9 Array Initialization

a[1]=5 a[2]=4 a[3]=7
b[1]=1 b[2]=4 b[3]=7

Each initializer takes the following form:

Œ [ index ] � value ;

The value specifies the value of an array location and can be a numeric or string constant, a set literal, or an
expression enclosed in parentheses.

In array initializers, string constants can be specified using quoted strings. When the string text follows the
rules for a SAS name, the text can also be specified without quotation marks. String constants that begin with
a digit, contain blanks, or contain other special characters must be specified with a quoted string.

As an example, the following statements define an array parameter that could be used to map numeric days
of the week to text strings:

proc optmodel;
string dn{1..5} =

[Monday Tuesday Wednesday Thursday Friday];

The optional index in square brackets specifies the index of the array location to initialize. The index specifies
one or more numeric or string subscripts. The subscripts allow the same syntactic forms as the value items.
Commas can be used to separate index subscripts. For example, location a[1,’abc’] of an array a could be
specified with the index [1 abc]. The following example initializes just the diagonal locations in a square
array:

proc optmodel;
number m{1..3,1..3} = [[1 1] 0.1 [2 2] 0.2 [3 3] 0.3];

An index does not need to specify all the subscripts of an array location. If the index begins with a comma,
then only the rightmost subscripts of the index need to be specified. The preceding subscripts are supplied
from the index that was used by the preceding initializer. This can simplify the initialization of arrays that are
indexed by multiple subscripts. For example, you can add new entries to the matrix of the previous example
by using the following statements:

proc optmodel;
number m{1..3,1..3} = [[1 1] 0.1 [,3] 1

[2 2] 0.2 [,3] 2
[3 3] 0.3];

The spacing shows the layout of the example array. The previous example was updated by initializing two
more values at m[1,3] and m[2,3].

If an index is omitted, then the next location in the order of the array’s index set is initialized. If the index set
has multiple index-set-items, then the rightmost indices are updated before indices to the left are updated. At
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the beginning of the initializer list, the rightmost index is the first member of the index set. The index set
must use a range expression to avoid unpredictable results when an index value is omitted.

The initializers can be followed by commas. The use of commas has no effect on the initialization. The
comma can be used to clarify layout. For example, the comma could separate rows in a matrix.

Not every array location needs to be initialized. The locations without an explicit initializer are set to zero for
numeric arrays, set to an empty string for string arrays, and set to an empty set for set arrays.

NOTE: An array location must not be initialized more than once during the processing of the initializer list.

PROBLEM Declaration

PROBLEM name Œ { index-set } � Œ FROM problem-id � Œ INCLUDE problem-items � ;

Problems are declared with the PROBLEM declaration. Problem declarations track an objective, a set of
included variables and constraints, and some status information that is associated with the variables and
constraints. The problem name can optionally be followed by an index-set to create a family of problems.
When a problem is first used (via the USE PROBLEM statement), the specifications from the optional FROM
and INCLUDE clauses create the initial set of included variables, constraints, and the problem objective. An
empty problem is created if neither clause is specified. The clauses are applied only when the problem is first
used with the USE PROBLEM statement.

The FROM clause specifies an existing problem from which to copy the included symbols. The problem-id
is an identifier expression. The dropped and fixed status for these symbols in the specified problem is also
copied.

The INCLUDE clause specifies a list of variables, constraints, and objectives to include in the problem. These
items are included with default status (unfixed and undropped) which overrides the status from the FROM
clause, if it exists. Each item is specified with one of the following forms:

identifier-expression
includes the specified items in the problem. The identifier-expression can be a symbol
name or an array symbol with explicit index. If an array symbol is used without an index,
then all array elements are included.

{ index-set } identifier-expression
includes the specified subset of items in the problem. The item specified by the identifier-
expression is added to the problem for each member of the index-set . The dummy
parameters from the index-set can be used in the indexing of the identifier-expression. If
the identifier-expression is an array symbol without indexing, then the index-set provides
the indices for the included locations.

You can use the FROM and INCLUDE clauses to designate the initial objective for a problem. The objective
is copied from the problem designated by the FROM clause, if present. Then the INCLUDE clause, if any, is
applied, and the last objective specified becomes the initial objective.

The following statements declare some problems with a variable x and different objectives to illustrate some
of the ways of including model components. Note that the statements use the predeclared problem _START_
to avoid resetting the objective in prob2 when the objective z3 is declared.
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proc optmodel;
problem prob1;
use problem prob1;
var x >= 0; /* included in prob1 */
min z1 = (x-1)**2; /* included in prob1 */
expand; /* prob1 contains x, z1 */

problem prob2 from prob1;
use problem prob2; /* includes x, z1 */
min z2 = (x-2)**2; /* resets prob2 objective to z2 */
expand; /* prob2 contains x, z2 */

use problem _start_; /* don't modify prob2 */
min z3 = (x-3)**2;
problem prob3 include x z3;
use problem prob3;
expand; /* prob3 contains x, z3 */

See the section “Multiple Subproblems” on page 146 for more details about problem processing.

VAR Declaration

VAR var-decl Œ , . . . var-decl � ;

The VAR statement declares one or more optimization variables. Multiple VAR statements are permitted. A
variable is not allowed to have the same name as a parameter or constraint.

Each var-decl specifies a variable name. The name can be followed by an array index-set specification and
then variable options. Dummy parameters declared in the index set specification can be used in the following
variable options.

Here is the syntax for a var-decl:

name Œ { index-set } � Œ var-options � ;

For example, the following statements declare a group of 100 variables, x[1]–x[100]:

proc optmodel;
var x{1..100};

Here are the available variable options:

INIT expression
sets an initial value for the variable. The expression is used only the first time the value is
required. If no initial value is specified, then 0 is used by default.

>= expression
sets a lower bound for the variable value. The default lower bound is �1.

<= expression
sets an upper bound for the variable value. The default upper bound is1.

INTEGER
requests that the solver assign the variable an integer value.
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BINARY
requests that the solver assign the variable a value of either 0 or 1.

For example, the following statements declare a variable that has an initial value of 0.5. The variable is
bounded between 0 and 1:

proc optmodel;
var x init 0.5 >= 0 <= 1;

The values of the bounds can be determined later by using suffixed references to the variable. For example,
the upper bound for variable x can be referred to as x.ub. In addition the bounds options can be overridden by
explicit assignment to the suffixed variable name. Suffixes are described further in the section “Suffixes” on
page 131.

When used in an expression, an unsuffixed variable name refers to the current value of the variable. Unsuffixed
variables are not allowed in the expressions for options that define variable bounds or initial values. Such
expressions have values that must be fixed during execution of the solver.

Programming Statements
PROC OPTMODEL supports several programming statements. You can perform various actions with these
statements, such as reading or writing data sets, setting parameter values, generating text output, or invoking
a solver.

Statements are read from the input and are executed immediately when complete. Certain statements can
contain one or more substatements. The execution of substatements is held until the statements that contain
them are submitted. Parameter values that are used by expressions in programming statements are resolved
when the statement is executed; this resolution might cause errors to be detected. For example, the use of
undefined parameters is detected during resolution of the symbolic expressions from declarations.

A statement is terminated by a semicolon. The positions at which semicolons are placed are shown explicitly
in the following statement syntax descriptions.

The programming statements can be grouped into the categories shown in Table 5.8.

Table 5.8 Types of Programming Statements in PROC OPTMODEL

Control Looping General Input/Output Model
DO CONTINUE Assignment CLOSEFILE DROP
IF FOR CALL CREATE DATA EXPAND
Null (;) DO Iterative PERFORMANCE FILE FIX
QUIT DO UNTIL RESET OPTIONS PRINT RESTORE
STOP DO WHILE SUBMIT PUT SOLVE

LEAVE READ DATA UNFIX
SAVE MPS USE PROBLEM
SAVE QPS
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Assignment Statement

identifier-expression = expression ;

The assignment statement assigns a variable or parameter value. The type of the target identifier-expression
must match the type of the right-hand-side expression.

For example, the following statements set the current value for variable x to 3:

proc optmodel;
var x;
x = 3;

NOTE: Parameters that were declared with the equal sign (=) initialization forms must not be reassigned a
value with an assignment statement. If this occurs, PROC OPTMODEL reports an error.

CALL Statement

CALL name ( argument-1 Œ , . . . argument-n � ) ;

The CALL statement invokes the named library subroutine. The values that are determined for each argument
expression are passed to the subroutine when the subroutine is invoked. The subroutine can update the
values of PROC OPTMODEL parameters and variables when an argument is an identifier-expression (see
the section “Identifier Expressions” on page 50). For example, the following statements set the parameter
array a to a random permutation of 1 to 4:

proc optmodel;
number a{i in 1..4} init i;
number seed init -1;
call ranperm(seed, a[1], a[2], a[3], a[4]);

See SAS Functions and CALL Routines: Reference for a list of CALL routines.

CLOSEFILE Statement

CLOSEFILE file-specifications ;

The CLOSEFILE statement closes files that were opened by the FILE statement. Each file is specified
by a logical name, a physical filename in quotation marks, or an expression enclosed in parentheses that
evaluates to a physical filename. See the section “FILE Statement” on page 79 for more information about
file specifications.

The following example shows how the CLOSEFILE statement is used with a logical filename:

filename greet 'hello.txt';
proc optmodel;

file greet;
put 'Hi!';
closefile greet;

Generally you must close a file with a CLOSEFILE statement before external programs can access the file.
However, any open files are automatically closed when PROC OPTMODEL terminates.
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CONTINUE Statement

CONTINUE ;

The CONTINUE statement terminates the current iteration of the loop statement (iterative DO, DO UNTIL,
DO WHILE, or FOR) that immediately contains the CONTINUE statement. Execution resumes at the start of
the loop after checking WHILE or UNTIL tests. The FOR or iterative DO loops apply new iteration values.

CREATE DATA Statement

CREATE DATA SAS-data-set FROM Œ [ key-columns ] Œ = key-set � � columns ;

The CREATE DATA statement creates a new SAS data set and copies data into it from PROC OPTMODEL
parameters and variables. The CREATE DATA statement can create a data set with a single observation or a
data set with observations for every location in one or more arrays. The data set is closed after the execution
of the CREATE DATA statement.

The arguments to the CREATE DATA statement are as follows:

SAS-data-set
specifies the output data set name and options.

key-columns
declares index values and their corresponding data set variables. The values are used to
index array locations in columns.

key-set
specifies a set of index values for the key-columns.

columns
specifies data set variables as well as the PROC OPTMODEL source data for the variables.

Each column or key-column defines output data set variables and a data source for a column. For example,
the following statement generates the output SAS data set resdata from the PROC OPTMODEL array opt,
which is indexed by the set indset:

create data resdata from [solns]=indset opt;

The output data set variable solns contains the index elements in indset.

Columns
Columns can have the following forms:

identifier-expression Œ / options �
transfers data from the PROC OPTMODEL parameter or variable specified by the
identifier-expression. The output data set variable has the same name as the name
part of the identifier-expression (see the section “Identifier Expressions” on page 50). If
the identifier-expression refers to an array, then the index can be omitted when it matches
the key-columns. The options enable formats and labels to be associated with the data
set variable. See the section “Column Options” on page 71 for more information. The
following example creates a data set with the variables m and n:
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proc optmodel;
number m = 7, n = 5;
create data example from m n;

name = expression Œ / options �
transfers the value of a PROC OPTMODEL expression to the output data set variable
name. The expression is reevaluated for each observation. If the expression contains any
operators or function calls, then it must be enclosed in parentheses. If the expression is
an identifier-expression that refers to an array, then the index can be omitted if it matches
the key-columns. The options enable formats and labels to be associated with the data
set variable. See the section “Column Options” on page 71 for more information. The
following example creates a data set with the variable ratio:

proc optmodel;
number m = 7, n = 5;
create data example from ratio=(m/n);

COL(name-expression) = expression Œ / options �
transfers the value of a PROC OPTMODEL expression to the output data set variable
named by the string expression name-expression. The PROC OPTMODEL expression is
reevaluated for each observation. If this expression contains any operators or function
calls, then it must be enclosed in parentheses. If the PROC OPTMODEL expression is an
identifier-expression that refers to an array, then the index can be omitted if it matches
the key-columns. The options enable formats and labels to be associated with the data
set variable. See the section “Column Options” on page 71 for more information. The
following example uses the COL expression to form the variable s5:

proc optmodel;
number m = 7, n = 5;
create data example from col("s"||n)=(m+n);

{ index-set } < columns >
performs the transfers by iterating each column specified by < columns > for each member
of the index set . If there are n columns and m index set members, then n �m columns
are generated. The dummy parameters from the index set can be used in the columns
to generate distinct output data set variable names in the iterated columns, using COL
expressions. The columns are expanded when the CREATE DATA statement is executed,
before any output is performed. This form of columns cannot be nested. In other words,
the following form of columns is NOT allowed:

{ index-set } < { index-set } < columns > >

The following example demonstrates the use of the iterated columns form:

proc optmodel;
set<string> alph = {'a', 'b', 'c'};
var x{1..3, alph} init 2;
create data example from [i]=(1..3)

{j in alph}<col("x"||j)=x[i,j]>;

The data set created by these statements is shown in Figure 5.10.
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Figure 5.10 CREATE DATA with COL Expression

Obs i xa xb xc

1 1 2 2 2
2 2 2 2 2
3 3 2 2 2

NOTE: When no key-columns are specified, the output data set has a single observation.

The following statements incorporate several of the preceding examples to create and print a data set by using
PROC OPTMODEL parameters:

proc optmodel;
number m = 7, n = 5;
create data example from m n ratio=(m/n) col("s"||n)=(m+n);

proc print;
run;

The output from the PRINT procedure is shown in Figure 5.11.

Figure 5.11 CREATE DATA for Single Observation

Obs m n ratio s5

1 7 5 1.4 12

Column Options
Each column or key-column that defines a data set variable can be followed by zero or more of the following
modifiers:

FORMAT=format.
associates a format with the current column.

INFORMAT=informat.
associates an informat with the current column.

LABEL=’label’
associates a label with the current column. The label can be specified by a quoted string
or an expression in parentheses.

LENGTH=length
specifies a length for the current column. The length can be specified by a numeric
constant or a parenthesized expression. The range for character variables is 1 to 32,767
bytes. The range for numeric variables depends on the operating environment and has a
minimum of 2 or 3.

TRANSCODE=YES j NO
specifies whether character variables can be transcoded. The default value is YES. See
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the TRANSCODE=option of the ATTRIB statement in SAS Statements: Reference for
more information.

The following statements demonstrate the use of column options, including the use of multiple options for a
single column:

proc optmodel;
num sq{i in 1..10} = i*i;
create data squares from [i/format=hex2./length=3] sq/format=6.2;

proc print;
run;

The output from the PRINT procedure is shown in Figure 5.12.

Figure 5.12 CREATE DATA for Single Observation

Obs i sq

1 01 1.00
2 02 4.00
3 03 9.00
4 04 16.00
5 05 25.00
6 06 36.00
7 07 49.00
8 08 64.00
9 09 81.00
10 0A 100.00

Key Columns
Key-columns declare index values that enable multiple observations to be written from array columns. An
observation is created for each unique index value combination. The index values supply the index for array
columns that do not have an explicit index.

Key-columns define the data set variables where the index value elements are written. They can also declare
local dummy parameters for use in expressions in the columns. Key-columns are syntactically similar to
columns, but are more restricted in form. The following forms of key-columns are allowed:

name Œ / options �
transfers an index element value to the data set variable name. A local dummy parameter,
name, is declared to hold the index element value. The options enable formats and labels
to be associated with the data set variable. See the section “Column Options” on page 71
for more information.

COL(name-expression) Œ = index-name � Œ / options �
transfers an index element value to the data set variable named by the string-valued name-
expression. The argument index-name optionally declares a local dummy parameter to
hold the index element value. The options enable formats and labels to be associated with
the data set variable. See the section “Column Options” on page 71 for more information.
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A key-set in the CREATE DATA statement explicitly specifies the set of index values. key-set can be
specified as a set expression, although it must be enclosed in parentheses if it contains any function calls
or operators. key-set can also be specified as an index set expression, in which case the index-set dummy
parameters override any dummy parameters that are declared in the key-columns items. The following
statements create a data set from the PROC OPTMODEL parameter m, a matrix whose only nonzero entries
are located at (1, 1) and (4, 1):

proc optmodel;
number m{1..5, 1..3} = [[1 1] 1 [4 1] 1];
create data example

from [i j] = {setof{i in 1..2}<i**2>, {1, 2}} m;

proc print data=example noobs;
run;

The dummy parameter i in the SETOF expression takes precedence over the dummy parameter i declared in
the key-columns item. The output from these statements is shown in Figure 5.13.

Figure 5.13 CREATE: key-set with SETOF Aggregation Expression

i j m

1 1 1
1 2 0
4 1 1
4 2 0

If no key-set is specified, then the set of index values is formed from the union of the index sets of the
implicitly indexed columns. The number of index elements for each implicitly indexed array must match the
number of key-columns. The type of each index element (string versus numeric) must match the element of
the same position in other implicit indices.

The arrays for implicitly indexed columns in a CREATE DATA statement do not need to have identical index
sets. A missing value is supplied for the value of an implicitly indexed array location when the implied index
value is not in the array’s index set.

In the following statements, the key-set is unspecified. The set of index values is f1; 2; 3g, which is the union
of the index sets of x and y. These index sets are not identical, so missing values are supplied when necessary.
The results of these statements are shown in Figure 5.14.

proc optmodel;
number x{1..2} init 2;
var y{2..3} init 3;
create data exdata from [keycol] x y;

proc print;
run;
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Figure 5.14 CREATE: Unspecified key-set

Obs keycol x y

1 1 2 .
2 2 2 3
3 3 . 3

The types of the output data set variables match the types of the source values. The output variable type for a
key-columns matches the corresponding element type in the index value tuple. A numeric element matches
a NUMERIC data set variable, while a string element matches a CHAR variable. For regular columns
the source expression type determines the output data set variable type. A numeric expression produces a
NUMERIC variable, while a string expression produces a CHAR variable.

Lengths of character variables in the output data set are determined automatically. The length is set to
accommodate the longest string value output in that column.

You can use the iterated columns form to output selected rows of multiple arrays, assigning a different
data set variable to each column. For example, the following statements output the last two rows of the
two-dimensional array, a, along with corresponding elements of the one-dimensional array, b:

proc optmodel;
num m = 3; /* number of rows/observations */
num n = 4; /* number of columns in a */
num a{i in 1..m, j in 1..n} = i*j; /* compute a */
num b{i in 1..m} = i**2; /* compute b */
set<num> subset = 2..m; /* used to omit first row */
create data out

from [i]=subset {j in 1..n}<col("a"||j)=a[i,j]> b;

The preceding statements create a data set out, which has m � 1 observations and n C 2 variables. The
variables are named i, a1 through an, and b, as shown in Figure 5.15.

Figure 5.15 CREATE DATA Set: The Iterated Column Form

Obs i a1 a2 a3 a4 b

1 2 2 4 6 8 4
2 3 3 6 9 12 9

See the section “Data Set Input/Output” on page 115 for more examples of using the CREATE DATA
statement.

DO Statement

DO ; statements ; END ;

The DO statement groups a sequence of statements together as a single statement. Each statement within the
list is executed sequentially. The DO statement can be used for grouping with the IF and FOR statements.
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DO Statement, Iterative

DO name = specification-1 Œ , . . . specification-n � ; statements ; END ;

The iterative DO statement assigns the values from the sequence of specification items to a previously
declared parameter or variable, name. The specified statement sequence is executed after each assignment.
This statement corresponds to the iterative DO statement of the DATA step.

Each specification provides either a single number or a single string value, or a sequence of such values.
Each specification takes the following form:

expression Œ WHILE( logic-expression ) j UNTIL( logic-expression ) � ;

The expression in the specification provides a single value or set of values to assign to the target name.
Multiple values can be provided for the loop by giving multiple specification items that are separated by
commas. For example, the following statements output the values 1, 3, and 5:

proc optmodel;
number i;
do i=1,3,5;

put i;
end;

In this case, the same effect can be achieved with a single range expression in place of the explicit list of
values, as in the following statements:

proc optmodel;
number i;
do i=1 to 5 by 2;

put 'value of i assigned by the DO loop = ' i;
i=i**2;
put 'value of i assigned in the body of the loop = ' i;

end;

The output of these statements is shown in Figure 5.16.

Figure 5.16 DO Loop: Name Parameter Unaffected

value of i assigned by the DO loop = 1
value of i assigned in the body of the loop = 1
value of i assigned by the DO loop = 3
value of i assigned in the body of the loop = 9
value of i assigned by the DO loop = 5
value of i assigned in the body of the loop = 25

Unlike the DATA step, a range expression requires the limit to be specified. Additionally the BY part, if any,
must follow the limit expression. Moreover, although the name parameter can be reassigned in the body of
the loop, the sequence of values that is assigned by the DO loop is unaffected.

The argument expression can also be an expression that returns a set of numbers or strings. For example,
the following statements produce the same sequence of values for i as the previous statements but use a set
parameter value:
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proc optmodel;
set s = {1,3,5};
number i;
do i = s;

put i;
end;

Each specification can include a WHILE or UNTIL clause. A WHILE or UNTIL clause applies to the
expression that immediately precedes the clause. The sequence that is specified by an expression can be
terminated early by a WHILE or UNTIL clause. A WHILE logic-expression is evaluated for each sequence
value before the nested statements. If the logic-expression returns a false (zero or missing) value, then the
current sequence is terminated immediately. An UNTIL logic-expression is evaluated for each sequence value
after the nested statements. The sequence from the current specification is terminated if the logic-expression
returns a true value (nonzero and nonmissing). After early termination of a sequence due to a WHILE or
UNTIL expression, the DO loop execution continues with the next specification, if any.

To demonstrate use of the WHILE clause, the following statements output the values 1, 2, and 3. In this case
the sequence of values from the set s is stopped when the value of i reaches 4.

proc optmodel;
set s = {1,2,3,4,5};
number i;
do i = s while(i NE 4);

put i;
end;

DO UNTIL Statement

DO UNTIL ( logic-expression ) statements ; END ;

The DO UNTIL loop executes the specified sequence of statements repeatedly until the logic-expression,
evaluated after the statements, returns true (a nonmissing nonzero value).

For example, the following statements output the values 1 and 2:

proc optmodel;
number i;
i = 1;
do until (i=3);

put i;
i=i+1;

end;

Multiple criteria can be introduced using expression operators, as in the following example:

do until (i=3 and j=7);

For a list of expression operators, see Table 5.3.
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DO WHILE Statement

DO WHILE ( logic-expression ) statements ; END ;

The DO WHILE loop executes the specified sequence of statements repeatedly as long as the logic-expression,
evaluated before the statements, returns true (a nonmissing nonzero value).

For example, the following statements output the values 1 and 2:

proc optmodel;
number i;
i = 1;
do while (i<3);

put i;
i=i+1;

end;

Multiple criteria can be introduced using expression operators, as in the following example:

do while (i<3 and j<7);

For a list of expression operators, see Table 5.3.

DROP Statement

DROP identifier-list ;

The DROP statement causes the solver to ignore a list of constraints, constraint arrays, or constraint array
locations. The space-delimited identifier-list specifies the names of the dropped constraints. Each constraint,
constraint array, or constraint array location is named by an identifier-expression. An entire constraint array
is dropped if an identifier-expression omits the index for an array name.

The following example statements use the DROP statement:

proc optmodel;
var x{1..10};
con c1: x[1] + x[2] <= 3;
con disp{i in 1..9}: x[i+1] >= x[i] + 0.1;

drop c1; /* drops the c1 constraint */
drop disp[5]; /* drops just disp[5] */
drop disp; /* drops all disp constraints */

The constraint can be added back to the model with the RESTORE statement.

The following line drops both the c1 and disp[5] constraints:

drop c1 disp[5];

EXPAND Statement

EXPAND Œ identifier-expression � Œ / options � ;

The EXPAND statement prints the specified constraint, variable, implicit variable, or objective declaration
expressions in the current problem after expanding aggregation operators, substituting the current value for
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parameters and indices, and resolving constant subexpressions. identifier-expression is the name of a variable,
objective, or constraint. If the name is omitted and no options are specified, then all variables, objectives,
implicit variables, and undropped constraints in the current problem are printed. The following statements
show an example EXPAND statement:

proc optmodel;
number n=2;
var x{1..n};
min z1=sum{i in 1..n}(x[i]-i)**2;
max z2=sum{i in 1..n}(i-x[i])**3;
con c{i in 1..n}: x[i]>=0;
fix x[2]=3;
expand;

These statements produce the output in Figure 5.17.

Figure 5.17 EXPAND Statement Output

Var x[1]
Fix x[2] = 3
Maximize z2=(-x[1] + 1)**3 + (-x[2] + 2)**3
Constraint c[1]: x[1] >= 0
Constraint c[2]: x[2] >= 0

Specifying an identifier-expression restricts output to the specified declaration. A non-array name prints only
the specified item. If an array name is used with a specific index, then information for the specified array
location is output. Using an array name without an index restricts output to all locations in the array.

You can use the following options to further control the EXPAND statement output:

SOLVE
causes the EXPAND statement to print the variables, objectives, and constraints in the
same form that would be seen by the solver if a SOLVE statement were executed. This
includes any transformations by the PROC OPTMODEL presolver (see the section
“Presolver” on page 141). In this form any fixed variables are replaced by their values.
Unless an identifier-expression specifies a particular non-array item or array location,
the EXPAND output is restricted to only the variables, the constraints, and the current
problem objective.

The following options restrict the types of declarations output when no specific non-array item or array
location is requested. By default, all types of declarations are output. Only the requested declaration types
are output when one or more of the following options are used.

CONSTRAINT | CON
requests the output of undropped constraints.

FIX
requests the output of fixed variables. These variables might have been fixed by the FIX
statement (or by the presolver if the SOLVE option is specified). The FIX option can also
be used in combination with the name of a variable array to display just the fixed elements
of the array.
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IIS
restricts the display to items found in the irreducible infeasible set (IIS) after the most
recent SOLVE performed by the LP solver with the IIS=ON option. The IIS option for
the EXPAND statement can also be used in combination with the name of a variable or
constraint array to display only the elements of the array in the IIS. For more information
about IIS, see the section “Irreducible Infeasible Set” on page 200.

IMPVAR
requests the output of implicit variables referenced in the current problem.

OBJECTIVE | OBJ
requests the output of objectives used in the current problem. This includes the current
problem objective and any objectives referenced as implicit variables.

OMITTED requests the output of variables that are referenced by problem equations but were not
included in the current USE PROBLEM instance. The OPTMODEL procedure omits
these variables from the generated problem.

VAR
requests the output of unfixed variables. The VAR option can also be used in combination
with the name of a variable array to display just the unfixed elements of the array.

For example, you can see the effect of a FIX statement on the problem that is presented to the solver by using
the SOLVE option. You can modify the previous example as follows:

proc optmodel;
number n=2;
var x{1..n};
min z1=sum{i in 1..n}(x[i]-i)**2;
max z2=sum{i in 1..n}(i-x[i])**3;
con c{i in 1..n}: x[i]>=0;
fix x[2]=3;
expand / solve;

These statements produce the output in Figure 5.18.

Figure 5.18 Expansion with Fixed Variable

Var x[1] >= 0
Fix x[2] = 3
Maximize z2=(-x[1] + 1)**3 - 1

Compare the results in Figure 5.18 to those in Figure 5.17. The constraint c[1] has been converted to a
variable bound. The subexpression that uses the fixed variable has been resolved to a constant.

FILE Statement

FILE file-specification Œ LRECL=value � ;

The FILE statement selects the current output file for the PUT statement. By default PUT output is sent to the
SAS log. Use the FILE statement to manage a group of output files. The specified file is opened for output if
it is not already open. The output file remains open until it is closed with the CLOSEFILE statement.

file-specification names the output file. It can use any of the following forms:
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’external-file’
specifies the physical name of an external file in quotation marks. The interpretation of
the filename depends on the operating environment.

file-name
specifies the logical name associated with a file by the FILENAME statement or by the
operating environment. The names PRINT and LOG are reserved to refer to the SAS
listing and log files, respectively.

NOTE: Details about the FILENAME statement can be found in SAS Statements: Refer-
ence.

( expression )
specifies an expression that evaluates to a string that contains the physical name of an
external file.

The LRECL= option sets the line length of the output file. The LRECL= option is ignored if the file is already
open or if the PRINT or LOG file is specified.

The LRECL= value can be specified in these forms:

integer
specifies the desired line length.

identifier-expression
specifies the name of a numeric parameter that contains the length.

( expression )
specifies a numeric expression in parentheses that returns the line length.

The LRECL= value cannot exceed the largest four-byte signed integer, which is 231 � 1.

The following example shows how to use the FILE statement to handle multiple files:

proc optmodel;
file 'file.txt' lrecl=80; /* opens file.txt */
put 'This is line 1 of file.txt.';
file print; /* selects the listing */
put 'This goes to the listing.';
file 'file.txt'; /* reselects file.txt */
put 'This is line 2 of file.txt.';
closefile 'file.txt'; /* closes file.txt */
file log; /* selects the SAS log */
put 'This goes to the log.';

/* using expression to open and write a collection of files */
str ofile;
num i;
num l = 40;
do i = 1 to 3;

ofile = ('file' || i || '.txt');
file (ofile) lrecl=(l*i);
put ('This goes to ' || ofile);
closefile (ofile);

end;
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The following statements illustrate the usefulness of using a logical name associated with a file by FILENAME
statement:

proc optmodel;
/* assigns a logical name to file.txt */
/* see FILENAME statement in */
/* SAS Statements: Reference */
filename myfile 'file.txt' mod;

file myfile;
put 'This is line 3 of file.txt.';
closefile myfile;
file myfile;
put 'This is line 4 of file.txt.';
closefile myfile;

Notice that the FILENAME statement opens the file referenced for append. Therefore, new data are appended
to the end every time the logical name, myfile, is used in the FILE statement.

FIX Statement

FIX identifier-list Œ = ( expression ) � ;

The FIX statement causes the solver to treat a list of variables, variable arrays, or variable array locations as
fixed in value. The identifier-list consists of one or more variable names separated by spaces. Each member
of the identifier-list is fixed to the same expression. For example, the following statements fix the variables x
and y to 3:

proc optmodel;
var x, y;
num a = 2;
fix x y=(a+1);

A variable is specified with an identifier-expression (see the section “Identifier Expressions” on page 50).
An entire variable array is fixed if the identifier-expression names an array without providing an index. A
new value can be specified with the expression. If the expression is a constant, then the parentheses can be
omitted. For example, the following statements fix all locations in array x to 0 except x[10], which is fixed to
1:

proc optmodel;
var x{1..10};
fix x = 0;
fix x[10] = 1;

If expression is omitted, the variable is fixed at its current value. For example, you can fix some variables to
be their optimal values after the SOLVE statement is invoked.

The effect of FIX can be reversed by using the UNFIX statement.
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FOR Statement

FOR { index-set } statement ;

The FOR statement executes its substatement for each member of the specified index-set . The index set can
declare local dummy parameters. You can reference the value of these parameters in the substatement. For
example, consider the following statements:

proc optmodel;
for {i in 1..2, j in {'a', 'b'}} put i= j=;

These statements produce the output in Figure 5.19.

Figure 5.19 FOR Statement Output

i=1 j=a
i=1 j=b
i=2 j=a
i=2 j=b

As another example, the following statements set the current values for variable x to random values between
0 and 1:

proc optmodel;
var x{1..10};
for {i in 1..10}

x[i] = ranuni(-1);

Multiple statements can be controlled by specifying a DO statement group for the substatement.

CAUTION: Avoid modifying the parameters that are used by the FOR statement index set from within the
substatement. The set value that is used for the left-most index set item is not affected by such changes.
However, the effect of parameter changes on later index set items cannot be predicted.

IF Statement

IF logic-expression THEN statement Œ ELSE statement � ;

The IF statement evaluates the logical expression and then conditionally executes the THEN or ELSE
substatements. The substatement that follows the THEN keyword is executed when the logical expression
result is nonmissing and nonzero. The ELSE substatement, if any, is executed when the logical expression
result is a missing value or zero. The ELSE part is optional and must immediately follow the THEN
substatement. When IF statements are nested, an ELSE is always matched to the nearest incomplete
unmatched IF-THEN. Multiple statements can be controlled by using DO statements with the THEN or
ELSE substatements.

NOTE: When an IF-THEN statement is used without an ELSE substatement, substatements of the IF
statement are executed when possible as they are entered. Under certain circumstances, such as when an
IF statement is nested in a FOR loop, the statement is not executed during interactive input until the next
statement is seen. By following the IF-THEN statement with an extra semicolon, you can cause it to be
executed upon submission, since the extra semicolon is handled as a null statement.
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LEAVE Statement

LEAVE ;

The LEAVE statement terminates the execution of the entire loop body (iterative DO, DO UNTIL, DO
WHILE, or FOR) that immediately contains the LEAVE statement. Execution resumes at the statement that
follows the loop. The following example demonstrates a simple use of the LEAVE statement:

proc optmodel;
number i, j;
do i = 1..5;

do j = 1..4;
if i >= 3 and j = 2 then leave;

end;
print i j;
end;

The results from these statements are displayed in Figure 5.20.

Figure 5.20 LEAVE Statement Output

i j

1 5

i j

2 5

i j

3 2

i j

4 2

i j

5 2

For values of i equal to 1 or 2, the inner loop continues uninterrupted, leaving j with a value of 5. For values
of i equal to 3, 4, or 5, the inner loop terminates early, leaving j with a value of 2.

Null Statement

;

The null statement is treated as a statement in the PROC OPTMODEL syntax, but its execution has no effect.
It can be used as a placeholder statement.
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PERFORMANCE Statement

PERFORMANCE options ;

The PERFORMANCE statement controls the multithreaded execution features of PROC OPTMODEL and
the multithreaded and distributed execution features of PROC OPTMODEL solvers. The options that you
specify in the PERFORMANCE statement are applied each time the statement is executed; they replace any
previously specified options. For details about the options available for the PERFORMANCE statement, see
the section “PERFORMANCE Statement” on page 28.

PRINT Statement

PRINT print-items ;

The PRINT statement outputs string and numeric data in tabular form. The statement specifies a list of arrays
or other data items to print. Multiple items can be output together as data columns in the same table.

If no format is specified, the PRINT statement handles the details of formatting automatically (see the section
“Formatted Output” on page 119 for details). The default format for a numerical column is the fixed-point
format (w.d format), which is chosen based on the values of the PDIGITS= and PWIDTH= options (see the
section “PROC OPTMODEL Statement” on page 56) and on the values in the column. The PRINT statement
uses scientific notation (the Ew. format) when a value is too large or too small to display in fixed format. The
default format for a character column is the $w. format, where the width is set to be the length of the longest
string (ignoring trailing blanks) in the column.

print-item can be specified in the following forms:

identifier-expression Œ format �
specifies a data item to output. identifier-expression can name an array. In that case all
defined array locations are output. format specifies a SAS format that overrides the default
format.

( expression ) Œ format �
specifies a data value to output. format specifies a SAS format that overrides the default
format.

{ index-set } identifier-expression Œ format �
specifies a data item to output under the control of an index set . The item is printed as if
it were an array with the specified set of indices. This form can be used to print a subset
of the locations in an array, such as a single column. If the identifier-expression names an
array, then the indices of the array must match the indices of the index-set. The format
argument specifies a SAS format that overrides the default format.

{ index-set } ( expression ) Œ format �
specifies a data item to output under the control of an index set . The item is printed as if
it were an array with the specified set of indices. In this form the expression is evaluated
for each member of the index-set to create the array values for output. format specifies a
SAS format that overrides the default format.

string
specifies a string value to print.

_PAGE_
specifies a page break.
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The following example demonstrates the use of several print-item forms:

proc optmodel;
num x = 4.3;
var y{j in 1..4} init j*3.68;
print y; /* identifier-expression */
print (x * .265) dollar6.2; /* (expression) [format] */
print {i in 2..4} y; /* {index-set} identifier-expression */
print {i in 1..3}(i + i*.2345692) best7.;

/* {index-set} (expression) [format] */
print "Line 1"; /* string */

The output is displayed in Figure 5.21.

Figure 5.21 Print-item Forms

[1] y

1 3.68
2 7.36
3 11.04
4 14.72

$1.14

[1] y

2 7.36
3 11.04
4 14.72

[1]

1 1.23457
2 2.46914
3 3.70371

Line 1
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Adjacent print items that have similar indexing are grouped together and output in the same table. Items have
similar indexing if they specify arrays that have the same number of indices and have matching index types
(numeric versus string). Nonarray items are considered to have the same indexing as other nonarray items.
The resulting table has a column for each array index followed by a column for each print item value. This
format is called list form. For example, the following statements produce a list form table:

proc optmodel;
num a{i in 1..3} = i*i;
num b{i in 3..5} = 4*i;
print a b;

These statements produce the listing output in Figure 5.22.

Figure 5.22 List Form PRINT Table

[1] a b

1 1
2 4
3 9 12
4 16
5 20

The array index columns show the set of valid index values for the print items in the table. The array index
column for the i th index is labeled [i]. There is a row for each combination of index values that was used.
The index values are displayed in sorted ascending order.

The data columns show the array values that correspond to the index values in each row. If a particular array
index is invalid or the array location is undefined, then the corresponding table entry is displayed as blank
for numeric arrays and as an empty string for string arrays. If the print items are scalar, then the table has a
single row and no array index columns.

If a table contains a single array print item, the array is two-dimensional (has two indices), and the array
is dense enough, then the array is shown in matrix form. In this format there is a single index column that
contains the row index values. The label of this column is blank. This column is followed by a column for
every unique column index value for the array. The latter columns are labeled by the column value. These
columns contain the array values for that particular array column. Table entries that correspond to array
locations that have invalid or undefined combinations of row and column indices are blank or (for strings)
printed as an empty string.

The following statements generate a simple example of matrix output:

proc optmodel;
print {i in 1..6, j in i..6} (i*10+j);

The PRINT statement produces the output in Figure 5.23.
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Figure 5.23 Matrix Form PRINT Table

1 2 3 4 5 6

1 11 12 13 14 15 16
2 22 23 24 25 26
3 33 34 35 36
4 44 45 46
5 55 56
6 66

The PRINT statement prints single two-dimensional arrays in the form that uses fewer table cells (headings
are ignored). Sparse arrays are normally printed in list form, and dense arrays are normally printed in matrix
form. In a PROC OPTMODEL statement, the PMATRIX= option enables you to tune how the PRINT
statement displays a two-dimensional array. The value of this option scales the total number of nonempty
array elements, which is used to compute the tables cells needed for list form display. Specifying values for
the PMATRIX= option less than 1 causes the list form to be used in more cases, while specifying values
greater than 1 causes the matrix form to be used in more cases. If the value is 0, then the list form is always
used. The default value of the PMATRIX= option is 1. Changing the default can be done with the RESET
OPTIONS statement.

The following statements illustrate how the PMATRIX= option affects the display of the PRINT statement:

proc optmodel;
num a{i in 1..6, i..i} = i;
num b{i in 1..3, j in 1..3} = i*j;
print a;
print b;
reset options pmatrix=3;
print a;
reset options pmatrix=0.5;
print b;

The output is shown in Figure 5.24.

Figure 5.24 PRINT Statement: Effects of PMATRIX= Option

[1] [2] a

1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6

b
1 2 3

1 1 2 3
2 2 4 6
3 3 6 9
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Figure 5.24 continued

a
1 2 3 4 5 6

1 1
2 2
3 3
4 4
5 5
6 6

[1] [2] b

1 1 1
1 2 2
1 3 3
2 1 2
2 2 4
2 3 6
3 1 3
3 2 6
3 3 9

From Figure 5.24, you can see that, by default, the PRINT statement tries to make the display compact.
However, you can change the default by using the PMATRIX= option.

PUT Statement

PUT Œ put-items � Œ @ j@@ � ;

The PUT statement writes text data to the current output file. The syntax of the PUT statement in PROC
OPTMODEL is similar to the syntax of the PROC IML and DATA step PUT statements. The PUT statement
contains a list of items that specify data for output and provide instructions for formatting the data.

The current output file is initially the SAS log. This can be overridden with the FILE statement. An output
file can be closed with the CLOSEFILE statement.

Normally the PUT statement outputs the current line after processing all items. Final @ or @@ operators
suppress this automatic line output and cause the current column position to be retained for use in the next
PUT statement.

put-item can take any of the following forms.

identifier-expression Œ = � Œ format �
outputs the value of the parameter or variable that is specified by the identifier-expression.
The equal sign (=) causes a name for the location to be printed before each location value.

Normally each item value is printed in a default format. Any leading and trailing blanks
in the formatted value are removed, and the value is followed by a blank space. When an
explicit format is specified, the value is printed within the width determined by the format.

name[*] Œ .suffix � Œ = � Œ format �
outputs each defined location value for an array parameter. The array name is specified as
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in the identifier-expression form except that the index list is replaced by an asterisk (*).
The equal sign (=) causes a name for the location to be printed before each location value
along with the actual index values to be substituted for the asterisk.

Each item value normally prints in a default format. Any leading and trailing blanks in
the formatted value are removed, and the value is followed by a blank space. When an
explicit format is specified, the value is printed within the width determined by the format.

( expression ) Œ = � Œ format �
outputs the value of the expression enclosed in parentheses. This produces similar results
to the identifier-expression form except that the equal sign (=) uses the expression to form
the name.

’quoted-string’
copies the string to the output file.

@integer | identifier-expression | ( expression ) sets the absolute column position within the current line.
The literal or expression value determines the new column position.

+integer |identifier-expression|( expression ) sets the relative column position within the current line. The
literal or expression value determines the amount to update the column position.

/
outputs the current line and moves to the first column of the next line.

_PAGE_
outputs any pending line data and moves to the top of the next page.

QUIT Statement

QUIT ;

The QUIT statement terminates the OPTMODEL execution. The statement is executed immediately, so it
cannot be a nested statement. A QUIT statement is implied when a DATA or PROC statement is read.

READ DATA Statement

READ DATA SAS-data-set Œ NOMISS � INTO Œ Œ set-name = � [ read-key-columns ] � Œ read-columns � ;

The READ DATA statement reads data from a SAS data set into PROC OPTMODEL parameter and variable
locations. The arguments to the READ DATA statement are as follows:

SAS-data-set
specifies the input data set name and options.

set-name
specifies a set parameter in which to save the set of observation key values read from the
input data set.

read-key-columns
provide the index values for array destinations.

read-columns
specify the data values to read and the destination locations.
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The following example uses the READ DATA statement to copy data set variables j and k from the SAS data
set indata into parameters of the same name. The READ= data set option specifies a password.

proc optmodel;
number j, k;
read data indata(read=secret) into j k;

Key Columns
If any read-key-columns are specified, then the READ DATA statement reads all observations from the input
data set. If no read-key-columns are specified, then only the first observation of the data set is read. The data
set is closed after reading the requested information.

Each read-key-column declares a local dummy parameter and specifies a data set variable that supplies the
column value. The values of the specified data set variables from each observation are combined into a key
tuple. This combination is known as the observation key. The observation key is used to index array locations
specified by the read-columns items. The observation key is expected to be unique for each observation read
from the data set.

The syntax for a read-key-column is as follows:

name Œ = source-name � Œ / trim-option � ;

A read-key-column creates a local dummy parameter named name that holds an element of the observation
key tuple. The dummy parameter can be used in subsequent read-columns items to reference the element
value. If a source-name is given, then it specifies the data set variable that supplies the value. Otherwise the
source data set variable has the same name as the dummy parameter, name. Use the special data set variable
name _N_ to refer to the number identification of the observations.

You can specify a set-name to save the set of observation keys into a set parameter. If the observation key
consists of a single scalar value, then the set member type must match the scalar type. Otherwise the set
member type must be a tuple with element types that match the corresponding observation key element types.

The READ DATA statement initially assigns an empty set to the target set-name parameter. As observations
are read, a tuple for each observation key is added to the set. A set used to index an array destination in the
read-columns can be read at the same time as the array values. Consider a data set, invdata, created by the
following statements:

data invdata;
input item $ invcount;
datalines;

table 100
sofa 250
chair 80
;

The following statements read the data set invdata, which has two variables, item and invcount. The READ
DATA statement constructs a set of inventory items, Items. At the same time, the parameter location
invcount[item] is assigned the value of the data set variable invcount in the corresponding observation.
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proc optmodel;
set<string> Items;
number invcount{Items};
read data invdata into Items=[item] invcount;
print invcount;

The output of these statements is shown in Figure 5.25.

Figure 5.25 READ DATA Statement: Key Column

[1] invcount

chair 80
sofa 250
table 100

When observations are read, the values of data set variables are copied to parameter locations. Numeric
values are copied unchanged. For character values, trim-option controls how leading and trailing blanks are
processed. trim-option is ignored when the value type is numeric. Specify any of the following keywords for
trim-option:

TRIM j TR
removes leading and trailing blanks from the data set value. This is the default behavior.

LTRIM j LT
removes only leading blanks from the data set value.

RTRIM j RT
removes only trailing blanks from the data set value.

NOTRIM j NT
copies the data set value with no changes.

Columns
read-columns specify data set variables to read and PROC OPTMODEL parameter locations to which to
assign the values. The types of the input data set variables must match the types of the parameters. Array
parameters can be implicitly or explicitly indexed by the observation key values.

Normally, missing values from the data set are assigned to the parameters that are specified in the read-
columns. The NOMISS keyword suppresses the assignment of missing values, leaving the corresponding
parameter locations unchanged. Note that the parameter location does not need to have a valid index in this
case. This permits a single statement to read data into multiple arrays that have different index sets.

read-columns have the following forms:

identifier-expression Œ = name j COL( name-expression ) � Œ / trim-option �
transfers an input data set variable to a target parameter or variable. identifier-expression
specifies the target. If the identifier-expression specifies an array without an explicit
index, then the observation key provides an implicit index. The name of the input data
set variable can be specified with a name or a COL expression. Otherwise the data set
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variable name is given by the name part of the identifier-expression. For COL expressions,
the string-valued name-expression is evaluated to determine the data set variable name.
trim-option controls removal of leading and trailing blanks in the incoming data. For
example, the following statements read the data set variables column1 and column2 from
the data set exdata into the PROC OPTMODEL parameters p and q, respectively. The
observation numbers in exdata are read into the set indx, which indexes p and q.

data exdata;
input column1 column2;
datalines;

1 2
3 4
;

proc optmodel;
number n init 2;
set<num> indx;
number p{indx}, q{indx};
read data exdata into

indx=[_N_] p=column1 q=col("column"||n);
print p q;

The output is shown in Figure 5.26.

Figure 5.26 READ DATA Statement: Identifier Expressions

[1] p q

1 1 2
2 3 4

{ index-set } < read-columns >
performs the transfers by iterating each column specified by <read-columns> for each
member of the index-set . If there are n columns and m index set members, then n �m
columns are generated. The dummy parameters from the index set can be used in the
columns to generate distinct input data set variable names in the iterated columns, using
COL expressions. The columns are expanded when the READ DATA statement is
executed, before any observations are read. This form of read-columns cannot be nested.
In other words, the following form of read-columns is NOT allowed:

{ index-set } < { index-set } < read-columns > >

An example that demonstrates the use of the iterated column read-option follows.

You can use an iterated column read-option to read multiple data set variables into the same array. For
example, a data set might store an entire row of array data in a group of data set variables. The following
statements demonstrate how to read a data set that contains demand data divided by day:
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data dmnd;
input loc $ day1 day2 day3 day4 day5;
datalines;

East 1.1 2.3 1.3 3.6 4.7
West 7.0 2.1 6.1 5.8 3.2
;

proc optmodel;
set DOW = 1..5; /* days of week, 1=Monday, 5=Friday */
set<string> LOCS; /* locations */
number demand{LOCS, DOW};
read data dmnd

into LOCS=[loc]
{d in DOW} < demand[loc, d]=col("day"||d) >;

print demand;

These statements read a set of demand variables named DAY1–DAY5 from each observation, filling in the
two-dimensional array demand. The output is shown in Figure 5.27.

Figure 5.27 Demand Data

demand
1 2 3 4 5

East 1.1 2.3 1.3 3.6 4.7
West 7.0 2.1 6.1 5.8 3.2

RESET OPTIONS Statement

RESET OPTIONS options ;

RESET OPTION options ;

The RESET OPTIONS statement sets PROC OPTMODEL option values or restores them to their defaults.
Options can be specified by using the same syntax as in the PROC OPTMODEL statement. The RESET
OPTIONS statement provides two extensions to the option syntax. If an option normally requires a value
(specified with an equal sign (=) operator), then specifying the option name alone resets it to its default
value. You can also specify an expression enclosed in parentheses in place of a literal value. See the section
“OPTMODEL Options” on page 149 for an example.

The RESET OPTIONS statement can be placed inside loops or conditional statements. The statement is
applied each time it is executed.

RESTORE Statement

RESTORE identifier-list ;

The RESTORE statement adds a list of constraints, constraint arrays, or constraint array locations that were
dropped by the DROP statement back into the solver model, or includes constraints in a problem where
they were not previously present. The space-delimited identifier-list specifies the names of the constraints.
Each constraint, constraint array, or constraint array location is named by an identifier-expression. An entire
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constraint array is restored if an identifier-expression omits the index from an array name. For example, the
following statements declare a constraint array and then drop it:

con c{i in 1..4}: x[i] + y[i] <=1;
drop c;

The following statement restores the first constraint:

restore c[1];

The following statement restores the second and third constraints:

restore c[2] c[3];

If you want to restore all of the constraints, you can submit the following statement:

restore c;

SAVE MPS Statement

SAVE MPS SAS-data-set Œ ( OBJECTIVE j OBJ ) name � ;

The SAVE MPS statement saves the structure and coefficients for a linear programming model into a SAS
data set. This data set can be used as input data for the OPTLP or OPTMILP procedure.

NOTE: The OPTMODEL presolver (see the section “Presolver” on page 141) is automatically bypassed so
that the statement saves the original model without eliminating fixed variables, tightening bounds, and so on.

The SAS-data-set argument specifies the output data set name and options. The output data set uses the MPS
format described in Chapter 15. The generated data set contains observations that define different parts of the
linear program.

Variables, constraints, and objectives are referenced in the data set by using label text from the corresponding
.label suffix value. The default text is based on the name in the model. See the section “Suffixes” on page 131
for more details. Labels are limited by default to 32 characters and are abbreviated to fit. You can change
the maximum length for labels by using the MAXLABLEN= option. When needed, a programmatically
generated number is added to labels to avoid duplication.

The current problem objective is included in the data set. If the OBJECTIVE keyword is used, then the
problem objective becomes the specified objective.

When an integer variable has been assigned a nondefault branching priority or direction, the MPS data set
includes a BRANCH section. See Chapter 15, “The MPS-Format SAS Data Set” for more details.

The following statements show an example of the SAVE MPS statement. The model is specified using the
OPTMODEL procedure. Then it is saved as the MPS data set MPSData, as shown in Figure 5.28. Next,
PROC OPTLP is used to solve the resulting linear program.
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proc optmodel;
var x >= 0, y >= 0;
con c: x >= y;
con bx: x <= 2;
con by: y <= 1;
min obj=0.5*x-y;
save mps MPSData;

quit;

proc optlp data=MPSData pout=PrimalOut dout=DualOut;
run;

Figure 5.28 The MPS Data Set Generated by SAVE MPS Statement

Obs FIELD1 FIELD2 FIELD3 FIELD4 FIELD5 FIELD6

1 NAME MPSData . .
2 ROWS . .
3 N obj . .
4 G c . .
5 L bx . .
6 L by . .
7 COLUMNS . .
8 x obj 0.5 c 1
9 x bx 1.0 .

10 y obj -1.0 c -1
11 y by 1.0 .
12 RHS . .
13 .RHS. bx 2.0 .
14 .RHS. by 1.0 .
15 ENDATA . .

SAVE QPS Statement

SAVE QPS SAS-data-set Œ ( OBJECTIVE j OBJ ) name � ;

The SAVE QPS statement saves the structure and coefficients for a quadratic programming model into a SAS
data set. This data set can be used as input data for the OPTQP procedure.

NOTE: The OPTMODEL presolver (see the section “Presolver” on page 141) is automatically bypassed so
that the statement saves the original model without eliminating fixed variables, tightening bounds, and so on.

The SAS-data-set argument specifies the output data set name and options. The output data set uses the QPS
format described in Chapter 15. The generated data set contains observations that define different parts of the
quadratic program.

Variables, constraints, and objectives are referenced in the data set by using label text from the corresponding
.label suffix value. The default text is based on the name in the model. See the section “Suffixes” on page 131
for more details. Labels are limited by default to 32 characters and are abbreviated to fit. You can change
the maximum length for labels by using the MAXLABLEN= option. When needed, a programmatically
generated number is added to labels to avoid duplication.
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The current problem objective is included in the data set. If the OBJECTIVE keyword is used, then the
problem objective becomes the specified objective. The coefficients of the objective function appear in the
QSECTION section of the output data set.

The following statements show an example of the SAVE QPS statement. The model is specified using the
OPTMODEL procedure. Then it is saved as the QPS data set QPSData, as shown in Figure 5.29. Next,
PROC OPTQP is used to solve the resulting quadratic program.

proc optmodel;
var x{1..2} >= 0;

min z = 2*x[1] + 3 * x[2] + x[1]**2 + 10*x[2]**2
+ 2.5*x[1]*x[2];

con c1: x[1] - x[2] <= 1;
con c2: x[1] + 2*x[2] >= 100;
save qps QPSData;

quit;

proc optqp data=QPSData pout=PrimalOut dout=DualOut;
run;

Figure 5.29 QPS Data Set Generated by the SAVE QPS Statement

Obs FIELD1 FIELD2 FIELD3 FIELD4 FIELD5 FIELD6

1 NAME QPSData . .
2 ROWS . .
3 N z . .
4 L c1 . .
5 G c2 . .
6 COLUMNS . .
7 x[1] z 2.0 c1 1
8 x[1] c2 1.0 .
9 x[2] z 3.0 c1 -1

10 x[2] c2 2.0 .
11 RHS . .
12 .RHS. c1 1.0 .
13 .RHS. c2 100.0 .
14 QSECTION . .
15 x[1] x[1] 2.0 .
16 x[1] x[2] 2.5 .
17 x[2] x[2] 20.0 .
18 ENDATA . .

SOLVE Statement

SOLVE Œ WITH solver � Œ ( OBJECTIVE | OBJ ) name � Œ RELAXINT � Œ / options � ;

The SOLVE statement invokes a PROC OPTMODEL solver. The current model is first resolved to the
numeric form that is required by the solver. The resolved model and possibly the current values of any
optimization variables are passed to the solver. After the solver finishes executing, the SOLVE statement
prints a short table that shows a summary of results from the solver (see the section “ODS Table and Variable
Names” on page 122) and updates the _OROPTMODEL_ macro variable.
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Here are the arguments to the SOLVE statement:

solver
selects the named solver: LP, MILP, QP, or NLP (see corresponding chapters in this
book for details). If no WITH clause is specified, then a solver is chosen automatically,
depending on the problem type. Table 5.9 lists the default solver for each problem type.1

Table 5.9 Default Solvers and Algorithms in PROC OPTMODEL

Problem Solver Algorithm
Linear programming LP Dual simplex
Mixed integer linear programming MILP Branch-and-cut
Quadratic programming QP Interior point QP
General nonlinear programming NLP Interior point NLP

name
specifies the objective to use. This sets the current objective for the problem. You can
abbreviate the OBJECTIVE keyword as OBJ. If this argument is not specified, then the
problem objective is unchanged.

RELAXINT requests that any integral variables be relaxed to be continuous. RELAXINT can be used
with linear and nonlinear problems in addition to any solver.

options specifies solver options. You can specify solver options directly only when you use the
WITH clause. A list of the options available with the solver is provided in the individual
chapters that describe each solver.

The SOLVE statement uses the value of the predeclared string parameters _SOLVER_OPTIONS_ and
_solver_OPTIONS_ to provide default solver options. Any options that are specified by these parameters are
prepended to options specified in the SOLVE statement, with options from _SOLVER_OPTIONS_ appearing
first. These options are included even when the SOLVE statement does not specify a solver with the WITH
clause. In this case solver is the name of the default solver from Table 5.9.

Initially the predeclared string parameters _SOLVER_OPTIONS_ and _solver_OPTIONS_ (for each solver)
are empty strings, but they can be assigned by the user. Option values in these strings must be specified with
keywords or literal values. Redundant white space is allowed. For example, the following statements set up
some simple defaults:

_SOLVER_OPTIONS_ = "MAXTIME = 600"; /* options for all solvers */
_LP_OPTIONS_ = "PRESOLVER=AGGRESSIVE"; /* options for LP solver */

Optimization techniques that use initial values obtain them from the current values of the optimization
variables unless the NOINITVAR option is specified. When the solver finishes executing, the current value of
each optimization variable is replaced by the optimal value found by the solver. These values can then be

1If the QP solver detects nonconvexity (nonconcavity) for a minimization (maximization) problem, the NLP solver is called
instead.



98 F Chapter 5: The OPTMODEL Procedure

used as the initial values for subsequent solver invocations. The .init suffix location for each variable saves
the initial value used for the most recent SOLVE statement.

NOTE: If a solver fails, any currently pending statement is stopped and processing continues with the next
complete statement read from the input. For example, if a SOLVE statement that is enclosed in a DO group
(see the section “DO Statement” on page 74) fails, then the subsequent statements in the group are not
executed and processing resumes at the point immediately following the DO group. Neither an infeasible
result, an unbounded result, nor reaching an iteration limit is considered to be a solver failure.

NOTE: The information that appears in the macro variable _OROPTMODEL_ (see the section “Macro
Variable _OROPTMODEL_” on page 153) varies by solver.

NOTE: The RELAXINT keyword is applied immediately before the problem is passed to the solver, after
any processing by the PROC OPTMODEL presolver. So the problem presented to the solver might not be
equivalent to the one produced by setting the .RELAX suffix of all variables to a nonzero value. In particular,
the bounds of integer variables are still adjusted to be integral, and PROC OPTMODEL’s presolver might use
integrality to tighten bounds further.

STOP Statement

STOP ;

The STOP statement halts the execution of all statements that contain it, including DO statements and other
control or looping statements. Execution continues with the next top-level source statement. The following
statements demonstrate a simple use of the STOP statement:

proc optmodel;
number i, j;
do i = 1..5;

do j = 1..4;
if i = 3 and j = 2 then stop;

end;
end;
print i j;

The output is shown in Figure 5.30.

Figure 5.30 STOP Statement: Output

i j

3 2

When the counters i and j reach 3 and 2, respectively, the STOP statement terminates both loops. Execution
continues with the PRINT statement.

SUBMIT Statement

SUBMIT arguments Œ / options � ;

SAS statements ;

ENDSUBMIT ;
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The SUBMIT statement allows SAS code to be executed before PROC OPTMODEL processing continues.
For example, you can use the SUBMIT statement to invoke other SAS procedures to perform analysis or to
display results. The following statements use PROC SORT to order a list of nodes by decreasing priority; the
nodes can be used for further processing:

proc optmodel;
set<str> NODES;
num priority{NODES};

/* set up priority data... */

/* sort nodes by descending priority */
create data temppri from [id] priority;
submit;

proc sort;
by descending priority;

run;
endsubmit;

/* load nodes by priority */
str nodesByPri{i in 1..card(NODES)};
read data temppri into [_n_] nodesByPri=id;

/* use the sorted list... */

The SUBMIT statement must appear as the last or only statement on a line. It is followed by lines of SAS
statements, terminated by the ENDSUBMIT statement on a line of its own. The SAS statements between the
SUBMIT and ENDSUBMIT statements are referred to as a SUBMIT block. The SUBMIT block is sent to
the SAS language processor each time the SUBMIT statement is executed.

The SUBMIT block can include SAS global statements and procedure and invocations. Macros are not
expanded until the SUBMIT block is executed. So you can change macro variables to modify the behavior of
the SUBMIT block each time it is processed.

The arguments list specifies macro variables to initialize in the SUBMIT block environment before the
SUBMIT block is executed. List items are separated by spaces. Each of the arguments takes one of the
following forms:

name
copies the value of the PROC OPTMODEL parameter name to the macro variable that
has the same name.

name = identifier-expression
copies the value of the PROC OPTMODEL parameter specified by identifier-expression
to the macro variable name.

name = number | “string” | ‘string’
copies the value of the specified number or string constant to the macro variable name.

name = ( expression )
copies the result of evaluating expression to the macro variable name.

The following statements use a SUBMIT argument to modify the output each time the SUBMIT block is
invoked:
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for {i in 1..5}
submit a=i;
%put Value of a is &a..;
endsubmit;

The options in the SUBMIT statement are used to retrieve status information after a SUBMIT block is
executed. Each item in the space-delimited options list has one of the following forms:

OK = identifier-expression
specifies a PROC OPTMODEL numeric parameter location, identifier-expression, that
is updated to indicate the success of the SUBMIT block execution. The location is set
to 1 if execution is successful or 0 if errors are detected. PROC OPTMODEL continues
execution when the SUBMIT block encounters errors only if the OK= option is specified.

OUT Œ = � output-argument
specifies a single output-argument for retrieving macro variable values from the SUBMIT
block environment after each execution of the block.

OUT Œ = � ( output-argument )
specifies a list of space-delimited output-arguments for retrieving macro variable values
from the SUBMIT block environment after the block is executed.

Each output-argument item specifies a macro variable to copy out of the SUBMIT block environment after
the block is executed. Each item takes one of the following two forms:

identifier-expression
copies the macro variable specified by the name portion of the identifier-expression into
the PROC OPTMODEL parameter location specified by identifier-expression.

identifier-expression = name
copies the macro variable specified by name into the PROC OPTMODEL parameter
location specified by identifier-expression.

The following statements show how to use the options in the SUBMIT statement to retrieve the result of a
SUBMIT block execution:

proc optmodel;
num success, syscc;
submit / OK = success out syscc;

data example;
set notfound;

j = i*i;
run;

endsubmit;
print success syscc;

The DATA step fails, so the success parameter is set to 0 and syscc is set to the error code in the &SYSCC
macro variable. The output is shown in Figure 5.31.
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Figure 5.31 SUBMIT Statement Error Handling

success syscc

0 1012

NOTE: The SUBMIT block runs in an environment that is nested in the environment that the OPTMODEL
procedure is running in. Resources from the PROC OPTMODEL environment are initially visible in the
nested environment. However, the nested environment can have its own local values for options, LIBNAME
librefs, FILENAME filerefs, titles, footnotes, and macros. For example, the nested environment has its own
global macro scope, which can hide macros visible in the outer environment. The output-arguments of the
SUBMIT statement options can retrieve the values of macros defined in this scope.

NOTE: A SUBMIT statement can appear only in open code. An error message is displayed if the SUBMIT
statement is read from a macro. You can avoid this limitation by placing the SUBMIT statement, SUBMIT
block, and ENDSUBMIT in a separate file and by using the %INCLUDE statement to include the file in the
macro.

UNFIX Statement

UNFIX identifier-list Œ = ( expression ) � ;

The UNFIX statement reverses the effect of FIX statements. The solver can vary the specified variables,
variable arrays, or variable array locations specified by identifier-list. The identifier-list consists of one or
more variable names separated by spaces.

Each variable name in the identifier-list is an identifier expression (see the section “Identifier Expressions”
on page 50). The UNFIX statement affects an entire variable array if the identifier expression omits the
index from an array name. The expression specifies a new initial value that is stored in each element of the
identifier-list.

The following example demonstrates the UNFIX command:

proc optmodel;
var x{1..3};
fix x; /* fixes entire array to 0 */
unfix x[1]; /* x[1] can now be varied again */
unfix x[2] = 2; /* x[2] is given an initial value 2 */

/* and can be varied now */
unfix x; /* all x indices can now be varied */

After the following statements are executed, the variables x[1] and x[2] are not fixed. They each hold the
value 4. The variable x[3] is fixed at a value of 2.

proc optmodel;
var x{1..3} init 2;
num a = 1;
fix x;
unfix x[1] x[2]=(a+3);
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USE PROBLEM Statement

USE PROBLEM identifier-expression ;

The USE PROBLEM programming statement makes the problem specified by the identifier-expression be the
current problem. If the problem has not been previously used, the problem is created using the PROBLEM
declaration corresponding to the name. The problem must have been previously declared.

OPTMODEL Expression Extensions
PROC OPTMODEL defines several new types of expressions for the manipulation of sets. Aggregation
operators combine values of an expression that is evaluated over the members of an index set. Other operators
create new sets by combining existing sets, or they test relationships between sets. PROC OPTMODEL
also supports an IF expression operator that can conditionally evaluate expressions. These and other such
expressions are described in this section.

AND Aggregation Expression
AND { index-set } logic-expression

The AND aggregation operator evaluates the logical expression logic-expression jointly for each member of
the index set index-set. The index set enumeration finishes early if the logic-expression evaluation produces
a false value (zero or missing). The expression returns 0 if a false value is found or returns 1 otherwise. The
following statements demonstrate both a true and a false result:

proc optmodel;
put (and{i in 1..5} i < 10); /* returns 1 */
put (and{i in 1..5} i NE 3); /* returns 0 */

CARD Function
CARD ( set-expression )

The CARD function returns the number of members of its set operand. For example, the following statements
produce the output 3 since the set has 3 members:

proc optmodel;
put (card(1..3));

CROSS Expression
set-expression-1 CROSS set-expression-2

The CROSS expression returns the crossproduct of its set operands. The result is the set of tuples formed by
concatenating the tuple value of each member of the left operand with the tuple value of each member of the
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right operand. Scalar set members are treated as tuples of length 1. The following statements demonstrate the
CROSS operator:

proc optmodel;
set s1 = 1..2;
set<string> s2 = {'a', 'b'};
set<number, string> s3=s1 cross s2;
put 's3 is ' s3;
set<number, string, number> s4 = s3 cross 4..5;
put 's4 is ' s4;

This code produces the output in Figure 5.32.

Figure 5.32 CROSS Expression Output

s3 is {<1,'a'>,<1,'b'>,<2,'a'>,<2,'b'>}
s4 is {<1,'a',4>,<1,'a',5>,<1,'b',4>,<1,'b',5>,<2,'a',4>,<2,'a',5>,<2,'b',4>,<2,
'b',5>}

DIFF Expression
set-expression-1 DIFF set-expression-2

The DIFF operator returns a set that contains the set difference of the left and right operands. The result set
contains values that are members of the left operand but not members of the right operand. The operands
must have compatible set types. The following statements evaluate and print a set difference:

proc optmodel;
put ({1,3} diff {2,3}); /* outputs {1} */

IF-THEN/ELSE Expression
IF logic-expression THEN expression-2 Œ ELSE expression-3 �

The IF-THEN/ELSE expression evaluates the logical expression logic-expression and returns the result of
evaluating the second or third operand expression according to the logical test result. If the logic-expression is
true (nonzero and nonmissing), then the result of evaluating expression-2 is returned. If the logic-expression
is false (zero or missing), then the result of evaluating expression-3 is returned. The other subexpression that
is not selected is not evaluated.

An ELSE clause is matched during parsing with the nearest IF-THEN clause that does not have a matching
ELSE. The ELSE clause can be omitted for numeric expressions; the resulting IF-THEN is handled as if a
default ELSE 0 clause were supplied.

Use the IF-THEN/ELSE expression to handle special cases in models. For example, an inventory model
based on discrete time periods might require special handling for the first or last period. In the following
example the initial inventory for the first period is assumed to be fixed:
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proc optmodel;
number T;
var inv{1..T}, order{1..T};
number sell{1..T};
number inv0;
. . .
/* balance inventory flow */
con iflow{i in 1..T}:

inv[i] = order[i] - sell[i] +
if i=1 then inv0 else inv[i-1];

. . .

The IF-THEN/ELSE expression in the example models the initial inventory for a time period i . Usually the
inventory value is the inventory at the end of the previous period, but for the first time period the inventory
value is given by the inv0 parameter. The iflow constraints are linear because the IF-THEN/ELSE test
subexpression does not depend on variables and the other subexpressions are linear.

IF-THEN/ELSE can be used as either a set expression or a scalar expression. The type of expression depends
on the subexpression between the THEN and ELSE keywords. The type used affects the parsing of the
subexpression that follows the ELSE keyword because the set form has a lower operator precedence. For
example, the following two expressions are equivalent because the numeric IF-THEN/ELSE has a higher
precedence than the range operator (..):

IF logic THEN 1 ELSE 2 .. 3

(IF logic THEN 1 ELSE 2) .. 3

But the set form of IF-THEN/ELSE has lower precedence than the range expression operator. So the
following two expressions are equivalent:

IF logic THEN 1 .. 2 ELSE 3 .. 4

IF logic THEN (1 .. 2) ELSE (3 .. 4)

The IF-THEN and IF-THEN/ELSE operators always have higher precedence than the logic operators. So, for
example, the following two expressions are equivalent:

IF logic THEN numeric1 < numeric2

(IF logic THEN numeric1) < numeric2

It is best to use parentheses when in doubt about precedence.

IN Expression
expression IN set-expression

expression NOT IN set-expression
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The IN expression returns 1 if the value of the left operand is a member of the right operand set. Otherwise,
the IN expression returns 0. The NOT IN operator logically negates the returned value. Unlike the DATA step,
the right operand is an arbitrary set expression. The left operand can be a tuple expression. The following
example demonstrates the IN and NOT IN operators:

proc optmodel;
set s = 1..10;
put (5 in s); /* outputs 1 */
put (-1 not in s); /* outputs 1 */
set<num, str> t = {<1,'a'>, <2,'b'>, <2,'c'>};
put (<2, 'b'> in t); /* outputs 1 */
put (<1, 'b'> in t); /* outputs 0 */

Index Set Expression
{ index-set }

The index set expression returns the set of members of an index set. This expression is distinguished from a
set constructor (see the section “Set Constructor Expression” on page 108) because it contains a list of set
expressions.

The following statements use an index set with a selection expression that excludes the value 3:

proc optmodel;
put ({i in 1..5 : i NE 3}); /* outputs {1,2,4,5} */

INTER Expression
set-expression-1 INTER set-expression-2

The INTER operator returns a set that contains the intersection of the left and right operands. This is the set
that contains values that are members of both operand sets. The operands must have compatible set types.

The following statements evaluate and print a set intersection:

proc optmodel;
put ({1,3} inter {2,3}); /* outputs {3} */

INTER Aggregation Expression
INTER { index-set } set-expression

The INTER aggregation operator evaluates the set-expression for each member of the index set index-set.
The result is the set that contains the intersection of the set of values that were returned by the set-expression
for each member of the index set. An empty index set causes an expression evaluation error.

The following statements use the INTER aggregation operator to compute the value of {1,2,3,4} \ {2,3,4,5}
\ {3,4,5,6}:
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proc optmodel;
put (inter{i in 1..3} i..i+3); /* outputs {3,4} */

MAX Aggregation Expression
MAX { index-set } expression

The MAX aggregation operator evaluates the numeric expression expression for each member of the index
set index-set. The result is the maximum of the values that are returned by the expression. Missing values are
handled with the SAS numeric sort order; a missing value is treated as smaller than any nonmissing value. If
the index set is empty, then the result is the negative number that has the largest absolute value representable
on the machine.

The following example produces the output 0.5:

proc optmodel;
put (max{i in 2..5} 1/i);

MIN Aggregation Expression
MIN { index-set } expression

The MIN aggregation operator evaluates the numeric expression expression for each member of the index set
index-set. The result is the minimum of the values that are returned by the expression. Missing values are
handled with the SAS numeric sort order; a missing value is treated as smaller than any nonmissing value. If
the index set is empty, then the result is the largest positive number representable on the machine.

The following example produces the output 0.2:

proc optmodel;
put (min{i in 2..5} 1/i);

OR Aggregation Expression
OR { index-set } logic-expression

The OR aggregation operator evaluates the logical expression logic-expression for each member of the index
set index-set. The index set enumeration finishes early if the logic-expression evaluation produces a true
value (nonzero and nonmissing). The result is 1 if a true value is found, or 0 otherwise. The following
statements demonstrate both a true and a false result:

proc optmodel;
put (or{i in 1..5} i = 2); /* returns 1 */
put (or{i in 1..5} i = 7); /* returns 0 */
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PROD Aggregation Expression
PROD { index-set } expression

The PROD aggregation operator evaluates the numeric expression expression for each member of the index
set index-set. The result is the product of the values that are returned by the expression. This operator is
analogous to the

Q
operator used in mathematical notation. If the index set is empty, then the result is 1.

The following example uses the PROD operator to evaluate a factorial:

proc optmodel;
number n = 5;
put (prod{i in 1..n} i); /* outputs 120 */

Range Expression
expression-1 .. expression-n Œ BY expression �

The range expression returns the set of numbers from the specified arithmetic progression. The sequence
proceeds from the left operand value up to the right operand limit. The increment between numbers is 1
unless a different value is specified with a BY clause. If the increment is negative, then the progression is
from the left operand down to the right operand limit. The result can be an empty set.

For compatibility with the DATA step iterative DO loop construct, the keyword TO can substitute for the
range (..) operator.

The limit value is not included in the resulting set unless it belongs in the arithmetic progression. For example,
the following range expression does not include 30:

proc optmodel;
put (10..30 by 7); /* outputs {10,17,24} */

The actual numbers that the range expression “f..l by i” produces are in the arithmetic sequence

f; f C i; f C 2i; : : : ; f C ni

where

n D

�
l � f

i
C
p
�

�
and � represents the relative machine precision. The limit is adjusted to avoid arithmetic roundoff errors.

PROC OPTMODEL represents the set specified by a range expression compactly when the value is stored in
a parameter location, used as a set operand of an IN or NOT IN expression, used by an iterative DO loop, or
used in an index set. For example, the following expression is evaluated efficiently:

999998.5 IN 1..1000000000
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Set Constructor Expression
{ Œ expression-1 Œ , . . . expression-n � � }

The set constructor expression returns the set of the expressions in the member list. Duplicated values are
added to the set only once. A warning message is produced when duplicates are detected. The constructor
expression consists of zero or more subexpressions of the same scalar type or of tuple expressions that match
in length and in element types.

The following statements output a three-member set and warn about the duplicated value 2:

proc optmodel;
put ({1,2,3,2}); /* outputs {1,2,3} */

The following example produces a three-member set of tuples, using PROC OPTMODEL parameters and
variables. The output is displayed in Figure 5.33.

proc optmodel;
number m = 3, n = 4;
var x{1..4} init 1;
string y = 'c';
put ({<'a', x[3]>, <'b', m>, <y, m/n>});

Figure 5.33 Set Constructor Expression Output

{<'a',1>,<'b',3>,<'c',0.75>}

Set Literal Expression
/ members /

The set literal expression provides compact specification of simple set values. It is equivalent in function to
the set constructor expression but minimizes typing for sets that contain numeric and string constant values.
The set members are specified by members, which are literal values. As with the set constructor expression,
each member must have the same type.

The following statement specifies a simple numeric set:

/1 2.5 4/

The set contains the members 1, 2.5, and 4. A string set could be specified as follows:

/Miami 'San Francisco' Seattle 'Washington, D.C.'/

This set contains the strings ’Miami’, ’San Francisco’, ’Seattle’, and ’Washington, D.C.’. You
can specify string values in set literals without quotation marks when the text follows the rules for a SAS
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name. Strings that begin with a digit or contain blanks or other special characters must be specified with
quotation marks.

Specify tuple members of a set by enclosing the tuple elements within angle brackets (<elements>). The
tuple elements can be specified with numeric and string literals. The following example includes the tuple
elements <’New York’, 4.5> and <’Chicago’, -5.7>:

/<'New York' 4.5> <Chicago -5.7>/

SETOF Aggregation Expression
SETOF { index-set } expression

The SETOF aggregation operator evaluates the expression expression for each member of the index set
index-set. The result is the set that is formed by collecting the values returned by the operand expression.
The operand can be a tuple expression. For example, the following statements produce a set of tuples of
numbers with their squared and cubed values:

proc optmodel;
put (setof{i in 1..3}<i, i*i, i**3>);

Figure 5.34 shows the displayed output.

Figure 5.34 SETOF Aggregation Expression Output

{<1,1,1>,<2,4,8>,<3,9,27>}

SLICE Expression
SLICE ( < element-1, . . . element-n > , set-expression )

The SLICE expression produces a new set by selecting members in the operand set that match a pattern tuple.
The pattern tuple is specified by the element list in angle brackets. Each element in the pattern tuple must
specify a numeric or string expression. The expressions are used to match the values of the corresponding
elements in the operand set member tuples. You can also specify an element by using an asterisk (*). The
sequence of element values that correspond to asterisk positions in each matching tuple is combined into a
tuple of the result set. At least one asterisk element must be specified.

The following statements demonstrate the SLICE expression:

proc optmodel;
put (slice(<1,*>, {<1,3>, <1,0>, <3,1>}));
put (slice(<*,2,*>, {<1,2,3>, <2,4,3>, <2,2,5>}));

These statements produce the output in Figure 5.35.
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Figure 5.35 SLICE Expression Output

{3,0}
{<1,3>,<2,5>}

For the first PUT statement, <1,*> matches set members <1,3> and <1,0> but not <3,1>. The second element
of each matching set tuple, corresponding to the asterisk element, becomes the value of the resulting set
member. In the second PUT statement, the values of the first and third elements of the operand set member
tuple are combined into a two-position tuple in the result set.

The following statements use the SLICE expression to help compute the transitive closure of a set of tuples
representing a relation by using Warshall’s algorithm. In these statements the set parameter dep represents a
direct dependency relation.

proc optmodel;
set<str,str> dep = {<'B','A'>, <'C','B'>, <'D','C'>};
set<str,str> cl;
set<str> cn;
cl = dep;
cn = (setof{<i,j> in dep} i) inter (setof{<i,j> in dep} j);
for {node in cn}

cl = cl union (slice(<*,node>,cl) cross slice(<node,*>,cl));
put cl;

The local dummy parameter node in the FOR statement iterates over the set cn of possible intermediate
nodes that can connect relations transitively. At the end of each FOR iteration, the set parameter cl contains
all tuples from the original set in addition to all transitive tuples found in the current or previous iterations.

The output in Figure 5.36 includes the indirect and direct transitive dependencies from the set dep.

Figure 5.36 Warshall’s Algorithm Output

{<'B','A'>,<'C','B'>,<'D','C'>,<'C','A'>,<'D','B'>,<'D','A'>}

A special form of index-set-item uses the SLICE expression implicitly. See the section “More on Index Sets”
on page 151 for details.

SUM Aggregation Expression
SUM { index-set } expression

The SUM aggregation operator evaluates the numeric expression expression for each member in the index
set index-set. The result is the sum of the values that are returned by the expression. If the index set is empty,
then the result is 0. This operator is analogous to the

P
operator that is used in mathematical notation. The

following statements demonstrate the use of the SUM aggregation operator:
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proc optmodel;
put (sum {i in 1..10} i); /* outputs 55 */

SYMDIFF Expression
set-expression-1 SYMDIFF set-expression-2

The SYMDIFF expression returns the symmetric set difference of the left and right operands. The result set
contains values that are members of either the left or right operand but are not members of both operands.
The operands must have compatible set types.

The following example demonstrates a symmetric difference:

proc optmodel;
put ({1,3} symdiff {2,3}); /* outputs {1,2} */

Tuple Expression
< expression-1, . . . expression-n >

A tuple expression represents the value of a member in a set of tuples. Each scalar subexpression inside
the angle brackets represents the value of a tuple element. This form is used only with IN, SETOF, and set
constructor expressions.

The following statements demonstrate the tuple expression:

proc optmodel;
put (<1,2,3> in setof{i in 1..2}<i,i+1,i+2>);
put ({<1,'a'>, <2,'b'>} cross {<3,'c'>, <4,'d'>});

The first PUT statement checks whether the tuple <1, 2, 3> is a member of a set of tuples. The second PUT
statement outputs the cross product of two sets of tuples that are constructed by the set constructor.

These statements produce the output in Figure 5.37.

Figure 5.37 Tuple Expression Output

1
{<1,'a',3,'c'>,<1,'a',4,'d'>,<2,'b',3,'c'>,<2,'b',4,'d'>}

UNION Expression
set-expression-1 UNION set-expression-2

The UNION expression returns the set union of the left and right operands. The result set contains values that
are members of either the left or right operand. The operands must have compatible set types. The following
example performs a set union:
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proc optmodel;
put ({1,3} union {2,3}); /* outputs {1,3,2} */

UNION Aggregation Expression
UNION { index-set } set-expression

The UNION aggregation expression evaluates the set-expression for each member of the index set index-set.
The result is the set union of the values that are returned by the set-expression. If the index set is empty, then
the result is an empty set.

The following statements demonstrate a UNION aggregation. The output is the value of {1,2,3,4} [ {2,3,4,5}
[ {3,4,5,6}.

proc optmodel;
put (union{i in 1..3} i..i+3); /* outputs {1,2,3,4,5,6} */

WITHIN Expression
set-expression-1 WITHIN set-expression-2

set-expression NOT WITHIN set-expression

The WITHIN expression returns 1 if the left operand set is a subset of the right operand set and returns 0
otherwise. (That is, the operator returns true if every member of the left operand set is a member of the
right operand set.) The NOT WITHIN form logically negates the result value. The following statements
demonstrate the WITHIN and NOT WITHIN operators:

proc optmodel;
put ({1,3} within {2,3}); /* outputs 0 */
put ({1,3} not within {2,3}); /* outputs 1 */
put ({1,3} within {1,2,3}); /* outputs 1 */

Details: OPTMODEL Procedure

Conditions of Optimality

Linear Programming

A standard linear program has the following formulation:

minimize cT x
subject to Ax � b

x � 0
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where

x 2 Rn is the vector of decision variables
A 2 Rm�n is the matrix of constraints
c 2 Rn is the vector of objective function coefficients
b 2 Rm is the vector of constraints right-hand sides (RHS)

This formulation is called the primal problem. The corresponding dual problem (see the section “Dual Values”
on page 134) is

maximize bT y
subject to AT y � c

y � 0

where y 2 Rm is the vector of dual variables.

The vectors x and y are optimal to the primal and dual problems, respectively, only if there exist primal slack
variables s D Ax � b and dual slack variables w D AT y � c such that the following Karush-Kuhn-Tucker
(KKT) conditions are satisfied:

AxC s D b; x � 0; s � 0
AT yC w D c; y � 0; w � 0

sT y D 0

wT x D 0

The first line of equations defines primal feasibility, the second line of equations defines dual feasibility, and
the last two equations are called the complementary slackness conditions.

Nonlinear Programming

To facilitate discussion of optimality conditions in nonlinear programming, you write the general form of
nonlinear optimization problems by grouping the equality constraints and inequality constraints. You also
write all the general nonlinear inequality constraints and bound constraints in one form as “�” inequality
constraints. Thus, you have the following formulation:

minimize
x2Rn

f .x/

subject to ci .x/ D 0; i 2 E
ci .x/ � 0; i 2 I

where E is the set of indices of the equality constraints, I is the set of indices of the inequality constraints,
and m D jE j C jIj.

A point x is feasible if it satisfies all the constraints ci .x/ D 0; i 2 E and ci .x/ � 0; i 2 I. The feasible
region F consists of all the feasible points. In unconstrained cases, the feasible region F is the entire Rn

space.

A feasible point x� is a local solution of the problem if there exists a neighborhood N of x� such that

f .x/ � f .x�/ for al l x 2 N \ F
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Further, a feasible point x� is a strict local solution if strict inequality holds in the preceding case; that is,

f .x/ > f .x�/ for al l x 2 N \ F

A feasible point x� is a global solution of the problem if no point in F has a smaller function value than
f .x�); that is,

f .x/ � f .x�/ for al l x 2 F

Unconstrained Optimization
The following conditions hold true for unconstrained optimization problems:

• First-order necessary conditions: If x� is a local solution and f .x/ is continuously differentiable in
some neighborhood of x�, then

rf .x�/ D 0

• Second-order necessary conditions: If x� is a local solution and f .x/ is twice continuously differ-
entiable in some neighborhood of x�, then r2f .x�/ is positive semidefinite.

• Second-order sufficient conditions: If f .x/ is twice continuously differentiable in some neighbor-
hood of x�, rf .x�/ D 0, and r2f .x�/ is positive definite, then x� is a strict local solution.

Constrained Optimization
For constrained optimization problems, the Lagrangian function is defined as follows:

L.x; �/ D f .x/ �
X
i2E[I

�ici .x/

where �i ; i 2 E [ I, are called Lagrange multipliers. rxL.x; �/ is used to denote the gradient of the
Lagrangian function with respect to x, and r2xL.x; �/ is used to denote the Hessian of the Lagrangian
function with respect to x. The active set at a feasible point x is defined as

A.x/ D E [ fi 2 I W ci .x/ D 0g

You also need the following definition before you can state the first-order and second-order necessary
conditions:

• Linear independence constraint qualification and regular point: A point x is said to satisfy the
linear independence constraint qualification if the gradients of active constraints

rci .x/; i 2 A.x/

are linearly independent. Such a point x is called a regular point.

You now state the theorems that are essential in the analysis and design of algorithms for constrained
optimization:
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• First-order necessary conditions: Suppose that x� is a local minimum and also a regular point. If
f .x/ and ci .x/; i 2 E [ I, are continuously differentiable, there exist Lagrange multipliers �� 2 Rm

such that the following conditions hold:

rxL.x
�; ��/ D rf .x�/ �

X
i2E[I

��i rci .x
�/ D 0

ci .x
�/ D 0; i 2 E

ci .x
�/ � 0; i 2 I
��i � 0; i 2 I

��i ci .x
�/ D 0; i 2 I

The preceding conditions are often known as the Karush-Kuhn-Tucker conditions, or KKT conditions
for short.

• Second-order necessary conditions: Suppose that x� is a local minimum and also a regular point.
Let �� be the Lagrange multipliers that satisfy the KKT conditions. If f .x/ and ci .x/; i 2 E [ I, are
twice continuously differentiable, the following conditions hold:

zTr2xL.x
�; ��/z � 0

for all z 2 Rn that satisfy
rci .x

�/T z D 0; i 2 A.x�/

• Second-order sufficient conditions: Suppose there exist a point x� and some Lagrange multipliers
�� such that the KKT conditions are satisfied. If

zTr2xL.x
�; ��/z > 0

for all z 2 Rn that satisfy
rci .x

�/T z D 0; i 2 A.x�/

then x� is a strict local solution.

Note that the set of all such z’s forms the null space of the matrix
�
rci .x

�/T
�
i2A.x�/

. Thus, you
can search for strict local solutions by numerically checking the Hessian of the Lagrangian function
projected onto the null space. For a rigorous treatment of the optimality conditions, see Fletcher (1987)
and Nocedal and Wright (1999).

Data Set Input/Output
You can use the CREATE DATA and READ DATA statements to exchange PROC OPTMODEL data
with SAS data sets. The statements can move data into and out of PROC OPTMODEL parameters and
variables. For example, the following statements use a CREATE DATA statement to save the results from an
optimization into a data set:

proc optmodel;
var x;
min z = (x-5)**2;
solve;
create data optdata from xopt=x z;
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These statements write a single observation into the data set OPTDATA. The data set contains two variables,
xopt and z, and the values contain the optimized values of the PROC OPTMODEL variable x and objective z,
respectively. The statement “xopt=x” renames the variable x to xopt.

The group of values held by a data set variable in different observations of a data set is referred to as a column.
The READ DATA and CREATE DATA statements specify a set of columns for a data set and define how data
are to be transferred between the columns and PROC OPTMODEL parameters.

Columns in square brackets ([ ]) are handled specially. Such columns are called key columns. Key columns
specify element values that provide an implicit index for subsequent array columns. The following example
uses key columns with the CREATE DATA statement to write out variable values from an array:

proc optmodel;
set LOCS = {'New York', 'Washington', 'Boston'}; /* locations */
set DOW = 1..7; /* day of week */
var s{LOCS, DOW} init 1;
create data soldata from [location day_of_week]={LOCS, DOW} sale=s;

In this case the optimization variable s is initialized to a value of 1 and is indexed by values from the set
parameters LOCS and DOW. The output data set contains an observation for each combination of values
in these sets. The output data set contains three variables, location, day_of_week, and sale. The data set
variables location and day_of_week save the index element values for the optimization variable s that is
written in each observation. The data set created is shown in Figure 5.38.

Figure 5.38 Data Sets Created

Data Set: SOLDATA

day_of_
Obs location week sale

1 New York 1 1
2 New York 2 1
3 New York 3 1
4 New York 4 1
5 New York 5 1
6 New York 6 1
7 New York 7 1
8 Washington 1 1
9 Washington 2 1

10 Washington 3 1
11 Washington 4 1
12 Washington 5 1
13 Washington 6 1
14 Washington 7 1
15 Boston 1 1
16 Boston 2 1
17 Boston 3 1
18 Boston 4 1
19 Boston 5 1
20 Boston 6 1
21 Boston 7 1
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Note that the key columns in the preceding example do not name existing PROC OPTMODEL variables. They
create new local dummy parameters, location and day_of_week, in the same manner as dummy parameters in
index sets. These local parameters can be used in subsequent columns. For example, the following statements
demonstrate how to use a key column value in an expression for a later column value:

proc optmodel;
create data tab

from [i]=(1..10)
Square=(i*i) Cube=(i*i*i);

These statements create a data set that has 10 observations that hold squares and cubes of the numbers from 1
to 10. The key column variable here is named i and is explicitly assigned the values from 1 to 10, while the
data set variables Square and Cube hold the square and cube, respectively, of the corresponding value of i.

In the preceding example the key column values are simply the numbers from 1 to 10. The value is the same
as the observation number, so the variable i is redundant. You can remove the data set variable for a key
column via the DROP data set option, as follows:

proc optmodel;
create data tab2 (drop=i)

from [i] =(1..10)
Square=(i*i) Cube=(i*i*i);

The local parameters declared by key columns receive their values in various ways. For a READ DATA
statement, the key column values come from the data set variables for the column. In a CREATE DATA
statement, the values can be defined explicitly, as shown in the previous example. Otherwise, the CREATE
DATA statement generates a set of values that combines the index sets of array columns that need implicit
indexing. The statements that produce the output in Figure 5.38 demonstrate implicit indexing.

Use a suffix (“Suffixes” on page 131) to read or write auxiliary values, such as variable bounds or constraint
duals. For example, consider the following statements:

data pdat;
input p $ maxprod cost;
datalines;

ABQ 12 0.7
MIA 9 0.6
CHI 14 0.5
run;

proc optmodel;
set<string> plants;
var prod{plants} >= 0;
number cost{plants};
read data pdat into plants=[p] prod.ub=maxprod cost;

The statement “plants=[p]” in the READ DATA statement declares p as a key column and instructs PROC
OPTMODEL to store the set of plant names from the data set variable p into the set parameter plants. The
statement assigns the upper bound for the variable prod indexed by p to be the value of the data set variable
maxprod. The cost parameter location indexed by p is also assigned to be the value of the data set variable
cost.
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The target variables prod and cost in the preceding example use implicit indexing. Indexing can also be
performed explicitly. The following version of the READ DATA statement makes the indices explicit:

read data pdat into plants=[p] prod[p].ub=maxprod cost[p];

Explicit indexing is useful when array indices need to be transformed from the key column values in the data
set. For example, the following statements reverse the order in which elements from the data set are stored in
an array:

data abcd;
input letter $ @@;
datalines;

a b c d
;

proc optmodel;
set<num> subscripts=1..4;
string letter{subscripts};
read data abcd into [_N_] letter[5-_N_];
print letter;

The output from this example appears in Figure 5.39.

Figure 5.39 READ DATA Statement: Explicit Indexing

[1] letter

1 d
2 c
3 b
4 a

The following example demonstrates the use of explicit indexing to save sequential subsets of an array in
individual data sets:

data revdata;
input month rev @@;
datalines;

1 200 2 345 3 362 4 958
5 659 6 804 7 487 8 146
9 683 10 732 11 652 12 469
;

proc optmodel;
set m = 1..3;
var revenue{1..12};
read data revdata into [_N_] revenue=rev;
create data qtr1 from [month]=m revenue[month];
create data qtr2 from [month]=m revenue[month+3];
create data qtr3 from [month]=m revenue[month+6];
create data qtr4 from [month]=m revenue[month+9];
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Each CREATE DATA statement generates a data set that represents one quarter of the year. Each data set
contains the variables month and revenue. The data set qtr2 is shown in Figure 5.40.

Figure 5.40 CREATE DATA Statement: Explicit Indexing

Obs month revenue

1 1 958
2 2 659
3 3 804

Control Flow
Most of the control flow statements in PROC OPTMODEL are familiar to users of the DATA step or the IML
procedure. PROC OPTMODEL supports the IF statement, DO blocks, the iterative DO statement, the DO
WHILE statement, and the DO UNTIL statement. You can also use the CONTINUE, LEAVE, and STOP
statements to modify control flow.

PROC OPTMODEL adds the FOR statement. This statement is similar in operation to an iterative DO loop.
However, the iteration is performed over the members of an index set. This form is convenient for iteration
over all the locations in an array, since the valid array indices are also defined using an index set. For example,
the following statements initialize the array parameter A, indexed by i and j, to random values sampled from a
normal distribution with mean 0 and variance 1:

proc optmodel;
set R=1..10;
set C=1..5;
number A{R, C};
for {i in R, j in C}

A[i, j]=rannor(-1);

The FOR statement provides a convenient way to perform a statement such as the preceding assignment
statement for each member of a set.

Formatted Output
PROC OPTMODEL provides two primary means of producing formatted output. The PUT statement
provides output of data values with detailed format control. The PRINT statement handles arrays and
produces formatted output in tabular form.

The PUT statement is similar in syntax to the PUT statement in the DATA step and in PROC IML. The
PUT statement can output data to the SAS log, the SAS listing, or an external file. Arguments to the PUT
statement specify the data to output and provide instructions for formatting. The PUT statement provides
enough control to create reports within PROC OPTMODEL. However, typically the PUT statement is used
to produce output for debugging or to quickly check data values.

The following example demonstrates some features of the PUT statement:
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proc optmodel;
number a=1.7, b=2.8;
set s={a,b};
put a b; /* list output */
put a= b=; /* named output */
put 'Value A: ' a 8.1 @30 'Value B: ' b 8.; /* formatted */
string str='Ratio (A/B) is:';
put str (a/b); /* strings and expressions */
put s=; /* named set output */

These statements produce the output in Figure 5.41.

Figure 5.41 PUT Statement Output

1.7 2.8
a=1.7 b=2.8
Value A: 1.7 Value B: 3
Ratio (A/B) is: 0.6071428571
s={1.7,2.8}

The first PUT statement demonstrates list output. The numeric data values are output in a default format,
BEST12., with leading and trailing blanks removed. A blank space is inserted after each data value is output.
The second PUT statement uses the equal sign (=) to request that the variable name be output along with the
regular list output.

The third PUT statement demonstrates formatted output. It uses the @ operator to position the output in a
specific column. This style of output can be used in report generation. The format specification “8.” causes
the displayed value of parameter b to be rounded.

The fourth PUT statement shows the output of a string value, str. It also outputs the value of an expression
enclosed in parentheses. The final PUT statement outputs a set along with its name.

The default destination for PUT statement output is the SAS log. The FILE and CLOSEFILE statements can
be used to send output to the SAS listing or to an external data file. Multiple files can be open at the same
time. The FILE statement selects the current destination for PUT statement output, and the CLOSEFILE
statement closes the corresponding file. See the section “FILE Statement” on page 79 for more details.

The PRINT statement is designed to output numeric and string data in the form of tables. The PRINT
statement handles the details of formatting automatically. However, the output format can be overridden by
PROC OPTMODEL options and through Output Delivery System (ODS) facilities.

The PRINT statement can output array data in a table form that contains a row for each combination of array
index values. This form uses columns to display the array index values for each row and uses other columns
to display the value of each requested data item. The following statements demonstrate the table form:

proc optmodel;
number square{i in 0..5} = i*i;
number recip{i in 1..5} = 1/i;
print square recip;

The PRINT statement produces the output in Figure 5.42.
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Figure 5.42 PRINT Statement Output (List Form)

[1] square recip

0 0
1 1 1.00000
2 4 0.50000
3 9 0.33333
4 16 0.25000
5 25 0.20000

The first table column, labeled “[1],” contains the index values for the parameters square and recip. The
columns that are labeled “square” and “recip” contain the parameter values for each array index. For example,
the last row corresponds to the index 5 and the value in the last column is 0.2, which is the value of recip[5].

Note that the first row of the table contains no value in the recip column. Parameter location recip[0] does not
have a valid index, so no value is printed. The PRINT statement does not display variables that are undefined
or have invalid indices. This permits arrays that have similar indexing to be printed together. The sets of
defined indices in the arrays are combined to generate the set of indices shown in the table.

Also note that the PRINT statement has assigned formats and widths that differ between the square and recip
columns. The PRINT statement assigns a default fixed-point format to produce the best overall output for
each data column. The format that is selected depends on the PDIGITS= and PWIDTH= options.

The PDIGITS= and PWIDTH= options specify the desired significant digits and formatted width, respectively.
If the range of magnitudes is large enough that no suitable format can be found, then the data item is displayed
in scientific format. The table in the preceding example displays the last column with five decimal places in
order to display the five significant digits that were requested by the default PDIGITS= value. The square
column, on the other hand, does not need any decimal places.

The PRINT statement can also display two-dimensional arrays in matrix form. If the list following the PRINT
statement contains only a single array that has two index elements, then the array is displayed in matrix
form when it is sufficiently dense (otherwise the display is in table form). In this form the left-most column
contains the values of the first index element. The remaining columns correspond to and are labeled by the
values of the second index element. The following statements print an example of matrix form:

proc optmodel;
set R=1..6;
set C=1..4;
number a{i in R, j in C} = 10*i+j;
print a;

The PRINT statement produces the output in Figure 5.43.
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Figure 5.43 PRINT Statement Output (Matrix Form)

a
1 2 3 4

1 11 12 13 14
2 21 22 23 24
3 31 32 33 34
4 41 42 43 44
5 51 52 53 54
6 61 62 63 64

In the example the first index element ranges from 1 to 6 and corresponds to the table rows. The second index
element ranges from 1 to 4 and corresponds to the table columns. Array values can be found based on the
row and column values. For example, the value of parameter a[3,2] is 32. This location is found in the table
in the row labeled “3” and the column labeled “2.”

ODS Table and Variable Names
PROC OPTMODEL assigns a name to each table it creates. You can use these names to reference the table
when you use the Output Delivery System (ODS) to select tables and create output data sets. The names of
tables common to all solvers are listed in Table 5.10. Some solvers can generate additional tables; see the
individual solver chapters for more information. For more information about ODS, see SAS Output Delivery
System: User’s Guide.

Table 5.10 ODS Tables Produced in PROC OPTMODEL

ODS Table Name Description Statement/Option
DerivMethods List of derivatives used by the solver,

including the method of computation
SOLVE

OptStatistics Solver-dependent description of the
resources required for solution, in-
cluding function evaluations and
solver time

SOLVE

PrintTable Specified parameter or variable val-
ues

PRINT

ProblemSummary Description of objective, variables,
and constraints

SOLVE

SolutionSummary Overview of solution, including
solver-dependent solution quality
values

SOLVE

SolverOptions List of solver options and their values SOLVE
PerformanceInfo List of performance options and their

values
SOLVE

Timing Detailed solution timing PERFORMANCE / DE-
TAILS
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To guarantee that ODS output data sets contain information from all executed statements, use the PERSIST=
option in the ODS OUTPUT statement. For details, see SAS Output Delivery System: User’s Guide.
NOTE: The SUBMIT statement resets ODS SELECT and EXCLUDE lists.

Table 5.11 lists the variable names of the preceding tables used in the ODS template of the OPTMODEL
procedure.

Table 5.11 Variable Names for the ODS Tables Produced in PROC OPTMODEL

ODS Table Name Variables
DerivMethods Label1, cValue1, and nValue1
OptStatistics Label1, cValue1, and nValue1
PrintTable (matrix form) ROW, COL1 – COLn
PrintTable (table form) COL1 – COLn, identifier-expression(_suffix)
ProblemSummary Label1, cValue1, and nValue1
SolutionSummary Label1, cValue1, and nValue1
SolverOptions Label1, cValue1, nValue1, cValue2, and nValue2
PerformanceInfo Label1, cValue1, and nValue1
Timing Label1, cValue1, nValue1, cValue2, and nValue2

The PRINT statement produces an ODS table named PrintTable. The variable names that are used depend
on the display format used. See the section “Formatted Output” on page 119 for details about choosing the
display format.

For the PRINT statement with table format, the columns that display array indices are named COL1–COLn,
where n is the number of index elements. Columns that display values from identifier expressions are named
using the expression’s name and suffix. The identifier name becomes the output variable name if no suffix is
used. Otherwise the variable name is formed by appending an underscore (_) and the suffix to the identifier
name. Columns that display the value of expressions are named COLn, where n is the column number in the
table.

For the PRINT statement with matrix format, the first column has the variable name ROW. The remaining
columns are named COL1–COLn, where n is the number of distinct column indices. When an ODS table
displays values from identifier expressions, a label is generated based on the expression’s name and suffix, as
described for column names in the case of table format.

The PRINTLEVEL= option controls the ODS tables produced by the SOLVE statement. When PRINT-
LEVEL=0, the SOLVE statement produces no ODS tables. When PRINTLEVEL=1, the SOLVE state-
ment produces the ODS tables ProblemSummary, SolutionSummary, and PerformanceInfo. When PRINT-
LEVEL=2, the SOLVE statement produces the ODS tables ProblemSummary, SolverOptions, DerivMethods,
SolutionSummary, OptStatistics, and PerformanceInfo.

The PERFORMANCE statement controls additional ODS tables that can be produced by the SOLVE
statement. The PerformanceInfo table displays options that are controlled by the PERFORMANCE statement.
If you specify the DETAILS option in the PERFORMANCE statement, then the SOLVE statement also
produces the ODS table Timing.

The following statements generate several ODS tables and write each table to a SAS data set:
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proc optmodel printlevel=2;
ods output PrintTable=expt ProblemSummary=exps DerivMethods=exdm

SolverOptions=exso SolutionSummary=exss OptStatistics=exos;
var x{1..2} >= 0;
min z = 2*x[1] + 3 * x[2] + x[1]**2 + 10*x[2]**2

+ 2.5*x[1]*x[2] + x[1]**3;
con c1: x[1] - x[2] <= 1;
con c2: x[1] + 2*x[2] >= 100;
solve;
print x;

The data set expt contains the PrintTable table and is shown in Figure 5.44. The variable names are COL1
and x.

Figure 5.44 ODS Table PrintTable

PrintTable

Obs COL1 x

1 1 10.448
2 2 44.776

The data set exps contains the ProblemSummary table and is shown in Figure 5.45. The variable names are
Label1, cValue11, and nValue1. The rows describe the objective function, variables, and constraints. The
rows depend on the form of the problem.

Figure 5.45 ODS Table ProblemSummary

ProblemSummary

Obs Label1 cValue1 nValue1

1 Objective Sense Minimization .
2 Objective Function z .
3 Objective Type Nonlinear .
4 .
5 Number of Variables 2 2.000000
6 Bounded Above 0 0
7 Bounded Below 2 2.000000
8 Bounded Below and Above 0 0
9 Free 0 0
10 Fixed 0 0
11 .
12 Number of Constraints 2 2.000000
13 Linear LE (<=) 1 1.000000
14 Linear EQ (=) 0 0
15 Linear GE (>=) 1 1.000000
16 Linear Range 0 0
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The data set exso contains the SolverOptions table and is shown in Figure 5.46. The variable names are
Label1, cValue1, nValue1, cValue2, and nValue2. The rows, which depend on the solver called by PROC
OPTMODEL, list the values taken by each of the solver options. The presence of an asterisk (*) next to an
option indicates that a value has been specified for that option.

Figure 5.46 ODS Table SolverOptions

SolverOptions

c
Obs Label1 cValue1 nValue1 Value2 nValue2

1 ALGORITHM INTERIORPOINT . .
2 FEASTOL 1E-6 0.000001000 .
3 HESSTYPE FULL . .
4 IIS OFF . .
5 LOGFREQ 1 1.000000 .
6 MAXITER 5000 5000.000000 .
7 MAXTIME I I .
8 NOMULTISTART . .
9 OBJLIMIT 1E20 1E20 .

10 OPTTOL 1E-6 0.000001000 .
11 SOLTYPE 1 1.000000 .
12 TIMETYPE REAL . .

The data set exdm contains the DerivMethods table, which displays the methods of derivative computation,
and is shown in Figure 5.47. The variable names are Label1, cValue11, and nValue1. The rows, which
depend on the derivatives used by the solver, specify the method used to calculate each derivative.

Figure 5.47 ODS Table DerivMethods

DerivMethods

Obs Label1 cValue1 nValue1

1 Objective Gradient Analytic Formulas .
2 Objective Hessian Analytic Formulas .

The data set exss contains the SolutionSummary table and is shown in Figure 5.48. The variable names are
Label1, cValue11, and nValue1. The rows give an overview of the solution, including the solver chosen, the
objective value, and the solution status. Depending on the values returned by the solver, the SolutionSummary
table might also include some solution quality values such as optimality error and infeasibility. The values
in the SolutionSummary table appear in the _OROPTMODEL_ macro variable; each solver chapter has a
section that describes the solver’s contribution to this macro variable.
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Figure 5.48 ODS Table SolutionSummary

SolutionSummary

Obs Label1 cValue1 nValue1

1 Solver NLP .
2 Algorithm Interior Point .
3 Objective Function z .
4 Solution Status Optimal .
5 Objective Value 22623.347101 22623
6 .
7 Optimality Error 5E-7 0.000000500
8 Infeasibility 0 0
9 .

10 Iterations 5 5.000000
11 Presolve Time 0.00 0
12 Solution Time 0.01 0.014000

The data set exos contains the OptStatistics table, which displays the optimization statistics, and is shown in
Figure 5.49. The variable names are Label1, cValue11, and nValue1. The rows, which depend on the solver
called by PROC OPTMODEL, describe the amount of time and function evaluations used by the solver.

Figure 5.49 ODS Table OptStatistics

OptStatistics

Obs Label1 cValue1 nValue1

1 Function Evaluations 28 28.000000
2 Gradient Evaluations 28 28.000000
3 Hessian Evaluations 6 6.000000
4 Problem Generation Time 0.00 0
5 Code Generation Time 0.10 0.095000
6 Presolve Time 0.00 0
7 Solution Time 0.01 0.014000
8 Total Time 0.18 0.182000

Constraints
You can add constraints to a PROC OPTMODEL model. The solver tries to satisfy the specified constraints
while minimizing or maximizing the objective.

Constraints in PROC OPTMODEL have names. By using the name, you can examine various attributes of
the constraint, such as the dual value that is returned by the solver (see the section “Suffixes” on page 131 for
details). A constraint is not allowed to have the same name as any other model component.
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PROC OPTMODEL provides a default name if none is supplied by the constraint declaration. The predefined
array _ACON_ provides names for otherwise anonymous constraints. The predefined numeric parameter
_NACON_ contains the number of such constraints. The constraints are assigned integer indices in sequence,
so _ACON_[1] refers to the first unnamed constraint declared, while _ACON_[_NACON_] refers to the newest.

Consider the following example of a simple model that has a constraint:

proc optmodel;
var x, y;
min r = x**2 + y**2;
con c: x+y >= 1;
solve;
print x y;

Without the constraint named c, the solver would find the point x D y D 0 that has an objective value of 0.
However, the constraint makes this point infeasible. The resulting output is shown in Figure 5.50.

Figure 5.50 Constrained Model Solution

Problem Summary

Objective Sense Minimization
Objective Function r
Objective Type Quadratic

Number of Variables 2
Bounded Above 0
Bounded Below 0
Bounded Below and Above 0
Free 2
Fixed 0

Number of Constraints 1
Linear LE (<=) 0
Linear EQ (=) 0
Linear GE (>=) 1
Linear Range 0

Constraint Coefficients 2

Performance Information

Execution Mode Single-Machine
Number of Threads 4
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Figure 5.50 continued

Solution Summary

Solver QP
Algorithm Interior Point
Objective Function r
Solution Status Optimal
Objective Value 0.4999995397

Primal Infeasibility 2.5005E-7
Dual Infeasibility 2.3570226E-7
Bound Infeasibility 0
Duality Gap 1.9575231E-7
Complementarity 3.9804725E-8

Iterations 3
Presolve Time 0.00
Solution Time 0.01

x y

0.5 0.5

The solver has found the point where the objective function is minimized in the region x C y � 1. This is
actually on the border of the region: the constraint c is active (see the section “Dual Values” on page 134 for
details).

In the preceding example the constraint c had only a lower bound. You can specify constraints that have
both upper and lower bounds. For example, replacing the constraint c in the previous example would further
restrict the feasible region:

con c: 3 >= x+y >= 1;

PROC OPTMODEL standardizes constraints to collect the expression terms that depend on variables and
to separate the expression terms that are constant. When there is a single equality or inequality operator,
the separable constant terms are moved to the right operand while the variable terms are moved to the left
operand. For range constraints, the separable constant terms from the middle expression are subtracted from
the lower and upper bounds. You can see the standardized constraints with the use of the EXPAND statement
in the following example. Consider the following PROC OPTMODEL statements:

proc optmodel;
var x{1..3};
con b: sum{i in 1..3}(x[i] - i) = 0;
expand b;

These statements produce an optimization problem with the following constraint:

(x[1] - 1) + (x[2] - 2) + (x[3] - 3) = 0

The EXPAND statement produces the output in Figure 5.51.
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Figure 5.51 Expansion of a Standardized Constraint

Constraint b: x[1] + x[2] + x[3] = 6

Here the i separable constant terms in the operand of the SUM operation were moved to the right-hand side
of the constraint. The sum of these i values is 6.

After standardization the constraint expression that contains all the variables is called the body of the
constraint. You can reference the current value of the body expression by attaching the .body suffix to the
constraint name. Similarly, the upper and lower bound expressions can be referenced by using the .ub and .lb
suffixes, respectively. (See the section “Suffixes” on page 131 for more information.)

As a result of standardization, the value of a body expression depends on how the corresponding constraint is
entered. The following example demonstrates how using equivalent relational syntax can result in different
.body values:

proc optmodel;
var x init 1;
con c1: x**2 <= 5;
con c2: 5 >= x**2;
con c3: -x**2 >= -5;
con c4: -5 <= -x**2;
expand;
print c1.body c2.body c3.body c4.body;

The EXPAND and PRINT statements produce the output in Figure 5.52.

Figure 5.52 Expansion and Body Values of Standardized Constraints

Var x
Constraint c1: x**2 <= 5
Constraint c2: -x**2 >= -5
Constraint c3: -x**2 >= -5
Constraint c4: --x**2 <= 5

c1.BODY c2.BODY c3.BODY c4.BODY

1 -1 -1 1

CAUTION: Each constraint has an associated dual value (see “Dual Values” on page 134). As a result of
standardization, the sign of a dual value depends in some instances on the way in which the corresponding
constraint is entered into PROC OPTMODEL. In the case of a minimization objective with one-sided
constraint g.x/ � L, avoid entering the constraint as L � g.x/. For example, the following statements
produce a value of 2:

proc optmodel;
var x;
min o1 = x**2;
con c1: x >= 1;
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solve;
print (c1.dual);

Replacing the constraint as follows results in a value of –2:

con c1: 1 <= x;

In the case of a maximization objective with the one-sided constraint g.x/ � U , avoid entering the constraint
as U � g.x/.

When a constraint has variables on both sides, the sign of the dual value depends on the direction of the
inequality. For example, you can enter the following constraint:

con c1: x**5 - y + 8 <= 5*x + y**2;

This is a � constraint, so c1.dual is nonpositive. If you enter the same constraint as follows, then c1.dual is
nonnegative:

con c1: 5*x + y**2 >= x**5 - y + 8;

It is also important to note that the signs of the dual values are negated in the case of maximization. The
following statements output a value of 2:

proc optmodel;
var x;
min o1 = x**2;
con c1: 1 <= x <= 2;
solve;
print (c1.dual);

Changing the objective function as follows yields the same value of x, but c1.dual now holds the value –2:

max o1 = -x**2;

NOTE: A simple bound constraint on a decision variable x can be entered either by using a CONSTRAINT
declaration or by assigning values to x.lb and x.ub. If you require dual values for simple bound constraints,
use the CONSTRAINT declaration.

Constraints can be linear or nonlinear. PROC OPTMODEL determines the type of constraint automatically
by examining the form of the body expression. Subexpressions that do not involve variables are treated as
constants. Constant subexpressions that are multiplied by or added to linear subexpressions produce new
linear subexpressions. For example, constraint A in the following statements is linear:

proc optmodel;
var x{1..3};
con A: 0.5*(x[1]-x[2]) + x[3] >= 0;
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Suffixes
Use suffixes with identifier-expressions to retrieve and modify various auxiliary values maintained by the
solver. The values of the suffixes can come from expressions in the declaration of the name that is suffixed.
For example, the following declaration of variable v provides the values of several suffixes of v at the same
time:

var v >= 0 <= 2 init 1;

The values of the suffixes also come from the solver or from values assigned by assignment or READ DATA
statements (see an example in the section “Data Set Input/Output” on page 115).

You must use suffixes with names of the appropriate type. For example, the .init suffix cannot be used with
the name of an objective. In particular, local dummy parameter names cannot have suffixes.

Table 5.12 shows the names of the available suffixes.

Table 5.12 Suffix Names

Name Kind Suffix Modifiable Description
Variable .init No Initial value for the solver
Variable .lb Yes Lower bound
Variable .ub Yes Upper bound
Variable .sol No Current solution value
Variable .rc No Reduced cost (LP) or gradient of Lagrangian

function
Variable .dual No Reduced cost (LP) or gradient of Lagrangian

function
Variable .relax Yes Relaxation of integrality restriction
Variable .priority Yes Branching priority
Variable .direction Yes Branching direction
Variable .msinit No Numeric value at the best starting point re-

ported by solver
Variable .status Yes Status information from solver
Variable .label Yes Label text for the solver
Objective .sol No Current objective value
Objective .label Yes Label text for the solver
Constraint .body No Current constraint body value
Constraint .dual No Dual value from the solver
Constraint .lb Yes Current lower bound
Constraint .ub Yes Current upper bound
Constraint .status Yes Status information from solver
Constraint .label Yes Label text for the solver
Constraint .block Yes Block ID for decomposition
Implicit Variable .sol No Current solution value
Problem .label Yes Label text for the solver
any .name No Name text for any non-dummy symbol
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NOTE: The .init value of a variable represents the value it had before the most recent SOLVE statement that
used the variable. The value is zero before a successful completion of a SOLVE statement that uses the
variable.

The .sol suffix for a variable, implicit variable, or objective can be used within a declaration to reference the
current value of the symbol. It is treated as a constant in such cases. When processing a SOLVE statement,
the value is fixed at the start of the SOLVE. Outside of declarations, a variable, implicit variable, or objective
name with the .sol suffix is equivalent to the unsuffixed name.

The .status suffix reports status information from the solver. Currently, only the LP solver provides status
information. The .status suffix takes on the same character values that are found in the _STATUS_ variable of
the PRIMALOUT and DUALOUT data sets for the OPTLP procedure, including values set by the IIS= option.
See the section “Variable and Constraint Status” on page 199 and the section “Irreducible Infeasible Set” on
page 200, both in Chapter 6, “The Linear Programming Solver,” for more information. For other solvers, the
.status values default to a single blank character.

If you choose to modify the .status suffix for a variable or constraint, the assigned suffix value can be a single
character or an empty string. The LP solver rejects invalid status characters. Blank or empty strings are
treated as new row or column entries for the purpose of “warm starting” the solver.

The .msinit suffix reports the numeric value of a variable at the best starting point, as reported by the NLP
solver when the MULTISTART option is specified. If the solver does not report a best starting point, then
the value is missing. The value is tracked independently for each problem to support multiple subproblems.
See the section “Multistart” on page 317 in Chapter 8, “The Nonlinear Programming Solver,” for more
information.

The .block suffix identifies the subproblem for constraints when used with the METHOD=USER option
of the decomposition algorithm. The value must be numeric and is initially assigned a missing value. A
constraint with a missing value for the .block suffix is part of the master problem. Otherwise constraints
belong to the same subproblem if and only if they have the same .block suffix values. See Chapter 13, “The
Decomposition Algorithm,” for more information.

The .label suffix represents the text passed to the solver to identify a variable, constraint, or objective. Some
solvers can display this label in their output. The maximum text length passed to the solver is controlled by
the MAXLABLEN= option. The default text is based on the name in the model, abbreviated to fit within
MAXLABLEN. For example, a model variable x[1] would be labeled “x[1]”. This label text can be reassigned.
The .label suffix value is also used to create MPS labels stored in the output data set for the SAVE MPS and
SAVE QPS statements.

The .name suffix represents the name of a symbol as a text string. The .name suffix can be used with any
declared name except for local dummy parameters. This suffix is primarily useful when applied to problem
symbols (see the section “Problem Symbols” on page 147), since the .name suffix returns the name of
the referenced symbol, not the problem symbol name. The name text is based on the name in the model,
abbreviated to fit in 256 characters.

Suffixed names can be used wherever a parameter name is accepted, provided only the value is required.
However, you are not allowed to change the value of certain suffixes. Table 5.12 marks these suffixes as not
modifiable. Suffixed names that are used as a target in an assignment or READ DATA statement must be
modifiable.

The following statements formulate a trivial linear programming problem. The objective value is unbounded,
which is reported after the execution of the SOLVE statement. The PRINT statements illustrate the corre-
sponding default auxiliary values. This is shown in Figure 5.53.
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proc optmodel;
var x, y;
min z = x + y;
con c: x + 2*y <= 3;
solve;
print x.lb x.ub x.init x.sol;
print y.lb y.ub y.init y.sol;
print c.lb c.ub c.body c.dual;

Figure 5.53 Using a Suffix: Retrieving Auxiliary Values

x.LB x.UB x.INIT x.SOL

-1.7977E+308 1.7977E+308 0 0

y.LB y.UB y.INIT y.SOL

-1.7977E+308 1.7977E+308 0 0

c.LB c.UB c.BODY c.DUAL

-1.7977E+308 3 0 0

Next, continue to submit the following statements to change the default bounds and solve again. The output
is shown in Figure 5.54.

x.lb=0;
y.lb=0;
c.lb=1;
solve;
print x.lb x.ub x.init x.sol;
print y.lb y.ub y.init y.sol;
print c.lb c.ub c.body c.dual;

Figure 5.54 Using a Suffix: Modifying Auxiliary Values

x.LB x.UB x.INIT x.SOL

0 1.7977E+308 0 0

y.LB y.UB y.INIT y.SOL

0 1.7977E+308 0 0.5

c.LB c.UB c.BODY c.DUAL

1 3 1 0.5
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NOTE: Spaces are significant. The form NAME. TAG is treated as a SAS format name followed by the tag
name, not as a suffixed identifier. The forms NAME.TAG, NAME . TAG, and NAME .TAG (note the location
of spaces) are interpreted as suffixed references.

Integer Variable Suffixes
The suffixes .relax, .priority, and .direction are applicable to integer variables.

For an integer variable x, setting x.relax to a nonzero, nonmissing value relaxes the integrality restriction.
The value of x.relax is read as either 1 or 0, depending on whether or not integrality is relaxed. This suffix is
ignored for noninteger variables.

The value contained in x.priority sets the branching priority of an integer variable x for use with the MILP
solver. This value can be any nonnegative, nonmissing number. The default value is 0, which indicates
default branching priority. Variables with positive .priority values are assigned greater priority than the default.
Variables with the highest .priority values are assigned the highest priority. Variables with the same .priority
value are assigned the same branching priority.

The value of x.direction assigns a branching direction to an integer variable x. This value should be an integer
in the range –1 to 3. A noninteger value in this range is rounded on assignment. The default value is 0. The
significance of each integer is found in Table 5.13.

Table 5.13 Branching Directions

Value Direction
–1 Round down to nearest integer
0 Default
1 Round up to nearest integer
2 Round to nearest integer
3 Round to closest presolved bound

Suppose the solver branches next on an integer variable x whose last LP relaxation solution is 3.3. Suppose
also that after passing through the presolver, the lower bound of x is 0 and the upper bound of x is 10. If the
value in x.direction is –1 or 2, then the solver sets x to 3 for the next iteration. If the value in x.direction is 1,
then the solver sets x to 4. If the value in x.direction is 3, then the solver sets x to 0.

The MPS data set created by the SAVE MPS statement (“SAVE MPS Statement” on page 94) includes a
BRANCH section if any nondefault .priority or .direction values have been specified for integer variables.

Dual Values
A dual value is associated with each constraint. To access the dual value of a constraint, use the constraint
name followed by the suffix .dual.

For linear programming problems, the dual value associated with a constraint is also known as the dual price
(also called the shadow price). The shadow price is usually interpreted economically as the rate at which the
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optimal value changes with respect to a change in some right-hand side that represents a resource supply or
demand requirement.

For nonlinear programming problems, the dual values correspond to the values of the optimal Lagrange
multipliers. For more details about duality in nonlinear programming, see Bazaraa, Sherali, and Shetty
(1993).

From the dual value associated with the constraint, you can also tell whether the constraint is active or not. A
constraint is said to be active (tight at a point) if it holds with equality at that point. It can be informative to
identify active constraints at the optimal point and check their corresponding dual values. Relaxing the active
constraints might improve the objective value.

Background on Duality in Mathematical Programming

For a minimization problem, there exists an associated problem with the following property: any feasible
solution to the associated problem provides a lower bound for the original problem, and conversely any
feasible solution to the original problem provides an upper bound for the associated problem. The original
and the associated problems are referred to as the primal and the dual problem, respectively. More specifically,
consider the primal problem,

minimize
x

f .x/

subject to ci .x/ D 0; i 2 E
ci .x/ � 0; i 2 L
ci .x/ � 0; i 2 G

where E , L, and G denote the sets of equality, � inequality, and � inequality constraints, respectively.
Variables x 2 Rn are called the primal variables. The Lagrangian function of the primal problem is defined as

L.x; �; �; �/ D f .x/ �
X
i2E

�ici .x/ �
X
i2L

�ici .x/ �
X
i2G

�ici .x/

where �i 2 R, �i � 0, and �i � 0. By convention, the Lagrange multipliers for inequality constraints have
to be nonnegative. Hence �, ��, and � correspond to the Lagrange multipliers in the preceding Lagrangian
function. It can be seen that the Lagrangian function is a linear combination of the objective function and
constraints of the primal problem.

The Lagrangian function plays a fundamental role in nonlinear programming. It is used to define the
optimality conditions that characterize a local minimum of the primal problem. It is also used to formulate
the dual problem of the preceding primal problem. To this end, consider the following dual function:

d.�; �; �/ D inf
x
L.x; �; �; �/

The dual problem is defined as
maximize
�;�;�

d.�; �; �/

subject to � � 0

� � 0:

The variables �, �, and � are called the dual variables. Note that the dual variables associated with the
equality constraints (�) are free, whereas those associated with � inequality constraints (�) have to be
nonpositive and those associated with � inequality constraints (�) have to be nonnegative.

The relation between the primal and the dual problems provides a nice connection between the optimal
solutions of the problems. Suppose x� is an optimal solution of the primal problem and .��; ��; ��/ is an
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optimal solution of the dual problem. The difference between the objective values of the primal and dual
problems, ı D f .x�/ � d.��; ��; ��/ � 0, is called the duality gap. For some restricted class of convex
nonlinear programming problems, both the primal and the dual problems have an optimal solution and the
optimal objective values are equal—that is, the duality gap ı D 0. In such cases, the optimal values of the
dual variables correspond to the optimal Lagrange multipliers of the primal problem with the correct signs.

A maximization problem is treated analogously to a minimization problem. For the maximization problem

maximize
x

f .x/

subject to ci .x/ D 0; i 2 E
ci .x/ � 0; i 2 L
ci .x/ � 0; i 2 G;

the dual problem is
minimize
�;�;�

d.�; �; �/

subject to � � 0

� � 0:

where the dual function is defined as d.�; �; �/ D sup
x

L.x; �; �; �/ and the Lagrangian function

L.x; �; �; �/ is defined the same as earlier. In this case, �, �, and �� correspond to the Lagrange multipliers
in L.x; �; �; �/.

Minimization Problems

For inequality constraints in minimization problems, a positive optimal dual value indicates that the associated
� inequality constraint is active at the solution, and a negative optimal dual value indicates that the associated
� inequality constraint is active at the solution. In PROC OPTMODEL, the optimal dual value for a range
constraint (a constraint with both upper and lower bounds) is the sum of the dual values associated with the
upper and lower inequalities. Since only one of the two inequalities can be active, the sign of the optimal
dual value, if nonzero, identifies which one is active.

For equality constraints in minimization problems, the optimal dual values are unrestricted in sign. A positive
optimal dual value for an equality constraint implies that, starting close enough to the primal solution, the
same optimum could be found if the equality constraint were replaced with a � inequality constraint. A
negative optimal dual value for an equality constraint implies that the same optimum could be found if the
equality constraint were replaced with a � inequality constraint.

The following is an example where simple linear programming is considered:

proc optmodel;
var x, y;
min z = 6*x + 7*y;
con

4*x + y >= 5,
-x - 3*y <= -4,
x + y <= 4;

solve;
print x y;
expand _ACON_ ;
print _ACON_.dual _ACON_.body;

The PRINT statements generate the output shown in Figure 5.55.
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Figure 5.55 Dual Values in Minimization Problem: Display

Problem Summary

Objective Sense Minimization
Objective Function z
Objective Type Linear

Number of Variables 2
Bounded Above 0
Bounded Below 0
Bounded Below and Above 0
Free 2
Fixed 0

Number of Constraints 3
Linear LE (<=) 2
Linear EQ (=) 0
Linear GE (>=) 1
Linear Range 0

Constraint Coefficients 6

Performance Information

Execution Mode Single-Machine
Number of Threads 1

Solution Summary

Solver LP
Algorithm Dual Simplex
Objective Function z
Solution Status Optimal
Objective Value 13

Primal Infeasibility 0
Dual Infeasibility 0
Bound Infeasibility 0

Iterations 5
Presolve Time 0.00
Solution Time 0.00

x y

1 1

Constraint _ACON_[1]: y + 4*x >= 5
Constraint _ACON_[2]: - 3*y - x <= -4
Constraint _ACON_[3]: y + x <= 4
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Figure 5.55 continued

_ACON_. _ACON_.
[1] DUAL BODY

1 1 5
2 -2 -4
3 0 2

It can be seen that the first and second constraints are active, with dual values 1 and �2. Continue to submit
the following statements. Notice how the objective value is changed in Figure 5.56.

_ACON_[1].lb = _ACON_[1].lb - 1;
solve;
_ACON_[2].ub = _ACON_[2].ub + 1;
solve;

Figure 5.56 Dual Values in Minimization Problem: Interpretation

Problem Summary

Objective Sense Minimization
Objective Function z
Objective Type Linear

Number of Variables 2
Bounded Above 0
Bounded Below 0
Bounded Below and Above 0
Free 2
Fixed 0

Number of Constraints 3
Linear LE (<=) 2
Linear EQ (=) 0
Linear GE (>=) 1
Linear Range 0

Constraint Coefficients 6

Performance Information

Execution Mode Single-Machine
Number of Threads 1
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Figure 5.56 continued

Solution Summary

Solver LP
Algorithm Dual Simplex
Objective Function z
Solution Status Optimal
Objective Value 12

Primal Infeasibility 0
Dual Infeasibility 0
Bound Infeasibility 0

Iterations 5
Presolve Time 0.00
Solution Time 0.00

Problem Summary

Objective Sense Minimization
Objective Function z
Objective Type Linear

Number of Variables 2
Bounded Above 0
Bounded Below 0
Bounded Below and Above 0
Free 2
Fixed 0

Number of Constraints 3
Linear LE (<=) 2
Linear EQ (=) 0
Linear GE (>=) 1
Linear Range 0

Constraint Coefficients 6

Performance Information

Execution Mode Single-Machine
Number of Threads 1
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Figure 5.56 continued

Solution Summary

Solver LP
Algorithm Dual Simplex
Objective Function z
Solution Status Optimal
Objective Value 10

Primal Infeasibility 0
Dual Infeasibility 0
Bound Infeasibility 0

Iterations 5
Presolve Time 0.00
Solution Time 0.00

The change is just as the dual values imply. After the first constraint is relaxed by one unit, the objective
value is improved by one unit. For the second constraint, the relaxation and improvement are one unit and
two units, respectively.

NOTE: The signs of dual values produced by PROC OPTMODEL depend, in some instances, on the way in
which the corresponding constraints are entered. See the section “Constraints” on page 126 for details.

Maximization Problems

For inequality constraints in maximization problems, a positive optimal dual value indicates that the associated
� inequality constraint is active at the solution, and a negative optimal dual value indicates that the associated
� inequality constraint is active at the solution. The optimal dual value for a range constraint is the sum of
the dual values associated with the upper and lower inequalities. The sign of the optimal dual value identifies
which inequality is active.

For equality constraints in maximization problems, the optimal dual values are unrestricted in sign. A positive
optimal dual value for an equality constraint implies that, starting close enough to the primal solution, the
same optimum could be found if the equality constraint were replaced with a � inequality constraint. A
negative optimal dual value for an equality constraint implies that the same optimum could be found if the
equality constraint were replaced with a � inequality constraint.

CAUTION: The signs of dual values produced by PROC OPTMODEL depend, in some instances, on the way
in which the corresponding constraints are entered. See the section “Constraints” on page 126 for details.

Reduced Costs
In linear programming problems, each variable has a corresponding reduced cost. To access the reduced cost
of a variable, add the suffix .rc or .dual to the variable name. These two suffixes are interchangeable.

The reduced cost of a variable is the rate at which the objective value changes when the value of that variable
changes. At optimality, basic variables have a reduced cost of zero; a nonbasic variable with zero reduced
cost indicates the existence of multiple optimal solutions.
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In nonlinear programming problems, the reduced cost interpretation does not apply. The .dual and .rc variable
suffixes represent the gradient of the Lagrangian function, computed using the values returned by the solver.

The following example illustrates the use of the .rc suffix:

proc optmodel;
var x >= 0, y >= 0, z >= 0;
max cost = 4*x + 3*y - 5*z;
con

-x + y + 5*z <= 15,
3*x - 2*y - z <= 12,
2*x + 4*y + 2*z <= 16;

solve;
print x y z;
print x.rc y.rc z.rc;

The PRINT statements generate the output shown in Figure 5.57.

Figure 5.57 Reduced Cost in Maximization Problem: Display

x y z

5 1.5 0

x.RC y.RC z.RC

0 0 -6.5

In this example, x and y are basic variables, while z is nonbasic. The reduced cost of z is –6.5, which implies
that increasing z from 0 to 1 decreases the optimal value from 24.5 to 18.

Presolver
PROC OPTMODEL includes a simple presolver that processes linear constraints to produce tighter bounds
on variables. The presolver can reduce the number of variables and constraints that are presented to the solver.
These changes can result in reduced solution times.

Linear constraints that involve only a single variable are converted into variable bounds. The presolver then
eliminates redundant linear constraints for which variable bounds force the constraint to always be satisfied.
Tightly bounded variables where upper and lower bounds are within the range specified by the VARFUZZ=
option (see the section “PROC OPTMODEL Statement” on page 56) are automatically fixed to the average
of the bounds. The presolver also eliminates variables that are fixed by the user or by the presolver.

The presolver can infer tighter variable bounds from linear constraints when all variables in the constraint
or all but one variable have known bounds. For example, when given the following PROC OPTMODEL
declarations, the presolver can determine the bound y � 4:

proc optmodel;
var x >= 3;
var y;
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con c: x + y <= 7;

The presolver makes multiple passes and rechecks linear constraints after bounds are tightened for the
referenced variables. The number of passes is controlled by the PRESOLVER= option. After the passes are
finished, the presolver attempts to fix the value of all variables that are not used in the updated objective
and constraints. The current value of such a variable is used if the value lies between the variable’s upper
and lower bounds. Otherwise, the value is adjusted to the nearer bound. The value of an integer variable is
rounded before being checked against its bounds.

In some cases the solver might perform better without the presolve transformations, so almost all such trans-
formations are unavailable when the option PRESOLVER=BASIC is specified. However, the presolver still
eliminates variables that have values that have been fixed by the FIX statement. To disable the OPTMODEL
presolver entirely, use PRESOLVER=NONE. The solver assigns values to any unused, unfixed variables
when the option PRESOLVER=NONE is specified.

Model Update
The PROC OPTMODEL modeling language provides several means of modifying a model after it is first
specified. You can change the parameter values of the model. You can add new model components. The
FIX and UNFIX statements can fix variables to specified values or rescind previously fixed values. The
DROP and RESTORE statements can deactivate and reactivate constraints. See also the section “Multiple
Subproblems” on page 146 for information on how to maintain multiple models.

To illustrate how these statements work, reconsider the following example from the section “Constraints” on
page 126:

proc optmodel;
var x, y;
min r = x**2 + y**2;
con c: x+y >= 1;
solve;
print x y;

As described previously, the solver finds the optimal point x = y = 0.5 with r = 0.5. You can see the effect of
the constraint c on the solution by temporarily removing it. You can add the following statements:

drop c;
solve;
print x y;

This change produces the output in Figure 5.58.
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Figure 5.58 Solution with Dropped Constraint

Problem Summary

Objective Sense Minimization
Objective Function r
Objective Type Quadratic

Number of Variables 2
Bounded Above 0
Bounded Below 0
Bounded Below and Above 0
Free 2
Fixed 0

Number of Constraints 0

Constraint Coefficients 0

Performance Information

Execution Mode Single-Machine
Number of Threads 4

Solution Summary

Solver QP
Algorithm Interior Point
Objective Function r
Solution Status Optimal
Objective Value 0

Primal Infeasibility 0
Dual Infeasibility 0
Bound Infeasibility 0
Duality Gap 0
Complementarity 0

Iterations 0
Presolve Time 0.00
Solution Time 0.00

x y

0 0

The optimal point is x D y D 0, as expected.

You can restore the constraint c with the RESTORE statement, and you can also investigate the effect of
forcing the value of variable x to 0.3. This requires the following statements:
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restore c;
fix x=0.3;
solve;
print x y c.dual;

This produces the output in Figure 5.59.

Figure 5.59 Solution with Fixed Variable

Problem Summary

Objective Sense Minimization
Objective Function r
Objective Type Quadratic

Number of Variables 2
Bounded Above 0
Bounded Below 0
Bounded Below and Above 0
Free 1
Fixed 1

Number of Constraints 1
Linear LE (<=) 0
Linear EQ (=) 0
Linear GE (>=) 1
Linear Range 0

Constraint Coefficients 0

Performance Information

Execution Mode Single-Machine
Number of Threads 4

Solution Summary

Solver QP
Algorithm Interior Point
Objective Function r
Solution Status Optimal
Objective Value 0.58

Primal Infeasibility 0
Dual Infeasibility 0
Bound Infeasibility 0
Duality Gap 0
Complementarity 0

Iterations 0
Presolve Time 0.00
Solution Time 0.01
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Figure 5.59 continued

x y c.DUAL

0.3 0.7 1.4

The variable x still has the value that was defined in the FIX statement. The objective value has increased
by 0.08 from its constrained optimum 0.5 (see Figure 5.50). The constraint c is active, as confirmed by the
positive dual value.

You can return to the original optimization problem by allowing the solver to vary variable x with the UNFIX
statement, as follows:

unfix x;
solve;
print x y c.dual;

This produces the output in Figure 5.60. The model was returned to its original conditions.

Figure 5.60 Solution with Original Model

Problem Summary

Objective Sense Minimization
Objective Function r
Objective Type Quadratic

Number of Variables 2
Bounded Above 0
Bounded Below 0
Bounded Below and Above 0
Free 2
Fixed 0

Number of Constraints 1
Linear LE (<=) 0
Linear EQ (=) 0
Linear GE (>=) 1
Linear Range 0

Constraint Coefficients 2

Performance Information

Execution Mode Single-Machine
Number of Threads 4
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Figure 5.60 continued

Solution Summary

Solver QP
Algorithm Interior Point
Objective Function r
Solution Status Optimal
Objective Value 0.4999995397

Primal Infeasibility 2.5005E-7
Dual Infeasibility 2.3570226E-7
Bound Infeasibility 0
Duality Gap 1.9575231E-7
Complementarity 3.9804725E-8

Iterations 3
Presolve Time 0.00
Solution Time 0.01

x y c.DUAL

0.5 0.5 1

Multiple Subproblems
The OPTMODEL procedure enables multiple models to be manipulated easily by using named problems to
switch the active model components. Problems keep track of an objective, a set of included variables and
constraints, and some status information that is associated with the variables and constraints. Other data,
such as parameter values, bounds, and the current value of variables, are shared by all problems.

Problems are declared with the PROBLEM declaration. You can easily switch between problems by using
the USE PROBLEM statement. The USE PROBLEM statement makes the specified problem become the
current problem. The various statements that generate problem data, such as SOLVE, EXPAND, and SAVE
MPS, always operate using the model components included in the current problem.

A problem declaration can specify the problem’s initial objective by copying it from the problem named in a
FROM clause or by including the objective symbol. This objective can be overridden while the problem is
current by declaring a new non-array objective or by executing programming statements that specify a new
objective.

Variables can also be included when the problem is current by declaring them or by using the FIX or UNFIX
statement. Similarly, constraints can be included when the problem is current by declaring them or by using
the RESTORE or DROP statement. There is no way to exclude a variable or constraint item after it has been
included in a problem, although the variable or constraint can be fixed or dropped.

Variables that are declared but not included in a problem are treated as fixed when a problem is generated,
while constraints that are declared but not included are ignored. The solver does not update the values and
status for these model components.
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A problem also tracks certain other status information that is associated with its included symbols, and this
information can be changed without affecting other problems. This information includes the fixed status
for variables, and the dropped status for constraints. The following additional data that are tracked by the
problem are available through variable and constraint suffixes:

• var.STATUS (including IIS status)

• var.INIT

• var.MSINIT

• var.RC

• var.DUAL (alias of var.RC)

• con.STATUS (including IIS status)

• con.DUAL

The initial problem when OPTMODEL starts is predeclared with the name _START_. This problem can be
reinstated again (after other USE PROBLEM statements) with the statement

use problem _start_;

See “Example 5.5: Multiple Subproblems” on page 164 for example statements that use multiple subprob-
lems.

Problem Symbols
The OPTMODEL procedure declares a number of symbols that are aliases for model components in the
current problem. These symbols allow the model components to be accessed uniformly. These symbols are
described in Table 5.14.

Table 5.14 Problem Symbols

Symbol Indexing Description
_NVAR_ Number of variables
_VAR_ {1.._NVAR_} Variable array
_NCON_ Number of constraints
_CON_ {1.._NCON_} Constraint array
_S_NVAR_ Number of presolved variables
_S_VAR_ {1.._S_VAR_} Presolved variable array
_S_NCON_ Number of presolved constraints
_S_CON_ {1.._S_CON_} Presolved constraint array
_OBJ_ Current objective
_PROBLEM_ Current problem
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If the table specifies indexing, then the corresponding symbol is accessed as an array. For example, if the
problem includes two variables, x and y, then the value of _NVAR_ is 2 and the current variable values
can be accessed as _var_[1] and _var_[2]. The problem variables prefixed with _S are restricted to model
components in the problem after processing by the OPTMODEL presolver.

The following statements define a simple linear programming model and then use the problem symbols to
print out some of the problem results. The .name suffix is used in the PRINT statements to display the actual
variable and constraint names. Any of the suffixes that apply to a model component can be applied to the
corresponding generic symbol.

proc optmodel printlevel=0;
var x1 >= 0, x2 >= 0, x3 >= 0, x4 >= 0, x5 >= 0;

minimize z = x1 + x2 + x3 + x4;

con a1: x1 + x2 + x3 <= 4;
con a2: x4 + x5 <= 6;
con a3: x1 + x4 >= 5;
con a4: x2 + x5 >= 2;
con a5: x3 >= 3;

solve with lp;

print _var_.name _var_ _var_.rc _var_.status;
print _con_.name _con_.lb _con_.body _con_.ub _con_.dual _con_.status;

The PRINT statement output is shown in Figure 5.61.

Figure 5.61 Problem Symbol Output

_VAR_. _VAR_.
[1] NAME _VAR_ _VAR_.RC STATUS

1 x1 1 0 B
2 x2 0 1 L
3 x3 3 0 B
4 x4 4 0 B
5 x5 2 0 B

_CON_. _CON_. _CON_. _CON_.
[1] NAME _CON_.LB BODY _CON_.UB DUAL STATUS

1 a1 -1.7977E308 4 4.0000E+00 0 L
2 a2 -1.7977E308 6 6.0000E+00 0 B
3 a3 5 5 1.7977E+308 1 U
4 a4 2 2 1.7977E+308 0 U
5 a5 3 3 1.7977E+308 1 U
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OPTMODEL Options
All PROC OPTMODEL options can be specified in the PROC statement (see the section “PROC OPTMODEL
Statement” on page 56 for more information). However, it is sometimes necessary to change options after
other PROC OPTMODEL statements have been executed. For example, if an optimization technique had
trouble with convergence, then it might be useful to vary the PRESOLVER= option value. This can be done
with the RESET OPTIONS statement.

The RESET OPTIONS statement accepts options in the same form used by the PROC OPTMODEL statement.
The RESET OPTIONS statement is also able to reset option values and to change options programmatically.
For example, the following statements print the value of parameter n at various precisions:

proc optmodel;
number n = 1/7;
for {i in 1..9 by 4}
do;

reset options pdigits=(i);
print n;

end;
reset options pdigits; /* reset to default */

The output generated is shown in Figure 5.62. The RESET OPTIONS statement in the DO loop sets the
PDIGITS option to the value of i. The final RESET OPTIONS statement restores the default option value,
because the value was omitted.

Figure 5.62 Changing the PDIGITS Option Value

n

0.1

n

0.14286

n

0.142857143

Automatic Differentiation
PROC OPTMODEL automatically generates statements to evaluate the derivatives for most objective
expressions and nonlinear constraints. PROC OPTMODEL generates analytic derivatives for objective and
constraint expressions written in terms of the procedure’s mathematical operators and most standard SAS
library functions.

NOTE: Some functions, such as ABS, FLOOR, and SIGN, and some operators, such as IF-THEN, <>
(element minimum operator), and >< (element maximum operator), must be used carefully in modeling
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expressions because functions including such components are not continuously differentiable or even
continuous.

Expressions that reference user-defined functions or some SAS library functions might require numerical
approximation of derivatives. PROC OPTMODEL uses either forward-difference approximation or central-
difference approximation as specified by the FD= option (see the section “PROC OPTMODEL Statement”
on page 56).

NOTE: The numerical gradient approximations are significantly slower than automatically generated deriva-
tives when the number of optimization variables is large.

Forward-Difference Approximations

The FD=FORWARD option requests the use of forward-difference derivative approximations. For a function
f of n variables, the first-order derivatives are approximated by

gi D
@f

@xi
D
f .x C eihi / � f .x/

hi

Notice that up to n additional function calls are needed here. The step lengths hi , i D 1; : : : ; n, are based on
the assumed function precision, DIGITS:

hi D 10
�DIGITS=2.1C jxi j/

You can use the FDIGITS= option to specify the function precision, DIGITS, for the objective function. For
constraints, use the CDIGITS= option.

The second-order derivatives are approximated by using up to n.nC 3/=2 extra function calls (Dennis and
Schnabel 1983, pp. 80, 104):

@2f

@x2i
D

f .x C hiei / � 2f .x/C f .x � hiei /

h2i

@2f

@xi@xj
D

f .x C hiei C hj ej / � f .x C hiei / � f .x C hj ej /C f .x/

hihj

Notice that the diagonal of the Hessian uses a central-difference approximation (Abramowitz and Stegun
1972, p. 884). The step lengths are

hi D 10
�DIGITS=3.1C jxi j/

Central-Difference Approximations

The FD=CENTRAL option requests the use of central-difference derivative approximations. Generally,
central-difference approximations are more accurate than forward-difference approximations, but they require
more function evaluations. For a function f of n variables, the first-order derivatives are approximated by
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gi D
@f

@xi
D
f .x C eihi / � f .x � eihi /

2hi

Notice that up to 2n additional function calls are needed here. The step lengths hi , i D 1; : : : ; n, are based
on the assumed function precision, DIGITS:

hi D 10
�DIGITS=3.1C jxi j/

You can use the FDIGITS= option to specify the function precision, DIGITS, for the objective function. For
constraints, use the CDIGITS= option.

The second-order derivatives are approximated by using up to 2n.nC 1/ extra function calls (Abramowitz
and Stegun 1972, p. 884):

@2f

@x2i
D
�f .x C 2hiei /C 16f .x C hiei / � 30f .x/C 16f .x � hiei / � f .x � 2hiei /

12h2i

@2f

@xi@xj
D

f .x C hiei C hj ej / � f .x C hiei � hj ej / � f .x � hiei C hj ej /C f .x � hiei � hj ej /

4hihj

The step lengths are

hi D 10
�DIGITS=3.1C jxi j/

Conversions
Numeric values are implicitly converted to strings when needed for function arguments or operands to the
string concatenation operator (||). A warning message is generated when the conversion is applied to a
function argument. The conversion uses BEST12. format. Unlike the DATA step, the conversion trims
blanks.

Implicit conversion of strings to numbers is not permitted. Use the INPUT function to explicitly perform
such conversions.

More on Index Sets
Dummy parameters behave like parameters but are assigned values only when an index set is evaluated. You
can reference the declared dummy parameters from index set expressions that follow the index set item. You
can also reference the dummy parameters in the expression or statement controlled by the index set. As the
members of the set expression of an index set item are enumerated, the element values of the members are
assigned to the local dummy parameters.
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The number of names in a dummy parameter declaration must match the element length of the corresponding
set expression in the index set item. A single name is allowed when the set member type is scalar (numeric or
string). If the set members are tuples that have n > 1 elements, then n names are required between the angle
brackets (< >) that precede the IN keyword.

Multiple index set items in an index set are nominally processed in a left-to-right order. That is, a set
expression from an index set item is evaluated as though the index set items that precede it have already been
evaluated. The left-hand index set items can assign values to local dummy parameters that are used by the set
expressions that follow them. After each member from the set expression is enumerated, any index set items
to the right are reevaluated as needed. The actual order in which index set items are evaluated can vary, if
necessary, to allow more efficient enumeration. PROC OPTMODEL generates the same set of values in any
case, although possibly in a different order than strict left-to-right evaluation.

You can view the element combinations that are generated from an index set as tuples. This is especially true
for index set expressions (see the section “Index Set Expression” on page 105). However, in most cases no
tuple set is actually formed, and the element values are assigned only to local dummy parameters.

You can specify a selection expression following a colon (:). The index set generates only those combinations
of values for which the selection expression is true. For example, the following statements produce a set of
upper triangular indices:

proc optmodel;
put (setof {i in 1..3, j in 1..3 : j >= i} <i, j>);

These statements produce the output in Figure 5.63.

Figure 5.63 Upper Triangular Index Set

{<1,1>,<1,2>,<1,3>,<2,2>,<2,3>,<3,3>}

You can use the left-to-right evaluation of index set items to express the previous set more compactly. The
following statements produce the same output as the previous statements:

proc optmodel;
put ({i in 1..3, i..3});

In this example, the first time the second index set item is evaluated, the value of the dummy parameter i is 1,
so the item produces the set {1,2,3}. At the second evaluation the value of i is 2, so the second item produces
the set {2,3}. At the final evaluation the value of i is 3, so the second item produces the set {3}.

In many cases it is useful to combine the SLICE operator with index sets. A special form of index set item
uses the SLICE operator implicitly. Normally an index set item that is applied to a set of tuples of length
greater than one must be of the form

< name-1 Œ , . . . name-n � > IN set-expression

In the special form, one or more of the name elements are replaced by expressions. The expressions select
tuple elements by using the SLICE operator. An expression that consists of a single name must be enclosed
in parentheses to distinguish it from a dummy parameter. The remaining names are the dummy parameters
for the index set item that is applied to the SLICE result. The following example demonstrates the use of
implicit set slicing:



Threaded Processing F 153

proc optmodel;
number N = 3;
set<num,str> S = {<1,'a'>,<2,'b'>,<3,'a'>,<4,'b'>};
put ({i in 1..N, <(i),j> in S});
put ({i in 1..N, j in slice(<i,*>, S)});

The two PUT statements in this example are equivalent.

Threaded Processing
The OPTMODEL procedure can take advantage of the multiple CPUs that are available in many computers.
PROC OPTMODEL automatically uses multithreaded execution to divide problem generation among the
multiple CPUs of the computer that is running the procedure. Hessian and Jacobian matrix evaluation is
automatically parallelized across threads of execution on multiple CPUs. Threading can decrease the amount
of clock time required to perform a task, although the total CPU time required might increase.

If you use the PERFORMANCE statement and specify an NTHREADS option, and the statement does not
request distributed computing, then threading in the OPTMODEL procedure is controlled by the NTHREADS
option. Otherwise, threading in the OPTMODEL procedure is controlled by the following SAS system
options:

CPUCOUNT=number | ACTUAL
specifies the maximum number of CPUs that can be used.

THREADS | NOTHREADS
enables or disables the use of threading.

Good performance is usually obtained with the default option settings (THREADS and CPU-
COUNT=ACTUAL). See the option descriptions in SAS System Options: Reference for more details.

The PERFORMANCE statement and the SAS system options set the maximum number of threads. The
number of threads that PROC OPTMODEL actually uses depends on the characteristics of the problem that
is being solved. In particular, threading is not used when the problem is simple enough that threading offers
no advantage.

Macro Variable _OROPTMODEL_
The OPTMODEL procedure creates a macro variable named _OROPTMODEL_. You can inspect the
execution of the most recently invoked solver from the value of the macro variable. The macro variable is
defined at the start of the procedure and updated after each SOLVE statement is executed. The OPTMODEL
procedure also updates the macro variable when an error is detected.

The _OROPTMODEL_ value is a string that consists of several “KEYWORD=value” items in sequence,
separated by blanks; for example:

STATUS=OK SOLUTION_STATUS=OPTIMAL OBJECTIVE=9 ITERATIONS=1
PRESOLVE_TIME=0 SOLUTION_TIME=0
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The information contained in _OROPTMODEL_ varies according to which solver was last called. For lists
of keywords and possible values, see the individual solver chapters.

If a value has not been computed, then the corresponding element is not included in the value of the macro
variable. When PROC OPTMODEL starts, for example, the macro variable value is set to “STATUS=OK”
because no SOLVE statement has been executed. If the STATUS= indicates an error, then the other values
from the solver might not be available, depending on when the error occurred.

_STATUS_ and _SOLUTION_STATUS_ Parameters

In addition to generating the macro variable _OROPTMODEL_, the OPTMODEL procedure generates the
predeclared string parameters _STATUS_ and _SOLUTION_STATUS_.

The value of _STATUS_ is equal to the STATUS= component of the _OROPTMODEL_ macro variable. The
value of _STATUS_ is initially “OK”. The value is updated during the SOLVE statement and after statement
execution errors.

The value of _SOLUTION_STATUS_ is equal to the SOLUTION_STATUS= component of the _OROPT-
MODEL_ macro variable. The value is initially an empty string. The value is updated during the SOLVE
statement.

Macro and Statement Evaluation Order

PROC OPTMODEL reads a complete statement, such as a DO statement, before executing any code in it.
But macro language statements are processed as the code is read. So you must be careful when using the
_OROPTMODEL_ macro variable in code that involves SOLVE statements nested in loops or DO statements.
The following statements demonstrate one example of this behavior:

proc optmodel;
var x, y;
min z=x**2 + (x*y-1)**2;
for {n in 1..3} do;

fix x=n;
solve;
%put Line 1 &_OROPTMODEL_;
put 'Line 2 ' (symget("_OROPTMODEL_"));

end;
quit;

In the preceding statements the %PUT statement is executed once, before any SOLVE statements are executed.
It displays PROC OPTMODEL’s initial setting of the macro variable. But the PUT statement is executed
after each SOLVE statement and indicates the expected solution status.

Examples: OPTMODEL Procedure

Example 5.1: Matrix Square Root
This example demonstrates the use of PROC OPTMODEL array parameters and variables. The following
statements create a randomized positive definite symmetric matrix and define an optimization model to find
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the matrix square root of the generated matrix:

proc optmodel;
number n = 5; /* size of matrix */
/* random original array */
number A{1..n, 1..n} = 10 - 20*ranuni(-1);
/* compute upper triangle of the

* symmetric matrix A*transpose(A) */
/* should be positive def unless A is singular */
number P{i in 1..n, j in i..n};
for {i in 1..n, j in i..n}

P[i,j] = sum{k in 1..n} A[i,k]*A[j,k];
/* coefficients of square root array

* (upper triangle of symmetric matrix) */
var q{i in 1..n, i..n};
/* The default initial value q[i,j]=0 is

* a local minimum of the objective,

* so you must move it away from that point. */
q[1,1] = 1;
/* minimize difference of square of q from P */
min r = sum{i in 1..n, j in i..n}

( sum{k in 1..i} q[k,i]*q[k,j]
+ sum{k in i+1..j} q[i,k]*q[k,j]
+ sum{k in j+1..n} q[i,k]*q[j,k]
- P[i,j] )**2;

solve;
print q;

These statements define a random array A of size n � n. The product P is defined as the matrix product
AAT . The product is symmetric, so the declaration of the parameter P gives it upper triangular indexing. The
matrix represented by P should be positive definite unless A is singular. But singularity is unlikely because
of the random generation of A. If P is positive definite, then it has a well-defined square root, Q, such that
P D QQT .

The objective r simply minimizes the sum of squares of the coefficients as

r D
X

1�i�j�n

R2i;j

where R D QQT � P . (This technique for computing matrix square roots is intended only for the
demonstration of PROC OPTMODEL capabilities. Better methods exist.)

Output 5.1.1 shows part of the output from running these statements. The values that are actually displayed
depend on the random numbers generated.
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Output 5.1.1 Matrix Square Root Results

q
1 2 3 4 5

1 12.67867 -8.14753 -6.43848 -0.87666 1.46609
2 -2.45955 -8.23167 4.22369 -8.64930
3 9.20976 2.70390 2.31570
4 -2.41761 -2.44853
5 7.22670

Example 5.2: Reading From and Creating a Data Set
This example demonstrates how to use the READ DATA statement to read parameters from a SAS data set.
The objective is the Bard function, which is the following least squares problem with I D f1; 2; : : : ; 15g:

f .x/ D
1

2

X
k2I

�
yk �

�
x1 C

k

vkx2 C wkx3

��2
x D .x1; x2; x3/; y D .y1; y2; : : : ; y15/

where vk D 16 � k, wk D min.k; vk/ (k 2 I ), and

y D .0:14; 0:18; 0:22; 0:25; 0:29; 0:32; 0:35; 0:39; 0:37; 0:58; 0:73; 0:96; 1:34; 2:10; 4:39/

The minimum function value f .x�/ D 4:107E�3 is at the point .0:08; 1:13; 2:34/. The starting point
x0 D .1; 1; 1/ is used. This problem is identical to the example “Using the DATA= Option” in Chapter 7,
“The NLP Procedure” (SAS/OR User’s Guide: Mathematical Programming Legacy Procedures). The
following statements use the READ DATA statement to input parameter values and the CREATE DATA
statement to save the solution in a SAS data set:

data bard;
input y @@;
datalines;

.14 .18 .22 .25 .29 .32 .35 .39

.37 .58 .73 .96 1.34 2.10 4.39
;
proc optmodel;

set I = 1..15;
number y{I};
read data bard into [_n_] y;
number v{k in I} = 16 - k;
number w{k in I} = min(k, v[k]);
var x{1..3} init 1;
min f = 0.5*

sum{k in I}
(y[k] - (x[1] + k /

(v[k]*x[2] + w[k]*x[3])))**2;
solve;
print x;
create data xdata from [i] xd=x;
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In these statements the values for parameter y are read from the BARD data set. The set I indexes the terms
of the objective in addition to the y array.

The preceding statements define two utility parameters that contain coefficients used in the objective function.
These coefficients could have been defined in the expression for the objective, f, but it was convenient to give
them names and simplify the objective expression.

The result is shown in Output 5.2.1.

Output 5.2.1 Bard Function Solution

[1] x

1 0.08241
2 1.13303
3 2.34370

The final CREATE DATA statement saves the solution values determined by the solver into the data set
XDATA. The data set contains an observation for each x index. Each observation contains two variables. The
output variable i contains the index, while xd contains the value for the indexed entry in the array x. The
resulting data can be seen by using the PRINT procedure as follows:

proc print data=xdata;
run;

The output from PROC PRINT is shown in Output 5.2.2.

Output 5.2.2 Output Data Set Contents

Obs i xd

1 1 0.08241
2 2 1.13303
3 3 2.34370

Example 5.3: Model Construction
This example uses PROC OPTMODEL features to simplify the construction of a mathematically formulated
model. The model is based on the example “An Assignment Problem” in Chapter 5, “The LP Procedure”
(SAS/OR User’s Guide: Mathematical Programming Legacy Procedures). A single invocation of PROC
OPTMODEL replaces several steps in the PROC LP statements.

The model assigns production of various grades of cloth to a set of machines in order to maximize profit while
meeting customer demand. Each machine has different capacities to produce the various grades of cloth.
(See the PROC LP example “An Assignment Problem” for more details.) The mathematical formulation,
where xijk represents the amount of cloth of grade j to produce on machine k for customer i , follows:
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max
P
ijk rijkxijk

subject to
P
k xijk D dij for all i and jP
ij cjkxijk � ak for all k

xijk � 0 for all i; j; and k

The OBJECT, DEMAND, and RESOURCE data sets are the same as in the PROC LP example. A new data
set, GRADE, is added to help separate the data from the model.

title 'An Assignment Problem';

data grade(drop=i);
do i = 1 to 6;

grade = 'grade'||put(i,1.);
output;

end;
run;

data object;
input machine customer

grade1 grade2 grade3 grade4 grade5 grade6;
datalines;

1 1 102 140 105 105 125 148
1 2 115 133 118 118 143 166
1 3 70 108 83 83 88 86
1 4 79 117 87 87 107 105
1 5 77 115 90 90 105 148
2 1 123 150 125 124 154 .
2 2 130 157 132 131 166 .
2 3 103 130 115 114 129 .
2 4 101 128 108 107 137 .
2 5 118 145 130 129 154 .
3 1 83 . . 97 122 147
3 2 119 . . 133 163 180
3 3 67 . . 91 101 101
3 4 85 . . 104 129 129
3 5 90 . . 114 134 179
4 1 108 121 79 . 112 132
4 2 121 132 92 . 130 150
4 3 78 91 59 . 77 72
4 4 100 113 76 . 109 104
4 5 96 109 77 . 105 145
;

data demand;
input customer

grade1 grade2 grade3 grade4 grade5 grade6;
datalines;

1 100 100 150 150 175 250
2 300 125 300 275 310 325



Example 5.3: Model Construction F 159

3 400 0 400 500 340 0
4 250 0 750 750 0 0
5 0 600 300 0 210 360
;

data resource;
input machine

grade1 grade2 grade3 grade4 grade5 grade6 avail;
datalines;

1 .250 .275 .300 .350 .310 .295 744
2 .300 .300 .305 .315 .320 . 244
3 .350 . . .320 .315 .300 790
4 .280 .275 .260 . .250 .295 672
;

The following PROC OPTMODEL statements read the data sets, build the linear programming model, solve
the model, and output the optimal solution to a SAS data set called SOLUTION:

proc optmodel;
/* declare index sets */
set CUSTOMERS;
set <str> GRADES;
set MACHINES;

/* declare parameters */
num return {CUSTOMERS, GRADES, MACHINES} init 0;
num demand {CUSTOMERS, GRADES};
num cost {GRADES, MACHINES} init 0;
num avail {MACHINES};

/* read the set of grades */
read data grade into GRADES=[grade];

/* read the set of customers and their demands */
read data demand

into CUSTOMERS=[customer]
{j in GRADES} <demand[customer,j]=col(j)>;

/* read the set of machines, costs, and availability */
read data resource nomiss

into MACHINES=[machine]
{j in GRADES} <cost[j,machine]=col(j)>
avail;

/* read objective data */
read data object nomiss

into [machine customer]
{j in GRADES} <return[customer,j,machine]=col(j)>;

/* declare the model */
var AmountProduced {CUSTOMERS, GRADES, MACHINES} >= 0;
max TotalReturn = sum {i in CUSTOMERS, j in GRADES, k in MACHINES}

return[i,j,k] * AmountProduced[i,j,k];
con req_demand {i in CUSTOMERS, j in GRADES}:
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sum {k in MACHINES} AmountProduced[i,j,k] = demand[i,j];
con req_avail {k in MACHINES}:

sum {i in CUSTOMERS, j in GRADES}
cost[j,k] * AmountProduced[i,j,k] <= avail[k];

/* call the solver and save the results */
solve;
create data solution

from [customer grade machine] = {i in CUSTOMERS, j in GRADES,
k in MACHINES: AmountProduced[i,j,k].sol ne 0}

amount=AmountProduced;

/* print optimal solution */
print AmountProduced;

quit;

The statements use both numeric (NUM) and character (STR) index sets, which are populated from the
corresponding data set variables in the READ DATA statements. The OPTMODEL parameters can be either
single-dimensional (AVAIL) or multiple-dimensional (COST, DEMAND, RETURN). The RETURN and
COST parameters are given initial values of 0, and the NOMISS option in the READ DATA statement tells
PROC OPTMODEL to read only the nonmissing values from the input data sets. The model declaration
is nearly identical to the mathematical formulation. The logical condition AmountProduced[i,j,k].sol

ne 0 in the CREATE DATA statement ensures that only the nonzero parts of the solution appear in the
SOLUTION data set. In the PROC LP example, the creation of this data set required postprocessing of the
PROC LP output data set.

The solver produces the following problem summary and solution summary:

Output 5.3.1 LP Solver Result

An Assignment Problem

Problem Summary

Objective Sense Maximization
Objective Function TotalReturn
Objective Type Linear

Number of Variables 120
Bounded Above 0
Bounded Below 120
Bounded Below and Above 0
Free 0
Fixed 0

Number of Constraints 34
Linear LE (<=) 4
Linear EQ (=) 30
Linear GE (>=) 0
Linear Range 0

Constraint Coefficients 220
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Output 5.3.1 continued

Solution Summary

Solver LP
Algorithm Dual Simplex
Objective Function TotalReturn
Solution Status Optimal
Objective Value 871426.03763

Primal Infeasibility 0
Dual Infeasibility 0
Bound Infeasibility 0

Iterations 60
Presolve Time 0.00
Solution Time 0.00

The SOLUTION data set can be processed by PROC TABULATE as follows to create a compact representation
of the solution:

proc tabulate data=solution;
class customer grade machine;
var amount;
table (machine*customer), (grade*amount=''*sum='');

run;

These statements produce the table shown in Output 5.3.2.
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Output 5.3.2 An Assignment Problem

An Assignment Problem

------------------------------------------------------------------------
| | grade |
| |---------------------------------------------------|
| | grade1 | grade2 | grade3 | grade4 |
|------------------+------------+------------+------------+------------|
|machine |customer | | | | |
|--------+---------| | | | |
|1 |1 | .| 100.00| 150.00| 150.00|
| |---------+------------+------------+------------+------------|
| |2 | .| .| 300.00| .|
| |---------+------------+------------+------------+------------|
| |3 | .| .| 256.72| 210.31|
| |---------+------------+------------+------------+------------|
| |4 | .| .| 750.00| .|
| |---------+------------+------------+------------+------------|
| |5 | .| 92.27| .| .|
|--------+---------+------------+------------+------------+------------|
|2 |3 | .| .| 143.28| .|
| |---------+------------+------------+------------+------------|
| |5 | .| .| 300.00| .|
|--------+---------+------------+------------+------------+------------|
|3 |2 | .| .| .| 275.00|
| |---------+------------+------------+------------+------------|
| |3 | .| .| .| 289.69|
| |---------+------------+------------+------------+------------|
| |4 | .| .| .| 750.00|
| |---------+------------+------------+------------+------------|
| |5 | .| .| .| .|
|--------+---------+------------+------------+------------+------------|
|4 |1 | 100.00| .| .| .|
| |---------+------------+------------+------------+------------|
| |2 | 300.00| 125.00| .| .|
| |---------+------------+------------+------------+------------|
| |3 | 400.00| .| .| .|
| |---------+------------+------------+------------+------------|
| |4 | 250.00| .| .| .|
| |---------+------------+------------+------------+------------|
| |5 | .| 507.73| .| .|
------------------------------------------------------------------------

(Continued)
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Output 5.3.2 continued

An Assignment Problem

----------------------------------------------
| | grade |
| |-------------------------|
| | grade5 | grade6 |
|------------------+------------+------------|
|machine |customer | | |
|--------+---------| | |
|1 |1 | 175.00| 250.00|
| |---------+------------+------------|
| |2 | .| .|
| |---------+------------+------------|
| |3 | .| .|
| |---------+------------+------------|
| |4 | .| .|
| |---------+------------+------------|
| |5 | .| .|
|--------+---------+------------+------------|
|2 |3 | 340.00| .|
| |---------+------------+------------|
| |5 | .| .|
|--------+---------+------------+------------|
|3 |2 | 310.00| 325.00|
| |---------+------------+------------|
| |3 | .| .|
| |---------+------------+------------|
| |4 | .| .|
| |---------+------------+------------|
| |5 | 210.00| 360.00|
|--------+---------+------------+------------|
|4 |1 | .| .|
| |---------+------------+------------|
| |2 | .| .|
| |---------+------------+------------|
| |3 | .| .|
| |---------+------------+------------|
| |4 | .| .|
| |---------+------------+------------|
| |5 | .| .|
----------------------------------------------

Example 5.4: Set Manipulation
This example demonstrates PROC OPTMODEL set manipulation operators. These operators are used to
compute the set of primes up to a given limit. This example does not solve an optimization problem, but
similar set manipulation could be used to set up an optimization model. Here are the statements:

proc optmodel;
number maxprime; /* largest number to consider */
set composites =

union {i in 3..sqrt(maxprime) by 2} i*i..maxprime by 2*i;
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set primes = {2} union (3..maxprime by 2 diff composites);
maxprime = 500;
put primes;

The set composites contains the odd composite numbers up to the value of the parameter maxprime. The even
numbers are excluded here to reduce execution time and memory requirements. The UNION aggregation
operation is used in the definition to combine the sets of odd multiples of i for i D 3; 5; : : :. Any composite
number less than the value of the parameter maxprime has a divisor �

p
maxprime, so the range of i can be

limited. The set of multiples of i can also be started at i � i since smaller multiples are found in the set of
multiples for a smaller index.

You can then define the set primes. The odd primes are determined by using the DIFF operator to remove the
composites from the set of odd numbers no greater than the parameter maxprime. The UNION operator adds
the single even prime, 2, to the resulting set of primes.

The PUT statement produces the result in Output 5.4.1.

Output 5.4.1 Primes less than or equal to 500

{2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,
107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,
223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,
337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,
457,461,463,467,479,487,491,499}

Note that you were able to delay the definition of the value of the parameter maxprime until just before the
PUT statement. Since the defining expressions of the SET declarations are handled symbolically, the value
of maxprime is not necessary until you need the value of the set primes. Because the sets composites and
primes are defined symbolically, their values reflect any changes to the parameter maxprime. You can see
this update by appending the following statements to the preceding statements:

maxprime = 50;
put primes;

The additional statements produce the results in Output 5.4.2. The value of the set primes has been recomputed
to reflect the change to the parameter maxprime.

Output 5.4.2 Primes less than or equal to 50

{2,3,5,7,11,13,17,19,23,29,31,37,41,43,47}

Example 5.5: Multiple Subproblems
Many important optimization problems cannot be solved directly using a standard solver, either because the
problem has constraints that cannot be modeled directly or because the resulting model would be too large to
be practical. For these types of problems, you can use PROC OPTMODEL to synthesize solution methods
by using a combination of the existing solvers and the modeling language programming constructions. This
example demonstrates the use of multiple subproblems to solve the cutting stock problem.
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The cutting stock problem determines how to efficiently cut raw stock into finished widths based on the
demands for the final product. Consider the example from page 195 of Chvátal (1983), where raw stock has
a width of 100 inches and the demands are shown in Table 5.15.

Table 5.15 Cutting Stock Demand

Finished Width Demand
45 inches 97
35 inches 610
31 inches 395
14 inches 211

A portion of the demand can be satisfied using a cutting pattern. For example, with the demands in Table 5.15
a possible pattern cuts one final of width 35 inches, one final of width 31 inches, and two finals of width 14
inches. This gives:

100 D 0 � 45C 1 � 35C 1 � 31C 2 � 14C waste:

The cutting stock problem can be formulated as follows, where xj represents the number of times pattern j
appears, aij represents the number of times demand item i appears in pattern j , di is the demand for item i ,
wi is the width of item i , N represents the set of patterns, M represents the set of items, and W is the width
of the raw stock:

minimize
P
j2N xj

subject to
P
j2N aijxj � di for all i 2M

xj integer; � 0 for all j 2 N

Also for each feasible pattern j you must have:X
i2M

wiaij � W

The difficulty with this formulation is that the number of patterns can be very large, with too many columns
xj to solve efficiently. But you can use column generation, as described on page 198 of Chvátal (1983), to
generate a smaller set of useful patterns, starting from an initial feasible set.

The dual variables, �i , of the demand constraints are used to price out the columns. From linear programming
(LP) duality theory, a column that improves the primal solution must have a negative reduced cost. For this
problem the reduced cost for column xj is

1 �
X
i2M

�iaij

Using this observation produces a knapsack subproblem:

minimize 1 �
P
i2M �iai

subject to
P
i2M wiai � W

ai integer; � 0 for all j 2 N
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where the objective is equivalent to:

maximize
P
i2M �iai

The pattern is useful if the associated reduced cost is negative:

1 �
X
i2M

�ia
�
i < 0

So you can use the following steps to generate the patterns and solve the cutting stock problem:

1. Initialize a set of trivial (one item) patterns.

2. Solve the problem using the LP solver.

3. Minimize the reduced cost using a knapsack solver.

4. Include the new pattern if the reduced cost is negative.

5. Repeat steps 2 through 4 until there are no more negative reduced cost patterns.

These steps are implemented in the following statements. Since adding columns preserves primal feasibility,
the statements use the primal simplex solver to take advantage of a warm start. The statements also solve the
LP relaxation of the problem, but you want the integer solution. So the statements finish by using the MILP
solver with the integer restriction applied. The result is not guaranteed to be optimal, but lower and upper
bounds can be provided for the optimal objective.

/* cutting-stock problem */
/* uses delayed column generation from

Chvatal's Linear Programming (1983), page 198 */

%macro csp(capacity);
proc optmodel printlevel=0;

/* declare parameters and sets */
num capacity = &capacity;
set ITEMS;
num demand {ITEMS};
num width {ITEMS};
num num_patterns init card(ITEMS);
set PATTERNS = 1..num_patterns;
num a {ITEMS, PATTERNS};
num c {ITEMS} init 0;
num epsilon = 1E-6;

/* read input data */
read data indata into ITEMS=[_N_] demand width;

/* generate trivial initial columns */
for {i in ITEMS, j in PATTERNS}

a[i,j] = (if (i = j) then floor(capacity/width[i]) else 0);
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/* define master problem */
var x {PATTERNS} >= 0 integer;
minimize NumberOfRaws = sum {j in PATTERNS} x[j];
con demand_con {i in ITEMS}:

sum {j in PATTERNS} a[i,j] * x[j] >= demand[i];
problem Master include x NumberOfRaws demand_con;

/* define column generation subproblem */
var y {ITEMS} >= 0 integer;
maximize KnapsackObjective = sum {i in ITEMS} c[i] * y[i];
con knapsack_con:

sum {i in ITEMS} width[i] * y[i] <= capacity;
problem Knapsack include y KnapsackObjective knapsack_con;

/* main loop */
do while (1);

print _page_ a;

/* master problem */
/* minimize sum_j x[j]

subj. to sum_j a[i,j] * x[j] >= demand[i]
x[j] >= 0 and integer */

use problem Master;
put "solve master problem";
solve with lp relaxint /

presolver=none solver=ps basis=warmstart printfreq=1;
print x;
print demand_con.dual;
for {i in ITEMS} c[i] = demand_con[i].dual;

/* knapsack problem */
/* maximize sum_i c[i] * y[i]

subj. to sum_i width[i] * y[i] <= capacity
y[i] >= 0 and integer */

use problem Knapsack;
put "solve column generation subproblem";
solve with milp / printfreq=0;
for {i in ITEMS} y[i] = round(y[i]);
print y;
print KnapsackObjective;

if KnapsackObjective <= 1 + epsilon then leave;

/* include new pattern */
num_patterns = num_patterns + 1;
for {i in ITEMS} a[i,num_patterns] = y[i];

end;

/* solve IP, using rounded-up LP solution as warm start */
use problem Master;
for {j in PATTERNS} x[j] = ceil(x[j].sol);
put "solve (restricted) master problem as IP";
solve with milp / primalin;
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/* cleanup solution and save to output data set */
for {j in PATTERNS} x[j] = round(x[j].sol);
create data solution from [pattern]={j in PATTERNS: x[j] > 0}

raws=x {i in ITEMS} <col('i'||i)=a[i,j]>;
quit;
%mend csp;

/* Chvatal, p.199 */
data indata;

input demand width;
datalines;

78 25.5
40 22.5
30 20
30 15
;
run;
%csp(91)
/* LP solution is integer */

/* Chvatal, p.195 */
data indata;

input demand width;
datalines;

97 45
610 36
395 31
211 14
;
run;
%csp(100)
/* LP solution is fractional */

The contents of the output data set for the second problem instance are shown in Output 5.5.1.

Output 5.5.1 Cutting Stock Solution

Obs pattern raws i1 i2 i3 i4

1 1 49 2 0 0 0
2 2 100 0 2 0 0
3 5 106 0 2 0 2
4 6 198 0 1 2 0

Example 5.6: Traveling Salesman Problem
This example demonstrates the use of the SUBMIT statement to execute a block of SAS statements from
within a PROC OPTMODEL session. In this case, the SUBMIT block calls the GPLOT procedure to display
intermediate results during the solution of an instance of the traveling salesman problem (TSP). The problem
is described in Example 7.4. See the “Examples” section in Chapter 2, “The OPTNET Procedure” (SAS/OR
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User’s Guide: Network Optimization Algorithms). for an example of how to use PROC OPTNET to solve the
TSP.

The following DATA step converts a TSPLIB instance of type EUC_2D into a SAS data set that contains the
coordinates of the vertices:

/* convert the TSPLIB instance into a data set */
data tspData(drop=H);

infile "&tsplib";
input H $1. @;
if H not in ('N','T','C','D','E');
input @1 var1-var3;

run;

The following macro generates plots of the solution and objective value:

%macro plotTSP;
/* create Annotate data set to draw subtours */
data anno(drop=xi yi xj yj);

%SYSTEM(2, 2, 2);
set solData(keep=xi yi xj yj);
%LINE(xi, yi, xj, yj, *, 1, 1);

run;

title1 h=2 "TSP: Iter = &i, Objective = &&obj&i";
title2;

%* sas;
%put iteration i: &i.;

%* tex;
proc gplot data=tspData anno=anno;

%* sas;
proc gplot data=tspData anno=anno gout=tspg;

axis1 label=none;
symbol1 value=dot interpol=none
pointlabel=("#var1" nodropcollisions height=1) cv=black;
plot var3*var2 / haxis=axis1 vaxis=axis1;

run;
quit;

%mend plotTSP;

%annomac;

The following PROC OPTMODEL statements solve the TSP by using the subtour formulation and iteratively
adding subtour constraints. The SUBMIT statement calls the %plotTSP macro to plot the solution and
objective value at each stage.

/* iterative solution using the subtour formulation */
proc optmodel;

set VERTICES;
set EDGES = {i in VERTICES, j in VERTICES: i > j};
num xc {VERTICES};
num yc {VERTICES};

num numsubtour init 0;
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set SUBTOUR {1..numsubtour};

/* read in the instance and customer coordinates (xc, yc) */
read data tspData into VERTICES=[var1] xc=var2 yc=var3;

/* the cost is the euclidean distance rounded to the nearest integer */
num c {<i,j> in EDGES}

init floor( sqrt( ((xc[i]-xc[j])**2 + (yc[i]-yc[j])**2)) + 0.5);

var x {EDGES} binary;

/* minimize the total cost */
min obj =

sum {<i,j> in EDGES} c[i,j] * x[i,j];

/* each vertex has exactly one in-edge and one out-edge */
con two_match {i in VERTICES}:

sum {j in VERTICES: i > j} x[i,j]
+ sum {j in VERTICES: i < j} x[j,i] = 2;

/* no subtours (these constraints are generated dynamically) */
con subtour_elim {s in 1..numsubtour}:

sum {<i,j> in EDGES: (i in SUBTOUR[s] and j not in SUBTOUR[s])
or (i not in SUBTOUR[s] and j in SUBTOUR[s])} x[i,j] >= 2;

/* this starts the algorithm to find violated subtours */
set <num,num> EDGES1;
set INITVERTICES = setof{<i,j> in EDGES1} i;
set VERTICES1;
set NEIGHBORS;
set <num,num> CLOSURE;
num component {INITVERTICES};
num numcomp init 2;
num iter init 1;
call symput('i',trim(left(put(round(iter),best.))));
num numiters init 1;

/* initial solve with just matching constraints */
solve;
call symput(compress('obj'||put(iter,best.)),

trim(left(put(round(obj),best.))));

/* create a data set for use by PROC GPLOT */
create data solData from

[i j]={<i,j> in EDGES: x[i,j].sol > 0.5}
xi=xc[i] yi=yc[i] xj=xc[j] yj=yc[j];

submit;
%plotTSP;

endsubmit;
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/* while the solution is disconnected, continue */
do while (numcomp > 1);

iter = iter + 1;
call symput('i',trim(left(put(round(iter),best.))));

/* find connected components of support graph */
EDGES1 = {<i,j> in EDGES: round(x[i,j].sol) = 1};
EDGES1 = EDGES1 union {setof {<i,j> in EDGES1} <j,i>};
VERTICES1 = INITVERTICES;
CLOSURE = EDGES1;

for {i in INITVERTICES} component[i] = 0;
for {i in VERTICES1} do;

NEIGHBORS = slice(<i,*>,CLOSURE);
CLOSURE = CLOSURE union (NEIGHBORS cross NEIGHBORS);

end;

numcomp = 0;
do while (card(VERTICES1) > 0);

numcomp = numcomp + 1;
for {i in VERTICES1} do;

NEIGHBORS = slice(<i,*>,CLOSURE);
for {j in NEIGHBORS} component[j] = numcomp;
VERTICES1 = VERTICES1 diff NEIGHBORS;
leave;

end;
end;

if numcomp = 1 then leave;

numiters = iter;
numsubtour = numsubtour + numcomp;
for {comp in 1..numcomp} do;

SUBTOUR[numsubtour-numcomp+comp]
= {i in VERTICES: component[i] = comp};

end;

solve;
call symput(compress('obj'||put(iter,best.)),

trim(left(put(round(obj),best.))));

/* create a data set for use by PROC GPLOT */
create data solData from

[i j]={<i,j> in EDGES: x[i,j].sol > 0.5}
xi=xc[i] yi=yc[i] xj=xc[j] yj=yc[j];

call symput('numiters',put(numiters,best.));
submit;

%plotTSP;
endsubmit;

end;
quit;
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The plot in Output 5.6.1 shows the solution and objective value at each stage. Each stage restricts some
subset of subtours. When you reach the final stage, you have a valid tour.

Output 5.6.1 Iterative Solution of Traveling Salesman Problem

Rewriting PROC NLP Models for PROC OPTMODEL
This section covers techniques for converting PROC NLP models to PROC OPTMODEL models.

To illustrate the basics, consider the following first version of the PROC NLP model for the example “Simple
Pooling Problem” in Chapter 7, “The NLP Procedure” (SAS/OR User’s Guide: Mathematical Programming
Legacy Procedures):

proc nlp all;
parms amountx amounty amounta amountb amountc

pooltox pooltoy ctox ctoy pools = 1;
bounds 0 <= amountx amounty amounta amountb amountc,

amountx <= 100,
amounty <= 200,

0 <= pooltox pooltoy ctox ctoy,
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1 <= pools <= 3;
lincon amounta + amountb = pooltox + pooltoy,

pooltox + ctox = amountx,
pooltoy + ctoy = amounty,
ctox + ctoy = amountc;

nlincon nlc1-nlc2 >= 0.,
nlc3 = 0.;

max f;
costa = 6; costb = 16; costc = 10;
costx = 9; costy = 15;
f = costx * amountx + costy * amounty

- costa * amounta - costb * amountb - costc * amountc;
nlc1 = 2.5 * amountx - pools * pooltox - 2. * ctox;
nlc2 = 1.5 * amounty - pools * pooltoy - 2. * ctoy;
nlc3 = 3 * amounta + amountb - pools * (amounta + amountb);

run;

These statements define a model that has bounds, linear constraints, nonlinear constraints, and a simple
objective function. The following statements are a straightforward conversion of the PROC NLP statements
to PROC OPTMODEL form:

proc optmodel;
var amountx init 1 >= 0 <= 100,

amounty init 1 >= 0 <= 200;
var amounta init 1 >= 0,

amountb init 1 >= 0,
amountc init 1 >= 0;

var pooltox init 1 >= 0,
pooltoy init 1 >= 0;

var ctox init 1 >= 0,
ctoy init 1 >= 0;

var pools init 1 >=1 <= 3;
con amounta + amountb = pooltox + pooltoy,

pooltox + ctox = amountx,
pooltoy + ctoy = amounty,
ctox + ctoy = amountc;

number costa, costb, costc, costx, costy;
costa = 6; costb = 16; costc = 10;
costx = 9; costy = 15;
max f = costx * amountx + costy * amounty

- costa * amounta - costb * amountb - costc * amountc;
con nlc1: 2.5 * amountx - pools * pooltox - 2. * ctox >= 0,

nlc2: 1.5 * amounty - pools * pooltoy - 2. * ctoy >= 0,
nlc3: 3 * amounta + amountb - pools * (amounta + amountb)

= 0;
solve;
print amountx amounty amounta amountb amountc

pooltox pooltoy ctox ctoy pools;

The PROC OPTMODEL variable declarations were split into individual declarations because PROC OPT-
MODEL does not permit name lists in its declarations. In the OPTMODEL procedure, variable bounds are
part of the variable declaration instead of a separate BOUNDS statement. The PROC NLP statements are as
follows:
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parms amountx amounty amounta amountb amountc
pooltox pooltoy ctox ctoy pools = 1;

bounds 0 <= amountx amounty amounta amountb amountc,
amountx <= 100,
amounty <= 200,

0 <= pooltox pooltoy ctox ctoy,
1 <= pools <= 3;

The following PROC OPTMODEL statements are equivalent to the PROC NLP statements:

var amountx init 1 >= 0 <= 100,
amounty init 1 >= 0 <= 200;

var amounta init 1 >= 0,
amountb init 1 >= 0,
amountc init 1 >= 0;

var pooltox init 1 >= 0,
pooltoy init 1 >= 0;

var ctox init 1 >= 0,
ctoy init 1 >= 0;

var pools init 1 >= 1 <= 3;

The linear constraints are declared in the PROC NLP model with the following statement:

lincon amounta + amountb = pooltox + pooltoy,
pooltox + ctox = amountx,
pooltoy + ctoy = amounty,
ctox + ctoy = amountc;

The following linear constraint declarations in the PROC OPTMODEL model are quite similar to the PROC
NLP LINCON declarations:

con amounta + amountb = pooltox + pooltoy,
pooltox + ctox = amountx,
pooltoy + ctoy = amounty,
ctox + ctoy = amountc;

But PROC OPTMODEL provides much more flexibility in defining linear constraints. For example, a
coefficient can be a named parameter or any other expression that evaluates to a constant.

The cost parameters are declared explicitly in the PROC OPTMODEL model. Unlike the DATA step or
PROC NLP, PROC OPTMODEL requires names to be declared before they are used. There are multiple
ways to set the values of these parameters. The preceding example used assignments. The values could have
been made part of the declaration by using the INIT expression clause or the = expression clause. The values
could also have been read from a data set with the READ DATA statement.

In the original PROC NLP statements the assignment to a parameter such as costa occurs every time the
objective function is evaluated. However, the assignment occurs just once in the PROC OPTMODEL
statements, when the assignment statement is processed. This works because the values are constant. But
the PROC OPTMODEL statements permit the parameters to be reassigned later to interactively modify the
model.



Rewriting PROC NLP Models for PROC OPTMODEL F 175

The following statements define the objective f in the PROC NLP model:

max f;
. . .
f = costx * amountx + costy * amounty

- costa * amounta - costb * amountb - costc * amountc;

The PROC OPTMODEL version of the objective is defined with the same expression text, as follows:

max f = costx * amountx + costy * amounty
- costa * amounta - costb * amountb - costc * amountc;

But in PROC OPTMODEL the MAX statement and the assignment to the name f in the PROC NLP
statements are combined. There are advantages and disadvantages to this approach. The PROC OPTMODEL
formulation is much closer to the mathematical formulation of the model. However, if there are multiple
intermediate variables being used to structure the objective, then multiple IMPVAR declarations are required.

In the PROC NLP model, the nonlinear constraints use the following syntax:

nlincon nlc1-nlc2 >= 0.,
nlc3 = 0.;

. . .
nlc1 = 2.5 * amountx - pools * pooltox - 2. * ctox;
nlc2 = 1.5 * amounty - pools * pooltoy - 2. * ctoy;
nlc3 = 3 * amounta + amountb - pools * (amounta + amountb);

In the PROC OPTMODEL model, the equivalent statements are as follows:

con nlc1: 2.5 * amountx - pools * pooltox - 2. * ctox >= 0,
nlc2: 1.5 * amounty - pools * pooltoy - 2. * ctoy >= 0,
nlc3: 3 * amounta + amountb - pools * (amounta + amountb)

= 0;

The nonlinear constraints in PROC OPTMODEL use the same syntax as linear constraints. In fact, if the
variable pools were declared as a parameter, then all the preceding constraints would be linear. The nonlinear
constraint in PROC OPTMODEL combines the NLINCON statement of PROC NLP with the assignment in
the PROC NLP statements. As in objective expressions, objective names can be used in nonlinear constraint
expressions to structure the formula.

The PROC OPTMODEL model does not use a RUN statement to invoke the solver. Instead the solver
is invoked interactively by the SOLVE statement in PROC OPTMODEL. By default, the OPTMODEL
procedure prints much less data about the optimization process. Generally this consists of messages from the
solver (such as the termination reason) and a short status display. The PROC OPTMODEL statements add a
PRINT statement in order to display the variable estimates from the solver.

The model for the example “Chemical Equilibrium” in Chapter 7, “The NLP Procedure” (SAS/OR User’s
Guide: Mathematical Programming Legacy Procedures), is used to illustrate how to convert PROC NLP
code that handles arrays into PROC OPTMODEL form. The PROC NLP model is as follows:
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proc nlp tech=tr pall;
array c[10] -6.089 -17.164 -34.054 -5.914 -24.721

-14.986 -24.100 -10.708 -26.662 -22.179;
array x[10] x1-x10;
min y;
parms x1-x10 = .1;
bounds 1.e-6 <= x1-x10;
lincon 2. = x1 + 2. * x2 + 2. * x3 + x6 + x10,

1. = x4 + 2. * x5 + x6 + x7,
1. = x3 + x7 + x8 + 2. * x9 + x10;

s = x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10;
y = 0.;
do j = 1 to 10;

y = y + x[j] * (c[j] + log(x[j] / s));
end;

run;

The model finds an equilibrium state for a mixture of chemicals. The following statements show a corre-
sponding PROC OPTMODEL model:

proc optmodel;
set CMP = 1..10;
number c{CMP} = [-6.089 -17.164 -34.054 -5.914 -24.721

-14.986 -24.100 -10.708 -26.662 -22.179];
var x{CMP} init 0.1 >= 1.e-6;
con 2. = x[1] + 2. * x[2] + 2. * x[3] + x[6] + x[10],

1. = x[4] + 2. * x[5] + x[6] + x[7],
1. = x[3] + x[7] + x[8] + 2. * x[9] + x[10];

/* replace the variable s in the PROC NLP model */
impvar s = sum{i in CMP} x[i];

min y = sum{j in CMP} x[j] * (c[j] + log(x[j] / s));
solve;
print x y;

The PROC OPTMODEL model uses the set CMP to represent the set of compounds, which are numbered 1
to 10 in the example. The array c was initialized by using the equivalent PROC OPTMODEL syntax. The
individual array locations could also have been initialized by assignment or READ DATA statements.

The VAR declaration for variable x combines the VAR and BOUNDS statements of the PROC NLP model.
The index set of the array is based on the set of compounds CMP, to simplify changes to the model.

The linear constraints are similar in form to the PROC NLP model. However, the PROC OPTMODEL
version uses the array form of the variable names because the OPTMODEL procedure treats arrays as distinct
variables, not as aliases of lists of scalar variables.

The implicit variable s replaces the intermediate variable of the same name in the PROC NLP model. This
is an example of translating an intermediate variable from the other models to PROC OPTMODEL. An
alternative way is to use an additional constraint for every intermediate variable. In the preceding statements,
instead of declaring objective s, you can use the following statements:
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. . .
var s;
con s = sum{i in CMP} x[i];
. . .

Note that this alternative formulation passes an extra variable and constraint to the solver. This formulation
can sometimes be solved more efficiently, depending on the characteristics of the model.

The PROC OPTMODEL version uses a SUM operator over the set CMP, which enhances the flexibility of
the model to accommodate possible changes in the set of compounds.

In the PROC NLP model, the objective function y is determined by an explicit loop. With PROC OPTMODEL,
the DO loop is replaced by a SUM aggregation operation. The accumulation in the PROC NLP model is now
performed by PROC OPTMODEL with the SUM operator.

This PROC OPTMODEL model can be further generalized. Note that the array initialization and constraints
assume a fixed set of compounds. You can rewrite the model to handle an arbitrary number of compounds
and chemical elements. The new model loads the linear constraint coefficients from a data set along with the
objective coefficients for the parameter c, as follows:

data comp;
input c a_1 a_2 a_3;
datalines;

-6.089 1 0 0
-17.164 2 0 0
-34.054 2 0 1
-5.914 0 1 0
-24.721 0 2 0
-14.986 1 1 0
-24.100 0 1 1
-10.708 0 0 1
-26.662 0 0 2
-22.179 1 0 1
;

data atom;
input b @@;
datalines;

2. 1. 1.
;

proc optmodel;
set CMP;
set ELT;
number c{CMP};
number a{ELT,CMP};
number b{ELT};
read data atom into ELT=[_n_] b;
read data comp into CMP=[_n_]

c {i in ELT} < a[i,_n_]=col("a_"||i) >;
var x{CMP} init 0.1 >= 1.e-6;
con bal{i in ELT}: b[i] = sum{j in CMP} a[i,j]*x[j];
impvar s = sum{i in CMP} x[i];
min y = sum{j in CMP} x[j] * (c[j] + log(x[j] / s));



178 F Chapter 5: The OPTMODEL Procedure

print a b;
solve;
print x;

This version adds coefficients for the linear constraints to the COMP data set. The data set variable a_n
represents the number of atoms in the compound for element n. The READ DATA statement for COMP uses
the iterated column syntax to read each of the data set variables a_n into the appropriate location in the array
a. In this example the expanded data set variable names are a_1, a_2, and a_3.

The preceding version also adds a new set, ELT, of chemical elements and a numeric parameter, b, that
represents the left-hand side of the linear constraints. The data values for the parameters ELT and b are read
from the data set ATOM. The model can handle varying sets of chemical elements because of this extra data
set and the new parameters.

The linear constraints have been converted to a single, indexed family of constraints. One constraint is applied
for each chemical element in the set ELT. The constraint expression uses a simple form that applies generally
to linear constraints. The following PRINT statement in the model shows the values read from the data sets
to define the linear constraints:

print a b;

The PRINT statements in the model produce the results shown in Output 5.6.2.

Output 5.6.2 PROC OPTMODEL Output

a
1 2 3 4 5 6 7 8 9 10

1 1 2 2 0 0 1 0 0 0 1
2 0 0 0 1 2 1 1 0 0 0
3 0 0 1 0 0 0 1 1 2 1

[1] b

1 2
2 1
3 1

[1] x

1 0.04066848
2 0.14773067
3 0.78315260
4 0.00141459
5 0.48524616
6 0.00069358
7 0.02739955
8 0.01794757
9 0.03731444
10 0.09687143
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In the preceding model the chemical elements and compounds are designated by numbers. So in the PRINT
output, for example, the row that is labeled “3” represents the amount of the compound H2O. PROC
OPTMODEL is capable of using more symbolic strings to designate array indices. The following version of
the model uses strings to index arrays:

data comp;
input name $ c a_h a_n a_o;
datalines;

H -6.089 1 0 0
H2 -17.164 2 0 0
H2O -34.054 2 0 1
N -5.914 0 1 0
N2 -24.721 0 2 0
NH -14.986 1 1 0
NO -24.100 0 1 1
O -10.708 0 0 1
O2 -26.662 0 0 2
OH -22.179 1 0 1
;
data atom;

input name $ b;
datalines;

H 2.
N 1.
O 1.
;
proc optmodel;

set<string> CMP;
set<string> ELT;
number c{CMP};
number a{ELT,CMP};
number b{ELT};
read data atom into ELT=[name] b;
read data comp into CMP=[name]

c {i in ELT} < a[i,name]=col("a_"||i) >;
var x{CMP} init 0.1 >= 1.e-6;
con bal{i in ELT}: b[i] = sum{j in CMP} a[i,j]*x[j];
impvar s = sum{i in CMP} x[i];
min y = sum{j in CMP} x[j] * (c[j] + log(x[j] / s));
solve;
print x;

In this model the sets CMP and ELT are now sets of strings. The data sets provide the names of the compounds
and elements. The names of the data set variables for atom counts in the data set COMP now include the
chemical element symbol as part of their spelling. For example, the atom count for element H (hydrogen)
is named a_h. Note that these changes did not require any modification to the specifications of the linear
constraints or the objective.
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The PRINT statement in the preceding statements produces the results shown in Output 5.6.3. The indices of
variable x are now strings that represent the actual compounds.

Output 5.6.3 PROC OPTMODEL Output with Strings

[1] x

H 0.04066848
H2 0.14773067
H2O 0.78315260
N 0.00141459
N2 0.48524616
NH 0.00069358
NO 0.02739955
O 0.01794757
O2 0.03731444
OH 0.09687143
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Overview: LP Solver
The OPTMODEL procedure provides a framework for specifying and solving linear programs (LPs). A
standard linear program has the following formulation:

min cTx
subject to Ax f�;D;�g b

l � x � u

where

x 2 Rn is the vector of decision variables
A 2 Rm�n is the matrix of constraints
c 2 Rn is the vector of objective function coefficients
b 2 Rm is the vector of constraints right-hand sides (RHS)
l 2 Rn is the vector of lower bounds on variables
u 2 Rn is the vector of upper bounds on variables

The following LP solvers are available in the OPTMODEL procedure:

• primal simplex solver

• dual simplex solver

• network simplex solver

• interior point solver

The primal and dual simplex solvers implement the two-phase simplex method. In phase I, the solver tries
to find a feasible solution. If no feasible solution is found, the LP is infeasible; otherwise, the solver enters
phase II to solve the original LP. The network simplex solver extracts a network substructure, solves this
using network simplex, and then constructs an advanced basis to feed to either primal or dual simplex. The
interior point solver implements a primal-dual predictor-corrector interior point algorithm. If any of the
decision variables are constrained to be integer-valued, then the relaxed version of the problem is solved.

Getting Started: LP Solver
The following example illustrates how you can use the OPTMODEL procedure to solve linear programs.
Suppose you want to solve the following problem:

max x1 C x2 C x3
subject to 3x1 C 2x2 � x3 � 1

�2x1 � 3x2 C 2x3 � 1

x1; x2; x3 � 0

You can use the following statements to call the OPTMODEL procedure for solving linear programs:
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proc optmodel;
var x{i in 1..3} >= 0;
max f = x[1] + x[2] + x[3];
con c1: 3*x[1] + 2*x[2] - x[3] <= 1;
con c2: -2*x[1] - 3*x[2] + 2*x[3] <= 1;
solve with lp / algorithm = ps presolver = none logfreq = 1;
print x;

quit;

The optimal solution and the optimal objective value are displayed in Figure 6.1.

Figure 6.1 Solution Summary

The OPTMODEL Procedure

Problem Summary

Objective Sense Maximization
Objective Function f
Objective Type Linear

Number of Variables 3
Bounded Above 0
Bounded Below 3
Bounded Below and Above 0
Free 0
Fixed 0

Number of Constraints 2
Linear LE (<=) 2
Linear EQ (=) 0
Linear GE (>=) 0
Linear Range 0

Constraint Coefficients 6

Performance Information

Execution Mode Single-Machine
Number of Threads 1
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Figure 6.1 continued

Solution Summary

Solver LP
Algorithm Primal Simplex
Objective Function f
Solution Status Optimal
Objective Value 8

Primal Infeasibility 0
Dual Infeasibility 0
Bound Infeasibility 0

Iterations 5
Presolve Time 0.00
Solution Time 0.05

[1] x

1 0
2 3
3 5

The iteration log displaying problem statistics, progress of the solution, and the optimal objective value is
shown in Figure 6.2.

Figure 6.2 Log

NOTE: Problem generation will use 4 threads.
NOTE: The problem has 3 variables (0 free, 0 fixed).
NOTE: The problem has 2 linear constraints (2 LE, 0 EQ, 0 GE, 0 range).
NOTE: The problem has 6 linear constraint coefficients.
NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).
NOTE: The LP presolver value NONE is applied.
NOTE: The LP solver is called.
NOTE: The Primal Simplex algorithm is used.

Objective Entering Leaving
Phase Iteration Value Time Variable Variable
P 1 1 0.000000E+00 0
P 2 2 0.000000E+00 0 x[3] c2 (S)
P 2 3 5.000000E-01 0 x[2] c1 (S)
P 2 4 8.000000E+00 0
P 2 5 8.000000E+00 0

NOTE: Optimal.
NOTE: Objective = 8.
NOTE: The Primal Simplex solve time is 0.05 seconds.
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Syntax: LP Solver
The following statement is available in the OPTMODEL procedure:

SOLVE WITH LP < / options > ;

Functional Summary
Table 6.1 summarizes the list of options available for the SOLVE WITH LP statement, classified by function.
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Table 6.1 Options for the LP Solver

Description Option
Solver Options
Specifies the type of solver ALGORITHM=
Specifies the type of solver called after network
simplex

ALGORITHM2=

Enables or disables IIS detection IIS=
Presolve Option
Specifies the type of presolve PRESOLVER=
Control Options
Specifies the feasibility tolerance FEASTOL=
Specifies the frequency of printing solution progress LOGFREQ=
Specifies the detail of solution progress printed in log LOGLEVEL=
Specifies the maximum number of iterations MAXITER=
Specifies the time limit for the optimization process MAXTIME=
Specifies the optimality tolerance OPTTOL=
Specifies units of CPU time or real time TIMETYPE=
Simplex Algorithm Options
Specifies the type of initial basis BASIS=
Specifies the type of pricing strategy PRICETYPE=
Specifies the queue size for determining entering
variable

QUEUESIZE=

Enables or disables scaling of the problem SCALE=
Interior Point Algorithm Options
Enables or disables interior crossover CROSSOVER=
Specifies the stopping criterion based on duality gap STOP_DG=
Specifies the stopping criterion based on dual
infeasibility

STOP_DI=

Specifies the stopping criterion based on primal
infeasibility

STOP_PI=

Decomposition Algorithm Options
Enables decomposition algorithm and specifies general
control options

DECOMP=()

Specifies options for the master problem DECOMP_MASTER=()
Specifies options for the subproblem DECOMP_SUBPROB=()

LP Solver Options
This section describes the options recognized by the LP solver. These options can be specified after a forward
slash (/) in the SOLVE statement, provided that the LP solver is explicitly specified using a WITH clause.

If the LP solver terminates before reaching an optimal solution, an intermediate solution is available. You can
access this solution by using the .sol variable suffix in the OPTMODEL procedure. See the section “Suffixes”
on page 131 for details.
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Solver Options

IIS=number j string
specifies whether the LP solver attempts to identify a set of constraints and variables that form an
irreducible infeasible set (IIS). Table 6.2 describes the valid values of the IIS= option.

Table 6.2 Values for IIS= Option

number string Description
0 OFF Disables IIS detection.
1 ON Enables IIS detection.

If an IIS is found, information about the infeasibilities can be found in the .status values of the
constraints and variables. The default value of this option is OFF. See the section “Irreducible
Infeasible Set” on page 200 for details about the IIS= option. See “Suffixes” on page 131 for details
about the .status suffix.

ALGORITHM=option

SOLVER=option

SOL=option
specifies one of the following LP solvers:

Option Description
PRIMAL (PS) Uses primal simplex solver.
DUAL (DS) Uses dual simplex solver.
NETWORK (NS) Uses network simplex solver.
INTERIORPOINT (IP) Uses interior point solver.
CONCURRENT (CON) (experimental) Uses several different algorithms

in parallel.

The valid abbreviated value for each option is indicated in parentheses. By default, the dual simplex
solver is used.

ALGORITHM2=option

SOLVER2=option
specifies one of the following LP solvers if ALGORITHM=NS:

Option Description
PRIMAL (PS) Uses primal simplex solver (after network simplex).
DUAL (DS) Uses dual simplex solver (after network simplex).

The valid abbreviated value for each option is indicated in parentheses. By default, the LP solver
decides which algorithm is best to use after calling the network simplex solver on the extracted network.
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Presolve Options

PRESOLVER=number | string
specifies one of the following presolve options:

number string Description
0 NONE Disables presolver.

–1 AUTOMATIC Applies presolver by using default setting.
1 BASIC Performs basic presolve like removing empty rows,

columns, and fixed variables.
2 MODERATE Performs basic presolve and apply other inexpensive

presolve techniques.
3 AGGRESSIVE Performs moderate presolve and apply other

aggressive (but expensive) presolve techniques.

The default option is AUTOMATIC. See the section “Presolve” on page 192 for details.

Control Options

FEASTOL=�
specifies the feasibility tolerance, � 2[1E–9, 1E–4], for determining the feasibility of a variable. The
default value is 1E–6.

LOGFREQ=k

PRINTFREQ=k
specifies that the printing of the solution progress to the iteration log is to occur after every k iterations.
The print frequency, k, is an integer between zero and the largest four-byte signed integer, which is
231 � 1.

The value k = 0 disables the printing of the progress of the solution. If the primal or dual simplex
algorithms are used, the default value of this option is determined dynamically according to the problem
size. If the network simplex algorithm is used, the default value of this option is 10,000. If the interior
point algorithm is used, the default value of this option is 1.

LOGLEVEL=number | string

PRINTLEVEL2=number | string
controls the amount of information displayed in the SAS log by the LP solver, from a short description
of presolve information and summary to details at each iteration. Table 6.6 describes the valid values
for this option.

Table 6.6 Values for LOGLEVEL= Option

number string Description
0 NONE Turns off all solver-related messages to SAS log.
1 BASIC Displays a solver summary after stopping.
2 MODERATE Prints a solver summary and an iteration log by

using the interval dictated by the LOGFREQ= op-
tion.
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Table 6.6 (continued)

number string Description
3 AGGRESSIVE Prints a detailed solver summary and an itera-

tion log by using the interval dictated by the
LOGFREQ= option.

The default value is MODERATE.

MAXITER=k
specifies the maximum number of iterations. The value k can be any integer between one and the
largest four-byte signed integer, which is 231 � 1. If you do not specify this option, the procedure
does not stop based on the number of iterations performed. For network simplex, this iteration limit
corresponds to the solver called after network simplex (either primal or dual simplex).

MAXTIME=t
specifies an upper limit of t units of time for the optimization process, including problem generation
time and solution time. The value of the TIMETYPE= option determines the type of units used. If you
do not specify the MAXTIME= option, the solver does not stop based on the amount of time elapsed.
The value of t can be any positive number; the default value is the positive number that has the largest
absolute value that can be represented in your operating environment.

OPTTOL=�
specifies the optimality tolerance, � 2 [1E–9, 1E–4], for declaring optimality. The default value is
1E–6.

TIMETYPE=number j string
specifies the units of time used by the MAXTIME= option and reported by the PRESOLVE_TIME
and SOLUTION_TIME terms in the _OROPTMODEL_ macro variable. Table 6.7 describes the valid
values of the TIMETYPE= option.

Table 6.7 Values for TIMETYPE= Option

number string Description
0 CPU Specifies units of CPU time.
1 REAL Specifies units of real time.

The “Optimization Statistics” table, an output of the OPTMODEL procedure if you specify the
PRINTLEVEL=2 option in the PROC OPTMODEL statement, also includes the same time units for
“Presolver Time” and “Solver Time.” The other times (such as “Problem Generation Time”) in the
“Optimization Statistics” table are always CPU times.

The default value of the TIMETYPE= option depends on the values of the NTHREADS= and NODES=
options in the PERFORMANCE statement of the OPTMODEL procedure. See the section “PERFOR-
MANCE Statement” on page 28 in Chapter 4, “Shared Concepts and Topics.” for more information
about the NTHREADS= and NODES= options.
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If you specify a value greater than 1 for either the NTHREADS= or NODES= option, the default
value of the TIMETYPE= option is REAL. If you specify a value of 1 for both the NTHREADS= and
NODES= options, the default value of the TIMETYPE= option is CPU.

Simplex Algorithm Options

BASIS=number | string
specifies the following options for generating an initial basis:

number string Description
0 CRASH Generate an initial basis by using crash

techniques (Maros 2003). The procedure creates a
triangular basic matrix consisting of both decision
variables and slack variables.

1 SLACK Generate an initial basis by using all slack variables.
2 WARMSTART Start the primal and dual simplex solvers with avail-

able basis.

The default option for the primal simplex solver is CRASH (0). The default option for the dual simplex
solver is SLACK(1). For network simplex, this option has no effect.

PRICETYPE=number | string
specifies one of the following pricing strategies for the primal and dual simplex solvers:

number string Description
0 HYBRID Use hybrid Devex and steepest-edge pricing

strategies. Available for primal simplex solver only.
1 PARTIAL Use partial pricing strategy. Optionally, you can

specify QUEUESIZE=. Available for primal
simplex solver only.

2 FULL Use the most negative reduced cost pricing strategy.
3 DEVEX Use Devex pricing strategy.
4 STEEPESTEDGE Use steepest-edge pricing strategy.

The default pricing strategy for the primal simplex solver is HYBRID and that for the dual simplex
solver is STEEPESTEDGE. For the network simplex solver, this option applies only to the solver
specified by the ALGORITHM2= option. See the section “Pricing Strategies for the Primal and Dual
Simplex Solvers” on page 192 for details.

QUEUESIZE=k
specifies the queue size, k 2 Œ1; n�, where n is the number of decision variables. This queue is used for
finding an entering variable in the simplex iteration. The default value is chosen adaptively based on
the number of decision variables. This option is used only when PRICETYPE=PARTIAL.

SCALE=number | string
specifies one of the following scaling options:
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number string Description
0 NONE Disable scaling.
–1 AUTOMATIC Automatically apply scaling procedure if necessary.

The default option is AUTOMATIC.

Interior Point Algorithm Options

CROSSOVER=number | string
specifies whether to convert the interior point solution to a basic simplex solution. The values of this
option are:

number string Description
0 OFF Disable crossover.
1 ON Apply the crossover algorithm to the interior point

solution.

If the interior point algorithm terminates with a solution, the crossover algorithm uses the interior
point solution to create an initial basic solution. After performing primal fixing and dual fixing, the
crossover algorithm calls a simplex algorithm to locate an optimal basic solution. The default value of
the CROSSOVER= option is OFF.

STOP_DG=ı
specifies the desired relative duality gap, ı 2[1E–9, 1E–4]. This is the relative difference between the
primal and dual objective function values and is the primary solution quality parameter. The default
value is 1E–6. See the section “The Interior Point Algorithm” on page 193 for details.

STOP_DI=ˇ
specifies the maximum allowed relative dual constraints violation, ˇ 2 [1E–9, 1E–4]. The default
value is 1E–6. See the section “The Interior Point Algorithm” on page 193 for details.

STOP_PI=˛
specifies the maximum allowed relative bound and primal constraints violation, ˛ 2[1E–9, 1E–4]. The
default value is 1E–6. See the section “The Interior Point Algorithm” on page 193 for details.

Decomposition Algorithm Options

The following options are available for the decomposition algorithm in the LP solver. For information about
the decomposition algorithm, see Chapter 13, “The Decomposition Algorithm.”

DECOMP=(options)
enables the decomposition algorithm and specifies overall control options for the algorithm. For more
information about this option, see Chapter 13, “The Decomposition Algorithm.”

DECOMP_MASTER=(options)
specifies options for the master problem. For more information about this option, see Chapter 13, “The
Decomposition Algorithm.”
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DECOMP_SUBPROB=(options)
specifies option for the subproblem. For more information about this option, see Chapter 13, “The
Decomposition Algorithm.”

Details: LP Solver

Presolve
Presolve in the simplex LP solvers of PROC OPTMODEL uses a variety of techniques to reduce the problem
size, improve numerical stability, and detect infeasibility or unboundedness (Andersen and Andersen 1995;
Gondzio 1997). During presolve, redundant constraints and variables are identified and removed. Presolve
can further reduce the problem size by substituting variables. Variable substitution is a very effective
technique, but it might occasionally increase the number of nonzero entries in the constraint matrix.

In most cases, using presolve is very helpful in reducing solution times. You can enable presolve at different
levels or disable it by specifying the PRESOLVER= option.

Pricing Strategies for the Primal and Dual Simplex Solvers
Several pricing strategies for the primal and dual simplex solvers are available. Pricing strategies determine
which variable enters the basis at each simplex pivot. These can be controlled by specifying the PRICETYPE=
option.

The primal simplex solver has the following five pricing strategies:

PARTIAL scans a queue of decision variables to find an entering variable. You can optionally
specify the QUEUESIZE= option to control the length of this queue.

FULL uses Dantzig’s most violated reduced cost rule (Dantzig 1963). It compares the
reduced cost of all decision variables, and selects the variable with the most violated
reduced cost as the entering variable.

DEVEX implements the Devex pricing strategy developed by Harris (1973).

STEEPESTEDGE uses the steepest-edge pricing strategy developed by Forrest and Goldfarb (1992).

HYBRID uses a hybrid of the Devex and steepest-edge pricing strategies.

The dual simplex solver has only three pricing strategies available: FULL, DEVEX, and STEEPESTEDGE.

The Network Simplex Algorithm
The network simplex solver in PROC OPTMODEL attempts to leverage the speed of the network simplex
algorithm to more efficiently solve linear programs by using the following process:
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1. It heuristically extracts the largest possible network substructure from the original problem.

2. It uses the network simplex algorithm to solve for an optimal solution to this substructure.

3. It uses this solution to construct an advanced basis to warm-start either the primal or dual simplex
solver on the original linear programming problem.

The network simplex algorithm is a specialized version of the simplex algorithm that uses spanning-tree
bases to more efficiently solve linear programming problems that have a pure network form. Such LPs can
be modeled using a formulation over a directed graph, as a minimum-cost flow problem. Let G D .N;A/ be
a directed graph, where N denotes the nodes and A denotes the arcs of the graph. The decision variable xij
denotes the amount of flow sent between node i and node j. The cost per unit of flow on the arcs is designated
by cij , and the amount of flow sent across each arc is bounded to be within Œlij ; uij �. The demand (or supply)
at each node is designated as bi , where bi > 0 denotes a supply node and bi < 0 denotes a demand node.
The corresponding linear programming problem is as follows:

min
P
.i;j /2A cijxij

subject to
P
.i;j /2A xij �

P
.j;i/2A xj i D bi 8i 2 N

xij � uij 8.i; j / 2 A

xij � lij 8.i; j / 2 A:

The network simplex algorithm used in PROC OPTMODEL is the primal network simplex algorithm. This
algorithm finds the optimal primal feasible solution and a dual solution that satisfies complementary slackness.
Sometimes the directed graph G is disconnected. In this case, the problem can be decomposed into its weakly
connected components, and each minimum-cost flow problem can be solved separately. After solving each
component, the optimal basis for the network substructure is augmented with the non-network variables and
constraints from the original problem. This advanced basis is then used as a starting point for the primal or
dual simplex method. The solver automatically selects the solver to use after network simplex. However, you
can override this selection with the ALGORITHM2= option.

The network simplex algorithm can be more efficient than the other solvers on problems that have a large
network substructure. The size of this network structure can be seen in the log.

The Interior Point Algorithm
The interior point LP solver in PROC OPTMODEL implements an infeasible primal-dual predictor-corrector
interior point algorithm. To illustrate the algorithm and the concepts of duality and dual infeasibility, consider
the following LP formulation (the primal):

min cTx
subject to Ax � b

x � 0

The corresponding dual is as follows:

max bTy
subject to ATy C w D c

y � 0
w � 0
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where y 2 Rm refers to the vector of dual variables and w 2 Rn refers to the vector of dual slack variables.

The dual makes an important contribution to the certificate of optimality for the primal. The primal and
dual constraints combined with complementarity conditions define the first-order optimality conditions, also
known as KKT (Karush-Kuhn-Tucker) conditions, which can be stated as follows:

Ax � s D b .Primal Feasibility/
ATyC w D c .Dual Feasibility/

WXe D 0 .Complementarity/
SYe D 0 .Complementarity/

x; y; w; s � 0

where e � .1; : : : ; 1/T of appropriate dimension and s 2 Rm is the vector of primal slack variables.

NOTE: Slack variables (the s vector) are automatically introduced by the solver when necessary; it is therefore
recommended that you not introduce any slack variables explicitly. This enables the solver to handle slack
variables much more efficiently.

The letters X; Y;W; and S denote matrices with corresponding x, y, w, and s on the main diagonal and zero
elsewhere, as in the following example:

X �

26664
x1 0 � � � 0

0 x2 � � � 0
:::

:::
: : :

:::

0 0 � � � xn

37775
If .x�; y�;w�; s�/ is a solution of the previously defined system of equations representing the KKT conditions,
then x� is also an optimal solution to the original LP model.

At each iteration the interior point algorithm solves a large, sparse system of linear equations as follows:�
Y�1S A
AT �X�1W

� �
�y
�x

�
D

�
„

‚

�
where �x and �y denote the vector of search directions in the primal and dual spaces, respectively; ‚ and
„ constitute the vector of the right-hand sides.

The preceding system is known as the reduced KKT system. The interior point solver uses a preconditioned
quasi-minimum residual algorithm to solve this system of equations efficiently.

An important feature of the interior point solver is that it takes full advantage of the sparsity in the constraint
matrix, thereby enabling it to efficiently solve large-scale linear programs.

The interior point algorithm works simultaneously in the primal and dual spaces. It attains optimality when
both primal and dual feasibility are achieved and when complementarity conditions hold. Therefore it is of
interest to observe the following four measures:

• Relative primal infeasibility measure ˛:

˛ D
kAx � b � sk2
kbk2 C 1
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• Relative dual infeasibility measure ˇ:

ˇ D
kc �ATy � wk2
kck2 C 1

• Relative duality gap ı:

ı D
jcTx � bTyj
jcTxj C 1

• Absolute complementarity  :

 D

nX
iD1

xiwi C

mX
iD1

yisi

where kvk2 is the Euclidean norm of the vector v. These measures are displayed in the iteration log.

Iteration Log for the Primal and Dual Simplex Solvers
The primal and dual simplex solvers implement a two-phase simplex algorithm. Phase I finds a feasible
solution, which phase II improves to an optimal solution.

When the LOGFREQ= option has a value of 1, the following information is printed in the iteration log:

Algorithm indicates which simplex method is running by printing the letter P (primal) or D (dual).

Phase indicates whether the solver is in phase I or phase II of the simplex method.

Iteration indicates the iteration number.

Objective Value indicates the current amount of infeasibility in phase I and the primal objective value of
the current solution in phase II.

Time indicates the time elapsed (in seconds).

Entering Variable indicates the entering pivot variable. A slack variable that enters the basis is indicated
by the corresponding row name followed by “(S)”. If the entering nonbasic variable
has distinct, finite lower and upper bounds, then a “bound swap” can take place in the
primal simplex method.

Leaving Variable indicates the leaving pivot variable. A slack variable that leaves the basis is indicated
by the corresponding row name followed by “(S)”. The leaving variable is the same as
the entering variable if a bound swap has taken place.

When you omit the LOGFREQ= option or specify a value larger than 1, only the algorithm, phase, iteration,
objective value, and time information is printed in the iteration log.

The behavior of objective values in the iteration log depends on both the current phase and the chosen solver.
In phase I, both simplex methods have artificial objective values that decrease to 0 when a feasible solution is
found. For the dual simplex method, phase II maintains a dual feasible solution, so a minimization problem
has increasing objective values in the iteration log. For the primal simplex method, phase II maintains a
primal feasible solution, so a minimization problem has decreasing objective values in the iteration log.

During the solution process, some elements of the LP model might be perturbed to improve performance. In
this case the objective values that are printed correspond to the perturbed problem. After reaching optimality
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for the perturbed problem, the LP solver solves the original problem by switching from the primal simplex
method to the dual simplex method (or from the dual simplex method to the primal simplex method). Because
the problem might be perturbed again, this process can result in several changes between the two algorithms.

Iteration Log for the Network Simplex Solver
After finding the embedded network and formulating the appropriate relaxation, the network simplex solver
uses a primal network simplex algorithm. In the case of a connected network, with one (weakly connected)
component, the log will show the progress of the simplex algorithm. The following information is displayed
in the iteration log:

Iteration indicates the iteration number.

PrimalObj indicates the primal objective value of the current solution.

Primal Infeas indicates the maximum primal infeasibility of the current solution.

Time indicates the time spent on the current component by network simplex.

The frequency of the simplex iteration log is controlled by the LOGFREQ= option. The default value of the
LOGFREQ= option is 10,000.

If the network relaxation is disconnected, the information in the iteration log shows progress at the component
level. The following information is displayed in the iteration log:

Component indicates the component number being processed.

Nodes indicates the number of nodes in this component.

Arcs indicates the number of arcs in this component.

Iterations indicates the number of simplex iterations needed to solve this component.

Time indicates the time spent so far in network simplex.

The frequency of the component iteration log is controlled by the LOGFREQ= option. In this case, the
default value of the LOGFREQ= option is determined by the size of the network.

The LOGLEVEL= option adjusts the amount of detail shown. By default, LOGLEVEL=MODERATE
and reports as in the preceding description. If LOGLEVEL=NONE, no information is shown. If
LOGLEVEL=BASIC, the only information shown is a summary of the network relaxation and the time spent
solving the relaxation. If LOGLEVEL=AGGRESSIVE, in the case of one component, the log displays as
in the preceding description; in the case of multiple components, for each component, a separate simplex
iteration log is displayed.

Iteration Log for the Interior Point Solver
The interior point solver implements an infeasible primal-dual predictor-corrector interior point algorithm.
The following information is displayed in the iteration log:
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Iter indicates the iteration number

Complement indicates the (absolute) complementarity

Duality Gap indicates the (relative) duality gap

Primal Infeas indicates the (relative) primal infeasibility measure

Bound Infeas indicates the (relative) bound infeasibility measure

Dual Infeas indicates the (relative) dual infeasibility measure

If the sequence of solutions converges to an optimal solution of the problem, you should see all columns
in the iteration log converge to zero or very close to zero. If they do not, it can be the result of insufficient
iterations being performed to reach optimality. In this case, you might need to increase the value specified in
the option MAXITER= or MAXTIME=. If the complementarity and/or the duality gap do not converge, the
problem might be infeasible or unbounded. If the infeasibility columns do not converge, the problem might
be infeasible.

Iteration Log for the Crossover Algorithm
The crossover algorithm takes an optimal solution from the interior point solver and transforms it into
an optimal basic solution. The iterations of the crossover algorithm are similar to simplex iterations; this
similarity is reflected in the format of the iteration logs.

When LOGFREQ=1, the following information is printed in the iteration log:

Phase indicates whether the primal crossover (PC) or dual crossover (DC) technique is used.

Iteration indicates the iteration number.

Objective Value indicates the total amount by which the superbasic variables are off their bound. This
value decreases to 0 as the crossover algorithm progresses.

Time indicates the time elapsed (in seconds) since the beginning of the crossover algorithm.

Entering Variable indicates the entering pivot variable. A slack variable that enters the basis is indicated
by the corresponding row name followed by “(S)”.

Leaving Variable indicates the leaving pivot variable. A slack variable that leaves the basis is indicated by
the corresponding row name followed by “(S)”.

When you omit the LOGFREQ= option or specify a value greater than 1, only the phase, iteration, objective
value, and time information are printed in the iteration log.

After all the superbasic variables have been eliminated, the crossover algorithm continues with regular primal
or dual simplex iterations.
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Concurrent LP (Experimental)
The ALGORITHM=CON option starts several different linear optimization algorithms in parallel in a
single-machine mode. The LP solver automatically determines which algorithms to run and how many
threads to assign to each algorithm. If sufficient resources are available, the solver runs all four standard
algorithms. When the first algorithm finishes, the LP solver returns the results from that algorithm and
terminates any other algorithms that are still running. If you specify a value of DETERMINISTIC for
the PARALLELMODE= option in the PERFORMANCE statement in the OPTMODEL procedure, the
algorithm for which the results are returned is not necessarily the one that finished first. The LP solver
deterministically selects the algorithm for which the results are returned. For more information about the
PERFORMANCE statement, see the section “PERFORMANCE Statement” on page 28. Regardless of which
mode (deterministic or nondeterministic) is in effect, terminating algorithms that are still running might take
a significant amount of time.

During concurrent optimization, the procedure displays the iteration log for the dual simplex algorithm. See
the section “Iteration Log for the Primal and Dual Simplex Solvers” on page 195 for more information about
this iteration log. Upon termination, the solver displays the iteration log for the algorithm that finishes first,
unless the dual simplex algorithm finishes first. If you specify LOGLEVEL=AGGRESSIVE, the LP solver
displays the iteration logs for all algorithms that were run concurrently.

If you specify PRINTLEVEL=2 in the PROC OPTMODEL statement and ALGORITHM=CON in the
SOLVE WITH LP statement, the LP solver produces an ODS table called ConcurrentSummary. This table
contains a summary of the solution statuses of all algorithms that are run concurrently.

Problem Statistics
Optimizers can encounter difficulty when solving poorly formulated models. Information about data
magnitude provides a simple gauge to determine how well a model is formulated. For example, a model
whose constraint matrix contains one very large entry (on the order of 109) can cause difficulty when the
remaining entries are single-digit numbers. The PRINTLEVEL=2 option in the OPTMODEL procedure
causes the ODS table “ProblemStatistics” to be generated when the LP solver is called. This table provides
basic data magnitude information that enables you to improve the formulation of your models.

The example output in Figure 6.3 demonstrates the contents of the ODS table “ProblemStatistics.”
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Figure 6.3 ODS Table ProblemStatistics

The OPTMODEL Procedure

Problem Statistics

Number of Constraint Matrix Nonzeros 6
Maximum Constraint Matrix Coefficient 3
Minimum Constraint Matrix Coefficient 1
Average Constraint Matrix Coefficient 2.1666666667

Number of Objective Nonzeros 3
Maximum Objective Coefficient 1
Minimum Objective Coefficient 1
Average Objective Coefficient 1

Number of RHS Nonzeros 2
Maximum RHS 1
Minimum RHS 1
Average RHS 1

Maximum Number of Nonzeros per Column 2
Minimum Number of Nonzeros per Column 2
Average Number of Nonzeros per Column 2

Maximum Number of Nonzeros per Row 3
Minimum Number of Nonzeros per Row 3
Average Number of Nonzeros per Row 3

Variable and Constraint Status
Upon termination of the LP solver, the .status suffix of each decision variable and constraint stores information
about the status of that variable or constraint. For more information about suffixes in the OPTMODEL
procedure, see the section “Suffixes” on page 131.

Variable Status

The .status suffix of a decision variable specifies the status of that decision variable. The suffix can take one
of the following values:

B basic variable

L nonbasic variable at its lower bound

U nonbasic variable at its upper bound

F free variable

S superbasic variable (a nonbasic variable with a value strictly between its bounds)

I LP model infeasible (all decision variables have .status equal to I)

For the interior point solver with IIS= OFF, .status is blank.
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The following values can appear only if IIS= ON. See the section “Irreducible Infeasible Set” on page 200
for details.

I_L the lower bound of the variable is violated

I_U the upper bound of the variable is violated

I_F the fixed bound of the variable is violated

Constraint Status

The .status suffix of a constraint specifies the status of the slack variable for that constraint. The suffix can
take one of the following values:

B basic variable

L nonbasic variable at its lower bound

U nonbasic variable at its upper bound

F free variable

S superbasic variable (a nonbasic variable with a value strictly between its bounds)

I LP model infeasible (all decision variables have .status equal to I)

The following values can appear only if option IIS= ON. See the section “Irreducible Infeasible Set” on
page 200 for details.

I_L the “GE” (�) condition of the constraint is violated

I_U the “LE” (�) condition of the constraint is violated

I_F the “EQ” (=) condition of the constraint is violated

Irreducible Infeasible Set
For a linear programming problem, an irreducible infeasible set (IIS) is an infeasible subset of constraints
and variable bounds that will become feasible if any single constraint or variable bound is removed. It is
possible to have more than one IIS in an infeasible LP. Identifying an IIS can help to isolate the structural
infeasibility in an LP.

The IIS=ON option directs the LP solver to search for an IIS in a given LP. You should specify the
OPTMODEL option PRESOLVER=NONE when you specify IIS=ON; otherwise the IIS results can be
incomplete. The LP presolver is not applied to the problem during the IIS search. If the LP solver detects an
IIS, it updates the .status suffix of the decision variables and constraints, and then it stops. The number of
iterations that are reported in the macro variable and the ODS table is the total number of simplex iterations.
This includes the initial LP solve and all subsequent iterations during the constraint deletion phase.

The IIS= option can add special values to the .status suffixes of variables and constraints. (See the section
“Variable and Constraint Status” on page 199 for more information.) For constraints, a status of “I_L”, “I_U”,
or “I_F” indicates, respectively, the “GE” (�), “LE” (�), or “EQ” (=) condition is violated. For range
constraints, a status of “I_L” or “I_U” indicates, respectively, that the lower or upper bound of the constraint
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is violated. For variables, a status of “I_L”, “I_U”, or “I_F” indicates, respectively, the lower, upper, or fixed
bound of the variable is violated. From this information, you can identify names of the constraints (variables)
in the IIS as well as the corresponding bound where infeasibility occurs.

Making any one of the constraints or variable bounds in the IIS nonbinding removes the infeasibility from
the IIS. In some cases, changing a right-hand side or bound by a finite amount will removes the infeasibility;
however, the only way to guarantee removal of the infeasibility is to set the appropriate right-hand side or
bound to1 or �1. Because it is possible for an LP to have multiple irreducible infeasible sets, simply
removing the infeasibility from one set might not make the entire problem feasible. To make the entire
problem feasible, you can rerun the LP solver with IIS=ON after removing the infeasibility from an IIS.
Repeat this process until the LP solver no longer detects an IIS. The resulting problem is feasible. This
approach to infeasibility repair can produce different end problems depending on which right-hand sides and
bounds you choose to relax.

The IIS= option in the LP solver uses two different methods to identify an IIS. Based on the result of the initial
solve, the sensitivity filter removes several constraints and variable bounds at once while still maintaining
infeasibility. This phase is quick and dramatically reduces the size of the IIS. After that, the deletion filter
removes each remaining constraint and variable bound one by one to check which of them are needed to
get an infeasible system. This second phase is more time consuming, but it ensures that the IIS set returned
by the LP solver is indeed irreducible. The progress of the deletion filter is reported at regular intervals.
Occasionally, the sensitivity filter might be called again during the deletion filter to improve performance.

See Example 6.4 for an example demonstrating the use of the IIS= option in locating and removing infeasi-
bilities.

Macro Variable _OROPTMODEL_
The OPTMODEL procedure always creates and initializes a SAS macro called _OROPTMODEL_. This
variable contains a character string. After each PROC OROPTMODEL run, you can examine this macro by
specifying %put &_OROPTMODEL_; and check the execution of the most recently invoked solver from the
value of the macro variable. The various terms of the variable after the LP solver is called are interpreted as
follows.

STATUS
indicates the solver status at termination. It can take one of the following values:

OK The solver terminated normally.

SYNTAX_ERROR Incorrect syntax was used.

DATA_ERROR The input data were inconsistent.

OUT_OF_MEMORY Insufficient memory was allocated to the procedure.

IO_ERROR A problem occurred in reading or writing data.

SEMANTIC_ERROR An evaluation error, such as an invalid operand type, occurred.

ERROR The status cannot be classified into any of the preceding categories.
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ALGORITHM
indicates the algorithm that produces the solution data in the macro variable. This term appears only
when STATUS=OK. It can take one of the following values:

PS The primal simplex algorithm produced the solution data.

DS The dual simplex algorithm produced the solution data.

NS The network simplex algorithm produced the solution data.

IP The interior point algorithm produced the solution data.

DECOMP The decomposition algorithm produced the solution data.

When you run algorithms concurrently (ALGORITHM=CON), this term indicates which algorithm is
the first to terminate.

SOLUTION_STATUS
indicates the solution status at termination. It can take one of the following values:

OPTIMAL The solution is optimal.

CONDITIONAL_OPTIMAL The solution is optimal, but some infeasibilities (primal,
dual or bound) exceed tolerances due to scaling or pre-
processing.

FEASIBLE The problem is feasible.

INFEASIBLE The problem is infeasible.

UNBOUNDED The problem is unbounded.

INFEASIBLE_OR_UNBOUNDED The problem is infeasible or unbounded.

BAD_PROBLEM_TYPE The problem type is unsupported by the solver.

ITERATION_LIMIT_REACHED The maximum allowable number of iterations was
reached.

TIME_LIMIT_REACHED The solver reached its execution time limit.

FUNCTION_CALL_LIMIT_REACHED The solver reached its limit on function evaluations.

INTERRUPTED The solver was interrupted externally.

FAILED The solver failed to converge, possibly due to numerical
issues.

When SOLUTION_STATUS has a value of OPTIMAL, CONDITIONAL_OPTIMAL, ITERA-
TION_LIMIT_REACHED, or TIME_LIMIT_REACHED, all terms of the _OROPTMODEL_ macro
variable are present; for other values of SOLUTION_STATUS, some terms do not appear.

OBJECTIVE
indicates the objective value obtained by the solver at termination.

PRIMAL_INFEASIBILITY
indicates, for the primal simplex and dual simplex solvers, the maximum (absolute) violation of the
primal constraints by the primal solution. For the interior point solver, this term indicates the relative
violation of the primal constraints by the primal solution.
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DUAL_INFEASIBILITY
indicates, for the primal simplex and dual simplex solvers, the maximum (absolute) violation of the
dual constraints by the dual solution. For the interior point solver, this term indicates the relative
violation of the dual constraints by the dual solution.

BOUND_INFEASIBILITY
indicates, for the primal simplex and dual simplex solvers, the maximum (absolute) violation of the
lower or upper bounds by the primal solution. For the interior point solver, this term indicates the
relative violation of the lower or upper bounds by the primal solution.

DUALITY_GAP
indicates the (relative) duality gap. This term appears only if the option ALGO-
RITHM=INTERIORPOINT is specified in the SOLVE statement.

COMPLEMENTARITY
indicates the (absolute) complementarity. This term appears only if the option ALGO-
RITHM=INTERIORPOINT is specified in the SOLVE statement.

ITERATIONS
indicates the number of iterations taken to solve the problem. When the network simplex algorithm is
used, this term indicates the number of network simplex iterations taken to solve the network relaxation.
When crossover is enabled, this term indicates the number of interior point iterations taken to solve the
problem.

ITERATIONS2
indicates the number of simplex iterations performed by the secondary solver. The network simplex
solver selects the secondary solver automatically unless a value has been specified for the ALGO-
RITHM2= option. When crossover is enabled, the secondary solver is selected automatically. This
term appears only if the network simplex solver is used or if crossover is enabled.

PRESOLVE_TIME
indicates the time (in seconds) used in preprocessing.

SOLUTION_TIME
indicates the time (in seconds) taken to solve the problem, including preprocessing time.

NOTE: The time reported in PRESOLVE_TIME and SOLUTION_TIME is either CPU time or real time.
The type is determined by the TIMETYPE= option.

When SOLUTION_STATUS has a value of OPTIMAL, CONDITIONAL_OPTIMAL, ITERA-
TION_LIMIT_REACHED, or TIME_LIMIT_REACHED, all terms of the _OROPTMODEL_ macro
variable are present; for other values of SOLUTION_STATUS, some terms do not appear.

Examples: LP Solver

Example 6.1: Diet Problem
Consider the problem of diet optimization. There are six different foods: bread, milk, cheese, potato, fish,
and yogurt. The cost and nutrition values per unit are displayed in Table 6.12.
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Table 6.12 Cost and Nutrition Values

Bread Milk Cheese Potato Fish Yogurt
Cost 2.0 3.5 8.0 1.5 11.0 1.0

Protein, g 4.0 8.0 7.0 1.3 8.0 9.2
Fat, g 1.0 5.0 9.0 0.1 7.0 1.0

Carbohydrates, g 15.0 11.7 0.4 22.6 0.0 17.0
Calories 90 120 106 97 130 180

The following SAS code creates the data set fooddata of Table 6.12:

data fooddata;
infile datalines;
input name $ cost prot fat carb cal;
datalines;

Bread 2 4 1 15 90
Milk 3.5 8 5 11.7 120
Cheese 8 7 9 0.4 106
Potato 1.5 1.3 0.1 22.6 97
Fish 11 8 7 0 130
Yogurt 1 9.2 1 17 180
;

The objective is to find a minimum-cost diet that contains at least 300 calories, not more than 10 grams of
protein, not less than 10 grams of carbohydrates, and not less than 8 grams of fat. In addition, the diet should
contain at least 0.5 unit of fish and no more than 1 unit of milk.

You can model the problem and solve it by using PROC OPTMODEL as follows:

proc optmodel;
/* declare index set */
set<str> FOOD;

/* declare variables */
var diet{FOOD} >= 0;

/* objective function */
num cost{FOOD};
min f=sum{i in FOOD}cost[i]*diet[i];

/* constraints */
num prot{FOOD};
num fat{FOOD};
num carb{FOOD};
num cal{FOOD};
num min_cal, max_prot, min_carb, min_fat;
con cal_con: sum{i in FOOD}cal[i]*diet[i] >= 300;
con prot_con: sum{i in FOOD}prot[i]*diet[i] <= 10;
con carb_con: sum{i in FOOD}carb[i]*diet[i] >= 10;
con fat_con: sum{i in FOOD}fat[i]*diet[i] >= 8;

/* read parameters */
read data fooddata into FOOD=[name] cost prot fat carb cal;
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/* bounds on variables */
diet['Fish'].lb = 0.5;
diet['Milk'].ub = 1.0;

/* solve and print the optimal solution */
solve with lp/logfreq=1; /* print each iteration to log */
print diet;

The optimal solution and the optimal objective value are displayed in Output 6.1.1.

Output 6.1.1 Optimal Solution to the Diet Problem

The OPTMODEL Procedure

Problem Summary

Objective Sense Minimization
Objective Function f
Objective Type Linear

Number of Variables 6
Bounded Above 0
Bounded Below 5
Bounded Below and Above 1
Free 0
Fixed 0

Number of Constraints 4
Linear LE (<=) 1
Linear EQ (=) 0
Linear GE (>=) 3
Linear Range 0

Constraint Coefficients 23

Performance Information

Execution Mode Single-Machine
Number of Threads 1

Solution Summary

Solver LP
Algorithm Dual Simplex
Objective Function f
Solution Status Optimal
Objective Value 12.081337881

Primal Infeasibility 0
Dual Infeasibility 0
Bound Infeasibility 0

Iterations 7
Presolve Time 0.00
Solution Time 0.03
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Output 6.1.1 continued

[1] diet

Bread 0.000000
Cheese 0.449499
Fish 0.500000
Milk 0.053599
Potato 1.865168
Yogurt 0.000000

Example 6.2: Reoptimizing the Diet Problem Using BASIS=WARMSTART
After an LP is solved, you might want to change a set of the parameters of the LP and solve the problem again.
This can be done efficiently in PROC OPTMODEL. The warm start technique uses the optimal solution of
the solved LP as a starting point and solves the modified LP problem faster than it can be solved again from
scratch. This example illustrates reoptimizing the diet problem described in Example 6.1.

Assume the optimal solution is found by the SOLVE statement. Instead of quitting the OPTMODEL
procedure, you can continue to solve several variations of the original problem.

Suppose the cost of cheese increases from 8 to 10 per unit and the cost of fish decreases from 11 to 7 per
serving unit. You can change the parameters and solve the modified problem by submitting the following
code:

cost['Cheese']=10; cost['Fish']=7;
solve with lp/presolver=none

basis=warmstart
algorithm=ps
logfreq=1;

print diet;

Note that the primal simplex solver is preferred because the primal solution to the last-solved LP is still
feasible for the modified problem in this case. The solutions to the original diet problem and the modified
problem are shown in Output 6.2.1.
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Output 6.2.1 Optimal Solutions to the Original Diet Problem and the Diet Problem with Modified Objective
Function

The OPTMODEL Procedure

Problem Summary

Objective Sense Minimization
Objective Function f
Objective Type Linear

Number of Variables 6
Bounded Above 0
Bounded Below 5
Bounded Below and Above 1
Free 0
Fixed 0

Number of Constraints 4
Linear LE (<=) 1
Linear EQ (=) 0
Linear GE (>=) 3
Linear Range 0

Constraint Coefficients 23

Performance Information

Execution Mode Single-Machine
Number of Threads 1

Solution Summary

Solver LP
Algorithm Dual Simplex
Objective Function f
Solution Status Optimal
Objective Value 12.081337881

Primal Infeasibility 0
Dual Infeasibility 0
Bound Infeasibility 0

Iterations 7
Presolve Time 0.00
Solution Time 0.03

[1] diet

Bread 0.000000
Cheese 0.449499
Fish 0.500000
Milk 0.053599
Potato 1.865168
Yogurt 0.000000
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Output 6.2.1 continued

Problem Summary

Objective Sense Minimization
Objective Function f
Objective Type Linear

Number of Variables 6
Bounded Above 0
Bounded Below 5
Bounded Below and Above 1
Free 0
Fixed 0

Number of Constraints 4
Linear LE (<=) 1
Linear EQ (=) 0
Linear GE (>=) 3
Linear Range 0

Constraint Coefficients 23

Performance Information

Execution Mode Single-Machine
Number of Threads 1

Solution Summary

Solver LP
Algorithm Primal Simplex
Objective Function f
Solution Status Optimal
Objective Value 10.980335514

Primal Infeasibility 1.776357E-15
Dual Infeasibility 0
Bound Infeasibility 0

Iterations 1
Presolve Time 0.00
Solution Time 0.03

[1] diet

Bread 0.000000
Cheese 0.449499
Fish 0.500000
Milk 0.053599
Potato 1.865168
Yogurt 0.000000

The following iteration log indicates that it takes the LP solver no more iterations to solve the modified
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problem by using BASIS=WARMSTART, since the optimal solution to the original problem remains optimal
after the objective function is changed.

Output 6.2.2 Log

NOTE: There were 6 observations read from the data set WORK.FOODDATA.
NOTE: Problem generation will use 4 threads.
NOTE: The problem has 6 variables (0 free, 0 fixed).
NOTE: The problem has 4 linear constraints (1 LE, 0 EQ, 3 GE, 0 range).
NOTE: The problem has 23 linear constraint coefficients.
NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).
NOTE: The LP presolver value AUTOMATIC is applied.
NOTE: The LP presolver removed 0 variables and 0 constraints.
NOTE: The LP presolver removed 0 constraint coefficients.
NOTE: The presolved problem has 6 variables, 4 constraints, and 23 constraint

coefficients.
NOTE: The LP solver is called.
NOTE: The Dual Simplex algorithm is used.

Objective
Phase Iteration Value Time
D 1 1 0.000000E+00 0
D 2 2 0.000000E+00 0
D 2 7 9.503132E+00 0

NOTE: Optimal.
NOTE: Objective = 9.5031323959.
NOTE: The Dual Simplex solve time is 0.05 seconds.
NOTE: Problem generation will use 4 threads.
NOTE: The problem has 6 variables (0 free, 0 fixed).
NOTE: The problem has 4 linear constraints (1 LE, 0 EQ, 3 GE, 0 range).
NOTE: The problem has 23 linear constraint coefficients.
NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).
NOTE: The LP presolver value NONE is applied.
NOTE: The LP solver is called.
NOTE: The Primal Simplex algorithm is used.

Objective Entering Leaving
Phase Iteration Value Time Variable Variable
P 2 1 1.098034E+01 0

NOTE: Optimal.
NOTE: Objective = 10.980335514.
NOTE: The Primal Simplex solve time is 0.03 seconds.

Next, restore the original coefficients of the objective function and consider the case that you need a diet that
supplies at least 150 calories. You can change the parameters and solve the modified problem by submitting
the following code:

cost['Cheese']=8; cost['Fish']=11;cal_con.lb=150;
solve with lp/presolver=none

basis=warmstart
algorithm=ds
logfreq=1;

print diet;

Note that the dual simplex solver is preferred because the dual solution to the last-solved LP is still feasible
for the modified problem in this case. The solution is shown in Output 6.2.3.
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Output 6.2.3 Optimal Solution to the Diet Problem with Modified RHS

The OPTMODEL Procedure

Problem Summary

Objective Sense Minimization
Objective Function f
Objective Type Linear

Number of Variables 6
Bounded Above 0
Bounded Below 5
Bounded Below and Above 1
Free 0
Fixed 0

Number of Constraints 4
Linear LE (<=) 1
Linear EQ (=) 0
Linear GE (>=) 3
Linear Range 0

Constraint Coefficients 23

Performance Information

Execution Mode Single-Machine
Number of Threads 1

Solution Summary

Solver LP
Algorithm Dual Simplex
Objective Function f
Solution Status Optimal
Objective Value 9.1744131985

Primal Infeasibility 0
Dual Infeasibility 0
Bound Infeasibility 0

Iterations 6
Presolve Time 0.00
Solution Time 0.05

[1] diet

Bread 0.00000
Cheese 0.18481
Fish 0.50000
Milk 0.56440
Potato 0.14702
Yogurt 0.00000
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The following iteration log indicates that it takes the LP solver just one more phase II iteration to solve the
modified problem by using BASIS=WARMSTART.

Output 6.2.4 Log

NOTE: There were 6 observations read from the data set WORK.FOODDATA.
NOTE: Problem generation will use 4 threads.
NOTE: The problem has 6 variables (0 free, 0 fixed).
NOTE: The problem has 4 linear constraints (1 LE, 0 EQ, 3 GE, 0 range).
NOTE: The problem has 23 linear constraint coefficients.
NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).
NOTE: No basis information is available. The BASIS=WARMSTART option is ignored.
NOTE: The LP presolver value NONE is applied.
NOTE: The LP solver is called.
NOTE: The Dual Simplex algorithm is used.

Objective Entering Leaving
Phase Iteration Value Time Variable Variable
D 1 1 0.000000E+00 0
D 2 2 5.500000E+00 0 diet[Milk]

fat_con (S)
D 2 3 8.650000E+00 0 diet[Cheese]

prot_con (S)
D 2 4 8.925676E+00 0 diet[Potato]

carb_con (S)
D 2 5 9.174413E+00 0
D 2 6 9.174413E+00 0

NOTE: Optimal.
NOTE: Objective = 9.1744131985.
NOTE: The Dual Simplex solve time is 0.05 seconds.

Next, restore the original constraint on calories and consider the case that you need a diet that supplies no
more than 550 mg of sodium per day. The following row is appended to Table 6.12.

Bread Milk Cheese Potato Fish Yogurt
sodium, mg 148 122 337 186 56 132

You can change the parameters, add the new constraint, and solve the modified problem by submitting the
following code:

cal_con.lb=300;
num sod{FOOD}=[148 122 337 186 56 132];
con sodium: sum{i in FOOD}sod[i]*diet[i] <= 550;
solve with lp/presolver=none

basis=warmstart
logfreq=1;

print diet;

The solution is shown in Output 6.2.5.
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Output 6.2.5 Optimal Solution to the Diet Problem with Additional Constraint

The OPTMODEL Procedure

Problem Summary

Objective Sense Minimization
Objective Function f
Objective Type Linear

Number of Variables 6
Bounded Above 0
Bounded Below 5
Bounded Below and Above 1
Free 0
Fixed 0

Number of Constraints 5
Linear LE (<=) 2
Linear EQ (=) 0
Linear GE (>=) 3
Linear Range 0

Constraint Coefficients 29

Performance Information

Execution Mode Single-Machine
Number of Threads 1

Solution Summary

Solver LP
Algorithm Dual Simplex
Objective Function f
Solution Status Optimal
Objective Value 12.081337881

Primal Infeasibility 0
Dual Infeasibility 0
Bound Infeasibility 0

Iterations 7
Presolve Time 0.00
Solution Time 0.03

[1] diet

Bread 0.000000
Cheese 0.449499
Fish 0.500000
Milk 0.053599
Potato 1.865168
Yogurt 0.000000
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The following iteration log indicates that it takes the LP solver no more iterations to solve the modified
problem by using the BASIS=WARMSTART option, since the optimal solution to the original problem
remains optimal after one more constraint is added.

Output 6.2.6 Log

NOTE: There were 6 observations read from the data set WORK.FOODDATA.
NOTE: Problem generation will use 4 threads.
NOTE: The problem has 6 variables (0 free, 0 fixed).
NOTE: The problem has 5 linear constraints (2 LE, 0 EQ, 3 GE, 0 range).
NOTE: The problem has 29 linear constraint coefficients.
NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).
NOTE: No basis information is available. The BASIS=WARMSTART option is ignored.
NOTE: The LP presolver value NONE is applied.
NOTE: The LP solver is called.
NOTE: The Dual Simplex algorithm is used.

Objective Entering Leaving
Phase Iteration Value Time Variable Variable
D 1 1 0.000000E+00 0
D 2 2 5.500000E+00 0 diet[Milk]

fat_con (S)
D 2 3 8.650000E+00 0 diet[Yogurt]

cal_con (S)
D 2 4 8.894231E+00 0 diet[Potato]

prot_con (S)
D 2 5 1.155221E+01 0 diet[Cheese]

diet[Yogurt]
D 2 6 1.208134E+01 0
D 2 7 1.208134E+01 0

NOTE: Optimal.
NOTE: Objective = 12.081337881.
NOTE: The Dual Simplex solve time is 0.06 seconds.

Example 6.3: Two-Person Zero-Sum Game
Consider a two-person zero-sum game (where one person wins what the other person loses). The players
make moves simultaneously, and each has a choice of actions. There is a payoff matrix that indicates the
amount one player gives to the other under each combination of actions:

Player II plays j
1 2 3 4

Player I plays i
1

2

3

0@ �5 3 1 8

5 5 4 6

�4 6 0 5

1A
If player I makes move i and player II makes move j, then player I wins (and player II loses) aij . What is the
best strategy for the two players to adopt? This example is simple enough to be analyzed from observation.
Suppose player I plays 1 or 3; the best response of player II is to play 1. In both cases, player I loses and
player II wins. So the best action for player I is to play 2. In this case, the best response for player II is to
play 3, which minimizes the loss. In this case, (2, 3) is a pure-strategy Nash equilibrium in this game.
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For illustration, consider the following mixed strategy case. Assume that player I selects i with probability
pi ; i D 1; 2; 3, and player II selects j with probability qj ; j D 1; 2; 3; 4. Consider player II’s problem of
minimizing the maximum expected payout:

min
q

8<:max
i

4X
jD1

aij qj

9=; subject to
4X
jD1

qij D 1; q � 0

This is equivalent to

min
q;v

v subject to
4X
jD1

aij qj � v 8 i

4X
jD1

qj D 1

q � 0

The problem can be transformed into a more standard format by making a simple change of variables:
xj D qj =v. The preceding LP formulation now becomes

min
x;v

v subject to
4X
jD1

aijxj � 1 8 i

4X
jD1

xj D 1=v

q � 0

which is equivalent to

max
x

4X
jD1

xj subject to Ax � 1; x � 0

where A is the payoff matrix and 1 is a vector of 1’s. It turns out that the corresponding optimization problem
from player I’s perspective can be obtained by solving the dual problem, which can be written as

min
y

3X
iD1

yi subject to ATy � 1; y � 0

You can model the problem and solve it by using PROC OPTMODEL as follows:

proc optmodel;
num a{1..3, 1..4}=[-5 3 1 8

5 5 4 6
-4 6 0 5];

var x{1..4} >= 0;
max f = sum{i in 1..4}x[i];
con c{i in 1..3}: sum{j in 1..4}a[i,j]*x[j] <= 1;
solve with lp / algorithm = ps presolver = none logfreq = 1;
print x;
print c.dual;

quit;

The optimal solution is displayed in Output 6.3.1.
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Output 6.3.1 Optimal Solutions to the Two-Person Zero-Sum Game

The OPTMODEL Procedure

Problem Summary

Objective Sense Maximization
Objective Function f
Objective Type Linear

Number of Variables 4
Bounded Above 0
Bounded Below 4
Bounded Below and Above 0
Free 0
Fixed 0

Number of Constraints 3
Linear LE (<=) 3
Linear EQ (=) 0
Linear GE (>=) 0
Linear Range 0

Constraint Coefficients 11

Performance Information

Execution Mode Single-Machine
Number of Threads 1

Solution Summary

Solver LP
Algorithm Primal Simplex
Objective Function f
Solution Status Optimal
Objective Value 0.25

Primal Infeasibility 0
Dual Infeasibility 0
Bound Infeasibility 0

Iterations 4
Presolve Time 0.00
Solution Time 0.05

[1] x

1 0.00
2 0.00
3 0.25
4 0.00
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Output 6.3.1 continued

[1] c.DUAL

1 0.00
2 0.25
3 0.00

The optimal solution x� D .0; 0; 0:25; 0/ with an optimal value of 0.25. Therefore the optimal strategy for
player II is q� D x�=0:25 D .0; 0; 1; 0/. You can check the optimal solution of the dual problem by using
the constraint suffix “.dual”. So y� D .0; 0:25; 0/ and player I’s optimal strategy is (0, 1, 0). The solution is
consistent with our intuition from observation.

Example 6.4: Finding an Irreducible Infeasible Set
This example demonstrates the use of the IIS= option to locate an irreducible infeasible set. Suppose you
want to solve a linear program that has the following simple formulation:

min x1 C x2 C x3 .cost/
subject to x1 C x2 � 10 .con1/

x1 C x3 � 4 .con2/
4 � x2 C x3 � 5 .con3/

x1; x2 � 0

0 � x3 � 3

It is easy to verify that the following three constraints (or rows) and one variable (or column) bound form an
IIS for this problem:

x1 C x2 � 10 .con1/
x1 C x3 � 4 .con2/

x2 C x3 � 5 .con3/
x3 � 0

You can formulate the problem and call the LP solver by using the following statements:

proc optmodel presolver=none;
/* declare variables */
var x{1..3} >=0;

/* upper bound on variable x[3] */
x[3].ub = 3;

/* objective function */
min obj = x[1] + x[2] + x[3];
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/* constraints */
con c1: x[1] + x[2] >= 10;
con c2: x[1] + x[3] <= 4;
con c3: 4 <= x[2] + x[3] <= 5;

solve with lp / iis = on;

print x.status;
print c1.status c2.status c3.status;

The notes printed in the log appear in Output 6.4.1.

Output 6.4.1 Finding an IIS: Log

NOTE: Problem generation will use 4 threads.
NOTE: The problem has 3 variables (0 free, 0 fixed).
NOTE: The problem has 3 linear constraints (1 LE, 0 EQ, 1 GE, 1 range).
NOTE: The problem has 6 linear constraint coefficients.
NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).
NOTE: The IIS option is enabled.

Objective
Phase Iteration Value Time
P 1 1 1.400000E+01 0
P 1 4 1.000000E+00 0

NOTE: The IIS option found the problem to be infeasible.
NOTE: Applying the IIS sensitivity filter.
NOTE: The sensitivity filter removed 1 constraints and 3 variable bounds.
NOTE: Applying the IIS deletion filter.
NOTE: Processing constraints.

Processed Removed Time
0 0 0
1 0 0
2 0 0
3 0 0

NOTE: Processing variable bounds.
Processed Removed Time

0 0 0
1 0 0
2 0 0
3 0 0

NOTE: The deletion filter removed 0 constraints and 0 variable bounds.
NOTE: The IIS option found the problem to be infeasible.
NOTE: The IIS option found an irreducible infeasible set with 1 variables and 3

constraints.
NOTE: The IIS solve time is 0.02 seconds.

The output of the PRINT statements appears in Output 6.4.2. The value of the .status suffix for the variables
x[1] and x[2] is “I,” which indicates an infeasible problem. The value I is not one of those assigned by the
IIS= option to members of the IIS, however, so the variable bounds for x[1] and x[2] are not in the IIS.
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Output 6.4.2 Solution Summary, Variable Status, and Constraint Status

The OPTMODEL Procedure

Solution Summary

Solver LP
Algorithm Primal Simplex
Objective Function obj
Solution Status Infeasible

Iterations 14
Presolve Time 0.00
Solution Time 0.05

[1] x.STATUS

1
2
3 I_L

c1.STATUS c2.STATUS c3.STATUS

I_L I_U I_U

The value of c3.status is I_U, which indicates that x2Cx3 � 5 is an element of the IIS. The original constraint
is c3, a range constraint with a lower bound of 4. If you choose to remove the constraint x2 C x3 � 5, you
can change the value of c3.ub to the largest positive number representable in your operating environment.
You can specify this number by using the MIN aggregation expression in the OPTMODEL procedure. See
“MIN Aggregation Expression” on page 106 for details.

The modified LP problem is specified and solved by adding the following lines to the original PROC
OPTMODEL call.

/* relax upper bound on constraint c3 */
c3.ub = min{{}}0;

solve with lp / iis = on;

/* print solution */
print x;

Because one element of the IIS has been removed, the modified LP problem should no longer contain the
infeasible set. Due to the size of this problem, there should be no additional irreducible infeasible sets.

The notes shown in Output 6.4.3 are printed to the log.
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Output 6.4.3 Infeasibility Removed: Log

NOTE: Problem generation will use 4 threads.
NOTE: The problem has 3 variables (0 free, 0 fixed).
NOTE: The problem has 3 linear constraints (1 LE, 0 EQ, 2 GE, 0 range).
NOTE: The problem has 6 linear constraint coefficients.
NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).
NOTE: The IIS option is enabled.

Objective
Phase Iteration Value Time
P 1 1 1.400000E+01 0
P 1 3 0.000000E+00 0

NOTE: The IIS option found the problem to be feasible.
NOTE: The IIS solve time is 0.05 seconds.

The solution summary and primal solution are displayed in Output 6.4.4.

Output 6.4.4 Infeasibility Removed: Solution

The OPTMODEL Procedure

Solution Summary

Solver LP
Algorithm Primal Simplex
Objective Function obj
Solution Status Feasible

Iterations 3
Presolve Time 0.00
Solution Time 0.03

[1] x

1 0
2 0
3 0

Example 6.5: Using the Network Simplex Solver
This example demonstrates how you can use the network simplex solver to find the minimum-cost flow in
a directed graph. Consider the directed graph in Figure 6.4, which appears in Ahuja, Magnanti, and Orlin
(1993).
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Figure 6.4 Minimum Cost Network Flow Problem: Data
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You can use the following SAS statements to create the input data sets nodedata and arcdata:

data nodedata;
input _node_ $ _sd_;
datalines;

1 10
2 20
3 0
4 -5
5 0
6 0
7 -15
8 -10
;

data arcdata;
input _tail_ $ _head_ $ _lo_ _capac_ _cost_;
datalines;

1 4 0 15 2
2 1 0 10 1
2 3 0 10 0
2 6 0 10 6
3 4 0 5 1
3 5 0 10 4
4 7 0 10 5
5 6 0 20 2
5 7 0 15 7
6 8 0 10 8
7 8 0 15 9
;
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You can use the following call to PROC OPTMODEL to find the minimum-cost flow:

proc optmodel;
set <str> NODES;
num supply_demand {NODES};

set <str,str> ARCS;
num arcLower {ARCS};
num arcUpper {ARCS};
num arcCost {ARCS};

read data arcdata into ARCS=[_tail_ _head_]
arcLower=_lo_ arcUpper=_capac_ arcCost=_cost_;

read data nodedata into NODES=[_node_] supply_demand=_sd_;

var flow {<i,j> in ARCS} >= arcLower[i,j] <= arcUpper[i,j];
min obj = sum {<i,j> in ARCS} arcCost[i,j] * flow[i,j];
con balance {i in NODES}:

sum {<(i),j> in ARCS} flow[i,j] - sum {<j,(i)> in ARCS} flow[j,i]
= supply_demand[i];

solve with lp / algorithm=ns scale=none logfreq=1;
print flow;

quit;
%put &_OROPTMODEL_;

The optimal solution is displayed in Output 6.5.1.

Output 6.5.1 Network Simplex Solver: Primal Solution Output

The OPTMODEL Procedure

Problem Summary

Objective Sense Minimization
Objective Function obj
Objective Type Linear

Number of Variables 11
Bounded Above 0
Bounded Below 0
Bounded Below and Above 11
Free 0
Fixed 0

Number of Constraints 8
Linear LE (<=) 0
Linear EQ (=) 8
Linear GE (>=) 0
Linear Range 0

Constraint Coefficients 22
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Output 6.5.1 continued

Performance Information

Execution Mode Single-Machine
Number of Threads 1

Solution Summary

Solver LP
Algorithm Network Simplex
Objective Function obj
Solution Status Optimal
Objective Value 270

Primal Infeasibility 0
Dual Infeasibility 0
Bound Infeasibility 0

Iterations 8
Iterations2 0
Presolve Time 0.00
Solution Time 0.00

[1] [2] flow

1 4 10
2 1 0
2 3 10
2 6 10
3 4 5
3 5 5
4 7 10
5 6 0
5 7 5
6 8 10
7 8 0

The optimal solution is represented graphically in Figure 6.5.

Figure 6.5 Minimum Cost Network Flow Problem: Optimal Solution
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The iteration log is displayed in Output 6.5.2.

Output 6.5.2 Log: Solution Progress

NOTE: There were 11 observations read from the data set WORK.ARCDATA.
NOTE: There were 8 observations read from the data set WORK.NODEDATA.
NOTE: Problem generation will use 4 threads.
NOTE: The problem has 11 variables (0 free, 0 fixed).
NOTE: The problem has 8 linear constraints (0 LE, 8 EQ, 0 GE, 0 range).
NOTE: The problem has 22 linear constraint coefficients.
NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).
NOTE: The problem is a pure network instance; PRESOLVER=NONE is used.
NOTE: The LP presolver value NONE is applied.
NOTE: The LP solver is called.
NOTE: The Network Simplex algorithm is used.
NOTE: The network has 8 rows (100.00%), 11 columns (100.00%), and 1 component.
NOTE: The network extraction and setup time is 0.00 seconds.

Primal Primal Dual
Iteration Objective Infeasibility Infeasibility Time

1 0 20.0000000 89.0000000 0.00
2 0 20.0000000 89.0000000 0.00
3 5.0000000 15.0000000 84.0000000 0.00
4 5.0000000 15.0000000 83.0000000 0.00
5 75.0000000 15.0000000 83.0000000 0.00
6 75.0000000 15.0000000 79.0000000 0.00
7 130.0000000 10.0000000 76.0000000 0.00
8 270.0000000 0 0 0.00

NOTE: The Network Simplex solve time is 0.00 seconds.
NOTE: The total Network Simplex solve time is 0.00 seconds.
NOTE: Optimal.
NOTE: Objective = 270.
STATUS=OK ALGORITHM=NS SOLUTION_STATUS=OPTIMAL OBJECTIVE=270
PRIMAL_INFEASIBILITY=0 DUAL_INFEASIBILITY=0 BOUND_INFEASIBILITY=0 ITERATIONS=8
ITERATIONS2=0 PRESOLVE_TIME=0.00 SOLUTION_TIME=0.00

Now, suppose there is a budget on the flow that comes out of arc 2: the total arc cost of flow that comes out
of arc 2 cannot exceed 50. You can use the following call to PROC OPTMODEL to find the minimum-cost
flow:

proc optmodel;
set <str> NODES;
num supply_demand {NODES};

set <str,str> ARCS;
num arcLower {ARCS};
num arcUpper {ARCS};
num arcCost {ARCS};

read data arcdata into ARCS=[_tail_ _head_]
arcLower=_lo_ arcUpper=_capac_ arcCost=_cost_;

read data nodedata into NODES=[_node_] supply_demand=_sd_;

var flow {<i,j> in ARCS} >= arcLower[i,j] <= arcUpper[i,j];
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min obj = sum {<i,j> in ARCS} arcCost[i,j] * flow[i,j];
con balance {i in NODES}:

sum {<(i),j> in ARCS} flow[i,j] - sum {<j,(i)> in ARCS} flow[j,i]
= supply_demand[i];

con budgetOn2:
sum {<i,j> in ARCS: i='2'} arcCost[i,j] * flow[i,j] <= 50;

solve with lp / algorithm=ns scale=none logfreq=1;
print flow;

quit;
%put &_OROPTMODEL_;

The optimal solution is displayed in Output 6.5.3.

Output 6.5.3 Network Simplex Solver: Primal Solution Output

The OPTMODEL Procedure

Problem Summary

Objective Sense Minimization
Objective Function obj
Objective Type Linear

Number of Variables 11
Bounded Above 0
Bounded Below 0
Bounded Below and Above 11
Free 0
Fixed 0

Number of Constraints 9
Linear LE (<=) 1
Linear EQ (=) 8
Linear GE (>=) 0
Linear Range 0

Constraint Coefficients 24

Performance Information

Execution Mode Single-Machine
Number of Threads 1
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Output 6.5.3 continued

Solution Summary

Solver LP
Algorithm Network Simplex
Objective Function obj
Solution Status Optimal
Objective Value 274

Primal Infeasibility 0
Dual Infeasibility 0
Bound Infeasibility 0

Iterations 7
Iterations2 3
Presolve Time 0.02
Solution Time 0.05

[1] [2] flow

1 4 12
2 1 2
2 3 10
2 6 8
3 4 3
3 5 7
4 7 10
5 6 2
5 7 5
6 8 10
7 8 0

The optimal solution is represented graphically in Figure 6.6.

Figure 6.6 Minimum Cost Network Flow Problem: Optimal Solution (with
Budget Constraint)
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The iteration log is displayed in Output 6.5.4. Note that the network simplex solver extracts a subnetwork in
this case.
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Output 6.5.4 Log: Solution Progress

NOTE: There were 11 observations read from the data set WORK.ARCDATA.
NOTE: There were 8 observations read from the data set WORK.NODEDATA.
NOTE: Problem generation will use 4 threads.
NOTE: The problem has 11 variables (0 free, 0 fixed).
NOTE: The problem has 9 linear constraints (1 LE, 8 EQ, 0 GE, 0 range).
NOTE: The problem has 24 linear constraint coefficients.
NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).
NOTE: The LP presolver value AUTOMATIC is applied.
NOTE: The LP presolver removed 4 variables and 4 constraints.
NOTE: The LP presolver removed 7 constraint coefficients.
NOTE: The presolved problem has 7 variables, 5 constraints, and 17 constraint

coefficients.
NOTE: The LP solver is called.
NOTE: The Network Simplex algorithm is used.
NOTE: The network has 4 rows (80.00%), 7 columns (100.00%), and 1 component.
NOTE: The network extraction and setup time is 0.00 seconds.

Primal Primal Dual
Iteration Objective Infeasibility Infeasibility Time

1 80.1500000 10.0600000 55.0000000 0.00
2 105.3000000 5.0300000 54.0000000 0.00
3 105.3000000 5.0300000 54.0000000 0.00
4 135.3000000 0.0300000 49.0000000 0.00
5 135.6300000 0 47.0000000 0.00
6 135.6300000 0 0 0.00
7 270.0000000 0 0 0.00

NOTE: The Network Simplex solve time is 0.00 seconds.
NOTE: The total Network Simplex solve time is 0.00 seconds.
NOTE: Optimal.
NOTE: Objective = 270.
NOTE: The Dual Simplex algorithm is used.

Objective Entering Leaving
Phase Iteration Value Time Variable Variable
D 2 1 2.700000E+02 0 flow['5','6']

budgetOn2 (S)
D 2 2 2.740000E+02 0
D 2 3 2.740000E+02 0

NOTE: Optimal.
NOTE: Objective = 274.
NOTE: The Simplex solve time is 0.03 seconds.
STATUS=OK ALGORITHM=NS SOLUTION_STATUS=OPTIMAL OBJECTIVE=274
PRIMAL_INFEASIBILITY=0 DUAL_INFEASIBILITY=0 BOUND_INFEASIBILITY=0 ITERATIONS=7
ITERATIONS2=3 PRESOLVE_TIME=0.00 SOLUTION_TIME=0.03
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Example 6.6: Migration to OPTMODEL: Generalized Networks
The following example shows how to use PROC OPTMODEL to solve the example “Generalized Networks:
Using the EXCESS= Option” in Chapter 6, “The NETFLOW Procedure” (SAS/OR User’s Guide: Mathe-
matical Programming Legacy Procedures). The input data sets are the same as in the PROC NETFLOW
example.

title 'Generalized Networks';

data garcs;
input _from_ $ _to_ $ _cost_ _mult_;
datalines;

s1 d1 1 .
s1 d2 8 .
s2 d1 4 2
s2 d2 2 2
s2 d3 1 2
s3 d2 5 0.5
s3 d3 4 0.5
;

data gnodes;
input _node_ $ _sd_ ;
datalines;

s1 5
s2 20
s3 10
d1 -5
d2 -10
d3 -20
;

The following PROC OPTMODEL statements read the data sets, build the linear programming model, solve
the model, and output the optimal solution to a SAS data set called GENETOUT:

proc optmodel;
set <str> NODES;
num _sd_ {NODES} init 0;
read data gnodes into NODES=[_node_] _sd_;

set <str,str> ARCS;
num _lo_ {ARCS} init 0;
num _capac_ {ARCS} init .;
num _cost_ {ARCS};
num _mult_ {ARCS} init 1;
read data garcs nomiss into ARCS=[_from_ _to_] _cost_ _mult_;
NODES = NODES union (union {<i,j> in ARCS} {i,j});
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var Flow {<i,j> in ARCS} >= _lo_[i,j];
min obj = sum {<i,j> in ARCS} _cost_[i,j] * Flow[i,j];
con balance {i in NODES}: sum {<(i),j> in ARCS} Flow[i,j]

- sum {<j,(i)> in ARCS} _mult_[j,i] * Flow[j,i] = _sd_[i];

num infinity = min {r in {}} r;
/* change equality constraint to le constraint for supply nodes */
for {i in NODES: _sd_[i] > 0} balance[i].lb = -infinity;

solve;

num _supply_ {<i,j> in ARCS} = (if _sd_[i] ne 0 then _sd_[i] else .);
num _demand_ {<i,j> in ARCS} = (if _sd_[j] ne 0 then -_sd_[j] else .);
num _fcost_ {<i,j> in ARCS} = _cost_[i,j] * Flow[i,j].sol;

create data gnetout from [_from_ _to_]
_cost_ _capac_ _lo_ _mult_ _supply_ _demand_ _flow_=Flow _fcost_;

quit;

To solve a generalized network flow problem, the usual balance constraint is altered to include the arc
multiplier “_mult_[i,j]” in the second sum. The balance constraint is initially declared as an equality, but to
mimic the EXCESS=SUPPLY option in PROC NETFLOW, the sense of this constraint is changed to “�” by
relaxing the constraint’s lower bound for supply nodes. The output data set is displayed in Output 6.6.1.

Output 6.6.1 Optimal Solution with Excess Supply

Obs _from_ _to_ _cost_ _capac_ _lo_ _mult_ _supply_ _demand_ _flow_ _fcost_

1 s1 d1 1 . 0 1.0 5 5 5 5
2 s1 d2 8 . 0 1.0 5 10 0 0
3 s2 d1 4 . 0 2.0 20 5 0 0
4 s2 d2 2 . 0 2.0 20 10 5 10
5 s2 d3 1 . 0 2.0 20 20 10 10
6 s3 d2 5 . 0 0.5 10 10 0 0
7 s3 d3 4 . 0 0.5 10 20 0 0

The log is displayed in Output 6.6.2.
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Output 6.6.2 OPTMODEL Log

NOTE: There were 6 observations read from the data set WORK.GNODES.
NOTE: There were 7 observations read from the data set WORK.GARCS.
NOTE: Problem generation will use 4 threads.
NOTE: The problem has 7 variables (0 free, 0 fixed).
NOTE: The problem has 6 linear constraints (3 LE, 3 EQ, 0 GE, 0 range).
NOTE: The problem has 14 linear constraint coefficients.
NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).
NOTE: The OPTMODEL presolver is disabled for linear problems.
NOTE: The LP presolver value AUTOMATIC is applied.
NOTE: The LP presolver removed 2 variables and 2 constraints.
NOTE: The LP presolver removed 4 constraint coefficients.
NOTE: The presolved problem has 5 variables, 4 constraints, and 10 constraint

coefficients.
NOTE: The LP solver is called.
NOTE: The Dual Simplex algorithm is used.

Objective
Phase Iteration Value Time
D 1 1 0.000000E+00 0
D 2 2 1.500000E+01 0
D 2 4 2.500000E+01 0

NOTE: Optimal.
NOTE: Objective = 25.
NOTE: The Dual Simplex solve time is 0.05 seconds.
NOTE: The data set WORK.GNETOUT has 7 observations and 10 variables.

Now consider the previous example but with a slight modification to the arc multipliers, as in the PROC
NETFLOW example:

data garcs1;
input _from_ $ _to_ $ _cost_ _mult_;
datalines;

s1 d1 1 0.5
s1 d2 8 0.5
s2 d1 4 .
s2 d2 2 .
s2 d3 1 .
s3 d2 5 0.5
s3 d3 4 0.5
;

The following PROC OPTMODEL statements are identical to the preceding example, except for the balance
constraint. The balance constraint is still initially declared as an equality, but to mimic the PROC NETFLOW
EXCESS=DEMAND option, the sense of this constraint is changed to “�” by relaxing the constraint’s upper
bound for demand nodes.

proc optmodel;
set <str> NODES;
num _sd_ {NODES} init 0;
read data gnodes into NODES=[_node_] _sd_;

set <str,str> ARCS;
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num _lo_ {ARCS} init 0;
num _capac_ {ARCS} init .;
num _cost_ {ARCS};
num _mult_ {ARCS} init 1;
read data garcs1 nomiss into ARCS=[_from_ _to_] _cost_ _mult_;
NODES = NODES union (union {<i,j> in ARCS} {i,j});

var Flow {<i,j> in ARCS} >= _lo_[i,j];
for {<i,j> in ARCS: _capac_[i,j] ne .} Flow[i,j].ub = _capac_[i,j];
min obj = sum {<i,j> in ARCS} _cost_[i,j] * Flow[i,j];
con balance {i in NODES}: sum {<(i),j> in ARCS} Flow[i,j]

- sum {<j,(i)> in ARCS} _mult_[j,i] * Flow[j,i] = _sd_[i];

num infinity = min {r in {}} r;
/* change equality constraint to ge constraint */
for {i in NODES: _sd_[i] < 0} balance[i].ub = infinity;

solve;

num _supply_ {<i,j> in ARCS} = (if _sd_[i] ne 0 then _sd_[i] else .);
num _demand_ {<i,j> in ARCS} = (if _sd_[j] ne 0 then -_sd_[j] else .);
num _fcost_ {<i,j> in ARCS} = _cost_[i,j] * Flow[i,j].sol;

create data gnetout1 from [_from_ _to_]
_cost_ _capac_ _lo_ _mult_ _supply_ _demand_ _flow_=Flow _fcost_;

quit;

The output data set is displayed in Output 6.6.3.

Output 6.6.3 Optimal Solution with Excess Demand

Obs _from_ _to_ _cost_ _capac_ _lo_ _mult_ _supply_ _demand_ _flow_ _fcost_

1 s1 d1 1 . 0 0.5 5 5 5 5
2 s1 d2 8 . 0 0.5 5 10 0 0
3 s2 d1 4 . 0 1.0 20 5 0 0
4 s2 d2 2 . 0 1.0 20 10 5 10
5 s2 d3 1 . 0 1.0 20 20 15 15
6 s3 d2 5 . 0 0.5 10 10 0 0
7 s3 d3 4 . 0 0.5 10 20 10 40

The log is displayed in Output 6.6.4.
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Output 6.6.4 OPTMODEL Log

NOTE: There were 6 observations read from the data set WORK.GNODES.
NOTE: There were 7 observations read from the data set WORK.GARCS1.
NOTE: Problem generation will use 4 threads.
NOTE: The problem has 7 variables (0 free, 0 fixed).
NOTE: The problem has 6 linear constraints (0 LE, 3 EQ, 3 GE, 0 range).
NOTE: The problem has 14 linear constraint coefficients.
NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).
NOTE: The OPTMODEL presolver is disabled for linear problems.
NOTE: The LP presolver value AUTOMATIC is applied.
NOTE: The LP presolver removed 2 variables and 2 constraints.
NOTE: The LP presolver removed 4 constraint coefficients.
NOTE: The presolved problem has 5 variables, 4 constraints, and 10 constraint

coefficients.
NOTE: The LP solver is called.
NOTE: The Dual Simplex algorithm is used.

Objective
Phase Iteration Value Time
D 1 1 0.000000E+00 0
D 2 2 4.997000E+01 0
D 2 5 7.000000E+01 0

NOTE: Optimal.
NOTE: Objective = 70.
NOTE: The Dual Simplex solve time is 0.05 seconds.
NOTE: The data set WORK.GNETOUT1 has 7 observations and 10 variables.

Example 6.7: Migration to OPTMODEL: Maximum Flow
The following example shows how to use PROC OPTMODEL to solve the example “Maximum Flow
Problem” in Chapter 6, “The NETFLOW Procedure” (SAS/OR User’s Guide: Mathematical Programming
Legacy Procedures). The input data set is the same as in that example.

title 'Maximum Flow Problem';

data arcs;
input _from_ $ _to_ $ _cost_ _capac_;
datalines;

S a . .
S b . .
a c 1 7
b c 2 9
a d 3 5
b d 4 8
c e 5 15
d f 6 20
e g 7 11
f g 8 6
e h 9 12
f h 10 4
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g T . .
h T . .
;

The following PROC OPTMODEL statements read the data sets, build the linear programming model, solve
the model, and output the optimal solution to a SAS data set called GOUT3:

proc optmodel;
str source = 'S';
str sink = 'T';

set <str> NODES;
num _supdem_ {i in NODES} = (if i in {source, sink} then . else 0);

set <str,str> ARCS;
num _lo_ {ARCS} init 0;
num _capac_ {ARCS} init .;
num _cost_ {ARCS} init 0;
read data arcs nomiss into ARCS=[_from_ _to_] _cost_ _capac_;
NODES = (union {<i,j> in ARCS} {i,j});

var Flow {<i,j> in ARCS} >= _lo_[i,j];
for {<i,j> in ARCS: _capac_[i,j] ne .} Flow[i,j].ub = _capac_[i,j];
max obj = sum {<i,j> in ARCS: j = sink} Flow[i,j];
con balance {i in NODES diff {source, sink}}:

sum {<(i),j> in ARCS} Flow[i,j]
- sum {<j,(i)> in ARCS} Flow[j,i] = _supdem_[i];

solve;

num _supply_ {<i,j> in ARCS} =
(if _supdem_[i] ne 0 then _supdem_[i] else .);

num _demand_ {<i,j> in ARCS} =
(if _supdem_[j] ne 0 then -_supdem_[j] else .);

num _fcost_ {<i,j> in ARCS} = _cost_[i,j] * Flow[i,j].sol;

create data gout3 from [_from_ _to_]
_cost_ _capac_ _lo_ _supply_ _demand_ _flow_=Flow _fcost_;

quit;

To solve a maximum flow problem, you solve a network flow problem that has a zero supply or demand at
all nodes other than the source and sink nodes, as specified in the declaration of the _SUPDEM_ numeric
parameter and the balance constraint. The objective declaration uses the logical condition J = SINK to
maximize the flow into the sink node. The output data set is displayed in Output 6.7.1.
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Output 6.7.1 Optimal Solution

Obs _from_ _to_ _cost_ _capac_ _lo_ _supply_ _demand_ _flow_ _fcost_

1 S a 0 . 0 . . 12 0
2 S b 0 . 0 . . 13 0
3 a c 1 7 0 . . 7 7
4 b c 2 9 0 . . 8 16
5 a d 3 5 0 . . 5 15
6 b d 4 8 0 . . 5 20
7 c e 5 15 0 . . 15 75
8 d f 6 20 0 . . 10 60
9 e g 7 11 0 . . 3 21

10 f g 8 6 0 . . 6 48
11 e h 9 12 0 . . 12 108
12 f h 10 4 0 . . 4 40
13 g T 0 . 0 . . 9 0
14 h T 0 . 0 . . 16 0

The log is displayed in Output 6.7.2.

Output 6.7.2 OPTMODEL Log

NOTE: There were 14 observations read from the data set WORK.ARCS.
NOTE: Problem generation will use 4 threads.
NOTE: The problem has 14 variables (0 free, 0 fixed).
NOTE: The problem has 8 linear constraints (0 LE, 8 EQ, 0 GE, 0 range).
NOTE: The problem has 24 linear constraint coefficients.
NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).
NOTE: The OPTMODEL presolver is disabled for linear problems.
NOTE: The problem is a pure network instance. The ALGORITHM=NETWORK option is

recommended for solving problems with this structure.
NOTE: The LP presolver value AUTOMATIC is applied.
NOTE: The LP presolver removed 10 variables and 6 constraints.
NOTE: The LP presolver removed 20 constraint coefficients.
NOTE: The presolved problem has 4 variables, 2 constraints, and 4 constraint

coefficients.
NOTE: The LP solver is called.
NOTE: The Dual Simplex algorithm is used.

Objective
Phase Iteration Value Time
D 1 1 0.000000E+00 0
D 2 2 2.500000E+01 0
P 2 5 2.500000E+01 0
P 2 6 2.500000E+01 0

NOTE: Optimal.
NOTE: Objective = 25.
NOTE: The Dual Simplex solve time is 0.03 seconds.
NOTE: The data set WORK.GOUT3 has 14 observations and 9 variables.
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Example 6.8: Migration to OPTMODEL: Production, Inventory, Distribution
The following example shows how to use PROC OPTMODEL to solve the example “Production, Inventory,
Distribution Problem” in Chapter 6, “The NETFLOW Procedure” (SAS/OR User’s Guide: Mathematical
Programming Legacy Procedures). The input data sets are the same as in that example.

title 'Minimum Cost Flow Problem';
title2 'Production Planning/Inventory/Distribution';

data node0;
input _node_ $ _supdem_ ;
datalines;

fact1_1 1000
fact2_1 850
fact1_2 1000
fact2_2 1500
shop1_1 -900
shop2_1 -900
shop1_2 -900
shop2_2 -1450
;

data arc0;
input _tail_ $ _head_ $ _cost_ _capac_ _lo_

diagonal factory key_id $10. mth_made $ _name_&$17.;
datalines;

fact1_1 f1_mar_1 127.9 500 50 19 1 production March prod f1 19 mar
fact1_1 f1_apr_1 78.6 600 50 19 1 production April prod f1 19 apl
fact1_1 f1_may_1 95.1 400 50 19 1 production May .
f1_mar_1 f1_apr_1 15 50 . 19 1 storage March .
f1_apr_1 f1_may_1 12 50 . 19 1 storage April .
f1_apr_1 f1_mar_1 28 20 . 19 1 backorder April back f1 19 apl
f1_may_1 f1_apr_1 28 20 . 19 1 backorder May back f1 19 may
f1_mar_1 f2_mar_1 11 . . 19 . f1_to_2 March .
f1_apr_1 f2_apr_1 11 . . 19 . f1_to_2 April .
f1_may_1 f2_may_1 16 . . 19 . f1_to_2 May .
f1_mar_1 shop1_1 -327.65 250 . 19 1 sales March .
f1_apr_1 shop1_1 -300 250 . 19 1 sales April .
f1_may_1 shop1_1 -285 250 . 19 1 sales May .
f1_mar_1 shop2_1 -362.74 250 . 19 1 sales March .
f1_apr_1 shop2_1 -300 250 . 19 1 sales April .
f1_may_1 shop2_1 -245 250 . 19 1 sales May .
fact2_1 f2_mar_1 88.0 450 35 19 2 production March prod f2 19 mar
fact2_1 f2_apr_1 62.4 480 35 19 2 production April prod f2 19 apl
fact2_1 f2_may_1 133.8 250 35 19 2 production May .
f2_mar_1 f2_apr_1 18 30 . 19 2 storage March .
f2_apr_1 f2_may_1 20 30 . 19 2 storage April .
f2_apr_1 f2_mar_1 17 15 . 19 2 backorder April back f2 19 apl
f2_may_1 f2_apr_1 25 15 . 19 2 backorder May back f2 19 may
f2_mar_1 f1_mar_1 10 40 . 19 . f2_to_1 March .
f2_apr_1 f1_apr_1 11 40 . 19 . f2_to_1 April .
f2_may_1 f1_may_1 13 40 . 19 . f2_to_1 May .
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f2_mar_1 shop1_1 -297.4 250 . 19 2 sales March .
f2_apr_1 shop1_1 -290 250 . 19 2 sales April .
f2_may_1 shop1_1 -292 250 . 19 2 sales May .
f2_mar_1 shop2_1 -272.7 250 . 19 2 sales March .
f2_apr_1 shop2_1 -312 250 . 19 2 sales April .
f2_may_1 shop2_1 -299 250 . 19 2 sales May .
fact1_2 f1_mar_2 217.9 400 40 25 1 production March prod f1 25 mar
fact1_2 f1_apr_2 174.5 550 50 25 1 production April prod f1 25 apl
fact1_2 f1_may_2 133.3 350 40 25 1 production May .
f1_mar_2 f1_apr_2 20 40 . 25 1 storage March .
f1_apr_2 f1_may_2 18 40 . 25 1 storage April .
f1_apr_2 f1_mar_2 32 30 . 25 1 backorder April back f1 25 apl
f1_may_2 f1_apr_2 41 15 . 25 1 backorder May back f1 25 may
f1_mar_2 f2_mar_2 23 . . 25 . f1_to_2 March .
f1_apr_2 f2_apr_2 23 . . 25 . f1_to_2 April .
f1_may_2 f2_may_2 26 . . 25 . f1_to_2 May .
f1_mar_2 shop1_2 -559.76 . . 25 1 sales March .
f1_apr_2 shop1_2 -524.28 . . 25 1 sales April .
f1_may_2 shop1_2 -475.02 . . 25 1 sales May .
f1_mar_2 shop2_2 -623.89 . . 25 1 sales March .
f1_apr_2 shop2_2 -549.68 . . 25 1 sales April .
f1_may_2 shop2_2 -460.00 . . 25 1 sales May .
fact2_2 f2_mar_2 182.0 650 35 25 2 production March prod f2 25 mar
fact2_2 f2_apr_2 196.7 680 35 25 2 production April prod f2 25 apl
fact2_2 f2_may_2 201.4 550 35 25 2 production May .
f2_mar_2 f2_apr_2 28 50 . 25 2 storage March .
f2_apr_2 f2_may_2 38 50 . 25 2 storage April .
f2_apr_2 f2_mar_2 31 15 . 25 2 backorder April back f2 25 apl
f2_may_2 f2_apr_2 54 15 . 25 2 backorder May back f2 25 may
f2_mar_2 f1_mar_2 20 25 . 25 . f2_to_1 March .
f2_apr_2 f1_apr_2 21 25 . 25 . f2_to_1 April .
f2_may_2 f1_may_2 43 25 . 25 . f2_to_1 May .
f2_mar_2 shop1_2 -567.83 500 . 25 2 sales March .
f2_apr_2 shop1_2 -542.19 500 . 25 2 sales April .
f2_may_2 shop1_2 -461.56 500 . 25 2 sales May .
f2_mar_2 shop2_2 -542.83 500 . 25 2 sales March .
f2_apr_2 shop2_2 -559.19 500 . 25 2 sales April .
f2_may_2 shop2_2 -489.06 500 . 25 2 sales May .
;

The following PROC OPTMODEL statements read the data sets, build the linear programming model, solve
the model, and output the optimal solution to SAS data sets called ARC1 and NODE2:

proc optmodel;
set <str> NODES;
num _supdem_ {NODES} init 0;
read data node0 into NODES=[_node_] _supdem_;

set <str,str> ARCS;
num _lo_ {ARCS} init 0;
num _capac_ {ARCS} init .;
num _cost_ {ARCS};
num diagonal {ARCS};
num factory {ARCS};
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str key_id {ARCS};
str mth_made {ARCS};
str _name_ {ARCS};
read data arc0 nomiss into ARCS=[_tail_ _head_] _lo_ _capac_ _cost_

diagonal factory key_id mth_made _name_;
NODES = NODES union (union {<i,j> in ARCS} {i,j});

var Flow {<i,j> in ARCS} >= _lo_[i,j];
for {<i,j> in ARCS: _capac_[i,j] ne .} Flow[i,j].ub = _capac_[i,j];
min obj = sum {<i,j> in ARCS} _cost_[i,j] * Flow[i,j];
con balance {i in NODES}: sum {<(i),j> in ARCS} Flow[i,j]

- sum {<j,(i)> in ARCS} Flow[j,i] = _supdem_[i];

num infinity = min {r in {}} r;
num excess = sum {i in NODES} _supdem_[i];
if (excess > 0) then do;

/* change equality constraint to le constraint for supply nodes */
for {i in NODES: _supdem_[i] > 0} balance[i].lb = -infinity;

end;
else if (excess < 0) then do;

/* change equality constraint to ge constraint for demand nodes */
for {i in NODES: _supdem_[i] < 0} balance[i].ub = infinity;

end;

solve;

num _supply_ {<i,j> in ARCS} =
(if _supdem_[i] ne 0 then _supdem_[i] else .);

num _demand_ {<i,j> in ARCS} =
(if _supdem_[j] ne 0 then -_supdem_[j] else .);

num _fcost_ {<i,j> in ARCS} = _cost_[i,j] * Flow[i,j].sol;

create data arc1 from [_tail_ _head_]
_cost_ _capac_ _lo_ _name_ _supply_ _demand_ _flow_=Flow _fcost_
_rcost_ =

(if Flow[_tail_,_head_].rc ne 0 then Flow[_tail_,_head_].rc else .)
_status_ = Flow.status diagonal factory key_id mth_made;

create data node2 from [_node_]
_supdem_ = (if _supdem_[_node_] ne 0 then _supdem_[_node_] else .)
_dual_ = balance.dual;

quit;
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The PROC OPTMODEL statements use both single-dimensional (NODES) and multiple-dimensional (ARCS)
index sets, which are populated from the corresponding data set variables in the READ DATA statements.
The _SUPDEM_, _LO_, and _CAPAC_ parameters are given initial values, and the NOMISS option in the
READ DATA statement tells PROC OPTMODEL to read only the nonmissing values from the input data
set. The balance constraint is initially declared as an equality, but depending on the total supply or demand,
the sense of this constraint is changed to “�” or “�” by relaxing the constraint’s lower or upper bound,
respectively. The ARC1 output data set contains most of the same information as in the NETFLOW example,
including reduced cost, basis status, and dual values. The _ANUMB_ and _TNUMB_ values do not apply
here.

The PROC PRINT statements are similar to the PROC NETFLOW example:

options ls=80 ps=54;
proc print data=arc1 heading=h width=min;

var _tail_ _head_ _cost_ _capac_ _lo_ _name_
_supply_ _demand_ _flow_ _fcost_;
sum _fcost_;

run;
proc print data=arc1 heading=h width=min;

var _rcost_ _status_ diagonal factory key_id mth_made;
run;
proc print data=node2;
run;

The output data sets are displayed in Output 6.8.1.
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Output 6.8.1 Output Data Sets

Obs _tail_ _head_ _cost_ _capac_ _lo_ _name_

1 fact1_1 f1_mar_1 127.90 500 50 prod f1 19 mar
2 fact1_1 f1_apr_1 78.60 600 50 prod f1 19 apl
3 fact1_1 f1_may_1 95.10 400 50
4 f1_mar_1 f1_apr_1 15.00 50 0
5 f1_apr_1 f1_may_1 12.00 50 0
6 f1_apr_1 f1_mar_1 28.00 20 0 back f1 19 apl
7 f1_may_1 f1_apr_1 28.00 20 0 back f1 19 may
8 f1_mar_1 f2_mar_1 11.00 . 0
9 f1_apr_1 f2_apr_1 11.00 . 0

10 f1_may_1 f2_may_1 16.00 . 0
11 f1_mar_1 shop1_1 -327.65 250 0
12 f1_apr_1 shop1_1 -300.00 250 0
13 f1_may_1 shop1_1 -285.00 250 0
14 f1_mar_1 shop2_1 -362.74 250 0
15 f1_apr_1 shop2_1 -300.00 250 0
16 f1_may_1 shop2_1 -245.00 250 0
17 fact2_1 f2_mar_1 88.00 450 35 prod f2 19 mar
18 fact2_1 f2_apr_1 62.40 480 35 prod f2 19 apl
19 fact2_1 f2_may_1 133.80 250 35
20 f2_mar_1 f2_apr_1 18.00 30 0
21 f2_apr_1 f2_may_1 20.00 30 0
22 f2_apr_1 f2_mar_1 17.00 15 0 back f2 19 apl
23 f2_may_1 f2_apr_1 25.00 15 0 back f2 19 may
24 f2_mar_1 f1_mar_1 10.00 40 0

Obs _supply_ _demand_ _flow_ _fcost_

1 1000 . 345 44125.50
2 1000 . 600 47160.00
3 1000 . 50 4755.00
4 . . 0 0.00
5 . . 50 600.00
6 . . 20 560.00
7 . . 0 0.00
8 . . 0 0.00
9 . . 30 330.00

10 . . 100 1600.00
11 . 900 155 -50785.75
12 . 900 250 -75000.00
13 . 900 0 0.00
14 . 900 250 -90685.00
15 . 900 250 -75000.00
16 . 900 0 0.00
17 850 . 290 25520.00
18 850 . 480 29952.00
19 850 . 35 4683.00
20 . . 0 0.00
21 . . 15 300.00
22 . . 0 0.00
23 . . 0 0.00
24 . . 40 400.00



Example 6.8: Migration to OPTMODEL: Production, Inventory, Distribution F 239

Output 6.8.1 continued

Obs _tail_ _head_ _cost_ _capac_ _lo_ _name_

25 f2_apr_1 f1_apr_1 11.00 40 0
26 f2_may_1 f1_may_1 13.00 40 0
27 f2_mar_1 shop1_1 -297.40 250 0
28 f2_apr_1 shop1_1 -290.00 250 0
29 f2_may_1 shop1_1 -292.00 250 0
30 f2_mar_1 shop2_1 -272.70 250 0
31 f2_apr_1 shop2_1 -312.00 250 0
32 f2_may_1 shop2_1 -299.00 250 0
33 fact1_2 f1_mar_2 217.90 400 40 prod f1 25 mar
34 fact1_2 f1_apr_2 174.50 550 50 prod f1 25 apl
35 fact1_2 f1_may_2 133.30 350 40
36 f1_mar_2 f1_apr_2 20.00 40 0
37 f1_apr_2 f1_may_2 18.00 40 0
38 f1_apr_2 f1_mar_2 32.00 30 0 back f1 25 apl
39 f1_may_2 f1_apr_2 41.00 15 0 back f1 25 may
40 f1_mar_2 f2_mar_2 23.00 . 0
41 f1_apr_2 f2_apr_2 23.00 . 0
42 f1_may_2 f2_may_2 26.00 . 0
43 f1_mar_2 shop1_2 -559.76 . 0
44 f1_apr_2 shop1_2 -524.28 . 0
45 f1_may_2 shop1_2 -475.02 . 0
46 f1_mar_2 shop2_2 -623.89 . 0
47 f1_apr_2 shop2_2 -549.68 . 0
48 f1_may_2 shop2_2 -460.00 . 0

Obs _supply_ _demand_ _flow_ _fcost_

25 . . 0 0.00
26 . . 0 0.00
27 . 900 250 -74350.00
28 . 900 245 -71050.00
29 . 900 0 0.00
30 . 900 0 0.00
31 . 900 250 -78000.00
32 . 900 150 -44850.00
33 1000 . 400 87160.00
34 1000 . 550 95975.00
35 1000 . 40 5332.00
36 . . 0 0.00
37 . . 0 0.00
38 . . 30 960.00
39 . . 15 615.00
40 . . 0 0.00
41 . . 0 0.00
42 . . 0 0.00
43 . 900 0 0.00
44 . 900 0 0.00
45 . 900 25 -11875.50
46 . 1450 455 -283869.95
47 . 1450 535 -294078.80
48 . 1450 0 0.00
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Output 6.8.1 continued

Obs _tail_ _head_ _cost_ _capac_ _lo_ _name_

49 fact2_2 f2_mar_2 182.00 650 35 prod f2 25 mar
50 fact2_2 f2_apr_2 196.70 680 35 prod f2 25 apl
51 fact2_2 f2_may_2 201.40 550 35
52 f2_mar_2 f2_apr_2 28.00 50 0
53 f2_apr_2 f2_may_2 38.00 50 0
54 f2_apr_2 f2_mar_2 31.00 15 0 back f2 25 apl
55 f2_may_2 f2_apr_2 54.00 15 0 back f2 25 may
56 f2_mar_2 f1_mar_2 20.00 25 0
57 f2_apr_2 f1_apr_2 21.00 25 0
58 f2_may_2 f1_may_2 43.00 25 0
59 f2_mar_2 shop1_2 -567.83 500 0
60 f2_apr_2 shop1_2 -542.19 500 0
61 f2_may_2 shop1_2 -461.56 500 0
62 f2_mar_2 shop2_2 -542.83 500 0
63 f2_apr_2 shop2_2 -559.19 500 0
64 f2_may_2 shop2_2 -489.06 500 0

Obs _supply_ _demand_ _flow_ _fcost_

49 1500 . 645 117390.00
50 1500 . 680 133756.00
51 1500 . 35 7049.00
52 . . 0 0.00
53 . . 0 0.00
54 . . 0 0.00
55 . . 15 810.00
56 . . 25 500.00
57 . . 0 0.00
58 . . 0 0.00
59 . 900 500 -283915.00
60 . 900 375 -203321.25
61 . 900 0 0.00
62 . 1450 120 -65139.60
63 . 1450 320 -178940.80
64 . 1450 20 -9781.20

===========
-1281110.35
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Output 6.8.1 continued

Obs _rcost_ _status_ diagonal factory key_id mth_made

1 . B 19 1 production March
2 -0.65 U 19 1 production April
3 0.85 L 19 1 production May
4 63.65 L 19 1 storage March
5 -3.00 U 19 1 storage April
6 -20.65 U 19 1 backorder April
7 43.00 L 19 1 backorder May
8 50.90 L 19 . f1_to_2 March
9 . B 19 . f1_to_2 April

10 . B 19 . f1_to_2 May
11 . B 19 1 sales March
12 -21.00 U 19 1 sales April
13 9.00 L 19 1 sales May
14 -46.09 U 19 1 sales March
15 -32.00 U 19 1 sales April
16 38.00 L 19 1 sales May
17 . B 19 2 production March
18 -27.85 U 19 2 production April
19 23.55 L 19 2 production May
20 15.75 L 19 2 storage March
21 . B 19 2 storage April
22 19.25 L 19 2 backorder April
23 45.00 L 19 2 backorder May
24 -29.90 U 19 . f2_to_1 March
25 22.00 L 19 . f2_to_1 April
26 29.00 L 19 . f2_to_1 May
27 -9.65 U 19 2 sales March
28 . B 19 2 sales April
29 18.00 L 19 2 sales May
30 4.05 L 19 2 sales March
31 -33.00 U 19 2 sales April
32 . B 19 2 sales May
33 -45.16 U 25 1 production March
34 -14.35 U 25 1 production April
35 2.11 L 25 1 production May
36 94.21 L 25 1 storage March
37 75.66 L 25 1 storage April
38 -42.21 U 25 1 backorder April
39 -16.66 U 25 1 backorder May
40 104.06 L 25 . f1_to_2 March
41 13.49 L 25 . f1_to_2 April
42 28.96 L 25 . f1_to_2 May
43 47.13 L 25 1 sales March
44 8.40 L 25 1 sales April
45 . B 25 1 sales May
46 . B 25 1 sales March
47 . B 25 1 sales April
48 32.02 L 25 1 sales May
49 . B 25 2 production March
50 -1.66 U 25 2 production April
51 73.17 L 25 2 production May
52 11.64 L 25 2 storage March
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Output 6.8.1 continued

Obs _rcost_ _status_ diagonal factory key_id mth_made

53 108.13 L 25 2 storage April
54 47.36 L 25 2 backorder April
55 -16.13 U 25 2 backorder May
56 -61.06 U 25 . f2_to_1 March
57 30.51 L 25 . f2_to_1 April
58 40.04 L 25 . f2_to_1 May
59 -42.00 U 25 2 sales March
60 . B 25 2 sales April
61 10.50 L 25 2 sales May
62 . B 25 2 sales March
63 . B 25 2 sales April
64 . B 25 2 sales May

Obs _node_ _supdem_ _dual_

1 fact1_1 1000 0.00
2 fact2_1 850 0.00
3 fact1_2 1000 0.00
4 fact2_2 1500 0.00
5 shop1_1 -900 199.75
6 shop2_1 -900 188.75
7 shop1_2 -900 343.83
8 shop2_2 -1450 360.83
9 f1_mar_1 . -127.90

10 f1_apr_1 . -79.25
11 f1_may_1 . -94.25
12 f2_mar_1 . -88.00
13 f2_apr_1 . -90.25
14 f2_may_1 . -110.25
15 f1_mar_2 . -263.06
16 f1_apr_2 . -188.85
17 f1_may_2 . -131.19
18 f2_mar_2 . -182.00
19 f2_apr_2 . -198.36
20 f2_may_2 . -128.23

The log is displayed in Output 6.8.2.
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Output 6.8.2 OPTMODEL Log

NOTE: There were 8 observations read from the data set WORK.NODE0.
NOTE: There were 64 observations read from the data set WORK.ARC0.
NOTE: Problem generation will use 4 threads.
NOTE: The problem has 64 variables (0 free, 0 fixed).
NOTE: The problem has 20 linear constraints (4 LE, 16 EQ, 0 GE, 0 range).
NOTE: The problem has 128 linear constraint coefficients.
NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).
NOTE: The OPTMODEL presolver is disabled for linear problems.
NOTE: The LP presolver value AUTOMATIC is applied.
NOTE: The LP presolver removed 0 variables and 0 constraints.
NOTE: The LP presolver removed 0 constraint coefficients.
NOTE: The presolved problem has 64 variables, 20 constraints, and 128

constraint coefficients.
NOTE: The LP solver is called.
NOTE: The Dual Simplex algorithm is used.

Objective
Phase Iteration Value Time
D 1 1 0.000000E+00 0
D 2 2 -4.020320E+06 0
D 2 33 -1.281110E+06 0

NOTE: Optimal.
NOTE: Objective = -1281110.35.
NOTE: The Dual Simplex solve time is 0.05 seconds.
NOTE: The data set WORK.ARC1 has 64 observations and 16 variables.
NOTE: The data set WORK.NODE2 has 20 observations and 3 variables.

Example 6.9: Migration to OPTMODEL: Shortest Path
The following example shows how to use PROC OPTMODEL to solve the example “Shortest Path Problem”
in Chapter 6, “The NETFLOW Procedure” (SAS/OR User’s Guide: Mathematical Programming Legacy
Procedures). The input data set is the same as in that example.

title 'Shortest Path Problem';
title2 'How to get Hawaiian Pineapples to a London Restaurant';

data aircost1;
input ffrom&$13. tto&$15. _cost_;
datalines;

Honolulu Chicago 105
Honolulu San Francisco 75
Honolulu Los Angeles 68
Chicago Boston 45
Chicago New York 56
San Francisco Boston 71
San Francisco New York 48
San Francisco Atlanta 63
Los Angeles New York 44
Los Angeles Atlanta 57
Boston Heathrow London 88
New York Heathrow London 65
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Atlanta Heathrow London 76
;

The following PROC OPTMODEL statements read the data sets, build the linear programming model, solve
the model, and output the optimal solution to a SAS data set called SPATH:

proc optmodel;
str sourcenode = 'Honolulu';
str sinknode = 'Heathrow London';

set <str> NODES;
num _supdem_ {i in NODES} = (if i = sourcenode then 1

else if i = sinknode then -1 else 0);

set <str,str> ARCS;
num _lo_ {ARCS} init 0;
num _capac_ {ARCS} init .;
num _cost_ {ARCS};
read data aircost1 into ARCS=[ffrom tto] _cost_;
NODES = (union {<i,j> in ARCS} {i,j});

var Flow {<i,j> in ARCS} >= _lo_[i,j];
min obj = sum {<i,j> in ARCS} _cost_[i,j] * Flow[i,j];
con balance {i in NODES}: sum {<(i),j> in ARCS} Flow[i,j]

- sum {<j,(i)> in ARCS} Flow[j,i] = _supdem_[i];
solve;

num _supply_ {<i,j> in ARCS} =
(if _supdem_[i] ne 0 then _supdem_[i] else .);

num _demand_ {<i,j> in ARCS} =
(if _supdem_[j] ne 0 then -_supdem_[j] else .);

num _fcost_ {<i,j> in ARCS} = _cost_[i,j] * Flow[i,j].sol;

create data spath from [ffrom tto]
_cost_ _capac_ _lo_ _supply_ _demand_ _flow_=Flow _fcost_
_rcost_=(if Flow[ffrom,tto].rc ne 0 then Flow[ffrom,tto].rc else .)
_status_=Flow.status;

quit;

The statements use both single-dimensional (NODES) and multiple-dimensional (ARCS) index sets. The
ARCS index set is populated from the ffrom and tto data set variables in the READ DATA statement. To solve
a shortest path problem, you solve a minimum cost network flow problem that has a supply of one unit at
the source node, a demand of one unit at the sink node, and zero supply or demand at all other nodes, as
specified in the declaration of the _SUPDEM_ numeric parameter. The SPATH output data set contains most
of the same information as in the PROC NETFLOW example, including reduced cost and basis status. The
_ANUMB_ and _TNUMB_ values do not apply here.

The PROC PRINT statements are similar to the PROC NETFLOW example:

proc print data=spath;
sum _fcost_;

run;

The output is displayed in Output 6.9.1.
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Output 6.9.1 Output Data Set

_ _ _
_ s d _ _ s

_ c u e _ f r t
f c a p m f c c a
f o p _ p a l o o t

O r t s a l l n o s s u
b o t t c o y d w t t s
s m o _ _ _ _ _ _ _ _ _

1 Honolulu Chicago 105 . 0 1 . 0 0 . B
2 Honolulu San Francisco 75 . 0 1 . 0 0 . B
3 Honolulu Los Angeles 68 . 0 1 . 1 68 . B
4 Chicago Boston 45 . 0 . . 0 0 61 L
5 Chicago New York 56 . 0 . . 0 0 49 L
6 San Francisco Boston 71 . 0 . . 0 0 57 L
7 San Francisco New York 48 . 0 . . 0 0 11 L
8 San Francisco Atlanta 63 . 0 . . 0 0 37 L
9 Los Angeles New York 44 . 0 . . 1 44 . B

10 Los Angeles Atlanta 57 . 0 . . 0 0 24 L
11 Boston Heathrow London 88 . 0 . 1 0 0 . B
12 New York Heathrow London 65 . 0 . 1 1 65 . B
13 Atlanta Heathrow London 76 . 0 . 1 0 0 . B

===
177

The log is displayed in Output 6.9.2.

Output 6.9.2 OPTMODEL Log

NOTE: There were 13 observations read from the data set WORK.AIRCOST1.
NOTE: Problem generation will use 4 threads.
NOTE: The problem has 13 variables (0 free, 0 fixed).
NOTE: The problem has 8 linear constraints (0 LE, 8 EQ, 0 GE, 0 range).
NOTE: The problem has 26 linear constraint coefficients.
NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).
NOTE: The OPTMODEL presolver is disabled for linear problems.
NOTE: The problem is a pure network instance. The ALGORITHM=NETWORK option is

recommended for solving problems with this structure.
NOTE: The LP presolver value AUTOMATIC is applied.
NOTE: The LP presolver removed all variables and constraints.
NOTE: Optimal.
NOTE: Objective = 177.
NOTE: The data set WORK.SPATH has 13 observations and 11 variables.
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Overview: MILP Solver
The OPTMODEL procedure provides a framework for specifying and solving mixed integer linear programs
(MILPs). A standard mixed integer linear program has the formulation

min cT x
subject to Ax f�;D;�g b .MILP/

l � x � u
xi 2 Z 8i 2 S
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where
x 2 Rn is the vector of structural variables
A 2 Rm�n is the matrix of technological coefficients
c 2 Rn is the vector of objective function coefficients
b 2 Rm is the vector of constraints right-hand sides (RHS)
l 2 Rn is the vector of lower bounds on variables
u 2 Rn is the vector of upper bounds on variables
S is a nonempty subset of the set f1 : : : ; ng of indices

The MILP solver, available in the OPTMODEL procedure, implements an linear-programming-based branch-
and-bound algorithm. This divide-and-conquer approach attempts to solve the original problem by solving
linear programming relaxations of a sequence of smaller subproblems. The MILP solver also implements
advanced techniques such as presolving, generating cutting planes, and applying primal heuristics to improve
the efficiency of the overall algorithm.

The MILP solver provides various control options and solution strategies. In particular, you can enable,
disable, or set levels for the advanced techniques previously mentioned. It is also possible to input an
incumbent solution; see the section “Warm Start Option” on page 252 for details.

Getting Started: MILP Solver
The following example illustrates how you can use the OPTMODEL procedure to solve mixed integer linear
programs. For more examples, see the section “Examples: MILP Solver” on page 270. Suppose you want to
solve the following problem:

min 2x1 � 3x2 � 4x3
s.t. � 2x2 � 3x3 � �5 .R1/

x1 C x2 C 2x3 � 4 .R2/
x1 C 2x2 C 3x3 � 7 .R3/

x1; x2; x3 � 0

x1; x2; x3 2 Z

You can use the following statements to call the OPTMODEL procedure for solving mixed integer linear
programs:

proc optmodel;
var x{1..3} >= 0 integer;

min f = 2*x[1] - 3*x[2] - 4*x[3];

con r1: -2*x[2] - 3*x[3] >= -5;
con r2: x[1] + x[2] + 2*x[3] <= 4;
con r3: x[1] + 2*x[2] + 3*x[3] <= 7;

solve with milp / presolver = automatic heuristics = automatic;
print x;

quit;
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The PRESOLVER= and HEURISTICS= options specify the levels for presolving and applying heuristics,
respectively. In this example, each option is set to its default value, AUTOMATIC, meaning that the solver
automatically determines the appropriate levels for presolve and heuristics.

The optimal value of x is shown in Figure 7.1.

Figure 7.1 Solution Output

The OPTMODEL Procedure

[1] x

1 0
2 1
3 1

The solution summary stored in the macro variable _OROPTMODEL_ can be viewed by issuing the following
statement:

%put &_OROPTMODEL_;

This statement produces the output shown in Figure 7.2.

Figure 7.2 Macro Output

STATUS=OK ALGORITHM=BAC SOLUTION_STATUS=OPTIMAL OBJECTIVE=-7 RELATIVE_GAP=0
ABSOLUTE_GAP=0 PRIMAL_INFEASIBILITY=0 BOUND_INFEASIBILITY=0
INTEGER_INFEASIBILITY=0 BEST_BOUND=-7 NODES=1 ITERATIONS=5 PRESOLVE_TIME=0.00
SOLUTION_TIME=0.05

Syntax: MILP Solver
The following statement is available in the OPTMODEL procedure:

SOLVE WITH MILP < / options > ;

Functional Summary
Table 7.1 summarizes the options available for the SOLVE WITH MILP statement, classified by function.

Table 7.1 Options for the MILP Solver

Description Option
Presolve Option
Specifies the type of presolve PRESOLVER=
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Table 7.1 (continued)

Description Option
Warm Start Option
Specifies the input primal solution (warm start) PRIMALIN
Control Options
Specifies the stopping criterion based on absolute ob-
jective gap

ABSOBJGAP=

Specifies the cutoff value for node removal CUTOFF=
Emphasizes feasibility or optimality EMPHASIS=
Specifies the maximum violation on variables and con-
straints

FEASTOL=

Specifies the maximum allowed difference between an
integer variable’s value and an integer

INTTOL=

Specifies the frequency of printing the node log LOGFREQ=
Specifies the detail of solution progress printed in log LOGLEVEL=
Specifies the maximum number of nodes to be pro-
cessed

MAXNODES=

Specifies the maximum number of solutions to be
found

MAXSOLS=

Specifies the time limit for the optimization process MAXTIME=
Specifies the tolerance used in determining the opti-
mality of nodes in the branch-and-bound tree

OPTTOL=

Specifies the probing level PROBE=
Specifies the stopping criterion based on relative ob-
jective gap

RELOBJGAP=

Specifies the scale of the problem matrix SCALE=
Specifies the stopping criterion based on target objec-
tive value

TARGET=

Specifies whether time units are CPU time or real time TIMETYPE=
Heuristics Option
Specifies the primal heuristics level HEURISTICS=
Search Options
Specifies the level of conflict search CONFLICTSEARCH=
Specifies the node selection strategy NODESEL=
Enables use of variable priorities PRIORITY=
Specifies the number of simplex iterations performed
on each variable in strong branching strategy

STRONGITER=

Specifies the number of candidates for strong branch-
ing

STRONGLEN=

Specifies the rule for selecting branching variable VARSEL=
Cut Options
Specifies the cut level for all cuts ALLCUTS=
Specifies the clique cut level CUTCLIQUE=
Specifies the flow cover cut level CUTFLOWCOVER=
Specifies the flow path cut level CUTFLOWPATH=
Specifies the Gomory cut level CUTGOMORY=



MILP Solver Options F 251

Table 7.1 (continued)

Description Option
Specifies the generalized upper bound (GUB) cover
cut level

CUTGUB=

Specifies the implied bounds cut level CUTIMPLIED=
Specifies the knapsack cover cut level CUTKNAPSACK=
Specifies the lift-and-project cut level CUTLAP=
Specifies the mixed lifted 0-1 cut level CUTMILIFTED=
Specifies the mixed integer rounding (MIR) cut level CUTMIR=
Specifies the row multiplier factor for cuts CUTSFACTOR=
Specifies the overall cut aggressiveness CUTSTRATEGY=
Specifies the zero-half cut level CUTZEROHALF=
Decomposition Algorithm Options
Enables decomposition algorithm and specifies general
control options

DECOMP=()

Specifies options for the master problem DECOMP_MASTER=()
Specifies options for the master problem solved as a
MILP

DECOMP_MASTER_IP=()

Specifies options for the subproblem DECOMP_SUBPROB=()

MILP Solver Options
This section describes the options that are recognized by the MILP solver in PROC OPTMODEL. These
options can be specified after a forward slash (/) in the SOLVE statement, provided that the MILP solver is
explicitly specified using a WITH clause. For example, the following line could appear in PROC OPTMODEL
statements:

solve with milp / allcuts=aggressive maxnodes=10000 primalin;

Presolve Option

PRESOLVER=number | string
specifies a presolve string or its corresponding value number, as listed in Table 7.2.

Table 7.2 Values for PRESOLVER= Option

number string Description
–1 AUTOMATIC Applies the default level of presolve processing
0 NONE Disables presolver
1 BASIC Performs minimal presolve processing
2 MODERATE Applies a higher level of presolve processing
3 AGGRESSIVE Applies the highest level of presolve processing

The default value is AUTOMATIC.
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Warm Start Option

PRIMALIN
enables you to input a starting solution in PROC OPTMODEL before invoking the MILP solver.
Adding the PRIMALIN option to the SOLVE statement requests that the MILP solver use the current
variable values as a starting solution (warm start). If the MILP solver finds that the input solution is
feasible, then the input solution provides an incumbent solution and a bound for the branch-and-bound
algorithm. If the solution is not feasible, the MILP solver tries to repair it. It is possible to set a variable
value to the missing value ‘.’ to mark a variable for repair. When it is difficult to find a good integer
feasible solution for a problem, warm start can reduce solution time significantly.

NOTE: If the MILP solver produces a feasible solution, the variable values from that run can be
used as the warm start solution for a subsequent run. If the warm start solution is not feasible for the
subsequent run, the solver automatically tries to repair it.

Control Options

ABSOBJGAP=number
specifies a stopping criterion. When the absolute difference between the best integer objective and the
objective of the best remaining node falls below the value of number, the solver stops. The value of
number can be any nonnegative number; the default value is 1E–6.

CUTOFF=number
cuts off any nodes in a minimization (maximization) problem with an objective value above (below)
number. The value of number can be any number; the default value is the positive (negative) number
that has the largest absolute value representable in your operating environment.

EMPHASIS=number | string
specifies a search emphasis string or its corresponding value number as listed in Table 7.3.

Table 7.3 Values for EMPHASIS= Option

number string Description
0 BALANCE Performs a balanced search
1 OPTIMAL Emphasizes optimality over feasibility
2 FEASIBLE Emphasizes feasibility over optimality

The default value is BALANCE.

FEASTOL=number
specifies the tolerance used to check the feasibility of a solution. This tolerance applies both to the
maximum violation of bounds on variables and to the difference between the right-hand sides and
left-hand sides of constraints. The value of number can be any value between (and including) 1E–4
and 1E–9. The default value is 1E–6.

If the MILP solver fails to find a feasible solution within this tolerance but does find a solution with
a slightly larger violation, then the solver ends with a solution status of OPTIMAL_COND (see the
section “Macro Variable _OROPTMODEL_ ” on page 267).
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INTTOL=number
specifies the amount by which an integer variable value can differ from an integer and still be considered
integer feasible. The value of number can be any number between 0.0 and 1.0; the default value is
1E–5. The MILP solver attempts to find an optimal solution with integer infeasibility less than number.
If you assign a value smaller than 1E–10 to number and the best solution found by the solver has
integer infeasibility between number and 1E–10, then the solver terminates with a solution status of
OPTIMAL_COND (see the section “Macro Variable _OROPTMODEL_ ” on page 267).

LOGFREQ=number

PRINTFREQ=number
specifies how often information is printed in the node log. The value of number can be any nonnegative
number up to the largest four-byte signed integer, which is 231 � 1. The default value of number is
100. If number is set to 0, then the node log is disabled. If number is positive, then an entry is made in
the node log at the first node, at the last node, and at intervals dictated by the value of number. An
entry is also made each time a better integer solution is found.

LOGLEVEL=number | string

PRINTLEVEL2=number | string
controls the amount of information displayed in the SAS log by the MILP solver, from a short
description of presolve information and summary to details at each node. Table 7.4 describes the valid
values for this option.

Table 7.4 Values for LOGLEVEL= Option

number string Description
0 NONE Turns off all solver-related messages to SAS log
1 BASIC Displays a solver summary after stopping
2 MODERATE Prints a solver summary and a node log by using

the interval dictated by the LOGFREQ= option
3 AGGRESSIVE Prints a detailed solver summary and a node log

by using the interval dictated by the LOGFREQ=
option

The default value is MODERATE.

MAXNODES=number
specifies the maximum number of branch-and-bound nodes to be processed. The value of number can
be any nonnegative integer up to the largest four-byte signed integer, which is 231 � 1. The default
value of number is 231 � 1.

MAXSOLS=number
specifies a stopping criterion. If number solutions have been found, then the solver stops. The value of
number can be any positive integer up to the largest four-byte signed integer, which is 231 � 1. The
default value of number is 231 � 1.

MAXTIME=t
specifies an upper limit of t units of time for the optimization process, including problem generation
time and solution time. The value of the TIMETYPE= option determines the type of units used. If you
do not specify the MAXTIME= option, the solver does not stop based on the amount of time elapsed.
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The value of t can be any positive number; the default value is the positive number that has the largest
absolute value that can be represented in your operating environment.

OPTTOL=number
specifies the tolerance used to determine the optimality of nodes in the branch-and-bound tree. The
value of number can be any value between (and including) 1E–4 and 1E–9. The default is 1E–6.

PROBE=number | string
specifies a probing string or its corresponding value number, as listed in the following table:

Table 7.5 Values for PROBE= Option

number string Description
–1 AUTOMATIC Uses the probing strategy determined by the MILP

solver
0 NONE Disables probing
1 MODERATE Uses probing moderately
2 AGGRESSIVE Uses probing aggressively

The default value is AUTOMATIC.

RELOBJGAP=number
specifies a stopping criterion based on the best integer objective (BestInteger) and the objective of the
best remaining node (BestBound). The relative objective gap is equal to

j BestInteger � BestBound j = .1E�10C j BestBound j/

When this value becomes smaller than the specified gap size number, the solver stops. The value of
number can be any nonnegative number; the default value is 1E–4.

SCALE=option
indicates whether to scale the problem matrix. SCALE= can take either of the values AUTOMATIC
(–1) and NONE (0). SCALE=AUTOMATIC scales the matrix as determined by the MILP solver;
SCALE=NONE disables scaling. The default value is AUTOMATIC.

TARGET=number
specifies a stopping criterion for minimization (maximization) problems. If the best integer objective
is better than or equal to number, the solver stops. The value of number can be any number; the
default value is the negative (positive) number that has the largest absolute value representable in your
operating environment.

TIMETYPE=string j number
specifies the units of time used by the MAXTIME= option and reported by the PRESOLVE_TIME
and SOLUTION_TIME terms in the _OROPTMODEL_ macro variable. Table 7.6 describes the valid
values of the TIMETYPE= option.

Table 7.6 Values for TIMETYPE= Option

number string Description
0 CPU Specifies units of CPU time
1 REAL Specifies units of real time
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The Optimization Statistics table, an output of PROC OPTMODEL if option PRINTLEVEL=2 is
specified in the PROC OPTMODEL statement, also includes the same time units for “Presolver Time”
and “Solver Time.” The other times (such as “Problem Generation Time”) in the Optimization Statistics
table are always CPU times.

The default value of the TIMETYPE= option depends on the values of the NTHREADS= and NODES=
options in the PERFORMANCE statement of the OPTMODEL procedure. See the section “PERFOR-
MANCE Statement” on page 28 in Chapter 4, “Shared Concepts and Topics.” for more information
about the NTHREADS= and NODES= options.

If you specify a value greater than 1 for either the NTHREADS= or the NODES= option, the default
value of the TIMETYPE= option is REAL. If you specify a value of 1 for both the NTHREADS= and
NODES= options, the default value of the TIMETYPE= option is CPU.

Heuristics Option

HEURISTICS=number | string
controls the level of primal heuristics applied by the MILP solver. This level determines how frequently
primal heuristics are applied during the branch-and-bound tree search. It also affects the maximum
number of iterations allowed in iterative heuristics. Some computationally expensive heuristics might
be disabled by the solver at less aggressive levels. The values of string and the corresponding values of
number are listed in Table 7.7.

Table 7.7 Values for HEURISTICS= Option

number string Description
–1 AUTOMATIC Applies default level of heuristics, similar to MOD-

ERATE
0 NONE Disables all primal heuristics
1 BASIC Applies basic primal heuristics at low frequency
2 MODERATE Applies most primal heuristics at moderate fre-

quency
3 AGGRESSIVE Applies all primal heuristics at high frequency

Setting HEURISTICS=NONE does not disable the heuristics that repair an infeasible input solution
that is specified by using the PRIMALIN option.

The default value is AUTOMATIC. For details about primal heuristics, see the section “Primal
Heuristics” on page 264.

Search Options

CONFLICTSEARCH=number | string
specifies the level of conflict search performed by the MILP solver. Conflict finds clauses resulting
from infeasible subproblems that arise in the search tree. The values of string and the corresponding
values of number are listed in Table 7.8.
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Table 7.8 Values for CONFLICTSEARCH= Option

number string Description
–1 AUTOMATIC Performs conflict search based on a strategy deter-

mined by the MILP solver
0 NONE Disables conflict search
1 MODERATE Performs a moderate conflict search
2 AGGRESSIVE Performs an aggressive conflict search

The default value is AUTOMATIC.

NODESEL=number | string
specifies the node selection strategy string or its corresponding value number as listed in Table 7.9.

Table 7.9 Values for NODESEL= Option

number string Description
–1 AUTOMATIC Uses automatic node selection
0 BESTBOUND Chooses the node with the best relaxed objective

(best-bound-first strategy)
1 BESTESTIMATE Chooses the node with the best estimate of the in-

teger objective value (best-estimate-first strategy)
2 DEPTH Chooses the most recently created node (depth-

first strategy)

The default value is AUTOMATIC. For details about node selection, see the section
“Node Selection” on page 261.

PRIORITY=0 j 1
indicates whether to use specified branching priorities for integer variables. PRIORITY=0 ignores
variable priorities; PRIORITY=1 uses priorities when they exist. The default value is 1. See the section
“Branching Priorities” on page 262 for details.

STRONGITER=number | AUTOMATIC
specifies the number of simplex iterations performed for each variable in the candidate list when the
strong branching variable selection strategy is used. The value of number can be any positive integer
up to the largest four-byte signed integer, which is 231 � 1. If you specify the keyword AUTOMATIC
or the value –1, the MILP solver uses the default value; this value is calculated automatically.

STRONGLEN=number | AUTOMATIC
specifies the number of candidates used when the strong branching variable selection strategy is
performed. The value of number can be any positive integer up to the largest four-byte signed integer,
which is 231 � 1. If you specify the keyword AUTOMATIC or the value –1, the MILP solver uses the
default value; this value is calculated automatically.

VARSEL=number | string
specifies the rule for selecting the branching variable. The values of string and the corresponding
values of number are listed in Table 7.10.
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Table 7.10 Values for VARSEL= Option

number string Description
–1 AUTOMATIC Uses automatic branching variable selection
0 MAXINFEAS Chooses the variable with maximum infeasibility
1 MININFEAS Chooses the variable with minimum infeasibility
2 PSEUDO Chooses a branching variable based on pseudocost
3 STRONG Uses strong branching variable selection strategy

The default value is AUTOMATIC. For details about variable selection, see the section “Variable
Selection” on page 262.

Cut Options

Table 7.11 describes the string and number values for the cut options in the OPTMODEL procedure.

Table 7.11 Values for Individual Cut Options

number string Description
–1 AUTOMATIC Generates cutting planes based on a strategy deter-

mined by the MILP solver
0 NONE Disables generation of cutting planes
1 MODERATE Uses a moderate cut strategy
2 AGGRESSIVE Uses an aggressive cut strategy

You can specify the CUTSTRATEGY= option to set the overall aggressiveness of the cut generation in
the MILP solver. Alternatively, you can use the ALLCUTS= option to set all cut types to the same level.
You can override the ALLCUTS= value by using the options that correspond to particular cut types. For
example, if you want the MILP solver to generate only Gomory cuts, specify ALLCUTS=NONE and
CUTGOMORY=AUTOMATIC. If you want to generate all cuts aggressively but generate no lift-and-project
cuts, set ALLCUTS=AGGRESSIVE and CUTLAP=NONE.

ALLCUTS=number | string
provides a shorthand way of setting all the cuts-related options in one setting. In other words, ALL-
CUTS=number is equivalent to setting each of the individual cuts parameters to the same value
number. Thus, ALLCUTS=–1 has the effect of setting CUTCLIQUE=–1, CUTFLOWCOVER=–1,
CUTFLOWPATH=–1, . . . , CUTMIR=–1, and CUTZEROHALF=–1. Table 7.11 lists the values that
can be assigned to option and number. In addition, you can override levels for individual cuts with the
CUTCLIQUE=, CUTFLOWCOVER=, CUTFLOWPATH=, CUTGOMORY=, CUTGUB=, CUTIM-
PLIED=, CUTKNAPSACK=, CUTLAP=, CUTMILIFTED=, CUTMIR=, and CUTZEROHALF=
options. If the ALLCUTS= option is not specified, then all the cuts-related options are either at their
individually specified values (if the corresponding option is specified) or at their default values (if that
option is not specified).

CUTCLIQUE=number | string
specifies the level of clique cuts that are generated by the MILP solver. Table 7.11 lists the values that
can be assigned to option and number. The CUTCLIQUE= option overrides the ALLCUTS= option.
The default value is AUTOMATIC.
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CUTFLOWCOVER=number | string
specifies the level of flow cover cuts that are generated by the MILP solver. Table 7.11 lists the values
that can be assigned to option and number. The CUTFLOWCOVER= option overrides the ALLCUTS=
option. The default value is AUTOMATIC.

CUTFLOWPATH=number | string
specifies the level of flow path cuts that are generated by the MILP solver. Table 7.11 lists the values
that can be assigned to option and number. The CUTFLOWPATH= option overrides the ALLCUTS=
option. The default value is AUTOMATIC.

CUTGOMORY=number | string
specifies the level of Gomory cuts that are generated by the MILP solver. Table 7.11 lists the values
that can be assigned to option and number. The CUTGOMORY= option overrides the ALLCUTS=
option. The default value is AUTOMATIC.

CUTGUB=number | string
specifies the level of generalized upper bound (GUB) cover cuts that are generated by the MILP solver.
Table 7.11 lists the values that can be assigned to option and number. The CUTGUB= option overrides
the ALLCUTS= option. The default value is AUTOMATIC.

CUTIMPLIED=number | string
specifies the level of implied bound cuts that are generated by the MILP solver. Table 7.11 lists
the values that can be assigned to option and number. The CUTIMPLIED= option overrides the
ALLCUTS= option. The default value is AUTOMATIC.

CUTKNAPSACK=number | string
specifies the level of knapsack cover cuts that are generated by the MILP solver. Table 7.11 lists
the values that can be assigned to option and number. The CUTKNAPSACK= option overrides the
ALLCUTS= option. The default value is AUTOMATIC.

CUTLAP=number | string
specifies the level of lift-and-project (LAP) cuts that are generated by the MILP solver. Table 7.11 lists
the values that can be assigned to option and number. The CUTLAP= option overrides the ALLCUTS=
option. The default value is NONE.

CUTMILIFTED=number | string
specifies the level of mixed lifted 0-1 cuts that are generated by the MILP solver. Table 7.11 lists
the values that can be assigned to option and number. The CUTMILIFTED= option overrides the
ALLCUTS= option. The default value is AUTOMATIC.

CUTMIR=number | string
specifies the level of mixed integer rounding (MIR) cuts that are generated by the MILP solver.
Table 7.11 lists the values that can be assigned to option and number. The CUTMIR= option overrides
the ALLCUTS= option. The default value is AUTOMATIC.

CUTSFACTOR=number
specifies a row multiplier factor for cuts. The number of cuts that are added is limited to number times
the original number of rows. The value of number can be any nonnegative number less than or equal
to 100; the default value is automatically calculated by the MILP solver.
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CUTSTRATEGY=number | string

CUTS=number | string
specifies the overall aggressiveness of the cut generation in the solver. Setting a nondefault value
adjusts a number of cut parameters such that the cut generation is basic, moderate, or aggressive
compared to the default value.

CUTZEROHALF=number | string
specifies the level of zero-half cuts that are generated by the MILP solver. Table 7.11 lists the values
that can be assigned to option and number.The CUTZEROHALF= option overrides the ALLCUTS=
option. The default value is AUTOMATIC.

Decomposition Algorithm Options

The following options are available for the decomposition algorithm in the MILP solver. For information
about the decomposition algorithm, see Chapter 13, “The Decomposition Algorithm.”

DECOMP=(options)
enables the decomposition algorithm and specifies overall control options for the algorithm. For more
information about this option, see Chapter 13, “The Decomposition Algorithm.”

DECOMP_MASTER=(options)
specifies options for the master problem. For more information about this option, see Chapter 13, “The
Decomposition Algorithm.”

DECOMP_MASTER_IP=(options)
specifies options for the (restricted) master problem solved as a MILP with the current set of columns in
an effort to obtain an integer feasible solution. For more information about this option, see Chapter 13,
“The Decomposition Algorithm.”

DECOMP_SUBPROB=(options)
specifies option for the subproblem. For more information about this option, see Chapter 13, “The
Decomposition Algorithm.”

Details: MILP Solver

Branch-and-Bound Algorithm
The branch-and-bound algorithm, first proposed by Land and Doig (1960), is an effective approach to solving
mixed integer linear programs. The following discussion outlines the approach and explains how to enhance
its progress by using several advanced techniques.

The branch-and-bound algorithm solves a mixed integer linear program by dividing the search space and
generating a sequence of subproblems. The search space of a mixed integer linear program can be represented
by a tree. Each node in the tree is identified with a subproblem derived from previous subproblems on the
path that leads to the root of the tree. The subproblem (MILP0) associated with the root is identical to the
original problem, which is called (MILP), given in the section “Overview: MILP Solver” on page 247.



260 F Chapter 7: The Mixed Integer Linear Programming Solver

The linear programming relaxation (LP0) of (MILP0) can be written as

min cT x
subject to Ax f�;D;�g b

l � x � u

The branch-and-bound algorithm generates subproblems along the nodes of the tree by using the following
scheme. Consider Nx0, the optimal solution to (LP0), which is usually obtained by using the dual simplex
algorithm. If Nx0i is an integer for all i 2 S , then Nx0 is an optimal solution to (MILP). Suppose that for some
i 2 S, Nx0i is nonintegral. In that case the algorithm defines two new subproblems (MILP1) and (MILP2),
descendants of the parent subproblem (MILP0). The subproblem (MILP1) is identical to (MILP0) except for
the additional constraint

xi � b Nx
0
i c

and the subproblem (MILP2) is identical to (MILP0) except for the additional constraint

xi � d Nx
0
i e

The notation byc represents the largest integer that is less than or equal to y, and the notation dye represents
the smallest integer that is greater than or equal to y. The two preceding constraints can be handled by
modifying the bounds of the variable xi rather than by explicitly adding the constraints to the constraint
matrix. The two new subproblems do not have Nx0 as a feasible solution, but the integer solution to (MILP)
must satisfy one of the preceding constraints. The two subproblems thus defined are called active nodes in
the branch-and-bound tree, and the variable xi is called the branching variable.

In the next step the branch-and-bound algorithm chooses one of the active nodes and attempts to solve the
linear programming relaxation of that subproblem. The relaxation might be infeasible, in which case the
subproblem is dropped (fathomed). If the subproblem can be solved and the solution is integer feasible
(that is, xi is an integer for all i 2 S), then its objective value provides an upper bound for the objective
value in the minimization problem (MILP); if the solution is not integer feasible, then it defines two new
subproblems. Branching continues in this manner until there are no active nodes. At this point the best
integer solution found is an optimal solution for (MILP). If no integer solution has been found, then (MILP)
is integer infeasible. You can specify other criteria to stop the branch-and-bound algorithm before it processes
all the active nodes; see the section “Controlling the Branch-and-Bound Algorithm” on page 261 for details.

Upper bounds from integer feasible solutions can be used to fathom or cut off active nodes. Since the
objective value of an optimal solution cannot be greater than an upper bound, active nodes with lower bounds
higher than an existing upper bound can be safely deleted. In particular, if z is the objective value of the
current best integer solution, then any active subproblems whose relaxed objective value is greater than or
equal to z can be discarded.

It is important to realize that mixed integer linear programs are non-deterministic polynomial-time hard
(NP-hard). Roughly speaking, this means that the effort required to solve a mixed integer linear program
grows exponentially with the size of the problem. For example, a problem with 10 binary variables can
generate in the worst case 210 D 1; 024 nodes in the branch-and-bound tree. A problem with 20 binary
variables can generate in the worst case 220 D 1; 048; 576 nodes in the branch-and-bound tree. Although
it is unlikely that the branch-and-bound algorithm has to generate every single possible node, the need to
explore even a small fraction of the potential number of nodes for a large problem can be resource-intensive.
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A number of techniques can speed up the search progress of the branch-and-bound algorithm. Heuristics
are used to find feasible solutions, which can improve the upper bounds on solutions of mixed integer linear
programs. Cutting planes can reduce the search space and thus improve the lower bounds on solutions of
mixed integer linear programs. When using cutting planes, the branch-and-bound algorithm is also called the
branch-and-cut algorithm. Preprocessing can reduce problem size and improve problem solvability. The
MILP solver in PROC OPTMODEL employs various heuristics, cutting planes, preprocessing, and other
techniques, which you can control through corresponding options.

Controlling the Branch-and-Bound Algorithm
There are numerous strategies that can be used to control the branch-and-bound search (see Linderoth and
Savelsbergh 1998, Achterberg, Koch, and Martin 2005). The MILP solver in PROC OPTMODEL implements
the most widely used strategies and provides several options that enable you to direct the choice of the next
active node and of the branching variable. In the discussion that follows, let (LPk) be the linear programming
relaxation of subproblem (MILPk). Also, let

fi .k/ D Nx
k
i � b Nx

k
i c

where Nxk is the optimal solution to the relaxation problem (LPk) solved at node k.

Node Selection

The NODESEL= option specifies the strategy used to select the next active node. The valid keywords for this
option are AUTOMATIC, BESTBOUND, BESTESTIMATE, and DEPTH. The following list describes the
strategy associated with each keyword:

AUTOMATIC enables the MILP solver to choose the best node selection strategy based on problem
characteristics and search progress. This is the default setting.

BESTBOUND chooses the node with the smallest (or largest, in the case of a maximization problem)
relaxed objective value. The best-bound strategy tends to reduce the number of nodes
to be processed and can improve lower bounds quickly. However, if there is no good
upper bound, the number of active nodes can be large. This can result in the solver
running out of memory.

BESTESTIMATE chooses the node with the smallest (or largest, in the case of a maximization problem)
objective value of the estimated integer solution. Besides improving lower bounds,
the best-estimate strategy also attempts to process nodes that can yield good feasible
solutions.

DEPTH chooses the node that is deepest in the search tree. Depth-first search is effective in
locating feasible solutions, since such solutions are usually deep in the search tree.
Compared to the costs of the best-bound and best-estimate strategies, the cost of
solving LP relaxations is less in the depth-first strategy. The number of active nodes is
generally small, but it is possible that the depth-first search will remain in a portion
of the search tree with no good integer solutions. This occurrence is computationally
expensive.
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Variable Selection

The VARSEL= option specifies the strategy used to select the next branching variable. The valid keywords
for this option are AUTOMATIC, MAXINFEAS, MININFEAS, PSEUDO, and STRONG. The following list
describes the action taken in each case when Nxk , a relaxed optimal solution of (MILPk), is used to define two
active subproblems. In the following list, “INTTOL” refers to the value assigned using the INTTOL= option.
For details about the INTTOL= option, see the section “Control Options” on page 252.

AUTOMATIC enables the MILP solver to choose the best variable selection strategy based on problem
characteristics and search progress. This is the default setting.

MAXINFEAS chooses as the branching variable the variable xi such that i maximizes

fminffi .k/; 1 � fi .k/g j i 2 S and

INTTOL � fi .k/ � 1 � INTTOLg

MININFEAS chooses as the branching variable the variable xi such that i minimizes

fminffi .k/; 1 � fi .k/g j i 2 S and

INTTOL � fi .k/ � 1 � INTTOLg

PSEUDO chooses as the branching variable the variable xi such that i maximizes the weighted up
and down pseudocosts. Pseudocost branching attempts to branch on significant variables
first, quickly improving lower bounds. Pseudocost branching estimates significance based
on historical information; however, this approach might not be accurate for future search.

STRONG chooses as the branching variable the variable xi such that i maximizes the estimated
improvement in the objective value. Strong branching first generates a list of candidates,
then branches on each candidate and records the improvement in the objective value.
The candidate with the largest improvement is chosen as the branching variable. Strong
branching can be effective for combinatorial problems, but it is usually computationally
expensive.

Branching Priorities

In some cases, it is possible to speed up the branch-and-bound algorithm by branching on variables in a
specific order. You can accomplish this in PROC OPTMODEL by attaching branching priorities to the integer
variables in your model by using the .priority suffix. More information about this suffix is available in the
section “Integer Variable Suffixes” on page 134 in Chapter 5. For an example in which branching priorities
are used, see Example 7.3.

Presolve and Probing
The MILP solver in PROC OPTMODEL includes a variety of presolve techniques to reduce problem
size, improve numerical stability, and detect infeasibility or unboundedness (Andersen and Andersen 1995;
Gondzio 1997). During presolve, redundant constraints and variables are identified and removed. Presolve
can further reduce the problem size by substituting variables. Variable substitution is a very effective
technique, but it might occasionally increase the number of nonzero entries in the constraint matrix. Presolve
might also modify the constraint coefficients to tighten the formulation of the problem.
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In most cases, using presolve is very helpful in reducing solution times. You can enable presolve at different
levels by specifying the PRESOLVER= option.

Probing is a technique that tentatively sets each binary variable to 0 or 1, then explores the logical conse-
quences (Savelsbergh 1994). Probing can expedite the solution of a difficult problem by fixing variables and
improving the model. However, probing is often computationally expensive and can significantly increase the
solution time in some cases. You can enable probing at different levels by specifying the PROBE= option.

Cutting Planes
The feasible region of every linear program forms a polyhedron. Every polyhedron in n-space can be
written as a finite number of half-spaces (equivalently, inequalities). In the notation used in this chapter, this
polyhedron is defined by the set Q D fx 2 Rn j Ax � b; l � x � ug. After you add the restriction that
some variables must be integral, the set of feasible solutions, F D fx 2 Q j xi 2 Z 8i 2 Sg, no longer
forms a polyhedron.

The convex hull of a set X is the minimal convex set that contains X. In solving a mixed integer linear program,
in order to take advantage of LP-based algorithms you want to find the convex hull, conv.F/, of F . If you
can find conv.F/ and describe it compactly, then you can solve a mixed integer linear program with a linear
programming solver. This is generally very difficult, so you must be satisfied with finding an approximation.
Typically, the better the approximation, the more efficiently the LP-based branch-and-bound algorithm can
perform.

As described in the section “Branch-and-Bound Algorithm” on page 259, the branch-and-bound algorithm
begins by solving the linear programming relaxation over the polyhedron Q. Clearly, Q contains the convex
hull of the feasible region of the original integer program; that is, conv.F/ � Q.

Cutting plane techniques are used to tighten the linear relaxation to better approximate conv.F/. Assume
you are given a solution Nx to some intermediate linear relaxation during the branch-and-bound algorithm. A
cut, or valid inequality (�x � �0), is some half-space with the following characteristics:

• The half-space contains conv.F/; that is, every integer feasible solution is feasible for the cut (�x �
�0;8x 2 F).

• The half-space does not contain the current solution Nx; that is, Nx is not feasible for the cut (� Nx > �0).

Cutting planes were first made popular by Dantzig, Fulkerson, and Johnson (1954) in their work on the
traveling salesman problem. The two major classifications of cutting planes are generic cuts and structured
cuts. Generic cuts are based solely on algebraic arguments and can be applied to any relaxation of any integer
program. Structured cuts are specific to certain structures that can be found in some relaxations of the mixed
integer linear program. These structures are automatically discovered during the cut initialization phase of the
MILP solver. Table 7.12 lists the various types of cutting planes that are built into the MILP solver. Included
in each type are algorithms for numerous variations based on different relaxations and lifting techniques.
For a survey of cutting plane techniques for mixed integer programming, see Marchand et al. (1999). For a
survey of lifting techniques, see Atamturk (2004).
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Table 7.12 Cutting Planes in the MILP Solver

Generic Cutting Planes Structured Cutting Planes
Gomory mixed integer Cliques
Lift-and-project Flow cover
Mixed integer rounding Flow path
Mixed lifted 0-1 Generalized upper bound cover
Zero-half Implied bound

Knapsack cover

You can set levels for individual cuts by using the CUTCLIQUE=, CUTFLOWCOVER=, CUTFLOWPATH=,
CUTGOMORY=, CUTGUB=, CUTIMPLIED=, CUTKNAPSACK=, CUTLAP=, CUTMILIFTED=, CUT-
MIR=, and CUTZEROHALF= options. The valid levels for these options are listed in Table 7.11.

The cut level determines the internal strategy that is used by the MILP solver for generating the cutting planes.
The strategy consists of several factors, including how frequently the cut search is called, the number of cuts
allowed, and the aggressiveness of the search algorithms.

Sophisticated cutting planes, such as those included in the MILP solver, can take a great deal of CPU time.
Typically the additional tightening of the relaxation helps to speed up the overall process, because it provides
better bounds for the branch-and-bound tree and helps guide the LP solver toward integer solutions. In rare
cases, shutting off cutting planes completely might lead to faster overall run times.

The default settings of the MILP solver have been tuned to work well for most instances. However, problem-
specific expertise might suggest adjusting one or more of the strategies. These options give you that flexibility.

Primal Heuristics
Primal heuristics, an important component of the MILP solver in PROC OPTMODEL, are applied during the
branch-and-bound algorithm. They are used to find integer feasible solutions early in the search tree, thereby
improving the upper bound for a minimization problem. Primal heuristics play a role that is complementary
to cutting planes in reducing the gap between the upper and lower bounds, thus reducing the size of the
branch-and-bound tree.

Applying primal heuristics in the branch-and-bound algorithm assists in the following areas:

• finding a good upper bound early in the tree search (this can lead to earlier fathoming, resulting in
fewer subproblems to be processed)

• locating a reasonably good feasible solution when that is sufficient (sometimes a reasonably good
feasible solution is the best the solver can produce within certain time or resource limits)

• providing upper bounds for some bound-tightening techniques
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The MILP solver implements several heuristic methodologies. Some algorithms, such as rounding and
iterative rounding (diving) heuristics, attempt to construct an integer feasible solution by using fractional
solutions to the continuous relaxation at each node of the branch-and-cut tree. Other algorithms start with an
incumbent solution and attempt to find a better solution within a neighborhood of the current best solution.

The HEURISTICS= option enables you to control the level of primal heuristics applied by the MILP solver.
This level determines how frequently primal heuristics are applied during the tree search. Some expensive
heuristics might be disabled by the solver at less aggressive levels. Setting the HEURISTICS= option to a
lower level also reduces the maximum number of iterations allowed in iterative heuristics. The valid values
for this option are listed in Table 7.7.

Node Log
The following information about the status of the branch-and-bound algorithm is printed in the node log:

Node indicates the sequence number of the current node in the search tree.

Active indicates the current number of active nodes in the branch-and-bound tree.

Sols indicates the number of feasible solutions found so far.

BestInteger indicates the best upper bound (assuming minimization) found so far.

BestBound indicates the best lower bound (assuming minimization) found so far.

Gap indicates the relative gap between BestInteger and BestBound, displayed as a percentage.
If the relative gap is larger than 1,000, then the absolute gap is displayed. If no active
nodes remain, the value of Gap is 0.

Time indicates the elapsed real time.

The LOGFREQ= option can be used to control the amount of information printed in the node log. By default
a new entry is included in the log at the first node, at the last node, and at 100-node intervals. A new entry is
also included each time a better integer solution is found. The LOGFREQ= option enables you to change the
interval between entries in the node log. Figure 7.3 shows a sample node log.
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Figure 7.3 Sample Node Log

NOTE: Problem generation will use 4 threads.
NOTE: The problem has 10 variables (0 free, 0 fixed).
NOTE: The problem has 0 binary and 10 integer variables.
NOTE: The problem has 2 linear constraints (2 LE, 0 EQ, 0 GE, 0 range).
NOTE: The problem has 20 linear constraint coefficients.
NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).
NOTE: The OPTMODEL presolver is disabled for linear problems.
NOTE: The MILP presolver value AUTOMATIC is applied.
NOTE: The MILP presolver removed 0 variables and 0 constraints.
NOTE: The MILP presolver removed 0 constraint coefficients.
NOTE: The MILP presolver modified 0 constraint coefficients.
NOTE: The presolved problem has 10 variables, 2 constraints, and 20 constraint

coefficients.
NOTE: The MILP solver is called.

Node Active Sols BestInteger BestBound Gap Time
0 1 3 85.0000000 178.0000000 52.25% 0
0 1 3 85.0000000 88.0955497 3.51% 0
0 1 3 85.0000000 88.0626822 3.48% 0
0 1 3 85.0000000 87.9666563 3.37% 0
0 1 3 85.0000000 87.9661593 3.37% 0
0 1 3 85.0000000 87.8181818 3.21% 0

NOTE: The MILP solver added 2 cuts with 13 cut coefficients at the root.
3 0 5 87.0000000 87.0000000 0.00% 0

NOTE: Optimal.
NOTE: Objective = 87.

Problem Statistics
Optimizers can encounter difficulty when solving poorly formulated models. Information about data
magnitude provides a simple gauge to determine how well a model is formulated. For example, a model
whose constraint matrix contains one very large entry (on the order of 109) can cause difficulty when the
remaining entries are single-digit numbers. The PRINTLEVEL=2 option in the OPTMODEL procedure
causes the ODS table ProblemStatistics to be generated when the MILP solver is called. This table provides
basic data magnitude information that enables you to improve the formulation of your models.

The example output in Figure 7.4 demonstrates the contents of the ODS table ProblemStatistics.
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Figure 7.4 ODS Table ProblemStatistics

ProblemStatistics

Obs Label1 cValue1 nValue1

1 Number of Constraint Matrix Nonzeros 8 8.000000
2 Maximum Constraint Matrix Coefficient 3 3.000000
3 Minimum Constraint Matrix Coefficient 1 1.000000
4 Average Constraint Matrix Coefficient 1.875 1.875000
5 .
6 Number of Objective Nonzeros 3 3.000000
7 Maximum Objective Coefficient 4 4.000000
8 Minimum Objective Coefficient 2 2.000000
9 Average Objective Coefficient 3 3.000000

10 .
11 Number of RHS Nonzeros 3 3.000000
12 Maximum RHS 7 7.000000
13 Minimum RHS 4 4.000000
14 Average RHS 5.3333333333 5.333333
15 .
16 Maximum Number of Nonzeros per Column 3 3.000000
17 Minimum Number of Nonzeros per Column 2 2.000000
18 Average Number of Nonzeros per Column 2 2.000000
19 .
20 Maximum Number of Nonzeros per Row 3 3.000000
21 Minimum Number of Nonzeros per Row 2 2.000000
22 Average Number of Nonzeros per Row 2 2.000000

The variable names in the ODS table ProblemStatistics are Label1, cValue1, and nValue1.

Macro Variable _OROPTMODEL_
The OPTMODEL procedure defines a macro variable named _OROPTMODEL_. This variable contains a
character string that indicates the status of the solver upon termination. The contents of the macro variable
depend on which solver was invoked. For the MILP solver, the various terms of _OROPTMODEL_ are
interpreted as follows.

STATUS
indicates the solver status at termination. It can take one of the following values:

OK The solver terminated normally.

SYNTAX_ERROR Syntax was used incorrectly.

DATA_ERROR The input data was inconsistent.

OUT_OF_MEMORY Insufficient memory was allocated to the solver.

IO_ERROR A problem occurred in reading or writing data.

SEMANTIC_ERROR An evaluation error, such as an invalid operand type, was found.

ERROR The status cannot be classified into any of the preceding categories.
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ALGORITHM
indicates the algorithm that produced the solution data in the macro variable. This term only appears
when STATUS=OK. It can take one of the following values:

BAC The branch-and-cut algorithm produced the solution data.

DECOMP The decomposition algorithm produced the solution data.

SOLUTION_STATUS
indicates the solution status at termination. It can take one of the following values:

OPTIMAL The solution is optimal.

OPTIMAL_AGAP The solution is optimal within the absolute gap specified by the
ABSOBJGAP= option.

OPTIMAL_RGAP The solution is optimal within the relative gap specified by the
RELOBJGAP= option.

OPTIMAL_COND The solution is optimal, but some infeasibilities (primal, bound,
or integer) exceed tolerances due to scaling or choice of small
INTTOL= value.

TARGET The solution is not worse than the target specified by the TAR-
GET= option.

INFEASIBLE The problem is infeasible.

UNBOUNDED The problem is unbounded.

INFEASIBLE_OR_UNBOUNDED The problem is infeasible or unbounded.

BAD_PROBLEM_TYPE The problem type is unsupported by solver.

SOLUTION_LIM The solver reached the maximum number of solutions specified
by the MAXSOLS= option.

NODE_LIM_SOL The solver reached the maximum number of nodes specified by
the MAXNODES= option and found a solution.

NODE_LIM_NOSOL The solver reached the maximum number of nodes specified by
the MAXNODES= option and did not find a solution.

TIME_LIM_SOL The solver reached the execution time limit specified by the
MAXTIME= option and found a solution.

TIME_LIM_NOSOL The solver reached the execution time limit specified by the
MAXTIME= option and did not find a solution.

ABORT_SOL The solver was stopped by user but still found a solution.

ABORT_NOSOL The solver was stopped by user and did not find a solution.

OUTMEM_SOL The solver ran out of memory but still found a solution.

OUTMEM_NOSOL The solver ran out of memory and either did not find a solution
or failed to output the solution due to insufficient memory.

FAIL_SOL The solver stopped due to errors but still found a solution.

FAIL_NOSOL The solver stopped due to errors and did not find a solution.
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OBJECTIVE
indicates the objective value obtained by the solver at termination.

RELATIVE_GAP
specifies the relative gap between the best integer objective (BestInteger) and the objective of the best
remaining node (BestBound) upon termination of the MILP solver. The relative gap is equal to

j BestInteger � BestBound j = .1E�10C j BestBound j/

ABSOLUTE_GAP
specifies the absolute gap between the best integer objective (BestInteger) and the objective of the
best remaining node (BestBound) upon termination of the MILP solver. The absolute gap is equal to
j BestInteger � BestBound j.

PRIMAL_INFEASIBILITY
indicates the maximum (absolute) violation of the primal constraints by the solution.

BOUND_INFEASIBILITY
indicates the maximum (absolute) violation by the solution of the lower or upper bounds (or both).

INTEGER_INFEASIBILITY
indicates the maximum (absolute) violation of the integrality of integer variables returned by the MILP
solver.

BEST_BOUND
specifies the best LP objective value of all unprocessed nodes on the branch-and-bound tree at the end
of execution. A missing value indicates that the MILP solver has processed either all or none of the
nodes on the branch-and-bound tree.

NODES
specifies the number of nodes enumerated by the MILP solver by using the branch-and-bound algo-
rithm.

ITERATIONS
indicates the number of simplex iterations taken to solve the problem.

PRESOLVE_TIME
indicates the time (in seconds) used in preprocessing.

SOLUTION_TIME
indicates the time (in seconds) taken to solve the problem, including preprocessing time.

NOTE: The time reported in PRESOLVE_TIME and SOLUTION_TIME is either CPU time or real time.
The type is determined by the TIMETYPE= option.

When SOLUTION_STATUS has a value of OPTIMAL, CONDITIONAL_OPTIMAL, ITERA-
TION_LIMIT_REACHED, or TIME_LIMIT_REACHED, all terms of the _OROPTMODEL_ macro
variable are present; for other values of SOLUTION_STATUS, some terms do not appear.
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Examples: MILP Solver
This section contains examples that illustrate the options and syntax of the MILP solver in PROC OPT-
MODEL. Example 7.1 illustrates the use of PROC OPTMODEL to solve an employee scheduling problem.
Example 7.2 discusses a multicommodity transshipment problem with fixed charges. Example 7.3 demon-
strates how to warm start the MILP solver. Example 7.4 shows the solution of an instance of the traveling
salesman problem in PROC OPTMODEL. Other examples of mixed integer linear programs, along with
example SAS code, are given in Chapter 11.

Example 7.1: Scheduling
The following example has been adapted from the example “A Scheduling Problem” in Chapter 5, “The LP
Procedure” (SAS/OR User’s Guide: Mathematical Programming Legacy Procedures).

Scheduling is a common application area in which mixed integer linear programming techniques are used. In
this example, you have eight one-hour time slots in each of five days. You have to assign four employees to
these time slots so that each slot is covered every day. You allow the employees to specify preference data for
each slot on each day. In addition, the following constraints must be satisfied:

• Each employee has some time slots for which he or she is unavailable (OneEmpPerSlot).

• Each employee must have either time slot 4 or time slot 5 off for lunch (EmpMustHaveLunch).

• Each employee can work at most two time slots in a row (AtMost2ConSlots).

• Each employee can work only a specified number of hours in the week (WeeklyHoursLimit).

To formulate this problem, let i denote a person, j denote a time slot, and k denote a day. Then, let xijk D 1
if person i is assigned to time slot j on day k, and 0 otherwise. Let pijk denote the preference of person i
for slot j on day k. Let hi denote the number of hours in a week that person i will work. The formulation of
this problem follows:

max
X
ijk

pijkxijk

s:t:
X
i

xijk D 1 8j; k .OneEmpPerSlot/

xi4k C xi5k � 1 8i; k .EmpMustHaveLunch/
xi;`;k C xi;`C1;k C xi;`C2;k � 2 8i; k; and l � 6 .AtMost2ConSlots/X
jk

xijk � hi 8i .WeeklyHoursLimit/

xijk D 0 8i; j; k s:t: pijk > 0
xijk 2 f0; 1g 8i; j; k

The following data set preferences gives the preferences for each individual, time slot, and day. A 10
represents the most desirable time slot, and a 1 represents the least desirable time slot. In addition, a 0
indicates that the time slot is not available. The data set maxhours gives the maximum number of hours each
employee can work per week.
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data preferences;
input name $ slot mon tue wed thu fri;
datalines;

marc 1 10 10 10 10 10
marc 2 9 9 9 9 9
marc 3 8 8 8 8 8
marc 4 1 1 1 1 1
marc 5 1 1 1 1 1
marc 6 1 1 1 1 1
marc 7 1 1 1 1 1
marc 8 1 1 1 1 1
mike 1 10 9 8 7 6
mike 2 10 9 8 7 6
mike 3 10 9 8 7 6
mike 4 10 3 3 3 3
mike 5 1 1 1 1 1
mike 6 1 2 3 4 5
mike 7 1 2 3 4 5
mike 8 1 2 3 4 5
bill 1 10 10 10 10 10
bill 2 9 9 9 9 9
bill 3 8 8 8 8 8
bill 4 0 0 0 0 0
bill 5 1 1 1 1 1
bill 6 1 1 1 1 1
bill 7 1 1 1 1 1
bill 8 1 1 1 1 1
bob 1 10 9 8 7 6
bob 2 10 9 8 7 6
bob 3 10 9 8 7 6
bob 4 10 3 3 3 3
bob 5 1 1 1 1 1
bob 6 1 2 3 4 5
bob 7 1 2 3 4 5
bob 8 1 2 3 4 5
;

data maxhours;
input name $ hour;
datalines;

marc 20
mike 20
bill 20
bob 20
;
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Using PROC OPTMODEL, you can model and solve the scheduling problem as follows:

proc optmodel;

/* read in the preferences and max hours from the data sets */
set <string,num> DailyEmployeeSlots;
set <string> Employees;

set <num> TimeSlots = (setof {<name,slot> in DailyEmployeeSlots} slot);
set <string> WeekDays = {"mon","tue","wed","thu","fri"};

num WeeklyMaxHours{Employees};
num PreferenceWeights{DailyEmployeeSlots,Weekdays};
num NSlots = card(TimeSlots);

read data preferences into DailyEmployeeSlots=[name slot]
{day in Weekdays} <PreferenceWeights[name,slot,day] = col(day)>;

read data maxhours into Employees=[name] WeeklyMaxHours=hour;

/* declare the binary assignment variable x[i,j,k] */
var Assign{<name,slot> in DailyEmployeeSlots, day in Weekdays} binary;

/* for each p[i,j,k] = 0, fix x[i,j,k] = 0 */
for {<name,slot> in DailyEmployeeSlots, day in Weekdays:

PreferenceWeights[name,slot,day] = 0}
fix Assign[name,slot,day] = 0;

/* declare the objective function */
max TotalPreferenceWeight =

sum{<name,slot> in DailyEmployeeSlots, day in Weekdays}
PreferenceWeights[name,slot,day] * Assign[name,slot,day];

/* declare the constraints */
con OneEmpPerSlot{slot in TimeSlots, day in Weekdays}:

sum{name in Employees} Assign[name,slot,day] = 1;

con EmpMustHaveLunch{name in Employees, day in Weekdays}:
Assign[name,4,day] + Assign[name,5,day] <= 1;

con AtMost2ConsSlots{name in Employees, start in 1..NSlots-2,
day in Weekdays}:

Assign[name,start,day] + Assign[name,start+1,day]
+ Assign[name,start+2,day] <= 2 ;

con WeeklyHoursLimit{name in Employees}:
sum{slot in TimeSlots, day in Weekdays} Assign[name,slot,day]

<= WeeklyMaxHours[name];

/* solve the model */
solve with milp;

/* clean up the solution */
for {<name,slot> in DailyEmployeeSlots, day in Weekdays}
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Assign[name,slot,day] = round(Assign[name,slot,day],1e-6);

create data report from [name slot]={<name,slot> in DailyEmployeeSlots:
max {day in Weekdays} Assign[name,slot,day] > 0}

{day in Weekdays} <col(day)=(if Assign[name,slot,day] > 0
then Assign[name,slot,day] else .)>;

quit;

The following statements demonstrate how to use the TABULATE procedure to display a schedule that shows
how the eight time slots are covered for the week:

title 'Reported Solution';
proc format;

value xfmt 1=' xxx ';
run;
proc tabulate data=report;

class name slot;
var mon--fri;
table (slot * name), (mon tue wed thu fri)*sum=' '*f=xfmt.

/misstext=' ';
run;

The output from the preceding code is displayed in Output 7.1.1.
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Output 7.1.1 Scheduling Reported Solution

Reported Solution

-----------------------------------------------------------------
| | mon | tue | wed | thu | fri |
|------------------+--------+--------+--------+--------+--------|
|slot |name | | | | | |
|--------+---------| | | | | |
|1 |marc | xxx | xxx | xxx | xxx | xxx |
|--------+---------+--------+--------+--------+--------+--------|
|2 |marc | | xxx | xxx | xxx | xxx |
| |---------+--------+--------+--------+--------+--------|
| |mike | xxx | | | | |
|--------+---------+--------+--------+--------+--------+--------|
|3 |bill | | | | xxx | xxx |
| |---------+--------+--------+--------+--------+--------|
| |mike | xxx | xxx | xxx | | |
|--------+---------+--------+--------+--------+--------+--------|
|4 |bob | xxx | xxx | xxx | | |
| |---------+--------+--------+--------+--------+--------|
| |mike | | | | xxx | xxx |
|--------+---------+--------+--------+--------+--------+--------|
|5 |bill | xxx | xxx | xxx | | xxx |
| |---------+--------+--------+--------+--------+--------|
| |bob | | | | xxx | |
|--------+---------+--------+--------+--------+--------+--------|
|6 |bob | | | xxx | | xxx |
| |---------+--------+--------+--------+--------+--------|
| |mike | xxx | xxx | | xxx | |
|--------+---------+--------+--------+--------+--------+--------|
|7 |bob | xxx | | xxx | xxx | xxx |
| |---------+--------+--------+--------+--------+--------|
| |mike | | xxx | | | |
|--------+---------+--------+--------+--------+--------+--------|
|8 |bob | xxx | xxx | | xxx | |
| |---------+--------+--------+--------+--------+--------|
| |mike | | | xxx | | xxx |
-----------------------------------------------------------------

Example 7.2: Multicommodity Transshipment Problem with Fixed Charges
The following example has been adapted from the example “A Multicommodity Transshipment Problem
with Fixed Charges” in Chapter 5, “The LP Procedure” (SAS/OR User’s Guide: Mathematical Programming
Legacy Procedures).

This example illustrates the use of PROC OPTMODEL to generate a mixed integer linear program to solve
a multicommodity network flow model with fixed charges. Consider a network with nodes N, arcs A, and
a set C of commodities to be shipped between the nodes. The commodities are defined in the data set
COMMODITY_DATA, as follows:
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title 'Multicommodity Transshipment Problem with Fixed Charges';

data commodity_data;
do c = 1 to 4;

output;
end;

run;

Shipping cost sijc is for each of the four commodities c across each of the arcs .i; j /. In addition, there is a
fixed charge fij for the use of each arc .i; j /. The shipping costs and fixed charges are defined in the data set
ARC_DATA, as follows:

data arc_data;
input from $ to $ c1 c2 c3 c4 fx;
datalines;

farm-a Chicago 20 15 17 22 100
farm-b Chicago 15 15 15 30 75
farm-c Chicago 30 30 10 10 100
farm-a StLouis 30 25 27 22 150
farm-c StLouis 10 9 11 10 75
Chicago NY 75 75 75 75 200
StLouis NY 80 80 80 80 200
;
run;

The supply (positive numbers) or demand (negative numbers) dic at each of the nodes for each commodity c
is shown in the data set SUPPLY_DATA, as follows:

data supply_data;
input node $ sd1 sd2 sd3 sd4;
datalines;

farm-a 100 100 40 .
farm-b 100 200 50 50
farm-c 40 100 75 100
NY -150 -200 -50 -75
;
run;

Let xijc define the flow of commodity c across arc .i; j /. Let yij D 1 if arc .i; j / is used, and 0 otherwise.
Since the total flow on an arc .i; j / must be at most the total demand across all nodes k 2 N , you can define
the trivial upper bound uijc as

xijc � uijc D
X

k2N jdkc<0

.�dkc/

This model can be represented using the following mixed integer linear program:
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min
X

.i;j /2A

X
c2C

sijcxijc C
X

.i;j /2A

fijyij

s:t:
X

j2N j.i;j /2A

xijc �
X

j2N j.j;i/2A

xj ic � dic 8i 2 N; c 2 C .balance_con/

xijc � uijcyij 8.i; j / 2 A; c 2 C .fixed_charge_con/
xijc � 0 8.i; j / 2 A; c 2 C

yij 2 f0; 1g 8.i; j / 2 A

Constraint (balance_con) ensures conservation of flow for both supply and demand. Constraint
(fixed_charge_con) models the fixed charge cost by forcing yij D 1 if xijc > 0 for some commodity
c 2 C .

The PROC OPTMODEL statements follow:

proc optmodel;
set COMMODITIES;
read data commodity_data into COMMODITIES=[c];

set <str,str> ARCS;
num unit_cost {ARCS, COMMODITIES};
num fixed_charge {ARCS};
read data arc_data into ARCS=[from to] {c in COMMODITIES}

<unit_cost[from,to,c]=col('c'||c)> fixed_charge=fx;
print unit_cost fixed_charge;

set <str> NODES = union {<i,j> in ARCS} {i,j};
num supply {NODES, COMMODITIES} init 0;
read data supply_data nomiss into [node] {c in COMMODITIES}

<supply[node,c]=col('sd'||c)>;
print supply;

var AmountShipped {ARCS, c in COMMODITIES} >= 0 <= sum {i in NODES}
max(supply[i,c],0);

/* UseArc[i,j] = 1 if arc (i,j) is used, 0 otherwise */
var UseArc {ARCS} binary;

/* TotalCost = variable costs + fixed charges */
min TotalCost = sum {<i,j> in ARCS, c in COMMODITIES}

unit_cost[i,j,c] * AmountShipped[i,j,c]
+ sum {<i,j> in ARCS} fixed_charge[i,j] * UseArc[i,j];

con flow_balance {i in NODES, c in COMMODITIES}:
sum {<(i),j> in ARCS} AmountShipped[i,j,c] -
sum {<j,(i)> in ARCS} AmountShipped[j,i,c] <= supply[i,c];

/* if AmountShipped[i,j,c] > 0 then UseArc[i,j] = 1 */
con fixed_charge_def {<i,j> in ARCS, c in COMMODITIES}:

AmountShipped[i,j,c] <= AmountShipped[i,j,c].ub * UseArc[i,j];

solve;
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print AmountShipped;

create data solution from [from to commodity]={<i,j> in ARCS,
c in COMMODITIES: AmountShipped[i,j,c].sol ne 0} amount=AmountShipped;

quit;

Although the PROC LP example used M = 1.0e6 in the FIXED_CHARGE_DEF constraint that links the
continuous variable to the binary variable, it is numerically preferable to use a smaller, data-dependent
value. Here, the upper bound on AmountShipped[i,j,c] is used instead. This upper bound is calculated
in the first VAR statement as the sum of all positive supplies for commodity c. The logical condition
AmountShipped[i,j,k].sol ne 0 in the CREATE DATA statement ensures that only the nonzero parts
of the solution appear in the SOLUTION data set.

The problem summary, solution summary, and the output from the two PRINT statements are shown in
Output 7.2.1.

Output 7.2.1 Multicommodity Transshipment Problem with Fixed Charges Solution Summary

Multicommodity Transshipment Problem with Fixed Charges

The OPTMODEL Procedure

[1] [2] [3] unit_cost

Chicago NY 1 75
Chicago NY 2 75
Chicago NY 3 75
Chicago NY 4 75
StLouis NY 1 80
StLouis NY 2 80
StLouis NY 3 80
StLouis NY 4 80
farm-a Chicago 1 20
farm-a Chicago 2 15
farm-a Chicago 3 17
farm-a Chicago 4 22
farm-a StLouis 1 30
farm-a StLouis 2 25
farm-a StLouis 3 27
farm-a StLouis 4 22
farm-b Chicago 1 15
farm-b Chicago 2 15
farm-b Chicago 3 15
farm-b Chicago 4 30
farm-c Chicago 1 30
farm-c Chicago 2 30
farm-c Chicago 3 10
farm-c Chicago 4 10
farm-c StLouis 1 10
farm-c StLouis 2 9
farm-c StLouis 3 11
farm-c StLouis 4 10
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Output 7.2.1 continued

fixed_
[1] [2] charge

Chicago NY 200
StLouis NY 200
farm-a Chicago 100
farm-a StLouis 150
farm-b Chicago 75
farm-c Chicago 100
farm-c StLouis 75

supply
1 2 3 4

Chicago 0 0 0 0
NY -150 -200 -50 -75
StLouis 0 0 0 0
farm-a 100 100 40 0
farm-b 100 200 50 50
farm-c 40 100 75 100

Problem Summary

Objective Sense Minimization
Objective Function TotalCost
Objective Type Linear

Number of Variables 35
Bounded Above 0
Bounded Below 0
Bounded Below and Above 35
Free 0
Fixed 0
Binary 7
Integer 0

Number of Constraints 52
Linear LE (<=) 52
Linear EQ (=) 0
Linear GE (>=) 0
Linear Range 0

Constraint Coefficients 112

Performance Information

Execution Mode Single-Machine
Number of Threads 1
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Output 7.2.1 continued

Solution Summary

Solver MILP
Algorithm Branch and Cut
Objective Function TotalCost
Solution Status Optimal within Relative Gap
Objective Value 42825

Relative Gap 2.3350852E-7
Absolute Gap 0.01
Primal Infeasibility 0
Bound Infeasibility 0
Integer Infeasibility 0

Best Bound 42824.99
Nodes 1
Iterations 30
Presolve Time 0.00
Solution Time 0.14

Amount
[1] [2] [3] Shipped

Chicago NY 1 110
Chicago NY 2 100
Chicago NY 3 50
Chicago NY 4 75
StLouis NY 1 40
StLouis NY 2 100
StLouis NY 3 0
StLouis NY 4 0
farm-a Chicago 1 10
farm-a Chicago 2 10
farm-a Chicago 3 0
farm-a Chicago 4 0
farm-a StLouis 1 0
farm-a StLouis 2 0
farm-a StLouis 3 0
farm-a StLouis 4 0
farm-b Chicago 1 100
farm-b Chicago 2 90
farm-b Chicago 3 0
farm-b Chicago 4 0
farm-c Chicago 1 0
farm-c Chicago 2 0
farm-c Chicago 3 50
farm-c Chicago 4 75
farm-c StLouis 1 40
farm-c StLouis 2 100
farm-c StLouis 3 0
farm-c StLouis 4 0
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Example 7.3: Facility Location
Consider the classic facility location problem. Given a set L of customer locations and a set F of candidate
facility sites, you must decide on which sites to build facilities and assign coverage of customer demand to
these sites so as to minimize cost. All customer demand di must be satisfied, and each facility has a demand
capacity limit C. The total cost is the sum of the distances cij between facility j and its assigned customer i,
plus a fixed charge fj for building a facility at site j. Let yj D 1 represent choosing site j to build a facility,
and 0 otherwise. Also, let xij D 1 represent the assignment of customer i to facility j, and 0 otherwise. This
model can be formulated as the following integer linear program:

min
X
i2L

X
j2F

cijxij C
X
j2F

fjyj

s:t:
X
j2F

xij D 1 8i 2 L .assign_def/

xij � yj 8i 2 L; j 2 F .link/X
i2L

dixij � Cyj 8j 2 F .capacity/

xij 2 f0; 1g 8i 2 L; j 2 F

yj 2 f0; 1g 8j 2 F

Constraint (assign_def) ensures that each customer is assigned to exactly one site. Constraint (link) forces a
facility to be built if any customer has been assigned to that facility. Finally, constraint (capacity) enforces
the capacity limit at each site.

Consider also a variation of this same problem where there is no cost for building a facility. This problem is
typically easier to solve than the original problem. For this variant, let the objective be

min
X
i2L

X
j2F

cijxij

First, construct a random instance of this problem by using the following DATA steps:

title 'Facility Location Problem';

%let NumCustomers = 50;
%let NumSites = 10;
%let SiteCapacity = 35;
%let MaxDemand = 10;
%let xmax = 200;
%let ymax = 100;
%let seed = 938;

/* generate random customer locations */
data cdata(drop=i);

length name $8;
do i = 1 to &NumCustomers;

name = compress('C'||put(i,best.));
x = ranuni(&seed) * &xmax;
y = ranuni(&seed) * &ymax;
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demand = ranuni(&seed) * &MaxDemand;
output;

end;
run;

/* generate random site locations and fixed charge */
data sdata(drop=i);

length name $8;
do i = 1 to &NumSites;

name = compress('SITE'||put(i,best.));
x = ranuni(&seed) * &xmax;
y = ranuni(&seed) * &ymax;
fixed_charge = 30 * (abs(&xmax/2-x) + abs(&ymax/2-y));
output;

end;
run;

The following PROC OPTMODEL statements first generate and solve the model with the no-fixed-charge
variant of the cost function. Next, they solve the fixed-charge model. Note that the solution to the model with
no fixed charge is feasible for the fixed-charge model and should provide a good starting point for the MILP
solver. Use the PRIMALIN option to provide an incumbent solution (warm start).

proc optmodel;
set <str> CUSTOMERS;
set <str> SITES init {};
/* x and y coordinates of CUSTOMERS and SITES */
num x {CUSTOMERS union SITES};
num y {CUSTOMERS union SITES};
num demand {CUSTOMERS};
num fixed_charge {SITES};

/* distance from customer i to site j */
num dist {i in CUSTOMERS, j in SITES}

= sqrt((x[i] - x[j])^2 + (y[i] - y[j])^2);

read data cdata into CUSTOMERS=[name] x y demand;
read data sdata into SITES=[name] x y fixed_charge;

var Assign {CUSTOMERS, SITES} binary;
var Build {SITES} binary;

min CostNoFixedCharge
= sum {i in CUSTOMERS, j in SITES} dist[i,j] * Assign[i,j];

min CostFixedCharge
= CostNoFixedCharge + sum {j in SITES} fixed_charge[j] * Build[j];

/* each customer assigned to exactly one site */
con assign_def {i in CUSTOMERS}:

sum {j in SITES} Assign[i,j] = 1;

/* if customer i assigned to site j, then facility must be built at j */
con link {i in CUSTOMERS, j in SITES}:

Assign[i,j] <= Build[j];
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/* each site can handle at most &SiteCapacity demand */
con capacity {j in SITES}:

sum {i in CUSTOMERS} demand[i] * Assign[i,j] <=
&SiteCapacity * Build[j];

/* solve the MILP with no fixed charges */
solve obj CostNoFixedCharge with milp / logfreq = 500;

/* clean up the solution */
for {i in CUSTOMERS, j in SITES} Assign[i,j] = round(Assign[i,j]);
for {j in SITES} Build[j] = round(Build[j]);

call symput('varcostNo',put(CostNoFixedCharge,6.1));

/* create a data set for use by GPLOT */
create data CostNoFixedCharge_Data from

[customer site]={i in CUSTOMERS, j in SITES: Assign[i,j] = 1}
xi=x[i] yi=y[i] xj=x[j] yj=y[j];

/* solve the MILP, with fixed charges with warm start */
solve obj CostFixedCharge with milp / primalin logfreq = 500;

/* clean up the solution */
for {i in CUSTOMERS, j in SITES} Assign[i,j] = round(Assign[i,j]);
for {j in SITES} Build[j] = round(Build[j]);

num varcost = sum {i in CUSTOMERS, j in SITES} dist[i,j] * Assign[i,j].sol;
num fixcost = sum {j in SITES} fixed_charge[j] * Build[j].sol;
call symput('varcost', put(varcost,6.1));
call symput('fixcost', put(fixcost,5.1));
call symput('totalcost', put(CostFixedCharge,6.1));

/* create a data set for use by GPLOT */
create data CostFixedCharge_Data from

[customer site]={i in CUSTOMERS, j in SITES: Assign[i,j] = 1}
xi=x[i] yi=y[i] xj=x[j] yj=y[j];

quit;
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The information printed in the log for the no-fixed-charge model is displayed in Output 7.3.1.

Output 7.3.1 OPTMODEL Log for Facility Location with No Fixed Charges

NOTE: Problem generation will use 4 threads.
NOTE: The problem has 510 variables (0 free, 0 fixed).
NOTE: The problem has 510 binary and 0 integer variables.
NOTE: The problem has 560 linear constraints (510 LE, 50 EQ, 0 GE, 0 range).
NOTE: The problem has 2010 linear constraint coefficients.
NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).
NOTE: The MILP presolver value AUTOMATIC is applied.
NOTE: The MILP presolver removed 10 variables and 500 constraints.
NOTE: The MILP presolver removed 1010 constraint coefficients.
NOTE: The MILP presolver modified 0 constraint coefficients.
NOTE: The presolved problem has 500 variables, 60 constraints, and 1000

constraint coefficients.
NOTE: The MILP solver is called.

Node Active Sols BestInteger BestBound Gap Time
0 1 2 972.1737321 0 972.2 0
0 1 2 972.1737321 961.2403449 1.14% 0
0 1 2 972.1737321 966.4828342 0.59% 0
0 1 3 966.4832160 966.4828342 0.00% 0

NOTE: The MILP solver added 3 cuts with 102 cut coefficients at the root.
NOTE: Optimal within relative gap.
NOTE: Objective = 966.48321599.

The results from the warm start approach are shown in Output 7.3.2.
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Output 7.3.2 OPTMODEL Log for Facility Location with Fixed Charges, Using Warm Start

NOTE: Problem generation will use 4 threads.
NOTE: The problem has 510 variables (0 free, 0 fixed).
NOTE: The problem uses 1 implicit variables.
NOTE: The problem has 510 binary and 0 integer variables.
NOTE: The problem has 560 linear constraints (510 LE, 50 EQ, 0 GE, 0 range).
NOTE: The problem has 2010 linear constraint coefficients.
NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).
NOTE: The MILP presolver value AUTOMATIC is applied.
NOTE: The MILP presolver removed 0 variables and 0 constraints.
NOTE: The MILP presolver removed 0 constraint coefficients.
NOTE: The MILP presolver modified 0 constraint coefficients.
NOTE: The presolved problem has 510 variables, 560 constraints, and 2010

constraint coefficients.
NOTE: The MILP solver is called.

Node Active Sols BestInteger BestBound Gap Time
0 1 3 16070.0150023 0 16070 0
0 1 3 16070.0150023 9946.2514269 61.57% 0
0 1 3 16070.0150023 9965.3660728 61.26% 0
0 1 3 16070.0150023 9992.5098441 60.82% 1
0 1 3 16070.0150023 10008.1168033 60.57% 1
0 1 5 12714.8421527 10015.7276884 26.95% 1
0 1 5 12714.8421527 10022.7765711 26.86% 2
0 1 6 12697.5037984 10031.4554268 26.58% 2
0 1 6 12697.5037984 10038.3630945 26.49% 2
0 1 6 12697.5037984 10040.1836986 26.47% 3
0 1 7 12681.6662283 10041.2236063 26.30% 3
0 1 7 12681.6662283 10041.8276236 26.29% 3
0 1 7 12681.6662283 10042.4192876 26.28% 3
0 1 7 12681.6662283 10042.4192876 26.28% 6

NOTE: The MILP solver added 30 cuts with 862 cut coefficients at the root.
12 10 10 10982.8321843 10050.5594169 9.28% 7

113 15 11 10962.4644900 10940.8960590 0.20% 11
141 16 12 10948.4603467 10942.5795938 0.05% 12
173 17 13 10948.4603465 10946.1080596 0.02% 12
181 9 13 10948.4603465 10947.6003284 0.01% 12

NOTE: Optimal within relative gap.
NOTE: Objective = 10948.460346.

The following two SAS programs produce a plot of the solutions for both variants of the model, using data
sets produced by PROC OPTMODEL:

title1 h=1.5 "Facility Location Problem";
title2 "TotalCost = &varcostNo (Variable = &varcostNo, Fixed = 0)";

data csdata;
set cdata(rename=(y=cy)) sdata(rename=(y=sy));

run;

/* create Annotate data set to draw line between customer and assigned site */
%annomac;
data anno(drop=xi yi xj yj);

%SYSTEM(2, 2, 2);
set CostNoFixedCharge_Data(keep=xi yi xj yj);
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%LINE(xi, yi, xj, yj, *, 1, 1);
run;

proc gplot data=csdata anno=anno;
axis1 label=none order=(0 to &xmax by 10);
axis2 label=none order=(0 to &ymax by 10);
symbol1 value=dot interpol=none

pointlabel=("#name" nodropcollisions height=1) cv=black;
symbol2 value=diamond interpol=none

pointlabel=("#name" nodropcollisions color=blue height=1) cv=blue;
plot cy*x sy*x / overlay haxis=axis1 vaxis=axis2;

run;
quit;

The output of the first program is shown in Output 7.3.3.

Output 7.3.3 Solution Plot for Facility Location with No Fixed Charges

The output of the second program is shown in Output 7.3.4.
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title1 "Facility Location Problem";
title2 "TotalCost = &totalcost (Variable = &varcost, Fixed = &fixcost)";

/* create Annotate data set to draw line between customer and assigned site */
data anno(drop=xi yi xj yj);

%SYSTEM(2, 2, 2);
set CostFixedCharge_Data(keep=xi yi xj yj);
%LINE(xi, yi, xj, yj, *, 1, 1);

run;

proc gplot data=csdata anno=anno;
axis1 label=none order=(0 to &xmax by 10);
axis2 label=none order=(0 to &ymax by 10);
symbol1 value=dot interpol=none

pointlabel=("#name" nodropcollisions height=1) cv=black;
symbol2 value=diamond interpol=none

pointlabel=("#name" nodropcollisions color=blue height=1) cv=blue;
plot cy*x sy*x / overlay haxis=axis1 vaxis=axis2;

run;
quit;

Output 7.3.4 Solution Plot for Facility Location with Fixed Charges
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The economic trade-off for the fixed-charge model forces you to build fewer sites and push more demand to
each site.

It is possible to expedite the solution of the fixed-charge facility location problem by choosing appropriate
branching priorities for the decision variables. Recall that for each site j, the value of the variable yj
determines whether or not a facility is built on that site. Suppose you decide to branch on the variables yj
before the variables xij . You can set a higher branching priority for yj by using the .priority suffix for the
Build variables in PROC OPTMODEL, as follows:

for{j in SITES} Build[j].priority=10;

Setting higher branching priorities for certain variables is not guaranteed to speed up the MILP solver, but
it can be helpful in some instances. The following program creates and solves an instance of the facility
location problem, giving higher priority to the variables yj . The LOGFREQ= option is used to abbreviate
the node log.

%let NumCustomers = 45;
%let NumSites = 8;
%let SiteCapacity = 35;
%let MaxDemand = 10;
%let xmax = 200;
%let ymax = 100;
%let seed = 2345;

/* generate random customer locations */
data cdata(drop=i);

length name $8;
do i = 1 to &NumCustomers;

name = compress('C'||put(i,best.));
x = ranuni(&seed) * &xmax;
y = ranuni(&seed) * &ymax;
demand = ranuni(&seed) * &MaxDemand;
output;

end;
run;

/* generate random site locations and fixed charge */
data sdata(drop=i);
length name $8;

do i = 1 to &NumSites;
name = compress('SITE'||put(i,best.));
x = ranuni(&seed) * &xmax;
y = ranuni(&seed) * &ymax;
fixed_charge = (abs(&xmax/2-x) + abs(&ymax/2-y)) / 2;
output;

end;
run;
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proc optmodel;
set <str> CUSTOMERS;
set <str> SITES init {};

/* x and y coordinates of CUSTOMERS and SITES */
num x {CUSTOMERS union SITES};
num y {CUSTOMERS union SITES};
num demand {CUSTOMERS};
num fixed_charge {SITES};

/* distance from customer i to site j */
num dist {i in CUSTOMERS, j in SITES}

= sqrt((x[i] - x[j])^2 + (y[i] - y[j])^2);

read data cdata into CUSTOMERS=[name] x y demand;
read data sdata into SITES=[name] x y fixed_charge;

var Assign {CUSTOMERS, SITES} binary;
var Build {SITES} binary;

min CostFixedCharge
= sum {i in CUSTOMERS, j in SITES} dist[i,j] * Assign[i,j]

+ sum {j in SITES} fixed_charge[j] * Build[j];

/* each customer assigned to exactly one site */
con assign_def {i in CUSTOMERS}:

sum {j in SITES} Assign[i,j] = 1;

/* if customer i assigned to site j, then facility must be built at j */
con link {i in CUSTOMERS, j in SITES}:

Assign[i,j] <= Build[j];

/* each site can handle at most &SiteCapacity demand */
con capacity {j in SITES}:

sum {i in CUSTOMERS} demand[i] * Assign[i,j] <= &SiteCapacity * Build[j];

/* assign priority to Build variables (y) */
for{j in SITES} Build[j].priority=10;

/* solve the MILP with fixed charges, using branching priorities */
solve obj CostFixedCharge with milp / logfreq=1000;

quit;

The resulting output is shown in Output 7.3.5.
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Output 7.3.5 PROC OPTMODEL Log for Facility Location with Branching Priorities

NOTE: There were 45 observations read from the data set WORK.CDATA.
NOTE: There were 8 observations read from the data set WORK.SDATA.
NOTE: Problem generation will use 4 threads.
NOTE: The problem has 368 variables (0 free, 0 fixed).
NOTE: The problem has 368 binary and 0 integer variables.
NOTE: The problem has 413 linear constraints (368 LE, 45 EQ, 0 GE, 0 range).
NOTE: The problem has 1448 linear constraint coefficients.
NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).
NOTE: The MILP presolver value AUTOMATIC is applied.
NOTE: The MILP presolver removed 0 variables and 0 constraints.
NOTE: The MILP presolver removed 0 constraint coefficients.
NOTE: The MILP presolver modified 0 constraint coefficients.
NOTE: The presolved problem has 368 variables, 413 constraints, and 1448

constraint coefficients.
NOTE: The MILP solver is called.

Node Active Sols BestInteger BestBound Gap Time
0 1 3 2823.1827978 0 2823.2 0
0 1 3 2823.1827978 1727.0208789 63.47% 0
0 1 3 2823.1827978 1752.0649013 61.13% 0
0 1 3 2823.1827978 1764.4145721 60.01% 0
0 1 3 2823.1827978 1771.3542742 59.38% 1
0 1 3 2823.1827978 1778.1649446 58.77% 1
0 1 3 2823.1827978 1779.9319639 58.61% 1
0 1 3 2823.1827978 1780.4398220 58.57% 1
0 1 6 1903.7976887 1781.4348074 6.87% 2
0 1 6 1903.7976887 1781.6818875 6.85% 2
0 1 6 1903.7976887 1781.9825516 6.84% 2
0 1 6 1903.7976887 1784.3735066 6.69% 2
0 1 6 1903.7976887 1785.1171912 6.65% 3
0 1 6 1903.7976887 1785.1318270 6.65% 3
0 1 6 1903.7976887 1785.1691077 6.65% 3
0 1 6 1903.7976887 1785.2000207 6.64% 3
0 1 6 1903.7976887 1785.2000207 6.64% 3

NOTE: The MILP solver added 28 cuts with 767 cut coefficients at the root.
4 1 8 1852.5588919 1802.5216297 2.78% 4

52 46 10 1835.0251598 1804.8458565 1.67% 5
244 215 11 1834.9126635 1808.0082480 1.49% 7
296 245 12 1830.7850312 1809.1809114 1.19% 8
523 282 13 1825.1666003 1812.4410890 0.70% 11
608 293 14 1825.1666001 1814.3493473 0.60% 13
642 135 15 1821.5115363 1815.4351037 0.33% 13
691 46 16 1819.9124342 1818.1426710 0.10% 13
735 4 16 1819.9124342 1819.7466770 0.01% 14

NOTE: Optimal within relative gap.
NOTE: Objective = 1819.9124342.
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Example 7.4: Traveling Salesman Problem
The traveling salesman problem (TSP) is that of finding a minimum cost tour in an undirected graph G with
vertex set V D f1; : : : ; jV jg and edge set E. A tour is a connected subgraph for which each vertex has degree
two. The goal is then to find a tour of minimum total cost, where the total cost is the sum of the costs of the
edges in the tour. With each edge e 2 E we associate a binary variable xe, which indicates whether edge
e is part of the tour, and a cost ce 2 R. Let ı.S/ D ffi; j g 2 E j i 2 S; j … Sg. Then an integer linear
programming (ILP) formulation of the TSP is as follows:

min
X
e2E

cexe

s:t:
X
e2ı.i/

xe D 2 8i 2 V .two_match/X
e2ı.S/

xe � 2 8S � V; 2 � jS j � jV j � 1 .subtour_elim/

xe 2 f0; 1g 8e 2 E

The equations (two_match) are the matching constraints, which ensure that each vertex has degree two in the
subgraph, while the inequalities (subtour_elim) are known as the subtour elimination constraints (SECs) and
enforce connectivity.

Since there is an exponential number O.2jV j/ of SECs, it is impossible to explicitly construct the full TSP
formulation for large graphs. An alternative formulation of polynomial size was introduced by Miller, Tucker,
and Zemlin (1960) (MTZ):

min
X

.i;j /2E

cijxij

s:t:
X
j2V

xij D 1 8i 2 V .assign_i/X
i2V

xij D 1 8j 2 V .assign_j/

ui � uj C 1 � .jV j � 1/.1 � xij / 8.i; j / 2 V; i ¤ 1; j ¤ 1 .mtz/
2 � ui � jV j 8i 2 f2; ::; jV jg;

xij 2 f0; 1g 8.i; j / 2 E

This formulation uses a directed graph. Constraints (assign_i) and (assign_j) now enforce that each vertex
has degree two (one edge in, one edge out). The MTZ constraints (mtz) enforce that no subtours exist.

TSPLIB, located at http://elib.zib.de/pub/Packages/mp-testdata/tsp/tsplib/tsplib.html, is a set of benchmark
instances for the TSP. The following DATA step converts a TSPLIB instance of type EUC_2D into a SAS
data set that contains the coordinates of the vertices:

/* convert the TSPLIB instance into a data set */
data tspData(drop=H);

infile "st70.tsp";
input H $1. @;
if H not in ('N','T','C','D','E');
input @1 var1-var3;

run;
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The following PROC OPTMODEL statements attempt to solve the TSPLIB instance st70.tsp by using the
MTZ formulation:

/* direct solution using the MTZ formulation */
proc optmodel;

set VERTICES;
set EDGES = {i in VERTICES, j in VERTICES: i ne j};
num xc {VERTICES};
num yc {VERTICES};

/* read in the instance and customer coordinates (xc, yc) */
read data tspData into VERTICES=[_n_] xc=var2 yc=var3;

/* the cost is the euclidean distance rounded to the nearest integer */
num c {<i,j> in EDGES}

init floor( sqrt( ((xc[i]-xc[j])**2 + (yc[i]-yc[j])**2)) + 0.5);

var x {EDGES} binary;
var u {i in 2..card(VERTICES)} >= 2 <= card(VERTICES);

/* each vertex has exactly one in-edge and one out-edge */
con assign_i {i in VERTICES}:

sum {j in VERTICES: i ne j} x[i,j] = 1;
con assign_j {j in VERTICES}:

sum {i in VERTICES: i ne j} x[i,j] = 1;

/* minimize the total cost */
min obj

= sum {<i,j> in EDGES} (if i > j then c[i,j] else c[j,i]) * x[i,j];

/* no subtours */
con mtz {<i,j> in EDGES : (i ne 1) and (j ne 1)}:

u[i] - u[j] + 1 <= (card(VERTICES) - 1) * (1 - x[i,j]);

solve with milp / maxtime = 600;
quit;

It is well known that the MTZ formulation is much weaker than the subtour formulation. The exponential
number of SECs makes it impossible, at least in large instances, to use a direct call to the MILP solver with
the subtour formulation. For this reason, if you want to solve the TSP with one SOLVE statement, you must
use the MTZ formulation and rely strictly on generic cuts and heuristics. Except for very small instances,
this is unlikely to be a good approach.

A much more efficient way to tackle the TSP is to dynamically generate the subtour inequalities as cuts. Typi-
cally this is done by solving the LP relaxation of the two-matching problem, finding violated subtour cuts,
and adding them iteratively. The problem of finding violated cuts is known as the separation problem. In this
case, the separation problem takes the form of a minimum cut problem, which is nontrivial to implement
efficiently. Therefore, for the sake of illustration, an integer program is solved at each step of the process.

The initial formulation of the TSP is the integral two-matching problem. You solve this by using PROC
OPTMODEL to obtain an integral matching, which is not necessarily a tour. In this case, the separation
problem is trivial. If the solution is a connected graph, then it is a tour, so the problem is solved. If the
solution is a disconnected graph, then each component forms a violated subtour constraint. These constraints
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are added to the formulation, and the integer program is solved again. This process is repeated until the
solution defines a tour.

The following PROC OPTMODEL statements solve the TSP by using the subtour formulation and iteratively
adding subtour constraints:

/* iterative solution using the subtour formulation */
proc optmodel;

set VERTICES;
set EDGES = {i in VERTICES, j in VERTICES: i > j};
num xc {VERTICES};
num yc {VERTICES};

num numsubtour init 0;
set SUBTOUR {1..numsubtour};

/* read in the instance and customer coordinates (xc, yc) */
read data tspData into VERTICES=[var1] xc=var2 yc=var3;

/* the cost is the euclidean distance rounded to the nearest integer */
num c {<i,j> in EDGES}

init floor( sqrt( ((xc[i]-xc[j])**2 + (yc[i]-yc[j])**2)) + 0.5);

var x {EDGES} binary;

/* minimize the total cost */
min obj =

sum {<i,j> in EDGES} c[i,j] * x[i,j];

/* each vertex has exactly one in-edge and one out-edge */
con two_match {i in VERTICES}:

sum {j in VERTICES: i > j} x[i,j]
+ sum {j in VERTICES: i < j} x[j,i] = 2;

/* no subtours (these constraints are generated dynamically) */
con subtour_elim {s in 1..numsubtour}:

sum {<i,j> in EDGES: (i in SUBTOUR[s] and j not in SUBTOUR[s])
or (i not in SUBTOUR[s] and j in SUBTOUR[s])} x[i,j] >= 2;

/* this starts the algorithm to find violated subtours */
set <num,num> EDGES1;
set INITVERTICES = setof{<i,j> in EDGES1} i;
set VERTICES1;
set NEIGHBORS;
set <num,num> CLOSURE;
num component {INITVERTICES};
num numcomp init 2;
num iter init 1;
num numiters init 1;
set ITERS = 1..numiters;
num sol {ITERS, EDGES};
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/* initial solve with just matching constraints */
solve;
call symput(compress('obj'||put(iter,best.)),

trim(left(put(round(obj),best.))));
for {<i,j> in EDGES} sol[iter,i,j] = round(x[i,j]);

/* while the solution is disconnected, continue */
do while (numcomp > 1);

iter = iter + 1;

/* find connected components of support graph */
EDGES1 = {<i,j> in EDGES: round(x[i,j].sol) = 1};
EDGES1 = EDGES1 union {setof {<i,j> in EDGES1} <j,i>};
VERTICES1 = INITVERTICES;
CLOSURE = EDGES1;
for {i in INITVERTICES} component[i] = 0;
for {i in VERTICES1} do;

NEIGHBORS = slice(<i,*>,CLOSURE);
CLOSURE = CLOSURE union (NEIGHBORS cross NEIGHBORS);

end;

numcomp = 0;
do while (card(VERTICES1) > 0);

numcomp = numcomp + 1;
for {i in VERTICES1} do;

NEIGHBORS = slice(<i,*>,CLOSURE);
for {j in NEIGHBORS} component[j] = numcomp;
VERTICES1 = VERTICES1 diff NEIGHBORS;
leave;

end;
end;

if numcomp = 1 then leave;
numiters = iter;
numsubtour = numsubtour + numcomp;
for {comp in 1..numcomp} do;

SUBTOUR[numsubtour-numcomp+comp]
= {i in VERTICES: component[i] = comp};

end;

solve;
call symput(compress('obj'||put(iter,best.)),

trim(left(put(round(obj),best.))));
for {<i,j> in EDGES} sol[iter,i,j] = round(x[i,j]);

end;

/* create a data set for use by gplot */
create data solData from

[iter i j]={it in ITERS, <i,j> in EDGES: sol[it,i,j] = 1}
xi=xc[i] yi=yc[i] xj=xc[j] yj=yc[j];

call symput('numiters',put(numiters,best.));
quit;
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You can generate plots of the solution and objective value at each stage by using the following statements:

%macro plotTSP;
%annomac;
%do i = 1 %to &numiters;

/* create annotate data set to draw subtours */
data anno(drop=iter xi yi xj yj);

%SYSTEM(2, 2, 2);
set solData(keep=iter xi yi xj yj);
where iter = &i;
%LINE(xi, yi, xj, yj, *, 1, 1);

run;

title1 h=2 "TSP: Iter = &i, Objective = &&obj&i";
title2;

axis1 label=none;
symbol1 value=dot interpol=none
pointlabel=("#var1" nodropcollisions height=1) cv=black;
plot var3*var2 / haxis=axis1 vaxis=axis1;

run;
quit;

%end;
%mend plotTSP;

%plotTSP;

The plot in Output 7.4.1 shows the solution and objective value at each stage. Notice that each stage restricts
some subset of subtours. When you reach the final stage, you have a valid tour.

NOTE: An alternative way of approaching the TSP is to use a genetic algorithm. See the “Examples” section
in Chapter 4, “The GA Procedure” (SAS/OR User’s Guide: Local Search Optimization), for an example of
how to use PROC GA to solve the TSP.

NOTE: See the “Examples” section in Chapter 2, “The OPTNET Procedure” (SAS/OR User’s Guide: Network
Optimization Algorithms). for an example of how to use PROC OPTNET to solve the TSP.
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Output 7.4.1 Traveling Salesman Problem Iterative Solution
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Overview: NLP Solver
The sparse nonlinear programming (NLP) solver is a component of the OPTMODEL procedure that can solve
optimization problems containing both nonlinear equality and inequality constraints. The general nonlinear
optimization problem can be defined as

minimize f .x/

subject to hi .x/ D 0; i 2 E D f1; 2; : : : ; pg
gi .x/ � 0; i 2 I D f1; 2; : : : ; qg
l � x � u
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where x 2 Rn is the vector of the decision variables; f W Rn 7! R is the objective function; h W Rn 7! Rp

is the vector of equality constraints—that is, h D .h1; : : : ; hp/; g W Rn 7! Rq is the vector of inequality
constraints—that is, g D .g1; : : : ; gq/; and l; u 2 Rn are the vectors of the lower and upper bounds,
respectively, on the decision variables.

It is assumed that the functions f; hi , and gi are twice continuously differentiable. Any point that satisfies
the constraints of the NLP problem is called a feasible point, and the set of all those points forms the feasible
region of the NLP problem—that is, F D fx 2 Rn W h.x/ D 0; g.x/ � 0; l � x � ug.

The NLP problem can have a unique minimum or many different minima, depending on the type of functions
involved. If the objective function is convex, the equality constraint functions are linear, and the inequality
constraint functions are concave, then the NLP problem is called a convex program and has a unique minimum.
All other types of NLP problems are called nonconvex and can contain more than one minimum, usually
called local minima. The solution that achieves the lowest objective value of all local minima is called the
global minimum or global solution of the NLP problem. The NLP solver can find the unique minimum of
convex programs and a local minimum of a general NLP problem. In addition, the solver is equipped with
specific options that enable it to locate the global minimum or a good approximation of it, for those problems
that contain many local minima.

The NLP solver implements the following primal-dual methods for finding a local minimum:

• interior point trust-region line-search algorithm

• active-set trust-region line-search algorithm

Both methods can solve small-, medium-, and large-scale optimization problems efficiently and robustly.
These methods use exact first and second derivatives to calculate search directions. The memory requirements
of both algorithms are reduced dramatically because only nonzero elements of matrices are stored. Conver-
gence of both algorithms is achieved by using a trust-region line-search framework that guides the iterations
towards the optimal solution. If a trust-region subproblem fails to provide a suitable step of improvement, a
line-search is then used to fine tune the trust-region radius and ensure sufficient decrease in objective function
and constraint violations.

The interior point technique implements a primal-dual interior point algorithm in which barrier functions
are used to ensure that the algorithm remains feasible with respect to the bound constraints. Interior point
methods are extremely useful when the optimization problem contains many inequality constraints and you
suspect that most of these constraints will be satisfied as strict inequalities at the optimal solution.

The active-set technique implements an active-set algorithm in which only the inequality constraints that
are satisfied as equalities, together with the original equality constraints, are considered. Once that set of
constraints is identified, active-set algorithms typically converge faster than interior point algorithms. They
converge faster because the size and the complexity of the original optimization problem can be reduced if
only few constraints need to be considered.

For optimization problems that contain many local optima, the NLP solver can be run in multistart mode. If
the multistart mode is specified, the solver samples the feasible region and generates a number of starting
points. Then the local solvers can be called from each of those starting points to converge to different local
optima. The local minimum with the smallest objective value is then reported back to the user as the optimal
solution.

The NLP solver implements many powerful features that are obtained from recent research in the field
of nonlinear optimization algorithms (Akrotirianakis and Rustem 2005; Armand, Gilbert, and Jan-Jégou
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2002; Erway, Gill, and Griffin 2007; Forsgren and Gill 1998; Vanderbei 1999; Wächter and Biegler 2006;
Yamashita 1998). The term primal-dual means that the algorithm iteratively generates better approximations
of the decision variables x (usually called primal variables) in addition to the dual variables (also referred
to as Lagrange multipliers). At every iteration, the algorithm uses a modified Newton’s method to solve a
system of nonlinear equations. The modifications made to Newton’s method are implicitly controlled by
the current trust-region radius. The solution of that system provides the direction and the steps along which
the next approximation of the local minimum is searched. The active-set algorithm ensures that the primal
iterations are always within their bounds—that is, l � xk � u, for every iteration k. However, the interior
approach relaxes this condition by using slack variables, and intermediate iterations might be infeasible.

Getting Started: NLP Solver
The NLP solver consists of two techniques that can solve a wide class of optimization problems efficiently
and robustly. In this section two examples that introduce the two techniques of NLP are presented. The
examples also introduce basic features of the modeling language of PROC OPTMODEL that is used to define
the optimization problem.

The NLP solver can be invoked using the SOLVE statement,

SOLVE WITH NLP < / options > ;

where options specify the technique name, termination criteria, and how to display the results in the iteration
log. For a detailed description of the options, see the section “NLP Solver Options” on page 308.

A Simple Problem

Consider the following simple example of a nonlinear optimization problem:

minimize f .x/ D .x1 C 3x2 C x3/
2 C 4.x1 � x2/

2

subject to x1 C x2 C x3 D 1

6x2 C 4x3 � x
3
1 � 3 � 0

xi � 0; i D 1; 2; 3

The problem consists of a quadratic objective function, a linear equality constraint, and a nonlinear inequality
constraint. The goal is to find a local minimum, starting from the point x0 D .0:1; 0:7; 0:2/. You can use the
following call to PROC OPTMODEL to find a local minimum:

proc optmodel;
var x{1..3} >= 0;
minimize f = (x[1] + 3*x[2] + x[3])**2 + 4*(x[1] - x[2])**2;

con constr1: sum{i in 1..3}x[i] = 1;
con constr2: 6*x[2] + 4*x[3] - x[1]**3 - 3 >= 0;

/* starting point */
x[1] = 0.1;
x[2] = 0.7;
x[3] = 0.2;
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solve with NLP;
print x;

quit;

Because no options have been specified, the default solver (INTERIORPOINT) is used to solve the problem.
The SAS output displays a detailed summary of the problem along with the status of the solver at termination,
the total number of iterations required, and the value of the objective function at the local minimum. The
summaries and the optimal solution are shown in Figure 8.1.

Figure 8.1 Problem Summary, Solution Summary, and the Optimal Solution

The OPTMODEL Procedure

Problem Summary

Objective Sense Minimization
Objective Function f
Objective Type Quadratic

Number of Variables 3
Bounded Above 0
Bounded Below 3
Bounded Below and Above 0
Free 0
Fixed 0

Number of Constraints 2
Linear LE (<=) 0
Linear EQ (=) 1
Linear GE (>=) 0
Linear Range 0
Nonlinear LE (<=) 0
Nonlinear EQ (=) 0
Nonlinear GE (>=) 1
Nonlinear Range 0

Performance Information

Execution Mode Single-Machine
Number of Threads 4



Getting Started: NLP Solver F 301

Figure 8.1 continued

Solution Summary

Solver NLP
Algorithm Interior Point
Objective Function f
Solution Status Optimal
Objective Value 1.000017384

Optimality Error 5E-7
Infeasibility 2.5088265E-8

Iterations 5
Presolve Time 0.00
Solution Time 0.03

[1] x

1 0.0003034484
2 0.0000042439
3 0.9996923328

The SAS log shown in Figure 8.2 displays a brief summary of the problem being solved, followed by the
iterations that are generated by the solver.

Figure 8.2 Progress of the Algorithm as Shown in the Log

NOTE: Problem generation will use 4 threads.
NOTE: The problem has 3 variables (0 free, 0 fixed).
NOTE: The problem has 1 linear constraints (0 LE, 1 EQ, 0 GE, 0 range).
NOTE: The problem has 3 linear constraint coefficients.
NOTE: The problem has 1 nonlinear constraints (0 LE, 0 EQ, 1 GE, 0 range).
NOTE: The OPTMODEL presolver removed 0 variables, 0 linear constraints, and 0

nonlinear constraints.
NOTE: Using analytic derivatives for objective.
NOTE: Using analytic derivatives for nonlinear constraints.
NOTE: The NLP solver is called.
NOTE: The Interior Point algorithm is used.

Objective Optimality
Iter Value Infeasibility Error

0 7.20000000 0 6.40213404
1 1.22115550 0.00042385 0.00500000
2 1.00188693 0.00003290 0.00480263
3 1.00275609 0.00002123 0.00005000
4 1.00001702 0.0000000252254 0.00187172
5 1.00001738 0.0000000250883 0.0000005000000

NOTE: Optimal.
NOTE: Objective = 1.000017384.
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A Larger Optimization Problem

Consider the following larger optimization problem:

minimize f .x/ D
P1000
iD1 xiyi C

1
2

P5
jD1 z

2
j

subject to xk C yk C
P5
jD1 zj D 5; for k D 1; 2; : : : ; 1000P1000

iD1 .xi C yi /C
P5
jD1 zj � 6

�1 � xi � 1; i D 1; 2; : : : ; 1000

�1 � yi � 1; i D 1; 2; : : : ; 1000

0 � zi � 2; i D 1; 2; : : : ; 5

The problem consists of a quadratic objective function, 1,000 linear equality constraints, and a linear
inequality constraint. There are also 2,005 variables. The goal is to find a local minimum by using the
ACTIVESET technique. This can be accomplished by issuing the following call to PROC OPTMODEL:

proc optmodel;
number n = 1000;
number b = 5;
var x{1..n} >= -1 <= 1 init 0.99;
var y{1..n} >= -1 <= 1 init -0.99;
var z{1..b} >= 0 <= 2 init 0.5;
minimize f = sum {i in 1..n} x[i] * y[i] + sum {j in 1..b} 0.5 * z[j]^2;
con cons1{k in 1..n}: x[k] + y[k] + sum {j in 1..b} z[j] = b;
con cons2: sum {i in 1..n} (x[i] + y[i]) + sum {j in 1..b} z[j] >= b + 1;
solve with NLP / algorithm=activeset logfreq=10;

quit;

The SAS output displays a detailed summary of the problem along with the status of the solver at termination,
the total number of iterations required, and the value of the objective function at the local minimum. The
summaries are shown in Figure 8.3.
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Figure 8.3 Problem Summary and Solution Summary

The OPTMODEL Procedure

Problem Summary

Objective Sense Minimization
Objective Function f
Objective Type Quadratic

Number of Variables 2005
Bounded Above 0
Bounded Below 0
Bounded Below and Above 2005
Free 0
Fixed 0

Number of Constraints 1001
Linear LE (<=) 0
Linear EQ (=) 1000
Linear GE (>=) 1
Linear Range 0

Performance Information

Execution Mode Single-Machine
Number of Threads 4

Solution Summary

Solver NLP
Algorithm Active Set
Objective Function f
Solution Status Optimal
Objective Value -996.5000004

Optimality Error 6.133411E-7
Infeasibility 5.4803721E-7

Iterations 5
Presolve Time 0.03
Solution Time 0.81

The SAS log shown in Figure 8.4 displays a brief summary of the problem that is being solved, followed by
the iterations that are generated by the solver.
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Figure 8.4 Progress of the Algorithm as Shown in the Log

NOTE: Problem generation will use 4 threads.
NOTE: The problem has 2005 variables (0 free, 0 fixed).
NOTE: The problem has 1001 linear constraints (0 LE, 1000 EQ, 1 GE, 0 range).
NOTE: The problem has 9005 linear constraint coefficients.
NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).
NOTE: The OPTMODEL presolver removed 0 variables, 0 linear constraints, and 0

nonlinear constraints.
NOTE: Using analytic derivatives for objective.
NOTE: Using 2 threads for nonlinear evaluation.
NOTE: The NLP solver is called.
NOTE: The Active Set algorithm is used.

Objective Optimality
Iter Value Infeasibility Error

0 -979.47500000 3.50000000 0.50000000
9 -996.49999988 0.0000002654239 0.0000000000116

NOTE: Optimal.
NOTE: Objective = -996.4999999.

An Optimization Problem with Many Local Minima

Consider the following optimization problem:

minimizef .x/ D esin.50x/ C sin.60ey/C sin.70 sin.x//C sin.sin.80y//
� sin.10.x C y//C .x2 C y2/=4

subject to �1 � x � 1

�1 � y � 1

The objective function is highly nonlinear and contains many local minima. The NLP solver provides you
with the option of searching the feasible region and identifying local minima of better quality. This is
achieved by writing the following SAS program:

proc optmodel;
var x >= -1 <= 1;
var y >= -1 <= 1;
min f = exp(sin(50*x)) + sin(60*exp(y)) + sin(70*sin(x)) + sin(sin(80*y))

- sin(10*(x+y)) + (x^2+y^2)/4;
solve with nlp / multistart seed=94245 msmaxstarts=30;

quit;

The MULTISTART option is specified, which directs the algorithm to start the local solver from many
different starting points. The SAS log is shown in Figure 8.5.
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Figure 8.5 Progress of the Algorithm as Shown in the Log

NOTE: Problem generation will use 4 threads.
NOTE: The problem has 2 variables (0 free, 0 fixed).
NOTE: The problem has 0 linear constraints (0 LE, 0 EQ, 0 GE, 0 range).
NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).
NOTE: The OPTMODEL presolver removed 0 variables, 0 linear constraints, and 0

nonlinear constraints.
NOTE: Using analytic derivatives for objective.
NOTE: The NLP solver is called.
NOTE: The Interior Point algorithm is used.
NOTE: The MULTISTART option is enabled.
NOTE: The deterministic parallel mode is enabled.
NOTE: The Multistart algorithm is executing in single-machine mode.
NOTE: The Multistart algorithm is using up to 4 threads.
NOTE: Random number seed 94245 is used.

Best Local Optimality Infeasi- Local Local
Start Objective Objective Error bility Iters Status

1 -1.8567821 -1.8567821 5E-7 0 3 Optimal
2 -2.9390086 -2.9390086 5E-7 0 3 Optimal
3 -2.9390086 -2.6561783 5E-7 0 3 Optimal
4 -3.3068686 -3.3068686 5E-7 0 3 Optimal
5 -3.3068686 -2.2355863 5E-7 0 3 Optimal
6 -3.3068686 -1.9014527 6.14439E-7 6.14439E-7 4 Optimal
7 -3.3068686 -0.4808983 5E-7 0 3 Optimal
8 -3.3068686 -1.5173191 5E-7 0 4 Optimal
9 -3.3068686 -2.076195 5E-7 0 4 Optimal

10 -3.3068686 -2.1930943 5E-7 0 5 Optimal
11 -3.3068686 -0.7857749 5E-7 0 5 Optimal
12 -3.3068686 -0.4033346 5E-7 0 3 Optimal
13 -3.3068686 -0.5926643 5E-7 0 4 Optimal
14 -3.3068686 -2.0402058 5E-7 0 4 Optimal
15 -3.3068686 -2.9525781 5E-7 0 4 Optimal
16 * -3.3068686 -1.3289057 5E-7 0 4 Optimal
17 -3.3068686 -1.5650191 5E-7 0 7 Optimal
18 -3.3068686 -1.404132 5E-7 0 3 Optimal
19 -3.3068686 -2.4632393 5E-7 0 3 Optimal
20 -3.3068686 -2.4541355 5E-7 0 4 Optimal
21 -3.3068686 -2.5171432 5E-7 0 5 Optimal
22 -3.3068686 -1.3559281 8.74345E-7 8.74345E-7 3 Optimal
23 -3.3068686 -1.031811 5E-7 0 4 Optimal
24 -3.3068686 -1.0823455 5E-7 0 5 Optimal
25 -3.3068686 -2.387082 5E-7 0 4 Optimal
26 -3.3068686 -0.6723829 5E-7 0 4 Optimal
27 -3.3068686 -1.2265443 5E-7 0 4 Optimal
28 -3.3068686 -0.6391886 5E-7 0 4 Optimal
29 -3.3068686 -0.9393803 5E-7 0 4 Optimal
30 -3.3068686 -0.5519164 5E-7 0 3 Optimal

NOTE: The Multistart algorithm generated 320 sample points.
NOTE: 30 distinct local optima were found.
NOTE: The best objective value found by local solver = -3.306868647.
NOTE: The solution found by local solver with objective = -3.306868647 was

returned.
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The SAS log presents additional information when the MULTISTART option is enabled. The first column
counts the number of restarts of the local solver. The second column records the best local optimum that
has been found so far, and the third through sixth columns record the local optimum to which the solver has
converged. The final column records the status of the local solver at every iteration.

The SAS output is shown in Figure 8.6.

Figure 8.6 Problem Summary and Solution Summary

The OPTMODEL Procedure

Problem Summary

Objective Sense Minimization
Objective Function f
Objective Type Nonlinear

Number of Variables 2
Bounded Above 0
Bounded Below 0
Bounded Below and Above 2
Free 0
Fixed 0

Number of Constraints 0

Performance Information

Execution Mode Single-Machine
Number of Threads 4

Solution Summary

Solver Multistart NLP
Algorithm Interior Point
Objective Function f
Solution Status Optimal
Objective Value -3.306868647

Number of Starts 30
Number of Sample Points 320
Number of Distinct Optima 30
Random Seed Used 94245
Optimality Error 5E-7
Infeasibility 0

Presolve Time 0.00
Solution Time 3.57
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Syntax: NLP Solver
The following PROC OPTMODEL statement is available for the NLP solver:

SOLVE WITH NLP < / options > ;

Functional Summary
Table 8.1 summarizes the options that can be used with the SOLVE WITH NLP statement.

Table 8.1 Options for the NLP Solver

Description Option
Multistart Options
Specifies the maximum range of values that each variable can
take during the sampling process

MSBNDRANGE=

Specifies the tolerance for local optima to be considered distinct MSDISTTOL=
Specifies the time limit in multistart mode MSMAXTIME=
Specifies the number of starting points to be used by multistart MSMAXSTARTS=
Specifies the seed used to generate random numbers SEED=
Optimization Options
Specifies the optimization technique ALGORITHM=
Directs the local solver to start from multiple initial points MULTISTART
Output Options
Specifies the frequency of printing solution progress (local
solvers)

LOGFREQ=

Specifies the amount of printing solution progress in multistart
mode

MSLOGLEVEL=

Specifies the allowable types of output solution SOLTYPE=
Solver Options
Specifies the feasibility tolerance FEASTOL=
Specifies the type of Hessian used by the solver HESSTYPE=
Specifies the maximum number of iterations MAXITER=
Specifies the time limit for the optimization process MAXTIME=
Specifies the upper limit on the objective OBJLIMIT=
Specifies the convergence tolerance OPTTOL=
Specifies units of CPU time or real time TIMETYPE=
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NLP Solver Options
This section describes the options that are recognized by the NLP solver. These options can be specified
after a forward slash (/) in the SOLVE statement, provided that the NLP solver is explicitly specified using a
WITH clause.

Multistart Options

MSBNDRANGE=M
defines the range from which each variable can take values during the sampling process. This option
affects only the sampling process that determines starting points for the local solver. It does not affect
the bounds of the original nonlinear optimization problem. More specifically, if the ith variable xi has
lower and upper bounds `i and ui respectively (that is, `i � xi � ui ), then an initial point is generated
by a sampling process as follows:

For each sample point x, the ith coordinate xi is generated so that the following bounds hold where x0i
is the default starting point or a specified starting point:

li � xi � ui if li and ui are both finite
li � xi � li CM if only li is finite
ui �M � xi � ui if only ui is finite
x0i �M=2 � xi � x

0
i CM=2 otherwise

This option is effective only when the MULTISTART option is specified. The default value is 200 in a
shared-memory computing environment and 1,000 in a distributed computing environment.

MSDISTTOL=�
defines the tolerance by which two optimal points are considered distinct. Optimal points are considered
distinct if the Euclidean distance between them is at least �. This option is effective only when the
MULTISTART option is specified. The default is �=1.0E–6.

MSMAXTIME=T
defines the maximum allowable time T (in seconds) for the NLP solver to locate the best local
optimum in multistart mode. The value of the TIMETYPE= option determines the type of units used.
The time specified by the MSMAXTIME= option is checked only once after the completion of the
local solver. Since the local solver might be called many times, the maximum time specified for
multistart is recommended to be greater than the maximum time specified for the local solver (that
is, MSMAXTIME �MAXTIME). This option is effective only when the MULTISTART option is
specified. If you do not specify this option, the procedure does not stop based on the amount of time
elapsed.

MSMAXSTARTS=N
defines the maximum number of starting points to be used for local optimization. That is, there will
be no more than N local optimization calls in the multistart algorithm. You can specify N to be any
nonnegative integer. When N = 0, the algorithm uses the default value of this option. In a shared
memory computing environment, the default value is 100. In a distributed computing environment, the
default value is a number proportional to the number of threads across all the grid nodes (usually more
than 100). This option is effective only when the MULTISTART option is specified.
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SEED=N
specifies a positive integer to be used as the seed for generating random number sequences. You can
use this option to replicate results from different runs.

Optimization Options

ALGORITHM=keyword

TECHNIQUE=keyword

TECH=keyword

SOLVER=keyword
specifies the optimization technique to be used to solve the problem. The following keywords are valid:

INTERIORPOINT
uses a primal-dual interior point method. This technique is recommended for both small- and
large-scale nonlinear optimization problems. This is the preferred solver if the problem includes
a large number of inactive constraints.

ACTIVESET
uses a primal-dual active-set method. This technique is recommended for both small- and large-
scale nonlinear optimization problems. This is the preferred solver if the problem includes only
bound constraints or if the optimal active set can be quickly determined by the solver.

CONCURRENT (experimental)
runs the INTERIORPOINT and ACTIVESET techniques in parallel, with one thread using the
INTERIORPOINT technique and the other thread using the ACTIVESET technique. The solution
is returned by the first method that terminates.

The default is INTERIORPOINT.

MULTISTART

MS
enables multistart mode. In this mode, the local solver solves the problem from multiple starting
points, possibly finding a better local minimum as a result. This option is disabled by default. For
more information about multistart, see the section “Multistart” on page 317.

Output Options

LOGFREQ=N

PRINTFREQ=N
specifies how often the iterations are displayed in the SAS log. N should be an integer between zero
and the largest four-byte, signed integer, which is 231 � 1. If N � 1, the solver prints only those
iterations that are a multiple of N. If N D 0, no iteration is displayed in the log. The default value is 1.
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MSLOGLEVEL=number

MSPRINTLEVEL=number
defines the amount of information displayed in the SAS log by the MULTISTART option. Table 8.2
describes the valid values of this option.

Table 8.2 Values for MSLOGLEVEL= Option

number Description
0 Turns off all solver-related messages to SAS log
1 Displays multistart summary information when

the algorithm terminates
2 Displays multistart iteration log and summary

information when the algorithm terminates
3 Displays the same information as

MSLOGLEVEL=2 and might display additional
information

This option is effective only when the MULTISTART option is specified. The default is 2.

SOLTYPE=0 j 1
specifies whether the NLP solver should return only a solution that is locally optimal. If SOLTYPE=0,
the solver returns a locally optimal solution, provided it locates one. If SOLTYPE=1, the solver returns
the best feasible solution found, provided its objective value is better than that of the locally optimal
solution found. The default is 1.

Solver Options

FEASTOL=�
defines the feasible tolerance. The solver will exit if the constraint violation is less than FEASTOL and
the scaled optimality conditions are less than OPTTOL. The default is �=1E–6.

HESSTYPE=FULL j PRODUCT
specifies the type of Hessian to be used by the solver. The valid keywords for this option are FULL
and PRODUCT. If HESSTYPE=FULL, the solver uses a full Hessian. If HESSTYPE=PRODUCT, the
solver uses only Hessian-vector products, not the full Hessian. When the solver uses only Hessian-
vector products to find a search direction, it usually uses much less memory, especially when the
problem is large and the Hessian is not sparse. On the other hand, when the full Hessian is used, the
algorithm can create a better preconditioner to solve the problem in less CPU time. The default is
FULL.

MAXITER=N
specifies that the solver take at most N major iterations to determine an optimum of the NLP problem.
The value of N is an integer between zero and the largest four-byte, signed integer, which is 231 � 1.
A major iteration in NLP consists of finding a descent direction and a step size along which the next
approximation of the optimum resides. The default is 5,000 iterations.
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MAXTIME=t
specifies an upper limit of t units of time for the optimization process, including problem generation
time and solution time. The value of the TIMETYPE= option determines the type of units used. If you
do not specify the MAXTIME= option, the solver does not stop based on the amount of time elapsed.
The value of t can be any positive number; the default value is the positive number that has the largest
absolute value that can be represented in your operating environment.

OBJLIMIT=M
specifies an upper limit on the magnitude of the objective value. For a minimization problem, the
algorithm terminates when the objective value becomes less than –M; for a maximization problem, the
algorithm stops when the objective value exceeds M. The algorithm stopping implies that either the
problem is unbounded or the algorithm diverges. If optimization were allowed to continue, numerical
difficulty might be encountered. The default is M=1EC20. The minimum acceptable value of M is
1EC8. If the specified value of M is less than 1EC8, the value is reset to the default value 1EC20.

OPTTOL=�

RELOPTTOL=�
defines the measure by which you can decide whether the current iterate is an acceptable approximation
of a local minimum. The value of this option is a positive real number. The NLP solver determines that
the current iterate is a local minimum when the norm of the scaled vector of the optimality conditions
is less than � and the true constraint violation is less than FEASTOL. The default is �=1E–6.

TIMETYPE=number j string
specifies the units of time used by the MAXTIME= option and reported by the PRESOLVE_TIME
and SOLUTION_TIME terms in the _OROPTMODEL_ macro variable. Table 8.3 describes the valid
values of the TIMETYPE= option.

Table 8.3 Values for TIMETYPE= Option

number string Description
0 CPU Specifies units of CPU time
1 REAL Specifies units of real time

The Optimization Statistics table, an output of PROC OPTMODEL if you specify the PRINTLEVEL=2
option in the PROC OPTMODEL statement, also includes the same time units for “Presolver Time”
and “Solver Time.” The other times (such as “Problem Generation Time”) in the Optimization Statistics
table are always CPU times.

The default value of the TIMETYPE= option depends on the values of the NTHREADS= and NODES=
options in the PERFORMANCE statement of the OPTMODEL procedure. See the section “PERFOR-
MANCE Statement” on page 28 in Chapter 4, “Shared Concepts and Topics.” for more information
about the NTHREADS= and NODES= options.

If you set the value of the NODES= option to 0 and the value of the NTHREADS= option to 1, the
default value of the TIMETYPE= option is CPU. Otherwise the default value of the TIMETYPE=
option is REAL.
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Details: NLP Solver
This section presents a brief discussion about the algorithmic details of the NLP solver. First, the notation is
defined. Next, an introduction to the fundamental ideas in constrained optimization is presented; the main
point of the second section is to present the necessary and sufficient optimality conditions, which play a
central role in all optimization algorithms. The section concludes with a general overview of primal-dual
interior point and active-set algorithms for nonlinear optimization. A detailed treatment of the preceding
topics can be found in Nocedal and Wright (1999), Wright (1997), and Forsgren, Gill, and Wright (2002).

Basic Definitions and Notation
The gradient of a function f W Rn 7! R is the vector of all the first partial derivatives of f and is denoted by

rf .x/ D

�
@f

@x1
;
@f

@x2
; : : : ;

@f

@xn

�T

where the superscript T denotes the transpose of a vector.

The Hessian matrix of f, denoted by r2f .x/, or simply by H.x/, is an n � n symmetric matrix whose .i; j /
element is the second partial derivative of f .x/ with respect to xi and xj . That is, Hi;j .x/ D

@2f .x/
@xi@xj

.

Consider the vector function, c W Rn 7! RpCq , whose first p elements are the equality constraint
functions hi .x/; i D 1; 2; : : : ; p, and whose last q elements are the inequality constraint functions
gi .x/; i D 1; 2; : : : ; q. That is,

c.x/ D .h.x/ W g.x//T D .h1.x/; : : : ; hp.x/ W g1.x/; : : : ; gq.x//
T

The .p C q/ � n matrix whose ith row is the gradient of the ith element of c.x/ is called the Jacobian matrix
of c.x/ (or simply the Jacobian of the NLP problem) and is denoted by J.x/. You can also use Jh.x/ to
denote the p � n Jacobian matrix of the equality constraints and use Jg.x/ to denote the q � n Jacobian
matrix of the inequality constraints. It is easy to see that

Constrained Optimization
A function that plays a pivotal role in establishing conditions that characterize a local minimum of an NLP
problem is the Lagrangian function L.x; y; z/, which is defined as

L.x; y; z/ D f .x/ �
X
i2E

yihi .x/ �
X
i2I

zigi .x/

Note that the Lagrangian function can be seen as a linear combination of the objective and constraint functions.
The coefficients of the constraints, yi ; i 2 E , and zi ; i 2 I, are called the Lagrange multipliers or dual
variables. At a feasible point Ox, an inequality constraint is called active if it is satisfied as an equality—that is,
gi . Ox/ D 0. The set of active constraints at a feasible point Ox is then defined as the union of the index set of
the equality constraints, E , and the indices of those inequality constraints that are active at Ox; that is,

A. Ox/ D E [ fi 2 I W gi . Ox/ D 0g
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An important condition that is assumed to hold in the majority of optimization algorithms is the so-called
linear independence constraint qualification (LICQ). The LICQ states that at any feasible point Ox, the
gradients of all the active constraints are linearly independent. The main purpose of the LICQ is to ensure
that the set of constraints is well-defined in a way that there are no redundant constraints or in a way that
there are no constraints defined such that their gradients are always equal to zero.

The First-Order Necessary Optimality Conditions

If x� is a local minimum of the NLP problem and the LICQ holds at x�, then there are vectors of Lagrange
multipliers y� and z�, with components y�i ; i 2 E , and z�i ; i 2 I, respectively, such that the following
conditions are satisfied:

rxL.x�; y�; z�/ D 0

hi .x
�/ D 0; i 2 E

gi .x
�/ � 0; i 2 I
z�i � 0; i 2 I

z�i gi .x
�/ D 0; i 2 I

where rxL.x�; y�; z�/ is the gradient of the Lagrangian function with respect to x, defined as

rxL.x�; y�; z�/ D rf .x/ �
X
i2E

yirhi .x/ �
X
i2I

zirgi .x/

The preceding conditions are often called the Karush-Kuhn-Tucker (KKT) conditions. The last group of
equations (zigi .x/ D 0; i 2 I ) is called the complementarity condition. Its main aim is to try to force the
Lagrange multipliers, z�i , of the inactive inequalities (that is, those inequalities with gi .x�/ > 0) to zero.

The KKT conditions describe the way the first derivatives of the objective and constraints are related at a
local minimum x�. However, they are not enough to fully characterize a local minimum. The second-order
optimality conditions attempt to fulfill this aim by examining the curvature of the Hessian matrix of the
Lagrangian function at a point that satisfies the KKT conditions.

The Second-Order Necessary Optimality Condition

Let x� be a local minimum of the NLP problem, and let y� and z� be the corresponding Lagrange multipliers
that satisfy the first-order optimality conditions. Then dTr2xL.x�; y�; z�/d � 0 for all nonzero vectors d
that satisfy the following conditions:

1. rhT
i .x
�/d D 0, 8i 2 E

2. rgT
i .x
�/d D 0, 8i 2 A.x�/ \ I, such that z�i > 0

3. rgT
i .x
�/d � 0, 8i 2 A.x�/ \ I, such that z�i D 0

The second-order necessary optimality condition states that, at a local minimum, the curvature of the
Lagrangian function along the directions that satisfy the preceding conditions must be nonnegative.
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Interior Point Algorithm
Primal-dual interior point methods can be classified into two categories: feasible and infeasible. The first
category requires that the starting point and all subsequent iterations of the algorithm strictly satisfy all the
inequality constraints. The second category relaxes those requirements and allows the iterations to violate
some or all of the inequality constraints during the course of the minimization procedure. The NLP solver
implements an infeasible algorithm; this section concentrates on that type of algorithm.

To make the notation less cluttered and the fundamentals of interior point methods easier to understand,
consider without loss of generality the following simpler NLP problem:

minimize f .x/

subject to gi .x/ � 0; i 2 I D f1; 2; : : : ; qg

Note that the equality and bound constraints have been omitted from the preceding problem. Initially, slack
variables are added to the inequality constraints, giving rise to the problem

minimize f .x/

subject to gi .x/ � si D 0; i 2 I
s � 0

where s D .s1; : : : ; sq/
T is the vector of slack variables, which are required to be nonnegative. Next, all

the nonnegativity constraints on the slack variables are eliminated by being incorporated into the objective
function, by means of a logarithmic function. This gives rise to the equality-constrained NLP problem

minimize B.x; s/ D f .x/ � �
P
i2I ln.si /

subject to gi .x/ � si D 0; i 2 I

where � is a positive parameter. The nonnegativity constraints on the slack variables are implicitly enforced
by the logarithmic functions, since the logarithmic function prohibits s from taking zero or negative values.

Next, the equality constraints can be absorbed by using a quadratic penalty function to obtain the following:

minimize M.x; s/ D f .x/C
1

2�
kg.x/ � sk22 � �

P
i2I ln.si /

The preceding unconstrained problem is often called the penalty-barrier subproblem. Depending on the size
of the parameter �, a local minimum of the barrier problem provides an approximation to the local minimum
of the original NLP problem. The smaller the size of �, the better the approximation becomes. Infeasible
primal-dual interior point algorithms repeatedly solve the penalty-barrier problem for different values of �
that progressively go to zero, in order to get as close as possible to a local minimum of the original NLP
problem.

An unconstrained minimizer of the penalty-barrier problem must satisfy the equations

rf .x/ � J.x/Tz D 0

z � �S�1e D 0

where z D �.g.x/ � s/=�; J.x/ is the Jacobian matrix of the vector function g.x/, S is the diagonal matrix
whose elements are the elements of the vector s (that is, S D diagfs1; : : : ; sqg), and e is a vector of all ones.
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Multiplying the second equation by S and adding the definition of z as a third equation produces the following
equivalent nonlinear system:

F �.x; s; z/ D

0@ rf .x/ � J.x/TzSz � e

g.x/ � s C �z

1A D 0
Note that if � D 0, the preceding conditions represent the optimality conditions of the original optimization
problem, after adding slack variables. One of the main aims of the algorithm is to gradually reduce the
value of � to zero, so that it converges to a local optimum of the original NLP problem. The rate by which
� approaches zero affects the overall efficiency of the algorithm. Algorithms that treat z as an additional
variable are considered primal-dual, while those that enforce the definition of z D �.g.x/ � s/=� at each
iteration are consider purely primal approaches.

At iteration k, the infeasible primal-dual interior point algorithm approximately solves the preceding system
by using Newton’s method. The Newton system is24 HL.x

k; zk/ 0 �J.xk/T

0 Zk Sk

J.xk/ �I �I

3524 �xk

�sk

�zk

35 D �
24 rxf .xk/ � J.xk/Tz��e C Skzk

g.xk/ � sk C �zk

35
where HL is the Hessian matrix of the Lagrangian function L.x; z/ D f .x/ � zTg.x/ of the original NLP
problem; that is,

HL.x; z/ D r
2f .x/ �

X
i2I

zir
2gi .x/

The solution .�xk; �sk; �zk/ of the Newton system provides a direction to move from the current iteration
.xk; sk; zk/ to the next,

.xkC1; skC1; zkC1/ D .xk; sk; zk/C ˛.�xk; �sk; �zk/

where ˛ is the step length along the Newton direction. The step length is determined through a line-search
procedure that ensures sufficient decrease of a merit function based on the augmented Lagrangian function
of the barrier problem. The role of the merit function and the line-search procedure is to ensure that the
objective and the infeasibility reduce sufficiently at every iteration and that the iterations approach a local
minimum of the original NLP problem.

Active-Set Method
Active-set methods differ from interior point methods in that no barrier term is used to ensure that the
algorithm remains interior with respect to the inequality constraints. Instead, attempts are made to learn
the true active set. For simplicity, use the same initial slack formulation used by the interior point method
description,

minimize f .x/

subject to gi .x/ � si D 0; i 2 I
s � 0
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where s D .s1; : : : ; sq/
T is the vector of slack variables, which are required to be nonnegative. Begin by

absorbing the equality constraints as before into a penalty function, but keep the slack bound constraints
explicitly:

minimize M.x; s/ D f .x/C
1

2�
kg.x/ � sk22

subject to s � 0

where � is a positive parameter. Given a solution pair .x.�/; s.�// for the preceding problem, you can define
the active-set projection matrix P as follows:

Pij D

�
1 if i D j and si .�/ D 0
0 otherwise.

Then .x.�/; s.�// is also a solution of the equality constraint subproblem:

minimize M.x; s/ D f .x/C
1

2�
kg.x/ � sk22

subject to Ps D 0:

The minimizer of the preceding subproblem must be a stationary point of the Lagrangian function

L�.x; s; z/ D f .x/C
1

2�
kg.x/ � sk22 � z

TPs

which gives the optimality equations

rxL�.x; s; z/ D rf .x/ � J.x/T y D 0

rsL�.x; s; z/ D y � P T z D 0

D Ps D 0

where y D �.g.x/ � s/=�. Using the second equation, you can simplify the preceding equations to get the
following optimality conditions for the bound-constrained penalty subproblem:

rf .x/ � J.x/TP T z D 0

P.g.x/ � s/C �z D 0

P s D 0

Using the third equation directly, you can reduce the system further to

rf .x/ � J.x/TP T z D 0

Pg.x/C �z D 0

At iteration k, the primal-dual active-set algorithm approximately solves the preceding system by using
Newton’s method. The Newton system is�

HL.x
k; zk/ �JT

A
JA �I

� �
�xk

�zk

�
D �

�
rxf .x

k/ � JT
A z

Pg.xk/C �zk

�
where JA D PJ.xk/ andHL denotes the Hessian of the Lagrangian function f .x/�zTPg.x/. The solution
.�xk; �zk/ of the Newton system provides a direction to move from the current iteration .xk; sk; zk/ to the
next,

.xkC1; zkC1/ D .xk; zk/C ˛.�xk; �zk/
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where ˛ is the step length along the Newton direction. The corresponding slack variable update skC1 is
defined as the solution to the following subproblem whose solution can be computed analytically:

minimize M.xkC1; s/ D f .x/C
1

2�
kg.xkC1/ � sk22

subject to s � 0

The step length ˛ is then determined in a similar manner to the preceding interior point approach. At each
iteration, the definition of the active-set projection matrix P is updated with respect to the new value of the
constraint function g.xkC1/. For large-scale NLP, the computational bottleneck typically arises in seeking to
solve the Newton system. Thus active-set methods can achieve substantial computational savings when the
size of JA is much smaller than J.x/; however, convergence can be slow if the active-set estimate changes
combinatorially. Further, the active-set algorithm is often the superior algorithm when only bound constraints
are present. In practice, both the interior point and active-set approach incorporate more sophisticated merit
functions than those described in the preceding sections; however, their description is beyond the scope of
this document. See Gill and Robinson (2010) for further reading.

Multistart
Frequently, nonlinear optimization problems contain many local minima because the objective or the
constraints are nonconvex functions. The quality of different local minima is measured by the objective value
achieved at those points. For example, if x�1 and x�2 are two distinct local minima and f .x�1 / � f .x

�
2 /, then

x�1 is said to be of better quality than x�2 . The NLP solver provides a mechanism that can locate local minima
of better quality by starting the local solver multiple times from different initial points. By doing so, the local
solver can converge to different local minima. The local minimum with the lowest objective value is then
reported back to the user.

The multistart feature consists of two phases. In the first phase, the entire feasible region is explored by
generating sample points from a uniform distribution. The aim of this phase is to place at least one sample
point in the region of attraction of every local minimum. Here the region of attraction of a local minimum is
defined as the set of feasible points that, when used as starting points, enable a local solver to converge to
that local minimum.

During the second phase, a subset of the sample points generated in the first phase is chosen by applying a
clustering technique. The goal of the clustering technique is to group the initial sample points around the
local minima and allow only a single local optimization to start from each cluster or group. The clustering
technique aims to reduce computation time by sparing the work of unnecessarily starting multiple local
optimizations within the region of attraction of the same local minimum.

The number of starting points is critical to the time spent by the solver to find a good local minimum. You
can specify the maximum number of starting points by using the MSMAXSTARTS= option. If this option
is not specified, the solver determines the minimum number of starting points that can provide reasonable
evidence that a good local minimum will be found.

Many optimization problems contain variables with infinite upper or lower bounds. These variables can
cause the sampling procedure to generate points that are not useful for locating different local minima. The
efficiency of the sampling procedure can be increased by reducing the range of these variables by using the
MSBNDRANGE= option. This option forces the sampling procedure to generate points that are in a smaller
interval, thereby increasing the efficiency of the solver to converge to a local optimum.
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The multistart feature is compatible with the PERFORMANCE statement in the OPTMODEL procedure.
See Chapter 4, “Shared Concepts and Topics,” for more information about the PERFORMANCE statement.
The multistart feature currently supports only the DETERMINISTIC value for the PARALLELMODE=
option in the PERFORMANCE statement. To ensure reproducible results, specify a nonzero value for the
SEED= option.

Accessing the Starting Point That Leads to the Best Local Optimum

The starting point that leads to the best local optimum can be accessed by using the .msinit suffix in PROC
OPTMODEL. In some cases, the knowledge of that starting point might be useful. For example, you can
run the local solver again but this time providing as initial point the one that is stored in .msinit. This way
the multistart explores a different part of the feasible region and might discover a local optimum of better
quality than those found in previous runs. The use of the suffix .msinit is demonstrated in Example 8.5. For
more information about suffixes in PROC OPTMODEL, see “Suffixes” on page 131 in Chapter 5, “The
OPTMODEL Procedure.”

Iteration Log for the Local Solver
The iteration log for the local solver provides detailed information about progress towards a locally optimal
solution. This log appears when multistart mode is disabled.

The following information is displayed in the log:

Iter indicates the iteration number.

Objective Value indicates the objective function value.

Infeasibility indicates the maximum value out of all constraint violations.

Optimality Error indicates the relative optimality error (see the section “Solver Termination Criterion” on
page 319).

Iteration Log for Multistart
When the MULTISTART option is enabled, the iteration log differs from that of the local solver. More
specifically, when a value of 2 is specified for the MSLOGLEVEL= option, the following information is
displayed in the log:

Start indicates the index number of each local optimization run. The following indicators can
appear beside this number to provide additional information about the run:

* indicates the local optimization started from a user-supplied point.

r indicates the local optimization converged to a previously found optimal solution.

R indicates the local optimization started from a user-supplied point and converged
to a previously found optimal solution.

Best Objective indicates the value of the objective function at the best local solution found so far.
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Local Objective indicates the value of the objective function obtained at the solution returned by the local
solver.

Infeasibility indicates the infeasibility error at the solution returned by the local solver.

Optimality Error indicates the optimality error at the solution returned by the local solver.

Local Iters indicates the number of iterations taken by the local solver.

Local Status indicates the solution status of the local solver. Several different values can appear in this
column:

OPTIMAL indicates that the local solver found a locally optimal solution.

BESTFEASIBLE indicates that the local solver returned the best feasible point found.
See the SOLTYPE= option for more information.

INFEASIBLE indicates that the local solver converged to a point that might be
infeasible.

LOCALINFEAS indicates that the local solver converged to a point of minimal local
infeasibility.

UNBOUNDED indicates that the local solver determined that the problem is un-
bounded.

ITERLIMIT indicates that the local solver reached the maximum number of
iterations and could not find a locally optimal solution.

TIMELIMIT indicates that the local solver reached the maximum allowable time
and could not find a locally optimal solution.

ABORTED indicates that the local solver terminated due to a user interrupt.

FUNEVALERR indicates that the local solver encountered a function evaluation error.

NUMERICERR indicates that the local solver encountered a numerical error other
than a function evaluation error.

INTERNALERR indicates that the local solver encountered a solver system error.

OUTMEMORY indicates that the local solver ran out of memory.

FAILED indicates a general failure of the local solver in the absence of any
other error.

Solver Termination Criterion
Because badly scaled problems can lead to slow convergence, the NLP solver dynamically rescales both the
objective and constraint functions adaptively as needed. The optimality conditions are always stated with
respect to the rescaled NLP. However, because typically you are most interested in the constraint violation
of the original NLP, and not the internal scaled variant, you always work with respect to the true constraint
violation. Thus, the solver terminates when both of the following conditions are true:

• The norm of the optimality conditions of the scaled NLP is less than the user-defined or default
tolerance (OPTTOL= option).
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• The norm of the constraint violation of the original NLP is less than the user-defined feasibility
tolerance (FEASTOL= option).

More specifically, if

F.x; s; z/ D .rxf .x/ � J.x/
Tz; Sz; g.x/ � s/T

is the vector of the optimality conditions of the rescaled NLP problem, then the solver terminates when

k F.x; s; z/ k� OPTTOL.1C k.x; s/k/

and the maximum constraint violation is less than FEASTOL.

Solver Termination Messages
Upon termination, the solver produces the following messages in the log:

Optimal
The solver has successfully found a local solution to the optimization problem.

Conditionally optimal solution found
The solver is sufficiently close to a local solution, but it has difficulty in completely satisfying the
user-defined optimality tolerance. This can happen when the line search finds very small steps that
result in very slight progress of the algorithm. It can also happen when the prespecified tolerance is too
strict for the optimization problem at hand.

Maximum number of iterations reached
The solver could not find a local optimum in the prespecified number of iterations.

Maximum specified time reached
The solver could not find a local optimum in the prespecified maximum real time for the optimization
process.

Did not converge
The solver could not satisfy the optimality conditions and failed to converge.

Problem might be unbounded
The objective function takes arbitrarily large values, and the optimality conditions fail to be satisfied.
This can happen when the problem is unconstrained or when the problem is constrained and the feasible
region is not bounded.

Problem might be infeasible
The solver cannot identify a point in the feasible region.

Problem is infeasible
The solver detects that the problem is infeasible.
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Out of memory
The problem is so large that the solver requires more memory to solve the problem.

Problem solved by the OPTMODEL presolver
The problem was solved by the OPTMODEL presolver.

Macro Variable _OROPTMODEL_
The OPTMODEL procedure always creates and initializes a SAS macro variable called _OROPTMODEL_,
which contains a character string. After each PROC OPTMODEL run, you can examine this macro variable
by specifying %put &_OROPTMODEL_; and check the execution of the most recently invoked solver from the
value of the macro variable. After the NLP solver is called, the various terms of the variable are interpreted
as follows:

STATUS
indicates the solver status at termination. It can take one of the following values:

OK The solver terminated normally.

SYNTAX_ERROR The use of syntax is incorrect.

DATA_ERROR The input data are inconsistent.

OUT_OF_MEMORY Insufficient memory was allocated to the procedure.

IO_ERROR A problem in reading or writing of data has occurred.

SEMANTIC_ERROR An evaluation error, such as an invalid operand type, has occurred.

ERROR The status cannot be classified into any of the preceding categories.

ALGORITHM
indicates the algorithm that produced the solution data in the macro variable. This term only appears
when STATUS=OK. It can take one of the following values:

IP The interior point algorithm produced the solution data.

AS The active-set algorithm produced the solution data.

When running algorithms concurrently (ALGORITHM=CONCURRENT), this term indicates which
algorithm was the first to terminate.

SOLUTION_STATUS
indicates the solution status at termination. It can take one of the following values:

OPTIMAL The solution is optimal.

CONDITIONAL_OPTIMAL The optimality of the solution cannot be proven.

BEST_FEASIBLE The solution returned is the best feasible solution. This
solution status indicates that the algorithm has converged
to a local optimum but a feasible (not locally optimal)
solution with a better objective value has been found and
hence is returned.
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INFEASIBLE The problem is infeasible.

UNBOUNDED The problem might be unbounded.

INFEASIBLE_OR_UNBOUNDED The problem is infeasible or unbounded.

BAD_PROBLEM_TYPE The problem type is not supported by the solver.

ITERATION_LIMIT_REACHED The maximum allowable number of iterations has been
reached.

TIME_LIMIT_REACHED The solver reached its execution time limit.

FAILED The solver failed to converge, possibly due to numerical
issues.

OBJECTIVE
indicates the objective value that is obtained by the solver at termination.

NUMSTARTS
indicates the number of starting points. This term appears only in multistart mode.

SAMPLE_POINTS
indicates the number of points that are evaluated in the sampling phase. This term appears only in
multistart mode.

DISTINCT_OPTIMA
indicates the number of distinct local optima that the solver finds. This term appears only in multistart
mode.

SEED
indicates the seed value that is used to initialize the solver. This term appears only in multistart mode.

INFEASIBILITY
indicates the level of infeasibility of the constraints at the solution.

OPTIMALITY_ERROR
indicates the norm of the optimality conditions at the solution. See the section “Solver Termination
Criterion” on page 319 for details.

ITERATIONS
indicates the number of iterations required to solve the problem.

PRESOLVE_TIME
indicates the real time taken for preprocessing (seconds).

SOLUTION_TIME
indicates the real time taken by the solver to perform iterations for solving the problem (seconds).

NOTE: The time that is reported in PRESOLVE_TIME and SOLUTION_TIME is either CPU time or real
time. The type is determined by the TIMETYPE= option.
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Examples: NLP Solver

Example 8.1: Solving Highly Nonlinear Optimization Problems
This example demonstrates the use of the NLP solver to solve the following highly nonlinear optimization
problem, which appears in Hock and Schittkowski (1981):

minimize f .x/ D 0:4.x1=x7/
0:67 C 0:4.x2=x8/

0:67 C 10 � x1 � x2
subject to 1 � 0:0588x5x7 � 0:1x1 � 0

1 � 0:0588x6x8 � 0:1x1 � 0:1x2 � 0

1 � 4x3=x5 � 2=.x
0:71
3 x5/ � 0:0588x7=x

1:3
3 � 0

1 � 4x4=x6 � 2=.x
0:71
4 x6/ � 0:0588x8=x

1:3
4 � 0

0:1 � f .x/ � 4:2

0:1 � xi � 10; i D 1; 2; : : : ; 8

The initial point used is x0 D .6; 3; 0:4; 0:2; 6; 6; 1; 0:5/. You can call the NLP solver within PROC
OPTMODEL to solve the problem by writing the following SAS statements:

proc optmodel;
var x{1..8} >= 0.1 <= 10;

min f = 0.4*(x[1]/x[7])^0.67 + 0.4*(x[2]/x[8])^0.67 + 10 - x[1] - x[2];

con c1: 1 - 0.0588*x[5]*x[7] - 0.1*x[1] >= 0;
con c2: 1 - 0.0588*x[6]*x[8] - 0.1*x[1] - 0.1*x[2] >= 0;
con c3: 1 - 4*x[3]/x[5] - 2/(x[3]^0.71*x[5]) - 0.0588*x[7]/x[3]^1.3 >= 0;
con c4: 1 - 4*x[4]/x[6] - 2/(x[4]^0.71*x[6]) - 0.0588*x[8]/x[4]^1.3 >= 0;
con c5: 0.1 <= f <= 4.2;

/* starting point */
x[1] = 6;
x[2] = 3;
x[3] = 0.4;
x[4] = 0.2;
x[5] = 6;
x[6] = 6;
x[7] = 1;
x[8] = 0.5;

solve with nlp / algorithm=activeset;
print x;

quit;

The summaries and the solution are shown in Output 8.1.1.
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Output 8.1.1 Summaries and the Optimal Solution

The OPTMODEL Procedure

Problem Summary

Objective Sense Minimization
Objective Function f
Objective Type Nonlinear

Number of Variables 8
Bounded Above 0
Bounded Below 0
Bounded Below and Above 8
Free 0
Fixed 0

Number of Constraints 5
Linear LE (<=) 0
Linear EQ (=) 0
Linear GE (>=) 0
Linear Range 0
Nonlinear LE (<=) 0
Nonlinear EQ (=) 0
Nonlinear GE (>=) 4
Nonlinear Range 1

Performance Information

Execution Mode Single-Machine
Number of Threads 4

Solution Summary

Solver NLP
Algorithm Active Set
Objective Function f
Solution Status Optimal
Objective Value 3.9511634753

Optimality Error 1.691012E-9
Infeasibility 7.8982136E-9

Iterations 23
Presolve Time 0.00
Solution Time 0.08
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Output 8.1.1 continued

[1] x

1 6.46511
2 2.23271
3 0.66740
4 0.59576
5 5.93268
6 5.52723
7 1.01332
8 0.40067

Example 8.2: Solving Unconstrained and Bound-Constrained Optimization
Problems

Although the NLP techniques are suited for solving generally constrained nonlinear optimization problems,
these techniques can also be used to solve unconstrained and bound-constrained problems efficiently. This
example considers the relatively large nonlinear optimization problems

minimizef .x/ D
n�1X
iD1

.�4xi C 3:0/C

n�1X
iD1

.x2i C x
2
n/
2

and

minimize f .x/ D
Pn�1
iD1 cos.�:5xiC1 � x

2
i /

subject to 1 � xi � 2; i D 1; : : : ; n

with n D 100; 000. These problems are unconstrained and bound-constrained, respectively.

For large-scale problems, the default memory limit might be too small, which can lead to out-of-memory
status. To prevent this occurrence, it is recommended that you set a larger memory size. See the section
“Memory Limit” on page 30 for more information.

To solve the first problem, you can write the following statements:

proc optmodel;
number N=100000;
var x{1..N} init 1.0;

minimize f = sum {i in 1..N - 1} (-4 * x[i] + 3.0) +
sum {i in 1..N - 1} (x[i]^2 + x[N]^2)^2;

solve with nlp;
quit;

The problem and solution summaries are shown in Output 8.2.1.
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Output 8.2.1 Problem Summary and Solution Summary

The OPTMODEL Procedure

Problem Summary

Objective Sense Minimization
Objective Function f
Objective Type Nonlinear

Number of Variables 100000
Bounded Above 0
Bounded Below 0
Bounded Below and Above 0
Free 100000
Fixed 0

Number of Constraints 0

Performance Information

Execution Mode Single-Machine
Number of Threads 4

Solution Summary

Solver NLP
Algorithm Interior Point
Objective Function f
Solution Status Optimal
Objective Value 0

Optimality Error 1.007903E-14
Infeasibility 0

Iterations 16
Presolve Time 0.02
Solution Time 15.03

To solve the second problem, you can write the following statements (here the active-set method is specifically
selected):

proc optmodel;
number N=100000;
var x{1..N} >= 1 <= 2;

minimize f = sum {i in 1..N - 1} cos(-0.5*x[i+1] - x[i]^2);

solve with nlp / algorithm=activeset;
quit;

The problem and solution summaries are shown in Output 8.2.2.
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Output 8.2.2 Problem Summary and Solution Summary

The OPTMODEL Procedure

Problem Summary

Objective Sense Minimization
Objective Function f
Objective Type Nonlinear

Number of Variables 100000
Bounded Above 0
Bounded Below 0
Bounded Below and Above 100000
Free 0
Fixed 0

Number of Constraints 0

Performance Information

Execution Mode Single-Machine
Number of Threads 4

Solution Summary

Solver NLP
Algorithm Active Set
Objective Function f
Solution Status Optimal
Objective Value -99999

Optimality Error 1.437473E-12
Infeasibility 0

Iterations 8
Presolve Time 0.02
Solution Time 18.38

Example 8.3: Solving NLP Problems with Range Constraints
Some constraints have both lower and upper bounds (that is, a � g.x/ � b). These constraints are called
range constraints. The NLP solver can handle range constraints in an efficient way. Consider the following
NLP problem, taken from Hock and Schittkowski (1981),
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minimize f .x/ D 5:35.x3/
2 C 0:83x1x5 C 37:29x1 � 40792:141

subject to 0 � a1 C a2x2x5 C a3x1x4 � a4x3x5 � 92

0 � a5 C a6x2x5 C a7x1x2 C a8x
2
3 � 90 � 20

0 � a9 C a10x3x5 C a11x1x3 C a12x3x4 � 20 � 5

78 � x1 � 102

33 � x2 � 45

27 � xi � 45; i D 3; 4; 5

where the values of the parameters ai ; i D 1; 2; : : : ; 12, are shown in Table 8.4.

Table 8.4 Data for Example 3

i ai i ai i ai
1 85.334407 5 80.51249 9 9.300961
2 0.0056858 6 0.0071317 10 0.0047026
3 0.0006262 7 0.0029955 11 0.0012547
4 0.0022053 8 0.0021813 12 0.0019085

The initial point used is x0 D .78; 33; 27; 27; 27/. You can call the NLP solver within PROC OPTMODEL
to solve this problem by writing the following statements:

proc optmodel;
number l {1..5} = [78 33 27 27 27];
number u {1..5} = [102 45 45 45 45];

number a {1..12} =
[85.334407 0.0056858 0.0006262 0.0022053
80.51249 0.0071317 0.0029955 0.0021813
9.300961 0.0047026 0.0012547 0.0019085];

var x {j in 1..5} >= l[j] <= u[j];

minimize f = 5.35*x[3]^2 + 0.83*x[1]*x[5] + 37.29*x[1]
- 40792.141;

con constr1:
0 <= a[1] + a[2]*x[2]*x[5] + a[3]*x[1]*x[4] -

a[4]*x[3]*x[5] <= 92;
con constr2:

0 <= a[5] + a[6]*x[2]*x[5] + a[7]*x[1]*x[2] +
a[8]*x[3]^2 - 90 <= 20;

con constr3:
0 <= a[9] + a[10]*x[3]*x[5] + a[11]*x[1]*x[3] +

a[12]*x[3]*x[4] - 20 <= 5;

x[1] = 78;
x[2] = 33;
x[3] = 27;
x[4] = 27;
x[5] = 27;
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solve with nlp / algorithm=activeset;
print x;

quit;

The summaries and solution are shown in Output 8.3.1.

Output 8.3.1 Summaries and the Optimal Solution

The OPTMODEL Procedure

Problem Summary

Objective Sense Minimization
Objective Function f
Objective Type Quadratic

Number of Variables 5
Bounded Above 0
Bounded Below 0
Bounded Below and Above 5
Free 0
Fixed 0

Number of Constraints 3
Linear LE (<=) 0
Linear EQ (=) 0
Linear GE (>=) 0
Linear Range 0
Nonlinear LE (<=) 0
Nonlinear EQ (=) 0
Nonlinear GE (>=) 0
Nonlinear Range 3

Performance Information

Execution Mode Single-Machine
Number of Threads 4

Solution Summary

Solver NLP
Algorithm Active Set
Objective Function f
Solution Status Optimal
Objective Value -30689.16932

Optimality Error 2.2010098E-8
Infeasibility 0

Iterations 20
Presolve Time 0.00
Solution Time 0.04
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Output 8.3.1 continued

[1] x

1 78.000
2 33.000
3 29.995
4 45.000
5 36.776

Example 8.4: Solving Large-Scale NLP Problems
The following example is a selected large-scale problem from the CUTEr test set (Gould, Orban, and Toint,
Ph. L. 2003) that has 20,400 variables, 20,400 lower bounds, and 9,996 linear equality constraints. This
problem was selected to provide an idea of the size of problem that the NLP solver is capable of solving. In
general, the maximum size of nonlinear optimization problems that can be solved with the NLP solver is
controlled less by the number of variables and more by the density of the first and second derivatives of the
nonlinear objective and constraint functions.

For large-scale problems, the default memory limit might be too small, which can lead to out-of-memory
status. To prevent this occurrence, it is recommended that you set a larger memory size. See the section
“Memory Limit” on page 30 for more information.

proc optmodel;
num nx = 100;
num ny = 100;

var x {1..nx, 0..ny+1} >= 0;
var y {0..nx+1, 1..ny} >= 0;

min f = (
sum {i in 1..nx-1, j in 1..ny-1} (x[i,j] - 1)^2

+ sum {i in 1..nx-1, j in 1..ny-1} (y[i,j] - 1)^2
+ sum {i in 1..nx-1} (x[i,ny] - 1)^2
+ sum {j in 1..ny-1} (y[nx,j] - 1)^2
) / 2;

con con1 {i in 2..nx-1, j in 2..ny-1}:
(x[i,j] - x[i-1,j]) + (y[i,j] - y[i,j-1]) = 1;

con con2 {i in 2..nx-1}:
x[i,0] + (x[i,1] - x[i-1,1]) + y[i,1] = 1;

con con3 {i in 2..nx-1}:
x[i,ny+1] + (x[i,ny] - x[i-1,ny]) - y[i,ny-1] = 1;

con con4 {j in 2..ny-1}:
y[0,j] + (y[1,j] - y[1,j-1]) + x[1,j] = 1;

con con5 {j in 2..ny-1}:
y[nx+1,j] + (y[nx,j] - y[nx,j-1]) - x[nx-1,j] = 1;

for {i in 1..nx-1} x[i,ny].lb = 1;
for {j in 1..ny-1} y[nx,j].lb = 1;
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solve with nlp;
quit;

The problem and solution summaries are shown in Output 8.4.1.

Output 8.4.1 Problem Summary and Solution Summary

The OPTMODEL Procedure

Problem Summary

Objective Sense Minimization
Objective Function f
Objective Type Quadratic

Number of Variables 20400
Bounded Above 0
Bounded Below 20400
Bounded Below and Above 0
Free 0
Fixed 0

Number of Constraints 9996
Linear LE (<=) 0
Linear EQ (=) 9996
Linear GE (>=) 0
Linear Range 0

Performance Information

Execution Mode Single-Machine
Number of Threads 4

Solution Summary

Solver NLP
Algorithm Interior Point
Objective Function f
Solution Status Optimal
Objective Value 6237012.1174

Optimality Error 6.8106459E-7
Infeasibility 6.8106459E-7

Iterations 6
Presolve Time 0.02
Solution Time 46.04
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Example 8.5: Solving NLP Problems That Have Several Local Minima
Some NLP problems contain many local minima. By default, the NLP solver converges to a single local
minimum. However, the NLP solver can search the feasible region for other local minima. After it completes
the search, it returns the point where the objective function achieves its minimum value. (This point might
not be a local minimum; see the SOLTYPE= option for more details.) Consider the following example, taken
from Hock and Schittkowski (1981):

minimize f .x/ D .x1 � 1/
2 C .x1 � x2/

2 C .x2 � x3/
3 C .x3 � x4/

4 C .x4 � x5/
4

subject to x1 C x
2
2 C x

3
3 D 2C 3

p
2

x2 C x4 � x
2
3 D �2C 2

p
2

x1x5 D 2

�5 � xi � 5; i D 1; : : : ; 5

The following statements call the NLP solver to search the feasible region for different local minima. The
PERFORMANCE statement requests that the multistart algorithm use up to four threads. The SEED= option
is specified for reproducibility, but it is not required in running the multistart algorithm.

proc optmodel;
var x{i in 1..5} >= -5 <= 5 init -2;

min f=(x[1] - 1)^2 + (x[1] - x[2])^2 + (x[2] - x[3])^3 +
(x[3] - x[4])^4 + (x[4] - x[5])^4;

con g1: x[1] + x[2]^2 + x[3]^3 = 2 + 3*sqrt(2);
con g2: x[2] + x[4] - x[3]^2 = -2 + 2*sqrt(2);
con g3: x[1]*x[5] = 2;

performance nthreads=4;
solve with nlp/multistart seed=1234 msmaxstarts=10;
print x.init x.msinit x;

quit;

The PRINT statement prints the initial point (x.init) that was specified in the INIT option of the VAR
declaration; the starting point (x.msinit) that led to the best local solution; and finally the best local solution
(x) that was found by the NLP solver in multistart mode. The SAS log is shown in Output 8.5.1.
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Output 8.5.1 Progress of the Algorithm as Shown in the Log

NOTE: Problem generation will use 4 threads.
NOTE: The problem has 5 variables (0 free, 0 fixed).
NOTE: The problem has 0 linear constraints (0 LE, 0 EQ, 0 GE, 0 range).
NOTE: The problem has 3 nonlinear constraints (0 LE, 3 EQ, 0 GE, 0 range).
NOTE: The OPTMODEL presolver removed 0 variables, 0 linear constraints, and 0

nonlinear constraints.
NOTE: Using analytic derivatives for objective.
NOTE: Using analytic derivatives for nonlinear constraints.
NOTE: The NLP solver is called.
NOTE: The Interior Point algorithm is used.
NOTE: The MULTISTART option is enabled.
NOTE: The deterministic parallel mode is enabled.
NOTE: The Multistart algorithm is executing in single-machine mode.
NOTE: The Multistart algorithm is using up to 4 threads.
NOTE: Random number seed 1234 is used.

Best Local Optimality Infeasi- Local Local
Start Objective Objective Error bility Iters Status

1 607.035801 607.035801 8.62585E-7 8.62585E-7 7 Optimal
2 607.035512 607.035512 2.81991E-7 5.88394E-9 7 Optimal
3 52.9025715 52.9025715 1.19566E-7 9.15988E-8 7 Optimal
4 52.9025715 52.9025734 4.37492E-7 6.32167E-8 13 Optimal
5 R 52.9025715 607.035793 5.31529E-7 4.33395E-7 8 Optimal
6 52.9025715 64.8740012 6.86447E-7 4.08169E-7 6 Optimal
7 27.871905 27.871905 7.19197E-7 1.4543E-7 5 Optimal
8 27.871905 27.8719052 5E-9 1.3246E-9 7 Optimal
9 0.02931102 0.02931102 5.51954E-7 5.42744E-7 10 Optimal

10 0.02931081 0.02931081 5E-7 2.66484E-7 11 Optimal
NOTE: The Multistart algorithm generated 800 sample points.
NOTE: 9 distinct local optima were found.
NOTE: The best objective value found by local solver = 0.0293108081.
NOTE: The solution found by local solver with objective = 0.0293108081 was

returned.

The first column in the log indicates the index of the current starting point. An additional indicator (*, r, or R)
can appear after the index to provide more information about the optimization run that started from the
current point. For more information, see the section “Iteration Log for Multistart” on page 318. The second
column records the best objective that has been found so far. Columns 3 to 6 report the objective value,
optimality error, infeasibility, and number of iterations that the local solver returned when it was started from
the current starting point. Finally, the last column records the status of the local solver—namely, whether it
was able to converge to a local optimum from the current starting point.

The summaries and solution are shown in Output 8.5.2. Note that the best local solution was found by
starting the local solver from a starting point (x.msinit) that is different from the point specified in the VAR
declaration (x.init).
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Output 8.5.2 Summaries and the Optimal Solution

The OPTMODEL Procedure

Problem Summary

Objective Sense Minimization
Objective Function f
Objective Type Nonlinear

Number of Variables 5
Bounded Above 0
Bounded Below 0
Bounded Below and Above 5
Free 0
Fixed 0

Number of Constraints 3
Linear LE (<=) 0
Linear EQ (=) 0
Linear GE (>=) 0
Linear Range 0
Nonlinear LE (<=) 0
Nonlinear EQ (=) 3
Nonlinear GE (>=) 0
Nonlinear Range 0

Performance Information

Execution Mode Single-Machine
Number of Threads 4

Solution Summary

Solver Multistart NLP
Algorithm Interior Point
Objective Function f
Solution Status Optimal
Objective Value 0.0293108146

Number of Starts 10
Number of Sample Points 800
Number of Distinct Optima 9
Random Seed Used 1234
Optimality Error 6.044933E-7
Infeasibility 3.8669805E-7

Presolve Time 0.00
Solution Time 3.67
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Output 8.5.2 continued

[1] x.INIT x.MSINIT x

1 -2 -0.23856 1.1167
2 -2 2.93912 1.2205
3 -2 1.08486 1.5377
4 -2 -1.11094 1.9726
5 -2 1.80540 1.7910

Alternatively, the following SAS statements show how you can add the NODES= option in the PERFOR-
MANCE statement to run this example in distributed mode.

NOTE: SAS High-Performance Optimization software must be installed before you can invoke the MULTI-
START option in distributed mode.

proc optmodel;
var x{i in 1..5} >= -5 <= 5 init -2;

min f=(x[1] - 1)^2 + (x[1] - x[2])^2 + (x[2] - x[3])^3 +
(x[3] - x[4])^4 + (x[4] - x[5])^4;

con g1: x[1] + x[2]^2 + x[3]^3 = 2 + 3*sqrt(2);
con g2: x[2] + x[4] - x[3]^2 = -2 + 2*sqrt(2);
con g3: x[1]*x[5] = 2;

performance nodes=4 nthreads=4;
solve with nlp/multistart seed=1234 msmaxstarts=10;
print x;

quit;

The SAS log is displayed in Output 8.5.3.
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Output 8.5.3 Progress of the Algorithm as Shown in the Log

NOTE: Problem generation will use 4 threads.
NOTE: The problem has 5 variables (0 free, 0 fixed).
NOTE: The problem has 0 linear constraints (0 LE, 0 EQ, 0 GE, 0 range).
NOTE: The problem has 3 nonlinear constraints (0 LE, 3 EQ, 0 GE, 0 range).
NOTE: The OPTMODEL presolver removed 0 variables, 0 linear constraints, and 0

nonlinear constraints.
NOTE: Using analytic derivatives for objective.
NOTE: Using analytic derivatives for nonlinear constraints.
NOTE: The NLP solver is called.
NOTE: The Interior Point algorithm is used.
NOTE: The MULTISTART option is enabled.
NOTE: The deterministic parallel mode is enabled.
NOTE: The Multistart algorithm is executing in the distributed computing

environment with 4 worker nodes.
NOTE: The Multistart algorithm is using up to 4 threads.
NOTE: Random number seed 1234 is used.

Best Local Optimality Infeasi- Local Local
Start Objective Objective Error bility Iters Status

1 607.035871 607.035871 8.43836E-7 8.43836E-7 8 Optimal
2 52.9025792 52.9025792 2.39856E-7 2.84012E-8 7 Optimal
3 52.9025792 607.035521 4.17297E-7 4.17297E-7 8 Optimal
4 52.9025792 52.9025794 6.69221E-8 3.26907E-9 8 Optimal
5 52.9025792 64.8739968 2.9959E-7 1.19421E-7 8 Optimal
6 52.9025792 52.9026071 3.70891E-7 3.70891E-7 11 Optimal
7 0.02931083 0.02931083 2.53214E-7 3.54144E-9 10 Optimal
8 0.02931083 52.9025015 9.03254E-7 9.03254E-7 5 Optimal
9 0.02931083 52.9025916 7.08702E-7 7.08702E-7 6 Optimal

10 0.02931083 52.9026134 4.08103E-7 4.08103E-7 8 Optimal
NOTE: The Multistart algorithm generated 1600 sample points.
NOTE: 10 distinct local optima were found.
NOTE: The best objective value found by local solver = 0.0293108314.
NOTE: The solution found by local solver with objective = 0.0293108314 was

returned.

Output 8.5.4 shows the summaries and solution. Note that the “Performance Information” table shows that
four computing nodes with four threads on each node are used in distributed mode.
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Output 8.5.4 Summaries and the Optimal Solution

The OPTMODEL Procedure

Problem Summary

Objective Sense Minimization
Objective Function f
Objective Type Nonlinear

Number of Variables 5
Bounded Above 0
Bounded Below 0
Bounded Below and Above 5
Free 0
Fixed 0

Number of Constraints 3
Linear LE (<=) 0
Linear EQ (=) 0
Linear GE (>=) 0
Linear Range 0
Nonlinear LE (<=) 0
Nonlinear EQ (=) 3
Nonlinear GE (>=) 0
Nonlinear Range 0

Performance Information

Host Node << your grid host >>
Execution Mode Distributed
Grid Mode Symmetric
Number of Compute Nodes 4
Number of Threads per Node 4

Solution Summary

Solver Multistart NLP
Algorithm Interior Point
Objective Function f
Solution Status Optimal
Objective Value 0.0293108314

Number of Starts 10
Number of Sample Points 1600
Number of Distinct Optima 10
Random Seed Used 1234
Optimality Error 2.5321436E-7
Infeasibility 3.5414378E-9

Presolve Time 0.00
Solution Time 3.99
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Output 8.5.4 continued

[1] x

1 1.1167
2 1.2204
3 1.5378
4 1.9727
5 1.7911
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Overview: QP Solver
The OPTMODEL procedure provides a framework for specifying and solving quadratic programs.

Mathematically, a quadratic programming (QP) problem can be stated as follows:

min 1
2

xTQxC cTx
subject to Ax f�;D;�g b

l � x � u

where

Q 2 Rn�n is the quadratic (also known as Hessian) matrix
A 2 Rm�n is the constraints matrix
x 2 Rn is the vector of decision variables
c 2 Rn is the vector of linear objective function coefficients
b 2 Rm is the vector of constraints right-hand sides (RHS)
l 2 Rn is the vector of lower bounds on the decision variables
u 2 Rn is the vector of upper bounds on the decision variables



340 F Chapter 9: The Quadratic Programming Solver

The quadratic matrix Q is assumed to be symmetric; that is,

qij D qj i ; 8i; j D 1; : : : ; n

Indeed, it is easy to show that even if Q 6D QT, then the simple modification

QQ D
1

2
.QCQT/

produces an equivalent formulation xTQx � xT QQxI hence symmetry is assumed. When you specify a
quadratic matrix, it suffices to list only lower triangular coefficients.

In addition to being symmetric, Q is also required to be positive semidefinite for minimization type of models:

xTQx � 0; 8x 2 Rn

Q is required to be negative semidefinite for maximization type of models. Convexity can come as a result of
a matrix-matrix multiplication

Q D LLT

or as a consequence of physical laws, and so on. See Figure 9.1 for examples of convex, concave, and
nonconvex objective functions.

Figure 9.1 Examples of Convex, Concave, and Nonconvex Objective Functions

The order of constraints is insignificant. Some or all components of l or u (lower and upper bounds,
respectively) can be omitted.
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Getting Started: QP Solver
Consider a small illustrative example. Suppose you want to minimize a two-variable quadratic function
f .x1; x2/ on the nonnegative quadrant, subject to two constraints:

min 2x1 C 3x2 C x21 C 10x22 C 2:5x1x2
subject to x1 � x2 � 1

x1 C 2x2 � 100

x1 � 0

x2 � 0

To use the OPTMODEL procedure, it is not necessary to fit this problem into the general QP formulation
mentioned in the section “Overview: QP Solver” on page 339 and to compute the corresponding parameters.
However, since these parameters are closely related to the data set that is used by the OPTQP procedure
and has a quadratic programming system (QPS) format, you can compute these parameters as follows. The
linear objective function coefficients, vector of right-hand sides, and lower and upper bounds are identified
immediately as

c D
�
2

3

�
; b D

�
1

100

�
; l D

�
0

0

�
; u D

�
C1

C1

�
Carefully construct the quadratic matrix Q. Observe that you can use symmetry to separate the main-diagonal
and off-diagonal elements:

1

2
xTQx �

1

2

nX
i;jD1

xi qij xj D
1

2

nX
iD1

qi i x
2
i C

X
i>j

xi qij xj

The first expression
1

2

nX
iD1

qi i x
2
i

sums the main-diagonal elements. Thus, in this case you have

q11 D 2; q22 D 20

Notice that the main-diagonal values are doubled in order to accommodate the 1/2 factor. Now the second
term X

i>j

xi qij xj

sums the off-diagonal elements in the strict lower triangular part of the matrix. The only off-diagonal
(xi xj ; i 6D j ) term in the objective function is 2:5 x1 x2, so you have

q21 D 2:5

Notice that you do not need to specify the upper triangular part of the quadratic matrix.

Finally, the matrix of constraints is as follows:

A D
�
1 �1

1 2

�
The following OPTMODEL program formulates the preceding problem in a manner that is very close to the
mathematical specification of the given problem:
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/* getting started */
proc optmodel;

var x1 >= 0; /* declare nonnegative variable x1 */
var x2 >= 0; /* declare nonnegative variable x2 */

/* objective: quadratic function f(x1, x2) */
minimize f =

/* the linear objective function coefficients */
2 * x1 + 3 * x2 +

/* quadratic <x, Qx> */
x1 * x1 + 2.5 * x1 * x2 + 10 * x2 * x2;

/* subject to the following constraints */
con r1: x1 - x2 <= 1;
con r2: x1 + 2 * x2 >= 100;

/* specify iterative interior point algorithm (QP)

* in the SOLVE statement */
solve with qp;

/* print the optimal solution */
print x1 x2;
save qps qpsdata;

quit;

The “with qp” clause in the SOLVE statement invokes the QP solver to solve the problem. The output is
shown in Figure 9.2.

Figure 9.2 Summaries and Optimal Solution

The OPTMODEL Procedure

Problem Summary

Objective Sense Minimization
Objective Function f
Objective Type Quadratic

Number of Variables 2
Bounded Above 0
Bounded Below 2
Bounded Below and Above 0
Free 0
Fixed 0

Number of Constraints 2
Linear LE (<=) 1
Linear EQ (=) 0
Linear GE (>=) 1
Linear Range 0

Constraint Coefficients 4
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Figure 9.2 continued

Performance Information

Execution Mode Single-Machine
Number of Threads 4

Solution Summary

Solver QP
Algorithm Interior Point
Objective Function f
Solution Status Optimal
Objective Value 15018

Primal Infeasibility 2.110419E-16
Dual Infeasibility 8.727374E-15
Bound Infeasibility 0
Duality Gap 3.633377E-16
Complementarity 0

Iterations 6
Presolve Time 0.00
Solution Time 0.14

x1 x2

34 33

In this example, the SAVE QPS statement is used to save the QP problem in the QPS-format data set qpsdata,
shown in Figure 9.3. The data set is consistent with the parameters of general quadratic programming
previously computed. Also, the data set can be used as input to the OPTQP procedure.
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Figure 9.3 QPS-Format Data Set

Obs FIELD1 FIELD2 FIELD3 FIELD4 FIELD5 FIELD6

1 NAME qpsdata . .
2 ROWS . .
3 N f . .
4 L r1 . .
5 G r2 . .
6 COLUMNS . .
7 x1 f 2.0 r1 1
8 x1 r2 1.0 .
9 x2 f 3.0 r1 -1

10 x2 r2 2.0 .
11 RHS . .
12 .RHS. r1 1.0 .
13 .RHS. r2 100.0 .
14 QSECTION . .
15 x1 x1 2.0 .
16 x1 x2 2.5 .
17 x2 x2 20.0 .
18 ENDATA . .

Syntax: QP Solver
The following statement is available in the OPTMODEL procedure:

SOLVE WITH QP < / options > ;

Functional Summary
Table 9.1 summarizes the list of options available for the SOLVE WITH QP statement, classified by function.

Table 9.1 Options for the QP Solver

Description Option
Control Options
Specifies the frequency of printing solution progress LOGFREQ=
Specifies the maximum number of iterations MAXITER=
Specifies the time limit for the optimization process MAXTIME=
Specifies the type of presolve PRESOLVER=
Interior Point Algorithm Options
Specifies the stopping criterion based on duality gap STOP_DG=
Specifies the stopping criterion based on dual infeasi-
bility

STOP_DI=

Specifies the stopping criterion based on primal infea-
sibility

STOP_PI=

Specifies units of CPU time or real time TIMETYPE=
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QP Solver Options
This section describes the options recognized by the QP solver. These options can be specified after a forward
slash (/) in the SOLVE statement, provided that the QP solver is explicitly specified using a WITH clause.

The QP solver does not provide an intermediate solution if the solver terminates before reaching optimality.

Control Options

LOGFREQ=k

PRINTFREQ=k
specifies that the printing of the solution progress to the iteration log is to occur after every k iterations.
The print frequency, k, is an integer between zero and the largest four-byte signed integer, which is
231 � 1.

The value k = 0 disables the printing of the progress of the solution. The default value of this option is
1.

MAXITER=k
specifies the maximum number of iterations. The value k can be any integer between one and the
largest four-byte signed integer, which is 231 � 1. If you do not specify this option, the procedure does
not stop based on the number of iterations performed.

MAXTIME=t
specifies an upper limit of t units of time for the optimization process, including problem generation
time and solution time. The value of the TIMETYPE= option determines the type of units used. If you
do not specify the MAXTIME= option, the solver does not stop based on the amount of time elapsed.
The value of t can be any positive number; the default value is the positive number that has the largest
absolute value that can be represented in your operating environment.

PRESOLVER=number | string

PRESOL=number | string
specifies one of the following presolve options:

number string Description
0 NONE Disables presolver.
–1 AUTOMATIC Applies presolver by using default setting.

You can specify the PRESOLVER= value either by a character-valued option or by an integer. The
default option is AUTOMATIC.

Interior Point Algorithm Options

STOP_DG=ı
specifies the desired relative duality gap, ı 2 [1E–9, 1E–4]. This is the relative difference between the
primal and dual objective function values and is the primary solution quality parameter. The default
value is 1E–6. See the section “Interior Point Algorithm: Overview” on page 346 for details.
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STOP_DI=ˇ
specifies the maximum allowed relative dual constraints violation, ˇ 2 [1E–9, 1E–4]. The default
value is 1E–6. See the section “Interior Point Algorithm: Overview” on page 346 for details.

STOP_PI=˛
specifies the maximum allowed relative bound and primal constraints violation, ˛ 2 [1E–9, 1E–4]. The
default value is 1E–6. See the section “Interior Point Algorithm: Overview” on page 346 for details.

TIMETYPE=number j string
specifies the units of time used by the MAXTIME= option and reported by the PRESOLVE_TIME
and SOLUTION_TIME terms in the _OROPTMODEL_ macro variable. Table 9.3 describes the valid
values of the TIMETYPE= option.

Table 9.3 Values for TIMETYPE= Option

number string Description
0 CPU Specifies units of CPU time.
1 REAL Specifies units of real time.

The Optimization Statistics table, an output of PROC OPTMODEL if option PRINTLEVEL=2 is
specified in the PROC OPTMODEL statement, also includes the same time units for “Presolver Time”
and “Solver Time.” The other times (such as “Problem Generation Time”) in the Optimization Statistics
table are always CPU times.

The default value of the TIMETYPE= option depends on the values of the NTHREADS= and NODES=
options in the PERFORMANCE statement of the OPTMODEL procedure. See the section “PERFOR-
MANCE Statement” on page 28 in Chapter 4, “Shared Concepts and Topics.” for more information
about the NTHREADS= and NODES= options.

If you specify a value greater than 1 for either the NTHREADS= or NODES= option, the default
value of the TIMETYPE= option is REAL. If you specify a value of 1 for both the NTHREADS= and
NODES= options, the default value of the TIMETYPE= option is CPU.

Details: QP Solver

Interior Point Algorithm: Overview
The QP solver implements an infeasible primal-dual predictor-corrector interior point algorithm. To illustrate
the algorithm and the concepts of duality and dual infeasibility, consider the following QP formulation (the
primal):

min 1
2
xTQxC cTx

subject to Ax � b
x � 0
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The corresponding dual formulation is

max �
1
2
xTQx C bTy

subject to �Qx C ATy C w D c
y � 0
w � 0

where y 2 Rm refers to the vector of dual variables and w 2 Rn refers to the vector of dual slack variables.

The dual makes an important contribution to the certificate of optimality for the primal. The primal and
dual constraints combined with complementarity conditions define the first-order optimality conditions, also
known as KKT (Karush-Kuhn-Tucker) conditions, which can be stated as follows where e � .1; : : : ; 1/T of
appropriate dimension and s 2 Rm is the vector of primal slack variables:

Ax � s D b .primal feasibility/
�QxCATyC w D c .dual feasibility/

WXe D 0 .complementarity/
SYe D 0 .complementarity/

x; y; w; s � 0

NOTE: Slack variables (the s vector) are automatically introduced by the solver when necessary; it is therefore
recommended that you not introduce any slack variables explicitly. This enables the solver to handle slack
variables much more efficiently.

The letters X; Y;W; and S denote matrices with corresponding x, y, w, and s on the main diagonal and zero
elsewhere, as in the following example:

X �

26664
x1 0 � � � 0

0 x2 � � � 0
:::

:::
: : :

:::

0 0 � � � xn

37775
If .x�; y�;w�; s�/ is a solution of the previously defined system of equations that represent the KKT
conditions, then x� is also an optimal solution to the original QP model.

At each iteration the interior point algorithm solves a large, sparse system of linear equations,�
Y�1S A
AT �Q �X�1W

� �
�y
�x

�
D

�
„

‚

�
where �x and �y denote the vector of search directions in the primal and dual spaces, respectively, and ‚
and „ constitute the vector of the right-hand sides.

The preceding system is known as the reduced KKT system. The QP solver uses a preconditioned quasi-
minimum residual algorithm to solve this system of equations efficiently.

An important feature of the interior point algorithm is that it takes full advantage of the sparsity in the
constraint and quadratic matrices, thereby enabling it to efficiently solve large-scale quadratic programs.

The interior point algorithm works simultaneously in the primal and dual spaces. It attains optimality when
both primal and dual feasibility are achieved and when complementarity conditions hold. Therefore, it is of
interest to observe the following four measures where kvk2 is the Euclidean norm of the vector v:
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• relative primal infeasibility measure ˛:

˛ D
kAx � b � sk2
kbk2 C 1

• relative dual infeasibility measure ˇ:

ˇ D
kQxC c �ATy � wk2

kck2 C 1

• relative duality gap ı:

ı D
jxTQxC cTx � bTyj
j
1
2
xTQxC cTxj C 1

• absolute complementarity  :

 D

nX
iD1

xiwi C

mX
iD1

yisi

These measures are displayed in the iteration log.

Iteration Log
The following information is displayed in the iteration log:

Iter indicates the iteration number.

Complement indicates the (absolute) complementarity.

Duality Gap indicates the (relative) duality gap.

Primal Infeas indicates the (relative) primal infeasibility measure.

Bound Infeas indicates the (relative) bound infeasibility measure.

Dual Infeas indicates the (relative) dual infeasibility measure.

If the sequence of solutions converges to an optimal solution of the problem, you should see all columns
in the iteration log converge to zero or very close to zero. If they do not, it can be the result of insufficient
iterations being performed to reach optimality. In this case, you might need to increase the value specified in
the option MAXITER= or MAXTIME=. If the complementarity or the duality gap does not converge, the
problem might be infeasible or unbounded. If the infeasibility columns do not converge, the problem might
be infeasible.

Problem Statistics
Optimizers can encounter difficulty when solving poorly formulated models. Information about data
magnitude provides a simple gauge to determine how well a model is formulated. For example, a model
whose constraint matrix contains one very large entry (on the order of 109) can cause difficulty when the
remaining entries are single-digit numbers. The PRINTLEVEL=2 option in the OPTMODEL procedure
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causes the ODS table ProblemStatistics to be generated when the QP solver is called. This table provides
basic data magnitude information that enables you to improve the formulation of your models.

The example output in Figure 9.4 demonstrates the contents of the ODS table ProblemStatistics.

Figure 9.4 ODS Table ProblemStatistics

The OPTMODEL Procedure

Problem Statistics

Number of Constraint Matrix Nonzeros 4
Maximum Constraint Matrix Coefficient 2
Minimum Constraint Matrix Coefficient 1
Average Constraint Matrix Coefficient 1.25

Number of Linear Objective Nonzeros 2
Maximum Linear Objective Coefficient 3
Minimum Linear Objective Coefficient 2
Average Linear Objective Coefficient 2.5

Number of Lower Triangular Hessian Nonzeros 1
Number of Diagonal Hessian Nonzeros 2
Maximum Hessian Coefficient 20
Minimum Hessian Coefficient 2
Average Hessian Coefficient 6.75

Number of RHS Nonzeros 2
Maximum RHS 100
Minimum RHS 1
Average RHS 50.5

Maximum Number of Nonzeros per Column 2
Minimum Number of Nonzeros per Column 2
Average Number of Nonzeros per Column 2

Maximum Number of Nonzeros per Row 2
Minimum Number of Nonzeros per Row 2
Average Number of Nonzeros per Row 2

Macro Variable _OROPTMODEL_
The OPTMODEL procedure always creates and initializes a SAS macro called _OROPTMODEL_. This
variable contains a character string. After each PROC OROPTMODEL run, you can examine this macro by
specifying %put &_OROPTMODEL_; and check the execution of the most recently invoked solver from the
value of the macro variable. The various terms of the variable after the QP solver is called are interpreted as
follows.

STATUS
indicates the solver status at termination. It can take one of the following values:



350 F Chapter 9: The Quadratic Programming Solver

OK The solver terminated normally.

SYNTAX_ERROR Incorrect syntax was used.

DATA_ERROR The input data were inconsistent.

OUT_OF_MEMORY Insufficient memory was allocated to the procedure.

IO_ERROR A problem occurred in reading or writing data.

SEMANTIC_ERROR An evaluation error, such as an invalid operand type, occurred.

ERROR The status cannot be classified into any of the preceding categories.

ALGORITHM
indicates the algorithm that produced the solution data in the macro variable. This term only appears
when STATUS=OK. It can take the following value:

IP The interior point algorithm produced the solution data.

SOLUTION_STATUS
indicates the solution status at termination. It can take one of the following values:

OPTIMAL The solution is optimal.

CONDITIONAL_OPTIMAL The optimality of the solution cannot be proven.

INFEASIBLE The problem is infeasible.

UNBOUNDED The problem is unbounded.

INFEASIBLE_OR_UNBOUNDED The problem is infeasible or unbounded.

BAD_PROBLEM_TYPE The problem type is unsupported by the solver.

ITERATION_LIMIT_REACHED The maximum allowable number of iterations was
reached.

TIME_LIMIT_REACHED The solver reached its execution time limit.

FUNCTION_CALL_LIMIT_REACHED The solver reached its limit on function evaluations.

INTERRUPTED The solver was interrupted externally.

FAILED The solver failed to converge, possibly due to numerical
issues.

OBJECTIVE
indicates the objective value obtained by the solver at termination.

PRIMAL_INFEASIBILITY
indicates the (relative) infeasibility of the primal constraints at the solution. See the section “Interior
Point Algorithm: Overview” on page 346 for details.

DUAL_INFEASIBILITY
indicates the (relative) infeasibility of the dual constraints at the solution. See the section “Interior
Point Algorithm: Overview” on page 346 for details.
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BOUND_INFEASIBILITY
indicates the (relative) violation by the solution of the lower or upper bounds (or both). See the section
“Interior Point Algorithm: Overview” on page 346 for details.

DUALITY_GAP
indicates the (relative) duality gap. See the section “Interior Point Algorithm: Overview” on page 346
for details.

COMPLEMENTARITY
indicates the (absolute) complementarity at the solution. See the section “Interior Point Algorithm:
Overview” on page 346 for details.

ITERATIONS
indicates the number of iterations required to solve the problem.

PRESOLVE_TIME
indicates the time taken for preprocessing (seconds).

SOLUTION_TIME
indicates the time (in seconds) taken to solve the problem, including preprocessing time.

NOTE: The time that is reported in PRESOLVE_TIME and SOLUTION_TIME is either CPU time or real
time. The type is determined by the TIMETYPE= option.

Examples: QP Solver
This section presents examples that illustrate the use of the OPTMODEL procedure to solve quadratic
programming problems. Example 9.1 illustrates how to model a linear least squares problem and solve it
by using PROC OPTMODEL. Example 9.2 and Example 9.3 show in detail how to model the portfolio
optimization and selection problems.

Example 9.1: Linear Least Squares Problem
The linear least squares problem arises in the context of determining a solution to an overdetermined set
of linear equations. In practice, these equations could arise in data fitting and estimation problems. An
overdetermined system of linear equations can be defined as

Ax D b

where A 2 Rm�n, x 2 Rn, b 2 Rm, and m > n. Since this system usually does not have a solution, you
need to be satisfied with some sort of approximate solution. The most widely used approximation is the least
squares solution, which minimizes kAx � bk22.

This problem is called a least squares problem for the following reason. Let A, x, and b be defined as
previously. Let ki .x/ be the kth component of the vector Ax � b:

ki .x/ D ai1x1 C ai2x2 C � � � C ainxn � bi ; i D 1; 2; : : : ; m
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By definition of the Euclidean norm, the objective function can be expressed as follows:

kAx � bk22 D
mX
iD1

ki .x/
2

Therefore, the function you minimize is the sum of squares of m terms ki .x/; hence the term least squares.
The following example is an illustration of the linear least squares problem; that is, each of the terms ki is a
linear function of x .

Consider the following least squares problem defined by

A D

24 4 0

�1 1

3 2

35 ; b D

24 1

0

1

35
This translates to the following set of linear equations:

4x1 D 1; �x1 C x2 D 0; 3x1 C 2x2 D 1

The corresponding least squares problem is:

minimize .4x1 � 1/
2
C .�x1 C x2/

2
C .3x1 C 2x2 � 1/

2

The preceding objective function can be expanded to:

minimize 26x21 C 5x
2
2 C 10x1x2 � 14x1 � 4x2 C 2

In addition, you impose the following constraint so that the equation 3x1 C 2x2 D 1 is satisfied within a
tolerance of 0:1:

0:9 � 3x1 C 2x2 � 1:1

You can use the following SAS statements to solve the least squares problem:

/* example 1: linear least-squares problem */
proc optmodel;

var x1; /* declare free (no explicit bounds) variable x1 */
var x2; /* declare free (no explicit bounds) variable x2 */
/* declare slack variable for ranged constraint */
var w >= 0 <= 0.2;

/* objective function: minimize is the sum of squares */
minimize f = 26 * x1 * x1 + 5 * x2 * x2 + 10 * x1 * x2

- 14 * x1 - 4 * x2 + 2;

/* subject to the following constraint */
con L: 3 * x1 + 2 * x2 - w = 0.9;

solve with qp;

/* print the optimal solution */
print x1 x2;

quit;

The output is shown in Output 9.1.1.
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Output 9.1.1 Summaries and Optimal Solution

The OPTMODEL Procedure

Problem Summary

Objective Sense Minimization
Objective Function f
Objective Type Quadratic

Number of Variables 3
Bounded Above 0
Bounded Below 0
Bounded Below and Above 1
Free 2
Fixed 0

Number of Constraints 1
Linear LE (<=) 0
Linear EQ (=) 1
Linear GE (>=) 0
Linear Range 0

Constraint Coefficients 3

Performance Information

Execution Mode Single-Machine
Number of Threads 4

Solution Summary

Solver QP
Algorithm Interior Point
Objective Function f
Solution Status Optimal
Objective Value 0.0095238095

Primal Infeasibility 9.742207E-14
Dual Infeasibility 1.305621E-9
Bound Infeasibility 5.782412E-18
Duality Gap 4.9397126E-8
Complementarity 1.5357015E-7

Iterations 3
Presolve Time 0.00
Solution Time 0.02

x1 x2

0.2381 0.1619
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Example 9.2: Portfolio Optimization
Consider a portfolio optimization example. The two competing goals of investment are (1) long-term growth
of capital and (2) low risk. A good portfolio grows steadily without wild fluctuations in value. The Markowitz
model is an optimization model for balancing the return and risk of a portfolio. The decision variables are
the amounts invested in each asset. The objective is to minimize the variance of the portfolio’s total return,
subject to the constraints that (1) the expected growth of the portfolio reaches at least some target level and
(2) you do not invest more capital than you have.

Let x1; : : : ; xn be the amount invested in each asset, B be the amount of capital you have, R be the random
vector of asset returns over some period, and r be the expected value of R. Let G be the minimum growth

you hope to obtain, and C be the covariance matrix of R. The objective function is Var
�
nP
iD1

xiRi

�
, which

can be equivalently denoted as xTCx.

Assume, for example, n = 4. Let B = 10,000, G = 1,000, r D Œ0:05;�0:2; 0:15; 0:30�, and

C D

2664
0:08 �0:05 �0:05 �0:05

�0:05 0:16 �0:02 �0:02

�0:05 �0:02 0:35 0:06

�0:05 �0:02 0:06 0:35

3775
The QP formulation can be written as:

min 0:08x21 � 0:1x1x2 � 0:1x1x3 � 0:1x1x4 C

0:16x22 � 0:04x2x3 � 0:02x2x4 C 0:35x23 C

0:12x3x4 C 0:35x24
subject to
.budget/ x1 C x2 C x3 C x4 � 10000

.growth/ 0:05x1 � 0:2x2 C 0:15x3 C 0:30x4 � 1000

x1; x2; x3; x4 � 0

Use the following SAS statements to solve the problem:

/* example 2: portfolio optimization */
proc optmodel;

/* let x1, x2, x3, x4 be the amount invested in each asset */
var x{1..4} >= 0;

num coeff{1..4, 1..4} = [0.08 -.05 -.05 -.05
-.05 0.16 -.02 -.02
-.05 -.02 0.35 0.06
-.05 -.02 0.06 0.35];

num r{1..4}=[0.05 -.20 0.15 0.30];

/* minimize the variance of the portfolio's total return */
minimize f = sum{i in 1..4, j in 1..4}coeff[i,j]*x[i]*x[j];

/* subject to the following constraints */
con BUDGET: sum{i in 1..4}x[i] <= 10000;
con GROWTH: sum{i in 1..4}r[i]*x[i] >= 1000;
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solve with qp;

/* print the optimal solution */
print x;

The summaries and the optimal solution are shown in Output 9.2.1.

Output 9.2.1 Portfolio Optimization

The OPTMODEL Procedure

Problem Summary

Objective Sense Minimization
Objective Function f
Objective Type Quadratic

Number of Variables 4
Bounded Above 0
Bounded Below 4
Bounded Below and Above 0
Free 0
Fixed 0

Number of Constraints 2
Linear LE (<=) 1
Linear EQ (=) 0
Linear GE (>=) 1
Linear Range 0

Constraint Coefficients 8

Performance Information

Execution Mode Single-Machine
Number of Threads 4

Solution Summary

Solver QP
Algorithm Interior Point
Objective Function f
Solution Status Optimal
Objective Value 2232313.4432

Primal Infeasibility 2.9198351E-9
Dual Infeasibility 1.9359348E-8
Bound Infeasibility 0
Duality Gap 1.3492254E-7
Complementarity 1.0600935E-7

Iterations 7
Presolve Time 0.00
Solution Time 0.02



356 F Chapter 9: The Quadratic Programming Solver

Output 9.2.1 continued

[1] x

1 3452.9
2 0.0
3 1068.8
4 2223.5

Thus, the minimum variance portfolio that earns an expected return of at least 10% is x1 = 3,452, x2 = 0,
x3 = 1,068, x4 D 2; 223. Asset 2 gets nothing because its expected return is �20% and its covariance with
the other assets is not sufficiently negative for it to bring any diversification benefits. What if you drop the
nonnegativity assumption?

Financially, that means you are allowed to short-sell—that is, sell low-mean-return assets and use the proceeds
to invest in high-mean-return assets. In other words, you put a negative portfolio weight in low-mean assets
and “more than 100%” in high-mean assets.

To solve the portfolio optimization problem with the short-sale option, continue to submit the following SAS
statements:

/* example 2: portfolio optimization with short-sale option */
/* dropping nonnegativity assumption */
for {i in 1..4} x[i].lb=-x[i].ub;

solve with qp;

/* print the optimal solution */
print x;

quit;

You can see in the optimal solution displayed in Output 9.2.2 that the decision variable x2, denoting Asset 2,
is equal to �1,563.61, which means short sale of that asset.
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Output 9.2.2 Portfolio Optimization with Short-Sale Option

The OPTMODEL Procedure

Solution Summary

Solver QP
Algorithm Interior Point
Objective Function f
Solution Status Optimal
Objective Value 1907122.2254

Primal Infeasibility 6.4988973E-8
Dual Infeasibility 7.3644141E-9
Bound Infeasibility 0
Duality Gap 2.0104247E-8
Complementarity 6.299141E-7

Iterations 5
Presolve Time 0.00
Solution Time 0.01

[1] x

1 1684.35
2 -1563.61
3 682.51
4 1668.95

Example 9.3: Portfolio Selection with Transactions
Consider a portfolio selection problem with a slight modification. You are now required to take into account
the current position and transaction costs associated with buying and selling assets. The objective is to find
the minimum variance portfolio. In order to understand the scenario better, consider the following data.

You are given three assets. The current holding of the three assets is denoted by the vector c = [200, 300,
500], the amount of asset bought and sold is denoted by bi and si , respectively, and the net investment in
each asset is denoted by xi and is defined by the following relation:

xi � bi C si D ci ; i D 1; 2; 3

Suppose that you pay a transaction fee of 0.01 every time you buy or sell. Let the covariance matrix C be
defined as

C D

24 0:027489 �0:00874 �0:00015

�0:00874 0:109449 �0:00012

�0:00015 �0:00012 0:000766

35
Assume that you hope to obtain at least 12% growth. Let r = [1.109048, 1.169048, 1.074286] be the vector
of expected return on the three assets, and let B=1000 be the available funds. Mathematically, this problem
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can be written in the following manner:

min 0:027489x21 � 0:01748x1x2 � 0:0003x1x3 C 0:109449x
2
2

�0:00024x2x3 C 0:000766x
2
3

subject to
.return/

P3
iD1 rixi � 1:12B

.budget/
P3
iD1 xi C

P3
iD1 0:01.bi C si / D B

.balance/ xi � bi C si D ci ; i D 1; 2; 3

xi ; bi ; si � 0; i D 1; 2; 3

The problem can be solved by the following SAS statements:

/* example 3: portfolio selection with transactions */
proc optmodel;

/* let x1, x2, x3 be the amount invested in each asset */
var x{1..3} >= 0;
/* let b1, b2, b3 be the amount of asset bought */
var b{1..3} >= 0;
/* let s1, s2, s3 be the amount of asset sold */
var s{1..3} >= 0;

/* current holdings */
num c{1..3}=[ 200 300 500];
/* covariance matrix */
num coeff{1..3, 1..3} = [0.027489 -.008740 -.000150

-.008740 0.109449 -.000120
-.000150 -.000120 0.000766];

/* returns */
num r{1..3}=[1.109048 1.169048 1.074286];

/* minimize the variance of the portfolio's total return */
minimize f = sum{i in 1..3, j in 1..3}coeff[i,j]*x[i]*x[j];

/* subject to the following constraints */
con BUDGET: sum{i in 1..3}(x[i]+.01*b[i]+.01*s[i]) <= 1000;
con RETURN: sum{i in 1..3}r[i]*x[i] >= 1120;
con BALANC{i in 1..3}: x[i]-b[i]+s[i]=c[i];

solve with qp;

/* print the optimal solution */
print x;

quit;

The output is displayed in Output 9.3.1.
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Output 9.3.1 Portfolio Selection with Transactions

The OPTMODEL Procedure

Problem Summary

Objective Sense Minimization
Objective Function f
Objective Type Quadratic

Number of Variables 9
Bounded Above 0
Bounded Below 9
Bounded Below and Above 0
Free 0
Fixed 0

Number of Constraints 5
Linear LE (<=) 1
Linear EQ (=) 3
Linear GE (>=) 1
Linear Range 0

Constraint Coefficients 21

Performance Information

Execution Mode Single-Machine
Number of Threads 4

Solution Summary

Solver QP
Algorithm Interior Point
Objective Function f
Solution Status Optimal
Objective Value 19560.725753

Primal Infeasibility 1.103614E-16
Dual Infeasibility 2.559425E-14
Bound Infeasibility 0
Duality Gap 7.221601E-16
Complementarity 0

Iterations 11
Presolve Time 0.00
Solution Time 0.02

[1] x

1 397.58
2 406.12
3 190.17
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Overview: OPTLP Procedure
The OPTLP procedure provides four methods of solving linear programs (LPs). A linear program has the
following formulation:

min cTx
subject to Ax f�;D;�g b

l � x � u

where
x 2 Rn is the vector of decision variables
A 2 Rm�n is the matrix of constraints
c 2 Rn is the vector of objective function coefficients
b 2 Rm is the vector of constraints right-hand sides (RHS)
l 2 Rn is the vector of lower bounds on variables
u 2 Rn is the vector of upper bounds on variables

The following LP solvers are available in the OPTLP procedure:

• primal simplex solver

• dual simplex solver

• network simplex solver

• interior point solver

The primal and dual simplex solvers implement the two-phase simplex method. In phase I, the solver tries
to find a feasible solution. If no feasible solution is found, the LP is infeasible; otherwise, the solver enters
phase II to solve the original LP. The network simplex solver extracts a network substructure, solves this
using network simplex, and then constructs an advanced basis to feed to either primal or dual simplex. The
interior point solver implements a primal-dual predictor-corrector interior point algorithm.

PROC OPTLP requires a linear program to be specified using a SAS data set that adheres to the MPS format,
a widely accepted format in the optimization community. For details about the MPS format see Chapter 15,
“The MPS-Format SAS Data Set.”

You can use the MPSOUT= option to convert typical PROC LP format data sets into MPS-format SAS
data sets. The option is available in the LP, INTPOINT, and NETFLOW procedures. For details about this
option, see Chapter 5, “The LP Procedure” (SAS/OR User’s Guide: Mathematical Programming Legacy
Procedures), Chapter 4, “The INTPOINT Procedure” (SAS/OR User’s Guide: Mathematical Programming
Legacy Procedures), and Chapter 6, “The NETFLOW Procedure” (SAS/OR User’s Guide: Mathematical
Programming Legacy Procedures).

Getting Started: OPTLP Procedure
The following example illustrates how you can use the OPTLP procedure to solve linear programs. Suppose
you want to solve the following problem:
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min 2x1 � 3x2 � 4x3
subject to � 2x2 � 3x3 � �5 .R1/

x1 C x2 C 2x3 � 4 .R2/
x1 C 2x2 C 3x3 � 7 .R3/

x1; x2; x3 � 0

The corresponding MPS-format SAS data set is as follows:

data example;
input field1 $ field2 $ field3 $ field4 field5 $ field6;
datalines;

NAME . EXAMPLE . . .
ROWS . . . . .
N COST . . . .
G R1 . . . .
L R2 . . . .
L R3 . . . .
COLUMNS . . . . .
. X1 COST 2 R2 1
. X1 R3 1 . .
. X2 COST -3 R1 -2
. X2 R2 1 R3 2
. X3 COST -4 R1 -3
. X3 R2 2 R3 3
RHS . . . . .
. RHS R1 -5 R2 4
. RHS R3 7 . .
ENDATA . . . . .
;

You can also create this data set from an MPS-format flat file (examp.mps) by using the following SAS
macro:

%mps2sasd(mpsfile = "examp.mps", outdata = example);

NOTE: The SAS macro %MPS2SASD is provided in SAS/OR software. See “Converting an MPS/QPS-
Format File: %MPS2SASD” on page 608 for details.

You can use the following statement to call the OPTLP procedure:

title1 'The OPTLP Procedure';
proc optlp data = example

objsense = min
presolver = automatic
algorithm = primal
primalout = expout
dualout = exdout;

run;

NOTE: The “N” designation for “COST” in the rows section of the data set example also specifies a
minimization problem. See the section “ROWS Section” on page 601 for details.



364 F Chapter 10: The OPTLP Procedure

The optimal primal and dual solutions are stored in the data sets expout and exdout, respectively, and are
displayed in Figure 10.1.

title2 'Primal Solution';
proc print data=expout label;
run;

title2 'Dual Solution';
proc print data=exdout label;
run;

Figure 10.1 Primal and Dual Solution Output

The OPTLP Procedure
Primal Solution

Objective
Function RHS Variable Variable Objective

Obs ID ID Name Type Coefficient

1 COST RHS X1 N 2
2 COST RHS X2 N -3
3 COST RHS X3 N -4

Lower Upper Variable Variable Reduced
Obs Bound Bound Value Status Cost

1 0 1.7977E308 0.0 L 2.0
2 0 1.7977E308 2.5 B 0.0
3 0 1.7977E308 0.0 L 0.5

The OPTLP Procedure
Dual Solution

Objective Constraint
Function RHS Constraint Constraint Constraint Lower

Obs ID ID Name Type RHS Bound

1 COST RHS R1 G -5 .
2 COST RHS R2 L 4 .
3 COST RHS R3 L 7 .

Constraint Dual
Upper Variable Constraint Constraint

Obs Bound Value Status Activity

1 . 1.5 U -5.0
2 . 0.0 B 2.5
3 . 0.0 B 5.0
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For details about the type and status codes displayed for variables and constraints, see the section “Data Input
and Output” on page 373.

Syntax: OPTLP Procedure
The following statements are available in the OPTLP procedure:

PROC OPTLP < options > ;
DECOMP < options > ;
DECOMP_MASTER < options > ;
DECOMP_SUBPROB < options > ;
PERFORMANCE < performance-options > ;

Functional Summary
Table 10.1 summarizes the list of options available for the OPTLP procedure, classified by function.

Table 10.1 Options for the OPTLP Procedure

Description Option
Data Set Options
Specifies the input data set DATA=
Specifies the dual input data set for warm start DUALIN=
Specifies the dual solution output data set DUALOUT=
Specifies whether the LP model is a maximization or
minimization problem

OBJSENSE=

Specifies the primal input data set for warm start PRIMALIN=
Specifies the primal solution output data set PRIMALOUT=
Saves output data sets only if optimal SAVE_ONLY_IF_OPTIMAL
Solver Options
Enables or disables IIS detection IIS=
Specifies the type of solver ALGORITHM=
Specifies the type of solver called after network simplex ALGORITHM2=
Presolve Option
Specifies the type of presolve PRESOLVER=
Control Options
Specifies the feasibility tolerance FEASTOL=
Specifies the frequency of printing solution progress LOGFREQ=
Specifies the detail of solution progress printed in log LOGLEVEL=
Specifies the maximum number of iterations MAXITER=
Specifies the time limit for the optimization process MAXTIME=
Specifies the optimality tolerance OPTTOL=
Enables or disables printing summary PRINTLEVEL=
Specifies units of CPU time or real time TIMETYPE=
Simplex Algorithm Options
Specifies the type of initial basis BASIS=
Specifies the type of pricing strategy PRICETYPE=
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Table 10.1 (continued)

Description Option
Specifies the queue size for determining entering vari-
able

QUEUESIZE=

Enables or disables scaling of the problem SCALE=
Interior Point Algorithm Options
Enables or disables interior crossover CROSSOVER=
Specifies the stopping criterion based on duality gap STOP_DG=
Specifies the stopping criterion based on dual infeasi-
bility

STOP_DI=

Specifies the stopping criterion based on primal infeasi-
bility

STOP_PI=

PROC OPTLP Statement
PROC OPTLP < options > ;

You can specify the following options in the PROC OPTLP statement.

Data Set Options

DATA=SAS-data-set
specifies the input data set corresponding to the LP model. If this option is not specified, PROC OPTLP
will use the most recently created SAS data set. See Chapter 15, “The MPS-Format SAS Data Set,” for
more details about the input data set.

DUALIN=SAS-data-set

DIN=SAS-data-set
specifies the input data set corresponding to the dual solution that is required for warm starting the
primal and dual simplex solvers. See the section “Data Input and Output” on page 373 for details.

DUALOUT=SAS-data-set

DOUT=SAS-data-set
specifies the output data set for the dual solution. This data set contains the dual solution information.
See the section “Data Input and Output” on page 373 for details.

OBJSENSE=option
specifies whether the LP model is a minimization or a maximization problem. You specify OB-
JSENSE=MIN for a minimization problem and OBJSENSE=MAX for a maximization problem.
Alternatively, you can specify the objective sense in the input data set; see the section “ROWS Section”
on page 601 for details. If for some reason the objective sense is specified differently in these two
places, this option supersedes the objective sense specified in the input data set. If the objective sense is
not specified anywhere, then PROC OPTLP interprets and solves the linear program as a minimization
problem.
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PRIMALIN=SAS-data-set

PIN=SAS-data-set
specifies the input data set corresponding to the primal solution that is required for warm starting the
primal and dual simplex solvers. See the section “Data Input and Output” on page 373 for details.

PRIMALOUT=SAS-data-set

POUT=SAS-data-set
specifies the output data set for the primal solution. This data set contains the primal solution
information. See the section “Data Input and Output” on page 373 for details.

SAVE_ONLY_IF_OPTIMAL
specifies that the PRIMALOUT= and DUALOUT= data sets be saved only if the final solution obtained
by the solver at termination is optimal. If the PRIMALOUT= and DUALOUT= options are specified,
then by default (that is, omitting the SAVE_ONLY_IF_OPTIMAL option), PROC OPTLP always saves
the solutions obtained at termination, regardless of the final status. If the SAVE_ONLY_IF_OPTIMAL
option is not specified, the output data sets can contain an intermediate solution, if one is available.

Solver Options

IIS=number | string
specifies whether PROC OPTLP attempts to identify a set of constraints and variables that form an
irreducible infeasible set (IIS). Table 10.2 describes the valid values of the IIS= option.

Table 10.2 Values for IIS= Option

number string Description
0 OFF Disables IIS detection.
1 ON Enables IIS detection.

If an IIS is found, information about infeasible constraints or variable bounds can be found in the
DUALOUT= and PRIMALOUT= data sets. The default value of this option is OFF. See the section
“Irreducible Infeasible Set” on page 387 for details.

ALGORITHM=option

SOLVER=option

SOL=option
specifies one of the following LP solvers:

Option Description
PRIMAL (PS) Uses primal simplex solver.
DUAL (DS) Uses dual simplex solver.
NETWORK (NS) Uses network simplex solver.
INTERIORPOINT (IP) Uses interior point solver.
CONCURRENT (CON) (experimental) Uses several different algorithms

in parallel.

The valid abbreviated value for each option is indicated in parentheses. By default, the dual simplex
solver is used.
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ALGORITHM2=option

SOLVER2=option
specifies one of the following LP solvers if ALGORITHM=NS:

Option Description
PRIMAL (PS) Uses primal simplex solver (after network simplex).
DUAL (DS) Uses dual simplex solver (after network simplex).

The valid abbreviated value for each option is indicated in parentheses. By default, the OPTLP
procedure decides which algorithm is best to use after calling the network simplex solver on the
extracted network.

Presolve Options

PRESOLVER=number | string

PRESOL=number | string
specifies one of the following presolve options:

number string Description
0 NONE Disables presolver.
–1 AUTOMATIC Applies presolver by using default setting.
1 BASIC Performs basic presolve like removing empty rows,

columns, and fixed variables.
2 MODERATE Performs basic presolve and apply other inexpensive

presolve techniques.
3 AGGRESSIVE Performs moderate presolve and apply other aggressive

(but expensive) presolve techniques.

The default option is AUTOMATIC (–1). See the section “Presolve” on page 376 for details.

Control Options

FEASTOL=�
specifies the feasibility tolerance � 2[1E–9, 1E–4] for determining the feasibility of a variable value.
The default value is 1E–6.

LOGFREQ=k

PRINTFREQ=k
specifies that the printing of the solution progress to the iteration log is to occur after every k iterations.
The print frequency, k, is an integer between zero and the largest four-byte signed integer, which is
231 � 1.

The value k D 0 disables the printing of the progress of the solution.

If the LOGFREQ= option is not specified, then PROC OPTLP displays the iteration log with a dynamic
frequency according to the problem size if the primal or dual simplex solver is used, with frequency
10,000 if the network simplex solver is used, or with frequency 1 if the interior point solver is used.
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LOGLEVEL=number | string

PRINTLEVEL2=number | string
controls the amount of information displayed in the SAS log by the LP solver, from a short description
of presolve information and summary to details at each iteration. Table 10.6 describes the valid values
for this option.

Table 10.6 Values for LOGLEVEL= Option

number string Description
0 NONE Turn off all solver-related messages in SAS log.
1 BASIC Display a solver summary after stopping.
2 MODERATE Print a solver summary and an iteration log by

using the interval dictated by the LOGFREQ= op-
tion.

3 AGGRESSIVE Print a detailed solver summary and an itera-
tion log by using the interval dictated by the
LOGFREQ= option.

The default value is MODERATE.

MAXITER=k
specifies the maximum number of iterations. The value k can be any integer between one and the
largest four-byte signed integer, which is 231 � 1. If you do not specify this option, the procedure
does not stop based on the number of iterations performed. For network simplex, this iteration limit
corresponds to the solver called after network simplex (either primal or dual simplex).

MAXTIME=t
specifies an upper limit of t seconds of time for reading in the data and performing the optimization
process. The value of the TIMETYPE= option determines the type of units used. If you do not specify
this option, the procedure does not stop based on the amount of time elapsed. The value of t can be
any positive number; the default value is the positive number that has the largest absolute value that
can be represented in your operating environment.

OPTTOL=�
specifies the optimality tolerance � 2[1E–9, 1E–4] for declaring optimality. The default value is 1E–6.

PRINTLEVEL=0 j 1 j 2
specifies whether a summary of the problem and solution should be printed. If PRINTLEVEL=1, then
the ODS (Output Delivery System) tables ProblemSummary, SolutionSummary, and PerformanceInfo
are produced and printed. If PRINTLEVEL=2, then these tables are produced and printed along with
an additional table called ProblemStatistics. If PRINTLEVEL=0, then no ODS tables are produced or
printed. The default value is 1.

For details about the ODS tables created by PROC OPTLP, see the section “ODS Tables” on page 383.

TIMETYPE=number | string
specifies whether CPU time or real time is used for the MAXTIME= option and the _OROPTLP_
macro variable in a PROC OPTLP call. Table 10.7 describes the valid values of the TIMETYPE=
option.
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Table 10.7 Values for TIMETYPE= Option

number string Description
0 CPU Specifies units of CPU time.
1 REAL Specifies units of real time.

The default value of the TIMETYPE= option depends on the values of the NTHREADS= and NODES=
options in the PERFORMANCE statement. See the section “PERFORMANCE Statement” on page 28
in Chapter 4, “Shared Concepts and Topics.” for more information about the NTHREADS= and
NODES= options.

If you specify a value greater than 1 for either the NTHREADS= or the NODES= option, the default
value of the TIMETYPE= option is REAL. If you specify a value of 1 for both the NTHREADS= and
NODES= options, the default value of the TIMETYPE= option is CPU.

Simplex Algorithm Options

BASIS=number | string
specifies the following options for generating an initial basis:

number string Description
0 CRASH Generate an initial basis by using crash techniques (Maros

2003). The procedure creates a triangular basic matrix
consisting of both decision variables and slack variables.

1 SLACK Generate an initial basis by using all slack variables.
2 WARMSTART Start the primal and dual simplex solvers with a user-

specified initial basis. The PRIMALIN= and DUALIN=
data sets are required to specify an initial basis.

The default option for the primal simplex solver is CRASH (0). The default option for the dual simplex
solver is SLACK(1). For network simplex, this option has no effect.

PRICETYPE=number | string
specifies one of the following pricing strategies for the primal and dual simplex solvers:

number string Description
0 HYBRID Use a hybrid of Devex and steepest-edge pricing strate-

gies. Available for the primal simplex solver only.
1 PARTIAL Use Dantzig’s rule on a queue of decision variables.

Optionally, you can specify QUEUESIZE=. Available
for the primal simplex solver only.

2 FULL Use Dantzig’s rule on all decision variables.
3 DEVEX Use Devex pricing strategy.
4 STEEPESTEDGE Use steepest-edge pricing strategy.

The default pricing strategy for the primal simplex solver is HYBRID (0) and for the dual simplex
solver is STEEPESTEDGE (4). For the network simplex solver, this option applies only to the solver
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specified by the ALGORITHM2= option. See the section “Pricing Strategies for the Primal and Dual
Simplex Solvers” on page 377 for details.

QUEUESIZE=k
specifies the queue size k 2 Œ1; n�, where n is the number of decision variables. This queue is used for
finding an entering variable in the simplex iteration. The default value is chosen adaptively based on
the number of decision variables. This option is used only when PRICETYPE=PARTIAL.

SCALE=number | string
specifies one of the following scaling options:

number string Description
0 NONE Disable scaling.
–1 AUTOMATIC Automatically apply scaling procedure if necessary.

The default option is AUTOMATIC (–1).

Interior Point Algorithm Options

CROSSOVER=number | string
specifies whether to convert the interior point solution to a basic simplex solution. If the interior point
algorithm terminates with a solution, the crossover algorithm uses the interior point solution to create
an initial basic solution. After performing primal fixing and dual fixing, the crossover algorithm calls a
simplex algorithm to locate an optimal basic solution.

number string Description
0 OFF Do not convert the interior point solution to a basic

simplex solution.
1 ON Convert the interior point solution to a basic simplex

solution.

The default value of the CROSSOVER= option is OFF.

STOP_DG=ı
specifies the desired relative duality gap ı 2[1E–9, 1E–4]. This is the relative difference between the
primal and dual objective function values and is the primary solution quality parameter. The default
value is 1E–6. See the section “The Interior Point Algorithm” on page 378 for details.

STOP_DI=ˇ
specifies the maximum allowed relative dual constraints violation ˇ 2[1E–9, 1E–4]. The default value
is 1E–6. See the section “The Interior Point Algorithm” on page 378 for details.

STOP_PI=˛
specifies the maximum allowed relative bound and primal constraints violation ˛ 2[1E–9, 1E–4]. The
default value is 1E–6. See the section “The Interior Point Algorithm” on page 378 for details.
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Decomposition Algorithm Statements
The following statements are available for the decomposition algorithm in the OPTLP procedure:

DECOMP < options > ;

DECOMP_MASTER < options > ;

DECOMP_SUBPROB < options > ;

For more information about these statements, see Chapter 13, “The Decomposition Algorithm.”

PERFORMANCE Statement
PERFORMANCE < performance-options > ;

The PERFORMANCE statement specifies performance-options for single-machine mode and distributed
mode, and requests detailed performance results of the OPTLP procedure.

With the PERFORMANCE statement, you can also control whether the OPTLP procedure executes in
single-machine or distribute mode. The PERFORMANCE statement is documented in the section “PER-
FORMANCE Statement” on page 28 in Chapter 4, “Shared Concepts and Topics.”

For the OPTLP procedure, the decomposition algorithm, interior point algorithm, and concurrent LP algorithm
can be run in single-machine mode. Only the decomposition algorithm can be run in distributed mode. The
decomposition algorithm and concurrent LP algorithm support both the deterministic and nondeterministic
modes. The interior point algorithm only supports the deterministic mode.

NOTE: Distributed mode requires SAS High-Performance Optimization.s
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Details: OPTLP Procedure

Data Input and Output
This subsection describes the PRIMALIN= and DUALIN= data sets required to warm start the primal and
dual simplex solvers, and the PRIMALOUT= and DUALOUT= output data sets.

Definitions of Variables in the PRIMALIN= Data Set

The PRIMALIN= data set has two required variables defined as follows:

_VAR_
specifies the name of the decision variable.

_STATUS_
specifies the status of the decision variable. It can take one of the following values:

B basic variable

L nonbasic variable at its lower bound

U nonbasic variable at its upper bound

F free variable

A newly added variable in the modified LP model when using the BASIS=WARMSTART option

NOTE: The PRIMALIN= data set is created from the PRIMALOUT= data set obtained from a previous
“normal” run of PROC OPTLP—i.e., using only the DATA= data set as the input.

Definitions of Variables in the DUALIN= Data Set

The DUALIN= data set also has two required variables defined as follows:

_ROW_
specifies the name of the constraint.

_STATUS_
specifies the status of the slack variable for a given constraint. It can take one of the following values:

B basic variable

L nonbasic variable at its lower bound

U nonbasic variable at its upper bound

F free variable

A newly added variable in the modified LP model when using the BASIS=WARMSTART option

NOTE: The DUALIN= data set is created from the DUALOUT= data set obtained from a previous
“normal” run of PROC OPTLP—i.e., using only the DATA= data set as the input.
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Definitions of Variables in the PRIMALOUT= Data Set

The PRIMALOUT= data set contains the primal solution to the LP model; each observation corresponds to a
variable of the LP problem. If the SAVE_ONLY_IF_OPTIMAL option is not specified, the PRIMALOUT=
data set can contain an intermediate solution, if one is available. See Example 10.1 for an example of the
PRIMALOUT= data set. The variables in the data set have the following names and meanings.

_OBJ_ID_
specifies the name of the objective function. This is particularly useful when there are multiple
objective functions, in which case each objective function has a unique name.

NOTE: PROC OPTLP does not support simultaneous optimization of multiple objective functions in
this release.

_RHS_ID_
specifies the name of the variable that contains the right-hand-side value of each constraint.

_VAR_
specifies the name of the decision variable.

_TYPE_
specifies the type of the decision variable. _TYPE_ can take one of the following values:

N nonnegative

D bounded (with both lower and upper bound)

F free

X fixed

O other (with either lower or upper bound)

_OBJCOEF_
specifies the coefficient of the decision variable in the objective function.

_LBOUND_
specifies the lower bound on the decision variable.

_UBOUND_
specifies the upper bound on the decision variable.

_VALUE_
specifies the value of the decision variable.

_STATUS_
specifies the status of the decision variable. _STATUS_ can take one of the following values:

B basic variable

L nonbasic variable at its lower bound

U nonbasic variable at its upper bound

F free variable

S superbasic variable (a nonbasic variable with a value strictly between its bounds)
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I LP model infeasible (all decision variables have _STATUS_ equal to I)

For the interior point solver with IIS= OFF, _STATUS_ is blank.

The following values can appear only if IIS= ON. See the section “Irreducible Infeasible Set” on
page 387 for details.

I_L the lower bound of the variable is violated

I_U the upper bound of the variable is violated

I_F the fixed bound of the variable is violated

_R_COST_
specifies the reduced cost of the decision variable, which is the amount by which the objective function
is increased per unit increase in the decision variable. The reduced cost associated with the i th variable
is the i th entry of the following vector:�

cT
� cT

BB�1A
�

where B 2 Rm�m denotes the basis (matrix composed of basic columns of the constraints matrix
A 2 Rm�n), c 2 Rn is the vector of objective function coefficients, and cB 2 Rm is the vector of
objective coefficients of the variables in the basis.

Definitions of Variables in the DUALOUT= Data Set

The DUALOUT= data set contains the dual solution to the LP model; each observation corresponds to a
constraint of the LP problem. If the SAVE_ONLY_IF_OPTIMAL option is not specified, the PRIMALOUT=
data set can contain an intermediate solution, if one is available. Information about the objective rows of the
LP problems is not included. See Example 10.1 for an example of the DUALOUT= data set. The variables in
the data set have the following names and meanings.

_OBJ_ID_
specifies the name of the objective function. This is particularly useful when there are multiple
objective functions, in which case each objective function has a unique name.

NOTE: PROC OPTLP does not support simultaneous optimization of multiple objective functions in
this release.

_RHS_ID_
specifies the name of the variable that contains the right-hand-side value of each constraint.

_ROW_
specifies the name of the constraint.

_TYPE_
specifies the type of the constraint. _TYPE_ can take one of the following values:

L “less than or equals” constraint

E equality constraint

G “greater than or equals” constraint

R ranged constraint (both “less than or equals” and “greater than or equals”)
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_RHS_
specifies the value of the right-hand side of the constraint. It takes a missing value for a ranged
constraint.

_L_RHS_
specifies the lower bound of a ranged constraint. It takes a missing value for a non-ranged constraint.

_U_RHS_
specifies the upper bound of a ranged constraint. It takes a missing value for a non-ranged constraint.

_VALUE_
specifies the value of the dual variable associated with the constraint.

_STATUS_
specifies the status of the slack variable for the constraint. _STATUS_ can take one of the following
values:

B basic variable

L nonbasic variable at its lower bound

U nonbasic variable at its upper bound

F free variable

S superbasic variable (a nonbasic variable with a value strictly between its bounds)

I LP model infeasible (all decision variables have _STATUS_ equal to I)

The following values can appear only if option IIS= ON. See the section “Irreducible Infeasible Set”
on page 387 for details.

I_L the “GE” (�) condition of the constraint is violated

I_U the “LE” (�) condition of the constraint is violated

I_F the “EQ” (D) condition of the constraint is violated

_ACTIVITY_
specifies the left-hand-side value of a constraint. In other words, the value of _ACTIVITY_ for the
i th constraint would be equal to aT

i x, where ai refers to the i th row of the constraints matrix and x
denotes the vector of current decision variable values.

Presolve
Presolve in PROC OPTLP uses a variety of techniques to reduce the problem size, improve numerical stability,
and detect infeasibility or unboundedness (Andersen and Andersen 1995; Gondzio 1997). During presolve,
redundant constraints and variables are identified and removed. Presolve can further reduce the problem
size by substituting variables. Variable substitution is a very effective technique, but it might occasionally
increase the number of nonzero entries in the constraint matrix.

In most cases, using presolve is very helpful in reducing solution times. You can enable presolve at different
levels or disable it by specifying the PRESOLVER= option.
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Pricing Strategies for the Primal and Dual Simplex Solvers
Several pricing strategies for the primal and dual simplex solvers are available. Pricing strategies determine
which variable enters the basis at each simplex pivot. They can be controlled by specifying the PRICETYPE=
option.

The primal simplex solver has the following five pricing strategies:

PARTIAL uses Dantzig’s most violated reduced cost rule (Dantzig 1963). It scans a queue of
decision variables and selects the variable with the most violated reduced cost as the
entering variable. You can optionally specify the QUEUESIZE= option to control the
length of this queue.

FULL uses Dantzig’s most violated reduced cost rule. It compares the reduced costs of all
decision variables and selects the variable with the most violated reduced cost as the
entering variable.

DEVEX implements the Devex pricing strategy developed by Harris (1973).

STEEPESTEDGE uses the steepest-edge pricing strategy developed by Forrest and Goldfarb (1992).

HYBRID uses a hybrid of the Devex and steepest-edge pricing strategies.

The dual simplex solver has only three pricing strategies available: FULL, DEVEX, and STEEPESTEDGE.

Warm Start for the Primal and Dual Simplex Solvers
You can warm start the primal and dual simplex solvers by specifying the option BASIS=WARMSTART.
Additionally you need to specify the PRIMALIN= and DUALIN= data sets. The primal and dual simplex
solvers start with the basis thus provided. If the given basis cannot form a valid basis, the solvers use the
basis generated using their crash techniques.

After an LP model is solved using the primal and dual simplex solvers, the BASIS=WARMSTART option
enables you to perform sensitivity analysis such as modifying the objective function, changing the right-hand
sides of the constraints, adding or deleting constraints or decision variables, and combinations of these cases.
A faster solution to such a modified LP model can be obtained by starting with the basis in the optimal
solution to the original LP model. This can be done by using the BASIS=WARMSTART option, modifying
the DATA= input data set, and specifying the PRIMALIN= and DUALIN= data sets. Example 10.4 and
Example 10.5 illustrate how to reoptimize an LP problem with a modified objective function and a modified
right-hand side by using this technique. Example 10.6 shows how to reoptimize an LP problem after adding
a new constraint.

The network simplex solver ignores the option BASIS=WARMSTART.

CAUTION: Since the presolver uses the objective function and/or right-hand-side information, the basis
provided by you might not be valid for the presolved model. It is therefore recommended that you turn the
PRESOLVER= option off when using BASIS=WARMSTART.
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The Network Simplex Algorithm
The network simplex solver in PROC OPTLP attempts to leverage the speed of the network simplex algorithm
to more efficiently solve linear programs by using the following process:

1. It heuristically extracts the largest possible network substructure from the original problem.

2. It uses the network simplex algorithm to solve for an optimal solution to this substructure.

3. It uses this solution to construct an advanced basis to warm-start either the primal or dual simplex
solver on the original linear programming problem.

The network simplex algorithm is a specialized version of the simplex algorithm that uses spanning-tree
bases to more efficiently solve linear programming problems that have a pure network form. Such LPs can
be modeled using a formulation over a directed graph, as a minimum-cost flow problem. Let G D .N;A/
be a directed graph, where N denotes the nodes and A denotes the arcs of the graph. The decision variable
xij denotes the amount of flow sent between node i and node j . The cost per unit of flow on the arcs is
designated by cij , and the amount of flow sent across each arc is bounded to be within Œlij ; uij �. The demand
(or supply) at each node is designated as bi , where bi > 0 denotes a supply node and bi < 0 denotes a
demand node. The corresponding linear programming problem is as follows:

min
P
.i;j /2A cijxij

subject to
P
.i;j /2A xij �

P
.j;i/2A xj i D bi 8i 2 N

xij � uij 8.i; j / 2 A

xij � lij 8.i; j / 2 A

The network simplex algorithm used in PROC OPTLP is the primal network simplex algorithm. This
algorithm finds the optimal primal feasible solution and a dual solution that satisfies complementary slackness.
Sometimes the directed graph G is disconnected. In this case, the problem can be decomposed into its weakly
connected components and each minimum-cost flow problem can be solved separately. After solving each
component, the optimal basis for the network substructure is augmented with the non-network variables and
constraints from the original problem. This advanced basis is then used as a starting point for the primal or
dual simplex method. The solver automatically selects the solver to use after network simplex. However, you
can override this selection with the ALGORITHM2= option.

The network simplex algorithm can be more efficient than the other solvers on problems with a large network
substructure. You can view the size of the network structure in the log.

The Interior Point Algorithm
The interior point solver in PROC OPTLP implements an infeasible primal-dual predictor-corrector interior
point algorithm. To illustrate the algorithm and the concepts of duality and dual infeasibility, consider the
following LP formulation (the primal):

min cTx
subject to Ax � b

x � 0
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The corresponding dual formulation is as follows:

max bTy
subject to ATy C w D c

y � 0
w � 0

where y 2 Rm refers to the vector of dual variables and w 2 Rn refers to the vector of dual slack variables.

The dual formulation makes an important contribution to the certificate of optimality for the primal formu-
lation. The primal and dual constraints combined with complementarity conditions define the first-order
optimality conditions, also known as KKT (Karush-Kuhn-Tucker) conditions, which can be stated as follows:

Ax � s D b .primal feasibility/
ATyC w D c .dual feasibility/

WXe D 0 .complementarity/
SYe D 0 .complementarity/

x; y; w; s � 0

where e � .1; : : : ; 1/T of appropriate dimension and s 2 Rm is the vector of primal slack variables.

NOTE: Slack variables (the s vector) are automatically introduced by the solver when necessary; it is
therefore recommended that you not introduce any slack variables explicitly. This enables the solver to
handle slack variables much more efficiently.

The letters X; Y; W; and S denote matrices with corresponding x; y; w; and s on the main diagonal and
zero elsewhere, as in the following example:

X �

26664
x1 0 � � � 0

0 x2 � � � 0
:::

:::
: : :

:::

0 0 � � � xn

37775
If .x�; y�;w�; s�/ is a solution of the previously defined system of equations that represent the KKT
conditions, then x� is also an optimal solution to the original LP model.

At each iteration the interior point algorithm solves a large, sparse system of linear equations,�
Y�1S A
AT �X�1W

� �
�y
�x

�
D

�
„

‚

�
where �x and �y denote the vector of search directions in the primal and dual spaces, respectively, and ‚
and „ constitute the vector of the right-hand sides.

The preceding system is known as the reduced KKT system. PROC OPTLP uses a preconditioned quasi-
minimum residual algorithm to solve this system of equations efficiently.

An important feature of the interior point solver is that it takes full advantage of the sparsity in the constraint
matrix, thereby enabling it to efficiently solve large-scale linear programs.

The interior point algorithm works simultaneously in the primal and dual spaces. It attains optimality when
both primal and dual feasibility are achieved and when complementarity conditions hold. Therefore, it is of
interest to observe the following four measures where kvk2 is the Euclidean norm of the vector v:
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• relative primal infeasibility measure ˛:

˛ D
kAx � b � sk2
kbk2 C 1

• relative dual infeasibility measure ˇ:

ˇ D
kc �ATy � wk2
kck2 C 1

• relative duality gap ı:

ı D
jcTx � bTyj
jcTxj C 1

• absolute complementarity  :

 D

nX
iD1

xiwi C

mX
iD1

yisi

These measures are displayed in the iteration log.

Iteration Log for the Primal and Dual Simplex Solvers
The primal and dual simplex solvers implement a two-phase simplex algorithm. Phase I finds a feasible
solution, which phase II improves to an optimal solution.

When the LOGFREQ= option has a value of 1, the following information is printed in the iteration log:

Algorithm indicates which simplex method is running by printing the letter P (primal) or D (dual).

Phase indicates whether the solver is in phase I or phase II of the simplex method.

Iteration indicates the iteration number.

Objective Value indicates the current amount of infeasibility in phase I and the primal objective value of
the current solution in phase II.

Time indicates the time elapsed (in seconds).

Entering Variable indicates the entering pivot variable. A slack variable that enters the basis is indicated
by the corresponding row name followed by “(S)”. If the entering nonbasic variable
has distinct, finite lower and upper bounds, then a “bound swap” can take place in the
primal simplex method.

Leaving Variable indicates the leaving pivot variable. A slack variable that leaves the basis is indicated
by the corresponding row name followed by “(S)”. The leaving variable is the same as
the entering variable if a bound swap has taken place.

When you omit the LOGFREQ= option or specify a value greater than 1, only the algorithm, phase, iteration,
objective value, and time information is printed in the iteration log.

The behavior of objective values in the iteration log depends on both the current phase and the chosen solver.
In phase I, both simplex methods have artificial objective values that decrease to 0 when a feasible solution is
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found. For the dual simplex method, phase II maintains a dual feasible solution, so a minimization problem
has increasing objective values in the iteration log. For the primal simplex method, phase II maintains a
primal feasible solution, so a minimization problem has decreasing objective values in the iteration log.

During the solution process, some elements of the LP model might be perturbed to improve performance. In
this case the objective values that are printed correspond to the perturbed problem. After reaching optimality
for the perturbed problem, PROC OPTLP solves the original problem by switching from the primal simplex
method to the dual simplex method (or from the dual to the primal simplex method). Because the problem
might be perturbed again, this process can result in several changes between the two algorithms.

Iteration Log for the Network Simplex Solver
After finding the embedded network and formulating the appropriate relaxation, the network simplex solver
uses a primal network simplex algorithm. In the case of a connected network, with one (weakly connected)
component, the log shows the progress of the simplex algorithm. The following information is displayed in
the iteration log:

Iteration indicates the iteration number.

PrimalObj indicates the primal objective value of the current solution.

Primal Infeas indicates the maximum primal infeasibility of the current solution.

Time indicates the time spent on the current component by network simplex.

The frequency of the simplex iteration log is controlled by the LOGFREQ= option. The default value of the
LOGFREQ= option is 10,000.

If the network relaxation is disconnected, the information in the iteration log shows progress at the component
level. The following information is displayed in the iteration log:

Component indicates the component number being processed.

Nodes indicates the number of nodes in this component.

Arcs indicates the number of arcs in this component.

Iterations indicates the number of simplex iterations needed to solve this component.

Time indicates the time spent so far in network simplex.

The frequency of the component iteration log is controlled by the LOGFREQ= option. In this case, the
default value of the LOGFREQ= option is determined by the size of the network.

The LOGLEVEL= option adjusts the amount of detail shown. By default, LOGLEVEL= is set to MODER-
ATE and reports as described previously. If set to NONE, no information is shown. If set to BASIC, the only
information shown is a summary of the network relaxation and the time spent solving the relaxation. If set
to AGGRESSIVE, in the case of one component, the log displays as described previously; in the case of
multiple components, for each component, a separate simplex iteration log is displayed.
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Iteration Log for the Interior Point Solver
The interior point solver implements an infeasible primal-dual predictor-corrector interior point algorithm.
The following information is displayed in the iteration log:

Iter indicates the iteration number.

Complement indicates the (absolute) complementarity.

Duality Gap indicates the (relative) duality gap.

Primal Infeas indicates the (relative) primal infeasibility measure.

Bound Infeas indicates the (relative) bound infeasibility measure.

Dual Infeas indicates the (relative) dual infeasibility measure.

If the sequence of solutions converges to an optimal solution of the problem, you should see all columns
in the iteration log converge to zero or very close to zero. If they do not, it can be the result of insufficient
iterations being performed to reach optimality. In this case, you might need to increase the value specified in
the MAXITER= or MAXTIME= options. If the complementarity or the duality gap do not converge, the
problem might be infeasible or unbounded. If the infeasibility columns do not converge, the problem might
be infeasible.

Iteration Log for the Crossover Algorithm
The crossover algorithm takes an optimal solution from the interior point solver and transforms it into
an optimal basic solution. The iterations of the crossover algorithm are similar to simplex iterations; this
similarity is reflected in the format of the iteration logs.

When LOGFREQ=1, the following information is printed in the iteration log:

Phase indicates whether the primal crossover (PC) or dual crossover (DC) technique is used.

Iteration indicates the iteration number.

Objective Value indicates the total amount by which the superbasic variables are off their bound. This
value decreases to 0 as the crossover algorithm progresses.

Time indicates the time elapsed (in seconds) since the beginning of the crossover algorithm.

Entering Variable indicates the entering pivot variable. A slack variable that enters the basis is indicated
by the corresponding row name followed by “(S).”

Leaving Variable indicates the leaving pivot variable. A slack variable that leaves the basis is indicated by
the corresponding row name followed by “(S).”

When you omit the LOGFREQ= option or specify a value greater than 1, only the phase, iteration, objective
value, and time information is printed in the iteration log.

After all the superbasic variables have been eliminated, the crossover algorithm continues with regular primal
or dual simplex iterations.
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Concurrent LP (Experimental)
The ALGORITHM=CON option starts several different linear optimization algorithms in parallel in a
single-machine mode. The OPTLP procedure automatically determines which algorithms to run and how
many threads to assign to each algorithm. If sufficient resources are available, the procedure runs all four
standard algorithms. When the first algorithm ends, the procedure returns the results from that algorithm
and terminates any other algorithms that are still running. If you specify a value of DETERMINISTIC for
the PARALLELMODE= option in the PERFORMANCE statement, the algorithm for which the results are
returned is not necessarily the one that finished first. The OPTLP procedure deterministically selects the
algorithm for which the results are returned. Regardless of which mode (deterministic or nondeterministic) is
in effect, terminating algorithms that are still running might take a significant amount of time.

During concurrent optimization, the procedure displays the iteration log for the dual simplex algorithm.
See the section “Iteration Log for the Primal and Dual Simplex Solvers” on page 380 for more information
about this iteration log. Upon termination, the procedure displays the iteration log for the algorithm that
finishes first, unless the dual simplex algorithm finishes first. If you specify LOGLEVEL=AGGRESSIVE,
the OPTLP procedure displays the iteration logs for all algorithms that are run concurrently.

If you specify PRINTLEVEL=2 and ALGORITHM=CON, the OPTLP procedure produces an ODS table
called ConcurrentSummary. This table contains a summary of the solution statuses of all algorithms that are
run concurrently.

ODS Tables
PROC OPTLP creates three Output Delivery System (ODS) tables by default. The first table, ProblemSum-
mary, is a summary of the input LP problem. The second table, SolutionSummary, is a brief summary of the
solution status. The third table, PerformanceInfo, is a summary of performance options. You can use ODS
table names to select tables and create output data sets. For more information about ODS, see SAS Output
Delivery System: Procedures Guide.

If you specify a value of 2 for the PRINTLEVEL= option, then the ProblemStatistics table is produced. This
table contains information about the problem data. For more information, see the section “Problem Statistics”
on page 386. If you specify PRINTLEVEL=2 and ALGORITHM=CON, the ConcurrentSummary table is
produced. This table contains solution status information for all algorithms that are run concurrently. For
more information, see the section “Concurrent LP (Experimental)” on page 383.

If you specify the DETAILS option in the PERFORMANCE statement, then the Timing table is produced.

Table 10.12 lists all the ODS tables that can be produced by the OPTLP procedure, along with the statement
and option specifications required to produce each table.

Table 10.12 ODS Tables Produced by PROC OPTLP

ODS Table Name Description Statement Option
ProblemSummary Summary of the input LP problem PROC OPTLP PRINTLEVEL=1

(default)
SolutionSummary Summary of the solution status PROC OPTLP PRINTLEVEL=1

(default)
ProblemStatistics Description of input problem data PROC OPTLP PRINTLEVEL=2
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Table 10.12 (continued)

ODS Table Name Description Statement Option
ConcurrentSummary Summary of the solution status for

all algorithms run concurrently
PROC OPTLP PRINTLEVEL=2,

ALGORITHM=CON
PerformanceInfo List of performance options and

their values
PROC OPTLP PRINTLEVEL=1

(default)
Timing Detailed solution timing PERFORMANCE DETAILS

A typical output of PROC OPTLP is shown in Figure 10.2.

Figure 10.2 Typical OPTLP Output

The OPTLP Procedure

Problem Summary

Problem Name ADLITTLE
Objective Sense Minimization
Objective Function .Z....
RHS ZZZZ0001

Number of Variables 97
Bounded Above 0
Bounded Below 97
Bounded Above and Below 0
Free 0
Fixed 0

Number of Constraints 56
LE (<=) 40
EQ (=) 15
GE (>=) 1
Range 0

Constraint Coefficients 383

Performance Information

Execution Mode Single-Machine
Number of Threads 4
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Figure 10.2 continued

Solution Summary

Solver LP
Algorithm Dual Simplex
Objective Function .Z....
Solution Status Optimal
Objective Value 225494.96316

Primal Infeasibility 2.273737E-13
Dual Infeasibility 1.847411E-13
Bound Infeasibility 0

Iterations 77
Presolve Time 0.00
Solution Time 0.06

You can create output data sets from these tables by using the ODS OUTPUT statement. This can be useful,
for example, when you want to create a report to summarize multiple PROC OPTLP runs. The output data
sets corresponding to the preceding output are shown in Figure 10.3, where you can also find (at the row
following the heading of each data set in display) the variable names that are used in the table definition
(template) of each table.

Figure 10.3 ODS Output Data Sets

Problem Summary

Obs Label1 cValue1 nValue1

1 Problem Name ADLITTLE .
2 Objective Sense Minimization .
3 Objective Function .Z.... .
4 RHS ZZZZ0001 .
5 .
6 Number of Variables 97 97.000000
7 Bounded Above 0 0
8 Bounded Below 97 97.000000
9 Bounded Above and Below 0 0
10 Free 0 0
11 Fixed 0 0
12 .
13 Number of Constraints 56 56.000000
14 LE (<=) 40 40.000000
15 EQ (=) 15 15.000000
16 GE (>=) 1 1.000000
17 Range 0 0
18 .
19 Constraint Coefficients 383 383.000000
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Figure 10.3 continued

Solution Summary

Obs Label1 cValue1 nValue1

1 Solver LP .
2 Algorithm Dual Simplex .
3 Objective Function .Z.... .
4 Solution Status Optimal .
5 Objective Value 225494.96316 225495
6 .
7 Primal Infeasibility 2.273737E-13 2.273737E-13
8 Dual Infeasibility 1.847411E-13 1.847411E-13
9 Bound Infeasibility 0 0

10 .
11 Iterations 77 77.000000
12 Presolve Time 0.00 0
13 Solution Time 0.06 0.062401

Problem Statistics

Optimizers can encounter difficulty when solving poorly formulated models. Information about data
magnitude provides a simple gauge to determine how well a model is formulated. For example, a model
whose constraint matrix contains one very large entry (on the order of 109) can cause difficulty when the
remaining entries are single-digit numbers. The PRINTLEVEL=2 option in the OPTLP procedure causes
the ODS table ProblemStatistics to be generated. This table provides basic data magnitude information that
enables you to improve the formulation of your models.

The example output in Figure 10.4 demonstrates the contents of the ODS table ProblemStatistics.
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Figure 10.4 ODS Table ProblemStatistics

The OPTLP Procedure

Problem Statistics

Number of Constraint Matrix Nonzeros 8
Maximum Constraint Matrix Coefficient 3
Minimum Constraint Matrix Coefficient 1
Average Constraint Matrix Coefficient 1.875

Number of Objective Nonzeros 3
Maximum Objective Coefficient 4
Minimum Objective Coefficient 2
Average Objective Coefficient 3

Number of RHS Nonzeros 3
Maximum RHS 7
Minimum RHS 4
Average RHS 5.3333333333

Maximum Number of Nonzeros per Column 3
Minimum Number of Nonzeros per Column 2
Average Number of Nonzeros per Column 2

Maximum Number of Nonzeros per Row 3
Minimum Number of Nonzeros per Row 2
Average Number of Nonzeros per Row 2

Irreducible Infeasible Set
For a linear programming problem, an irreducible infeasible set (IIS) is an infeasible subset of constraints
and variable bounds that will become feasible if any single constraint or variable bound is removed. It is
possible to have more than one IIS in an infeasible LP. Identifying an IIS can help to isolate the structural
infeasibility in an LP.

The presolver in the OPTLP procedure can detect infeasibility, but it only identifies the variable bound or
constraint that triggers the infeasibility.
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The IIS=ON option directs the OPTLP procedure to search for an IIS in a given LP. The presolver is not
applied to the problem during the IIS search. If the OPTLP procedure detects an IIS, it first outputs the IIS to
the data sets specified by the PRIMALOUT= and DUALOUT= options, and then it stops. The number of
iterations that are reported in the macro variable and the ODS table is the total number of simplex iterations.
This includes the initial LP solve and all subsequent iterations during the constraint deletion phase.

The IIS= option can add special values to the _STATUS_ variables in the output data sets. (See the section
“Data Input and Output” on page 373 for more information.) For constraints, a status of “I_L”, “I_U”, or “I_F”
indicates, respectively, the “GE” (�), “LE” (�), or “EQ” (D) condition is violated. For range constraints, a
status of “I_L” or “I_U” indicates, respectively, that the lower or upper bound of the constraint is violated.
For variables, a status of “I_L”, “I_U”, or “I_F” indicates, respectively, the lower, upper, or fixed bound of
the variable is violated. From this information, you can identify names of the constraints (variables) in the
IIS as well as the corresponding bound where infeasibility occurs.

Making any one of the constraints or variable bounds in the IIS nonbinding removes the infeasibility from the
IIS. In some cases, changing a right-hand side or bound by a finite amount removes the infeasibility; however,
the only way to guarantee removal of the infeasibility is to set the appropriate right-hand side or bound to1
or �1. Because it is possible for an LP to have multiple irreducible infeasible sets, simply removing the
infeasibility from one set might not make the entire problem feasible. To make the entire problem feasible,
you can rerun the LP solver with IIS=ON specified after removing the infeasibility from an IIS. Repeat this
process until the LP solver no longer detects an IIS. The resulting problem is feasible. This approach to
infeasibility repair can produce different end problems depending on which right-hand sides and bounds you
choose to relax.

Changing different constraints and bounds can require considerably different changes to the MPS-format
SAS data set. For example, if you used the default lower bound of 0 for a variable but you want to relax the
lower bound to �1, you might need to add a LB row to the BOUNDS section of the data set. For more
information about changing variable and constraint bounds, see Chapter 15, “The MPS-Format SAS Data
Set.”

The IIS= option in PROC OPTLP uses two different methods to identify an IIS. Based on the result of
the initial solve, the sensitivity filter removes several constraints and variable bounds at once while still
maintaining infeasibility. This phase is quick and dramatically reduces the size of the IIS. Following that, the
deletion filter removes each remaining constraint and variable bound one by one to check which of them
are needed to get an infeasible system. This second phase is more time consuming, but it ensures that the
IIS set returned by PROC OPTLP is indeed irreducible. The progress of the deletion filter is reported at
regular intervals. Occasionally, the sensitivity filter might be called again during the deletion filter to improve
performance.

See Example 10.7 for an example demonstrating the use of the IIS= option in locating and removing
infeasibilities.

Macro Variable _OROPTLP_
The OPTLP procedure defines a macro variable named _OROPTLP_. This variable contains a character
string that indicates the status of the OPTLP procedure upon termination. The various terms of the variable
are interpreted as follows.
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STATUS
indicates the solver status at termination. It can take one of the following values:

OK The procedure terminated normally.

SYNTAX_ERROR Incorrect syntax was used.

DATA_ERROR The input data were inconsistent.

OUT_OF_MEMORY Insufficient memory was allocated to the procedure.

IO_ERROR A problem occurred in reading or writing data.

ERROR The status cannot be classified into any of the preceding categories.

ALGORITHM
indicates the algorithm that produces the solution data in the macro variable. This term appears only
when STATUS=OK. It can take one of the following values:

PS The primal simplex algorithm produced the solution data.

DS The dual simplex algorithm produced the solution data.

NS The network simplex algorithm produced the solution data.

IP The interior point algorithm produced the solution data.

DECOMP The decomposition algorithm produced the solution data.

When you run algorithms concurrently (ALGORITHM=CON), this term indicates which algorithm is
the first to terminate.

SOLUTION_STATUS
indicates the solution status at termination. It can take one of the following values:

OPTIMAL The solution is optimal.

CONDITIONAL_OPTIMAL The solution is optimal, but some infeasibilities (primal, dual
or bound) exceed tolerances due to scaling or preprocessing.

FEASIBLE The problem is feasible.

INFEASIBLE The problem is infeasible.

UNBOUNDED The problem is unbounded.

INFEASIBLE_OR_UNBOUNDED The problem is infeasible or unbounded.

ITERATION_LIMIT_REACHED The maximum allowable number of iterations was reached.

TIME_LIMIT_REACHED The solver reached its execution time limit.

FAILED The solver failed to converge, possibly due to numerical issues.

OBJECTIVE
indicates the objective value obtained by the solver at termination.
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PRIMAL_INFEASIBILITY
indicates, for the primal simplex and dual simplex solvers, the maximum (absolute) violation of the
primal constraints by the primal solution. For the interior point solver, this term indicates the relative
violation of the primal constraints by the primal solution.

DUAL_INFEASIBILITY
indicates, for the primal simplex and dual simplex solvers, the maximum (absolute) violation of the
dual constraints by the dual solution. For the interior point solver, this term indicates the relative
violation of the dual constraints by the dual solution.

BOUND_INFEASIBILITY
indicates, for the primal simplex and dual simplex solvers, the maximum (absolute) violation of the
lower or upper bounds (or both) by the primal solution. For the interior point solver, this term indicates
the relative violation of the lower or upper bounds (or both) by the primal solution.

DUALITY_GAP
indicates the (relative) duality gap. This term appears only if the interior point algorithm is used.

COMPLEMENTARITY
indicates the (absolute) complementarity. This term appears only if the interior point algorithm is used.

ITERATIONS
indicates the number of iterations taken to solve the problem. When the network simplex algorithm is
used, this term indicates the number of network simplex iterations taken to solve the network relaxation.
When crossover is enabled, this term indicates the number of interior point iterations taken to solve the
problem.

ITERATIONS2
indicates the number of simplex iterations performed by the secondary solver. In network simplex, the
secondary solver is selected automatically, unless a value has been specified for the ALGORITHM2=
option. When crossover is enabled, the secondary solver is selected automatically. This term appears
only if the network simplex solver is used or if crossover is enabled.

PRESOLVE_TIME
indicates the time (in seconds) used in preprocessing.

SOLUTION_TIME
indicates the time (in seconds) taken to solve the problem, including preprocessing time.

NOTE: The time reported in PRESOLVE_TIME and SOLUTION_TIME is either CPU time or real time.
The type is determined by the TIMETYPE= option.

When SOLUTION_STATUS has a value of OPTIMAL, CONDITIONAL_OPTIMAL, ITERA-
TION_LIMIT_REACHED, or TIME_LIMIT_REACHED, all terms of the _OROPTLP_ macro variable are
present; for other values of SOLUTION_STATUS, some terms do not appear.
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Examples: OPTLP Procedure

Example 10.1: Oil Refinery Problem
Consider an oil refinery scenario. A step in refining crude oil into finished oil products involves a distillation
process that splits crude into various streams. Suppose there are three types of crude available: Arabian light
(a_l), Arabian heavy (a_h), and Brega (br). These crudes are distilled into light naphtha (na_l), intermediate
naphtha (na_i), and heating oil (h_o). These in turn are blended into two types of jet fuel. Jet fuel j_1 is made
up of 30% intermediate naphtha and 70% heating oil, and jet fuel j_2 is made up of 20% light naphtha and
80% heating oil. What amounts of the three crudes maximize the profit from producing jet fuel (j_1, j_2)?
This problem can be formulated as the following linear program:

max � 175 a_l � 165 a_h � 205 brC 350 j_1C 350 j_2
subject to
.napha_l/ 0:035 a_l C 0:03 a_h C 0:045 br D na_l
.napha_i/ 0:1 a_l C 0:075 a_h C 0:135 br D na_i
.htg_oil/ 0:39 a_l C 0:3 a_h C 0:43 br D h_o
.blend1/ 0:3 j_1 � na_i
.blend2/ 0:2 j_2 � na_l
.blend3/ 0:7 j_1 C 0:8 j_2 � h_o

a_l � 110

a_h � 165

br � 80

a_l, a_h, br, na_1, na_i, h_o, j_1, j_2 � 0

The constraints “blend1” and “blend2” ensure that j_1 and j_2 are made with the specified amounts of na_i
and na_l, respectively. The constraint “blend3” is actually the reduced form of the following constraints:

h_o1 � 0:7 j_1
h_o2 � 0:8 j_2

h_o1 C h_o2 � h_o

where h_o1 and h_o2 are dummy variables.

You can use the following SAS code to create the input data set ex1:

data ex1;
input field1 $ field2 $ field3 $ field4 field5 $ field6;
datalines;

NAME . EX1 . . .
ROWS . . . . .
N profit . . . .
E napha_l . . . .
E napha_i . . . .
E htg_oil . . . .
L blend1 . . . .
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L blend2 . . . .
L blend3 . . . .

COLUMNS . . . . .
. a_l profit -175 napha_l .035
. a_l napha_i .100 htg_oil .390
. a_h profit -165 napha_l .030
. a_h napha_i .075 htg_oil .300
. br profit -205 napha_l .045
. br napha_i .135 htg_oil .430
. na_l napha_l -1 blend2 -1
. na_i napha_i -1 blend1 -1
. h_o htg_oil -1 blend3 -1
. j_1 profit 350 blend1 .3
. j_1 blend3 .7 . .
. j_2 profit 350 blend2 .2
. j_2 blend3 .8 . .
BOUNDS . . . . .
UP . a_l 110 . .
UP . a_h 165 . .
UP . br 80 . .
ENDATA . . . . .
;

You can use the following call to PROC OPTLP to solve the LP problem:

proc optlp data=ex1
objsense = max
algorithm = primal
primalout = ex1pout
dualout = ex1dout
logfreq = 1;

run;
%put &_OROPTLP_;

Note that the OBJSENSE=MAX option is used to indicate that the objective function is to be maximized.

The primal and dual solutions are displayed in Output 10.1.1.
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Output 10.1.1 Example 1: Primal and Dual Solution Output

Primal Solution

Objective
Function RHS Variable Variable Objective

Obs ID ID Name Type Coefficient

1 profit a_l D -175
2 profit a_h D -165
3 profit br D -205
4 profit na_l N 0
5 profit na_i N 0
6 profit h_o N 0
7 profit j_1 N 350
8 profit j_2 N 350

Lower Upper Variable Variable Reduced
Obs Bound Bound Value Status Cost

1 0 110 110.000 U 10.2083
2 0 165 0.000 L -22.8125
3 0 80 80.000 U 2.8125
4 0 1.7977E308 7.450 B 0.0000
5 0 1.7977E308 21.800 B 0.0000
6 0 1.7977E308 77.300 B 0.0000
7 0 1.7977E308 72.667 B 0.0000
8 0 1.7977E308 33.042 B 0.0000

Dual Solution

Objective Constraint
Function RHS Constraint Constraint Constraint Lower

Obs ID ID Name Type RHS Bound

1 profit napha_l E 0 .
2 profit napha_i E 0 .
3 profit htg_oil E 0 .
4 profit blend1 L 0 .
5 profit blend2 L 0 .
6 profit blend3 L 0 .

Constraint Dual
Upper Variable Constraint Constraint

Obs Bound Value Status Activity

1 . 0.000 L 0.00000
2 . -145.833 U 0.00000
3 . -437.500 U 0.00000
4 . 145.833 L 0.00000
5 . 0.000 B -0.84167
6 . 437.500 L 0.00000
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The progress of the solution is printed to the log as follows.

Output 10.1.2 Log: Solution Progress

NOTE: The problem EX1 has 8 variables (0 free, 0 fixed).
NOTE: The problem has 6 constraints (3 LE, 3 EQ, 0 GE, 0 range).
NOTE: The problem has 19 constraint coefficients.
WARNING: The objective sense has been changed to maximization.
NOTE: The LP presolver value AUTOMATIC is applied.
NOTE: The LP presolver removed 3 variables and 3 constraints.
NOTE: The LP presolver removed 6 constraint coefficients.
NOTE: The presolved problem has 5 variables, 3 constraints, and 13 constraint

coefficients.
NOTE: The LP solver is called.
NOTE: The Primal Simplex algorithm is used.

Objective Entering Leaving
Phase Iteration Value Time Variable Variable
P 1 1 0.000000E+00 0
P 2 2 0.000000E+00 0 j_1 blend1 (S)
P 2 3 1.405640E-01 0 j_2 blend3 (S)
P 2 4 1.454487E-01 0 a_l blend2 (S)
P 2 5 2.379819E-01 0 br a_l
P 2 6 1.202394E+03 0 blend2 (S) br
P 2 7 1.348074E+03 0
D 2 8 1.347917E+03 0
D 2 9 1.347917E+03 0

NOTE: Optimal.
NOTE: Objective = 1347.9166667.
NOTE: The Primal Simplex solve time is 0.03 seconds.
NOTE: The data set WORK.EX1POUT has 8 observations and 10 variables.
NOTE: The data set WORK.EX1DOUT has 6 observations and 10 variables.

Note that the %put statement immediately after the OPTLP procedure prints value of the macro variable
_OROPTLP_ to the log as follows.

Output 10.1.3 Log: Value of the Macro Variable _OROPTLP_

STATUS=OK ALGORITHM=PS SOLUTION_STATUS=OPTIMAL OBJECTIVE=1347.9166667
PRIMAL_INFEASIBILITY=3.552714E-15 DUAL_INFEASIBILITY=0
BOUND_INFEASIBILITY=0 ITERATIONS=9 PRESOLVE_TIME=0.00 SOLUTION_TIME=0.03

The value briefly summarizes the status of the OPTLP procedure upon termination.
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Example 10.2: Using the Interior Point Solver
You can also solve the oil refinery problem described in Example 10.1 by using the interior point solver. You
can create the input data set from an external MPS-format flat file by using the SAS macro %MPS2SASD or
SAS DATA step code, both of which are described in “Getting Started: OPTLP Procedure” on page 362. You
can use the following SAS code to solve the problem:

proc optlp data=ex1
objsense = max
algorithm = ip
primalout = ex1ipout
dualout = ex1idout
logfreq = 1;

run;

The optimal solution is displayed in Output 10.2.1.

Output 10.2.1 Interior Point Solver: Primal Solution Output

Primal Solution

Objective
Function RHS Variable Variable Objective

Obs ID ID Name Type Coefficient

1 profit a_l D -175
2 profit a_h D -165
3 profit br D -205
4 profit na_l N 0
5 profit na_i N 0
6 profit h_o N 0
7 profit j_1 N 350
8 profit j_2 N 350

Lower Upper Variable Variable Reduced
Obs Bound Bound Value Status Cost

1 0 110 110.000 10.2083
2 0 165 0.000 -22.8125
3 0 80 80.000 2.8125
4 0 1.7977E308 7.450 0.0000
5 0 1.7977E308 21.800 0.0000
6 0 1.7977E308 77.300 0.0000
7 0 1.7977E308 72.667 0.0000
8 0 1.7977E308 33.042 0.0000

The iteration log is displayed in Output 10.2.2.
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Output 10.2.2 Log: Solution Progress

NOTE: The problem EX1 has 8 variables (0 free, 0 fixed).
NOTE: The problem has 6 constraints (3 LE, 3 EQ, 0 GE, 0 range).
NOTE: The problem has 19 constraint coefficients.
WARNING: The objective sense has been changed to maximization.
NOTE: The LP presolver value AUTOMATIC is applied.
NOTE: The LP presolver removed 3 variables and 3 constraints.
NOTE: The LP presolver removed 6 constraint coefficients.
NOTE: The presolved problem has 5 variables, 3 constraints, and 13 constraint

coefficients.
NOTE: The LP solver is called.
NOTE: The Interior Point algorithm is used.
NOTE: The deterministic parallel mode is enabled.
NOTE: The Interior Point algorithm is using up to 4 threads.

Primal Bound Dual
Iter Complement Duality Gap Infeas Infeas Infeas

0 4.06515E+01 2.05269E+00 1.13742E-14 0.00000E+00 2.70189E-01
1 6.98840E+00 3.06315E+00 6.77873E-15 0.00000E+00 5.33713E-02
2 5.99555E+00 3.57653E-01 2.93104E-14 0.00000E+00 4.88028E-02
3 1.39762E+00 1.01631E-01 2.62511E-14 5.55800E-17 1.04677E-02
4 1.03056E+00 6.83923E-02 4.42791E-14 1.10891E-16 5.86194E-03
5 2.52016E-02 2.98995E-04 3.82469E-14 1.13953E-16 2.08475E-04
6 2.52303E-04 3.02383E-06 3.45164E-14 2.49422E-16 2.08475E-06
7 6.82704E-04 3.62810E-08 7.84605E-15 3.96766E-17 4.54026E-06
8 6.82704E-06 3.62807E-10 2.49698E-15 2.54085E-16 4.54026E-08
9 0.00000E+00 1.17992E-15 3.55271E-15 0.00000E+00 0.00000E+00

NOTE: Conditional optimal.
NOTE: Objective = 1347.9166667.
NOTE: The Interior Point solve time is 0.01 seconds.
NOTE: The data set WORK.EX1IPOUT has 8 observations and 10 variables.
NOTE: The data set WORK.EX1IDOUT has 6 observations and 10 variables.

Example 10.3: The Diet Problem
Consider the problem of diet optimization. There are six different foods: bread, milk, cheese, potato, fish,
and yogurt. The cost and nutrition values per unit are displayed in Table 10.13.

Table 10.13 Cost and Nutrition Values

Bread Milk Cheese Potato Fish Yogurt
Cost 2.0 3.5 8.0 1.5 11.0 1.0

Protein, g 4.0 8.0 7.0 1.3 8.0 9.2
Fat, g 1.0 5.0 9.0 0.1 7.0 1.0

Carbohydrates, g 15.0 11.7 0.4 22.6 0.0 17.0
Calories 90 120 106 97 130 180

The objective is to find a minimum-cost diet that contains at least 300 calories, not more than 10 grams of
protein, not less than 10 grams of carbohydrates, and not less than 8 grams of fat. In addition, the diet should
contain at least 0.5 unit of fish and no more than 1 unit of milk.

You can use the following SAS code to create the MPS-format input data set:
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data ex3;
input field1 $ field2 $ field3 $ field4 field5 $ field6;
datalines;

NAME . EX3 . . .
ROWS . . . . .
N diet . . . .
G calories . . . .
L protein . . . .
G fat . . . .
G carbs . . . .

COLUMNS . . . . .
. br diet 2 calories 90
. br protein 4 fat 1
. br carbs 15 . .
. mi diet 3.5 calories 120
. mi protein 8 fat 5
. mi carbs 11.7 . .
. ch diet 8 calories 106
. ch protein 7 fat 9
. ch carbs .4 . .
. po diet 1.5 calories 97
. po protein 1.3 fat .1
. po carbs 22.6 . .
. fi diet 11 calories 130
. fi protein 8 fat 7
. fi carbs 0 . .
. yo diet 1 calories 180
. yo protein 9.2 fat 1
. yo carbs 17 . .
RHS . . . . .
. . calories 300 protein 10
. . fat 8 carbs 10
BOUNDS . . . . .
UP . mi 1 . .
LO . fi .5 . .
ENDATA . . . . .
;

You can solve the diet problem by using PROC OPTLP as follows:

proc optlp data=ex3
presolver = none
algorithm = ps
primalout = ex3pout
dualout = ex3dout
logfreq = 1;

run;

The solution summary and the optimal primal solution are displayed in Output 10.3.1.
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Output 10.3.1 Diet Problem: Solution Summary and Optimal Primal Solution

Solution Summary

Obs Label1 cValue1 nValue1

1 Solver LP .
2 Algorithm Primal Simplex .
3 Objective Function diet .
4 Solution Status Optimal .
5 Objective Value 12.081337881 12.081338
6 .
7 Primal Infeasibility 0 0
8 Dual Infeasibility 0 0
9 Bound Infeasibility 0 0
10 .
11 Iterations 9 9.000000
12 Presolve Time 0.00 0
13 Solution Time 0.03 0.031200

Primal Solution

Objective
Function RHS Variable Variable Objective

Obs ID ID Name Type Coefficient

1 diet br N 2.0
2 diet mi D 3.5
3 diet ch N 8.0
4 diet po N 1.5
5 diet fi O 11.0
6 diet yo N 1.0

Lower Upper Variable Variable Reduced
Obs Bound Bound Value Status Cost

1 0.0 1.7977E308 0.00000 L 1.19066
2 0.0 1 0.05360 B 0.00000
3 0.0 1.7977E308 0.44950 B 0.00000
4 0.0 1.7977E308 1.86517 B 0.00000
5 0.5 1.7977E308 0.50000 L 5.15641
6 0.0 1.7977E308 0.00000 L 1.10849

The cost of the optimal diet is 12.08 units.
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Example 10.4: Reoptimizing after Modifying the Objective Function
Using the diet problem described in Example 10.3, this example illustrates how to reoptimize an LP problem
after modifying the objective function.

Assume that the optimal solution of the diet problem is found and the optimal solutions are stored in the data
sets ex3pout and ex3dout.

Suppose the cost of cheese increases from 8 to 10 per unit and the cost of fish decreases from 11 to 7 per
serving unit. The COLUMNS section in the input data set ex3 is updated (and the data set is saved as ex4) as
follows:

COLUMNS . . . . .
...

. ch diet 10 calories 106
...

. fi diet 7 calories 130
...

RHS . . . . .
...

ENDATA
;

You can use the following DATA step to create the data set ex4:

data ex4;
input field1 $ field2 $ field3 $ field4 field5 $ field6;
datalines;

NAME . EX4 . . .
ROWS . . . . .
N diet . . . .
G calories . . . .
L protein . . . .
G fat . . . .
G carbs . . . .

COLUMNS . . . . .
. br diet 2 calories 90
. br protein 4 fat 1
. br carbs 15 . .
. mi diet 3.5 calories 120
. mi protein 8 fat 5
. mi carbs 11.7 . .
. ch diet 10 calories 106
. ch protein 7 fat 9
. ch carbs .4 . .
. po diet 1.5 calories 97
. po protein 1.3 fat .1
. po carbs 22.6 . .
. fi diet 7 calories 130
. fi protein 8 fat 7
. fi carbs 0 . .
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. yo diet 1 calories 180

. yo protein 9.2 fat 1

. yo carbs 17 . .
RHS . . . . .
. . calories 300 protein 10
. . fat 8 carbs 10
BOUNDS . . . . .
UP . mi 1 . .
LO . fi .5 . .
ENDATA . . . . .
;

You can use the BASIS=WARMSTART option (and the ex3pout and ex3dout data sets from Example 10.3)
in the following call to PROC OPTLP to solve the modified problem:

proc optlp data=ex4
presolver = none
basis = warmstart
primalin = ex3pout
dualin = ex3dout
algorithm = primal
primalout = ex4pout
dualout = ex4dout
logfreq = 1;

run;

The following iteration log indicates that it takes the primal simplex solver no extra iterations to solve
the modified problem by using BASIS=WARMSTART, since the optimal solution to the LP problem in
Example 10.3 remains optimal after the objective function is changed.

Output 10.4.1 Iteration Log

NOTE: The problem EX4 has 6 variables (0 free, 0 fixed).
NOTE: The problem has 4 constraints (1 LE, 0 EQ, 3 GE, 0 range).
NOTE: The problem has 23 constraint coefficients.
NOTE: The LP presolver value NONE is applied.
NOTE: The LP solver is called.
NOTE: The Primal Simplex algorithm is used.

Objective Entering Leaving
Phase Iteration Value Time Variable Variable
P 2 1 1.098034E+01 0

NOTE: Optimal.
NOTE: Objective = 10.980335514.
NOTE: The Primal Simplex solve time is 0.03 seconds.
NOTE: The data set WORK.EX4POUT has 6 observations and 10 variables.
NOTE: The data set WORK.EX4DOUT has 4 observations and 10 variables.

Note that the primal simplex solver is preferred because the primal solution to the original LP is still feasible
for the modified problem in this case.
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Example 10.5: Reoptimizing after Modifying the Right-Hand Side
You can also modify the right-hand side of your problem and use the BASIS=WARMSTART option to obtain
an optimal solution more quickly. Since the dual solution to the original LP is still feasible for the modified
problem in this case, the dual simplex solver is preferred. This case is illustrated by using the same diet
problem as in Example 10.3. Assume that you now need a diet that supplies at least 150 calories. The RHS
section in the input data set ex3 is updated (and the data set is saved as ex5) as follows:

...
RHS . . . . .
. . calories 150 protein 10
. . fat 8 carbs 10
BOUNDS . . . . .

...

You can use the following DATA step to create the data set ex5:

data ex5;
input field1 $ field2 $ field3 $ field4 field5 $ field6;
datalines;

NAME . EX5 . . .
ROWS . . . . .
N diet . . . .
G calories . . . .
L protein . . . .
G fat . . . .
G carbs . . . .

COLUMNS . . . . .
. br diet 2 calories 90
. br protein 4 fat 1
. br carbs 15 . .
. mi diet 3.5 calories 120
. mi protein 8 fat 5
. mi carbs 11.7 . .
. ch diet 8 calories 106
. ch protein 7 fat 9
. ch carbs .4 . .
. po diet 1.5 calories 97
. po protein 1.3 fat .1
. po carbs 22.6 . .
. fi diet 11 calories 130
. fi protein 8 fat 7
. fi carbs 0 . .
. yo diet 1 calories 180
. yo protein 9.2 fat 1
. yo carbs 17 . .
RHS . . . . .
. . calories 150 protein 10
. . fat 8 carbs 10
BOUNDS . . . . .
UP . mi 1 . .
LO . fi .5 . .
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ENDATA . . . . .
;

You can use the BASIS=WARMSTART option in the following call to PROC OPTLP to solve the modified
problem:

proc optlp data=ex5
presolver = none
basis = warmstart
primalin = ex3pout
dualin = ex3dout
algorithm = dual
primalout = ex5pout
dualout = ex5dout
logfreq = 1;

run;

Note that the dual simplex solver is preferred because the dual solution to the last solved LP is still feasible
for the modified problem in this case.

The following iteration log indicates that it takes the dual simplex solver just one more phase II iteration to
solve the modified problem by using BASIS=WARMSTART.

Output 10.5.1 Iteration Log

NOTE: The problem EX5 has 6 variables (0 free, 0 fixed).
NOTE: The problem has 4 constraints (1 LE, 0 EQ, 3 GE, 0 range).
NOTE: The problem has 23 constraint coefficients.
NOTE: The LP presolver value NONE is applied.
NOTE: The LP solver is called.
NOTE: The Dual Simplex algorithm is used.

Objective Entering Leaving
Phase Iteration Value Time Variable Variable
D 2 1 8.813205E+00 0 calories (S) carbs (S)
D 2 2 9.174413E+00 0
D 2 3 9.174413E+00 0

NOTE: Optimal.
NOTE: Objective = 9.1744131985.
NOTE: The Dual Simplex solve time is 0.03 seconds.
NOTE: The data set WORK.EX5POUT has 6 observations and 10 variables.
NOTE: The data set WORK.EX5DOUT has 4 observations and 10 variables.

Compare this with the following call to PROC OPTLP:

proc optlp data=ex5
presolver = none
algorithm = dual
logfreq = 1;

run;

This call to PROC OPTLP solves the modified problem “from scratch” (without using the BA-
SIS=WARMSTART option) and produces the following iteration log.
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Output 10.5.2 Iteration Log

NOTE: The problem EX5 has 6 variables (0 free, 0 fixed).
NOTE: The problem has 4 constraints (1 LE, 0 EQ, 3 GE, 0 range).
NOTE: The problem has 23 constraint coefficients.
NOTE: The LP presolver value NONE is applied.
NOTE: The LP solver is called.
NOTE: The Dual Simplex algorithm is used.

Objective Entering Leaving
Phase Iteration Value Time Variable Variable
D 1 1 0.000000E+00 0
D 2 2 5.500000E+00 0 mi fat (S)
D 2 3 8.650000E+00 0 ch protein (S)
D 2 4 8.925676E+00 0 po carbs (S)
D 2 5 9.174413E+00 0
D 2 6 9.174413E+00 0

NOTE: Optimal.
NOTE: Objective = 9.1744131985.
NOTE: The Dual Simplex solve time is 0.05 seconds.

It is clear that using the BASIS=WARMSTART option saves computation time. For larger or more complex
examples, the benefits of using this option are more pronounced.

Example 10.6: Reoptimizing after Adding a New Constraint
Assume that after solving the diet problem in Example 10.3 you need to add a new constraint on sodium
intake of no more than 550 mg/day for adults. The updated nutrition data are given in Table 10.14.

Table 10.14 Updated Cost and Nutrition Values

Bread Milk Cheese Potato Fish Yogurt
Cost 2.0 3.5 8.0 1.5 11.0 1.0

Protein, g 4.0 8.0 7.0 1.3 8.0 9.2
Fat, g 1.0 5.0 9.0 0.1 7.0 1.0

Carbohydrates, g 15.0 11.7 0.4 22.6 0.0 17.0
Calories, Cal 90 120 106 97 130 180

sodium, mg 148 122 337 186 56 132

The input data set ex3 is updated (and the data set is saved as ex6) as follows:

/* added a new constraint to the diet problem */
data ex6;

input field1 $ field2 $ field3 $ field4 field5 $ field6;
datalines;

NAME . EX6 . . .
ROWS . . . . .
N diet . . . .
G calories . . . .
L protein . . . .
G fat . . . .
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G carbs . . . .
L sodium . . . .

COLUMNS . . . . .
. br diet 2 calories 90
. br protein 4 fat 1
. br carbs 15 sodium 148
. mi diet 3.5 calories 120
. mi protein 8 fat 5
. mi carbs 11.7 sodium 122
. ch diet 8 calories 106
. ch protein 7 fat 9
. ch carbs .4 sodium 337
. po diet 1.5 calories 97
. po protein 1.3 fat .1
. po carbs 22.6 sodium 186
. fi diet 11 calories 130
. fi protein 8 fat 7
. fi carbs 0 sodium 56
. yo diet 1 calories 180
. yo protein 9.2 fat 1
. yo carbs 17 sodium 132
RHS . . . . .
. . calories 300 protein 10
. . fat 8 carbs 10
. . sodium 550 . .
BOUNDS . . . . .
UP . mi 1 . .
LO . fi .5 . .
ENDATA . . . . .
;

For the modified problem you can warm start the primal and dual simplex solvers to get a solution faster. The
dual simplex solver is preferred because a dual feasible solution can be readily constructed from the optimal
solution to the diet optimization problem.

Since there is a new constraint in the modified problem, you can use the following SAS code to create a new
DUALIN= data set ex6din with this information:

data ex6newcon;
_ROW_='sodium '; _STATUS_='A';
output;

run;

/* create a new DUALIN= data set to include the new constraint */
data ex6din;

set ex3dout ex6newcon;
run;
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Note that this step is optional. In this example, you can still use the data set ex3dout as the DUALIN= data
set to solve the modified LP problem by using the BASIS=WARMSTART option. PROC OPTLP validates
the PRIMALIN= and DUALIN= data sets against the input model. Any new variable (or constraint) in the
model is added to the PRIMALIN= (or DUALIN=) data set, and its status is assigned to be ‘A’. The primal
and dual simplex solvers decide its corresponding status internally. Any variable in the PRIMALIN= and
DUALIN= data sets but not in the input model is removed.

The _ROW_ and _STATUS_ columns of the DUALIN= data set ex6din are shown in Output 10.6.1.

Output 10.6.1 DUALIN= Data Set with a Newly Added Constraint

Obs _ROW_ _STATUS_

1 calories U
2 protein L
3 fat U
4 carbs B
5 sodium A

The dual simplex solver is called to solve the modified diet optimization problem more quickly with the
following SAS code:

proc optlp data=ex6
objsense=min
presolver=none
algorithm=ds
primalout=ex6pout
dualout=ex6dout
scale=none
logfreq=1
basis=warmstart
primalin=ex3pout
dualin=ex6din;

run;

The optimal primal and dual solutions of the modified problem are displayed in Output 10.6.2.
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Output 10.6.2 Primal and Dual Solution Output

Primal Solution

Objective
Function RHS Variable Variable Objective

Obs ID ID Name Type Coefficient

1 diet br N 2.0
2 diet mi D 3.5
3 diet ch N 8.0
4 diet po N 1.5
5 diet fi O 11.0
6 diet yo N 1.0

Lower Upper Variable Variable Reduced
Obs Bound Bound Value Status Cost

1 0.0 1.7977E308 0.00000 L 1.19066
2 0.0 1 0.05360 B 0.00000
3 0.0 1.7977E308 0.44950 B 0.00000
4 0.0 1.7977E308 1.86517 B 0.00000
5 0.5 1.7977E308 0.50000 L 5.15641
6 0.0 1.7977E308 0.00000 L 1.10849

Dual Solution

Objective Constraint
Function RHS Constraint Constraint Constraint Lower

Obs ID ID Name Type RHS Bound

1 diet calories G 300 .
2 diet protein L 10 .
3 diet fat G 8 .
4 diet carbs G 10 .
5 diet sodium L 550 .

Constraint Dual
Upper Variable Constraint Constraint

Obs Bound Value Status Activity

1 . 0.02179 U 300.000
2 . -0.55360 L 10.000
3 . 1.06286 U 8.000
4 . 0.00000 B 42.960
5 . 0.00000 B 532.941

The iteration log shown in Output 10.6.3 indicates that it takes the dual simplex solver no more iterations to
solve the modified problem by using the BASIS=WARMSTART option, since the optimal solution to the
original problem remains optimal after one more constraint is added.
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Output 10.6.3 Iteration Log

NOTE: The problem EX6 has 6 variables (0 free, 0 fixed).
NOTE: The problem has 5 constraints (2 LE, 0 EQ, 3 GE, 0 range).
NOTE: The problem has 29 constraint coefficients.
NOTE: The LP presolver value NONE is applied.
NOTE: The LP solver is called.
NOTE: The Dual Simplex algorithm is used.

Objective Entering Leaving
Phase Iteration Value Time Variable Variable
D 2 1 1.208134E+01 0

NOTE: Optimal.
NOTE: Objective = 12.081337881.
NOTE: The Dual Simplex solve time is 0.05 seconds.
NOTE: The data set WORK.EX6POUT has 6 observations and 10 variables.
NOTE: The data set WORK.EX6DOUT has 5 observations and 10 variables.

Both this example and Example 10.4 illustrate the situation in which the optimal solution does not change
after some perturbation of the parameters of the LP problem. The simplex solver starts from an optimal
solution and quickly verifies the optimality. Usually the optimal solution of the slightly perturbed problem
can be obtained after performing relatively small number of iterations if starting with the optimal solution of
the original problem. In such cases you can expect a dramatic reduction of computation time, for instance,
if you want to solve a large LP problem and a slightly perturbed version of this problem by using the
BASIS=WARMSTART option rather than solving both problems from scratch.

Example 10.7: Finding an Irreducible Infeasible Set
This example demonstrates the use of the IIS= option to locate an irreducible infeasible set. Suppose you
want to solve a linear program that has the following simple formulation:

min x1 C x2 C x3 .cost/
subject to x1 C x2 � 10 .con1/

x1 C x3 � 4 .con2/
4 � x2 C x3 � 5 .con3/

x1; x2 � 0

0 � x3 � 3

The corresponding MPS-format SAS data set is as follows:

/* infeasible */
data exiis;

input field1 $ field2 $ field3 $ field4 field5 $ field6;
datalines;
NAME . . . . .
ROWS . . . . .
N cost . . . .
G con1 . . . .
L con2 . . . .
G con3 . . . .
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COLUMNS . . . . .
. x1 cost 1 con1 1
. x1 con2 1 . .
. x2 cost 1 con1 1
. x2 con3 1 . .
. x3 cost 1 con2 1
. x3 con3 1 . .
RHS . . . . .
. rhs con1 10 con2 4
. rhs con3 4 . .
RANGES . . . . .
. r1 con3 1 . .
BOUNDS . . . . .
UP b1 x3 3 . .
ENDATA . . . . .
;

It is easy to verify that the following three constraints (or rows) and one variable (or column) bound form an
IIS for this problem.

x1 C x2 � 10 .con1/
x1 C x3 � 4 .con2/

x2 C x3 � 5 .con3/
x3 � 0

You can use the IIS=ON option to detect this IIS by using the following statements:

proc optlp data=exiis
iis=on
primalout=iis_vars
dualout=iis_cons
logfreq=1;

run;

The OPTLP procedure outputs the detected IIS to the data sets specified by the PRIMALOUT= and DU-
ALOUT= options, then stops. The notes shown in Output 10.7.1 are printed to the log.
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Output 10.7.1 The IIS= Option: Log

NOTE: The problem has 3 variables (0 free, 0 fixed).
NOTE: The problem has 3 constraints (1 LE, 0 EQ, 1 GE, 1 range).
NOTE: The problem has 6 constraint coefficients.
NOTE: The IIS option is enabled.

Objective Entering Leaving
Phase Iteration Value Time Variable Variable
P 1 1 1.400000E+01 0 x2 con3 (S)
P 1 2 5.000000E+00 0 x1 con2 (S)
P 1 3 1.000000E+00 0
P 1 4 1.000000E+00 0

NOTE: The IIS option found the problem to be infeasible.
NOTE: Applying the IIS sensitivity filter.
NOTE: The sensitivity filter removed 1 constraints and 3 variable bounds.
NOTE: Applying the IIS deletion filter.
NOTE: Processing constraints.

Processed Removed Time
0 0 0
1 0 0
2 0 0
3 0 0

NOTE: Processing variable bounds.
Processed Removed Time

0 0 0
1 0 0
2 0 0
3 0 0

NOTE: The deletion filter removed 0 constraints and 0 variable bounds.
NOTE: The IIS option found the problem to be infeasible.
NOTE: The IIS option found an irreducible infeasible set with 1 variables and 3

constraints.
NOTE: The IIS solve time is 0.03 seconds.
NOTE: The data set WORK.IIS_VARS has 3 observations and 10 variables.
NOTE: The data set WORK.IIS_CONS has 3 observations and 10 variables.

The data sets iis_cons and iis_vars are shown in Output 10.7.2.
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Output 10.7.2 Identify Rows and Columns in the IIS

Constraints in the IIS

Objective Constraint
Function RHS Constraint Constraint Constraint Lower

Obs ID ID Name Type RHS Bound

1 cost rhs con1 G 10 .
2 cost rhs con2 L 4 .
3 cost rhs con3 R . 4

Constraint Dual
Upper Variable Constraint Constraint

Obs Bound Value Status Activity

1 . . I_L .
2 . . I_U .
3 5 . I_U .

Variables in the IIS

Objective
Function RHS Variable Variable Objective

Obs ID ID Name Type Coefficient

1 cost rhs x1 N 1
2 cost rhs x2 N 1
3 cost rhs x3 D 1

Lower Upper Variable Variable Reduced
Obs Bound Bound Value Status Cost

1 0 1.7977E308 . .
2 0 1.7977E308 . .
3 0 3 . I_L .

The constraint x2 C x3 � 5, which is an element of the IIS, is created by the RANGES section. The
original constraint is con3, a “�” constraint with an RHS value of 4. If you choose to remove the constraint
x2 C x3 � 5, you can accomplish this by removing con3 from the RANGES section in the MPS-format
SAS data set exiis. Since con3 is the only observation in the section, the identifier observation can also be
removed. The modified LP problem is specified in the following SAS statements:

/* dropping con3, feasible */
data exiisf;

input field1 $ field2 $ field3 $ field4 field5 $ field6;
datalines;
NAME . . . . .
ROWS . . . . .
N cost . . . .
G con1 . . . .
L con2 . . . .
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G con3 . . . .
COLUMNS . . . . .
. x1 cost 1 con1 1
. x1 con2 1 . .
. x2 cost 1 con1 1
. x2 con3 1 . .
. x3 cost 1 con2 1
. x3 con3 1 . .
RHS . . . . .
. rhs con1 10 con2 4
. rhs con3 4 . .
BOUNDS . . . . .
UP b1 x3 3 . .
ENDATA . . . . .
;

Since one element of the IIS has been removed, the modified LP problem should no longer contain the
infeasible set. Due to the size of this problem, there should be no additional irreducible infeasible sets. You
can confirm this by submitting the following SAS statements:

proc optlp data=exiisf
pout=po
iis=on;

run;

The notes shown in Output 10.7.3 are printed to the log.

Output 10.7.3 The IIS= Option: Log

NOTE: The problem has 3 variables (0 free, 0 fixed).
NOTE: The problem has 3 constraints (1 LE, 0 EQ, 2 GE, 0 range).
NOTE: The problem has 6 constraint coefficients.
NOTE: The IIS option is enabled.

Objective
Phase Iteration Value Time
P 1 1 1.400000E+01 0
P 1 3 0.000000E+00 0

NOTE: The IIS option found the problem to be feasible.
NOTE: The IIS solve time is 0.05 seconds.
NOTE: The data set WORK.EXSS has 8 observations and 3 variables.
NOTE: The data set WORK.PO has 3 observations and 10 variables.

The solution summary and the primal solution are displayed in Output 10.7.4.
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Output 10.7.4 Infeasibility Removed

Solution Summary

Obs Label1 cValue1 nValue1

1 Solver LP .
2 Algorithm Primal Simplex .
3 Objective Function cost .
4 Solution Status Feasible .
5 .
6 Iterations 3 3.000000
7 Presolve Time 0.00 0
8 Solution Time 0.05 0.046800

Primal Solution

Objective
Function RHS Variable Variable Objective

Obs ID ID Name Type Coefficient

1 cost rhs x1 N 1
2 cost rhs x2 N 1
3 cost rhs x3 D 1

Lower Upper Variable Variable Reduced
Obs Bound Bound Value Status Cost

1 0 1.7977E308 . .
2 0 1.7977E308 . .
3 0 3 . .

Example 10.8: Using the Network Simplex Solver
This example demonstrates how to use the network simplex solver to find the minimum-cost flow in a directed
graph. Consider the directed graph in Figure 10.5, which appears in Ahuja, Magnanti, and Orlin (1993).
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Figure 10.5 Minimum Cost Network Flow Problem: Data
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You can use the following SAS statements to create the input data set ex8:

data ex8;
input field1 $8. field2 $13. @25 field3 $13. field4 @53 field5 $13. field6;
datalines;

NAME . . . . .
ROWS . . . . .
N obj . . . .
E balance['1'] . . . .
E balance['2'] . . . .
E balance['3'] . . . .
E balance['4'] . . . .
E balance['5'] . . . .
E balance['6'] . . . .
E balance['7'] . . . .
E balance['8'] . . . .
COLUMNS . . . . .
. x['1','4'] obj 2 balance['1'] 1
. x['1','4'] balance['4'] -1 . .
. x['2','1'] obj 1 balance['1'] -1
. x['2','1'] balance['2'] 1 . .
. x['2','3'] balance['2'] 1 balance['3'] -1
. x['2','6'] obj 6 balance['2'] 1
. x['2','6'] balance['6'] -1 . .
. x['3','4'] obj 1 balance['3'] 1
. x['3','4'] balance['4'] -1 . .
. x['3','5'] obj 4 balance['3'] 1
. x['3','5'] balance['5'] -1 . .
. x['4','7'] obj 5 balance['4'] 1
. x['4','7'] balance['7'] -1 . .
. x['5','6'] obj 2 balance['5'] 1
. x['5','6'] balance['6'] -1 . .
. x['5','7'] obj 7 balance['5'] 1
. x['5','7'] balance['7'] -1 . .
. x['6','8'] obj 8 balance['6'] 1
. x['6','8'] balance['8'] -1 . .
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. x['7','8'] obj 9 balance['7'] 1

. x['7','8'] balance['8'] -1 . .
RHS . . . . .
. .RHS. balance['1'] 10 . .
. .RHS. balance['2'] 20 . .
. .RHS. balance['4'] -5 . .
. .RHS. balance['7'] -15 . .
. .RHS. balance['8'] -10 . .
BOUNDS . . . . .
UP .BOUNDS. x['1','4'] 15 . .
UP .BOUNDS. x['2','1'] 10 . .
UP .BOUNDS. x['2','3'] 10 . .
UP .BOUNDS. x['2','6'] 10 . .
UP .BOUNDS. x['3','4'] 5 . .
UP .BOUNDS. x['3','5'] 10 . .
UP .BOUNDS. x['4','7'] 10 . .
UP .BOUNDS. x['5','6'] 20 . .
UP .BOUNDS. x['5','7'] 15 . .
UP .BOUNDS. x['6','8'] 10 . .
UP .BOUNDS. x['7','8'] 15 . .
ENDATA . . . . .
;

You can use the following call to PROC OPTLP to find the minimum-cost flow:

proc optlp
presolver = none
printlevel = 2
logfreq = 1
data = ex8
primalout = ex8out
algorithm = ns;

run;

The optimal solution is displayed in Output 10.8.1.
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Output 10.8.1 Network Simplex Solver: Primal Solution Output

Primal Solution

Objective
Function RHS Variable Variable Objective

Obs ID ID Name Type Coefficient

1 obj .RHS. x['1','4'] D 2
2 obj .RHS. x['2','1'] D 1
3 obj .RHS. x['2','3'] D 0
4 obj .RHS. x['2','6'] D 6
5 obj .RHS. x['3','4'] D 1
6 obj .RHS. x['3','5'] D 4
7 obj .RHS. x['4','7'] D 5
8 obj .RHS. x['5','6'] D 2
9 obj .RHS. x['5','7'] D 7

10 obj .RHS. x['6','8'] D 8
11 obj .RHS. x['7','8'] D 9

Lower Upper Variable Variable Reduced
Obs Bound Bound Value Status Cost

1 0 15 10 B 0
2 0 10 0 L 2
3 0 10 10 B 0
4 0 10 10 B 0
5 0 5 5 B 0
6 0 10 5 B 0
7 0 10 10 U -5
8 0 20 0 L 0
9 0 15 5 B 0

10 0 10 10 B 0
11 0 15 0 L 6

The optimal solution is represented graphically in Figure 10.6.

Figure 10.6 Minimum Cost Network Flow Problem: Optimal Solution
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The iteration log is displayed in Output 10.8.2.



416 F Chapter 10: The OPTLP Procedure

Output 10.8.2 Log: Solution Progress

NOTE: The problem has 11 variables (0 free, 0 fixed).
NOTE: The problem has 8 constraints (0 LE, 8 EQ, 0 GE, 0 range).
NOTE: The problem has 22 constraint coefficients.
NOTE: The LP presolver value NONE is applied.
NOTE: The LP solver is called.
NOTE: The Network Simplex algorithm is used.
NOTE: The network has 8 rows (100.00%), 11 columns (100.00%), and 1 component.
NOTE: The network extraction and setup time is 0.00 seconds.

Primal Primal Dual
Iteration Objective Infeasibility Infeasibility Time

1 0 20.0000000 89.0000000 0.00
2 0 20.0000000 89.0000000 0.00
3 5.0000000 15.0000000 84.0000000 0.00
4 5.0000000 15.0000000 83.0000000 0.00
5 75.0000000 15.0000000 83.0000000 0.00
6 75.0000000 15.0000000 79.0000000 0.00
7 130.0000000 10.0000000 76.0000000 0.00
8 270.0000000 0 0 0.00

NOTE: The Network Simplex solve time is 0.00 seconds.
NOTE: The total Network Simplex solve time is 0.00 seconds.
NOTE: Optimal.
NOTE: Objective = 270.
NOTE: The data set WORK.EX8OUT has 11 observations and 10 variables.
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Overview: OPTMILP Procedure
The OPTMILP procedure is a solver for general mixed integer linear programs (MILPs).

A standard mixed integer linear program has the formulation

min cT x
subject to Ax f�;D;�g b .MILP/

l � x � u
xi 2 Z 8i 2 S
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where

x 2 Rn is the vector of structural variables
A 2 Rm�n is the matrix of technological coefficients
c 2 Rn is the vector of objective function coefficients
b 2 Rm is the vector of constraints right-hand sides (RHS)
l 2 Rn is the vector of lower bounds on variables
u 2 Rn is the vector of upper bounds on variables
S is a nonempty subset of the set f1 : : : ; ng of indices

The OPTMILP procedure implements a linear-programming-based branch-and-bound algorithm. This divide-
and-conquer approach attempts to solve the original problem by solving linear programming relaxations of a
sequence of smaller subproblems. The OPTMILP procedure also implements advanced techniques such as
presolving, generating cutting planes, and applying primal heuristics to improve the efficiency of the overall
algorithm.

The OPTMILP procedure requires a mixed integer linear program to be specified using a SAS data set that
adheres to the mathematical programming system (MPS) format, a widely accepted format in the optimization
community. Chapter 15 discusses the MPS format in detail. It is also possible to input an incumbent solution
in MPS format; see the section “Warm Start” on page 435 for details.

You can use the MPSOUT= option to convert data sets that are formatted for the LP procedure into MPS-
format SAS data sets. The option is available in the LP, INTPOINT, and NETFLOW procedures. For details
about this option, see Chapter 5, “The LP Procedure” (SAS/OR User’s Guide: Mathematical Program-
ming Legacy Procedures), Chapter 4, “The INTPOINT Procedure” (SAS/OR User’s Guide: Mathematical
Programming Legacy Procedures), and Chapter 6, “The NETFLOW Procedure” (SAS/OR User’s Guide:
Mathematical Programming Legacy Procedures).

The OPTMILP procedure provides various control options and solution strategies. In particular, you can
enable, disable, or set levels for the advanced techniques previously mentioned.

The OPTMILP procedure outputs an optimal solution or the best feasible solution found, if any, in SAS data
sets. This enables you to generate solution reports and perform additional analyses by using SAS software.

Getting Started: OPTMILP Procedure
The following example illustrates the use of the OPTMILP procedure to solve mixed integer linear programs.
For more examples, see the section “Examples: OPTMILP Procedure” on page 448. Suppose you want to
solve the following problem:

min 2x1 � 3x2 � 4x3
s.t. � 2x2 � 3x3 � �5 .R1/

x1 C x2 C 2x3 � 4 .R2/
x1 C 2x2 C 3x3 � 7 .R3/

x1; x2; x3 � 0

x1; x2; x3 2 Z

The corresponding MPS-format SAS data set follows:
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data ex_mip;
input field1 $ field2 $ field3 $ field4 field5 $ field6;
datalines;

NAME . EX_MIP . . .
ROWS . . . . .
N COST . . . .
G R1 . . . .
L R2 . . . .
L R3 . . . .
COLUMNS . . . . .
. MARK00 'MARKER' . 'INTORG' .
. X1 COST 2 R2 1
. X1 R3 1 . .
. X2 COST -3 R1 -2
. X2 R2 1 R3 2
. X3 COST -4 R1 -3
. X3 R2 2 R3 3
. MARK01 'MARKER' . 'INTEND' .
RHS . . . . .
. RHS R1 -5 R2 4
. RHS R3 7 . .
ENDATA . . . . .
;

You can also create this SAS data set from an MPS-format flat file (ex_mip.mps) by using the following SAS
macro:

%mps2sasd(mpsfile = "ex_mip.mps", outdata = ex_mip);

This problem can be solved by using the following statement to call the OPTMILP procedure:

proc optmilp data = ex_mip
objsense = min
primalout = primal_out
dualout = dual_out
presolver = automatic
heuristics = automatic;

run;

The DATA= option names the MPS-format SAS data set that contains the problem data. The OBJSENSE=
option specifies whether to maximize or minimize the objective function. The PRIMALOUT= option names
the SAS data set to contain the optimal solution or the best feasible solution found by the solver. The
DUALOUT= option names the SAS data set to contain the constraint activities. The PRESOLVER= and
HEURISTICS= options specify the levels for presolving and applying heuristics, respectively. In this example,
each option is set to its default value AUTOMATIC, meaning that the solver automatically determines the
appropriate levels for presolve and heuristics.

The optimal integer solution and its corresponding constraint activities, stored in the data sets primal_out and
dual_out, respectively, are displayed in Figure 11.1 and Figure 11.2.
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Figure 11.1 Optimal Solution

The OPTMILP Procedure
Primal Integer Solution

Objective
Function RHS Variable Variable Objective Lower Upper Variable

Obs ID ID Name Type Coefficient Bound Bound Value

1 COST RHS X1 B 2 0 1 0
2 COST RHS X2 B -3 0 1 1
3 COST RHS X3 B -4 0 1 1

Figure 11.2 Constraint Activities

The OPTMILP Procedure
Constraint Information

Objective
Function RHS Constraint Constraint Constraint

Obs ID ID Name Type RHS

1 COST RHS R1 G -5
2 COST RHS R2 L 4
3 COST RHS R3 L 7

Constraint Constraint
Lower Upper Constraint

Obs Bound Bound Activity

1 . . -5
2 . . 3
3 . . 5

The solution summary stored in the macro variable _OROPTMILP_ can be viewed by issuing the following
statement:

%put &_OROPTMILP_;

This produces the output shown in Figure 11.3.
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Figure 11.3 Macro Output

STATUS=OK ALGORITHM=BAC SOLUTION_STATUS=OPTIMAL OBJECTIVE=-7
RELATIVE_GAP=0 ABSOLUTE_GAP=0 PRIMAL_INFEASIBILITY=0
BOUND_INFEASIBILITY=0 INTEGER_INFEASIBILITY=0 BEST_BOUND=. NODES=0
ITERATIONS=0 PRESOLVE_TIME=0.00 SOLUTION_TIME=0.00

See the section “Data Input and Output” on page 433 for details about the type and status codes displayed for
variables and constraints.

Syntax: OPTMILP Procedure
The following statements are available in the OPTMILP procedure:

PROC OPTMILP < options > ;
DECOMP < options > ;
DECOMP_MASTER < options > ;
DECOMP_MASTER_IP < options > ;
DECOMP_SUBPROB < options > ;
PERFORMANCE < performance-options > ;
TUNER < tuner-options > ;

Functional Summary
Table 11.1 summarizes the options available for the OPTMILP procedure, classified by function.

Table 11.1 Options for the OPTMILP Procedure

Description Option
Data Set Options
Specifies the input data set DATA=
Specifies the constraint activities output data set DUALOUT=
Specifies whether the MILP model is a maximization
or minimization problem

OBJSENSE=

Specifies the primal solution input data set (warm start) PRIMALIN=
Specifies the primal solution output data set PRIMALOUT=
Presolve Option
Specifies the type of presolve PRESOLVER=
Control Options
Specifies the stopping criterion based on absolute ob-
jective gap

ABSOBJGAP=

Specifies the cutoff value for node removal CUTOFF=
Emphasizes feasibility or optimality EMPHASIS=
Specifies the maximum violation on variables and con-
straints

FEASTOL=
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Table 11.1 (continued)

Description Option
Specifies the maximum allowed difference between an
integer variable’s value and an integer

INTTOL=

Specifies the frequency of printing the node log LOGFREQ=
Specifies the detail of solution progress printed in log LOGLEVEL=
Specifies the maximum number of nodes to be pro-
cessed

MAXNODES=

Specifies the maximum number of solutions to be
found

MAXSOLS=

Specifies the time limit for the optimization process MAXTIME=
Specifies the tolerance used in determining the opti-
mality of nodes in the branch-and-bound tree

OPTTOL=

Toggles ODS output PRINTLEVEL=
Specifies the probing level PROBE=
Specifies the stopping criterion based on relative ob-
jective gap

RELOBJGAP=

Specifies the scale of the problem matrix SCALE=
Specifies the stopping criterion based on target objec-
tive value

TARGET=

Specifies whether time units are CPU time or real time TIMETYPE=
Heuristics Option
Specifies the primal heuristics level HEURISTICS=
Search Options
Specifies the level of conflict search CONFLICTSEARCH=
Specifies the node selection strategy NODESEL=
Enables use of variable priorities PRIORITY=
Specifies the number of simplex iterations performed
on each variable in strong branching strategy

STRONGITER=

Specifies the number of candidates for strong branch-
ing

STRONGLEN=

Specifies the rule for selecting branching variable VARSEL=
Cut Options
Specifies the cut level for all cuts ALLCUTS=
Specifies the clique cut level CUTCLIQUE=
Specifies the flow cover cut level CUTFLOWCOVER=
Specifies the flow path cut level CUTFLOWPATH=
Specifies the Gomory cut level CUTGOMORY=
Specifies the generalized upper bound (GUB) cover
cut level

CUTGUB=

Specifies the implied bounds cut level CUTIMPLIED=
Specifies the knapsack cover cut level CUTKNAPSACK=
Specifies the lift-and-project cut level CUTLAP=
Specifies the mixed lifted 0-1 cut level CUTMILIFTED=
Specifies the mixed integer rounding (MIR) cut level CUTMIR=
Specifies the row multiplier factor for cuts CUTSFACTOR=
Specifies the overall cut aggressiveness CUTSTRATEGY=
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Table 11.1 (continued)

Description Option
Specifies the zero-half cut level CUTZEROHALF=

PROC OPTMILP Statement
PROC OPTMILP < options > ;

You can specify the following options in the PROC OPTMILP statement.

Data Set Options

DATA=SAS-data-set
specifies the input data set that corresponds to the MILP model. If this option is not specified, PROC
OPTMILP uses the most recently created SAS data set. See Chapter 15, “The MPS-Format SAS Data
Set,” for more details about the input data set.

DUALOUT=SAS-data-set

DOUT=SAS-data-set
specifies the output data set to contain the constraint activities.

OBJSENSE=MIN j MAX
specifies whether the MILP model is a minimization or a maximization problem. You can use
OBJSENSE=MIN for a minimization problem and OBJSENSE=MAX for a maximization problem.
Alternatively, you can specify the objective sense in the input data set. This option supersedes the
objective sense specified in the input data set. If the objective sense is not specified anywhere, then
PROC OPTMILP interprets and solves the MILP as a minimization problem.

PRIMALIN=SAS-data-set
enables you to input a warm start solution in a SAS data set. PROC OPTMILP validates both the data
set and the solution stored in the data set. If the data set is not valid, then the PRIMALIN= data are
ignored. If the solution stored in a valid PRIMALIN= data set is a feasible integer solution, then it
provides an incumbent solution and a bound for the branch-and-bound algorithm. If the solution stored
in a valid PRIMALIN= data set is infeasible, contains missing values, or contains fractional values
for integer variables, PROC OPTMILP tries to repair the solution with a number of specialized repair
heuristics. See the section “Warm Start” on page 435 for details.

PRIMALOUT=SAS-data-set

POUT=SAS-data-set
specifies the output data set for the primal solution. This data set contains the primal solution
information. See the section “Data Input and Output” on page 433 for details.
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Presolve Option

PRESOLVER=number | string
specifies a presolve string or its corresponding value number, as listed in Table 11.2.

Table 11.2 Values for PRESOLVER= Option

number string Description
–1 AUTOMATIC Applies the default level of presolve processing
0 NONE Disables presolver
1 BASIC Performs minimal presolve processing
2 MODERATE Applies a higher level of presolve processing
3 AGGRESSIVE Applies the highest level of presolve processing

The default value is AUTOMATIC.

Control Options

ABSOBJGAP=number
specifies a stopping criterion. When the absolute difference between the best integer objective and the
objective of the best remaining node becomes smaller than the value of number, the procedure stops.
The value of number can be any nonnegative number; the default value is 1E–6.

CUTOFF=number
cuts off any nodes in a minimization (maximization) problem with an objective value above (below)
number. The value of number can be any number; the default value is the positive (negative) number
that has the largest absolute value that can be represented in your operating environment.

EMPHASIS=number | string
specifies a search emphasis string or its corresponding value number as listed in Table 11.3.

Table 11.3 Values for EMPHASIS= Option

number string Description
0 BALANCE Performs a balanced search
1 OPTIMAL Emphasizes optimality over feasibility
2 FEASIBLE Emphasizes feasibility over optimality

The default value is BALANCE.

FEASTOL=number
specifies the tolerance used to check the feasibility of a solution. This tolerance applies both to the
maximum violation of bounds on variables and to the difference between the right-hand sides and
left-hand sides of constraints. The value of number can be any value between (and including) 1E–4
and 1E–9. The default value is 1E–6.

If PROC OPTMILP fails to find a feasible solution within this tolerance but does find a solution with a
slightly larger violation, then the procedure ends with a solution status of OPTIMAL_COND (see the
section “Macro Variable _OROPTMILP_” on page 445).
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INTTOL=number
specifies the amount by which an integer variable value can differ from an integer and still be considered
integer feasible. The value of number can be any number between 0.0 and 1.0; the default value is
1E–5. PROC OPTMILP attempts to find an optimal solution with integer infeasibility less than number.
If you assign a value smaller than 1E–10 to number and the best solution found by PROC OPTMILP
has integer infeasibility between number and 1E–10, then PROC OPTMILP ends with a solution status
of OPTIMAL_COND (see the section “Macro Variable _OROPTMILP_” on page 445).

LOGFREQ=number

PRINTFREQ=number
specifies how often information is printed in the node log. The value of number can be any nonnegative
integer up to the largest four-byte signed integer, which is 231 � 1. The default value is 100. If number
is set to 0, then the node log is disabled. If number is positive, then an entry is made in the node log at
the first node, at the last node, and at intervals dictated by the value of number. An entry is also made
each time a better integer solution is found.

LOGLEVEL=number | string

PRINTLEVEL2=number | string
controls the amount of information displayed in the SAS log by the solver, from a short description of
presolve information and summary to details at each node. Table 11.4 describes the valid values for
this option.

Table 11.4 Values for LOGLEVEL= Option

number string Description
0 NONE Turns off all solver-related messages in the SAS

log
1 BASIC Displays a solver summary after stopping
2 MODERATE Prints a solver summary and a node log by using

the interval dictated by the LOGFREQ= option
3 AGGRESSIVE Prints a detailed solver summary and a node log

by using the interval dictated by the LOGFREQ=
option

The default value is MODERATE.

MAXNODES=number
specifies the maximum number of branch-and-bound nodes to be processed. The value of number can
be any nonnegative integer up to the largest four-byte signed integer, which is 231 � 1. The default
value is 231 � 1.

MAXSOLS=number
specifies a stopping criterion. If number solutions have been found, then the procedure stops. The
value of number can be any positive integer up to the largest four-byte signed integer, which is 231 � 1.
The default value is 231 � 1.
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MAXTIME=t
specifies an upper limit of t seconds of time for reading in the data and performing the optimization
process. The value of the TIMETYPE= option determines the type of units used. If you do not specify
this option, the procedure does not stop based on the amount of time elapsed. The value of t can be
any positive number; the default value is the positive number that has the largest absolute value that
can be represented in your operating environment.

OPTTOL=number
specifies the tolerance used to determine the optimality of nodes in the branch-and-bound tree. The
value of number can be any value between (and including) 1E–4 and 1E–9. The default is 1E–6.

PRINTLEVEL=0 j 1 j 2
specifies whether a summary of the problem and solution should be printed. If PRINTLEVEL=1, then
the Output Delivery System (ODS) tables ProblemSummary, SolutionSummary, and PerformanceInfo
are produced and printed. If PRINTLEVEL=2, then the same tables are produced and printed along
with an additional table called ProblemStatistics. If PRINTLEVEL=0, then no ODS tables are produced
or printed. The default value is 1.

For details about the ODS tables created by PROC OPTMILP, see the section “ODS Tables” on
page 441.

PROBE=number | string
specifies a probing string or its corresponding value number, as listed in Table 11.5:

Table 11.5 Values for PROBE= Option

number string Description
–1 AUTOMATIC Uses the probing strategy determined by PROC

OPTMILP
0 NONE Disables probing
1 MODERATE Uses the probing moderately
2 AGGRESSIVE Uses the probing aggressively

The default value is AUTOMATIC. See the section “Presolve and Probing” on page 438 for more
information.

RELOBJGAP=number
specifies a stopping criterion based on the best integer objective (BestInteger) and the objective of the
best remaining node (BestBound). The relative objective gap is equal to

j BestInteger � BestBound j = .1E–10C j BestBound j/

When this value becomes smaller than the specified gap size number, the procedure stops. The value
of number can be any nonnegative number; the default value is 1E–4.

SCALE=number | string
indicates whether to scale the problem matrix. SCALE= can take either of the values AUTOMATIC
(–1) and NONE (0). SCALE=AUTOMATIC scales the matrix as determined by PROC OPTMILP;
SCALE=NONE disables scaling. The default value is AUTOMATIC.
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TARGET=number
specifies a stopping criterion for minimization (maximization) problems. If the best integer objective
is better than or equal to number, the procedure stops. The value of number can be any number; the
default value is the negative (positive) number that has the largest absolute value representable in your
operating environment.

TIMETYPE=number | string
specifies whether CPU time or real time is used for the MAXTIME= option and the _OROPTMILP_
macro variable in a PROC OPTMILP call. Table 11.6 describes the valid values of the TIMETYPE=
option.

Table 11.6 Values for TIMETYPE= Option

number string Description
0 CPU Specifies units of CPU time
1 REAL Specifies units of real time

The default value of the TIMETYPE= option depends on the values of the NTHREADS= and NODES=
options in the PERFORMANCE statement. See the section “PERFORMANCE Statement” on page 28
in Chapter 4, “Shared Concepts and Topics.” for more information about the NTHREADS= and
NODES= options.

If you specify a value greater than 1 for either the NTHREADS= or the NODES= option, the default
value of the TIMETYPE= option is REAL. If you specify a value of 1 for both the NTHREADS= and
NODES= options, the default value of the TIMETYPE= option is CPU.

Heuristics Option

HEURISTICS=number | string
controls the level of primal heuristics applied by PROC OPTMILP. This level determines how frequently
primal heuristics are applied during the branch-and-bound tree search. It also affects the maximum
number of iterations allowed in iterative heuristics. Some computationally expensive heuristics might
be disabled by the solver at less aggressive levels. The values of string and the corresponding values of
number are listed in Table 11.7.

Table 11.7 Values for HEURISTICS= Option

number string Description
–1 AUTOMATIC Applies the default level of heuristics, similar to

MODERATE
0 NONE Disables all primal heuristics
1 BASIC Applies basic primal heuristics at low frequency
2 MODERATE Applies most primal heuristics at moderate fre-

quency
3 AGGRESSIVE Applies all primal heuristics at high frequency

Setting HEURISTICS=NONE does not disable the heuristics that repair an infeasible input solution that is
specified in a PRIMALIN= data set.
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The default value of the HEURISTICS= option is AUTOMATIC. For details about primal heuristics, see the
section “Primal Heuristics” on page 440.

Search Options

CONFLICTSEARCH=number | string
specifies the level of conflict search performed by PROC OPTMILP. Conflict search is used to find
clauses resulting from infeasible subproblems that arise in the search tree. The values of string and the
corresponding values of number are listed in Table 11.8.

Table 11.8 Values for CONFLICTSEARCH= Option

number string Description
–1 AUTOMATIC Performs conflict search based on a strategy deter-

mined by PROC OPTMILP
0 NONE Disables conflict search
1 MODERATE Performs a moderate conflict search
2 AGGRESSIVE Performs an aggressive conflict search

The default value is AUTOMATIC.

NODESEL=number | string
specifies the node selection strategy string or its corresponding value number, as listed in Table 11.9.

Table 11.9 Values for NODESEL= Option

number string Description
–1 AUTOMATIC Uses automatic node selection
0 BESTBOUND Chooses the node with the best relaxed objective

(best-bound-first strategy)
1 BESTESTIMATE Chooses the node with the best estimate of the in-

teger objective value (best-estimate-first strategy)
2 DEPTH Chooses the most recently created node (depth-

first strategy)

The default value is AUTOMATIC. For details about node selection, see the section “Node Selection”
on page 437.

PRIORITY=0 | 1
indicates whether to use specified branching priorities for integer variables. PRIORITY=0 ignores
variable priorities; PRIORITY=1 uses priorities when they exist. The default value is 1. See the section
“Branching Priorities” on page 438 for details.

STRONGITER=number | AUTOMATIC
specifies the number of simplex iterations performed for each variable in the candidate list when using
the strong branching variable selection strategy. The value of number can be any positive integer up to
the largest four-byte signed integer, which is 231 � 1. If you specify the keyword AUTOMATIC or the
value –1, PROC OPTMILP uses the default value; this value is calculated automatically.
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STRONGLEN=number | AUTOMATIC
specifies the number of candidates used when performing the strong branching variable selection
strategy. The value of number can be any positive integer up to the largest four-byte signed integer,
which is 231 � 1. If you specify the keyword AUTOMATIC or the value –1, PROC OPTMILP uses
the default value; this value is calculated automatically.

VARSEL=number | string
specifies the rule for selecting the branching variable. The values of string and the corresponding
values of number are listed in Table 11.10.

Table 11.10 Values for VARSEL= Option

number string Description
–1 AUTOMATIC Uses automatic branching variable selection
0 MAXINFEAS Chooses the variable with maximum infeasibility
1 MININFEAS Chooses the variable with minimum infeasibility
2 PSEUDO Chooses a branching variable based on pseudocost
3 STRONG Uses strong branching variable selection strategy

The default value is AUTOMATIC. For details about variable selection, see the section “Variable Selection”
on page 437.

Cut Options

Table 11.11 describes the string and number values for the cut options in PROC OPTMILP.

Table 11.11 Values for Individual Cut Options

number string Description
–1 AUTOMATIC Generates cutting planes based on a strategy deter-

mined by PROC OPTMILP
0 NONE Disables generation of cutting planes
1 MODERATE Uses a moderate cut strategy
2 AGGRESSIVE Uses an aggressive cut strategy

You can specify the CUTSTRATEGY= option to set the overall aggressiveness of the cut generation in
PROC OPTMILP. Alternatively, you can use the ALLCUTS= option to set all cut types to the same level.
You can override the ALLCUTS= value by using the options that correspond to particular cut types. For
example, if you want PROC OPTMILP to generate only Gomory cuts, specify ALLCUTS=NONE and
CUTGOMORY=AUTOMATIC. If you want to generate all cuts aggressively but generate no lift-and-project
cuts, set ALLCUTS=AGGRESSIVE and CUTLAP=NONE.

ALLCUTS=number | string
provides a shorthand way of setting all the cuts-related options in one setting. In other words, ALL-
CUTS=number is equivalent to setting each of the individual cuts parameters to the same value
number. Thus, ALLCUTS=–1 has the effect of setting CUTCLIQUE=–1, CUTFLOWCOVER=–1,
CUTFLOWPATH=–1, . . . , CUTMIR=–1, and CUTZEROHALF=–1. Table 11.11 lists the values that
can be assigned to string and number. In addition, you can override levels for individual cuts with the
CUTCLIQUE=, CUTFLOWCOVER=, CUTFLOWPATH=, CUTGOMORY=, CUTGUB=, CUTIM-
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PLIED=, CUTKNAPSACK=, CUTLAP=, CUTMILIFTED=, CUTMIR=, and CUTZEROHALF=
options. If the ALLCUTS= option is not specified, all the cuts-related options are either set to their
individually specified values (if the corresponding option is specified) or to their default values (if that
option is not specified).

CUTCLIQUE=number | string
specifies the level of clique cuts generated by PROC OPTMILP. Table 11.11 lists the values that can
be assigned to string and number. The CUTCLIQUE= option overrides the ALLCUTS= option. The
default value is AUTOMATIC.

CUTFLOWCOVER=number | string
specifies the level of flow cover cuts generated by PROC OPTMILP. Table 11.11 lists the values that
can be assigned to string and number. The CUTFLOWCOVER= option overrides the ALLCUTS=
option. The default value is AUTOMATIC.

CUTFLOWPATH=number | string
specifies the level of flow path cuts generated by PROC OPTMILP. Table 11.11 lists the values that can
be assigned to string and number. The CUTFLOWPATH= option overrides the ALLCUTS= option.
The default value is AUTOMATIC.

CUTGOMORY=number | string
specifies the level of Gomory cuts generated by PROC OPTMILP. Table 11.11 lists the values that can
be assigned to string and number. The CUTGOMORY= option overrides the ALLCUTS= option. The
default value is AUTOMATIC.

CUTGUB=number | string
specifies the level of generalized upper bound (GUB) cover cuts generated by PROC OPTMILP.
Table 11.11 lists the values that can be assigned to string and number. The CUTGUB= option overrides
the ALLCUTS= option. The default value is AUTOMATIC.

CUTIMPLIED=number | string
specifies the level of implied bound cuts generated by PROC OPTMILP. Table 11.11 lists the values
that can be assigned to string and number. The CUTIMPLIED= option overrides the ALLCUTS=
option. The default value is AUTOMATIC.

CUTKNAPSACK=number | string
specifies the level of knapsack cover cuts generated by PROC OPTMILP. Table 11.11 lists the values
that can be assigned to string and number. The CUTKNAPSACK= option overrides the ALLCUTS=
option. The default value is AUTOMATIC.

CUTLAP=number | string
specifies the level of lift-and-project (LAP) cuts generated by PROC OPTMILP. Table 11.11 lists the
values that can be assigned to string and number. The CUTLAP= option overrides the ALLCUTS=
option. The default value is NONE.

CUTMILIFTED=number | string
specifies the level of mixed lifted 0-1 cuts that are generated by PROC OPTMILP. Table 11.11 lists the
values that can be assigned to option and num. The CUTMILIFTED= option overrides the ALLCUTS=
option. The default value is AUTOMATIC.
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CUTMIR=number | string
specifies the level of mixed integer rounding (MIR) cuts generated by PROC OPTMILP. Table 11.11
lists the values that can be assigned to string and number. The CUTMIR= option overrides the
ALLCUTS= option. The default value is AUTOMATIC.

CUTSFACTOR=number
specifies a row multiplier factor for cuts. The number of cuts that are added is limited to number times
the original number of rows. The value of number can be any nonnegative number less than or equal
to 100; the default value is automatically calculated by PROC OPTMILP.

CUTSTRATEGY=number | string

CUTS=number | string
specifies the overall aggressiveness of the cut generation in the solver. Setting a nondefault value
adjusts a number of cut parameters such that the cut generation is basic, moderate, or aggressive
compared to the default value.

CUTZEROHALF=number | string
specifies the level of zero-half cuts that are generated by PROC OPTMILP. Table 11.11 lists the values
that can be assigned to string and number.The CUTZEROHALF= option overrides the ALLCUTS=
option. The default value is AUTOMATIC.

Decomposition Algorithm Statements
The following statements are available for the decomposition algorithm in the OPTMILP procedure:

DECOMP < options > ;

DECOMP_MASTER < options > ;

DECOMP_MASTER_IP < options > ;

DECOMP_SUBPROB < options > ;

For more information about these statements, see Chapter 13, “The Decomposition Algorithm.”
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PERFORMANCE Statement
PERFORMANCE < performance-options > ;

The PERFORMANCE statement specifies performance-options for single-machine mode and distributed
mode, and requests detailed performance results of the OPTMILP procedure.

With the PERFORMANCE statement, you can also control whether the OPTMILP procedure executes in
single-machine or distribute mode. Only the decomposition algorithm and the option tuner can be run in
those modes.

The PERFORMANCE statement is documented in the section “PERFORMANCE Statement” on page 28 in
Chapter 4, “Shared Concepts and Topics.”

NOTE: Distributed mode requires SAS High-Performance Optimization.

TUNER Statement
TUNER < performance-options > ;

The TUNER statement invokes the OPTMILP option tuner. The option tuner is a tool that enables you to
explore alternative (and potentially better) option configurations for your optimization problems. For more
information about this feature, see Chapter 14, “The OPTMILP Option Tuner.”
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Details: OPTMILP Procedure

Data Input and Output
This subsection describes the PRIMALIN= data set required to warm start PROC OPTMILP, in addition to
the PRIMALOUT= and DUALOUT= data sets.

Definitions of Variables in the PRIMALIN= Data Set

The PRIMALIN= data set has two required variables defined as follows:

_VAR_
specifies the variable (column) names of the problem. The values should match the column names in
the DATA= data set for the current problem.

_VALUE_
specifies the solution value for each variable in the problem.

NOTE: If PROC OPTMILP produces a feasible solution, the primal output data set from that run can be
used as the PRIMALIN= data set for a subsequent run, provided that the variable names are the same. If this
input solution is not feasible for the subsequent run, the solver automatically tries to repair it. See the section
“Warm Start” on page 435 for more details.

Definitions of Variables in the PRIMALOUT= Data Set

PROC OPTMILP stores the current best integer feasible solution of the problem in the data set specified by
the PRIMALOUT= option. The variables in this data set are defined as follows:

_OBJ_ID_
specifies the identifier of the objective function.

_RHS_ID_
specifies the identifier of the right-hand side.

_VAR_
specifies the variable (column) names.

_TYPE_
specifies the variable type. _TYPE_ can take one of the following values:

C continuous variable

I general integer variable

B binary variable (0 or 1)
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_OBJCOEF_
specifies the coefficient of the variable in the objective function.

_LBOUND_
specifies the lower bound on the variable.

_UBOUND_
specifies the upper bound on the variable.

_VALUE_
specifies the value of the variable in the current solution.

Definitions of the DUALOUT= Data Set Variables

The DUALOUT= data set contains the constraint activities that correspond to the primal solution in the
PRIMALOUT= data set. Information about additional objective rows of the MILP problem is not included.
The variables in this data set are defined as follows:

_OBJ_ID_
specifies the identifier of the objective function from the input data set.

_RHS_ID_
specifies the identifier of the right-hand side from the input data set.

_ROW_
specifies the constraint (row) name.

_TYPE_
specifies the constraint type. _TYPE_ can take one of the following values:

L “less than or equal” constraint

E equality constraint

G “greater than or equal” constraint

R ranged constraint (both “less than or equal” and “greater than or equal”)

_RHS_
specifies the value of the right-hand side of the constraint. It takes a missing value for a ranged
constraint.

_L_RHS_
specifies the lower bound of a ranged constraint. It takes a missing value for a non-ranged constraint.

_U_RHS_
specifies the upper bound of a ranged constraint. It takes a missing value for a non-ranged constraint.

_ACTIVITY_
specifies the activity of a constraint for a given primal solution. In other words, the value of _ACTIV-
ITY_ for the ith constraint is equal to aTi x, where ai refers to the ith row of the constraint matrix and x
denotes the vector of the current primal solution.
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Warm Start
PROC OPTMILP enables you to input a warm start solution by using the PRIMALIN= option. PROC
OPTMILP checks that the decision variables named in _VAR_ are the same as those in the MPS-format SAS
data set. If they are not the same, PROC OPTMILP issues a warning and ignores the input solution. PROC
OPTMILP also checks whether the solution is infeasible, contains missing values, or contains fractional
values for integer variables. If this is the case, PROC OPTMILP attempts to repair the solution with a number
of specialized repair heuristics. The success of the attempt largely depends both on the specific model and on
the proximity between the input solution and an integer feasible solution. An infeasible input solution can be
considered a hint for PROC OPTMILP that might or might not help to solve the problem.

An integer feasible or repaired input solution provides an incumbent solution in addition to an upper (min) or
lower (max) bound for the branch-and-bound algorithm. PROC OPTMILP uses the input solution to reduce
the search space and to guide the search process. When it is difficult to find a good integer feasible solution
for a problem, warm start can reduce solution time significantly.

Branch-and-Bound Algorithm
The branch-and-bound algorithm, first proposed by Land and Doig (1960), is an effective approach to solving
mixed integer linear programs. The following discussion outlines the approach and explains how PROC
OPTMILP enhances the basic algorithm by using several advanced techniques.

The branch-and-bound algorithm solves a mixed integer linear program by dividing the search space and
generating a sequence of subproblems. The search space of a mixed integer linear program can be represented
by a tree. Each node in the tree is identified with a subproblem derived from previous subproblems on
the path that leads to the root of the tree. The subproblem (MILP0) associated with the root is identical to
the original problem, which is called (MILP), given in the section “Overview: OPTMILP Procedure” on
page 417.

The linear programming relaxation (LP0) of (MILP0) can be written as

min cT x
subject to Ax f�;D;�g b

l � x � u

The branch-and-bound algorithm generates subproblems along the nodes of the tree by using the following
scheme. Consider Nx0, the optimal solution to (LP0), which is usually obtained by using the dual simplex
algorithm. If Nx0i is an integer for all i 2 S , then Nx0 is an optimal solution to (MILP). Suppose that for some
i 2 S, Nx0i is nonintegral. In that case the algorithm defines two new subproblems (MILP1) and (MILP2),
descendants of the parent subproblem (MILP0). The subproblem (MILP1) is identical to (MILP0) except for
the additional constraint

xi � b Nx
0
i c

and the subproblem (MILP2) is identical to (MILP0) except for the additional constraint

xi � d Nx
0
i e
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The notation byc represents the largest integer that is less than or equal to y, and the notation dye represents
the smallest integer that is greater than or equal to y. The two preceding constraints can be handled by
modifying the bounds of the variable xi rather than by explicitly adding the constraints to the constraint
matrix. The two new subproblems do not have Nx0 as a feasible solution, but the integer solution to (MILP)
must satisfy one of the preceding constraints. The two subproblems thus defined are called active nodes in
the branch-and-bound tree, and the variable xi is called the branching variable.

In the next step the branch-and-bound algorithm chooses one of the active nodes and attempts to solve the
linear programming relaxation of that subproblem. The relaxation might be infeasible, in which case the
subproblem is dropped (fathomed). If the subproblem can be solved and the solution is integer feasible
(that is, xi is an integer for all i 2 S), then its objective value provides an upper bound for the objective
value in the minimization problem (MILP); if the solution is not integer feasible, then it defines two new
subproblems. Branching continues in this manner until there are no active nodes. At this point the best
integer solution found is an optimal solution for (MILP). If no integer solution has been found, then (MILP)
is integer infeasible. You can specify other criteria to stop the branch-and-bound algorithm before it processes
all the active nodes; see the section “Controlling the Branch-and-Bound Algorithm” on page 436 for details.

Upper bounds from integer feasible solutions can be used to fathom or cut off active nodes. Since the
objective value of an optimal solution cannot be greater than an upper bound, active nodes with lower bounds
higher than an existing upper bound can be safely deleted. In particular, if z is the objective value of the
current best integer solution, then any active subproblems whose relaxed objective value is greater than or
equal to z can be discarded.

It is important to realize that mixed integer linear programs are non-deterministic polynomial-time hard
(NP-hard). Roughly speaking, this means that the effort required to solve a mixed integer linear program
grows exponentially with the size of the problem. For example, a problem with 10 binary variables can
generate in the worst case 210 D 1; 024 nodes in the branch-and-bound tree. A problem with 20 binary
variables can generate in the worst case 220 D 1; 048; 576 nodes in the branch-and-bound tree. Although
it is unlikely that the branch-and-bound algorithm has to generate every single possible node, the need to
explore even a small fraction of the potential number of nodes for a large problem can be resource-intensive.

A number of techniques can speed up the search progress of the branch-and-bound algorithm. Heuristics
are used to find feasible solutions, which can improve the upper bounds on solutions of mixed integer linear
programs. Cutting planes can reduce the search space and thus improve the lower bounds on solutions of
mixed integer linear programs. When using cutting planes, the branch-and-bound algorithm is also called the
branch-and-cut algorithm. Preprocessing can reduce problem size and improve problem solvability. PROC
OPTMILP employs various heuristics, cutting planes, preprocessing, and other techniques, which you can
control through corresponding options.

Controlling the Branch-and-Bound Algorithm
There are numerous strategies that can be used to control the branch-and-bound search (see Linderoth and
Savelsbergh 1998, Achterberg, Koch, and Martin 2005). PROC OPTMILP implements the most widely used
strategies and provides several options that enable you to direct the choice of the next active node and of
the branching variable. In the discussion that follows, let (LPk) be the linear programming relaxation of
subproblem (MILPk). Also, let

fi .k/ D Nx
k
i � b Nx

k
i c

where Nxk is the optimal solution to the relaxation problem (LPk) solved at node k.
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Node Selection

The NODESEL= option specifies the strategy used to select the next active node. The valid keywords for this
option are AUTOMATIC, BESTBOUND, BESTESTIMATE, and DEPTH. The following list describes the
strategy associated with each keyword:

AUTOMATIC allows PROC OPTMILP to choose the best node selection strategy based on problem
characteristics and search progress. This is the default setting.

BESTBOUND chooses the node with the smallest (or largest, in the case of a maximization problem)
relaxed objective value. The best-bound strategy tends to reduce the number of nodes
to be processed and can improve lower bounds quickly. However, if there is no good
upper bound, the number of active nodes can be large. This can result in the solver
running out of memory.

BESTESTIMATE chooses the node with the smallest (or largest, in the case of a maximization problem)
objective value of the estimated integer solution. Besides improving lower bounds,
the best-estimate strategy also attempts to process nodes that can yield good feasible
solutions.

DEPTH chooses the node that is deepest in the search tree. Depth-first search is effective in
locating feasible solutions, since such solutions are usually deep in the search tree.
Compared to the costs of the best-bound and best-estimate strategies, the cost of
solving LP relaxations is less in the depth-first strategy. The number of active nodes is
generally small, but it is possible that the depth-first search will remain in a portion
of the search tree with no good integer solutions. This occurrence is computationally
expensive.

Variable Selection

The VARSEL= option specifies the strategy used to select the next branching variable. The valid keywords
for this option are AUTOMATIC, MAXINFEAS, MININFEAS, PSEUDO, and STRONG. The following list
describes the action taken in each case when Nxk , a relaxed optimal solution of (MILPk), is used to define two
active subproblems. In the following list, “INTTOL” refers to the value assigned using the INTTOL= option.
For details about the INTTOL= option, see the section “Control Options” on page 424.

AUTOMATIC enables PROC OPTMILP to choose the best variable selection strategy based on problem
characteristics and search progress. This is the default setting.

MAXINFEAS chooses as the branching variable the variable xi such that i maximizes

fminffi .k/; 1 � fi .k/g j i 2 S and

INTTOL � fi .k/ � 1 � INTTOLg

MININFEAS chooses as the branching variable the variable xi such that i minimizes

fminffi .k/; 1 � fi .k/g j i 2 S and

INTTOL � fi .k/ � 1 � INTTOLg
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PSEUDO chooses as the branching variable the variable xi such that i maximizes the weighted up
and down pseudocosts. Pseudocost branching attempts to branch on significant variables
first, quickly improving lower bounds. Pseudocost branching estimates significance based
on historical information; however, this approach might not be accurate for future search.

STRONG chooses as the branching variable the variable xi such that i maximizes the estimated
improvement in the objective value. Strong branching first generates a list of candidates,
then branches on each candidate and records the improvement in the objective value.
The candidate with the largest improvement is chosen as the branching variable. Strong
branching can be effective for combinatorial problems, but it is usually computationally
expensive.

Branching Priorities

In some cases, it is possible to speed up the branch-and-bound algorithm by branching on variables in a
specific order. You can accomplish this in PROC OPTMILP by attaching branching priorities to the integer
variables in your model.

You can set branching priorities for use by PROC OPTMILP in two ways. You can specify the branching
priorities directly in the input MPS-format data set; see the section “BRANCH Section (Optional)” on
page 607 for details. If you are constructing a model in PROC OPTMODEL, you can set branching priorities
for integer variables by using the .priority suffix. More information about this suffix is available in the section
“Integer Variable Suffixes” on page 134 in Chapter 5. For an example in which branching priorities are used,
see Example 7.3.

Presolve and Probing
PROC OPTMILP includes a variety of presolve techniques to reduce problem size, improve numerical
stability, and detect infeasibility or unboundedness (Andersen and Andersen 1995; Gondzio 1997). During
presolve, redundant constraints and variables are identified and removed. Presolve can further reduce the
problem size by substituting variables. Variable substitution is a very effective technique, but it might
occasionally increase the number of nonzero entries in the constraint matrix. Presolve might also modify the
constraint coefficients to tighten the formulation of the problem.

In most cases, using presolve is very helpful in reducing solution times. You can enable presolve at different
levels by specifying the PRESOLVER= option.

Probing is a technique that tentatively sets each binary variable to 0 or 1, then explores the logical conse-
quences (Savelsbergh 1994). Probing can expedite the solution of a difficult problem by fixing variables and
improving the model. However, probing is often computationally expensive and can significantly increase the
solution time in some cases. You can enable probing at different levels by specifying the PROBE= option.

Cutting Planes
The feasible region of every linear program forms a polyhedron. Every polyhedron in n-space can be
written as a finite number of half-spaces (equivalently, inequalities). In the notation used in this chapter, this
polyhedron is defined by the set Q D fx 2 Rn j Ax � b; l � x � ug. After you add the restriction that
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some variables must be integral, the set of feasible solutions, F D fx 2 Q j xi 2 Z 8i 2 Sg, no longer
forms a polyhedron.

The convex hull of a set X is the minimal convex set that contains X. In solving a mixed integer linear program,
in order to take advantage of LP-based algorithms you want to find the convex hull, conv.F/, of F . If you
can find conv.F/ and describe it compactly, then you can solve a mixed integer linear program with a linear
programming solver. This is generally very difficult, so you must be satisfied with finding an approximation.
Typically, the better the approximation, the more efficiently the LP-based branch-and-bound algorithm can
perform.

As described in the section “Branch-and-Bound Algorithm” on page 435, the branch-and-bound algorithm
begins by solving the linear programming relaxation over the polyhedron Q. Clearly, Q contains the convex
hull of the feasible region of the original integer program; that is, conv.F/ � Q.

Cutting plane techniques are used to tighten the linear relaxation to better approximate conv.F/. Assume
you are given a solution Nx to some intermediate linear relaxation during the branch-and-bound algorithm. A
cut, or valid inequality (�x � �0), is some half-space with the following characteristics:

• The half-space contains conv.F/; that is, every integer feasible solution is feasible for the cut (�x �
�0;8x 2 F).

• The half-space does not contain the current solution Nx; that is, Nx is not feasible for the cut (� Nx > �0).

Cutting planes were first made popular by Dantzig, Fulkerson, and Johnson (1954) in their work on the
traveling salesman problem. The two major classifications of cutting planes are generic cuts and structured
cuts. Generic cuts are based solely on algebraic arguments and can be applied to any relaxation of any
integer program. Structured cuts are specific to certain structures that can be found in some relaxations of
the mixed integer linear program. These structures are automatically discovered during the cut initialization
phase of PROC OPTMILP. Table 11.12 lists the various types of cutting planes that are built into PROC
OPTMILP. Included in each type are algorithms for numerous variations based on different relaxations and
lifting techniques. For a survey of cutting plane techniques for mixed integer programming, see Marchand
et al. (1999). For a survey of lifting techniques, see Atamturk (2004).

Table 11.12 Cutting Planes in PROC OPTMILP

Generic Cutting Planes Structured Cutting Planes
Gomory mixed integer Cliques
Lift-and-project Flow cover
Mixed integer rounding Flow path
Mixed lifted 0-1 Generalized upper bound cover
Zero-half Implied bound

Knapsack cover

You can set levels for individual cuts by using the CUTCLIQUE=, CUTFLOWCOVER=, CUTFLOWPATH=,
CUTGOMORY=, CUTGUB=, CUTIMPLIED=, CUTKNAPSACK=, CUTLAP=, and CUTMIR= options.
The valid levels for these options are given in Table 11.11.

The cut level determines the internal strategy used by PROC OPTMILP for generating the cutting planes.
The strategy consists of several factors, including how frequently the cut search is called, the number of cuts
allowed, and the aggressiveness of the search algorithms.
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Sophisticated cutting planes, such as those included in PROC OPTMILP, can take a great deal of CPU time.
Typically the additional tightening of the relaxation helps to speed up the overall process as it provides better
bounds for the branch-and-bound tree and helps guide the LP solver toward integer solutions. In rare cases,
shutting off cutting planes completely might lead to faster overall run times.

The default settings of PROC OPTMILP have been tuned to work well for most instances. However,
problem-specific expertise might suggest adjusting one or more of the strategies. These options give you that
flexibility.

Primal Heuristics
Primal heuristics, an important component of PROC OPTMILP, are applied during the branch-and-bound
algorithm. They are used to find integer feasible solutions early in the search tree, thereby improving the
upper bound for a minimization problem. Primal heuristics play a role that is complementary to cutting planes
in reducing the gap between the upper and lower bounds, thus reducing the size of the branch-and-bound tree.

Applying primal heuristics in the branch-and-bound algorithm assists in the following areas:

• finding a good upper bound early in the tree search (this can lead to earlier fathoming, resulting in
fewer subproblems to be processed)

• locating a reasonably good feasible solution when that is sufficient (sometimes a good feasible solution
is the best the solver can produce within certain time or resource limits)

• providing upper bounds for some bound-tightening techniques

The OPTMILP procedure implements several heuristic methodologies. Some algorithms, such as rounding
and iterative rounding (diving) heuristics, attempt to construct an integer feasible solution by using fractional
solutions to the continuous relaxation at each node of the branch-and-cut tree. Other algorithms start with an
incumbent solution and attempt to find a better solution within a neighborhood of the current best solution.

The HEURISTICS= option enables you to control the level of primal heuristics applied by PROC OPTMILP.
This level determines how frequently primal heuristics are applied during the tree search. Some expensive
heuristics might be disabled by the solver at less aggressive levels. Setting the HEURISTICS= option to a
lower level also reduces the maximum number of iterations allowed in iterative heuristics. The valid values
for this option are listed in Table 11.7.

Node Log
The following information about the status of the branch-and-bound algorithm is printed in the node log:

Node indicates the sequence number of the current node in the search tree.

Active indicates the current number of active nodes in the branch-and-bound tree.

Sols indicates the number of feasible solutions found so far.

BestInteger indicates the best upper bound (assuming minimization) found so far.
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BestBound indicates the best lower bound (assuming minimization) found so far.

Gap indicates the relative gap between BestInteger and BestBound, displayed as a percentage.
If the relative gap is larger than 1,000, then the absolute gap is displayed. If no active
nodes remain, the value of Gap is 0.

Time indicates the elapsed real time.

The LOGFREQ= and LOGLEVEL= options can be used to control the amount of information printed in the
node log. By default a new entry is included in the log at the first node, at the last node, and at 100-node
intervals. A new entry is also included each time a better integer solution is found. The LOGFREQ= option
enables you to change the interval between entries in the node log. Figure 11.4 shows a sample node log.

Figure 11.4 Sample Node Log

NOTE: The problem ex1data has 10 variables (0 binary, 10 integer, 0 free, 0
fixed).

NOTE: The problem has 2 constraints (2 LE, 0 EQ, 0 GE, 0 range).
NOTE: The problem has 20 constraint coefficients.
NOTE: The MILP presolver value AUTOMATIC is applied.
NOTE: The MILP presolver removed 0 variables and 0 constraints.
NOTE: The MILP presolver removed 0 constraint coefficients.
NOTE: The MILP presolver modified 0 constraint coefficients.
NOTE: The presolved problem has 10 variables, 2 constraints, and 20 constraint

coefficients.
NOTE: The MILP solver is called.

Node Active Sols BestInteger BestBound Gap Time
0 1 3 85.0000000 178.0000000 52.25% 0
0 1 3 85.0000000 88.0955497 3.51% 0
0 1 3 85.0000000 88.0626822 3.48% 0
0 1 3 85.0000000 87.9666563 3.37% 0
0 1 3 85.0000000 87.9661593 3.37% 0
0 1 3 85.0000000 87.8181818 3.21% 0

NOTE: The MILP solver added 2 cuts with 13 cut coefficients at the root.
3 0 5 87.0000000 87.0000000 0.00% 0

NOTE: Optimal.
NOTE: Objective = 87.
NOTE: The data set WORK.EX1SOLN has 10 observations and 8 variables.

ODS Tables
PROC OPTMILP creates three Output Delivery System (ODS) tables by default. The first table, Problem-
Summary, is a summary of the input MILP problem. The second table, SolutionSummary, is a brief summary
of the solution status. The third table, PerformanceInfo, is a summary of performance options. You can use
ODS table names to select tables and create output data sets. For more information about ODS, see SAS
Output Delivery System: User’s Guide.

If you specify a value of 2 for the PRINTLEVEL= option, then the ProblemStatistics table is produced. This
table contains information about the problem data. See the section “Problem Statistics” on page 445 for more
information.
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If you specify the DETAILS option in the PERFORMANCE statement, then the Timing table is produced.

Table 11.13 lists all the ODS tables that can be produced by the OPTMILP procedure, along with the
statement and option specifications required to produce each table.

Table 11.13 ODS Tables Produced by PROC OPTMILP

ODS Table Name Description Statement Option
ProblemSummary Summary of the input MILP

problem
PROC OPTMILP PRINTLEVEL=1 (default)

SolutionSummary Summary of the solution status PROC OPTMILP PRINTLEVEL=1 (default)
ProblemStatistics Description of input problem data PROC OPTMILP PRINTLEVEL=2
PerformanceInfo List of performance options and

their values
PROC OPTMILP PRINTLEVEL=1 (default)

Timing Detailed solution timing PERFORMANCE DETAILS

A typical ProblemSummary table is shown in Figure 11.5.

Figure 11.5 Example PROC OPTMILP Output: Problem Summary

The OPTMILP Procedure

Problem Summary

Problem Name EX_MIP
Objective Sense Minimization
Objective Function COST
RHS RHS

Number of Variables 3
Bounded Above 0
Bounded Below 0
Bounded Above and Below 3
Free 0
Fixed 0
Binary 3
Integer 0

Number of Constraints 3
LE (<=) 2
EQ (=) 0
GE (>=) 1
Range 0

Constraint Coefficients 8
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A typical SolutionSummary table is shown in Figure 11.6.

Figure 11.6 Example PROC OPTMILP Output: Solution Summary

The OPTMILP Procedure

Solution Summary

Solver MILP
Algorithm Branch and Cut
Objective Function COST
Solution Status Optimal
Objective Value -7

Relative Gap 0
Absolute Gap 0
Primal Infeasibility 0
Bound Infeasibility 0
Integer Infeasibility 0

Best Bound .
Nodes 0
Iterations 0
Presolve Time 0.00
Solution Time 0.00

You can create output data sets from these tables by using the ODS OUTPUT statement. The output data sets
from the preceding example are displayed in Figure 11.7 and Figure 11.8, where you can also find variable
names for the tables used in the ODS template of the OPTMILP procedure.
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Figure 11.7 ODS Output Data Set: Problem Summary

Problem Summary

Obs Label1 cValue1 nValue1

1 Problem Name EX_MIP .
2 Objective Sense Minimization .
3 Objective Function COST .
4 RHS RHS .
5 .
6 Number of Variables 3 3.000000
7 Bounded Above 0 0
8 Bounded Below 0 0
9 Bounded Above and Below 3 3.000000
10 Free 0 0
11 Fixed 0 0
12 Binary 3 3.000000
13 Integer 0 0
14 .
15 Number of Constraints 3 3.000000
16 LE (<=) 2 2.000000
17 EQ (=) 0 0
18 GE (>=) 1 1.000000
19 Range 0 0
20 .
21 Constraint Coefficients 8 8.000000

Figure 11.8 ODS Output Data Set: Solution Summary

Solution Summary

Obs Label1 cValue1 nValue1

1 Solver MILP .
2 Algorithm Branch and Cut .
3 Objective Function COST .
4 Solution Status Optimal .
5 Objective Value -7 -7.000000
6 .
7 Relative Gap 0 0
8 Absolute Gap 0 0
9 Primal Infeasibility 0 0
10 Bound Infeasibility 0 0
11 Integer Infeasibility 0 0
12 .
13 Best Bound . .
14 Nodes 0 0
15 Iterations 0 0
16 Presolve Time 0.02 0.015600
17 Solution Time 0.02 0.015600
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Problem Statistics

Optimizers can encounter difficulty when solving poorly formulated models. Information about data
magnitude provides a simple gauge to determine how well a model is formulated. For example, a model
whose constraint matrix contains one very large entry (on the order of 109) can cause difficulty when the
remaining entries are single-digit numbers. The PRINTLEVEL=2 option in the OPTMILP procedure causes
the ODS table ProblemStatistics to be generated. This table provides basic data magnitude information that
enables you to improve the formulation of your models.

The example output in Figure 11.9 demonstrates the contents of the ODS table ProblemStatistics.

Figure 11.9 ODS Table ProblemStatistics

ProblemStatistics

Obs Label1 cValue1 nValue1

1 Number of Constraint Matrix Nonzeros 8 8.000000
2 Maximum Constraint Matrix Coefficient 3 3.000000
3 Minimum Constraint Matrix Coefficient 1 1.000000
4 Average Constraint Matrix Coefficient 1.875 1.875000
5 .
6 Number of Objective Nonzeros 3 3.000000
7 Maximum Objective Coefficient 4 4.000000
8 Minimum Objective Coefficient 2 2.000000
9 Average Objective Coefficient 3 3.000000

10 .
11 Number of RHS Nonzeros 3 3.000000
12 Maximum RHS 7 7.000000
13 Minimum RHS 4 4.000000
14 Average RHS 5.3333333333 5.333333
15 .
16 Maximum Number of Nonzeros per Column 3 3.000000
17 Minimum Number of Nonzeros per Column 2 2.000000
18 Average Number of Nonzeros per Column 2 2.000000
19 .
20 Maximum Number of Nonzeros per Row 3 3.000000
21 Minimum Number of Nonzeros per Row 2 2.000000
22 Average Number of Nonzeros per Row 2 2.000000

The variable names in the ODS table ProblemStatistics are Label1, cValue1, and nValue1.

Macro Variable _OROPTMILP_
The OPTMILP procedure defines a macro variable named _OROPTMILP_. This variable contains a character
string that indicates the status of the OPTMILP procedure upon termination. The various terms of the variable
are interpreted as follows.
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STATUS
indicates the solver status at termination. It can take one of the following values:

OK The procedure terminated normally.

SYNTAX_ERROR Incorrect syntax was used.

DATA_ERROR The input data was inconsistent.

OUT_OF_MEMORY Insufficient memory was allocated to the procedure.

IO_ERROR A problem occurred in reading or writing data.

ERROR The status cannot be classified into any of the preceding categories.

ALGORITHM
indicates the algorithm that produced the solution data in the macro variable. This term only appears
when STATUS=OK. It can take one of the following values:

BAC The branch-and-cut algorithm produced the solution data.

DECOMP The decomposition algorithm produced the solution data.

SOLUTION_STATUS
indicates the solution status at termination. It can take one of the following values:

OPTIMAL The solution is optimal.

OPTIMAL_AGAP The solution is optimal within the absolute gap specified by the
ABSOBJGAP= option.

OPTIMAL_RGAP The solution is optimal within the relative gap specified by the
RELOBJGAP= option.

OPTIMAL_COND The solution is optimal, but some infeasibilities (primal, bound,
or integer) exceed tolerances due to scaling or choice of a small
INTTOL= value.

TARGET The solution is not worse than the target specified by the TAR-
GET= option.

INFEASIBLE The problem is infeasible.

UNBOUNDED The problem is unbounded.

INFEASIBLE_OR_UNBOUNDED The problem is infeasible or unbounded.

SOLUTION_LIM The solver reached the maximum number of solutions specified
by the MAXSOLS= option.

NODE_LIM_SOL The solver reached the maximum number of nodes specified by
the MAXNODES= option and found a solution.

NODE_LIM_NOSOL The solver reached the maximum number of nodes specified by
the MAXNODES= option and did not find a solution.

TIME_LIM_SOL The solver reached the execution time limit specified by the
MAXTIME= option and found a solution.



Macro Variable _OROPTMILP_ F 447

TIME_LIM_NOSOL The solver reached the execution time limit specified by the
MAXTIME= option and did not find a solution.

ABORT_SOL The solver was stopped by the user but still found a solution.

ABORT_NOSOL The solver was stopped by the user and did not find a solution.

OUTMEM_SOL The solver ran out of memory but still found a solution.

OUTMEM_NOSOL The solver ran out of memory and either did not find a solution
or failed to output the solution due to insufficient memory.

FAIL_SOL The solver stopped due to errors but still found a solution.

FAIL_NOSOL The solver stopped due to errors and did not find a solution.

OBJECTIVE
indicates the objective value obtained by the solver at termination.

RELATIVE_GAP
specifies the relative gap between the best integer objective (BestInteger) and the objective of the best
remaining node (BestBound) upon termination of the OPTMILP procedure. The relative gap is equal
to

j BestInteger � BestBound j = .1E–10C j BestBound j/

ABSOLUTE_GAP
specifies the absolute gap between the best integer objective (BestInteger) and the objective of the best
remaining node (BestBound) upon termination of the OPTMILP procedure. The absolute gap is equal
to j BestInteger � BestBound j.

PRIMAL_INFEASIBILITY
indicates the maximum (absolute) violation of the primal constraints by the solution.

BOUND_INFEASIBILITY
indicates the maximum (absolute) violation by the solution of the lower or upper bounds (or both).

INTEGER_INFEASIBILITY
indicates the maximum (absolute) violation of the integrality of integer variables returned by the
OPTMILP procedure.

BEST_BOUND
specifies the best LP objective value of all unprocessed nodes on the branch-and-bound tree at the end
of execution. A missing value indicates that the OPTMILP procedure has processed either all or none
of the nodes on the branch-and-bound tree.

NODES
specifies the number of nodes enumerated by the OPTMILP procedure when using the branch-and-
bound algorithm.

ITERATIONS
indicates the number of simplex iterations taken to solve the problem.
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PRESOLVE_TIME
indicates the time (in seconds) used in preprocessing.

SOLUTION_TIME
indicates the time (in seconds) taken to solve the problem, including preprocessing time.

NOTE: The time reported in PRESOLVE_TIME and SOLUTION_TIME is either CPU time or real time.
The type is determined by the TIMETYPE= option.

Examples: OPTMILP Procedure
This section contains examples that illustrate the options and syntax of PROC OPTMILP. Example 11.1
demonstrates a model contained in an MPS-format SAS data set and finds an optimal solution by using
PROC OPTMILP. Example 11.2 illustrates the use of standard MPS files in PROC OPTMILP. Example 11.3
demonstrates how to warm start PROC OPTMILP. More detailed examples of mixed integer linear programs,
along with example SAS code, are given in Chapter 7.

Example 11.1: Simple Integer Linear Program
This example illustrates a model in an MPS-format SAS data set. This data set is passed to PROC OPTMILP,
and a solution is found.

Consider a scenario where you have a container with a set of limiting attributes (volume V and weight W)
and a set I of items that you want to pack. Each item type i has a certain value pi , a volume vi , and a weight
wi . You must choose at most four items of each type so that the total value is maximized and all the chosen
items fit into the container. Let xi be the number of items of type i to be included in the container. This
model can be formulated as the following integer linear program:

max
X
i2I

pixi

s:t:
X
i2I

vixi � V .volume_con/X
i2I

wixi � W .weight_con/

xi � 4 8i 2 I

xi 2 ZC 8i 2 I

Constraint (volume_con) enforces the volume capacity limit, while constraint (weight_con) enforces the
weight capacity limit. An instance of this problem can be saved in an MPS-format SAS data set by using the
following code:
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data ex1data;
input field1 $ field2 $ field3 $ field4 field5 $ field6;
datalines;

NAME . ex1data . . .
ROWS . . . . .
MAX z . . . .
L volume_con . . . .
L weight_con . . . .
COLUMNS . . . . .
. .MRK0 'MARKER' . 'INTORG' .
. x[1] z 1 volume_con 10
. x[1] weight_con 12 . .
. x[2] z 2 volume_con 300
. x[2] weight_con 15 . .
. x[3] z 3 volume_con 250
. x[3] weight_con 72 . .
. x[4] z 4 volume_con 610
. x[4] weight_con 100 . .
. x[5] z 5 volume_con 500
. x[5] weight_con 223 . .
. x[6] z 6 volume_con 120
. x[6] weight_con 16 . .
. x[7] z 7 volume_con 45
. x[7] weight_con 73 . .
. x[8] z 8 volume_con 100
. x[8] weight_con 12 . .
. x[9] z 9 volume_con 200
. x[9] weight_con 200 . .
. x[10] z 10 volume_con 61
. x[10] weight_con 110 . .
. .MRK1 'MARKER' . 'INTEND' .
RHS . . . . .
. .RHS. volume_con 1000 . .
. .RHS. weight_con 500 . .
BOUNDS . . . . .
UP .BOUNDS. x[1] 4 . .
UP .BOUNDS. x[2] 4 . .
UP .BOUNDS. x[3] 4 . .
UP .BOUNDS. x[4] 4 . .
UP .BOUNDS. x[5] 4 . .
UP .BOUNDS. x[6] 4 . .
UP .BOUNDS. x[7] 4 . .
UP .BOUNDS. x[8] 4 . .
UP .BOUNDS. x[9] 4 . .
UP .BOUNDS. x[10] 4 . .
ENDATA . . . . .
;

In the COLUMNS section of this data set, the name of the objective is z, and the objective coefficients pi
appear in field4. The coefficients vi of (volume_con) appear in field6. The coefficients wi of (weight_con)
appear in field4. In the RHS section, the bounds V and W appear in field4.
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This problem can be solved by using the following statements to call the OPTMILP procedure:

proc optmodel;
num nItems = 10;
num volume_capacity = 1000;
num weight_capacity = 500;
set<num> Items = {1..nItems};
num value{Items} = [1,2,3,4,5,6,7,8,9,10];
num volume{Items} = [10, 300, 250, 610, 500, 120, 45, 100, 200, 61 ];
num weight{Items} = [12, 15, 72, 100, 223, 16, 73, 12, 200, 110];
var x{Items} integer >= 0 <= 4;
max z = sum{i in Items} value[i] * x[i];
con volume_con: sum{i in Items} volume[i] * x[i] <= volume_capacity;
con weight_con: sum{i in Items} weight[i] * x[i] <= weight_capacity;
save mps ex1data;

quit;
run;
proc optmilp data=ex1data primalout=ex1soln;
run;

The progress of the solver is shown in Output 11.1.1.

Output 11.1.1 Simple Integer Linear Program PROC OPTMILP Log

NOTE: The problem ex1data has 10 variables (0 binary, 10 integer, 0 free, 0
fixed).

NOTE: The problem has 2 constraints (2 LE, 0 EQ, 0 GE, 0 range).
NOTE: The problem has 20 constraint coefficients.
NOTE: The MILP presolver value AUTOMATIC is applied.
NOTE: The MILP presolver removed 0 variables and 0 constraints.
NOTE: The MILP presolver removed 0 constraint coefficients.
NOTE: The MILP presolver modified 0 constraint coefficients.
NOTE: The presolved problem has 10 variables, 2 constraints, and 20 constraint

coefficients.
NOTE: The MILP solver is called.

Node Active Sols BestInteger BestBound Gap Time
0 1 3 85.0000000 178.0000000 52.25% 0
0 1 3 85.0000000 88.0955497 3.51% 0
0 1 3 85.0000000 88.0626822 3.48% 0
0 1 3 85.0000000 87.9666563 3.37% 0
0 1 3 85.0000000 87.9661593 3.37% 0
0 1 3 85.0000000 87.8181818 3.21% 0

NOTE: The MILP solver added 2 cuts with 13 cut coefficients at the root.
3 0 5 87.0000000 87.0000000 0.00% 0

NOTE: Optimal.
NOTE: Objective = 87.
NOTE: The data set WORK.EX1SOLN has 10 observations and 8 variables.
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The data set ex1soln is shown in Output 11.1.2.

Output 11.1.2 Simple Integer Linear Program Solution

Example 1 Solution Data

Objective
Function RHS Variable Variable Objective Lower Upper Variable

ID ID Name Type Coefficient Bound Bound Value

z .RHS. x[1] I 1 0 4 0
z .RHS. x[2] I 2 0 4 0
z .RHS. x[3] I 3 0 4 0
z .RHS. x[4] I 4 0 4 0
z .RHS. x[5] I 5 0 4 0
z .RHS. x[6] I 6 0 4 3
z .RHS. x[7] I 7 0 4 1
z .RHS. x[8] I 8 0 4 4
z .RHS. x[9] I 9 0 4 0
z .RHS. x[10] I 10 0 4 3

The optimal solution is x6 D 3; x7 D 1; x8 D 4, and x10 D 3, with a total value of 87. From this
solution, you can compute the total volume used, which is 988 (� V D 1000); the total weight used is 499
(� W D 500). The problem summary and solution summary are shown in Output 11.1.3.

proc optmodel;
num nItems = 10;
num volume_capacity = 1000;
num weight_capacity = 500;
set<num> Items = {1..nItems};
num value{Items} = [1,2,3,4,5,6,7,8,9,10];
num volume{Items} = [10, 300, 250, 610, 500, 120, 45, 100, 200, 61 ];
num weight{Items} = [12, 15, 72, 100, 223, 16, 73, 12, 200, 110];
var x{Items} integer >= 0 <= 4;
max z = sum{i in Items} value[i] * x[i];
con volume_con: sum{i in Items} volume[i] * x[i] <= volume_capacity;
con weight_con: sum{i in Items} weight[i] * x[i] <= weight_capacity;
save mps ex1data;

quit;
run;
proc optmilp data=ex1data primalout=ex1soln;
title ' ';
run;
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Output 11.1.3 Simple Integer Linear Program Summary

The OPTMILP Procedure

Problem Summary

Problem Name ex1data
Objective Sense Maximization
Objective Function z
RHS .RHS.

Number of Variables 10
Bounded Above 0
Bounded Below 0
Bounded Above and Below 10
Free 0
Fixed 0
Binary 0
Integer 10

Number of Constraints 2
LE (<=) 2
EQ (=) 0
GE (>=) 0
Range 0

Constraint Coefficients 20

Performance Information

Execution Mode Single-Machine
Number of Threads 4

Solution Summary

Solver MILP
Algorithm Branch and Cut
Objective Function z
Solution Status Optimal
Objective Value 87

Relative Gap 0
Absolute Gap 0
Primal Infeasibility 0
Bound Infeasibility 0
Integer Infeasibility 0

Best Bound 87
Nodes 4
Iterations 31
Presolve Time 0.00
Solution Time 0.00
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Example 11.2: MIPLIB Benchmark Instance
The following example illustrates the conversion of a standard MPS-format file into an MPS-format SAS data
set. The problem is re-solved several times, each time by using a different control option. For such a small
example, it is necessary to disable cuts and heuristics in order to see the computational savings gained by
using other options. For larger or more complex examples, the benefits of using the various control options
are more pronounced.

The standard set of MILP benchmark cases is called MIPLIB (Bixby et al. 1998, Achterberg, Koch, and Martin
2003) and can be found at http://miplib.zib.de/. The following statement uses the %MPS2SASD
macro to convert an example from MIPLIB to a SAS data set:

%mps2sasd(mpsfile="bell3a.mps", outdata=mpsdata);

The problem can then be solved using PROC OPTMILP on the data set created by the conversion:

proc optmilp data=mpsdata allcuts=none heuristics=none logfreq=10000;
run;

The resulting log is shown in Output 11.2.1.

Output 11.2.1 MIPLIB PROC OPTMILP Log

NOTE: The problem BELL3A has 133 variables (39 binary, 32 integer, 0 free, 0
fixed).

NOTE: The problem has 123 constraints (123 LE, 0 EQ, 0 GE, 0 range).
NOTE: The problem has 347 constraint coefficients.
NOTE: The MILP presolver value AUTOMATIC is applied.
NOTE: The MILP presolver removed 33 variables and 37 constraints.
NOTE: The MILP presolver removed 92 constraint coefficients.
NOTE: The MILP presolver modified 3 constraint coefficients.
NOTE: The presolved problem has 100 variables, 86 constraints, and 255

constraint coefficients.
NOTE: The MILP solver is called.

Node Active Sols BestInteger BestBound Gap Time
0 1 0 . 866240 . 0
0 1 0 . 866240 . 0

801 49 1 916564 874287 4.84% 0
881 108 2 916327 874287 4.81% 0
947 159 3 915158 874287 4.67% 0
979 165 4 898096 874287 2.72% 0
1002 123 5 887234 874287 1.48% 0
1088 122 6 883066 874287 1.00% 0
1997 394 7 880717 874502 0.71% 0
6188 1845 8 878430 875484 0.34% 1

10000 2191 12 878430 875996 0.28% 2
20000 1198 12 878430 876908 0.17% 4
23231 2 12 878430 878365 0.01% 5

NOTE: Optimal within relative gap.
NOTE: Objective = 878430.316.

http://miplib.zib.de/
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Suppose you do not have a bound for the solution. If there is an objective value that, even if it is not optimal,
satisfies your requirements, then you can save time by using the TARGET= option. The following PROC
OPTMILP call solves the problem with a target value of 880,000:

proc optmilp data=mpsdata allcuts=none heuristics=none logfreq=5000
target=880000;

run;

The relevant results from this run are displayed in Output 11.2.2. In this case, there is a decrease in CPU
time, but the objective value has increased.

Output 11.2.2 MIPLIB PROC OPTMILP Log with TARGET= Option

NOTE: The problem BELL3A has 133 variables (39 binary, 32 integer, 0 free, 0
fixed).

NOTE: The problem has 123 constraints (123 LE, 0 EQ, 0 GE, 0 range).
NOTE: The problem has 347 constraint coefficients.
NOTE: The MILP presolver value AUTOMATIC is applied.
NOTE: The MILP presolver removed 33 variables and 37 constraints.
NOTE: The MILP presolver removed 92 constraint coefficients.
NOTE: The MILP presolver modified 3 constraint coefficients.
NOTE: The presolved problem has 100 variables, 86 constraints, and 255

constraint coefficients.
NOTE: The MILP solver is called.

Node Active Sols BestInteger BestBound Gap Time
0 1 0 . 866240 . 0
0 1 0 . 866240 . 0

801 49 1 916564 874287 4.84% 0
881 108 2 916327 874287 4.81% 0
947 159 3 915158 874287 4.67% 0
979 165 4 898096 874287 2.72% 0
1002 123 5 887234 874287 1.48% 0
1088 122 6 883066 874287 1.00% 0
1997 394 7 880717 874502 0.71% 0
5000 1430 7 880717 875311 0.62% 1
6188 1938 8 878430 875484 0.34% 1

NOTE: Target reached.
NOTE: Objective of the best integer solution found = 878430.316.

When the objective value of a solution is within a certain relative gap of the optimal objective value, the
procedure stops. The acceptable relative gap can be changed using the RELOBJGAP= option, as demonstrated
in the following example:

proc optmilp data=mpsdata allcuts=none heuristics=none relobjgap=0.01;
run;

The relevant results from this run are displayed in Output 11.2.3. In this case, since the specified RELOBJ-
GAP= value is larger than the default value, the number of nodes and the CPU time have decreased from
their values in the original run. Note that these savings are exchanged for an increase in the objective value
of the solution.
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Output 11.2.3 MIPLIB PROC OPTMILP Log with RELOBJGAP= Option

NOTE: The problem BELL3A has 133 variables (39 binary, 32 integer, 0 free, 0
fixed).

NOTE: The problem has 123 constraints (123 LE, 0 EQ, 0 GE, 0 range).
NOTE: The problem has 347 constraint coefficients.
NOTE: The MILP presolver value AUTOMATIC is applied.
NOTE: The MILP presolver removed 33 variables and 37 constraints.
NOTE: The MILP presolver removed 92 constraint coefficients.
NOTE: The MILP presolver modified 3 constraint coefficients.
NOTE: The presolved problem has 100 variables, 86 constraints, and 255

constraint coefficients.
NOTE: The MILP solver is called.

Node Active Sols BestInteger BestBound Gap Time
0 1 0 . 866240 . 0
0 1 0 . 866240 . 0

100 85 0 . 873180 . 0
200 166 0 . 873577 . 0
300 243 0 . 873730 . 0
400 317 0 . 873867 . 0
500 379 0 . 874141 . 0
600 460 0 . 874247 . 0
700 544 0 . 874262 . 0
800 50 0 . 874287 . 0
801 49 1 916564 874287 4.84% 0
881 108 2 916327 874287 4.81% 0
900 125 2 916327 874287 4.81% 0
947 159 3 915158 874287 4.67% 0
979 165 4 898096 874287 2.72% 0
1000 185 4 898096 874287 2.72% 0
1002 123 5 887234 874287 1.48% 0
1088 122 6 883066 874287 1.00% 0
1100 129 6 883066 874287 1.00% 0
1200 170 6 883066 874287 1.00% 0
1300 202 6 883066 874287 1.00% 0
1400 244 6 883066 874287 1.00% 0
1500 275 6 883066 874287 1.00% 0
1600 303 6 883066 874287 1.00% 0
1700 331 6 883066 874314 1.00% 0
1754 353 6 883066 874325 1.00% 0

NOTE: Optimal within relative gap.
NOTE: Objective = 883066.108.
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The MAXTIME= option enables you to accept the best solution produced by PROC OPTMILP in a specified
amount of time. The following example illustrates the use of the MAXTIME= option:

proc optmilp data=mpsdata allcuts=none heuristics=none maxtime=0.1;
run;

The relevant results from this run are displayed in Output 11.2.4. Once again, a reduction in solution time is
traded for an increase in objective value.

Output 11.2.4 MIPLIB PROC OPTMILP Log with MAXTIME= Option

NOTE: The problem BELL3A has 133 variables (39 binary, 32 integer, 0 free, 0
fixed).

NOTE: The problem has 123 constraints (123 LE, 0 EQ, 0 GE, 0 range).
NOTE: The problem has 347 constraint coefficients.
NOTE: The MILP presolver value AUTOMATIC is applied.
NOTE: The MILP presolver removed 33 variables and 37 constraints.
NOTE: The MILP presolver removed 92 constraint coefficients.
NOTE: The MILP presolver modified 3 constraint coefficients.
NOTE: The presolved problem has 100 variables, 86 constraints, and 255

constraint coefficients.
NOTE: The MILP solver is called.

Node Active Sols BestInteger BestBound Gap Time
0 1 0 . 866240 . 0
0 1 0 . 866240 . 0
1 2 0 . 866240 . 0

NOTE: CPU time limit reached.
NOTE: No integer solutions found.

The MAXNODES= option enables you to limit the number of nodes generated by PROC OPTMILP. The
following example illustrates the use of the MAXNODES= option:

proc optmilp data=mpsdata allcuts=none heuristics=none maxnodes=500;
run;

The relevant results from this run are displayed in Output 11.2.5. PROC OPTMILP displays the best objective
value of all the solutions produced.
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Output 11.2.5 MIPLIB PROC OPTMILP Log with MAXNODES= Option

NOTE: The problem BELL3A has 133 variables (39 binary, 32 integer, 0 free, 0
fixed).

NOTE: The problem has 123 constraints (123 LE, 0 EQ, 0 GE, 0 range).
NOTE: The problem has 347 constraint coefficients.
NOTE: The MILP presolver value AUTOMATIC is applied.
NOTE: The MILP presolver removed 33 variables and 37 constraints.
NOTE: The MILP presolver removed 92 constraint coefficients.
NOTE: The MILP presolver modified 3 constraint coefficients.
NOTE: The presolved problem has 100 variables, 86 constraints, and 255

constraint coefficients.
NOTE: The MILP solver is called.

Node Active Sols BestInteger BestBound Gap Time
0 1 0 . 866240 . 0
0 1 0 . 866240 . 0

100 85 0 . 873180 . 0
200 166 0 . 873577 . 0
300 243 0 . 873730 . 0
400 317 0 . 873867 . 0
499 378 0 . 874141 . 0

NOTE: Node limit reached.
NOTE: No integer solutions found.

Example 11.3: Facility Location
This advanced example demonstrates how to warm start PROC OPTMILP by using the PRIMALIN= option.
The model is constructed in PROC OPTMODEL and saved in an MPS-format SAS data set for use in PROC
OPTMILP. This problem can also be solved from within PROC OPTMODEL; see Chapter 7 for details.

Consider the classical facility location problem. Given a set L of customer locations and a set F of candidate
facility sites, you must decide on which sites to build facilities and assign coverage of customer demand to
these sites so as to minimize cost. All customer demand di must be satisfied, and each facility has a demand
capacity limit C. The total cost is the sum of the distances cij between facility j and its assigned customer i,
plus a fixed charge fj for building a facility at site j. Let yj D 1 represent choosing site j to build a facility,
and 0 otherwise. Also, let xij D 1 represent the assignment of customer i to facility j, and 0 otherwise. This
model can be formulated as the following integer linear program:

min
X
i2L

X
j2F

cijxij C
X
j2F

fjyj

s:t:
X
j2F

xij D 1 8i 2 L .assign_def/

xij � yj 8i 2 L; j 2 F .link/X
i2L

dixij � Cyj 8j 2 F .capacity/

xij 2 f0; 1g 8i 2 L; j 2 F

yj 2 f0; 1g 8j 2 F
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Constraint (assign_def) ensures that each customer is assigned to exactly one site. Constraint (link) forces a
facility to be built if any customer has been assigned to that facility. Finally, constraint (capacity) enforces
the capacity limit at each site.

Consider also a variation of this same problem where there is no cost for building a facility. This problem is
typically easier to solve than the original problem. For this variant, let the objective be

min
X
i2L

X
j2F

cijxij

First, construct a random instance of this problem by using the following DATA steps:

%let NumCustomers = 50;
%let NumSites = 10;
%let SiteCapacity = 35;
%let MaxDemand = 10;
%let xmax = 200;
%let ymax = 100;
%let seed = 938;

/* generate random customer locations */
data cdata(drop=i);

length name $8;
do i = 1 to &NumCustomers;

name = compress('C'||put(i,best.));
x = ranuni(&seed) * &xmax;
y = ranuni(&seed) * &ymax;
demand = ranuni(&seed) * &MaxDemand;
output;

end;
run;

/* generate random site locations and fixed charge */
data sdata(drop=i);

length name $8;
do i = 1 to &NumSites;

name = compress('SITE'||put(i,best.));
x = ranuni(&seed) * &xmax;
y = ranuni(&seed) * &ymax;
fixed_charge = 30 * (abs(&xmax/2-x) + abs(&ymax/2-y));
output;

end;
run;

The following PROC OPTMODEL statements generate the model and define both variants of the cost
function:

proc optmodel;
set <str> CUSTOMERS;
set <str> SITES init {};
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/* x and y coordinates of CUSTOMERS and SITES */
num x {CUSTOMERS union SITES};
num y {CUSTOMERS union SITES};
num demand {CUSTOMERS};
num fixed_charge {SITES};

/* distance from customer i to site j */
num dist {i in CUSTOMERS, j in SITES}

= sqrt((x[i] - x[j])^2 + (y[i] - y[j])^2);

read data cdata into CUSTOMERS=[name] x y demand;
read data sdata into SITES=[name] x y fixed_charge;

var Assign {CUSTOMERS, SITES} binary;
var Build {SITES} binary;
/* each customer assigned to exactly one site */
con assign_def {i in CUSTOMERS}:

sum {j in SITES} Assign[i,j] = 1;

/* if customer i assigned to site j, then facility must be */
/* built at j */
con link {i in CUSTOMERS, j in SITES}:

Assign[i,j] <= Build[j];

/* each site can handle at most &SiteCapacity demand */
con capacity {j in SITES}:

sum {i in CUSTOMERS} demand[i] * Assign[i,j]
<= &SiteCapacity * Build[j];

min CostNoFixedCharge
= sum {i in CUSTOMERS, j in SITES} dist[i,j] * Assign[i,j];

save mps nofcdata;
min CostFixedCharge

= CostNoFixedCharge
+ sum {j in SITES} fixed_charge[j] * Build[j];

save mps fcdata;

quit;

First solve the problem for the model with no fixed charge by using the following statements. The first PROC
SQL call populates the macro variables varcostNo. This macro variable displays the objective value when
the results are plotted. The second PROC SQL call generates a data set that is used to plot the results. The
information printed in the log by PROC OPTMILP is displayed in Output 11.3.1.

proc optmilp data=nofcdata primalout=nofcout;
run;

proc sql noprint;
select put(sum(_objcoef_ * _value_),6.1) into :varcostNo
from nofcout;

quit;
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proc sql;
create table CostNoFixedCharge_Data as
select

scan(p._var_,2,'[],') as customer,
scan(p._var_,3,'[],') as site,
c.x as xi, c.y as yi, s.x as xj, s.y as yj

from
cdata as c,
sdata as s,
nofcout(where=(substr(_var_,1,6)='Assign' and

round(_value_) = 1)) as p
where calculated customer = c.name and calculated site = s.name;

quit;

Output 11.3.1 PROC OPTMILP Log for Facility Location with No Fixed Charges

NOTE: The problem nofcdata has 510 variables (510 binary, 0 integer, 0 free, 0
fixed).

NOTE: The problem has 560 constraints (510 LE, 50 EQ, 0 GE, 0 range).
NOTE: The problem has 2010 constraint coefficients.
NOTE: The MILP presolver value AUTOMATIC is applied.
NOTE: The MILP presolver removed 10 variables and 500 constraints.
NOTE: The MILP presolver removed 1010 constraint coefficients.
NOTE: The MILP presolver modified 0 constraint coefficients.
NOTE: The presolved problem has 500 variables, 60 constraints, and 1000

constraint coefficients.
NOTE: The MILP solver is called.

Node Active Sols BestInteger BestBound Gap Time
0 1 2 972.1737321 0 972.2 0
0 1 2 972.1737321 961.2403449 1.14% 0
0 1 2 972.1737321 966.4826332 0.59% 0
0 1 3 966.4832160 966.4826332 0.00% 0

NOTE: The MILP solver added 2 cuts with 85 cut coefficients at the root.
NOTE: Optimal within relative gap.
NOTE: Objective = 966.48321599.
NOTE: The data set WORK.NOFCOUT has 510 observations and 8 variables.

Next, solve the fixed-charge model by using the following statements. Note that the solution to the model
with no fixed charge is feasible for the fixed-charge model and should provide a good starting point for PROC
OPTMILP. The PRIMALIN= option provides an incumbent solution (“warm start”). The two PROC SQL
calls perform the same functions as in the case with no fixed charges. The results from this approach are
shown in Output 11.3.2.

proc optmilp data=fcdata primalin=nofcout;
run;

proc sql noprint;
select put(sum(_objcoef_ * _value_), 6.1) into :varcost
from fcout(where=(substr(_var_,1,6)='Assign'));
select put(sum(_objcoef_ * _value_), 5.1) into :fixcost
from fcout(where=(substr(_var_,1,5)='Build'));
select put(sum(_objcoef_ * _value_), 6.1) into :totalcost
from fcout;

quit;
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proc sql;
create table CostFixedCharge_Data as
select

scan(p._var_,2,'[],') as customer,
scan(p._var_,3,'[],') as site,
c.x as xi, c.y as yi, s.x as xj, s.y as yj

from
cdata as c,
sdata as s,
fcout(where=(substr(_var_,1,6)='Assign' and

round(_value_) = 1)) as p
where calculated customer = c.name and calculated site = s.name;

quit;

Output 11.3.2 PROC OPTMILP Log for Facility Location with Fixed Charges, Using Warm Start

NOTE: The problem fcdata has 510 variables (510 binary, 0 integer, 0 free, 0
fixed).

NOTE: The problem has 560 constraints (510 LE, 50 EQ, 0 GE, 0 range).
NOTE: The problem has 2010 constraint coefficients.
NOTE: The MILP presolver value AUTOMATIC is applied.
NOTE: The MILP presolver removed 0 variables and 0 constraints.
NOTE: The MILP presolver removed 0 constraint coefficients.
NOTE: The MILP presolver modified 0 constraint coefficients.
NOTE: The presolved problem has 510 variables, 560 constraints, and 2010

constraint coefficients.
NOTE: The MILP solver is called.

Node Active Sols BestInteger BestBound Gap Time
0 1 3 16070.0150023 0 16070 0
0 1 3 16070.0150023 9946.2514269 61.57% 0
0 1 3 16070.0150023 9975.8221868 61.09% 0
0 1 3 16070.0150023 9996.7828163 60.75% 0
0 1 3 16070.0150023 10005.3277737 60.61% 0
0 1 3 16070.0150023 10022.6122282 60.34% 0
0 1 3 16070.0150023 10026.8805471 60.27% 0
0 1 6 10956.8966327 10031.9134743 9.22% 0
0 1 7 10952.5054868 10035.6069807 9.14% 0
0 1 7 10952.5054868 10039.0722957 9.10% 0
0 1 7 10952.5054868 10040.8138109 9.08% 0
0 1 7 10952.5054868 10041.6071322 9.07% 0
0 1 7 10952.5054868 10041.9344067 9.07% 0
0 1 7 10952.5054868 10041.9344067 9.07% 1

NOTE: The MILP solver added 24 cuts with 533 cut coefficients at the root.
105 22 8 10949.9022613 10942.9069918 0.06% 3
141 31 9 10949.9022613 10946.8973957 0.03% 3
159 26 10 10948.4603465 10947.8766776 0.01% 3

NOTE: Optimal within relative gap.
NOTE: Objective = 10948.460347.
NOTE: The data set WORK.FCOUT has 510 observations and 8 variables.
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The following two SAS programs produce a plot of the solutions for both variants of the model, using data
sets produced by PROC SQL from the PRIMALOUT= data sets produced by PROC OPTMILP.

NOTE: Execution of this code requires SAS/GRAPH software.

title1 "Facility Location Problem";
title2 "TotalCost = &varcostNo (Variable = &varcostNo, Fixed = 0)";
data csdata;

set cdata(rename=(y=cy)) sdata(rename=(y=sy));
run;
/* create Annotate data set to draw line between customer and */
/* assigned site */
%annomac;
data anno(drop=xi yi xj yj);

%SYSTEM(2, 2, 2);
set CostNoFixedCharge_Data(keep=xi yi xj yj);

%LINE(xi, yi, xj, yj, *, 1, 1);
run;
proc gplot data=csdata anno=anno;

axis1 label=none order=(0 to &xmax by 10);
axis2 label=none order=(0 to &ymax by 10);
symbol1 value=dot interpol=none

pointlabel=("#name" nodropcollisions height=0.7) cv=black;
symbol2 value=diamond interpol=none

pointlabel=("#name" nodropcollisions color=blue height=0.7) cv=blue;
plot cy*x sy*x / overlay haxis=axis1 vaxis=axis2;

run;
quit;

The output from the first program appears in Output 11.3.3.
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Output 11.3.3 Solution Plot for Facility Location with No Fixed Charges

title1 "Facility Location Problem";
title2 "TotalCost = &totalcost (Variable = &varcost, Fixed = &fixcost)";
/* create Annotate data set to draw line between customer and */
/* assigned site */
data anno(drop=xi yi xj yj);

%SYSTEM(2, 2, 2);
set CostFixedCharge_Data(keep=xi yi xj yj);
%LINE(xi, yi, xj, yj, *, 1, 1);

run;
proc gplot data=csdata anno=anno;

axis1 label=none order=(0 to &xmax by 10);
axis2 label=none order=(0 to &ymax by 10);
symbol1 value=dot interpol=none

pointlabel=("#name" nodropcollisions height=0.7) cv=black;
symbol2 value=diamond interpol=none

pointlabel=("#name" nodropcollisions color=blue height=0.7) cv=blue;
plot cy*x sy*x / overlay haxis=axis1 vaxis=axis2;

run;
quit;
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The output from the second program appears in Output 11.3.4.

Output 11.3.4 Solution Plot for Facility Location with Fixed Charges

The economic tradeoff for the fixed-charge model forces you to build fewer sites and push more demand to
each site.

Example 11.4: Scheduling
This example is intended for users who prefer to use the SAS DATA step, PROC SQL, and similar program-
ming methods to prepare data for input to SAS/OR optimization procedures. SAS/OR users who prefer to
use the algebraic modeling capabilities of PROC OPTMODEL to specify optimization models should consult
Example 7.1 in Chapter 7, “The Mixed Integer Linear Programming Solver,” for a discussion of the same
business problem in a PROC OPTMODEL context.

Scheduling is an application area where techniques in model generation can be valuable. Problems that
involve scheduling are often solved with integer programming and are similar to assignment problems. In
this example, you have eight one-hour time slots in each of five days. You have to assign four people to these
time slots so that each slot is covered every day. You allow the people to specify preference data for each slot
on each day. In addition, there are constraints that must be satisfied:
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• Each person has some slots for which they are unavailable.

• Each person must have either slot 4 or 5 off for lunch.

• Each person can work only two time slots in a row.

• Each person can work only a specified number of hours in the week.

To formulate this problem, let i denote person, j denote time slot, and k denote day. Then, let xijk D 1 if
person i is assigned to time slot j on day k, and 0 otherwise; let pijk denote the preference of person i for
slot j on day k; and let hi denote the number of hours in a week that person i will work. Then, you get

max
P
ijk pijkxijk

subject to
P
i xijk D 1 for all j and k

xi4k C xi5k � 1 for all i and k
xi;`;k C xi;`C1;k C xi;`C2;k � 2 for all i and k; and ` D 1; : : : ; 6P
jk xijk � hi for all i

xijk D 0 or 1 for all i and k such that pijk > 0;
otherwise xijk D 0

To solve this problem, create a data set that has the hours and preference data for each individual, time slot,
and day. A 10 represents the most desirable time slot, and a 1 represents the least desirable time slot. In
addition, a 0 indicates that the time slot is not available.

data raw;
input name $ hour slot mon tue wed thu fri;
datalines;

marc 20 1 10 10 10 10 10
marc 20 2 9 9 9 9 9
marc 20 3 8 8 8 8 8
marc 20 4 1 1 1 1 1
marc 20 5 1 1 1 1 1
marc 20 6 1 1 1 1 1
marc 20 7 1 1 1 1 1
marc 20 8 1 1 1 1 1
mike 20 1 10 9 8 7 6
mike 20 2 10 9 8 7 6
mike 20 3 10 9 8 7 6
mike 20 4 10 3 3 3 3
mike 20 5 1 1 1 1 1
mike 20 6 1 2 3 4 5
mike 20 7 1 2 3 4 5
mike 20 8 1 2 3 4 5
bill 20 1 10 10 10 10 10
bill 20 2 9 9 9 9 9
bill 20 3 8 8 8 8 8
bill 20 4 0 0 0 0 0
bill 20 5 1 1 1 1 1
bill 20 6 1 1 1 1 1
bill 20 7 1 1 1 1 1
bill 20 8 1 1 1 1 1
bob 20 1 10 9 8 7 6
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bob 20 2 10 9 8 7 6
bob 20 3 10 9 8 7 6
bob 20 4 10 3 3 3 3
bob 20 5 1 1 1 1 1
bob 20 6 1 2 3 4 5
bob 20 7 1 2 3 4 5
bob 20 8 1 2 3 4 5
;

These data are read by the following DATA step, and an integer program is built to solve the problem. The
model is saved in the data set named MODEL, which is constructed in the following steps:

1. The objective function is built using the data saved in the RAW data set.

2. The constraints that ensure that no one works during a time slot during which they are unavailable are
built.

3. The constraints that require a person to be working in each time slot are built.

4. The constraints that allow each person time for lunch are added.

5. The constraints that restrict people to only two consecutive hours are added.

6. The constraints that limit the time that any one person works in a week are added.

7. The constraints that allow a person to be assigned only to a time slot for which he is available are
added.

The statements to build each of these constraints follow the formulation closely.

data model;
array workweek{5} mon tue wed thu fri;
array hours{4} hours1 hours2 hours3 hours4;
retain hours1-hours4;

set raw end=eof;

length _row_ $ 8 _col_ $ 8 _type_ $ 8;
keep _type_ _col_ _row_ _coef_;

if name='marc' then i=1;
else if name='mike' then i=2;
else if name='bill' then i=3;
else if name='bob' then i=4;

hours{i}=hour;

/* build the objective function */

do k=1 to 5;
_col_='x'||put(i,1.)||put(slot,1.)||put(k,1.);

_row_='object';
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_coef_=workweek{k} * 1000;
output;

end;

/* build the rest of the model */

/* cannot work during unavailable slots */
do k=1 to 5;

if workweek{k}=0 then do;
_row_='off'||put(i,1.)||put(slot,1.)||put(k,1.);
_type_='eq';
_col_='_RHS_';
_coef_=0;

output;
_col_='x'||put(i,1.)||put(slot,1.)||put(k,1.);

_coef_=1;
_type_=' ';
output;

end;
end;

if eof then do;
_coef_=.;
_col_=' ';

/* every hour 1 person working */
do j=1 to 8;

do k=1 to 5;
_row_='work'||put(j,1.)||put(k,1.);
_type_='eq';
_col_='_RHS_';
_coef_=1;
output;
_coef_=1;
_type_=' ';
do i=1 to 4;

_col_='x'||put(i,1.)||put(j,1.)||put(k,1.);
output;

end;
end;

end;

/* each person has a lunch */
do i=1 to 4;

do k=1 to 5;
_row_='lunch'||put(i,1.)||put(k,1.);
_type_='le';
_col_='_RHS_';
_coef_=1;
output;
_coef_=1;
_type_=' ';
_col_='x'||put(i,1.)||'4'||put(k,1.);
output;
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_col_='x'||put(i,1.)||'5'||put(k,1.);
output;

end;
end;

/* work at most 2 slots in a row */
do i=1 to 4;

do k=1 to 5;
do l=1 to 6;
_row_='seq'||put(i,1.)||put(k,1.)||put(l,1.);
_type_='le';
_col_='_RHS_';
_coef_=2;
output;
_coef_=1;
_type_=' ';

do j=0 to 2;
_col_='x'||put(i,1.)||put(l+j,1.)||put(k,1.);
output;

end;
end;

end;
end;

/* work at most n hours in a week */
do i=1 to 4;

_row_='capacit'||put(i,1.);
_type_='le';
_col_='_RHS_';
_coef_=hours{i};
output;
_coef_=1;
_type_=' ';
do j=1 to 8;

do k=1 to 5;
_col_='x'||put(i,1.)||put(j,1.)||put(k,1.);
output;

end;
end;

end;
end;

run;

Next, this SAS data set is converted to an MPS-format SAS data set by establishing the structure of the MPS
format and through very minor conversions of the data.

/* the following code transforms the above sparse data set */
/* into an MPS-format data set */

/* generate the header of the MPS-format data set */
data mps0;

format field1 field2 field3 $10.;
format field4 10.;
format field5 $10.;



Example 11.4: Scheduling F 469

format field6 10.;
field1 = 'NAME';
field2 = ' ';
field3 = 'PROBLEM';
field4 = .;
field5 = ' ';
field6 = .;
output;
field1 = 'ROWS';
field3 = '';
output;
field1 = 'MAX';
field2 = 'object';
field3 = '';
output;

run;

/* generate rows */
proc sql;

create table mps1 as
select _type_ as field1, _row_ as field2 from model

where _row_ eq 'object' and _type_ ne '' union
select 'E' as field1, _row_ as field2 from model

where _type_ eq 'eq' union
select 'L' as field1, _row_ as field2 from model

where _type_ eq 'le' union
select 'G' as field1, _row_ as field2 from model

where _type_ eq 'ge';
quit;

/* indicate start of columns section and declare type of all */
/* variables as integer */
data mps2;

format field1 field2 field3 $10.;
format field4 10.;
format field5 $10.;
format field6 10.;
field1 = 'COLUMNS';
field2 = ' ';
field3 = ' ';
field4 = .;
field5 = ' ';
field6 = .;
output;
field1 = ' ';
field2 = '.MARK0';
field3 = "'MARKER'";
field4 = .;
field5 = "'INTORG'";
field6 = .;
output;

run;
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/* generate columns */
data mps3;

set model;
format field1 field2 field3 $10.;
format field4 10.;
format field5 $10.;
format field6 10.;
keep field1-field6;
field1 = ' ';
field2 = _col_;
field3 = _row_;
field4 = _coef_;
field5 = ' ';
field6 = .;
if field2 ne '_RHS_' then do;

output;
end;

run;

/* sort columns by variable names */
proc sort data=mps3;

by field2;
run;

/* indicate the end of the columns section */
data mps4;

format field1 field2 field3 $10.;
format field4 10.;
format field5 $10.;
format field6 10.;
field1 = ' ';
field2 = '.MARK1';
field3 = "'MARKER'";
field4 = .;
field5 = "'INTEND'";
field6 = .;
output;

run;

/* indicate the start of the RHS section */
data mps5;

format field1 field2 field3 $10.;
format field4 10.;
format field5 $10.;
format field6 10.;
field1 = 'RHS';

run;

/* generate RHS entries */
data mps6;

set model;
format field1 field2 field3 $10.;
format field4 10.;
format field5 $10.;
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format field6 10.;
keep field1-field6;
field1 = ' ';
field2 = _col_;
field3 = _row_;
field4 = _coef_;
field5 = ' ';
field6 = .;
if field2 eq '_RHS_' then do;

output;
end;

run;

/* denote the end of the MPS-format data set */
data mps7;

format field1 field2 field3 $10.;
format field4 10.;
format field5 $10.;
format field6 10.;
field1 = 'ENDATA';

run;

/* merge all sections of the MPS-format data set */
data mps;

format field1 field2 field3 $10.;
format field4 10.;
format field5 $10.;
format field6 10.;
set mps0 mps1 mps2 mps3 mps4 mps5 mps6 mps7;

run;

The model is solved using the OPTMILP procedure. The option PRIMALOUT=SOLUTION causes PROC
OPTMILP to save the primal solution in the data set named SOLUTION.

/* solve the binary program */
proc optmilp data=mps

printlevel=0 loglevel=0
primalout=solution maxtime=1000;

run;

The following DATA step takes the solution data set SOLUTION and generates a report data set named
REPORT. It restores the original interpretation (person, shift, day) of the variable names xijk so that a more
meaningful report can be written. Then PROC TABULATE is used to display a schedule that shows how the
eight time slots are covered for the week.
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/* report the solution */
title 'Reported Solution';

data report;
set solution;
keep name slot mon tue wed thu fri;
if substr(_var_,1,1)='x' then do;

if _value_>0 then do;
n=substr(_var_,2,1);
slot=substr(_var_,3,1);
d=substr(_var_,4,1);
if n='1' then name='marc';
else if n='2' then name='mike';
else if n='3' then name='bill';
else name='bob';
if d='1' then mon=1;
else if d='2' then tue=1;
else if d='3' then wed=1;
else if d='4' then thu=1;
else fri=1;
output;

end;
end;

run;

proc format;
value xfmt 1=' xxx ';

run;

proc tabulate data=report;
class name slot;
var mon--fri;
table (slot * name), (mon tue wed thu fri)*sum=' '*f=xfmt.

/misstext=' ';
run;

Output 11.4.1 from PROC TABULATE summarizes the schedule. Notice that the constraint that requires a
person to be assigned to each possible time slot on each day is satisfied.
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Output 11.4.1 A Scheduling Problem

Reported Solution

-----------------------------------------------------------------
| | mon | tue | wed | thu | fri |
|------------------+--------+--------+--------+--------+--------|
|slot |name | | | | | |
|--------+---------| | | | | |
|1 |bill | | xxx | xxx | | xxx |
| |---------+--------+--------+--------+--------+--------|
| |marc | | | | xxx | |
| |---------+--------+--------+--------+--------+--------|
| |mike | xxx | | | | |
|--------+---------+--------+--------+--------+--------+--------|
|2 |bill | | | | xxx | xxx |
| |---------+--------+--------+--------+--------+--------|
| |bob | xxx | | | | |
| |---------+--------+--------+--------+--------+--------|
| |marc | | xxx | xxx | | |
|--------+---------+--------+--------+--------+--------+--------|
|3 |bill | | | xxx | xxx | |
| |---------+--------+--------+--------+--------+--------|
| |bob | xxx | xxx | | | |
| |---------+--------+--------+--------+--------+--------|
| |marc | | | | | xxx |
|--------+---------+--------+--------+--------+--------+--------|
|4 |bob | | | xxx | xxx | xxx |
| |---------+--------+--------+--------+--------+--------|
| |mike | xxx | xxx | | | |
|--------+---------+--------+--------+--------+--------+--------|
|5 |bill | | | | | xxx |
| |---------+--------+--------+--------+--------+--------|
| |bob | | xxx | | | |
| |---------+--------+--------+--------+--------+--------|
| |marc | xxx | | xxx | xxx | |
|--------+---------+--------+--------+--------+--------+--------|
|6 |bill | xxx | | | | |
| |---------+--------+--------+--------+--------+--------|
| |bob | | | xxx | | xxx |
| |---------+--------+--------+--------+--------+--------|
| |mike | | xxx | | xxx | |
|--------+---------+--------+--------+--------+--------+--------|
|7 |bob | xxx | xxx | | xxx | xxx |
| |---------+--------+--------+--------+--------+--------|
| |mike | | | xxx | | |
|--------+---------+--------+--------+--------+--------+--------|
|8 |bob | xxx | | xxx | | |
| |---------+--------+--------+--------+--------+--------|
| |mike | | xxx | | xxx | xxx |
-----------------------------------------------------------------

Recall that PROC OPTMILP puts a character string in the macro variable _OROPTMILP_ that describes
the characteristics of the solution on termination. This string can be parsed using macro functions, and the
information obtained can be used in report writing. The variable can be written to the log with the following
command:
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%put &_OROPTMILP_;

This command produces the output shown in Output 11.4.2.

Output 11.4.2 _OROPTMILP_ Macro Variable

STATUS=OK ALGORITHM=BAC SOLUTION_STATUS=OPTIMAL OBJECTIVE=211000
RELATIVE_GAP=0 ABSOLUTE_GAP=0 PRIMAL_INFEASIBILITY=0
BOUND_INFEASIBILITY=0 INTEGER_INFEASIBILITY=0 BEST_BOUND=211000 NODES=1
ITERATIONS=71 PRESOLVE_TIME=0.02 SOLUTION_TIME=0.06

From this output you learn, for example, that at termination the solution is integer-optimal and has an
objective value of 211,000.
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Overview: OPTQP Procedure
The OPTQP procedure solves quadratic programs—problems with quadratic objective function and a
collection of linear constraints, including lower or upper bounds (or both) on the decision variables.

Mathematically, a quadratic programming (QP) problem can be stated as follows:

min 1
2

xTQxC cTx
subject to Ax f�;D;�g b

l � x � u
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where

Q 2 Rn�n is the quadratic (also known as Hessian) matrix
A 2 Rm�n is the constraints matrix
x 2 Rn is the vector of decision variables
c 2 Rn is the vector of linear objective function coefficients
b 2 Rm is the vector of constraints right-hand sides (RHS)
l 2 Rn is the vector of lower bounds on the decision variables
u 2 Rn is the vector of upper bounds on the decision variables

Number of variables (columns)

The quadratic matrix Q is assumed to be symmetric; that is,

qij D qj i ; 8i; j D 1; : : : ; n

Indeed, it is easy to show that even if Q 6D QT, the simple modification

QQ D
1

2
.QCQT/

produces an equivalent formulation xTQx � xT QQxI hence symmetry is assumed. When you specify a
quadratic matrix, it suffices to list only lower triangular coefficients.

In addition to being symmetric, Q is also required to be positive semidefinite,

xTQx � 0; 8x 2 Rn

for minimization type of models; it is required to be negative semidefinite for the maximization type of
models. Convexity can come as a result of a matrix-matrix multiplication

Q D LLT

or as a consequence of physical laws, and so on. See Figure 12.1 for examples of convex, concave, and
nonconvex objective functions.
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Figure 12.1 Examples of Convex, Concave, and Nonconvex Objective Functions

The order of constraints is insignificant. Some or all components of l or u (lower and upper bounds,
respectively) can be omitted.

Getting Started: OPTQP Procedure
Consider a small illustrative example. Suppose you want to minimize a two-variable quadratic function
f .x1; x2/ on the nonnegative quadrant, subject to two constraints:

min 2x1 C 3x2 C x21 C 10x22 C 2:5x1x2
subject to x1 � x2 � 1

x1 C 2x2 � 100

x1 � 0

x2 � 0

The linear objective function coefficients, vector of right-hand sides, and lower and upper bounds are
identified immediately as

c D
�
2

3

�
; b D

�
1

100

�
; l D

�
0

0

�
; u D

�
C1

C1

�
Carefully construct the quadratic matrix Q. Observe that you can use symmetry to separate the main-diagonal
and off-diagonal elements:

1

2
xTQx �

1

2

nX
i;jD1

xi qij xj D
1

2

nX
iD1

qi i x
2
i C

X
i>j

xi qij xj
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The first expression
1

2

nX
iD1

qi i x
2
i

sums the main-diagonal elements. Thus, in this case you have

q11 D 2; q22 D 20

Notice that the main-diagonal values are doubled in order to accommodate the 1/2 factor. Now the second
term X

i>j

xi qij xj

sums the off-diagonal elements in the strict lower triangular part of the matrix. The only off-diagonal
(xi xj ; i 6D j ) term in the objective function is 2:5 x1 x2, so you have

q21 D 2:5

Notice that you do not need to specify the upper triangular part of the quadratic matrix.

Finally, the matrix of constraints is as follows:

A D
�
1 �1

1 2

�

The SAS input data set with a quadratic programming system (QPS) format for the preceding problem can be
expressed in the following manner:

data gsdata;
input field1 $ field2 $ field3 $ field4 field5 $ field6 @;
datalines;

NAME . EXAMPLE . . .
ROWS . . . . .
N OBJ . . . .
L R1 . . . .
G R2 . . . .
COLUMNS . . . . .
. X1 R1 1.0 R2 1.0
. X1 OBJ 2.0 . .
. X2 R1 -1.0 R2 2.0
. X2 OBJ 3.0 . .
RHS . . . . .
. RHS R1 1.0 . .
. RHS R2 100 . .
RANGES . . . . .
BOUNDS . . . . .
QUADOBJ . . . . .
. X1 X1 2.0 . .
. X1 X2 2.5 . .
. X2 X2 20 . .
ENDATA . . . . .
;
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For more details about the QPS-format data set, see Chapter 15, “The MPS-Format SAS Data Set.”

Alternatively, if you have a QPS-format flat file named gs.qps, then the following call to the SAS macro
%MPS2SASD translates that file into a SAS data set, named gsdata:

%mps2sasd(mpsfile =gs.qps, outdata = gsdata);

NOTE: The SAS macro %MPS2SASD is provided in SAS/OR software. See “Converting an MPS/QPS-
Format File: %MPS2SASD” on page 608 for details.

You can use the following call to PROC OPTQP:

proc optqp data=gsdata
primalout = gspout
dualout = gsdout;

run;

The procedure output is displayed in Figure 12.2.

Figure 12.2 Procedure Output

The OPTQP Procedure

Performance Information

Execution Mode Single-Machine
Number of Threads 4

Problem Summary

Problem Name EXAMPLE
Objective Sense Minimization
Objective Function OBJ
RHS RHS

Number of Variables 2
Bounded Above 0
Bounded Below 2
Bounded Above and Below 0
Free 0
Fixed 0

Number of Constraints 2
LE (<=) 1
EQ (=) 0
GE (>=) 1
Range 0

Constraint Coefficients 4

Hessian Diagonal Elements 2
Hessian Elements Above the Diagonal 1
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Figure 12.2 continued

Solution Summary

Solver QP
Algorithm Interior Point
Objective Function OBJ
Solution Status Optimal
Objective Value 15018

Primal Infeasibility 1.573013E-16
Dual Infeasibility 1.234237E-14
Bound Infeasibility 0
Duality Gap 3.633377E-16
Complementarity 0

Iterations 6
Presolve Time 0.00
Solution Time 0.40

The optimal primal solution is displayed in Figure 12.3.

Figure 12.3 Optimal Solution

Objective Linear
Function RHS Variable Variable Objective

Obs ID ID Name Type Coefficient

1 OBJ RHS X1 N 2
2 OBJ RHS X2 N 3

Lower Upper Variable Variable
Obs Bound Bound Value Status

1 0 1.7977E308 34 O
2 0 1.7977E308 33 O

The SAS log shown in Figure 12.4 provides information about the problem, convergence information after
each iteration, and the optimal objective value.
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Figure 12.4 Iteration Log

NOTE: The problem EXAMPLE has 2 variables (0 free, 0 fixed).
NOTE: The problem has 2 constraints (1 LE, 0 EQ, 1 GE, 0 range).
NOTE: The problem has 4 constraint coefficients.
NOTE: The objective function has 2 Hessian diagonal elements and 1 Hessian

elements above the diagonal.
NOTE: The QP presolver value AUTOMATIC is applied.
NOTE: The QP presolver removed 0 variables and 0 constraints.
NOTE: The QP presolver removed 0 constraint coefficients.
NOTE: The presolved problem has 2 variables, 2 constraints, and 4 constraint

coefficients.
NOTE: The QP solver is called.
NOTE: The Interior Point algorithm is used.
NOTE: The deterministic parallel mode is enabled.
NOTE: The Interior Point algorithm is using up to 4 threads.

Primal Bound Dual
Iter Complement Duality Gap Infeas Infeas Infeas

0 3.58625E+03 4.88230E+00 1.02509E+00 1.03539E+02 2.31419E-15
1 1.93453E+03 9.62224E-01 4.41582E-01 4.46020E+01 5.78549E-16
2 2.21403E+03 1.22966E-01 4.41582E-03 4.46020E-01 5.59264E-15
3 5.00197E+01 3.22723E-03 4.41582E-05 4.46020E-03 9.65019E-15
4 4.99735E-01 3.23322E-05 4.41582E-07 4.46020E-05 2.51482E-14
5 4.99724E-03 3.23323E-07 4.41582E-09 4.46020E-07 3.07007E-14
6 0.00000E+00 3.63338E-16 1.57301E-16 0.00000E+00 1.23424E-14

NOTE: Optimal.
NOTE: Objective = 15018.
NOTE: The Interior Point solve time is 0.01 seconds.
NOTE: The data set WORK.GSPOUT has 2 observations and 9 variables.
NOTE: The data set WORK.GSDOUT has 2 observations and 10 variables.

See the section “Interior Point Algorithm: Overview” on page 487 and the section “Iteration Log for the
OPTQP Procedure” on page 489 for more details about convergence information given by the iteration log.

Syntax: OPTQP Procedure
The following statements are available in the OPTQP procedure:

PROC OPTQP < options > ;
PERFORMANCE < performance-options > ;
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Functional Summary
Table 12.1 outlines the options available for the OPTQP procedure classified by function.

Table 12.1 Options in the OPTQP Procedure

Description Option
Data Set Options
Specifies a QPS-format input SAS data set DATA=
Specifies a dual solution output SAS data set DUALOUT=
Specifies whether the QP model is a maximization or
minimization problem

OBJSENSE=

Specifies the primal solution output SAS data set PRIMALOUT=
Saves output data sets only if optimal SAVE_ONLY_IF_OPTIMAL

Control Options
Specifies the maximum number of iterations MAXITER=
Specifies the time limit for the optimization process MAXTIME=
Specifies the type of presolve PRESOLVER=
Enables or disables iteration log LOGFREQ=
Enables or disables printing summary PRINTLEVEL=
Specifies the stopping criterion based on duality gap STOP_DG=
Specifies the stopping criterion based on dual infeasi-
bility

STOP_DI=

Specifies the stopping criterion based on primal infea-
sibility

STOP_PI=

Specifies units of CPU time or real time TIMETYPE=

PROC OPTQP Statement
The following options can be specified in the PROC OPTQP statement.

DATA=SAS-data-set
specifies the input SAS data set. This data set can also be created from a QPS-format flat file by using
the SAS macro %MPS2SASD. If the DATA= option is not specified, PROC OPTQP uses the most
recently created SAS data set. See Chapter 15, “The MPS-Format SAS Data Set,” for more details.

DUALOUT=SAS-data-set

DOUT=SAS-data-set
specifies the output data set to contain the dual solution. See the section “Output Data Sets” on
page 485 for details.

LOGFREQ=k

PRINTFREQ=k
specifies that the printing of the solution progress to the iteration log should occur after every k
iterations. The print frequency, k, is an integer between zero and the largest four-byte, signed integer,
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which is 231 � 1. The value k = 0 disables the printing of the progress of the solution. The default
value of this option is 1.

MAXITER=k
specifies the maximum number of predictor-corrector iterations performed by the interior point
algorithm (see the section “Interior Point Algorithm: Overview” on page 487). The value k is an
integer between 1 and the largest four-byte, signed integer, which is 231 � 1. If you do not specify this
option, the procedure does not stop based on the number of iterations performed.

MAXTIME=t
specifies an upper limit of t seconds of time for reading in the data and performing the optimization
process. The value of the TIMETYPE= option determines the type of units used. If you do not specify
this option, the procedure does not stop based on the amount of time elapsed. The value of t can be
any positive number; the default value is the positive number that has the largest absolute value that
can be represented in your operating environment.

OBJSENSE=option
specifies whether the QP model is a minimization or a maximization problem. You specify OBJ-
SENSE=MIN for a minimization problem and OBJSENSE=MAX for a maximization problem. Al-
ternatively, you can specify the objective sense in the input data set; see the section “ROWS Section”
on page 601 for details. If the objective sense is specified differently in these two places, this option
supersedes the objective sense specified in the input data set. If the objective sense is not specified
anywhere, then PROC OPTQP interprets and solves the quadratic program as a minimization problem.

PRESOLVER=number | string

PRESOL=number | string
specifies one of the following presolve options:

number string Description
0 NONE Disables the presolver.
–1 AUTOMATIC Applies the presolver by using default setting.
1 BASIC Applies the basic presolver.
2 MODERATE Applies the moderate presolver.
3 AGGRESSIVE Applies the aggressive presolver.

You can specify the option either by a word or by integers from –1 to 3. The default option is
AUTOMATIC.

PRIMALOUT=SAS-data-set

POUT=SAS-data-set
specifies the output data set to contain the primal solution. See the section “Output Data Sets” on
page 485 for details.

PRINTLEVEL=0 j 1
specifies whether a summary of the problem and solution should be printed. If PRINTLEVEL=1, then
the Output Delivery System (ODS) tables ProblemSummary, SolutionSummary, and PerformanceInfo
are produced and printed. If PRINTLEVEL=2, then the same tables are produced and printed along
with an additional table called ProblemStatistics. If PRINTLEVEL=0, then no ODS tables are produced
or printed. The default value is 1.
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For details about the ODS tables created by PROC OPTQP, see the section “ODS Tables” on page 489.

SAVE_ONLY_IF_OPTIMAL
specifies that the PRIMALOUT= and DUALOUT= data sets be saved only if the final solution obtained
by the solver at termination is optimal. If the PRIMALOUT= or DUALOUT= option is specified, and
this option is not specified, then the output data sets will only contain solution values at optimality.
If the SAVE_ONLY_IF_OPTIMAL option is not specified, the output data sets will not contain an
intermediate solution.

STOP_DG=ı
specifies the desired relative duality gap, ı 2[1E–9, 1E–4]. This is the relative difference between the
primal and dual objective function values and is the primary solution quality parameter. The default
value is 1E–6. See the section “Interior Point Algorithm: Overview” on page 487 for details.

STOP_DI=ˇ
specifies the maximum allowed relative dual constraints violation, ˇ 2[1E–9, 1E–4]. The default value
is 1E–6. See the section “Interior Point Algorithm: Overview” on page 487 for details.

STOP_PI=˛
specifies the maximum allowed relative bound and primal constraints violation, ˛ 2[1E–9, 1E–4]. The
default value is 1E–6. See the section “Interior Point Algorithm: Overview” on page 487 for details.

TIMETYPE=number | string
specifies whether CPU time or real time is used for the MAXTIME= option and the _OROPTQP_
macro variable in a PROC OPTQP call. Table 12.3 describes the valid values of the TIMETYPE=
option.

Table 12.3 Values for TIMETYPE= Option

number string Description
0 CPU Specifies units of CPU time.
1 REAL Specifies units of real time.

The default value of the TIMETYPE= option depends on the value of the NTHREADS= option in the
PERFORMANCE statement. See the section “PERFORMANCE Statement” on page 28 for more
information about the NTHREADS= option.

If you specify a value greater than 1 for the NTHREADS= option, the default value of the TIMETYPE=
option is REAL. If you specify a value of 1 for the NTHREADS= option, the default value of the
TIMETYPE= option is CPU.

PERFORMANCE Statement
PERFORMANCE < performance-options > ;

The PERFORMANCE statement specifies performance-options for single-machine model, and requests
detailed results about the performance characteristics of the OPTQP procedure.
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The PERFORMANCE statement is documented in the section “PERFORMANCE Statement” on page 28 in
Chapter 4, “Shared Concepts and Topics.” The OPTQP procedure only supports the deterministic mode of
the PARALLELMODE= option in the PERFORMANCE statement.

Details: OPTQP Procedure

Output Data Sets
This section describes the PRIMALOUT= and DUALOUT= output data sets. If the SAVE_ONLY_IF_OPTIMAL
option is not specified, the output data sets do not contain an intermediate solution.

Definitions of Variables in the PRIMALOUT= Data Set

The PRIMALOUT= data set contains the primal solution to the quadratic programming (QP) model. The
variables in the data set have the following names and meanings.

_OBJ_ID_
specifies the name of the objective function. Naming objective functions is particularly useful when
there are multiple objective functions, in which case each objective function has a unique name. See
the section “ROWS Section” on page 601 for details.

NOTE: PROC OPTQP does not support simultaneous optimization of multiple objective functions in
this release.

_RHS_ID_
specifies the name of the variable that contains the right-hand-side value of each constraint. See the
section “ROWS Section” on page 601 for details.

_VAR_
specifies the name of the decision variable.

_TYPE_
specifies the type of the decision variable. _TYPE_ can take one of the following values:

N nonnegative variable

D bounded variable with either lower or upper bound

F free variable

X fixed variable

O other

_OBJCOEF_
specifies the coefficient of the decision variable in the linear component of the objective function.
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_LBOUND_
specifies the lower bound on the decision variable.

_UBOUND_
specifies the upper bound on the decision variable.

_VALUE_
specifies the value of the decision variable.

_STATUS_
specifies the status of the decision variable. _STATUS_ can indicate one of the following two cases:

O The QP problem is optimal.

I The QP problem could be infeasible or unbounded, or PROC OPTQP was not able to solve the
problem.

Definitions of Variables in the DUALOUT= Data Set

The DUALOUT= data set contains the dual solution to the QP model. Information about the objective rows
of the QP problems is not included. The variables in the data set have the following names and meanings.

_OBJ_ID_
specifies the name of the objective function. Naming objective functions is particularly useful when
there are multiple objective functions, in which case each objective function has a unique name. See
the section “ROWS Section” on page 601 for details.

NOTE: PROC OPTQP does not support simultaneous optimization of multiple objective functions in
this release.

_RHS_ID_
specifies the name of the variable that contains the right-hand-side value of each constraint. See the
section “ROWS Section” on page 601 for details.

_ROW_
specifies the name of the constraint. See the section “ROWS Section” on page 601 for details.

_TYPE_
specifies the type of the constraint. _TYPE_ can take one of the following values:

L “less than or equals” constraint

E equality constraint

G “greater than or equals” constraint

R ranged constraint (both “less than or equals” and “greater than or equals”)

See the sections “ROWS Section” on page 601 and “RANGES Section (Optional)” on page 604 for
details.



Interior Point Algorithm: Overview F 487

_RHS_
specifies the value of the right-hand side of the constraints. It takes a missing value for a ranged
constraint.

_L_RHS_
specifies the lower bound of a ranged constraint. It takes a missing value for a non-ranged constraint.

_U_RHS_
specifies the upper bound of a ranged constraint. It takes a missing value for a non-ranged constraint.

_VALUE_
specifies the value of the dual variable associated with the constraint.

_STATUS_
specifies the status of the constraint. _STATUS_ can indicate one of the following two cases:

O The QP problem is optimal.

I The QP problem could be infeasible or unbounded, or PROC OPTQP was not able to solve the
problem.

_ACTIVITY_
specifies the value of a constraint. In other words, the value of _ACTIVITY_ for the ith constraint
is equal to aT

i x, where ai refers to the ith row of the constraints matrix and x denotes the vector of
current decision variable values.

Interior Point Algorithm: Overview
The interior point solver in PROC OPTQP implements an infeasible primal-dual predictor-corrector interior
point algorithm. To illustrate the algorithm and the concepts of duality and dual infeasibility, consider the
following QP formulation (the primal):

min 1
2
xTQxC cTx

subject to Ax � b
x � 0

The corresponding dual is as follows:

max �
1
2
xTQx C bTy

subject to �Qx C ATy C w D c
y � 0
w � 0

where y 2 Rm refers to the vector of dual variables and w 2 Rn refers to the vector of slack variables in the
dual problem.

The dual makes an important contribution to the certificate of optimality for the primal. The primal and
dual constraints combined with complementarity conditions define the first-order optimality conditions, also
known as KKT (Karush-Kuhn-Tucker) conditions, which can be stated as follows:
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Ax � s D b .primal feasibility/
�QxCATyC w D c .dual feasibility/

WXe D 0 .complementarity/
SYe D 0 .complementarity/

x; y; w; s � 0

where e � .1; : : : ; 1/T is of appropriate dimension and s 2 Rm is the vector of primal slack variables.

NOTE: Slack variables (the s vector) are automatically introduced by the solver when necessary; it is therefore
recommended that you not introduce any slack variables explicitly. This enables the solver to handle slack
variables much more efficiently.

The letters X; Y;W; and S denote matrices with corresponding x, y, w, and s on the main diagonal and zero
elsewhere, as in the following example:

X �

26664
x1 0 � � � 0

0 x2 � � � 0
:::

:::
: : :

:::

0 0 � � � xn

37775
If .x�; y�;w�; s�/ is a solution of the previously defined system of equations that represent the KKT
conditions, then x� is also an optimal solution to the original QP model.

At each iteration the interior point algorithm solves a large, sparse system of linear equations as follows:�
Y�1S A
AT �Q �X�1W

� �
�y
�x

�
D

�
„

‚

�
where �x and �y denote the vector of search directions in the primal and dual spaces, respectively, and ‚
and „ constitute the vector of the right-hand sides.

The preceding system is known as the reduced KKT system. PROC OPTQP uses a preconditioned quasi-
minimum residual algorithm to solve this system of equations efficiently.

An important feature of the interior point solver is that it takes full advantage of the sparsity in the constraint
and quadratic matrices, thereby enabling it to efficiently solve large-scale quadratic programs.

The interior point algorithm works simultaneously in the primal and dual spaces. It attains optimality when
both primal and dual feasibility are achieved and when complementarity conditions hold. Therefore, it is of
interest to observe the following four measures where kvk2 is the Euclidean norm of the vector v:

• relative primal infeasibility measure ˛:

˛ D
kAx � b � sk2
kbk2 C 1

• relative dual infeasibility measure ˇ:

ˇ D
kQxC c �ATy � wk2

kck2 C 1
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• relative duality gap ı:

ı D
jxTQxC cTx � bTyj
j
1
2
xTQxC cTxj C 1

• absolute complementarity  :

 D

nX
iD1

xiwi C

mX
iD1

yisi

These measures are displayed in the iteration log.

Iteration Log for the OPTQP Procedure
The interior point solver in PROC OPTQP implements an infeasible primal-dual predictor-corrector interior
point algorithm. The following information is displayed in the iteration log:

Iter indicates the iteration number.

Complement indicates the (absolute) complementarity.

Duality Gap indicates the (relative) duality gap.

Primal Infeas indicates the (relative) primal infeasibility measure.

Bound Infeas indicates the (relative) bound infeasibility measure.

Dual Infeas indicates the (relative) dual infeasibility measure.

If the sequence of solutions converges to an optimal solution of the problem, you should see all columns
in the iteration log converge to zero or very close to zero. If they do not, it can be the result of insufficient
iterations being performed to reach optimality. In this case, you might need to increase the value specified
in the option MAXITER= or MAXTIME=. If the complementarity or the duality gap do not converge, the
problem might be infeasible or unbounded. If the infeasibility columns do not converge, the problem might
be infeasible.

ODS Tables
PROC OPTQP creates three ODS (Output Delivery System) tables by default. The first table, ProblemSum-
mary, is a summary of the input QP problem. The second table, SolutionSummary, is a brief summary of the
solution status. The third table, PerformanceInfo, is a summary of performance options. You can use ODS
table names to select tables and create output data sets. For more information about ODS, see the SAS Output
Delivery System: User’s Guide.

If you specify a value of 2 for the PRINTLEVEL= option, then the ProblemStatistics table is produced. This
table contains information about the problem data. See the section “Problem Statistics” on page 492 for more
information.

If you specify the DETAILS option in the PERFORMANCE statement, then the Timing table is produced.

Table 12.4 lists all the ODS tables that can be produced by the OPTQP procedure, along with the statement
and option specifications required to produce each table.
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Table 12.4 ODS Tables Produced by PROC OPTQP

ODS Table Name Description Statement Option
ProblemSummary Summary of the input QP problem PROC OPTQP PRINTLEVEL=1 (default)
SolutionSummary Summary of the solution status PROC OPTQP PRINTLEVEL=1 (default)
ProblemStatistics Description of input problem data PROC OPTQP PRINTLEVEL=2
PerformanceInfo List of performance options and

their values
PROC OPTQP PRINTLEVEL=1 (default)

Timing Detailed solution timing PERFORMANCE DETAILS

A typical output of PROC OPTQP is shown in Output 12.5.

Figure 12.5 Typical OPTQP Output

The OPTQP Procedure

Performance Information

Execution Mode Single-Machine
Number of Threads 4

Problem Summary

Problem Name BANDM
Objective Sense Minimization
Objective Function ....1
RHS ZZZZ0001

Number of Variables 472
Bounded Above 0
Bounded Below 472
Bounded Above and Below 0
Free 0
Fixed 0

Number of Constraints 305
LE (<=) 0
EQ (=) 305
GE (>=) 0
Range 0

Constraint Coefficients 2494

Hessian Diagonal Elements 25
Hessian Elements Above the Diagonal 16
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Figure 12.5 continued

Solution Summary

Solver QP
Algorithm Interior Point
Objective Function ....1
Solution Status Optimal
Objective Value 16352.342037

Primal Infeasibility 1.127493E-12
Dual Infeasibility 1.684333E-12
Bound Infeasibility 4.520378E-16
Duality Gap 1.25305E-12
Complementarity 1.2956352E-8

Iterations 23
Presolve Time 0.00
Solution Time 0.23

You can create output data sets from these tables by using the ODS OUTPUT statement. This can be useful,
for example, when you want to create a report to summarize multiple PROC OPTQP runs. The output data
sets that correspond to the preceding output are shown in Output 12.6, where you can also find (in the row
following the heading of each data set in the display) the variable names that are used in the table definition
(template) of each table.
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Figure 12.6 ODS Output Data Sets

Problem Summary

Obs Label1 cValue1 nValue1

1 Problem Name BANDM .
2 Objective Sense Minimization .
3 Objective Function ....1 .
4 RHS ZZZZ0001 .
5 .
6 Number of Variables 472 472.000000
7 Bounded Above 0 0
8 Bounded Below 472 472.000000
9 Bounded Above and Below 0 0

10 Free 0 0
11 Fixed 0 0
12 .
13 Number of Constraints 305 305.000000
14 LE (<=) 0 0
15 EQ (=) 305 305.000000
16 GE (>=) 0 0
17 Range 0 0
18 .
19 Constraint Coefficients 2494 2494.000000
20 .
21 Hessian Diagonal Elements 25 25.000000
22 Hessian Elements Above the Diagonal 16 16.000000

Solution Summary

Obs Label1 cValue1 nValue1

1 Solver QP .
2 Algorithm Interior Point .
3 Objective Function ....1 .
4 Solution Status Optimal .
5 Objective Value 16352.342037 16352
6 .
7 Primal Infeasibility 1.127493E-12 1.127493E-12
8 Dual Infeasibility 1.684333E-12 1.684333E-12
9 Bound Infeasibility 4.520378E-16 4.520378E-16
10 Duality Gap 1.25305E-12 1.25305E-12
11 Complementarity 1.2956352E-8 1.2956352E-8
12 .
13 Iterations 23 23.000000
14 Presolve Time 0.00 0
15 Solution Time 0.23 0.230999

Problem Statistics

Optimizers can encounter difficulty when solving poorly formulated models. Information about data
magnitude provides a simple gauge to determine how well a model is formulated. For example, a model
whose constraint matrix contains one very large entry (on the order of 109) can cause difficulty when the
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remaining entries are single-digit numbers. The PRINTLEVEL=2 option in the OPTQP procedure causes
the ODS table ProblemStatistics to be generated. This table provides basic data magnitude information that
enables you to improve the formulation of your models.

The example output in Output 12.7 demonstrates the contents of the ODS table ProblemStatistics.

Figure 12.7 ODS Table ProblemStatistics

The OPTQP Procedure

Problem Statistics

Number of Constraint Matrix Nonzeros 4
Maximum Constraint Matrix Coefficient 2
Minimum Constraint Matrix Coefficient 1
Average Constraint Matrix Coefficient 1.25

Number of Linear Objective Nonzeros 2
Maximum Linear Objective Coefficient 3
Minimum Linear Objective Coefficient 2
Average Linear Objective Coefficient 2.5

Number of Lower Triangular Hessian Nonzeros 1
Number of Diagonal Hessian Nonzeros 2
Maximum Hessian Coefficient 20
Minimum Hessian Coefficient 2
Average Hessian Coefficient 6.75

Number of RHS Nonzeros 2
Maximum RHS 100
Minimum RHS 1
Average RHS 50.5

Maximum Number of Nonzeros per Column 2
Minimum Number of Nonzeros per Column 2
Average Number of Nonzeros per Column 2

Maximum Number of Nonzeros per Row 2
Minimum Number of Nonzeros per Row 2
Average Number of Nonzeros per Row 2

Macro Variable _OROPTQP_
The OPTQP procedure defines a macro variable named _OROPTQP_. This variable contains a character
string that indicates the status of the procedure. The various terms of the variable are interpreted as follows.

STATUS
indicates the solver status at termination. It can take one of the following values:
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OK The procedure terminated normally.

SYNTAX_ERROR Incorrect syntax was used.

DATA_ERROR The input data were inconsistent.

OUT_OF_MEMORY Insufficient memory was allocated to the procedure.

IO_ERROR A problem occurred in reading or writing data.

ERROR The status cannot be classified into any of the preceding categories.

ALGORITHM
indicates the algorithm that produced the solution data in the macro variable. This term only appears
when STATUS=OK. It can take the following value:

IP The interior point algorithm produced the solution data.

SOLUTION_STATUS
indicates the solution status at termination. It can take one of the following values:

OPTIMAL The solution is optimal.

CONDITIONAL_OPTIMAL The optimality of the solution cannot be proven.

INFEASIBLE The problem is infeasible.

UNBOUNDED The problem is unbounded.

INFEASIBLE_OR_UNBOUNDED The problem is infeasible or unbounded.

ITERATION_LIMIT_REACHED The maximum allowable number of iterations was reached.

TIME_LIMIT_REACHED The maximum time limit was reached.

FAILED The solver failed to converge, possibly due to numerical issues.

NONCONVEX The quadratic matrix is nonconvex (minimization).

NONCONCAVE The quadratic matrix is nonconcave (maximization).

OBJECTIVE
indicates the objective value obtained by the solver at termination.

PRIMAL_INFEASIBILITY
indicates the (relative) infeasibility of the primal constraints at the solution. See the section “Interior
Point Algorithm: Overview” on page 487 for details.

DUAL_INFEASIBILITY
indicates the (relative) infeasibility of the dual constraints at the solution. See the section “Interior
Point Algorithm: Overview” on page 487 for details.

BOUND_INFEASIBILITY
indicates the (relative) violation by the solution of the lower or upper bounds (or both). See the section
“Interior Point Algorithm: Overview” on page 487 for details.
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DUALITY_GAP
indicates the (relative) duality gap. See the section “Interior Point Algorithm: Overview” on page 487
for details.

COMPLEMENTARITY
indicates the (absolute) complementarity at the optimal solution. See the section “Interior Point
Algorithm: Overview” on page 487 for details.

ITERATIONS
indicates the number of iterations required to solve the problem.

PRESOLVE_TIME
indicates the time taken for preprocessing (seconds).

SOLUTION_TIME
indicates the time (in seconds) taken to solve the problem, including preprocessing time.

NOTE: The time that is reported in PRESOLVE_TIME and SOLUTION_TIME is either CPU time or real
time. The type is determined by the TIMETYPE= option.

Examples: OPTQP Procedure
This section contains examples that illustrate the use of the OPTQP procedure. Example 12.1 illustrates how
to model a linear least squares problem and solve it by using PROC OPTQP. Example 12.2 and Example 12.3
explain in detail how to model the portfolio optimization and selection problems.

Example 12.1: Linear Least Squares Problem
The linear least squares problem arises in the context of determining a solution to an overdetermined set
of linear equations. In practice, these equations could arise in data fitting and estimation problems. An
overdetermined system of linear equations can be defined as

Ax D b

where A 2 Rm�n, x 2 Rn, b 2 Rm, and m > n. Since this system usually does not have a solution, you
need to be satisfied with some sort of approximate solution. The most widely used approximation is the least
squares solution, which minimizes kAx � bk22.

This problem is called a least squares problem for the following reason. Let A, x, and b be defined as
previously. Let ki .x/ be the kth component of the vector Ax � b:

ki .x/ D ai1x1 C ai2x2 C � � � C ainxn � bi ; i D 1; 2; : : : ; m

By definition of the Euclidean norm, the objective function can be expressed as follows:

kAx � bk22 D
mX
iD1

ki .x/
2
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Therefore, the function you minimize is the sum of squares of m terms ki .x/; hence the term least squares.
The following example is an illustration of the linear least squares problem; that is, each of the terms ki is a
linear function of x.function

P
ij aijxj plus a constant, �bi .

Consider the following least squares problem defined by

A D

24 4 0

�1 1

3 2

35 ; b D

24 1

0

1

35
This translates to the following set of linear equations:

4x1 D 1; �x1 C x2 D 0; 3x1 C 2x2 D 1

The corresponding least squares problem is

minimize .4x1 � 1/
2
C .�x1 C x2/

2
C .3x1 C 2x2 � 1/

2

The preceding objective function can be expanded to

minimize 26x21 C 5x
2
2 C 10x1x2 � 14x1 � 4x2 C 2

In addition, you impose the following constraint so that the equation 3x1 C 2x2 D 1 is satisfied within a
tolerance of 0:1:

0:9 � 3x1 C 2x2 � 1:1

You can create the QPS-format input data set by using the following SAS statements:

data lsdata;
input field1 $ field2 $ field3 $ field4 field5 $ field6 @;
datalines;

NAME . LEASTSQ . . .
ROWS . . . . .
N OBJ . . . .
G EQ3 . . . .
COLUMNS . . . . .
. X1 OBJ -14 EQ3 3
. X2 OBJ -4 EQ3 2
RHS . . . . .
. RHS OBJ -2 EQ3 0.9
RANGES . . . . .
. RNG EQ3 0.2 . .
BOUNDS . . . . .
FR BND1 X1 . . .
FR BND1 X2 . . .
QUADOBJ . . . . .
. X1 X1 52 . .
. X1 X2 10 . .
. X2 X2 10 . .
ENDATA . . . . .
;

The decision variables x1 and x2 are free, so they have bound type FR in the BOUNDS section of the
QPS-format data set.

You can use the following SAS statements to solve the least squares problem:
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proc optqp data=lsdata
printlevel = 0
primalout = lspout;

run;

The optimal solution is displayed in Output 12.1.1.

Output 12.1.1 Solution to the Least Squares Problem

Primal Solution

Objective Linear
Function RHS Variable Variable Objective

Obs ID ID Name Type Coefficient

1 OBJ RHS X1 F -14
2 OBJ RHS X2 F -4

Upper Variable Variable
Obs Lower Bound Bound Value Status

1 -1.7977E308 1.7977E308 0.23810 O
2 -1.7977E308 1.7977E308 0.16190 O

The iteration log is shown in Output 12.1.2.

Output 12.1.2 Iteration Log

NOTE: The problem LEASTSQ has 2 variables (2 free, 0 fixed).
NOTE: The problem has 1 constraints (0 LE, 0 EQ, 0 GE, 1 range).
NOTE: The problem has 2 constraint coefficients.
NOTE: The objective function has 2 Hessian diagonal elements and 1 Hessian

elements above the diagonal.
NOTE: The QP presolver value AUTOMATIC is applied.
NOTE: The QP presolver removed 0 variables and 0 constraints.
NOTE: The QP presolver removed 0 constraint coefficients.
NOTE: The presolved problem has 2 variables, 1 constraints, and 2 constraint

coefficients.
NOTE: The QP solver is called.
NOTE: The Interior Point algorithm is used.
NOTE: The deterministic parallel mode is enabled.
NOTE: The Interior Point algorithm is using up to 4 threads.

Primal Bound Dual
Iter Complement Duality Gap Infeas Infeas Infeas

0 1.91812E-02 5.89357E-03 1.96367E-08 0.00000E+00 3.53901E-04
1 9.04861E-04 2.83115E-04 7.25763E-10 0.00000E+00 1.30555E-05
2 1.53700E-05 4.94409E-06 7.77909E-12 0.00000E+00 1.30555E-07
3 1.53570E-07 4.93971E-08 8.81570E-14 0.00000E+00 1.30562E-09

NOTE: Optimal.
NOTE: Objective = 0.0095238095.
NOTE: The Interior Point solve time is 0.01 seconds.
NOTE: The data set WORK.LSPOUT has 2 observations and 9 variables.



498 F Chapter 12: The OPTQP Procedure

Example 12.2: Portfolio Optimization
Consider a portfolio optimization example. The two competing goals of investment are (1) long-term growth
of capital and (2) low risk. A good portfolio grows steadily without wild fluctuations in value. The Markowitz
model is an optimization model for balancing the return and risk of a portfolio. The decision variables are
the amounts invested in each asset. The objective is to minimize the variance of the portfolio’s total return,
subject to the constraints that (1) the expected growth of the portfolio reaches at least some target level and
(2) you do not invest more capital than you have.

Let x1; : : : ; xn be the amount invested in each asset, B be the amount of capital you have, R be the random
vector of asset returns over some period, and r be the expected value of R. Let G be the minimum growth

you hope to obtain, and C be the covariance matrix of R. The objective function is Var
�
nP
iD1

xiRi

�
, which

can be equivalently denoted as xTCx.

Assume, for example, n = 4. Let B = 10,000, G = 1000, r D Œ0:05;�0:2; 0:15; 0:30�, and

C D

2664
0:08 �0:05 �0:05 �0:05

�0:05 0:16 �0:02 �0:02

�0:05 �0:02 0:35 0:06

�0:05 �0:02 0:06 0:35

3775
The QP formulation can be written as follows:

min 0:08x21 � 0:1x1x2 � 0:1x1x3 � 0:1x1x4 C

0:16x22 � 0:04x2x3 � 0:04x2x4 C 0:35x23 C

0:12x3x4 C 0:35x24
subject to
.budget/ x1 C x2 C x3 C x4 � 10000

.growth/ 0:05x1 � 0:2x2 C 0:15x3 C 0:30x4 � 1000

x1; x2; x3; x4 � 0

The corresponding QPS-format input data set is as follows:

data portdata;
input field1 $ field2 $ field3 $ field4 field5 $ field6 @;

datalines;
NAME . PORT . . .
ROWS . . . . .
N OBJ.FUNC . . . .
L BUDGET . . . .
G GROWTH . . . .
COLUMNS . . . . .
. X1 BUDGET 1.0 GROWTH 0.05
. X2 BUDGET 1.0 GROWTH -.20
. X3 BUDGET 1.0 GROWTH 0.15
. X4 BUDGET 1.0 GROWTH 0.30
RHS . . . . .
. RHS BUDGET 10000 . .
. RHS GROWTH 1000 . .
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RANGES . . . . .
BOUNDS . . . . .
QUADOBJ . . . . .
. X1 X1 0.16 . .
. X1 X2 -.10 . .
. X1 X3 -.10 . .
. X1 X4 -.10 . .
. X2 X2 0.32 . .
. X2 X3 -.04 . .
. X2 X4 -.04 . .
. X3 X3 0.70 . .
. X3 X4 0.12 . .
. X4 X4 0.70 . .
ENDATA . . . . .
;

Use the following SAS statements to solve the problem:

proc optqp data=portdata
primalout = portpout
printlevel = 0
dualout = portdout;

run;

The optimal solution is shown in Output 12.2.1.

Output 12.2.1 Portfolio Optimization

The OPTQP Procedure
Primal Solution

Objective Linear
Function RHS Variable Variable Objective

Obs ID ID Name Type Coefficient

1 OBJ.FUNC RHS X1 N 0
2 OBJ.FUNC RHS X2 N 0
3 OBJ.FUNC RHS X3 N 0
4 OBJ.FUNC RHS X4 N 0

Lower Upper Variable Variable
Obs Bound Bound Value Status

1 0 1.7977E308 3452.86 O
2 0 1.7977E308 0.00 O
3 0 1.7977E308 1068.81 O
4 0 1.7977E308 2223.45 O

Thus, the minimum variance portfolio that earns an expected return of at least 10% is x1 D 3452:86, x2 D 0,
x3 D 1068:81, x4 D 2223:45. Asset 2 gets nothing, because its expected return is �20% and its covariance
with the other assets is not sufficiently negative for it to bring any diversification benefits. What if you drop
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the nonnegativity assumption? You need to update the BOUNDS section in the existing QPS-format data set
to indicate that the decision variables are free.

...
RANGES . . . . .
BOUNDS . . . . .
FR BND1 X1 . . .
FR BND1 X2 . . .
FR BND1 X3 . . .
FR BND1 X4 . . .
QUADOBJ . . . . .
...

Financially, that means you are allowed to short-sell—that is, sell low-mean-return assets and use the proceeds
to invest in high-mean-return assets. In other words, you put a negative portfolio weight in low-mean assets
and “more than 100%” in high-mean assets. You can see in the optimal solution displayed in Output 12.2.2
that the decision variable x2, denoting Asset 2, is equal to �1563.61, which means short sale of that asset.

Output 12.2.2 Portfolio Optimization with Short-Sale Option

The OPTQP Procedure
Primal Solution

Objective Linear
Function RHS Variable Variable Objective

Obs ID ID Name Type Coefficient

1 OBJ.FUNC RHS X1 F 0
2 OBJ.FUNC RHS X2 F 0
3 OBJ.FUNC RHS X3 F 0
4 OBJ.FUNC RHS X4 F 0

Upper Variable Variable
Obs Lower Bound Bound Value Status

1 -1.7977E308 1.7977E308 1684.35 O
2 -1.7977E308 1.7977E308 -1563.61 O
3 -1.7977E308 1.7977E308 682.51 O
4 -1.7977E308 1.7977E308 1668.95 O
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Example 12.3: Portfolio Selection with Transactions
Consider a portfolio selection problem with a slight modification. You are now required to take into account
the current position and transaction costs associated with buying and selling assets. The objective is to find
the minimum variance portfolio. In order to understand the scenario better, consider the following data.

You are given three assets. The current holding of the three assets is denoted by the vector c = [200, 300,
500], the amount of asset bought and sold is denoted by bi and si , respectively, and the net investment in
each asset is denoted by xi and is defined by the following relation:

xi � bi C si D ci ; i D 1; 2; 3

Suppose you pay a transaction fee of 0.01 every time you buy or sell. Let the covariance matrix C be defined
as

C D

24 0:027489 �0:00874 �0:00015

�0:00874 0:109449 �0:00012

�0:00015 �0:00012 0:000766

35
Assume that you hope to obtain at least 12% growth. Let r = [1.109048, 1.169048, 1.074286] be the vector
of expected return on the three assets, and let B=1000 be the available funds. Mathematically, this problem
can be written in the following manner:

min 0:027489x21 � 0:01748x1x2 � 0:0003x1x3 C 0:109449x
2
2

�0:00024x2x3 C 0:000766x
2
3

subject to
.return/

P3
iD1 rixi � 1:12B

.budget/
P3
iD1 xi C

P3
iD1 0:01.bi C si / D B

.balance/ xi � bi C si D ci ; i D 1; 2; 3

xi ; bi ; si � 0; i D 1; 2; 3

The QPS-format input data set is as follows:

data potrdata;
input field1 $ field2 $ field3 $ field4 field5 $ field6 @;

datalines;
NAME . POTRAN . . .
ROWS . . . . .
N OBJ.FUNC . . . .
G RETURN . . . .
E BUDGET . . . .
E BALANC1 . . . .
E BALANC2 . . . .
E BALANC3 . . . .
COLUMNS . . . . .
. X1 RETURN 1.109048 BUDGET 1.0
. X1 BALANC1 1.0 . .
. X2 RETURN 1.169048 BUDGET 1.0
. X2 BALANC2 1.0 . .
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. X3 RETURN 1.074286 BUDGET 1.0

. X3 BALANC3 1.0 . .

. B1 BUDGET .01 BALANC1 -1.0

. B2 BUDGET .01 BALANC2 -1.0

. B3 BUDGET .01 BALANC3 -1.0

. S1 BUDGET .01 BALANC1 1.0

. S2 BUDGET .01 BALANC2 1.0

. S3 BUDGET .01 BALANC3 1.0
RHS . . . . .
. RHS RETURN 1120 . .
. RHS BUDGET 1000 . .
. RHS BALANC1 200 . .
. RHS BALANC2 300 . .
. RHS BALANC3 500 . .
RANGES . . . . .
BOUNDS . . . . .
QUADOBJ . . . . .
. X1 X1 0.054978 . .
. X1 X2 -.01748 . .
. X1 X3 -.0003 . .
. X2 X2 0.218898 . .
. X2 X3 -.00024 . .
. X3 X3 0.001532 . .
ENDATA . . . . .
;

Use the following SAS statements to solve the problem:

proc optqp data=potrdata
primalout = potrpout
printlevel = 0
dualout = potrdout;

run;

The optimal solution is displayed in Output 12.3.1.
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The OPTQP Procedure
Primal Solution

Objective Linear
Function RHS Variable Variable Objective

Obs ID ID Name Type Coefficient

1 OBJ.FUNC RHS X1 N 0
2 OBJ.FUNC RHS X2 N 0
3 OBJ.FUNC RHS X3 N 0
4 OBJ.FUNC RHS B1 N 0
5 OBJ.FUNC RHS B2 N 0
6 OBJ.FUNC RHS B3 N 0
7 OBJ.FUNC RHS S1 N 0
8 OBJ.FUNC RHS S2 N 0
9 OBJ.FUNC RHS S3 N 0

Lower Upper Variable Variable
Obs Bound Bound Value Status

1 0 1.7977E308 397.584 O
2 0 1.7977E308 406.115 O
3 0 1.7977E308 190.165 O
4 0 1.7977E308 197.584 O
5 0 1.7977E308 106.115 O
6 0 1.7977E308 0.000 O
7 0 1.7977E308 0.000 O
8 0 1.7977E308 0.000 O
9 0 1.7977E308 309.835 O
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Overview: Decomposition Algorithm
The SAS/OR decomposition algorithm (DECOMP) provides an alternative method for solving linear programs
(LPs) and mixed integer linear programs (MILPs) by exploiting the ability to efficiently solve a relaxation of
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the original problem. The algorithm is available as an option in the OPTMODEL, OPTLP and OPTMILP
procedures and is based on the methodology described in Galati (2009).

A standard linear or mixed integer linear program has the formulation

minimize c>x C f>y
subject to Dx C By f�;D;�g d (master)

Ax f�;D;�g b (subproblem)
lxi � xi � u

x
i ; xi 2 Z i 2 Sx

l
y
i � yi � u

y
i ; yi 2 Z i 2 Sy

where
x 2 Rn is the vector of structural variables
y 2 Rs is the vector of master-only structural variables
c 2 Rn is the vector of objective function coefficients that are associated with variables x
f 2 Rs is the vector of objective function coefficients that are associated with variables y
D 2 Rt�n is the matrix of master constraint coefficients that are associated with variables x
B 2 Rt�s is the matrix of master constraint coefficients that are associated with variables y
A 2 Rm�n is the matrix of subproblem constraint coefficients
d 2 Rt is the vector of master constraints’ right-hand sides
b 2 Rm is the vector of subproblem constraints’ right-hand sides
lx 2 Rn is the vector of lower bounds on variables x
ux 2 Rn is the vector of upper bounds on variables x
ly 2 Rs is the vector of lower bounds on variables y
uy 2 Rs is the vector of upper bounds on variables y
Sx is a subset of the set f1; : : : ; ng of indices on variables x
Sy is a subset of the set f1; : : : ; sg of indices on variables y

A relaxation of the preceding mathematical program can be formed by removing the master constraints,
which are defined by the matrices D and B. The resulting constraint system, defined by the matrix A, forms
the subproblem, which can often be solved much more efficiently than the entire original problem. This is
the one of the key motivators for using the decomposition algorithm.

The decomposition algorithm works by finding convex combinations of extreme points of the subproblem
polyhedron that satisfy the constraints defined in the master. For MILP subproblems, the strength of the
relaxation is another important motivator for using this method. If the subproblem polyhedron defines feasible
solutions that are close to the original feasible space, the chance of success for the algorithm increases.

The region that defines the subproblem space is often separable. That is, the formulation of the preceding
mathematical program can be written in block-angular form as follows:

minimize c1x1 C c2x2 C : : : C c�x� C f>y
subject to D1x1 C D2x2 C : : : D�x� C By f�;D;�g d

A1x1 f�;D;�g b1

A2x2 f�;D;�g b2
: : : f�;D;�g

:::

A�x� f�;D;�g b�

lxi � xi � u
x
i ; xi 2 Z i 2 Sx

l
y
i � yi � u

y
i ; yi 2 Z i 2 Sy

where K D f1; : : : ; �g defines a partition of the constraints (and variables) into independent subproblems
(blocks) such that A D ŒA1 : : :A� �;D D ŒD1 : : :D� �; c D Œc1 : : : c� �, and x D Œx1 : : : x� �. This type of
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structure is fairly common in modeling mathematical programs. For example, consider a model that defines a
workplace with separate departmental restrictions (defined as the subproblem constraints), which are coupled
together by a company-wide budget across departments (defined as the master constraint). By relaxing the
budget (master) constraint, the decomposition algorithm can take advantage of the fact that the decoupled
subproblems are separable, and it can process them in parallel. A special case of block-angular form, called
block-diagonal, occurs when the set of master constraints is empty. In this special case, the subproblem
matrices define the entire original problem.

An important indicator of a problem that is well suited for decomposition is the amount by which the
subproblems cover the original problem with respect to both variables and constraints in the original
presolved model. This value, expressed as a percentage of the original model is known as the coverage. For
LPs, the decomposition algorithm usually performs better than standard approaches only if the subproblems
cover a significant amount of the original problem. For MILPs, the correlation between performance and
coverage is more difficult to determine, because the strength of the subproblem with respect to integrality is
not always proportional to the size of the system. Regardless, it is unlikely that the decomposition algorithm
outperforms more standard methods (such as branch-and-cut) for problems with small coverage.

The primary input and output for the decomposition algorithm are identical to those needed and produced by
the OPTLP, OPTMILP, and OPTMODEL procedures. For more information, see the sections “Data Input
and Output” on page 373, “Data Input and Output” on page 433, “Details: LP Solver” on page 192, and
“Details: MILP Solver” on page 259. The only additional input that can be provided for the decomposition
algorithm is an explicit definition of the partition of the subproblem constraints. The following section gives
a simple example of providing this input for both PROC OPTMILP and PROC OPTMODEL.

Getting Started: Decomposition Algorithm
This example illustrates how you can use the decomposition algorithm to solve a simple mixed integer linear
program. Suppose you want to solve the following problem:

max x11 C 2x21 C x31 C C x22 C x32
subject to x11 x12 � 1 (m)

5x11 C 7x21 C 4x31 � 11 (s1)
x12 C 2x22 C x32 � 2 (s2)

xij 2 f0; 1g i 2 f1; : : : ; 3g; j 2 f1; : : : ; 2g

It is obvious from the structure of the problem that if constraint (m) is removed, then the remaining constraints
(s1) and (s2) decompose into two independent subproblems. The next two sections describe how to solve
this MILP by using the decomposition algorithm in the OPTMODEL procedure and OPTMILP procedure,
respectively.
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Solving a MILP with DECOMP and PROC OPTMODEL
The following statements use the OPTMODEL procedure and the decomposition algorithm to solve the
MILP:

proc optmodel;
var x{i in 1..3, j in 1..2} binary;

max f = x[1,1] + 2*x[2,1] + x[3,1]
+ x[2,2] + x[3,2];

con m : x[1,1] + x[1,2] >= 1;
con s1: 5*x[1,1] + 7*x[2,1] + 4*x[3,1] <= 11;
con s2: x[1,2] + 2*x[2,2] + x[3,2] <= 2;

s1.block = 0;
s2.block = 1;

solve with milp / presolver=none decomp=(logfreq=1);
print x;

quit;

Here, the PRESOLVER=NONE option is used, because otherwise the presolver solves this small instance
without invoking any solver. The solution summary and optimal solution are displayed in Figure 13.1.

Figure 13.1 Solution Summary and Optimal Solution

The OPTMODEL Procedure

Solution Summary

Solver MILP
Algorithm Decomposition
Objective Function f
Solution Status Optimal
Objective Value 4

Relative Gap 0
Absolute Gap 0
Primal Infeasibility 0
Bound Infeasibility 0
Integer Infeasibility 0

Best Bound 4
Nodes 1
Iterations 4
Presolve Time 0.01
Solution Time 0.36
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Figure 13.1 continued

x
1 2

1 0 1
2 1 0
3 1 1

The iteration log, which displays the problem statistics, the progress of the solution, and the optimal objective
value, is shown in Figure 13.2.

Figure 13.2 Log

NOTE: Problem generation will use 4 threads.
NOTE: The problem has 6 variables (0 free, 0 fixed).
NOTE: The problem has 6 binary and 0 integer variables.
NOTE: The problem has 3 linear constraints (2 LE, 0 EQ, 1 GE, 0 range).
NOTE: The problem has 8 linear constraint coefficients.
NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).
NOTE: The MILP presolver value NONE is applied.
NOTE: The MILP solver is called.
NOTE: The Decomposition algorithm is used.
NOTE: The Decomposition algorithm is executing in single-machine mode.
NOTE: The DECOMP method value USER is applied.
NOTE: The decomposition subproblems consist of 2 disjoint blocks.
NOTE: The decomposition subproblems cover 6 (100.00%) variables and 2 (66.67%)

constraints.
NOTE: The deterministic parallel mode is enabled.
NOTE: The Decomposition algorithm is using up to 4 threads.

Iter Best Master Best LP IP CPU Real
Bound Objective Integer Gap Gap Time Time

NOTE: Starting phase 1.
1 0.0000 1.0000 . 1.00e+00 . 0 0
2 0.0000 0.0000 . 0.00% . 0 0

NOTE: Starting phase 2.
. 4.0000 3.0000 3.0000 25.00% 25.00% 0 0
3 4.0000 3.0000 3.0000 25.00% 25.00% 0 0
4 4.0000 4.0000 4.0000 0.00% 0.00% 0 0
Node Active Sols Best Best Gap CPU Real

Integer Bound Time Time
0 0 2 4.0000 4.0000 0.00% 0 0

NOTE: The Decomposition algorithm used 2 threads.
NOTE: The Decomposition algorithm time is 0.02 seconds.
NOTE: Optimal.
NOTE: Objective = 4.
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Solving a MILP with DECOMP and PROC OPTMILP
Alternatively, to solve the MILP with the OPTMILP procedure, create a corresponding SAS data set that uses
the mathematical programming system (MPS) format as follows:

data mpsdata;
input field1 $ field2 $ field3 $ field4 field5 $ field6;
datalines;

NAME . mpsdata . . .
ROWS . . . . .
MAX f . . . .
G m . . . .
L s1 . . . .
L s2 . . . .
COLUMNS . . . . .
. .MRK0000 'MARKER' . 'INTORG' .
. x[1,1] f 1 m 1
. x[1,1] s1 5 . .
. x[2,1] f 2 s1 7
. x[3,1] f 1 s1 4
. x[1,2] m 1 s2 1
. x[2,2] f 1 s2 2
. x[3,2] f 1 s2 1
. .MRK0001 'MARKER' . 'INTEND' .
RHS . . . . .
. .RHS. m 1 . .
. .RHS. s1 11 . .
. .RHS. s2 2 . .
BOUNDS . . . . .
UP .BOUNDS. x[1,1] 1 . .
UP .BOUNDS. x[2,1] 1 . .
UP .BOUNDS. x[3,1] 1 . .
UP .BOUNDS. x[1,2] 1 . .
UP .BOUNDS. x[2,2] 1 . .
UP .BOUNDS. x[3,2] 1 . .
ENDATA . . . . .
;

Next, use the following SAS data set to define the subproblem blocks:

data blocks;
input _row_ $ _block_;
datalines;

s1 0
s2 1
;

Now, you can use the following OPTMILP statements to solve this MILP:

proc optmilp
data = mpsdata
presolver = none;
decomp

logfreq = 1



Syntax: Decomposition Algorithm F 511

blocks = blocks;
run;

Syntax: Decomposition Algorithm
You can specify the decomposition algorithm either by using options in a SOLVE statement in the OPT-
MODEL procedure or by using statements in the OPTLP and OPTMILP procedures. Except for the fact
that you use SOLVE statement options in PROC OPTMODEL or you use statements in PROC OPTLP and
PROC OPTMILP, the syntax is identical.

The following decomposition algorithm options are available in the SOLVE statement in the OPTMODEL
procedure:

SOLVE WITH LP / < options >
< DECOMP=(< decomp-options >) >
< DECOMP_MASTER=(< decomp-master-options >) >
< DECOMP_SUBPROB=(< decomp-subprob-options >) > ;

SOLVE WITH MILP / < options >
< DECOMP=(< decomp-options >) >
< DECOMP_MASTER=(< decomp-master-options >) >
< DECOMP_MASTER_IP=(< decomp-master-ip-options >) >
< DECOMP_SUBPROB=(< decomp-subprob-options >) > ;

The following statements are available in the OPTLP procedure:

PROC OPTLP < options > ;
DECOMP < decomp-options > ;
DECOMP_MASTER < decomp-master-options > ;
DECOMP_SUBPROB < decomp-subprob-options > ;

The following statements are available in the OPTMILP procedure:

PROC OPTMILP < options > ;
DECOMP < decomp-options > ;
DECOMP_MASTER < decomp-master-options > ;
DECOMP_MASTER_IP < decomp-master-ip-options > ;
DECOMP_SUBPROB < decomp-subprob-options > ;

Decomposition Algorithm Options in the PROC OPTLP Statement or the
SOLVE WITH LP Statement in PROC OPTMODEL
To solve a linear program, you can specify the decomposition algorithm in a SOLVE WITH LP statement in
the OPTMODEL procedure or in a PROC OPTLP statement in the OPTLP procedure. To control the overall
decomposition algorithm, you can specify one or more of the LP solver options shown in Table 13.1. (As
indicated, you can specify some options only in the PROC OPTLP statement.)

The options in Table 13.1 control the overall process flow for solving a linear program, and they are equivalent
to the options that are used in PROC OPTLP and PROC OPTMODEL with standard methods. These options
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are called main solver options in this chapter. They are described in detail in the section “Syntax: LP Solver”
on page 185 and the section “Syntax: OPTLP Procedure” on page 365.

Table 13.1 Options in the PROC OPTLP Statement or SOLVE WITH LP Statement

Description option
Data Set Options (OPTLP procedure only)
Specifies the input data set DATA=
Specifies the dual solution output data set DUALOUT=
Specifies whether the model is a maximization or minimization problem OBJSENSE=
Specifies the primal solution output data set PRIMALOUT=
Saves output data sets only if optimal SAVE_ONLY_IF_OPTIMAL
Presolve Option
Specifies the type of presolve PRESOLVER=
Control Options
Specifies the feasibility tolerance FEASTOL=
Specifies how frequently to print the solution progress LOGFREQ=
Specifies the level of detail of solution progress to print in the log LOGLEVEL=
Specifies the maximum number of iterations MAXITER=
Specifies the time limit for the optimization process MAXTIME=
Specifies the optimality tolerance OPTTOL=
Enables or disables printing summary (OPTLP procedure only) PRINTLEVEL=
Specifies whether time units are CPU time or real time TIMETYPE=
Algorithm Options
Enables or disables scaling of the problem SCALE=

Decomposition Algorithm Options in the PROC OPTMILP Statement or the
SOLVE WITH MILP Statement in PROC OPTMODEL
To solve a mixed integer linear program, you can specify the decomposition algorithm in a SOLVE WITH
MILP statement in the OPTMODEL procedure or in a PROC OPTMILP statement in the OPTMILP
procedure. To control the overall decomposition algorithm, you can specify one or more of the MILP solver
options shown in Table 13.2. (As indicated, you can specify some options only in the PROC OPTMILP
statement.)

The options in Table 13.2 control the overall process flow for solving a mixed integer linear program, and
they are equivalent to the options used in the OPTMILP and OPTMODEL procedures with standard methods.
These options are called main solver options in this chapter. They are described in detail in the section
“Syntax: MILP Solver” on page 249 and the section “Syntax: OPTMILP Procedure” on page 421.

Table 13.2 Options in the PROC OPTMILP Statement or SOLVE WITH MILP Statement

Description option
Data Set Options (OPTMILP procedure only)
Specifies the input data set DATA=
Specifies the constraint activities output data set DUALOUT=
Specifies whether the model is a maximization or minimization problem OBJSENSE=
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Table 13.2 (continued)

Description option
Specifies the primal solution input data set (warm start) PRIMALIN=
Specifies the primal solution output data set PRIMALOUT=
Presolve Option
Specifies the type of presolve PRESOLVER=
Control Options
Specifies the stopping criterion based on an absolute objective gap ABSOBJGAP=
Specifies the maximum violation of variables and constraints FEASTOL=
Specifies the maximum allowed difference between an integer variable’s
value and an integer

INTTOL=

Specifies how frequently to print the node log LOGFREQ=
Specifies the level of detail of solution progress to print in the log LOGLEVEL=
Specifies the maximum number of nodes to be processed MAXNODES=
Specifies the maximum number of solutions to be found MAXSOLS=
Specifies the time limit for the optimization process MAXTIME=
Specifies the tolerance used when deciding on the optimality of nodes in
the branch-and-bound tree

OPTTOL=

Uses the input primal solution (warm start) (OPTMODEL procedure only) PRIMALIN
Enables or disables printing summary (OPTMILP procedure only) PRINTLEVEL=
Specifies the probing level PROBE=
Specifies the stopping criterion based on a relative objective gap RELOBJGAP=
Specifies the scale of the problem matrix SCALE=
Specifies whether time units are CPU time or real time TIMETYPE=
Heuristics Option
Specifies the primal heuristics level HEURISTICS=

DECOMP Statement
DECOMP < decomp-options > ;

The DECOMP statement controls the overall decomposition algorithm.

Table 13.3 summarizes the decomp-options available in the DECOMP statement. These options control the
overall decomposition algorithm process flow during the solution of an LP or a MILP. (As indicated, you can
specify the data set options only in the OPTLP or OPTMILP procedure, and you can specify some control
options only for a MILP.)

Table 13.3 Options in the DECOMP Statement

Description decomp-option
Data Set Options (OPTLP and OPTMILP procedures only)
Specifies the blocks input data set BLOCKS=
Control Options
Specifies the stopping criterion based on an absolute objective gap ABSOBJGAP=
Specifies the frequency of removing ineffective columns from the master
LP

COMPRESSFREQ=
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Table 13.3 (continued)

Description decomp-option
Specifies whether to initialize the columns by solving each block with the
original cost vector

INITVARS=

Specifies the level of detail of solution progress to print in the log LOGLEVEL=
Specifies the maximum number of blocks to allow MAXBLOCKS=
Specifies the maximum number of new columns to allow into the master
each pass

MAXCOLSPASS=

Specifies the maximum amount of time spent in the decomposition algo-
rithm

MAXTIME=

Specifies the decomposition algorithm method METHOD=
Specifies the stopping criterion based on relative objective gap RELOBJGAP=
Control Options (MILP only)
Specifies how frequently to print the continuous iteration log LOGFREQ=
Specifies whether the master problem is solved as a MILP with the current
set of columns at the beginning of phase II

MASTER_IP_BEG=

Specifies whether the master problem is solved as a MILP with the current
set of columns at the end of phase II

MASTER_IP_END=

Specifies the frequency of solving the master problem as a MILP with the
current set of columns

MASTER_IP_FREQ=

Specifies the maximum number of outer iterations for the decomposition
algorithm

MAXITER=

The following list describes the decomp-options in detail.

ABSOBJGAP=number
specifies a stopping criterion for the continuous bound of the decomposition. When the absolute
difference between the master objective and the best dual bound falls below the value of number, the
decomposition algorithm stops adding columns. The value of number can be any nonnegative number.
The default value is the value of the OPTTOL= main solver option.

BLOCKS=SAS-data-set
specifies (for OPTLP and OPTMILP procedures only) the input data set that contains block definitions
to be used by the decomposition algorithm if METHOD=USER. See the section “The BLOCKS= Data
Set in PROC OPTMILP and PROC OPTLP” on page 525 for more information. To specify blocks in
PROC OPTMODEL, use the .block constraint suffix instead (see the section “The .block Constraint
Suffix in PROC OPTMODEL” on page 525).

COMPRESSFREQ=number
removes ineffective columns from the master LP after every number of iterations. The frequency,
number, is an integer between 0 and the largest four-byte signed integer, which is 231 � 1. The default
value is 0.

INITVARS=number | string
specifies whether to initialize the columns by using the original cost vector to solve each block.

Table 13.4 describes the valid values of the INITVARS= option.
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Table 13.4 Values for INITVARS= Option

number string Description
0 OFF Disables initializing the columns by using the original cost

vector to solve each block.
1 ON Enables initializing the columns by using the original cost

vector to solve each block.

The default is ON.

LOGFREQ=number
specifies (for MILP problems only) how often to print information in the continuous iteration log. The
value of number can be any nonnegative number up to the largest four-byte signed integer, which is
231 � 1. The default value of number is 10. If number is set to 0, then the iteration log is disabled. If
number is positive, then an entry is made in the log at the first iteration, at the last iteration, and at
intervals that are dictated by the value of number. An entry is also made each time a better integer
solution or improved bound is found.

LOGLEVEL=number | string
controls the amount of information that is displayed in the SAS log by the decomposition algorithm.
Table 13.5 and Table 13.6 provide the valid values for this option and a description of what is displayed
in the log when an LP and a MILP, respectively, is solved.

Table 13.5 Values for LOGLEVEL= Option for an LP

number string Description
–1 AUTOMATIC Prints the continuous iteration log at the interval dictated

by the LOGFREQ= main solver option.
0 NONE Turns off printing of all of the decomposition algorithm

messages to the SAS log.
1 BASIC Prints the continuous iteration log at the interval dictated

by the LOGFREQ= main solver option.
2 MODERATE Prints the continuous iteration log and summary infor-

mation for each iteration at the interval dictated by the
LOGFREQ= main solver option.

3 AGGRESSIVE Prints the continuous iteration log and detailed infor-
mation for each iteration at the interval dictated by the
LOGFREQ= main solver option.

Table 13.6 Values for LOGLEVEL= Option for a MILP

number string Description
–1 AUTOMATIC Prints the continuous iteration log for the root node at the

interval dictated by the LOGFREQ= option in the DE-
COMP statement. Prints the branch-and-bound node log
at the interval dictated by the LOGFREQ= main solver
option.

0 NONE Turns off printing of all of the decomposition algorithm
messages to the SAS log.
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Table 13.6 (continued)

number string Description
1 BASIC Prints the continuous iteration log for each branch-and-

bound node at the interval dictated by the LOGFREQ=
option in the DECOMP statement.

2 MODERATE Prints the continuous iteration log and summary informa-
tion for each iteration of each branch-and-bound node at
the interval dictated by the LOGFREQ= option in the DE-
COMP statement.

3 AGGRESSIVE Prints the continuous iteration log and detailed information
for each iteration of each branch-and-bound node at the in-
terval dictated by the LOGFREQ= option in the DECOMP
statement.

The default is AUTOMATIC for both LPs and MILPs.

MASTER_IP_BEG=number | string
specifies (for MILP problems only) whether the master problem is solved as a MILP with the current
set of columns at the beginning of phase II. Table 13.7 describes the valid values of the MAS-
TER_IP_BEG= option.

Table 13.7 Values for MASTER_IP_BEG= Option

number string Description
0 OFF Disables solving the master as a MILP at the beginning of phase II.
1 ON Enables solving the master as a MILP at the beginning of phase II.

The default is ON in the root node and 0 elsewhere.

MASTER_IP_END=number | string
specifies (for MILP problems only) whether the master problem is solved as a MILP with the current
set of columns at the end of phase II. Table 13.8 describes the valid values of the MASTER_IP_END=
option.

Table 13.8 Values for MASTER_IP_END= Option

number string Description
0 OFF Disables solving the master as a MILP at the end of phase II.
1 ON Enables solving the master as a MILP at the end of phase II.

The default is ON in the root node and 0 elsewhere.

MASTER_IP_FREQ=number
solves the master problem (for MILP problems only) as a MILP with the current set of columns after
every number iterations. The frequency, number, is an integer between 0 and the largest four-byte
signed integer, which is 231 � 1. The default is 10 in the root node and 0 elsewhere.
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MAXBLOCKS=number
specifies the maximum number of blocks to allow. If the defined number of blocks exceeds number,
the algorithm creates superblocks using a very simple round-robin scheme. The value number can be
any integer between 1 and the largest four-byte signed integer, which is 231 � 1. The default value of
number is 231 � 1.

MAXCOLSPASS=number
specifies the maximum number of new columns to allow into the master at each pass. This option is
disabled on the initial pass if INITVARS=1. The value number can be any integer between 1 and the
largest four-byte signed integer, which is 231 � 1. The default value of number is 231 � 1.

MAXITER=number
specifies (for MILP problems only) the maximum number of outer iterations for the decomposition
algorithm. The value number can be any integer between 1 and the largest four-byte signed integer,
which is 231 � 1. If you do not specify this option, the procedure does not stop based on the number of
iterations performed.

MAXTIME=number
specifies an upper limit of number seconds of time for the decomposition algorithm. The value of the
TIMETYPE= main solver option determines the type of units used. If you do not specify this option,
the procedure does not stop based on the amount of time elapsed. The value of number can be any
positive number; the default value is the positive number that has the largest absolute value that can be
represented in your operating environment.

METHOD=string
specifies the decomposition algorithm method as shown in Table 13.9.

Table 13.9 Values for METHOD= Option

string Description
USER The user defines which rows belong to which blocks (sub-

problems). In PROC OPTMODEL, use the .block con-
straint suffix. In PROC OPTLP and PROC OPTMILP, use
the BLOCKS= data set instead.

NETWORK The algorithm attempts to find an embedded network sim-
ilar to what is described in “The Network Simplex Algo-
rithm” on page 192. The weakly connected components of
this network are used as the blocks.

AUTO The algorithm attempts to find a block structure in the con-
straint matrix. For the current release, METHOD=AUTO
finds block-diagonal structure only (not block-angular
structures); unless your problem separates into completely
independent problems with no linking constraints, this
method finds only one block and hence is equivalent to
calling the MILP solver directly.

The default is USER if blocks are defined and NETWORK otherwise.
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RELOBJGAP=number
specifies the relative objective gap as a stopping criterion. The relative objective gap is based on the
master objective (MasterObjective) and the best dual bound (BestBound); it is equal to

j MasterObjective � BestBound j = .1E�10C j BestBound j/

When this value becomes smaller than the specified gap size number, the decomposition algorithm
stops adding columns. The value of number can be any nonnegative number. For LP, the default value
is 0; for MILP, the default value is 1e-4.

DECOMP_MASTER Statement
DECOMP_MASTER < decomp-master-options > ;

MASTER < decomp-master-options > ;

The DECOMP_MASTER statement controls the master problem.

Table 13.10 summarizes the options available in the DECOMP_MASTER statement. These options control
the master LP solver in the decomposition algorithm during the solution of an LP or a MILP. (As indicated,
you can specify the PRINTLEVEL= option only in the OPTLP procedure.) For descriptions of these options,
see the section “LP Solver Options” on page 186 and the section “PROC OPTLP Statement” on page 366.

The following default values differ from the LP solver defaults: ALGORITHM=PS, PRESOLVER=NONE,
and BASIS=WARMSTART. These different defaults are motivated by the fact that primal feasibility of the
master problem is preserved when columns are added, so a warm start from the previous optimal basis tends
to be more efficient than solving the master from scratch in each iteration.

Table 13.10 Options in the DECOMP_MASTER Statement

Description decomp-master-option
Algorithm Option
Specifies the master algorithm ALGORITHM=
Presolve Option
Specifies, for the first master solve only, the type of presolve INITPRESOLVER=
Specifies the type of presolve PRESOLVER=
Control Options
Specifies the feasibility tolerance FEASTOL=
Specifies how frequently to print the solution progress LOGFREQ=
Specifies the level of detail of solution progress to print in the log LOGLEVEL=
Specifies the maximum number of iterations MAXITER=
Specifies the time limit for the optimization process MAXTIME=
Specifies the optimality tolerance OPTTOL=
Enables or disables printing summary (OPTLP procedure only) PRINTLEVEL=
Specifies whether time units are CPU time or real time TIMETYPE=
Specifies the type of initial basis BASIS=
Specifies the type of pricing strategy PRICETYPE=
Specifies the queue size for determining the entering variable QUEUESIZE=
Enables or disables scaling of the problem SCALE=
Interior Point Algorithm Options
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Table 13.10 (continued)

Description decomp-master-option
Enables or disables interior crossover CROSSOVER=
Specifies the stopping criterion based on a duality gap STOP_DG=
Specifies the stopping criterion based on dual infeasibility STOP_DI=
Specifies the stopping criterion based on primal infeasibility STOP_PI=

In addition to the options listed in Table 13.10, you can specify the following decomp-master-option in the
DECOMP_MASTER statement.

INITPRESOLVER=number | string

INITPRESOL=number | string
specifies, for the first master solve only, presolve conditions as shown in Table 13.11.

Table 13.11 Values for INITPRESOLVER= Option

number string Description
–1 AUTOMATIC Applies the default level of presolve processing.
0 NONE Disables presolver.
1 BASIC Performs minimal presolve processing.
2 MODERATE Applies a higher level of presolve processing.
3 AGGRESSIVE Applies the highest level of presolve processing.

The default is AUTOMATIC.

DECOMP_MASTER_IP Statement
DECOMP_MASTER_IP < decomp-master-ip-options > ;

MASTER_IP < decomp-master-ip-options > ;

For mixed integer linear programming problems, the DECOMP_MASTER_IP statement controls the (re-
stricted) master problem, which is solved as a MILP with the current set of columns in an effort to obtain an
integer-feasible solution.

Table 13.12 summarizes the options available in the DECOMP_MASTER_IP statement. These options
control the MILP solver that is used to solve the integer version of the master problem. For descriptions
of these options, see the section “MILP Solver Options” on page 251 and the section “PROC OPTMILP
Statement” on page 423.

Table 13.12 Options in the DECOMP_MASTER_IP Statement

Description decomp-master-ip-
option

Presolve Option
Specifies the type of presolve PRESOLVER=
Control Options
Specifies the stopping criterion based on an absolute objective gap ABSOBJGAP=
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Table 13.12 (continued)

Description decomp-master-ip-
option

Specifies the cutoff value for node removal CUTOFF=
Emphasizes feasibility or optimality EMPHASIS=
Specifies the maximum violation on variables and constraints FEASTOL=
Specifies the maximum allowed difference between an integer variable’s
value and an integer

INTTOL=

Specifies how frequently to print the node log LOGFREQ=
Specifies the level of detail of solution progress to print in the log LOGLEVEL=
Specifies the maximum number of nodes to be processed MAXNODES=
Specifies the maximum number of solutions to be found MAXSOLS=
Specifies the time limit for the optimization process MAXTIME=
Specifies the tolerance used when deciding on the optimality of nodes in
the branch-and-bound tree

OPTTOL=

Specifies whether to use the previous best primal solution as a warm start PRIMALIN=
Specifies the probing level PROBE=
Specifies the stopping criterion based on a relative objective gap RELOBJGAP=
Specifies the scale of the problem matrix SCALE=
Specifies the stopping criterion based on the target objective value TARGET=
Specifies whether time units are CPU time or real time TIMETYPE=
Heuristics Option
Specifies the primal heuristics level HEURISTICS=
Search Options
Specifies the level of conflict search CONFLICTSEARCH=
Specifies the node selection strategy NODESEL=
Specifies the number of simplex iterations performed on each variable in
strong branching strategy

STRONGITER=

Specifies the number of candidates for strong branching STRONGLEN=
Specifies the rule for selecting branching variable VARSEL=
Cut Options
Specifies the cut level for all cuts ALLCUTS=
Specifies the clique cut level CUTCLIQUE=
Specifies the flow cover cut level CUTFLOWCOVER=
Specifies the flow path cut level CUTFLOWPATH=
Specifies the Gomory cut level CUTGOMORY=
Specifies the generalized upper bound (GUB) cover cut level CUTGUB=
Specifies the implied bounds cut level CUTIMPLIED=
Specifies the knapsack cover cut level CUTKNAPSACK=
Specifies the lift-and-project cut level CUTLAP=
Specifies the mixed lifted 0-1 cut level CUTMILIFTED=
Specifies the mixed integer rounding (MIR) cut level CUTMIR=
Specifies the row multiplier factor for cuts CUTSFACTOR=
Specifies the overall cut aggressiveness CUTSTRATEGY=
Specifies the zero-half cut level CUTZEROHALF=

In addition to the decomp-master-ip-options specified in Table 13.12, you can specify the following decomp-
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master-ip-option in the DECOMP_MASTER_IP statement.

PRIMALIN=number | string

PIN=number | string
specifies whether the MILP solver is to use the previous best solution’s variables values as a starting
solution (warm start). If the MILP solver finds that the input solution is feasible, then the input solution
provides an incumbent solution and a bound for the branch-and-bound algorithm. If the solution is not
feasible, the MILP solver tries to repair it. When it is difficult to find a good integer-feasible solution
for a problem, warm start can reduce solution time significantly. Table 13.13 describes the valid values
of the PRIMALIN= option.

Table 13.13 Values for PRIMALIN= Option

number string Description
0 OFF Ignores the previous solution.
1 ON Starts from the previous solution.

The default is ON.

DECOMP_SUBPROB Statement
DECOMP_SUBPROB < decomp-subprob-options > ;

SUBPROB < decomp-subprob-options > ;

The DECOMP_SUBPROB statement controls the subproblem.

Table 13.14 summarizes the options available for the decomposition algorithm in the DECOMP_SUBPROB
statement when the subproblem algorithm chosen is an LP algorithm. (As indicated, you can specify the
PRINTLEVEL= option only in the OPTLP procedure.) For descriptions of these options, see the section “LP
Solver Options” on page 186 and the section “PROC OPTLP Statement” on page 366.

The following default values differ from the LP solver defaults: ALGORITHM=PS, PRESOLVER=NONE,
and BASIS=WARMSTART (when METHOD=USER is specified in the DECOMP statement), and AL-
GORITHM=NETWORK_PURE (when METHOD=NETWORK is specified in the DECOMP statement).
For METHOD=USER, these defaults are motivated by the fact that primal feasibility of the subproblem
is preserved when the objective is changed, so a warm start from the previous optimal basis tends to be
more efficient than solving the subproblem from scratch in each iteration. For METHOD=NETWORK,
the specialized pure network solver is usually the most efficient choice because each subproblem is a pure
network.

Table 13.14 Options in the DECOMP_SUBPROB Statement Used with an LP Algorithm

Description decomp-subprob-option
Algorithm Option
Specifies the subproblem algorithm ALGORITHM=
Presolve Option
Specifies, for the first master solve only, the type of presolve INITPRESOLVER=
Specifies the type of presolve PRESOLVER=
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Table 13.14 (continued)

Description decomp-subprob-option
Control Options
Specifies the feasibility tolerance FEASTOL=
Specifies how frequently to print the solution progress LOGFREQ=
Specifies the level of detail of solution progress to print in the log LOGLEVEL=
Specifies the maximum number of iterations MAXITER=
Specifies the time limit for the optimization process MAXTIME=
Specifies the optimality tolerance OPTTOL=
Enables or disables printing summary (OPTLP procedure only) PRINTLEVEL=
Specifies whether time units are CPU time or real time TIMETYPE=
Simplex Algorithm Options
Specifies the type of initial basis BASIS=
Specifies the type of pricing strategy PRICETYPE=
Specifies the queue size for determining entering variable QUEUESIZE=
Enables or disables scaling of the problem SCALE=
Interior Point Algorithm Options
Enables or disables interior crossover CROSSOVER=
Specifies the stopping criterion based on duality gap STOP_DG=
Specifies the stopping criterion based on dual infeasibility STOP_DI=
Specifies the stopping criterion based on primal infeasibility STOP_PI=

Table 13.15 summarizes the options available in the DECOMP_SUBPROB statement when the subproblem
algorithm chosen is a MILP algorithm. When the subproblem consists of multiple blocks (a block-diagonal
structure), these settings apply to all subproblems. For descriptions of these options, see the section “MILP
Solver Options” on page 251 and the section “PROC OPTMILP Statement” on page 423.

Table 13.15 Options in the DECOMP_SUBPROB Statement Used with a MILP Algorithm

Description Option
Algorithm Option
Specifies the subproblem algorithm ALGORITHM=
Presolve Option
Specifies, for the first subproblem solve only, the type of presolve INITPRESOLVER=
Specifies the type of presolve PRESOLVER=
Control Options
Specifies the stopping criterion based on absolute objective gap ABSOBJGAP=
Specifies the cutoff value for node removal CUTOFF=
Emphasizes feasibility or optimality EMPHASIS=
Specifies the maximum violation on variables and constraints FEASTOL=
Specifies the maximum allowed difference between an integer variable’s
value and an integer

INTTOL=

Specifies how frequently to print the node log LOGFREQ=
Specifies the level of detail of solution progress to print in the log LOGLEVEL=
Specifies the maximum number of nodes to be processed MAXNODES=
Specifies the maximum number of solutions to be found MAXSOLS=
Specifies the time limit for the optimization process MAXTIME=
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Table 13.15 (continued)

Description Option
Specifies the tolerance used when deciding on the optimality of nodes in
the branch-and-bound tree

OPTTOL=

Specifies whether to use the previous best primal solution as a warm start PRIMALIN=
Specifies the probing level PROBE=
Specifies the stopping criterion based on relative objective gap RELOBJGAP=
Specifies the scale of the problem matrix SCALE=
Specifies the stopping criterion based on target objective value TARGET=
Specifies whether time units are CPU time or real time TIMETYPE=
Heuristics Option
Specifies the primal heuristics level HEURISTICS=
Search Options
Specifies the level of conflict search CONFLICTSEARCH=
Specifies the node selection strategy NODESEL=
Specifies the number of simplex iterations performed on each variable in
strong branching strategy

STRONGITER=

Specifies the number of candidates for strong branching STRONGLEN=
Specifies the rule for selecting branching variable VARSEL=
Cut Options
Specifies the cut level for all cuts ALLCUTS=
Specifies the clique cut level CUTCLIQUE=
Specifies the flow cover cut level CUTFLOWCOVER=
Specifies the flow path cut level CUTFLOWPATH=
Specifies the Gomory cut level CUTGOMORY=
Specifies the generalized upper bound (GUB) cover cut level CUTGUB=
Specifies the implied bounds cut level CUTIMPLIED=
Specifies the knapsack cover cut level CUTKNAPSACK=
Specifies the lift-and-project cut level CUTLAP=
Specifies the mixed lifted 0-1 cut level CUTMILIFTED=
Specifies the mixed integer rounding (MIR) cut level CUTMIR=
Specifies the row multiplier factor for cuts CUTSFACTOR=
Specifies the overall cut aggressiveness CUTSTRATEGY=
Specifies the zero-half cut level CUTZEROHALF=

In addition to the decomp-subprob-options specified in Table 13.14 and Table 13.15, you can specify the
following decomp-subprob-options in the DECOMP_SUBPROB statement.

ALGORITHM=string

SOLVER=string

SOL=string
specifies one of the algorithms shown in Table 13.16 (the valid abbreviated value for each string is
shown in parentheses).

Table 13.16 Values for ALGORITHM= Option

string Description
PRIMAL (PS) Uses the primal simplex algorithm.
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string Description
DUAL (DS) Uses the dual simplex algorithm.
NETWORK (NS) Uses the network simplex algorithm.
NETWORK_PURE (NSPURE) Uses the network simplex algorithm for pure networks.
INTERIORPOINT (IP) Uses the interior point algorithm.
MILP Uses the mixed integer linear solver.

For mixed integer programming problems, the default is NETWORK_PURE if METHOD=NETWORK
and MILP otherwise. For linear programming problems, the default is NETWORK_PURE if
METHOD=NETWORK, DUAL if METHOD=AUTO, and PS otherwise.

INITPRESOLVER=number | string

INITPRESOL=number | string
specifies, for the first subproblem solve only, presolve conditions as listed in Table 13.17.

Table 13.17 Values for INITPRESOLVER= Option

number string Description
–1 AUTOMATIC Applies the default level of presolve processing
0 NONE Disables presolver
1 BASIC Performs minimal presolve processing
2 MODERATE Applies a higher level of presolve processing
3 AGGRESSIVE Applies the highest level of presolve processing

The default is AUTOMATIC.

PRIMALIN=number | string

PIN=number | string
specifies (for MILP problems only) whether the MILP solver is to use the values of the previous best
solution’s variables as a starting solution (warm start). If the MILP solver finds that the input solution is
feasible, then the input solution provides an incumbent solution and a bound for the branch-and-bound
algorithm. If the solution is not feasible, the MILP solver tries to repair it. When it is difficult to
find a good integer-feasible solution for a problem, warm start can reduce solution time significantly.
Table 13.18 describes the valid values of the PRIMALIN= option.

Table 13.18 Values for PRIMALIN= Option

number string Description
0 OFF Ignores the previous solution.
1 ON Starts from the previous solution.

The default is ON.
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Details: Decomposition Algorithm

Data Input
This subsection describes the format for describing the partition of the constraint system that defines the
subproblem blocks. In the OPTLP and OPTMILP procedures, partitioning is done by using a data set
specified in the BLOCKS= data option in the DECOMP statement. In PROC OPTMODEL, partitioning is
done by using the .block suffix on constraints.

The blocks must be disjoint with respect to variables. If two blocks contain a nonzero coefficient for the same
variable, the decomposition algorithm produces an error that contains information about where the blocks
overlap.

The BLOCKS= Data Set in PROC OPTMILP and PROC OPTLP

The BLOCKS= data set has two required variables:

_ROW_
specifies the constraint (row) names of the problem. The values should be a subset of the row names in
the DATA= data set for the current problem.

_BLOCK_
specifies the numeric block identifier for each constraint in the problem. A missing observation or
missing value indicates a master (linking) constraint that does not appear in any block. Listing the
linking constraints is optional. The block identifiers must start from 0 and be consecutive.

See the section “Solving a MILP with DECOMP and PROC OPTMILP” on page 510 for an example of
using this BLOCKS= data set with PROC OPTMILP.

The .block Constraint Suffix in PROC OPTMODEL

The .block constraint suffix specifies the numeric block identifier for each constraint in the problem. The
block identifiers do not need to start from 0, nor do they need to be consecutive. Master (linking) constraints
can be identified by using a missing value. Listing the linking constraints is optional.

See the section “Solving a MILP with DECOMP and PROC OPTMODEL” on page 508 for an example of
using the .block constraint suffix with PROC OPTMODEL.

Decomposition Algorithm
The decomposition algorithm for LPs is based on the original Dantzig-Wolfe method (Dantzig and Wolfe
1960). Embedding this method in the context of a branch-and-bound algorithm for MILPs is described in
Barnhart, Hane, and Vance (2000) and is often referred to as branch-and-price. The design of a framework
that allows for building a generic branch-and-price solver that requires only the original (compact) formulation
and the constraint partition was first proposed independently by Ralphs and Galati (2006) and Vanderbeck
and Savelsbergh (2006). This method is also commonly referred to as column generation, although the
algorithm implemented here is only one specific variant of this wider class of algorithms.
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The algorithm setup starts by forming various components that are used iteratively during the solver process.
These components include the master problem (controlled by options in the DECOMP_MASTER statement),
one subproblem for each block (controlled by options in the DECOMP_SUBPROB statement) and, for
MILPs, the integer version of the master problem (controlled by options in the DECOMP_MASTER_IP
statement).

The master problem is a linear program that is defined over a potentially large number of variables that
represent the weights of a convex combination. The points in the convex combination satisfy the constraints
that are defined in the subproblem. The master constraints of the original problem are enforced in this
reformulated space. In this sense, the decomposition algorithm takes the intersection of two polyhedra:
one defined by original master constraints and one defined by the subproblem constraints. Since the set of
variables needed to define the intersection of the polyhedra can be large, the algorithm works on a restricted
subset and generates only those variables (columns) that have good potential with respect to feasibility and
optimality. This generation is done by using the dual information that is obtained by solving the master
problem to price out new variables. These new variables are generated by solving the subproblems over
the appropriate cost vector (the reduced cost in the original space). This generation is similar to the revised
simplex method, except that the variable space is exponentially large and therefore is generated implicitly by
solving an optimization problem. This idea of generating variables as needed is the reason why this method
is often referred to as column generation.

Similar to the two-phase simplex algorithm, the algorithm first introduces slack variables and solves a phase
I problem to find a feasible solution. After the algorithm finds a feasible solution, it switches to a phase II
problem to search for an optimal solution. The process of solving the master to generate pricing information
and then solving one or more subproblems to generate candidate variables is repeated until there are no
longer any improving variables and the method has converged.

For MILPs, this process is then used as a bounding method in a branch-and-bound algorithm, as described
in the section “Branch-and-Bound Algorithm” on page 435. The strength of the subproblem polyhedron
is one of the key reasons why decomposition can often solve problems that the standard branch-and-cut
algorithm cannot solve in a reasonable amount of time. Since the points used in the convex combination are
solutions (extreme points) of the subproblem (typically a MILP itself), then the bounds obtained can often be
much stronger than the bounds obtained from standard branch-and-bound methods that are based on the LP
relaxation. The subproblem polyhedron intersected with the continuous master polyhedron can provide a
very good approximation of the true convex hull of the original integer program.

For more information about the algorithm process flow and the framework design, see Galati (2009).

Parallel Execution
At each iteration of the decomposition method, the subproblem is solved over the reduced cost that is derived
from the dual information that solving the master problem provides. As discussed in the section “Overview:
Decomposition Algorithm” on page 505, the subproblem often has a block-diagonal structure that enables
the solver to process each block independently.

The decomposition algorithm can be run in either a single-machine or a distributed computing environment.
In single-machine mode, the computation is executed by multiple threads on a single computer. You can
specify options for parallel execution in the PERFORMANCE statement, which is documented in the section
“PERFORMANCE Statement” on page 28 of Chapter 4, “Shared Concepts and Topics.” You can control the
number of threads that are used by specifying the NTHREADS= option in the PERFORMANCE statement.
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In distributed mode, the computation is executed in a distributed computing environment. You can control the
number of grid nodes (machines) that are used by specifying the NODES= option in the PERFORMANCE
statement. The decomposition algorithm supports only the deterministic mode of the PARALLELMODE=
option in the PERFORMANCE statement. The default mode of operation is single-machine mode, where the
number of concurrent threads is based on the number of CPUs (cores) on the machine (subject to any system
configuration limitations).

NOTE: The SAS High-Performance Optimization license is required to invoke the DECOMP option in
distributed mode.

Log for the Decomposition Algorithm
The following subsections describe what to expect in the SAS log when you run the decomposition algorithm.

Setup Information in the SAS Log

In the setup phase of the algorithm, information about the method you choose and the structure of the model
is written to the SAS log. One of the most important pieces of information displayed in the log is the number
of disjoint blocks and the coverage of those blocks with respect to both variables and constraints in the
original presolved model. As explained in the section “Overview: Decomposition Algorithm” on page 505,
the decomposition algorithm usually performs better than standard approaches only if the subproblems cover
a significant amount of the original problem. However, this is not always a straightforward indicator for
MILPs, because the strength of the subproblem with respect to integrality is not always proportional to the
size of the system.

After the structural information is written to the log, the algorithm begins and the iteration log is displayed.

Iteration Log for LPs

When the decomposition algorithm solves LPs, the iteration log shows the progress of convergence in finding
the appropriate set of columns in the reformulated space.

The following information is written to the iteration log:

Iter indicates the iteration number.

Best Bound indicates the best dual bound found so far.

Master Objective indicates the current amount of infeasibility in phase I and the primal objective value of
the current solution in phase II.

Gap indicates the relative difference between the master objective and the best known dual
bound. This indicates how close the algorithm is to convergence. If the best bound is 0,
or if the relative gap is greater than 1000%, then the absolute gap is written.

CPU Time indicates the CPU time elapsed (in seconds).

Real Time indicates the real time elapsed (in seconds).

Entries are made in the log at a frequency that is specified in the LOGFREQ= option. If LOGFREQ=0, then
the iteration log is disabled. If the LOGFREQ= value is positive, then an entry is made in the log at the first
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iteration, at the last iteration, and at intervals that are specified by the LOGFREQ= value. An entry is also
made each time an improved bound is found.

The behavior of objective values in the iteration log depends on both the current phase and on which solver
you choose. In phase I, the master formulation has an artificial objective value that decreases to 0 when a
feasible solution is found. In phase II, the decomposition algorithm maintains a primal feasible solution, so a
minimization problem has decreasing objective values in the iteration log.

When you specify LOGLEVEL=MODERATE or LOGLEVEL=AGGRESSIVE in the DECOMP statement,
information about the subproblem solves is written before each iteration line.

Iteration Log for MILPs

When the decomposition algorithm solves MILPs, the iteration log shows the progress of convergence in
finding the appropriate set of columns in the reformulated space, in addition to the global convergence of the
branch-and-bound algorithm for finding an optimal integer solution.

You can control the amount of information at each node by using the LOGLEVEL= option in the DECOMP
statement. By default, the continuous iteration log for the root node is written at the interval specified in
the LOGFREQ= option in the DECOMP statement. Then the branch-and-bound node log is written at the
interval specified in the LOGFREQ= main solver option.

When the algorithm solves MILPs, the continuous iteration log is similar to the iteration log described in the
section “Iteration Log for LPs” on page 527 except that information about integer-feasible solutions is also
displayed. The following information is printed in the continuous iteration log when the algorithm solves
MILPs:

Iter indicates the iteration number.

Best Bound indicates the best dual bound found so far.

Master Objective indicates the current amount of infeasibility in phase I and the primal objective value of
the current solution in phase II.

Best Integer indicates the objective of the best integer-feasible solution found so far.

LP Gap indicates the relative difference between the master objective and the best known dual
bound. This indicates how close the algorithm for this particular node is to convergence.
If the best bound is 0, or if the relative gap is greater than 1000%, then the absolute gap
is displayed.

IP Gap indicates the relative difference between the best integer and the best known dual bound.
This indicates how close the branch-and-bound algorithm is to convergence. If the
best bound is 0, or if the relative gap is greater than 1000%, then the absolute gap is
displayed.

CPU Time indicates the CPU time elapsed (in seconds).

Real Time indicates the real time elapsed (in seconds).

After the root node is complete, the algorithm then moves into the branch-and-bound phase. By default,
it displays the branch-and-bound node log and suppresses the continuous iteration log. The following
information is printed in the branch-and-bound node log when the algorithm solves MILPs:
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Node indicates the sequence number of the current node in the search tree.

Active indicates the current number of active nodes in the branch-and-bound tree.

Sols indicates the number of feasible solutions found so far.

Best Integer indicates the objective of the best integer-feasible solution found so far.

Best Bound indicates the best dual bound found so far.

Gap indicates the relative difference between the best integer and the best known dual bound.
This indicates how close the branch-and-bound algorithm is to convergence. If the
best bound is 0, or if the relative gap is greater than 1000%, then the absolute gap is
displayed.

CPU Time indicates the CPU time elapsed (in seconds).

Real Time indicates the real time elapsed (in seconds).

If the LOGLEVEL= option in the DECOMP statement is set to BASIC, MODERATE or AGGRESSIVE,
then the continuous iteration log is displayed for each branch-and-bound node at the interval specified in the
LOGFREQ= option in the DECOMP statement.

Additional information can be displayed to the log by specifying the LOGLEVEL= option in each of the algo-
rithmic component statements (DECOMP_MASTER, DECOMP_MASTER_IP, and DECOMP_SUBPROB).
By default, the individual component log levels are all disabled.

Examples: Decomposition Algorithm

Example 13.1: Multicommodity Flow Problem
This example demonstrates how to use the decomposition algorithm to find a minimum-cost multicommodity
flow (MMCF) in a directed network. This type of problem was motivation for the development of the original
Dantzig-Wolfe decomposition method (Dantzig and Wolfe 1960).

Let G D .N;A/ be a directed graph, and let K be a set of commodities. For each link .i; j / 2 A and each
commodity k, associate a cost per unit of flow, designated by ckij . The demand (or supply) at each node
i 2 N for commodity k is designated as bki , where bki � 0 denotes a supply node and bki < 0 denotes a
demand node. Define decision variables xkij that denote the amount of commodity k sent from node i and
node j . The amount of total flow, across all commodities, that can be sent across each link is bounded above
by uij .
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The problem can be modeled as a linear programming problem as follows:

minimize
X
k2K

X
.i;j /2A

ckijx
k
ij

subject to
X
k2K

xkij � uij .i; j / 2 A (capacity)X
.i;j /2A

xkij �
X

.j;i/2A

xkji D b
k
i i 2 N; k 2 K (balance)

xkij � 0 .i; j / 2 A; k 2 K

In this formulation, constraints (capacity) limit the total flow across all commodities on each arc. The
constraints (balance) ensure that the flow of commodities leaving each supply node and entering each demand
node are balanced.

Consider the directed graph in Figure 13.3 which appears in Ahuja, Magnanti, and Orlin (1993).

Figure 13.3 Example Network with Two Commodities
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The goal in this example is to minimize the total cost of sending two commodities across the network while
satisfying all supplies and demands and respecting arc capacities. If there were no arc capacities linking the
two commodities, you could solve a separate minimum-cost network flow problem for each commodity one
at a time.

The following data set arc_comm_data provides the cost ckij of sending a unit of commodity k along arc
.i; j /:

data arc_comm_data;
input k i j cost;
datalines;

1 1 2 1
1 1 3 5
1 5 3 1
1 5 6 5
1 3 4 1
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1 4 2 5
1 4 6 1
2 1 2 1
2 1 3 5
2 5 3 1
2 5 6 5
2 3 4 1
2 4 2 5
2 4 6 1
;

Next, the data set arc_data provides the capacity uij for each arc:

data arc_data;
input i j capacity;
datalines;

1 2 5
1 3 30
5 3 30
5 6 30
3 4 10
4 2 30
4 6 30
;

Lastly, the data set supply_data provides the nonzero supply (or demand) bki for each node and each
commodity:

data supply_data;
input k i supply;
datalines;

1 1 10
1 2 -10
2 5 20
2 6 -20
;

The following PROC OPTMODEL statements find the minimum-cost multicommodity flow:

proc optmodel;
set <num,num,num> ARC_COMM;
num cost {ARC_COMM};
read data arc_comm_data into ARC_COMM=[i j k] cost;

set ARCS = setof {<i,j,k> in ARC_COMM} <i,j>;
set COMMODITIES = setof {<i,j,k> in ARC_COMM} k;
set NODES = union {<i,j> in ARCS} {i,j};

num capacity {ARCS};
read data arc_data into [i j] capacity;

num supply {NODES, COMMODITIES} init 0;
read data supply_data into [i k] supply;

var Flow {<i,j,k> in ARC_COMM} >= 0;
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min TotalCost =
sum {<i,j,k> in ARC_COMM} cost[i,j,k] * Flow[i,j,k];

con BalanceCon {i in NODES, k in COMMODITIES}:
sum {<(i),j,(k)> in ARC_COMM} Flow[i,j,k]
- sum {<j,(i),(k)> in ARC_COMM} Flow[j,i,k] = supply[i,k];

con CapacityCon {<i,j> in ARCS}:
sum {<(i),(j),k> in ARC_COMM} Flow[i,j,k] <= capacity[i,j];

Because each (balance) constraint involves variables for only one commodity, a decomposition by commodity
is a natural choice. In both the OPTLP and OPTMILP procedures, the block identifiers must be consecutive
integers starting from 0. In PROC OPTMODEL, the block identifiers only need to be numeric. The following
FOR loop populates the .block constraint suffix with block identifier k � 1 for commodity k:

for{i in NODES, k in COMMODITIES}
BalanceCon[i,k].block = k - 1;

The .block constraint suffix for the linking (capacity) constraints is left missing, so these constraints become
part of the master problem.

The following SOLVE statement uses the DECOMP= option to invoke the decomposition algorithm:

solve with LP / presolver=none decomp=() subprob=(algorithm=nspure);
print Flow;

quit;

Here, the PRESOLVER=NONE option is used, because otherwise the presolver solves this small instance
without invoking any solver. Because each subproblem is a pure network flow problem, you can use the
ALGORITHM=NSPURE option in the SUBPROB= option to request that a network simplex algorithm for
pure networks be used instead of the default algorithm, which for linear programming subproblems is primal
simplex.

It turns out for this example that if you specify METHOD=NETWORK (instead of the default
METHOD=USER) in the DECOMP= option, the network extractor finds the same blocks, one per commodity.
To invoke the METHOD=NETWORK option, simply change the SOLVE statement as follows:

solve with LP / presolver=none decomp=(method=network);

In this case, the default subproblem solver is NSPURE.

The optimal solution and solution summary are displayed in Output 13.1.1.
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Output 13.1.1 Solution Summary and Optimal Solution

The OPTMODEL Procedure

Solution Summary

Solver LP
Algorithm Decomposition
Objective Function TotalCost
Solution Status Optimal
Objective Value 150

Primal Infeasibility 0
Dual Infeasibility 0
Bound Infeasibility 0

Iterations 4
Presolve Time 0.00
Solution Time 0.11

[1] [2] [3] Flow

1 2 1 5
1 2 2 0
1 3 1 5
1 3 2 0
3 4 1 5
3 4 2 5
4 2 1 5
4 2 2 0
4 6 1 0
4 6 2 5
5 3 1 0
5 3 2 5
5 6 1 0
5 6 2 15

The optimal solution is shown on the network in Figure 13.4.
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Figure 13.4 Optimal Flow on Network with Two Commodities
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The iteration log, which contains the problem statistics, the progress of the solution, and the optimal objective
value, is shown in Output 13.1.2.

Output 13.1.2 Log

NOTE: There were 14 observations read from the data set WORK.ARC_COMM_DATA.
NOTE: There were 7 observations read from the data set WORK.ARC_DATA.
NOTE: There were 4 observations read from the data set WORK.SUPPLY_DATA.
NOTE: Problem generation will use 4 threads.
NOTE: The problem has 14 variables (0 free, 0 fixed).
NOTE: The problem has 19 linear constraints (7 LE, 12 EQ, 0 GE, 0 range).
NOTE: The problem has 42 linear constraint coefficients.
NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).
NOTE: The LP presolver value NONE is applied.
NOTE: The LP solver is called.
NOTE: The Decomposition algorithm is used.
NOTE: The Decomposition algorithm is executing in single-machine mode.
NOTE: The DECOMP method value USER is applied.
NOTE: The decomposition subproblems consist of 2 disjoint blocks.
NOTE: The decomposition subproblems cover 14 (100.00%) variables and 12 (63.16%)

constraints.
NOTE: The deterministic parallel mode is enabled.
NOTE: The Decomposition algorithm is using up to 4 threads.

Iter Best Master Gap CPU Real
Bound Objective Time Time

NOTE: Starting phase 1.
1 0.0000 15.0000 1.50e+01 0.0 0.0
3 0.0000 0.0000 0.00% 0.0 0.0

NOTE: Starting phase 2.
4 150.0000 150.0000 0.00% 0.0 0.0

NOTE: The Decomposition algorithm used 2 threads.
NOTE: The Decomposition algorithm time is 0.01 seconds.
NOTE: Optimal.
NOTE: Objective = 150.
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Example 13.2: Generalized Assignment Problem
The generalized assignment problem (GAP) is that of finding a maximum profit assignment from n tasks
to m machines such that each task is assigned to precisely one machine subject to capacity restrictions on
the machines. With each possible assignment, associate a binary variable xij , which, if set to 1, indicates
that machine i is assigned to task j . For ease of notation, define two index sets M D f1; : : : ; mg and
N D f1; : : : ; ng. A GAP can be formulated as a MILP as follows:

maximize
X
i2M

X
j2N

pijxij

subject to
X
i2M

xij D 1 j 2 N (assignment)X
j2N

wijxij � bi i 2M (knapsack)

xij 2 f0; 1g i 2M; j 2 N

In this formulation, constraints (assignment) ensure that each task is assigned to exactly one machine.
Inequalities (knapsack) ensure that for each machine, the capacity restrictions are met.

Consider the following example taken from Koch et al. (2011) with n D 24 tasks to be assigned to m D 8
machines. The data set profit_data provides the profit for assigning a particular task to a particular machine:

%let NumTasks = 24;
%let NumMachines = 8;

data profit_data;
input p1-p&NumTasks;
datalines;

25 23 20 16 19 22 20 16 15 22 15 21 20 23 20 22 19 25 25 24 21 17 23 17
16 19 22 22 19 23 17 24 15 24 18 19 20 24 25 25 19 24 18 21 16 25 15 20
20 18 23 23 23 17 19 16 24 24 17 23 19 22 23 25 23 18 19 24 20 17 23 23
16 16 15 23 15 15 25 22 17 20 19 16 17 17 20 17 17 18 16 18 15 25 22 17
17 23 21 20 24 22 25 17 22 20 16 22 21 23 24 15 22 25 18 19 19 17 22 23
24 21 23 17 21 19 19 17 18 24 15 15 17 18 15 24 19 21 23 24 17 20 16 21
18 21 22 23 22 15 18 15 21 22 15 23 21 25 25 23 20 16 25 17 15 15 18 16
19 24 18 17 21 18 24 25 18 23 21 15 24 23 18 18 23 23 16 20 20 19 25 21
;

The data set weight_data provides the amount of resources used by a particular task when assigned to a
particular machine:

data weight_data;
input w1-w&NumTasks;
datalines;

8 18 22 5 11 11 22 11 17 22 11 20 13 13 7 22 15 22 24 8 8 24 18 8
24 14 11 15 24 8 10 15 19 25 6 13 10 25 19 24 13 12 5 18 10 24 8 5
22 22 21 22 13 16 21 5 25 13 12 9 24 6 22 24 11 21 11 14 12 10 20 6
13 8 19 12 19 18 10 21 5 9 11 9 22 8 12 13 9 25 19 24 22 6 19 14
25 16 13 5 11 8 7 8 25 20 24 20 11 6 10 10 6 22 10 10 13 21 5 19
19 19 5 11 22 24 18 11 6 13 24 24 22 6 22 5 14 6 16 11 6 8 18 10
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24 10 9 10 6 15 7 13 20 8 7 9 24 9 21 9 11 19 10 5 23 20 5 21
6 9 9 5 12 10 16 15 19 18 20 18 16 21 11 12 22 16 21 25 7 14 16 10

;

Finally, the data set capacity_data provides the resource capacity for each machine:

data capacity_data;
input b @@;
datalines;

36 35 38 34 32 34 31 34
;

The following PROC OPTMODEL statements read in the data and define the necessary sets and parameters:

proc optmodel;
/* declare index sets */
set TASKS = 1..&NumTasks;
set MACHINES = 1..&NumMachines;

/* declare parameters */
num profit {MACHINES, TASKS};
num weight {MACHINES, TASKS};
num capacity {MACHINES};

/* read data sets to populate data */
read data profit_data into [i=_n_] {j in TASKS} <profit[i,j]=col('p'||j)>;
read data weight_data into [i=_n_] {j in TASKS} <weight[i,j]=col('w'||j)>;
read data capacity_data into [_n_] capacity=b;

The following statements declare the optimization model:

/* declare decision variables */
var Assign {MACHINES, TASKS} binary;

/* declare objective */
max TotalProfit =

sum {i in MACHINES, j in TASKS} profit[i,j] * Assign[i,j];

/* declare constraints */
con AssignmentCon {j in TASKS}:

sum {i in MACHINES} Assign[i,j] = 1;

con KnapsackCon {i in MACHINES}:
sum {j in TASKS} weight[i,j] * Assign[i,j] <= capacity[i];

The following statements use two different decompositions to solve the problem. The first decomposition
defines each assignment constraint as a block and uses the pure network simplex solver for the subproblem.
The second decomposition defines each knapsack constraint as a block and uses the MILP solver for the
subproblem.

/* each assignment constraint defines a block */
for{j in TASKS}

AssignmentCon[j].block = j;

solve with milp / logfreq=1000
decomp =()
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decomp_subprob=(algorithm=nspure);

/* each knapsack constraint defines a block */
for{j in TASKS}

AssignmentCon[j].block = .;
for{i in MACHINES}

KnapsackCon[i].block = i;

solve with milp / decomp=();
quit;

The solution summaries are displayed in Output 13.2.1.

Output 13.2.1 Solution Summaries

The OPTMODEL Procedure

Solution Summary

Solver MILP
Algorithm Decomposition
Objective Function TotalProfit
Solution Status Optimal within Relative Gap
Objective Value 563

Relative Gap 0.0000994814
Absolute Gap 0.0560135845
Primal Infeasibility 0
Bound Infeasibility 0
Integer Infeasibility 0

Best Bound 563.05601358
Nodes 8809
Iterations 9366
Presolve Time 0.01
Solution Time 44.06

Solution Summary

Solver MILP
Algorithm Decomposition
Objective Function TotalProfit
Solution Status Optimal
Objective Value 563

Relative Gap 0
Absolute Gap 0
Primal Infeasibility 0
Bound Infeasibility 0
Integer Infeasibility 0

Best Bound 563
Nodes 7
Iterations 44
Presolve Time 0.01
Solution Time 0.97
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The iteration log for both decompositions is shown in Output 13.2.2. This example is interesting because
it shows the tradeoff between the strength of the relaxation and the difficulty of its resolution. In the first
decomposition, the subproblems are totally unimodular and can be solved trivially. Consequently, each
iteration of the decomposition algorithm is very fast. However, the bound obtained is as weak as the bound
found in direct methods (the LP bound). The weaker bound leads to the need to enumerate more nodes
overall. Alternatively, in the second decomposition, the subproblem is the knapsack problem, which is solved
using MILP. In this case, the bound is much tighter and the problem solves in very few nodes. The tradeoff,
of course, is that each iteration takes longer because solving the knapsack problem is not trivial. Another
interesting aspect of this problem is that the subproblem coverage in the second decomposition is much
smaller than that of the first decomposition. However, when dealing with MILP, it is not always the size of
the coverage that determines the overall effectiveness of a particular choice of decomposition.
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Output 13.2.2 Log

NOTE: There were 8 observations read from the data set WORK.PROFIT_DATA.
NOTE: There were 8 observations read from the data set WORK.WEIGHT_DATA.
NOTE: There were 8 observations read from the data set WORK.CAPACITY_DATA.
NOTE: Problem generation will use 4 threads.
NOTE: The problem has 192 variables (0 free, 0 fixed).
NOTE: The problem has 192 binary and 0 integer variables.
NOTE: The problem has 32 linear constraints (8 LE, 24 EQ, 0 GE, 0 range).
NOTE: The problem has 384 linear constraint coefficients.
NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).
NOTE: The MILP presolver value AUTOMATIC is applied.
NOTE: The MILP presolver removed 0 variables and 0 constraints.
NOTE: The MILP presolver removed 0 constraint coefficients.
NOTE: The MILP presolver modified 0 constraint coefficients.
NOTE: The presolved problem has 192 variables, 32 constraints, and 384 constraint

coefficients.
NOTE: The MILP solver is called.
NOTE: The Decomposition algorithm is used.
NOTE: The Decomposition algorithm is executing in single-machine mode.
NOTE: The DECOMP method value USER is applied.
NOTE: The subproblem solver chosen is an LP solver but at least one block has integer

variables.
NOTE: The decomposition subproblems consist of 24 disjoint blocks.
NOTE: The decomposition subproblems cover 192 (100.00%) variables and 24 (75.00%)

constraints.
NOTE: The deterministic parallel mode is enabled.
NOTE: The Decomposition algorithm is using up to 4 threads.

Iter Best Master Best LP IP CPU Real
Bound Objective Integer Gap Gap Time Time

NOTE: Starting phase 1.
1 0.0000 8.9248 . 8.92e+00 . 0 0
4 0.0000 0.0000 . 0.00% . 0 0

NOTE: Starting phase 2.
5 574.0000 561.1588 . 2.24% . 0 0
6 568.8833 568.5610 . 0.06% . 0 0
7 568.6464 568.6464 . 0.00% . 0 0
. 568.6464 568.6464 562.0000 0.00% 1.17% 0 0

NOTE: Starting branch and bound.
Node Active Sols Best Best Gap CPU Real

Integer Bound Time Time
0 1 1 562.0000 568.6464 1.17% 0 0

1000 860 1 562.0000 565.1615 0.56% 5 4
2000 1534 1 562.0000 564.5238 0.45% 10 9
3000 1986 1 562.0000 564.1515 0.38% 16 14
4000 2258 1 562.0000 563.8829 0.33% 21 19
5000 2270 1 562.0000 563.6617 0.29% 27 24
6000 2104 1 562.0000 563.4776 0.26% 32 29
7000 1694 1 562.0000 563.3076 0.23% 38 34
8000 1092 1 562.0000 563.1618 0.21% 44 39
8242 884 2 563.0000 563.1363 0.02% 46 41
8808 318 2 563.0000 563.0560 0.01% 49 44

NOTE: The Decomposition algorithm used 4 threads.
NOTE: The Decomposition algorithm time is 44.19 seconds.
NOTE: Optimal within relative gap.
NOTE: Objective = 563.
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Output 13.2.2 continued

NOTE: The MILP presolver value AUTOMATIC is applied.
NOTE: The MILP presolver removed 0 variables and 0 constraints.
NOTE: The MILP presolver removed 0 constraint coefficients.
NOTE: The MILP presolver modified 0 constraint coefficients.
NOTE: The presolved problem has 192 variables, 32 constraints, and 384 constraint

coefficients.
NOTE: The MILP solver is called.
NOTE: The Decomposition algorithm is used.
NOTE: The Decomposition algorithm is executing in single-machine mode.
NOTE: The DECOMP method value USER is applied.
NOTE: The decomposition subproblems consist of 8 disjoint blocks.
NOTE: The decomposition subproblems cover 192 (100.00%) variables and 8 (25.00%)

constraints.
NOTE: The deterministic parallel mode is enabled.
NOTE: The Decomposition algorithm is using up to 4 threads.

Iter Best Master Best LP IP CPU Real
Bound Objective Integer Gap Gap Time Time

NOTE: Starting phase 1.
1 0.0000 7.0000 . 7.00e+00 . 0 0
5 0.0000 0.0000 . 0.00% . 0 0

NOTE: Starting phase 2.
6 672.9221 499.7295 . 25.74% . 0 0
8 653.1045 520.3731 . 20.32% . 0 0
9 607.0000 528.1905 . 12.98% . 0 0
10 607.0000 539.1556 . 11.18% . 0 0
. 607.0000 547.7045 547.0000 9.77% 9.88% 0 0
12 605.4928 548.8623 547.0000 9.35% 9.66% 0 0
13 603.2619 552.0952 547.0000 8.48% 9.33% 0 0
14 595.3226 555.3548 547.0000 6.71% 8.12% 0 0
15 590.4167 557.7500 547.0000 5.53% 7.35% 0 0
16 579.6429 558.5893 547.0000 3.63% 5.63% 0 0
17 576.5000 560.8750 547.0000 2.71% 5.12% 0 0
18 570.0000 563.4286 547.0000 1.15% 4.04% 0 0
19 566.2500 563.5000 547.0000 0.49% 3.40% 0 0
20 565.0000 564.0000 547.0000 0.18% 3.19% 0 0
. 565.0000 564.0000 562.0000 0.18% 0.53% 0 0
22 564.0000 564.0000 562.0000 0.00% 0.35% 0 0
. 564.0000 564.0000 562.0000 0.00% 0.35% 0 0

NOTE: Starting branch and bound.
Node Active Sols Best Best Gap CPU Real

Integer Bound Time Time
0 1 3 562.0000 564.0000 0.35% 0 0
5 1 4 563.0000 563.5000 0.09% 1 0
6 0 4 563.0000 563.0000 0.00% 1 0

NOTE: The Decomposition algorithm used 4 threads.
NOTE: The Decomposition algorithm time is 0.90 seconds.
NOTE: Optimal.
NOTE: Objective = 563.
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Example 13.3: Block-Diagonal Structure and METHOD=AUTO in
Single-Machine Mode

This example demonstrates how you can use the METHOD=AUTO option in the DECOMP statement to
execute the decomposition algorithm in single-machine mode.

Consider a mixed integer linear program that is defined by the MPS data set mpsdata. In this case, the
structure of the model is unknown and only the MPS data set is provided to you.

The following PROC OPTMILP statements attempt to solve the problem by using standard methods and a
15-second time limit:

proc optmilp
data = mpsdata
logfreq = 2000
maxtime = 15;

run;

The solution summary is shown in Output 13.3.1.

Output 13.3.1 Solution Summary

The OPTMILP Procedure

Solution Summary

Solver MILP
Algorithm Branch and Cut
Objective Function R0001298
Solution Status Time Limit Reached
Objective Value 133

Relative Gap 0.3965751025
Absolute Gap 37.767026308
Primal Infeasibility 0
Bound Infeasibility 0
Integer Infeasibility 0

Best Bound 95.232973692
Nodes 2268
Iterations 76252
Presolve Time 0.03
Solution Time 14.96

The iteration log, which contains the problem statistics and the progress of the solution, is shown in
Output 13.3.2.
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Output 13.3.2 Log

NOTE: The problem MPSDATA has 388 variables (36 binary, 0 integer, 1 free, 0 fixed).
NOTE: The problem has 1297 constraints (630 LE, 37 EQ, 630 GE, 0 range).
NOTE: The problem has 4204 constraint coefficients.
NOTE: The MILP presolver value AUTOMATIC is applied.
NOTE: The MILP presolver removed 37 variables and 37 constraints.
NOTE: The MILP presolver removed 424 constraint coefficients.
NOTE: The MILP presolver modified 0 constraint coefficients.
NOTE: The presolved problem has 351 variables, 1260 constraints, and 3780 constraint

coefficients.
NOTE: The MILP solver is called.
NOTE: The problem has a decomposable structure with 4 blocks. The largest block

covers 25.08% of the rows in the problem. The DECOMP option with METHOD=AUTO is
recommended for solving problems with this structure.

Node Active Sols BestInteger BestBound Gap Time
0 1 1 231.0000000 0 231.0 0
0 1 1 231.0000000 91.4479396 152.60% 0
0 1 2 198.0000000 91.8607875 115.54% 0
0 1 2 198.0000000 92.0019485 115.21% 0
0 1 2 198.0000000 92.0404035 115.12% 0
0 1 2 198.0000000 92.0404035 115.12% 1

NOTE: The MILP solver added 6 cuts with 32 cut coefficients at the root.
787 36 3 135.0000000 95.2329737 41.76% 6
957 185 4 133.0000000 95.2329737 39.66% 7

2000 1075 4 133.0000000 95.2329737 39.66% 13
2281 1298 4 133.0000000 95.2329737 39.66% 14

NOTE: CPU time limit reached.
NOTE: Objective of the best integer solution found = 133.

A note in the log suggests that you can use the decomposition algorithm because of the structure of the
problem. The following PROC OPTMILP statements use the METHOD=AUTO option in the DECOMP
statement in single-machine mode. The PERFORMANCE statement specifies the number of threads to be
used.

proc optmilp
data = mpsdata;
decomp

loglevel = 2
method = auto;

subprob
loglevel = 2;

performance
nthreads = 4;

run;

The performance information and solution summary are displayed in Output 13.3.3.



Example 13.3: Block-Diagonal Structure and METHOD=AUTO in Single-Machine Mode F 543

Output 13.3.3 Performance Information and Solution Summary

The OPTMILP Procedure

Performance Information

Execution Mode Single-Machine
Number of Threads 4

Solution Summary

Solver MILP
Algorithm Decomposition
Objective Function R0001298
Solution Status Optimal
Objective Value 120

Relative Gap 0
Absolute Gap 0
Primal Infeasibility 0
Bound Infeasibility 0
Integer Infeasibility 0

Best Bound 120
Nodes 1
Iterations 1
Presolve Time 0.03
Solution Time 2.48

The iteration log, which contains the problem statistics and the progress of the solution, is shown in
Output 13.3.4. When you specify NTHREADS=4 in the PERFORMANCE statement in single-machine
mode, each block is processed simultaneously on each of four threads.
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Output 13.3.4 Log

NOTE: The problem MPSDATA has 388 variables (36 binary, 0 integer, 1 free, 0 fixed).
NOTE: The problem has 1297 constraints (630 LE, 37 EQ, 630 GE, 0 range).
NOTE: The problem has 4204 constraint coefficients.
NOTE: The OPTMILP procedure is executing in single-machine mode.
NOTE: The MILP presolver value AUTOMATIC is applied.
NOTE: The MILP presolver removed 37 variables and 37 constraints.
NOTE: The MILP presolver removed 424 constraint coefficients.
NOTE: The MILP presolver modified 0 constraint coefficients.
NOTE: The presolved problem has 351 variables, 1260 constraints, and 3780 constraint

coefficients.
NOTE: The MILP solver is called.
NOTE: The Decomposition algorithm is used.
NOTE: The DECOMP method value AUTO is applied.
NOTE: The decomposition subproblems consist of 4 disjoint blocks.
NOTE: The decomposition subproblems cover 351 (100.00%) variables and 1260 (100.00%)

constraints.
NOTE: Block 0 has 88 (25.07%) variables and 316 (25.08%) constraints.
NOTE: Block 1 has 88 (25.07%) variables and 316 (25.08%) constraints.
NOTE: Block 2 has 88 (25.07%) variables and 316 (25.08%) constraints.
NOTE: Block 3 has 87 (24.79%) variables and 312 (24.76%) constraints.
NOTE: The deterministic parallel mode is enabled.
NOTE: The Decomposition algorithm is using up to 4 threads.
NOTE: -------------------------------------------------------------------------------
NOTE: Starting to process node 0.
NOTE: -------------------------------------------------------------------------------
NOTE: -------------------------------------------------------------------------------
NOTE: The subproblem solver for 4 blocks at iteration 0 is starting.
NOTE: -------------------------------------------------------------------------------
NOTE: The subproblem solver for block 0 at iteration 0 is starting on thread 1.
NOTE: The MILP presolver value AUTOMATIC is applied.
NOTE: The MILP presolver removed 0 variables and 0 constraints.
NOTE: The MILP presolver removed 0 constraint coefficients.
NOTE: The MILP presolver modified 0 constraint coefficients.
NOTE: The presolved problem has 88 variables, 316 constraints, and 948 constraint

coefficients.
NOTE: The MILP solver is called.

Node Active Sols BestInteger BestBound Gap Time
0 1 1 -16 -56 71.43% 0
0 1 1 -16 -34.1037735849 53.08% 0
0 1 1 -16 -34.1037735849 53.08% 0

41 34 2 -22 -32.8571428571 33.04% 0
80 49 3 -24 -31.5256410256 23.87% 0

100 56 3 -24 -30.8823529412 22.29% 0
134 35 4 -27 -30.1875 10.56% 0
200 34 4 -27 -28.4 4.93% 1
253 0 4 -27 -27 0.00% 1

NOTE: Optimal.
NOTE: Objective = -27.
NOTE: The subproblem solver for block 0 used 1.26 (cpu: 4.88) seconds.
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Output 13.3.4 continued

NOTE: -------------------------------------------------------------------------------
NOTE: -------------------------------------------------------------------------------
NOTE: The subproblem solver for block 1 at iteration 0 is starting on thread 2.
NOTE: The MILP presolver value AUTOMATIC is applied.
NOTE: The MILP presolver removed 0 variables and 0 constraints.
NOTE: The MILP presolver removed 0 constraint coefficients.
NOTE: The MILP presolver modified 0 constraint coefficients.
NOTE: The presolved problem has 88 variables, 316 constraints, and 948 constraint

coefficients.
NOTE: The MILP solver is called.

Node Active Sols BestInteger BestBound Gap Time
0 1 1 0 -59 100.00% 0
0 1 1 0 -35.3671970624 100.00% 0
0 1 2 -12 -35.3671970624 66.07% 0
0 1 3 -22 -35.3671970624 37.80% 0
0 1 3 -22 -35.3671970624 37.80% 0

29 25 4 -25 -34.6201565606 27.79% 0
100 71 5 -25 -33.3904056593 25.13% 0
166 89 7 -27 -32.8646661367 17.84% 1
186 52 8 -30 -32.3042378242 7.13% 1
200 48 8 -30 -32.0393180237 6.37% 1
267 0 8 -30 -30 0.00% 1

NOTE: Optimal.
NOTE: Objective = -30.
NOTE: The subproblem solver for block 1 used 1.43 (cpu: 5.40) seconds.
NOTE: -------------------------------------------------------------------------------
NOTE: -------------------------------------------------------------------------------
NOTE: The subproblem solver for block 3 at iteration 0 is starting on thread 4.
NOTE: The MILP presolver value AUTOMATIC is applied.
NOTE: The MILP presolver removed 0 variables and 0 constraints.
NOTE: The MILP presolver removed 0 constraint coefficients.
NOTE: The MILP presolver modified 0 constraint coefficients.
NOTE: The presolved problem has 87 variables, 312 constraints, and 936 constraint

coefficients.
NOTE: The MILP solver is called.

Node Active Sols BestInteger BestBound Gap Time
0 1 1 -16 -57 71.93% 0
0 1 1 -16 -33.8743589744 52.77% 0
0 1 1 -16 -33.8133333333 52.68% 0
0 1 1 -16 -33.7577927973 52.60% 0
0 1 1 -16 -33.7153309512 52.54% 0
0 1 2 -19 -33.7153309512 43.65% 0
0 1 2 -19 -33.7153309512 43.65% 0

NOTE: The MILP solver added 3 cuts with 18 cut coefficients at the root.
6 6 3 -20 -33.5685920578 40.42% 0

56 44 4 -22 -32.7647058824 32.85% 0
81 58 5 -23 -32.4088337685 29.03% 0

100 69 5 -23 -32.1129411765 28.38% 0
200 114 6 -23 -30.3005780347 24.09% 1
290 129 8 -24 -29.3214285714 18.15% 1
299 83 9 -26 -29.2063492063 10.98% 1
300 82 9 -26 -29.1785714286 10.89% 1
400 40 9 -26 -27.1111111111 4.10% 1
449 0 9 -26 -26 0.00% 1

NOTE: Optimal.
NOTE: Objective = -26.
NOTE: The subproblem solver for block 3 used 1.88 (cpu: 6.30) seconds.
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Output 13.3.4 continued

NOTE: -------------------------------------------------------------------------------
NOTE: -------------------------------------------------------------------------------
NOTE: The subproblem solver for block 2 at iteration 0 is starting on thread 3.
NOTE: The MILP presolver value AUTOMATIC is applied.
NOTE: The MILP presolver removed 0 variables and 0 constraints.
NOTE: The MILP presolver removed 0 constraint coefficients.
NOTE: The MILP presolver modified 0 constraint coefficients.
NOTE: The presolved problem has 88 variables, 316 constraints, and 948 constraint

coefficients.
NOTE: The MILP solver is called.

Node Active Sols BestInteger BestBound Gap Time
0 1 1 -9 -59 84.75% 0
0 1 1 -9 -36.2067307692 75.14% 0
0 1 2 -14 -35.8906956361 60.99% 0
0 1 2 -14 -35.7582989209 60.85% 0
0 1 2 -14 -35.7308331027 60.82% 0
0 1 2 -14 -35.7308331027 60.82% 0

NOTE: The MILP solver added 3 cuts with 14 cut coefficients at the root.
53 42 4 -19 -34.6324177369 45.14% 0
67 51 6 -20 -34.3787806049 41.82% 0
70 53 7 -21 -34.3787806049 38.92% 0

100 72 8 -21 -34.0784347526 38.38% 0
157 102 9 -22 -33.326652221 33.99% 0
200 124 9 -22 -32.8793103448 33.09% 1
233 130 11 -24 -32.5099569429 26.18% 1
244 104 12 -27 -32.4375 16.76% 1
267 90 13 -28 -32.0592920354 12.66% 1
300 100 13 -28 -31.6450098814 11.52% 1
400 69 14 -28 -29.6666666667 5.62% 1
489 0 14 -28 -28 0.00% 1

NOTE: Optimal.
NOTE: Objective = -28.
NOTE: The subproblem solver for block 2 used 1.98 (cpu: 6.41) seconds.
NOTE: -------------------------------------------------------------------------------
NOTE: The subproblem solver for 4 blocks used 1.99 (cpu: 6.41) seconds.
NOTE: -------------------------------------------------------------------------------
NOTE: The initial column pool after generating initial variables contains 4 columns.

Iter Best Master Best LP IP CPU Real
Bound Objective Integer Gap Gap Time Time

NOTE: Starting phase 2.
1 120.0000 120.0000 120.0000 0.00% 0.00% 6 1

NOTE: The number of active nodes is 0.
NOTE: The objective value of the best integer feasible solution is 120.0000 and the

best bound is 120.0000.
NOTE: The Decomposition algorithm used 4 threads.
NOTE: The Decomposition algorithm time is 2.00 seconds.
NOTE: Optimal.
NOTE: Objective = 120.



Example 13.4: Block-Diagonal Structure and METHOD=AUTO in Distributed Mode F 547

In this case, the solver found that, after presolve, the constraint matrix decomposed into block-diagonal form.
That is, all the constraints are covered by subproblem blocks, leaving the set of master constraints empty.
With no coupling constraints, the problem decomposes into four completely independent problems. If you
specify LOGLEVEL=2 in the DECOMP statement, the log displays the size of each block. The blocks in this
case are nicely balanced, allowing parallel execution to be efficient, and the solver finds the optimal solution
almost immediately.

Example 13.4: Block-Diagonal Structure and METHOD=AUTO in Distributed
Mode

This example demonstrates how you can use the METHOD=AUTO option in the DECOMP statement to
execute the decomposition algorithm in distributed mode.

As in Example 13.3, consider a mixed integer linear program that is defined by the MPS data set mpsdata. In
this case, the structure of the model is unknown and only the MPS data set is provided to you.

The following PROC OPTMILP statements use the METHOD=AUTO option in distributed mode. The
PERFORMANCE statement specifies the number of threads and nodes to be used.

proc optmilp
data = mpsdata;
decomp

loglevel = 2
method = auto;

performance
details
nthreads = 1
nodes = 4;

run;

The performance information and solution summary are displayed in Output 13.4.1.

Output 13.4.1 Performance Information and Solution Summary

The OPTMILP Procedure

Performance Information

Host Node <<your grid host>>
Execution Mode Distributed
Grid Mode Symmetric
Number of Compute Nodes 4
Number of Threads per Node 1
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Output 13.4.1 continued

Solution Summary

Solver MILP
Algorithm Decomposition
Objective Function R0001298
Solution Status Optimal
Objective Value 120

Relative Gap 0
Absolute Gap 0
Primal Infeasibility 0
Bound Infeasibility 0
Integer Infeasibility 0

Best Bound 120
Nodes 1
Iterations 1
Presolve Time 0.03
Solution Time 1.20

The iteration log, which contains the problem statistics and the progress of the solution, is shown in
Output 13.4.2. When you specify NODES=4 and NTHREADS=1 in the PERFORMANCE statement in
distributed mode, each block is processed simultaneously on each of four grid nodes.
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Output 13.4.2 Log

NOTE: The problem MPSDATA has 388 variables (36 binary, 0 integer, 1 free, 0 fixed).
NOTE: The problem has 1297 constraints (630 LE, 37 EQ, 630 GE, 0 range).
NOTE: The problem has 4204 constraint coefficients.
NOTE: The OPTMILP procedure is executing in the distributed computing environment

with 4 worker nodes.
NOTE: The MILP presolver value AUTOMATIC is applied.
NOTE: The MILP presolver removed 37 variables and 37 constraints.
NOTE: The MILP presolver removed 424 constraint coefficients.
NOTE: The MILP presolver modified 0 constraint coefficients.
NOTE: The presolved problem has 351 variables, 1260 constraints, and 3780 constraint

coefficients.
NOTE: The MILP solver is called.
NOTE: The Decomposition algorithm is used.
NOTE: The DECOMP method value AUTO is applied.
NOTE: The decomposition subproblems consist of 4 disjoint blocks.
NOTE: The decomposition subproblems cover 351 (100.00%) variables and 1260 (100.00%)

constraints.
NOTE: Block 0 has 88 (25.07%) variables and 316 (25.08%) constraints.
NOTE: Block 1 has 88 (25.07%) variables and 316 (25.08%) constraints.
NOTE: Block 2 has 88 (25.07%) variables and 316 (25.08%) constraints.
NOTE: Block 3 has 87 (24.79%) variables and 312 (24.76%) constraints.
NOTE: -----------------------------------------------------------------
NOTE: Starting to process node 0.
NOTE: -----------------------------------------------------------------
NOTE: The subproblem solver for 4 blocks at iteration 0 is starting.
NOTE: The subproblem solver for 4 blocks used 1.24 (cpu: 0.00) seconds.
NOTE: The initial column pool after generating initial variables contains 4 columns.

Iter Best Master Best LP IP Real
Bound Objective Integer Gap Gap Time

NOTE: Starting phase 2.
1 120.0000 120.0000 120.0000 0.00% 0.00% 1

NOTE: The number of active nodes is 0.
NOTE: The objective value of the best integer feasible solution is 120.0000 and the

best bound is 120.0000.
NOTE: The Decomposition algorithm time is 1.25 seconds.
NOTE: Optimal.
NOTE: Objective = 120.

Example 13.5: Resource Allocation Problem
This example describes a model for selecting tasks to be run on a shared resource (Gamrath 2010). Consider
a set I of tasks and a resource capacity C . Each item i 2 I has a profit pi , a resource utilization level
wi , a starting period si , and an ending period ei . The time horizon considered is from the earliest starting
time to the latest ending time of all tasks. With each task, associate a binary variable xi , which, if set
to 1, indicates that the task is running from its start time until just before its end time. A task consumes
capacity if it is running. The goal is to select which tasks to run in order to maximize profit while not
exceeding the shared resource capacity. Let S D fsi j i 2 I g define the set of start times for all tasks, and let
Ls D fi 2 I j si � s < eig define the set of tasks that are running at each start time s 2 S . The problem
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can be modeled as a mixed integer linear programming problem as follows:

maximize
X
i2I

pixi

subject to
X
i2Ls

wixi � C s 2 S (capacity)

xi 2 f0; 1g i 2 I

In this formulation, constraints (capacity) ensure that the running tasks do not exceed the resource capacity.
To illustrate, consider the following five-task example with data: pi D .6; 8; 5; 9; 8/, wi D .8; 5; 3; 4; 3/,
si D .1; 3; 5; 7; 8/, ei D .5; 8; 9; 17; 10/, and C D 10. The formulation leads to a constraint matrix that has
a staircase structure that is determined by tasks coming on and offline:

maximize 6x1 C 8x2 C 5x3 C 9x4 C 8x5
subject to 8x1 � 10

8x1 C 5x2 � 10

5x2 C 3x3 � 10

5x2 C 3x3 C 4x4 � 10

C 3x3 C 4x4 C 3x5 � 10

xi 2 f0; 1g i 2 I

Lagrangian Decomposition

This formulation clearly has no decomposable structure. However, you can use a common modeling technique
known as Lagrangian decomposition to bring the model into block-angular form. Lagrangian decomposition
works by first partitioning the constraints into blocks. Then, each original variable is split into multiple
copies of itself, one copy for each block in which the variable has a nonzero coefficient in the constraint
matrix. Constraints are added to enforce the equality of each copy of the original variable. Then, the original
constraints can be written in block-angular form by using the duplicate variables.

To apply Lagrangian decomposition to the resource allocation problem, define a set B of blocks and let Sb
define the set of start times for a given block b, such that S D [b2BSb . Given this partition of start times, let
Bi define the set of blocks in which task i 2 I is scheduled to be running. Now, for each task i 2 I , define
duplicate variables xbi for each b 2 Bi . Let mi define the minimum block index for each class of variable
that represents task i . The problem can now be modeled in block-angular form as follows:

maximize
X
i2I

pix
mi

i

subject to xbi D x
mi

i i 2 I; b 2 Bi n fmig (linking)X
i2Ls

wix
b
i � C b 2 B; s 2 Sb (capacity)

xbi 2 f0; 1g i 2 I; b 2 Bi

In this formulation, constraints (linking) ensure that the duplicate variables are equal to the original variables.
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Now, the five-task example has been transformed from a staircase structure to a block-angular structure:

maximize 6x11 C 8x12 C 5x23 C 9x24 C 8x35
subject to x12 � x22 D 0

x23 � x33 D 0

x24 � x34 D 0

8x11 � 10

8x11 C 5x12 � 10

5x22 C 3x23 � 10

5x22 C 3x23 C 4x24 � 10

3x33 C 4x34 C 3x35 � 10

xbi 2 f0; 1g i 2 I; b 2 Bi

To show how to apply Lagrangian decomposition in PROC OPTMODEL, consider the following data set
TaskData from Caprara, Furini, and Malaguti (2010) which consists of jI j D 2697 tasks:

data TaskData;
input profit weight start end;
datalines;

100 74 1 12
98 32 1 9
73 27 1 22
98 51 1 31

...
23 40 2684 2689
36 85 2685 2687
65 44 2686 2689
18 36 2687 2689
88 57 2688 2689

;

Using the MILP Solver Directly in PROC OPTMODEL

The following PROC OPTMODEL statements read in the data and solve the original staircase formulation by
calling the MILP solver directly:

%macro SetupData(task_data=, capacity=);
set TASKS;
num capacity=&capacity;
num profit{TASKS}, weight{TASKS}, start{TASKS}, end{TASKS};

read data &task_data into TASKS=[_n_] profit weight start end;
/* the set of start times */

set STARTS = setof{i in TASKS} start[i];
/* the set of tasks i that are active at a given start time s */
set TASKS_START{s in STARTS}

= {i in TASKS: start[i] <= s < end[i]};
%mend SetupData;

%macro ResourceAllocation_Direct(task_data=, capacity=);
proc optmodel;
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%SetupData(task_data=&task_data,capacity=&capacity);

/* select task i to come online from period [start to end) */
var x{TASKS} binary;

/* maximize the total profit of running tasks */
max TotalProfit = sum{i in TASKS} profit[i] * x[i];

/* enforce that the shared resource capacity is not exceeded */
con CapacityCon{s in STARTS}:

sum{i in TASKS_START[s]} weight[i] * x[i] <= capacity;

solve;
quit;

%mend ResourceAllocation_Direct;

%ResourceAllocation_Direct(task_data=TaskData, capacity=100);

The problem summary and solution summary are displayed in Output 13.5.1.

Output 13.5.1 Problem Summary and Solution Summary

The OPTMODEL Procedure

Problem Summary

Objective Sense Maximization
Objective Function TotalProfit
Objective Type Linear

Number of Variables 2697
Bounded Above 0
Bounded Below 0
Bounded Below and Above 2697
Free 0
Fixed 0
Binary 2697
Integer 0

Number of Constraints 2688
Linear LE (<=) 2688
Linear EQ (=) 0
Linear GE (>=) 0
Linear Range 0

Constraint Coefficients 26880
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Output 13.5.1 continued

Solution Summary

Solver MILP
Algorithm Branch and Cut
Objective Function TotalProfit
Solution Status Optimal within Relative Gap
Objective Value 62523.999618

Relative Gap 1.5493144E-8
Absolute Gap 0.0009686933
Primal Infeasibility 0
Bound Infeasibility 1.776357E-15
Integer Infeasibility 7.3474993E-6

Best Bound 62524.000587
Nodes 441
Iterations 26866
Presolve Time 1.53
Solution Time 261.86

The iteration log, which contains the problem statistics, the progress of the solution, and the optimal objective
value, is shown in Output 13.5.2.
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Output 13.5.2 Log

NOTE: There were 2697 observations read from the data set WORK.TASKDATA.
NOTE: Problem generation will use 4 threads.
NOTE: The problem has 2697 variables (0 free, 0 fixed).
NOTE: The problem has 2697 binary and 0 integer variables.
NOTE: The problem has 2688 linear constraints (2688 LE, 0 EQ, 0 GE, 0 range).
NOTE: The problem has 26880 linear constraint coefficients.
NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).
NOTE: The OPTMODEL presolver is disabled for linear problems.
NOTE: The MILP presolver value AUTOMATIC is applied.
NOTE: The MILP presolver removed 0 variables and 0 constraints.
NOTE: The MILP presolver removed 0 constraint coefficients.
NOTE: The MILP presolver modified 0 constraint coefficients.
NOTE: The presolved problem has 2697 variables, 2688 constraints, and 26880

constraint coefficients.
NOTE: The MILP solver is called.

Node Active Sols BestInteger BestBound Gap Time
0 1 3 54182.0000000 145710 62.82% 2
0 1 3 54182.0000000 73230.2096818 26.01% 2
0 1 6 60619.0000000 70135.8936905 13.57% 3
0 1 7 61216.0000000 68409.0687245 10.51% 4
0 1 7 61216.0000000 67068.0202769 8.73% 5
0 1 7 61216.0000000 66038.0918000 7.30% 6
0 1 7 61216.0000000 65190.7829592 6.10% 7
0 1 7 61216.0000000 64529.6958613 5.14% 8
0 1 7 61216.0000000 64125.0294474 4.54% 9
0 1 7 61216.0000000 63815.0136796 4.07% 10
0 1 7 61216.0000000 63608.2185226 3.76% 10
0 1 7 61216.0000000 63404.4123225 3.45% 10
0 1 7 61216.0000000 63294.7183240 3.28% 11
0 1 7 61216.0000000 63177.6963133 3.11% 11
0 1 7 61216.0000000 63113.0842876 3.01% 11
0 1 7 61216.0000000 63066.7776464 2.93% 11
0 1 7 61216.0000000 62999.6013180 2.83% 11
0 1 7 61216.0000000 62956.5482043 2.76% 11
0 1 7 61216.0000000 62927.3931008 2.72% 11
0 1 7 61216.0000000 62910.5094398 2.69% 12
0 1 7 61216.0000000 62896.8720091 2.67% 12
0 1 7 61216.0000000 62881.4558122 2.65% 12
0 1 7 61216.0000000 62865.7212258 2.62% 12
0 1 8 61282.0000000 62865.7212258 2.52% 12
0 1 8 61282.0000000 62865.7212258 2.52% 12

NOTE: The MILP solver added 1257 cuts with 8396 cut coefficients at the root.
63 61 12 62424.0000000 62814.4025787 0.62% 47

100 97 12 62424.0000000 62807.4025787 0.61% 65
161 151 13 62446.0000000 62758.4665642 0.50% 99
200 187 13 62446.0000000 62739.3314203 0.47% 112
243 175 15 62465.0000000 62718.8175688 0.40% 130
251 124 17 62493.0000000 62717.7127884 0.36% 131
252 110 18 62517.0000000 62715.6822161 0.32% 131
300 102 18 62517.0000000 62603.6811810 0.14% 136
400 26 18 62517.0000000 62524.0404223 0.01% 137
440 36 19 62523.9996179 62524.0005866 0.00% 139

NOTE: Optimal within relative gap.
NOTE: Objective = 62523.999618.
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Using the Decomposition Algorithm in PROC OPTMODEL

To transform this data into block-angular form, first sort the task data to help reduce the number of duplicate
variables needed in the reformulation as follows:

proc sort data=TaskData;
by start end;

run;

Then, create the partition of constraints into blocks of size block_size as follows:

%macro ResourceAllocation_Decomp(task_data=, capacity=, block_size=);
proc optmodel;

%SetupData(task_data=&task_data,capacity=&capacity);
/* partition into blocks of size blocks_size */
num block_size = &block_size;
num num_blocks = ceil( card(TASKS) / block_size );
set BLOCKS = 1..num_blocks;

/* the set of starts s for which task i is active */
set STARTS_TASK{i in TASKS} = {s in STARTS: start[i] <= s < end[i]};

/* partition the start times into blocks of size block_size */
set STARTS_BLOCK{BLOCKS} init {};
num block_id init 1;
num block_count init 0;
for{s in STARTS} do;

STARTS_BLOCK[block_id] = STARTS_BLOCK[block_id] union {s};
block_count = block_count + 1;
if(mod(block_count, block_size) = 0) then

block_id = block_id + 1;
end;

Then, the following PROC OPTMODEL statements define the block-angular formulation and solve the
problem by using the decomposition algorithm, the PRESOLVER=BASIC option, and block_size=40.
Because this reformulation is equivalent to the original staircase formulation, disabling some of the advanced
presolver techniques ensures that the model maintains block-angularity.

/* blocks in which task i is online */
set BLOCKS_TASK{i in TASKS} =

{b in BLOCKS: card(STARTS_BLOCK[b] inter STARTS_TASK[i]) > 0};

/* minimum block id in which task i is online */
num min_block{i in TASKS} = min{b in BLOCKS_TASK[i]} b;

/* select task i to come online from period [start to end)
in each block */

var x{i in TASKS, b in BLOCKS_TASK[i]} binary;

/* maximize the total profit of running tasks */
max TotalProfit = sum{i in TASKS} profit[i] * x[i,min_block[i]];

/* enforce that task selection is consistent across blocks */
con LinkDupVarsCon{i in TASKS, b in BLOCKS_TASK[i] diff {min_block[i]}}:

x[i,b] = x[i,min_block[i]];
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/* enforce that the shared resource capacity is not exceeded */
con CapacityCon{b in BLOCKS, s in STARTS_BLOCK[b]}:

sum{i in TASKS_START[s]} weight[i] * x[i,b] <= capacity;

/* define blocks for decomposition algorithm */
for{b in BLOCKS, s in STARTS_BLOCK[b]} CapacityCon[b,s].block = b;

solve with milp / presolver=basic decomp=();
quit;

%mend ResourceAllocation_Decomp;

%ResourceAllocation_Decomp(task_data=TaskData, capacity=100, block_size=40);

The problem summary and solution summary are displayed in Output 13.5.3. Compared to the original
formulation, the number of variables and constraints is increased by the number of duplicate variables.

Output 13.5.3 Problem Summary and Solution Summary

The OPTMODEL Procedure

Problem Summary

Objective Sense Maximization
Objective Function TotalProfit
Objective Type Linear

Number of Variables 3300
Bounded Above 0
Bounded Below 0
Bounded Below and Above 3300
Free 0
Fixed 0
Binary 3300
Integer 0

Number of Constraints 3291
Linear LE (<=) 2688
Linear EQ (=) 603
Linear GE (>=) 0
Linear Range 0

Constraint Coefficients 28086
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Output 13.5.3 continued

Solution Summary

Solver MILP
Algorithm Decomposition
Objective Function TotalProfit
Solution Status Optimal within Relative Gap
Objective Value 62524.000668

Relative Gap 0.0000640802
Absolute Gap 4.0068056181
Primal Infeasibility 6.661338E-16
Bound Infeasibility 8.881784E-16
Integer Infeasibility 8.4375E-6

Best Bound 62528.007474
Nodes 4
Iterations 55
Presolve Time 1.66
Solution Time 47.86

The iteration log, which contains the problem statistics, the progress of the solution, and the optimal objective
value, is shown in Output 13.5.4.
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Output 13.5.4 Log

NOTE: There were 2697 observations read from the data set WORK.TASKDATA.
NOTE: Problem generation will use 4 threads.
NOTE: The problem has 3300 variables (0 free, 0 fixed).
NOTE: The problem has 3300 binary and 0 integer variables.
NOTE: The problem has 3291 linear constraints (2688 LE, 603 EQ, 0 GE, 0 range).
NOTE: The problem has 28086 linear constraint coefficients.
NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).
NOTE: The MILP presolver value BASIC is applied.
NOTE: The MILP presolver removed 0 variables and 0 constraints.
NOTE: The MILP presolver removed 0 constraint coefficients.
NOTE: The MILP presolver modified 0 constraint coefficients.
NOTE: The presolved problem has 3300 variables, 3291 constraints, and 28086

constraint coefficients.
NOTE: The MILP solver is called.
NOTE: The Decomposition algorithm is used.
NOTE: The Decomposition algorithm is executing in single-machine mode.
NOTE: The DECOMP method value USER is applied.
NOTE: The decomposition subproblems consist of 68 disjoint blocks.
NOTE: The decomposition subproblems cover 3300 (100.00%) variables and 2688 (81.68%)

constraints.
NOTE: The deterministic parallel mode is enabled.
NOTE: The Decomposition algorithm is using up to 4 threads.

Iter Best Master Best LP IP CPU Real
Bound Objective Integer Gap Gap Time Time

NOTE: Starting phase 1.
1 0.0000 0.0000 . 0.00% . 1 0

NOTE: Starting phase 2.
. 65890.0001 54007.0000 54007.0000 18.03% 18.03% 1 0
3 65890.0001 54659.0000 54659.0000 17.05% 17.05% 6 2
4 65890.0001 55249.0000 55249.0000 16.15% 16.15% 8 2
6 65890.0001 55639.0000 55639.0000 15.56% 15.56% 14 4
10 65890.0001 57285.3335 55639.0000 13.06% 15.56% 24 7
. 65890.0001 58309.2001 57390.0000 11.51% 12.90% 24 7
16 65298.6567 61601.4676 57390.0000 5.66% 12.11% 41 12
17 64224.7955 61814.7507 57390.0000 3.75% 10.64% 44 13
18 63589.7549 62035.7507 57390.0000 2.44% 9.75% 47 14
19 63458.0056 62107.9174 57390.0000 2.13% 9.56% 49 15
20 63458.0056 62280.8344 57390.0000 1.86% 9.56% 52 16
. 63458.0056 62280.8344 61498.0006 1.86% 3.09% 52 16
21 63265.1802 62280.8344 61498.0006 1.56% 2.79% 56 17
22 63003.0064 62407.2675 61498.0006 0.95% 2.39% 59 19
23 62744.1043 62418.2678 61498.0006 0.52% 1.99% 62 20
25 62682.0867 62468.8343 61498.0006 0.34% 1.89% 70 22
26 62623.1709 62491.5343 61498.0006 0.21% 1.80% 73 23
30 62623.1709 62507.0163 61498.0006 0.19% 1.80% 87 27
. 62623.1709 62507.0163 61965.0006 0.19% 1.05% 87 27
31 62589.3380 62507.0163 61965.0006 0.13% 1.00% 90 28
32 62574.3405 62517.8345 61965.0006 0.09% 0.97% 93 29
33 62550.3388 62521.8345 61965.0006 0.05% 0.94% 97 30
34 62537.3384 62521.8345 61965.0006 0.02% 0.92% 99 31
35 62532.6716 62526.6679 61965.0006 0.01% 0.91% 102 32

NOTE: The Decomposition algorithm stopped on the continuous RELOBJGAP= option.
NOTE: Starting branch and bound.
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Output 13.5.4 continued

Node Active Sols Best Best Gap CPU Real
Integer Bound Time Time

0 1 9 61965.0006 62532.6716 0.91% 102 32
3 1 11 62524.0007 62528.0075 0.01% 161 51

NOTE: The Decomposition algorithm used 4 threads.
NOTE: The Decomposition algorithm time is 51.12 seconds.
NOTE: Optimal within relative gap.
NOTE: Objective = 62524.000668.

Using a Hybrid Method in PROC OPTMODEL

The decomposition algorithm solves the problem in fewer nodes due to the stronger bound obtained by the
reformulation. However, it takes longer than the direct method to find a good feasible solution. The fact that
the direct method seems to quickly find good feasible solutions but has weaker bounds motivates the use of a
hybrid algorithm. In the macro %ResourceAllocation_Decomp, replace the statement,

solve with milp / presolver=basic decomp=();

with the following statements:

solve with milp / relobjgap=0.1;
solve with milp / presolver=basic primalin decomp=();

These statements use the direct method with RELOBJGAP=0.1 to find a good starting solution and then use
that result to seed the initial columns of the decomposition algorithm.

The solution summaries are displayed in Output 13.5.5.

Output 13.5.5 Solution Summaries

The OPTMODEL Procedure

Solution Summary

Solver MILP
Algorithm Branch and Cut
Objective Function TotalProfit
Solution Status Optimal within Relative Gap
Objective Value 61276

Relative Gap 0.0863603883
Absolute Gap 5792.0202769
Primal Infeasibility 0
Bound Infeasibility 0
Integer Infeasibility 0

Best Bound 67068.020277
Nodes 1
Iterations 2523
Presolve Time 1.40
Solution Time 5.07
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Output 13.5.5 continued

Solution Summary

Solver MILP
Algorithm Decomposition
Objective Function TotalProfit
Solution Status Optimal within Relative Gap
Objective Value 62524.000477

Relative Gap 0.0000559987
Absolute Gap 3.5014588178
Primal Infeasibility 1.421085E-14
Bound Infeasibility 7.327472E-15
Integer Infeasibility 8.3333333E-6

Best Bound 62527.501936
Nodes 3
Iterations 39
Presolve Time 1.63
Solution Time 35.56

The iteration log, which contains the problem statistics, the progress of the solution, and the optimal objective
value, is shown in Output 13.5.6.

Output 13.5.6 Log

NOTE: There were 2697 observations read from the data set WORK.TASKDATA.
NOTE: Problem generation will use 4 threads.
NOTE: The problem has 3300 variables (0 free, 0 fixed).
NOTE: The problem has 3300 binary and 0 integer variables.
NOTE: The problem has 3291 linear constraints (2688 LE, 603 EQ, 0 GE, 0 range).
NOTE: The problem has 28086 linear constraint coefficients.
NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).
NOTE: The MILP presolver value AUTOMATIC is applied.
NOTE: The MILP presolver removed 603 variables and 603 constraints.
NOTE: The MILP presolver removed 1206 constraint coefficients.
NOTE: The MILP presolver modified 0 constraint coefficients.
NOTE: The presolved problem has 2697 variables, 2688 constraints, and 26880

constraint coefficients.
NOTE: The MILP solver is called.

Node Active Sols BestInteger BestBound Gap Time
0 1 3 54609.0000000 145710 62.52% 2
0 1 3 54609.0000000 73230.2096818 25.43% 2
0 1 6 60619.0000000 70135.8936905 13.57% 3
0 1 7 61276.0000000 68409.0687245 10.43% 4
0 1 7 61276.0000000 67068.0202769 8.64% 5

NOTE: The MILP solver added 498 cuts with 2624 cut coefficients at the root.
NOTE: Optimal within relative gap.
NOTE: Objective = 61276.
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Output 13.5.6 continued

NOTE: The MILP presolver value BASIC is applied.
NOTE: The MILP presolver removed 0 variables and 0 constraints.
NOTE: The MILP presolver removed 0 constraint coefficients.
NOTE: The MILP presolver modified 0 constraint coefficients.
NOTE: The presolved problem has 3300 variables, 3291 constraints, and 28086

constraint coefficients.
NOTE: The MILP solver is called.
NOTE: The Decomposition algorithm is used.
NOTE: The Decomposition algorithm is executing in single-machine mode.
NOTE: The DECOMP method value USER is applied.
NOTE: The decomposition subproblems consist of 68 disjoint blocks.
NOTE: The decomposition subproblems cover 3300 (100.00%) variables and 2688 (81.68%)

constraints.
NOTE: The deterministic parallel mode is enabled.
NOTE: The Decomposition algorithm is using up to 4 threads.

Iter Best Master Best LP IP CPU Real
Bound Objective Integer Gap Gap Time Time

NOTE: Starting phase 1.
1 0.0000 0.0000 . 0.00% . 1 0

NOTE: Starting phase 2.
2 65889.9999 61419.0000 61419.0000 6.79% 6.79% 3 1
3 65889.9999 61451.0000 61451.0000 6.74% 6.74% 5 1
6 65889.9999 61524.0000 61524.0000 6.63% 6.63% 12 4
10 65889.9999 61814.0000 61524.0000 6.19% 6.63% 21 7
. 65889.9999 61995.0000 61561.0000 5.91% 6.57% 21 7
11 65705.2771 61995.0000 61561.0000 5.65% 6.31% 23 7
13 63865.3250 62218.3572 61561.0000 2.58% 3.61% 28 9
14 63453.5848 62378.3334 61561.0000 1.69% 2.98% 31 10
15 62892.5013 62419.1251 61561.0000 0.75% 2.12% 34 11
16 62892.5013 62487.0001 62487.0001 0.64% 0.64% 37 12
17 62892.5013 62494.0004 62494.0004 0.63% 0.63% 39 12
18 62710.3361 62521.0015 62494.0004 0.30% 0.34% 42 13
19 62636.0029 62525.0015 62494.0004 0.18% 0.23% 44 14
20 62620.3345 62527.3348 62494.0004 0.15% 0.20% 47 15
. 62620.3345 62528.3338 62519.0004 0.15% 0.16% 48 15
21 62579.3348 62528.3338 62519.0004 0.08% 0.10% 51 16
22 62534.3344 62528.3338 62519.0004 0.01% 0.02% 54 17

NOTE: The Decomposition algorithm stopped on the continuous RELOBJGAP= option.
NOTE: Starting branch and bound.

Node Active Sols Best Best Gap CPU Real
Integer Bound Time Time

0 1 8 62519.0004 62534.3344 0.02% 54 17
2 0 9 62524.0005 62527.5019 0.01% 102 33

NOTE: The Decomposition algorithm used 4 threads.
NOTE: The Decomposition algorithm time is 33.22 seconds.
NOTE: Optimal within relative gap.
NOTE: Objective = 62524.000477.

By using this hybrid method, you can take advantage of the direct method, which finds a good feasible
solution quickly, and the strong bounds provided by the decomposition algorithm. The overall time to solve
the model by using the hybrid method is faster than either of the other two.
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The Tradeoff between Coverage and Subproblem Difficulty

The reformulation of this resource allocation problem provides a nice example of the potential tradeoffs in
modeling a problem for use with the decomposition algorithm. As seen in Example 13.2, the strength of the
bound is an important factor in the overall performance of the algorithm, but it is not always correlated to the
magnitude of the subproblem coverage. In this example, the block size determines the number of blocks.
Moreover, it determines the number of linking variables that are needed in the reformulation. At one extreme,
if the block size is set to be jS j, then the number of blocks is 1, and the number of copies of original variables
is 0. Using one block would be equivalent to the original staircase formulation and would not yield a model
conducive to decomposition. As the number of blocks is increased, the number of linking variables increases
(the size of the master problem), the strength of the decomposition bound decreases, and the difficulty of
solving the subproblems decreases. In addition, as the number of blocks and their relative difficulty change,
the efficient utilization of your machine’s parallel architecture can be affected.

The previous section used a block size of 40. The following statement calls the decomposition algorithm and
uses a block size of 130:

%ResourceAllocation_Decomp(task_data=TaskData, capacity=100, block_size=130);

The solution summary is displayed in Output 13.5.7.

Output 13.5.7 Solution Summary

The OPTMODEL Procedure

Solution Summary

Solver MILP
Algorithm Decomposition
Objective Function TotalProfit
Solution Status Conditionally Optimal
Objective Value 62524.000312

Relative Gap 0.0000746713
Absolute Gap 4.6690962869
Primal Infeasibility 9.5560876E-6
Bound Infeasibility 1.776357E-15
Integer Infeasibility 9.5560876E-6

Best Bound 62528.669409
Nodes 1
Iterations 22
Presolve Time 2.60
Solution Time 27.04

The iteration log, which contains the problem statistics, the progress of the solution, and the optimal objective
value, is shown in Output 13.5.8.
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Output 13.5.8 Log

NOTE: There were 2697 observations read from the data set WORK.TASKDATA.
NOTE: Problem generation will use 4 threads.
NOTE: The problem has 2877 variables (0 free, 0 fixed).
NOTE: The problem has 2877 binary and 0 integer variables.
NOTE: The problem has 2868 linear constraints (2688 LE, 180 EQ, 0 GE, 0 range).
NOTE: The problem has 27240 linear constraint coefficients.
NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).
NOTE: The MILP presolver value BASIC is applied.
NOTE: The MILP presolver removed 0 variables and 0 constraints.
NOTE: The MILP presolver removed 0 constraint coefficients.
NOTE: The MILP presolver modified 0 constraint coefficients.
NOTE: The presolved problem has 2877 variables, 2868 constraints, and 27240

constraint coefficients.
NOTE: The MILP solver is called.
NOTE: The Decomposition algorithm is used.
NOTE: The Decomposition algorithm is executing in single-machine mode.
NOTE: The DECOMP method value USER is applied.
NOTE: The decomposition subproblems consist of 21 disjoint blocks.
NOTE: The decomposition subproblems cover 2877 (100.00%) variables and 2688 (93.72%)

constraints.
NOTE: The deterministic parallel mode is enabled.
NOTE: The Decomposition algorithm is using up to 4 threads.

Iter Best Master Best LP IP CPU Real
Bound Objective Integer Gap Gap Time Time

NOTE: Starting phase 1.
1 0.0000 0.0000 . 0.00% . 2 0

NOTE: Starting phase 2.
. 63337.0002 51369.0000 51369.0000 18.90% 18.90% 2 0
3 63337.0002 51989.0000 51989.0000 17.92% 17.92% 8 2
10 63337.0002 61546.0016 51989.0000 2.83% 17.92% 29 10
. 63337.0002 61824.1123 60178.9998 2.39% 4.99% 29 10
13 63124.2360 62171.2306 60178.9998 1.51% 4.67% 38 13
14 63106.9999 62354.0001 60178.9998 1.19% 4.64% 40 14
15 62791.3011 62392.5003 60178.9998 0.64% 4.16% 43 15
16 62676.0007 62491.0002 60178.9998 0.30% 3.98% 46 16
17 62596.0020 62524.0003 62524.0003 0.12% 0.12% 49 17
18 62568.5024 62524.0003 62524.0003 0.07% 0.07% 52 18
19 62568.5024 62524.0003 62524.0003 0.07% 0.07% 54 19
20 62531.0027 62524.0003 62524.0003 0.01% 0.01% 57 20
. 62531.0027 62524.0003 62524.0003 0.01% 0.01% 57 20
22 62528.6694 62524.0003 62524.0003 0.01% 0.01% 63 22

NOTE: The Decomposition algorithm stopped on the integer RELOBJGAP= option.
Node Active Sols Best Best Gap CPU Real

Integer Bound Time Time
0 0 11 62524.0003 62528.6694 0.01% 63 22

NOTE: The Decomposition algorithm used 4 threads.
NOTE: The Decomposition algorithm time is 22.57 seconds.
NOTE: Conditional optimal.
NOTE: Objective = 62524.000312.

This version of the model provides a stronger bound and yields better overall performance.
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Example 13.6: ATM Cash Management in Single-Machine Mode
This example describes an optimization model that is used in the management of cash flow for a bank’s
automated teller machine (ATM) network. The goal of the model is to determine a replenishment schedule
for the bank to use in allocating cash inventory at its branches when servicing a preassigned subset of ATMs.
Given a history of withdrawals per day for each ATM, the bank can use SAS forecasting tools to predict the
expected cash need. The modeling of this prediction depends on various seasonal factors, including the days
of the week, weeks of the month, holidays, typical salary disbursement days, location of the ATMs, and other
demographic data. The prediction is a parametric mixture of models whose parameters depend on each ATM.

The optimization model performs a polynomial regression that minimizes the error (measured by the L1
norm) between the predicted and actual withdrawals. The parameter settings in the regression determine the
replenishment policy. The amount of cash that is allocated to each day is subject to a budget constraint. In
addition, a constraint for each ATM limits the number of days that a cash-out (a situation in which the cash
flow is less than the predicted withdrawal) can occur. The goal is to determine a policy for cash distribution
that balances the predicted inventory levels while satisfying the budget and cash-out constraints. By keeping
too much cash on hand for ATM fulfillment, the bank loses an investment opportunity. Moreover, regulatory
agencies in many countries enforce a minimum cash reserve ratio at branch banks; according to regulatory
policy, the cash in ATMs or in transit does not contribute toward this threshold.

Mixed Integer Nonlinear Programming Formulation

The most natural formulation for this model is in the form of a mixed integer nonlinear program (MINLP).
Let A denote the set of ATMs and D denote the set of days that are used in the training data. The predictive
model fit is defined by the following data for each ATM a on each day d : cad ; cxad ; c

y

ad
; cz
ad

, and cu
ad

. The
model-fitting parameters define the variables .xa; ya; ua/ for each ATM that, when applied to the predictive
model, estimate the necessary cash flow per day per ATM. In addition, define a surrogate variable fad for
each ATM on each day that defines the cash inventory (replenished from the branch) minus withdrawals.
The variable fad also represents the error in the regression model. Let Bd define the budget per day, Ka
define the limit on cash-outs per ATM, and wad define the historical withdrawals at a particular ATM on a
particular day. Then the following MINLP models this problem:

minimize
X
a2A

X
d2D

jfad j

subject to cxadxa C c
y

ad
ya C c

z
adxaya C c

u
adua C cad � wad D fad a 2 A; d 2 D (cash)X
a2A

.fad C wad / � Bd d 2 D (budget)

jfd 2 D j fad < 0gj � Ka a 2 A (count)

xa; ya 2 Œ0; 1� a 2 A

ua � 0 a 2 A

fad � �wad a 2 A; d 2 D

The cash constraint defines the surrogate variable fad , which gives the estimated net cash flow. The budget
and count inequalities ensure that the solution satisfies the budget and cash-out constraints, respectively.

To express this model in a more standard form, you can first use some standard model reformulations to
linearize the absolute value and the cash-out constraint (count).
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Linearization of Absolute Value
A well-known reformulation for linearizing the absolute value of a variable is to introduce one variable for
each side of the absolute value. The following systems are equivalent:

minimize jyj

subject to Ay � b

is equivalent to
minimize yC C y�

subject to A.yC � y�/ � b

yC; y� � 0

Let f C
ad

and f �
ad

represent the positive and negative parts, respectively, of the net cash flow fad . Then you
can rewrite the model, removing the absolute value, as the following:

minimize
X
a2A

X
d2D

�
f C
ad
C f �ad

�
subject to cxadxa C c

y

ad
ya C c

z
adxaya C c

u
adua C cad � wad D f

C

ad
� f �ad a 2 A; d 2 DX

a2A

�
f C
ad
� f �ad C wad

�
� Bd d 2 D

jfd 2 D j .f C
ad
� f �ad / < 0gj � Ka a 2 A

xa; ya 2 Œ0; 1� a 2 A

ua � 0 a 2 A

f C
ad
� 0 a 2 A; d 2 D

f �ad 2 Œ0; wad � a 2 A; d 2 D

Modeling the Cash-Out Constraints
To count the number of times a cash-out occurs, you need to introduce a binary variable to keep track of
when this event occurs. Let vad be an indicator variable that takes the value 1 when the net cash flow is
negative. You can model the implication f �

ad
> 0) vad D 1, or its contrapositive vad D 0) f �

ad
� 0,

by adding the constraint

f �ad � wadvad a 2 A; d 2 D

Now you can model the cash-out constraint by counting the number of days that the net-cash flow is negative
for each ATM, as follows:X

d2D

vad � Ka a 2 A
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The MINLP model can now be written as follows:

minimize
X
a2A

X
d2D

�
f C
ad
C f �ad

�
subject to cxadxa C c

y

ad
ya C c

z
adxaya C c

u
adua C cad � wad D f

C

ad
� f �ad a 2 A; d 2 DX

a2A

�
f C
ad
� f �ad C wad

�
� Bd d 2 D

f �ad � wadvad a 2 A; d 2 DX
d2D

vad � Ka a 2 A

xa; ya 2 Œ0; 1� a 2 A

ua � 0 a 2 A

f C
ad
� 0 a 2 A; d 2 D

f �ad 2 Œ0; wad � a 2 A; d 2 D

vad 2 f0; 1g a 2 A; d 2 D

This MINLP is difficult to solve, in part because the prediction function is not convex. Another approach is
to use mixed integer linear programming (MILP) to formulate an approximation of the problem, as described
in the next section.

Mixed Integer Linear Programming Approximation

Because the predictive model is a forecast, finding the optimal parameters that are based on nondeterministic
data is not of primary importance. Rather, you want to provide as good a solution as possible in a reasonable
amount of time. So using MILP to approximate the MINLP is perfectly acceptable. In the original problem
you have products of two continuous variables that are both bounded by 0 (lower bound) and 1 (upper bound).
This arrangement enables you to create an approximate linear model by using a few standard modeling
reformulations.

Discretization of Continuous Variables
The first step is to discretize one of the continuous variables xa. The goal is to transform the product xaya of
a continuous variable and another continuous variable instead to the product of a continuous variable and a
binary variable. This transformation enables you to linearize the product form.

You must assume some level of approximation by defining a binary variable (from some discrete set) for each
possible setting of the continuous variable For example, if you let n D 10, then you allow x to be chosen
from the set f0:0; 0:1; 0:2; 0:3; :::; 1:0g. Let T D f0; 1; 2; :::; ng represent the possible steps and ct D t=n.
Then you apply the following transformation to variable xa:X

t2T

ctxat D xaX
t2T

xat D 1

xat 2 f0; 1g t 2 T
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The MINLP model can now be approximated as the following:

minimize
X
a2A

X
d2D

�
f C
ad
C f �ad

�
subject to cxad

X
t2T

ctxat C c
y

ad
yaC

czad

X
t2T

ctxatya C c
u
adua C cad � wad D f

C

ad
� f �ad a 2 A; d 2 DX

t2T

xat D 1 a 2 AX
a2A

�
f C
ad
� f �ad C wad

�
� Bd d 2 D

f �ad � wadvad a 2 A; d 2 DX
d2D

vad � Ka a 2 A

ya 2 Œ0; 1� a 2 A

ua � 0 a 2 A

f C
ad
� 0 a 2 A; d 2 D

f �ad 2 Œ0; wad � a 2 A; d 2 D

vad 2 f0; 1g a 2 A; d 2 D

xat 2 f0; 1g a 2 A; t 2 T

Linearization of Products
You still need to linearize the product terms xatya in the cash flow constraint. Because these terms are
products of a bounded continuous variable and a binary variable, you can linearize them by introducing
for each product another variable, zat , which serves as a surrogate. In general, you know the following
relationship between the original variables and their surrogates:

zt D xty t 2 TP
t2T xt D 1

xt 2 f0; 1g t 2 T

y 2 Œ0; 1�

is equivalent to

zt � 0 t 2 T

zt � xt t 2 TP
t2T xt D 1P
t2T zt D y

xt 2 f0; 1g t 2 T

y 2 Œ0; 1�
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Using this relationship to replace each product form, you now can write the problem as an approximate MILP
as follows:

minimize
X
a2A

X
d2D

�
f C
ad
C f �ad

�
subject to cxad

X
t2T

ctxat C c
y

ad
yaC

czad

X
t2T

ctzat C c
u
adua C cad � wad D f

C

ad
� f �ad a 2 A; d 2 DX

t2T

xat D 1 a 2 AX
a2A

�
f C
ad
� f �ad C wad

�
� Bd d 2 D (budget)

f �ad � wadvad a 2 A; d 2 DX
d2D

vad � Ka a 2 A

zat � xat a 2 A; t 2 TX
t2T

zat D ya a 2 A

zat � 0 a 2 A; t 2 T

ya 2 Œ0; 1� a 2 A

ua � 0 a 2 A

f C
ad
� 0 a 2 A; d 2 D

f �ad 2 Œ0; wad � a 2 A; d 2 D

vad 2 f0; 1g a 2 A; d 2 D

xat 2 f0; 1g a 2 A; t 2 T

PROC OPTMODEL Code

Because it is difficult to solve the MINLP model directly, the approximate MILP formulation is attractive.
Unfortunately, the approximate MILP is much larger than the associated MINLP. Direct methods for solving
this MILP do not work well. However, the problem is nicely suited for the decomposition algorithm.

When you examine the structure of the MILP model, you see clearly that the constraints can be easily
decomposed by ATM. In fact, the only set of constraints that involve decision variables across ATMs is the
budget constraint (budget). That is, if you relax the budget constraint, you are left with independent blocks of
constraints, one for each ATM.

To show how this is done in PROC OPTMODEL, consider the following data sets, which describe an example
that tracks 20 ATMs over a period of 100 days. This particular example was submitted to MIPLIB 2010,
which is a collection of difficult MILPs in the public domain (Koch et al. 2011).

The first data set, budget_data, provides the cash budget on each particular day:
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data budget_data;
input d $ budget;
datalines;

DATE0 70079
DATE1 66418
DATE10 52656
DATE11 50439
DATE12 58688
DATE13 45002
DATE14 52369
...
;

The second data set, cashout_data, provides the limit on the number of cash-outs that are allowed at each
ATM:

data cashout_data;
input a $ cashOutLimit;
datalines;

ATM0 31
ATM1 24
ATM2 41
ATM3 43
ATM4 29
ATM5 24
ATM6 52
ATM7 44
ATM8 35
ATM9 48
ATM10 31
ATM11 47
ATM12 26
ATM13 34
ATM14 29
ATM15 32
ATM16 33
ATM17 32
ATM18 43
ATM19 28
;

The final data set, polyfit_data, provides the polynomial fit coefficients for each ATM on each date. It also
provides the historical cash withdrawals.

data polyfit_data;
input a $ d $ cx cy cz cu c withdrawal;
datalines;

ATM0 DATE0 2822 1984 -1984 1045 1373 780
ATM0 DATE1 1337 2530 -2530 1510 174 2351
ATM0 DATE2 2685 -67 67 145 2820 2288
ATM0 DATE3 -595 -3135 3135 581 3319 1357
...
ATM19 DATE96 -734 3392 -3392 162 1648 914
ATM19 DATE97 -1062 969 -969 444 1746 2264
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ATM19 DATE98 7676 2308 -2308 59 1388 972
ATM19 DATE99 3062 1308 -1308 1080 654 698
;

The following PROC OPTMODEL statements read in the data and define the necessary sets and parameters:

proc optmodel;
set<str> DATES;
set<str> ATMS;

/* cash budget per date */
num budget{DATES};

/* maximum number of cash-outs allowed at each atm */
num cashOutLimit{ATMS};

/* historical withdrawal amount per atm each date */
num withdrawal{ATMS, DATES};

/* polynomial fit coefficients for predicted cash flow needed */
num c {ATMS, DATES};
num cx{ATMS, DATES};
num cy{ATMS, DATES};
num cz{ATMS, DATES};
num cu{ATMS, DATES};

/* number of points used in approximation of continuous range */
num nSteps = 10;
set STEPS = {0..nSteps};

read data budget_data into DATES=[d] budget;
read data cashout_data into ATMS=[a] cashOutLimit;
read data polyfit_data into [a d] cx cy cz cu c withdrawal;

The following statements declare the variables:

var x{ATMS,STEPS} binary;
var v{ATMS,DATES} binary;
var z{ATMS,STEPS} >= 0 <= 1;
var y{ATMS} >= 0 <= 1;
var u{ATMS} >= 0;
var fPlus{ATMS,DATES} >= 0;
var fMinus{a in ATMS, d in DATES} >= 0 <= withdrawal[a,d];

The following statements declare the objective and the constraints:

min CashFlowDiff =
sum{a in ATMS, d in DATES} (fPlus[a,d] + fMinus[a,d]);

con BudgetCon{d in DATES}:
sum{a in ATMS} (fPlus[a,d] - fMinus[a,d] + withdrawal[a,d])

<= budget[d];

con CashFlowDefCon{a in ATMS, d in DATES}:
cx[a,d] * sum{t in STEPS} (t/nSteps) * x[a,t] +
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cy[a,d] * y[a] +
cz[a,d] * sum{t in STEPS} (t/nSteps) * z[a,t] +
cu[a,d] * u[a] +
c[a,d] - withdrawal[a,d] = fPlus[a,d] - fMinus[a,d];

con PickOneStepCon{a in ATMS}:
sum{t in STEPS} x[a,t] = 1;

con CashOutLinkCon{a in ATMS, d in DATES}:
fMinus[a,d] <= withdrawal[a,d] * v[a,d];

con CashOutLimitCon{a in ATMS}:
sum{d in DATES} v[a,d] <= cashOutLimit[a];

con Linear1Con{a in ATMS, t in STEPS}:
z[a,t] <= x[a,t];

con Linear2Con{a in ATMS}:
sum{t in STEPS} z[a,t] = y[a];

The following statements define the block decomposition by ATM. The .block suffix expects numeric
indices, whereas the SET<STR> ATMS statement declares a set of strings. You can create a mapping from the
string identifier to a numeric identifier as follows:

/* create numeric block index */
num blockIndex {ATMS};
num index init 0;
for{a in ATMS} do;

blockIndex[a] = index;
index = index + 1;

end;

Then, each constraint can be added to its associated ATM block as follows:

/* define blocks for each ATM */
for{a in ATMS} do;

PickOneStepCon[a].block = blockIndex[a];
CashOutLimitCon[a].block = blockIndex[a];
Linear2Con[a].block = blockIndex[a];
for{d in DATES} do;

CashFlowDefCon[a,d].block = blockIndex[a];
CashOutLinkCon[a,d].block = blockIndex[a];

end;
for{t in STEPS} do;

Linear1Con[a,t].block = blockIndex[a];
end;

end;

The budget constraint links all the ATMs, and it remains in the master problem. Finally, the following
statements use DECOMP to solve the problem:
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/* set the number of threads and get performance details */
performance details nthreads=4;

/* solve with the decomposition algorithm */
solve with milp / decomp=();

quit;

The solution summary, performance information, and procedure task timing tables are displayed in Out-
put 13.6.1.

Output 13.6.1 Performance Information, Solution Summary, and Task Timing Tables

The OPTMODEL Procedure

Performance Information

Execution Mode Single-Machine
Number of Threads 4

Solution Summary

Solver MILP
Algorithm Decomposition
Objective Function CashFlowDiff
Solution Status Optimal within Relative Gap
Objective Value 2463627.0036

Relative Gap 0.0000311469
Absolute Gap 76.731987027
Primal Infeasibility 4.329195E-10
Bound Infeasibility 0
Integer Infeasibility 1.356693E-13

Best Bound 2463550.2716
Nodes 32
Iterations 40
Presolve Time 0.50
Solution Time 588.18

Procedure Task Timing
Time

Task (sec.) % Time

Problem Generation 0.12 0.02%
Solver Initialization 0.08 0.01%
Code Generation 0.00 0.00%
Solver 588.19 99.96%
Solver Postprocessing 0.02 0.00%

The iteration log, which contains the problem statistics, the progress of the solution, and the optimal objective
value, is shown in Output 13.6.2.
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Output 13.6.2 Log

NOTE: There were 100 observations read from the data set WORK.BUDGET_DATA.
NOTE: There were 20 observations read from the data set WORK.CASHOUT_DATA.
NOTE: There were 2000 observations read from the data set WORK.POLYFIT_DATA.
NOTE: Problem generation will use 4 threads.
NOTE: The problem has 6480 variables (0 free, 0 fixed).
NOTE: The problem has 2220 binary and 0 integer variables.
NOTE: The problem has 4380 linear constraints (2340 LE, 2040 EQ, 0 GE, 0 range).
NOTE: The problem has 58878 linear constraint coefficients.
NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).
NOTE: The MILP presolver value AUTOMATIC is applied.
NOTE: The MILP presolver removed 502 variables and 345 constraints.
NOTE: The MILP presolver removed 1172 constraint coefficients.
NOTE: The MILP presolver modified 0 constraint coefficients.
NOTE: The presolved problem has 5978 variables, 4035 constraints, and 57706

constraint coefficients.
NOTE: The MILP solver is called.
NOTE: The Decomposition algorithm is used.
NOTE: The Decomposition algorithm is executing in single-machine mode.
NOTE: The DECOMP method value USER is applied.
NOTE: The decomposition subproblems consist of 20 disjoint blocks.
NOTE: The decomposition subproblems cover 5978 (100.00%) variables and 3935 (97.52%)

constraints.
NOTE: The deterministic parallel mode is enabled.
NOTE: The Decomposition algorithm is using up to 4 threads.

Iter Best Master Best LP IP CPU Real
Bound Objective Integer Gap Gap Time Time

NOTE: Starting phase 1.
1 0.0000 1.1767 . 1.18e+00 . 136 47
2 0.0000 0.0000 . 0.00% . 136 47

NOTE: Starting phase 2.
. 2.4432e+06 2.6998e+06 2.7643e+06 10.51% 13.14% 136 47
4 2.4505e+06 2.4981e+06 2.7643e+06 1.94% 12.81% 242 80
5 2.4631e+06 2.4656e+06 2.7643e+06 0.10% 12.23% 288 96
6 2.4631e+06 2.4631e+06 2.7643e+06 0.00% 12.23% 331 111

NOTE: The Decomposition algorithm stopped on the continuous RELOBJGAP= option.
. 2.4631e+06 2.4631e+06 2.4648e+06 0.00% 0.07% 331 111

NOTE: Starting branch and bound.
Node Active Sols Best Best Gap CPU Real

Integer Bound Time Time
0 1 2 2.4648e+06 2.4631e+06 0.07% 331 111

10 12 2 2.4648e+06 2.4635e+06 0.05% 863 292
11 9 3 2.4638e+06 2.4635e+06 0.01% 911 305
20 8 3 2.4638e+06 2.4636e+06 0.01% 1285 422
30 8 3 2.4638e+06 2.4636e+06 0.01% 1744 569
31 5 4 2.4636e+06 2.4636e+06 0.00% 1780 580

NOTE: The Decomposition algorithm used 4 threads.
NOTE: The Decomposition algorithm time is 580.05 seconds.
NOTE: Optimal within relative gap.
NOTE: Objective = 2463627.0036.
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Example 13.7: ATM Cash Management in Distributed Mode
This section illustrates how you can use PROC OPTMODEL and the decomposition algorithm in distributed
mode. The problem is the same as the one described in Example 13.6 for managing the cash flow of an ATM
network. The only difference between single-machine and distributed mode is that the PERFORMANCE
statement specifies the number of threads to be used in single-machine mode or the number of threads and
nodes to be used in distributed mode.

The following statement changes the operating mode to distributed mode:

/* set the number of nodes and threads and get performance details */
performance details nodes=5 nthreads=4;

The solution summary, performance information, and procedure task timing tables are displayed in Out-
put 13.7.1. When you specify NODES=5 and NTHREADS=4 in the PERFORMANCE statement in
distributed mode, each grid node processes up to four threads simultaneously.

Output 13.7.1 Performance Information, Solution Summary, and Task Timing Tables

The OPTMODEL Procedure

Performance Information

Host Node <<your grid host>>
Execution Mode Distributed
Grid Mode Symmetric
Number of Compute Nodes 5
Number of Threads per Node 4

Solution Summary

Solver MILP
Algorithm Decomposition
Objective Function CashFlowDiff
Solution Status Optimal within Relative Gap
Objective Value 2463756.319

Relative Gap 0.0000856188
Absolute Gap 210.92580152
Primal Infeasibility 1.1759766E-9
Bound Infeasibility 2.220446E-16
Integer Infeasibility 1.325606E-13

Best Bound 2463545.3932
Nodes 20
Iterations 29
Presolve Time 0.43
Solution Time 167.69
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Output 13.7.1 continued

Procedure Task Timing
Time

Task (sec.) % Time

Problem Generation 0.11 0.06%
Solver Initialization 0.07 0.04%
Code Generation 0.00 0.00%
Solver 167.71 99.81%
Solver Postprocessing 0.14 0.08%

The iteration log, which contains the problem statistics, the progress of the solution, and the optimal objective
value, is shown in Output 13.7.2.
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Output 13.7.2 Log

NOTE: There were 100 observations read from the data set WORK.BUDGET_DATA.
NOTE: There were 20 observations read from the data set WORK.CASHOUT_DATA.
NOTE: There were 2000 observations read from the data set WORK.POLYFIT_DATA.
NOTE: Problem generation will use 4 threads.
NOTE: The problem has 6480 variables (0 free, 0 fixed).
NOTE: The problem has 2220 binary and 0 integer variables.
NOTE: The problem has 4380 linear constraints (2340 LE, 2040 EQ, 0 GE, 0 range).
NOTE: The problem has 58878 linear constraint coefficients.
NOTE: The problem has 0 nonlinear constraints (0 LE, 0 EQ, 0 GE, 0 range).
NOTE: The MILP presolver value AUTOMATIC is applied.
NOTE: The MILP presolver removed 502 variables and 345 constraints.
NOTE: The MILP presolver removed 1172 constraint coefficients.
NOTE: The MILP presolver modified 0 constraint coefficients.
NOTE: The presolved problem has 5978 variables, 4035 constraints, and 57706

constraint coefficients.
NOTE: The MILP solver is called.
NOTE: The Decomposition algorithm is used.
NOTE: The Decomposition algorithm is executing in the distributed computing

environment with 5 worker nodes.
NOTE: The DECOMP method value USER is applied.
NOTE: The decomposition subproblems consist of 20 disjoint blocks.
NOTE: The decomposition subproblems cover 5978 (100.00%) variables and 3935 (97.52%)

constraints.
NOTE: The deterministic parallel mode is enabled.
NOTE: The Decomposition algorithm is using up to 4 threads.

Iter Best Master Best LP IP Real
Bound Objective Integer Gap Gap Time

NOTE: Starting phase 1.
1 0.0000 1.1767 . 1.18e+00 . 20
2 0.0000 0.0000 . 0.00% . 20

NOTE: Starting phase 2.
. 2.4432e+06 2.6947e+06 2.7543e+06 10.30% 12.73% 20
4 2.4526e+06 2.4869e+06 2.7543e+06 1.40% 12.30% 31
5 2.4630e+06 2.4642e+06 2.7543e+06 0.05% 11.83% 37
6 2.4631e+06 2.4632e+06 2.7543e+06 0.00% 11.82% 43

NOTE: The Decomposition algorithm stopped on the continuous RELOBJGAP= option.
. 2.4631e+06 2.4632e+06 2.4660e+06 0.00% 0.12% 43

NOTE: Starting branch and bound.
Node Active Sols Best Best Gap Real

Integer Bound Time
0 1 2 2.4660e+06 2.4631e+06 0.12% 43

10 10 3 2.4654e+06 2.4635e+06 0.07% 111
19 7 4 2.4638e+06 2.4635e+06 0.01% 163

NOTE: The Decomposition algorithm used 4 threads.
NOTE: The Decomposition algorithm time is 163.94 seconds.
NOTE: Optimal within relative gap.
NOTE: Objective = 2463756.319.

Notice how this iteration log differs from the iteration log from single-machine mode in Example 13.6. In
distributed mode, the processing is done on multiple grid machines, as opposed to being done on one client
machine in single-machine mode. In this example, the grid machines and the client machine have different
operating systems, and some numerical rounding off leads to different paths in the search space. When you
compare two runs on different operating systems (or that use different compilers), this behavior is expected.
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Overview: The OPTMILP Option Tuner
The OPTMILP procedure provides many solver techniques and algorithms, including branch-and-bound,
cutting planes, and heuristics. It also provides control options that you can adjust to improve the performance
of these techniques. Although the default values of the control options have been tuned to work well for most
instances, you might need to adjust one or more option values for a specific problem. The OPTMILP option
tuner is a tool that enables you to explore alternative (and potentially better) option configurations for your
optimization problems.

To use the tuner, you specify a single problem or set of problems to be solved and a list of options to be
tuned. You can specify initial values for the options to be tuned. The tuner then uses a heuristic local search
technique to generate a sequence of configurations. A configuration is a set of the specified options to be
tuned along with a fixed value for each option. The tuner attempts to locate configurations that enable the
OPTMILP procedure to process problems more quickly than the default option values or specified initial
values.



580 F Chapter 14: The OPTMILP Option Tuner

The tuner option can be run in either single-machine mode or distributed mode. In single-machine mode,
you can specify the number of threads to use on a single computer. In distributed mode, you can specify the
number of computer nodes and the number of threads per node to use on a distributed computing environment.
The tuner option only supports nondeterministic mode, so the tuning results may vary among different runs.

NOTE: Distributed mode requires SAS High-Performance Optimization software.

Getting Started: The OPTMILP Option Tuner
This example illustrates how to use the OPTMILP option tuner.

The standard set of MILP benchmark cases is called MIPLIB (Bixby et al. 1998; Achterberg, Koch, and
Martin 2003) and can be found at http://miplib.zib.de/. Suppose you want to solve the problems
air04 and air05 from this set. You have stored the SAS data sets air04 and air05, both in MPS format, in
library a. Suppose you want to tune the CUTCLIQUE=, CUTGOMORY=, and HEURISTICS options in
these two problems.

The following DATA step generates the data set probs, which contains the list of problems to be solved, and
the data set optvals, which contains the list of options to be tuned:

data probs;
input name $1-8;
datalines;

a.air04
a.air05
;

data optvals;
input option $1-10;
datalines;

cutclique
cutgomory
heuristics
;

The following statements call the OPTMILP procedure and enable the option tuner:

proc optmilp maxtime=300;
tuner maxtime=1200 problems=probs optionvalues=optvals tunerout=out;
performance nthreads=4;

run;

The MAXTIME= option in the PROC OPTMILP statement sets the maximum run time that the procedure can
use to solve one problem for each option configuration. The MAXTIME= option in the TUNER statement
sets a limit on the total time that the option tuner can use to solve the problems on the list by using the
generated sequence of configurations. The PROBLEMS= option specifies the name of the SAS data set that
contains the list of problems to be solved. The OPTIONVALUES= option specifies the name of the SAS data
set that contains the list of options to be tuned. The TUNEROUT= option specifies the name of the SAS data
set that contains detailed results of the tuning process. The NTHREADS= option in the PERFORMANCE

http://miplib.zib.de/
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statement specifies the number of threads that the procedure can use to perform calculations. The ODS
OUTPUT statement creates an output data set from the TunerResults table.

For more information about the options available in the PROC OPTMILP statement, see the section “PROC
OPTMILP Statement” on page 423. For more information about the PERFORMANCE statement, see the
section “PERFORMANCE Statement” on page 28.

Figure 14.1 shows a selection of tuning results that include the initial option configuration, the best option
configurations, and the worst option configurations.

Figure 14.1 PROC OPTMILP Output

The OPTMILP Procedure

Performance Information

Execution Mode Single-Machine
Number of Threads 4

Tuner Information

Target Solver MILP
Number of Tuning Options 3
Number of Tuning Instances 2
Tuning Option Set USER
Performance Goal GEOMEAN
Tuner Time Limit 1200
Tuner Configurations Limit 2147483647

Tuner Summary

Actual Tuning Time 1254.35
Initial Run Time (geomean) 86.11
Initial Run Time (sum) 176.16
Best Run Time (geomean) 72.78
Best Run Time (sum) 147.99
Number of Improved Configurations 4
Number of Tested Configurations 24
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Figure 14.1 continued

Tuner Results

C C C C C C C
o o o o o o o
n n n n n n n
f f f f f f f
i i i i i i i
g g g g g g g

0 1 2 3 4 5 6

cutclique -1 -1 2 -1 -1 -1 -1
cutgomory -1 -1 1 0 1 1 1
heuristics -1 2 2 2 0 2 3
Mean of Run Times 86.11 72.77 76.72 79.96 82.16 89.96 108.19
Sum of Run Times 176.16 147.99 156.56 162.85 179.53 183.26 236.56
Percentage Successful 100 100 100 100 100 100 100

Tuner Results

C
C C C o
o o o n
n n n f
f f f i
i i i g
g g g

1
7 8 9 0

cutclique 1 0 2 -1
cutgomory 0 1 -1 2
heuristics 1 3 3 3
Mean of Run Times 108.79 111.71 93.49 62.7
Sum of Run Times 224.39 240.38 195.28 125.5
Percentage Successful 100 100 50 0

Syntax: The OPTMILP Option Tuner
You can specify the following statements for the option tuner in the OPTMILP procedure:

PROC OPTMILP < options > ;
PERFORMANCE < performance-options > ;
TUNER < tuner-options > ;
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Functional Summary
Table 14.1 summarizes the options available for the TUNER statement in the OPTMILP procedure.

Table 14.1 Options for the TUNER Statement

Option Description
GOAL= Specifies the goal of the tuning process
LOGFREQ= Specifies the frequency of printing in the log
LOGLEVEL= Specifies the detail of tuner progress printed in the log
MAXCONFIGS= Specifies the maximum number of tuning configura-

tions
MAXTIME= Specifies the maximum tuning time
OPTIONMODE= Specifies which set of options to tune
OPTIONVALUES= Specifies the input data set that contains a list of options

to be tuned
PROBLEMS= Specifies the input data set that contains a list of tuning

problems
TUNEROUT= Specifies the output data set that contains detailed tun-

ing results

The options available for the PROC OPTMILP statement are documented in the section “Functional Summary”
on page 421 in Chapter 11, “The OPTMILP Procedure.” You must specify the MAXTIME= option in the
PROC OPTMILP statement so that the tuner can terminate properly.

PERFORMANCE Statement
PERFORMANCE < performance-options > ;

The PERFORMANCE statement specifies performance options for single-machine mode and distributed
mode, passes variables that describe the distributed computing environment, and requests detailed perfor-
mance results of the OPTMILP procedure.

For single-machine mode, you can use the NTHREADS= option to specify the number of threads to use on a
single machine. For distributed mode, you can use the NODES= and NTHREADS= options to specify the
numbers of computer nodes and threads per node to use in a distributed computing environment.

When multiple threads are specified, several MILP solvers can run concurrently on a single machine or a
computer node. You might consider reducing the value of the NTHREADS= option when the MILP solver
returns an out-of-memory status for some tuning problems.

The DETAILS option displays a detailed performance “Timing” table. The OPTMILP option tuner supports
only the nondeterministic mode of the PARALLELMODE= option in the PERFORMANCE statement.

The PERFORMANCE statement for single-machine and distributed mode is documented in the section
“PERFORMANCE Statement” on page 28 in Chapter 4, “Shared Concepts and Topics.”

NOTE: Distributed mode requires SAS High-Performance Optimization software.
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TUNER Statement
TUNER < tuner-options > ;

You can specify the following options.

GOAL=number | string
specifies a goal for the option tuner. Table 14.2 describes the valid values of the GOAL= option.

Table 14.2 Values of GOAL= Option

number string Description
0 GEOMEAN Minimizes the geometric mean of the solution

times of the tuning problems
1 SUM Minimizes the sum of the solution times of the

tuning problems

Every attempt to solve a tuning problem that has an option configuration is counted toward the measure
that is specified by the GOAL= option.

The default is GEOMEAN. If only one problem is used for option tuning, then GOAL=GEOMEAN
and GOAL=SUM are equivalent.

LOGFREQ=number
specifies how often tuning information is printed in the log. The value of number represents the number
of problems solved by the tuner between log updates. The value of number can be any nonnegative
integer. Specifying LOGFREQ=0 disables log updates. The default is 1.

LOGLEVEL=number | string
controls the amount of information that the tuner displays in the SAS log. Table 14.3 describes the
valid values of the LOGLEVEL= option.

Table 14.3 Values of LOGLEVEL= Option

number string Description
0 NONE Disables tuner-related messages in the SAS log
1 BASIC Displays a tuner summary after stopping
2 MODERATE Prints a tuner summary and a tuning log by using

the interval dictated by the LOGFREQ= option

The default is MODERATE.

MAXCONFIGS=number
specifies the maximum number of option configurations that the tuner can evaluate in each problem in
the PROBLEMS= data set. The value of number can be any positive integer up to the largest four-byte
signed integer, which is 231 � 1. The default is 231 � 1. This option is an alternative way for the tuner
to control the termination.
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MAXTIME=number
specifies the maximum time allowed for the tuner to evaluate option configurations in tuning problems.
You must specify either this option or the MAXCONFIGS= option so that the tuner can terminate
properly.

It is recommended that you specify a value for number that is large enough that the tuner can run
several different option configurations. This value depends on two quantities: the number of tuning
problems and the OPTMILP procedure’s average run time for the tuning problems. To prevent the
procedure from spending too much time running a single configuration in a single problem, you must
limit the time the procedure spends solving each combination of problem and configuration. You can
limit the time by specifying the MAXTIME= option in the PROC OPTMILP statement. If you prefer
not to stop the option tuner as a result of elapsed time, you can specify the MAXCONFIGS= option.

OPTIONMODE=number | string
specifies which set of options to tune. Table 14.4 describes the valid values of the OPTIONMODE=
option.

Table 14.4 Values of OPTIONMODE= Option

number string Description
–1 AUTOMATIC Uses an option set that is determined by the tuner
0 NONE Solves the problems that are specified by the

PROBLEMS= option without tuning any
OPTMILP options

1 USER Uses the option set that is specified by the
OPTIONVALUES= option

2 FULL Uses the full set of solver options that are
available for tuning

The tuner interprets the OPTIONMODE= option in accordance with the following logic:

1. If you specify neither the OPTIONMODE= nor the OPTIONVALUES= option, the tuner runs
with OPTIONMODE=AUTOMATIC.

2. If you specify the OPTIONVALUES= option, you are not required to specify the OPTION-
MODE= option, but you can specify OPTIONMODE=USER. Specifying any other value for the
OPTIONMODE= option causes the tuner to terminate with an error.

3. If you do not specify the OPTIONVALUES= option, you can specify either OPTION-
MODE=FULL or OPTIONMODE=AUTOMATIC. Specifying OPTIONMODE=USER causes
the tuner to terminate with an error.

When OPTIONMODE=NONE, the options PRIMALOUT= and DUALOUT= of PROC OPTMILP
can be used to output primal and dual solutions of all the problems that are listed in the PROBLEMS=
data set. All primal or dual solutions are appended to the PRIMALOUT= or DUAL= data set. An
additional variable _PROBLEM_ is created for each data set to store problem names.
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OPTIONVALUES=SAS-data-set

OPTVALS=SAS-data-set
specifies an input data set that contains a list of options to be tuned and ranges of values over which
each option should be tuned. You can specify an initial tuning value for each option in the list. If you
do not specify a range for a tuning option, the tuner uses the default range of that option. If you do
not specify an initial value for a tuning option, the tuner uses the default value of that option. If the
option’s default value is not in the specified tuning range, the tuner uses the first (smallest) value in the
tuning range. If the data set that is specified by the OPTIONVALUES= option is not found, a default
set of options is used. For more information, see the section “Variables in the OPTIONVALUES= Data
Set” on page 587 and the section “Default Set of Tuning Options” on page 588.

NOTE: An option value that you specify in the PROC OPTMILP statement is applied to all tuning
problems unless you specify that option in the OPTIONVALUES= data set. In that case, the value that
you specify in the PROC OPTMILP statement is ignored.

PROBLEMS=SAS-data-set

PROBS=SAS-data-set
specifies the input data set that contains a list of MILP problems to be used for option tuning. This
list includes the name of each problem, its library location, and (optionally) its objective sense. For
more information, see the section “Variables in the PROBLEMS= Data Set” on page 587. The tuning
problems should be stored in MPS-format SAS data sets. To perform option tuning on a single problem,
you can omit the PROBLEMS= option in the TUNER statement and specify the DATA= option in
the PROC OPTMILP statement. For more information about this option, see the section “Data Set
Options” on page 423.

TUNEROUT=SAS-data-set

TOUT=SAS-data-set
specifies the output data set to contain detailed results for each tuning problem over all the option
configurations that are evaluated. This data set helps you rank the performance with your own rules,
especially when some problems are not optimal but the integer solutions are acceptable for some
configurations. For more information, see the section “Variables in the TUNEROUT= Data Set” on
page 587.

Details: The OPTMILP Option Tuner

Data Input and Output
This subsection describes the input data sets that are specified by the PROBLEMS= and OPTIONVALUES=
options and the output data set that is specified by the TUNEROUT= option.

When you specify OPTIONMODE=NONE, you can specify the PRIMALOUT= and DUALOUT= options
in the PROC OPTMILP statement to output primal and dual solutions of all the problems listed in the
PROBLEMS= data set. All primal or dual solutions are appended to the PRIMALOUT= or DUALOUT=
data set, respectively. An additional variable, _PROBLEM_, is created for each data set; this variable stores
problem names.
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Variables in the PROBLEMS= Data Set

The PROBLEMS= data set contains the following variables:

NAME
specifies a list of names of MPS-format data sets. Each data set contains a MILP problem to be used
in option tuning. The format of each name must be libref.filename. If no libref is specified, the tuner
searches for the file in WORK.

OBJSENSE
specifies whether the objective sense for a tuning problem is MIN or MAX. The values of this variable
provide or overwrite the objective sense for the corresponding SAS data set. This variable is optional.

Variables in the OPTIONVALUES= Data Set

The OPTIONVALUES= data set contains the following variables:

INITIAL
specifies an initial value for each option to be tuned. This variable is optional. If this variable is
missing, the tuner uses the default value of the option as the initial value. If the default value of the
option is not in the list specified by the VALUES variable, the tuner uses the first entry in the VALUES
list for that option.

OPTION
specifies a list of control options to be tuned by solving the problems specified in the PROBLEMS=
data set.

VALUES
specifies a comma-delimited list of values for each control option that the tuner can use to generate
configurations. If you do not specify a list of values for an option, the tuner uses all valid values of that
option. This variable is optional. If you do not provide discrete values, such as (1, 2, 3, 100), for the
options that have unlimited number of possible values, then those options are not tuned. An exception
is the STRONGITER= option, where the default tuning values are (–1, 100, 10000, 2147483647).

Variables in the TUNEROUT= Data Set

The TUNEROUT= data set contains the following variables:

OBJSENSE
specifies the objective sense used for each tuning problem. The value is either MIN or MAX.

PROBLEM
specifies a list of data set names. Each named data set contains one of the problems that are used by
the tuner.

RANK
specifies the rank of each option configuration, based on the criteria specified by the GOAL= option.
The row that has a rank value of 0 contains the solution information of either the initial values that you
provide or the solver default values for the options. When a solution status is not optimal, feasible,
or bounded, a penalty is applied to the solution time in the ranking. If you want to put other factors
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(such as the relative gap) into the ranking, then you can define your own rules by using the solution
information in this data set.

The tuner’s ranking is based on solver’s running time, which has nondeterministic nature, so the tuning
results may vary among different runs.

Option Configurations
name each variable for a tuning option and contain the option value that is used for the current option
configuration.

Solution Information
specifies solution information for each option configuration that the tuner evaluates. This information
includes the status, solution status, objective value, relative gap, absolute gap, nodes, and solution
time. For more information about these terms, see the section “Macro Variable _OROPTMILP_” on
page 445. When the tuner’s time limit is reached, any unfinished runs will have the solution status
TUNER_TIME_LIM.

Default Set of Tuning Options
Table 14.5 lists the options and values that the tuner uses when OPTIONMODE=AUTOMATIC.

Table 14.5 Default Set of Tuning Options

Option Values
CONFLICTSEARCH= –1, 0
CUTGOMORY= –1, 0
CUTMILIFTED= –1, 0
CUTSTRATEGY= –1, 0, 1, 2
CUTZEROHALF= –1, 0
HEURISTICS= –1, 0, 1, 2, 3
NODESEL= –1, 0, 1, 2
PRESOLVER= –1, 0, 1, 2, 3
PROBE= –1, 0
VARSEL= –1, 3

For more information about these options, see the section “Functional Summary” on page 421 in Chapter 11,
“The OPTMILP Procedure.”

Full Set of Tuning Options
When OPTIONMODE=FULL, the tuner tunes the set of options listed in Table 14.6 over an automatically
determined range.
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Table 14.6 Full Set of Tuning Options

ALLCUTS= CUTMIR=
CONFLICTSEARCH= CUTSFACTOR=
CUTCLIQUE= CUTSTRATEGY=
CUTFLOWCOVER= CUTZEROHALF=
CUTFLOWPATH= HEURISTICS=
CUTGOMORY= NODESEL=
CUTGUB= PRESOLVER=
CUTIMPLIED= PROBE=
CUTKNAPSACK= SCALE=
CUTLAP= STRONGITER=
CUTMILIFTED= VARSEL=

For more information about these options, see the section “Functional Summary” on page 421 in Chapter 11,
“The OPTMILP Procedure.” You can also tune other performance related OPTMILP options that are not
listed here by using the OPTIONVALUES= option.

Tuner Log
The following information about the option tuner is printed in the tuner log:

SolveCalls indicates the number of problems that the tuner has completed.

Configurations indicates the number of configurations that the tuner has completed.

BestTime indicates the geometric mean or sum of the solve times (over all tuning problems) of the
current best option configuration. When one of the solves comes from an unsuccessful
run, an asterisk (*) is placed next to the time.

Time indicates the time (in seconds) that is used by the tuner.

The LOGFREQ= and LOGLEVEL= options can be used to control the amount of information printed in the
tuner log. Figure 14.2 shows a sample tuner log.

Figure 14.2 Sample Option Tuner Log

NOTE: The Option Tuning algorithm (the Tuner) is enabled.
NOTE: The non-deterministic parallel mode is enabled.
NOTE: The Tuner is using up to 4 threads.

SolveCalls Configurations BestTime Time
10 5 86.11 296.43
20 10 79.96 543.70
30 14 76.72 797.27
40 20 76.72 1074.21

NOTE: The tuning time is 1254.35 seconds.
NOTE: The data set WORK.OUT has 48 observations and 13 variables.
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ODS Tables
The tuner creates several Output Delivery System (ODS) tables by default unless you specify a value other
than 1 for the PRINTLEVEL= option in the PROC OPTMILP statement. The names of these tables are
listed in Table 14.7. The TunerInfo and TunerSummary tables contain the tuner’s input summary and
results summary, respectively. The TunerResults table contains the option values, geometric mean and
summation of the solution times, success rate for the initial option configuration, and a selection of best
option configurations and worst option configurations.They are sorted according to the success rate and
performance measure specified by the GOAL= option. The Config 0 column contains the solution information
of either the initial values that you provided or the solver default values for the options.

The “Performance Information” table is produced by default. It displays information about the execution
mode. For single-machine mode, the table displays the number of threads used. For distributed mode, the
table displays the grid mode (symmetric or asymmetric), the number of compute nodes, and the number of
threads per node.

If you specify the DETAILS option in the PERFORMANCE statement, the procedure also produces a
“Timing” table in which the accumulated elapsed times (absolute and relative) for the main tasks of the
procedure are displayed.

You can create output data sets from these tables by specifying the ODS OUTPUT statement. For more
information about ODS, see SAS Output Delivery System: User’s Guide.

Table 14.7 ODS Tables Produced by the OPTMILP Option Tuner

ODS Table Name Description
PerformanceInfo Performance information
Timing Timing report
TunerInfo Summary of option tuning input
TunerResults Option tuning results
TunerSummary Summary of option tuning results

Figure 14.3 shows an example PerformanceInfo table for single-machine mode.

Figure 14.3 Example Tuner Output: PerformanceInfo

The OPTMILP Procedure

Performance Information

Execution Mode Single-Machine
Number of Threads 4

Figure 14.4 shows an example Timing table.
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Figure 14.4 Example Tuner Output: Timing

Procedure Task Timing
Time

Task (sec.) % Time

Data Loading 0.53 0.01%
Data Transfer 0.00 0.00%
Tuner 0.76 0.02%
Solver 4894.80 99.95%
Idle 1.40 0.03%

Figure 14.5 shows an example TunerInfo table.

Figure 14.5 Example Tuner Output: TunerInfo

Tuner Information

Target Solver MILP
Number of Tuning Options 3
Number of Tuning Instances 2
Tuning Option Set USER
Performance Goal GEOMEAN
Tuner Time Limit 1200
Tuner Configurations Limit 2147483647

Figure 14.6 shows an example TunerResults table.
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Figure 14.6 Example Tuner Output: TunerResults

Tuner Results

C C C C C C C
o o o o o o o
n n n n n n n
f f f f f f f
i i i i i i i
g g g g g g g

0 1 2 3 4 5 6

cutclique -1 -1 2 -1 -1 -1 -1
cutgomory -1 -1 1 0 1 1 1
heuristics -1 2 2 2 0 2 3
Mean of Run Times 86.11 72.77 76.72 79.96 82.16 89.96 108.19
Sum of Run Times 176.16 147.99 156.56 162.85 179.53 183.26 236.56
Percentage Successful 100 100 100 100 100 100 100

Tuner Results

C
C C C o
o o o n
n n n f
f f f i
i i i g
g g g

1
7 8 9 0

cutclique 1 0 2 -1
cutgomory 0 1 -1 2
heuristics 1 3 3 3
Mean of Run Times 108.79 111.71 93.49 62.7
Sum of Run Times 224.39 240.38 195.28 125.5
Percentage Successful 100 100 50 0

Figure 14.7 shows an example TunerSummary table.

Figure 14.7 Example Tuner Output: TunerSummary

Tuner Summary

Actual Tuning Time 1254.35
Initial Run Time (geomean) 86.11
Initial Run Time (sum) 176.16
Best Run Time (geomean) 72.78
Best Run Time (sum) 147.99
Number of Improved Configurations 4
Number of Tested Configurations 24
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Examples: The OPTMILP Option Tuner

Example 14.1: Tuning the Default Set of Options for a Single Problem
This example demonstrates how to tune the default set of tuning options for a single problem. The problem is
the air05 problem from the MIPLIB 2003 problem set, which is introduced in the section “Getting Started:
The OPTMILP Option Tuner” on page 580. The SAS data set that defines the problem (in MPS format) is
named air05.

Because you are using only one problem to perform option tuning, you do not need to create a PROBLEMS=
data set. Because you are tuning the default set of options, you do not need to create an OPTIONVALUES=
data set. The following statements call the OPTMILP option tuner and determine the stopping criterion by
specifying the MAXCONFIGS= option instead of the MAXTIME= option:

proc optmilp data=a.air05 maxtime=300;
tuner maxconfigs=20 printfreq=2 tunerout=out;
performance nthreads=4;

run;

title "Tuner Output";
proc print data=out(obs=10);
run;

The output data set is shown in Figure 14.1.1.
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Output 14.1.1 Single Problem with Default Tuning Options: Output

Tuner Output

S
C O
O L S
N U R A O
F C C C T E B L
L H U U U I L S U

P I E T C T T O O A O T
O R C U S U M Z N B T L I

P B E T N R T T I E _ J I U O
R J S S O V I R G L R S S E V T N
O S O P E D A S A O I O T T C E E N _

R B E L R A E R T T M F H A A T _ _ O T
O A L N V O R S S I E O T A T T I G G D I
b N E S E B C E E C G R E L U U V A A E M
s K M E R E H L L S Y Y D F S S E P P S E

1 0 AIR05 MIN -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 OK OPTIMAL 26374 0 0 190 61.17
2 1 AIR05 MIN 3 -1 -1 2 -1 2 2 -1 0 0 OK OPTIMAL 26374 0 0 175 51.97
3 2 AIR05 MIN 3 -1 -1 2 -1 2 1 -1 -1 0 OK OPTIMAL 26374 0 0 203 52.92
4 3 AIR05 MIN 3 -1 -1 2 -1 2 1 -1 0 0 OK OPTIMAL 26374 0 0 203 54.79
5 4 AIR05 MIN 3 -1 0 2 -1 2 1 -1 0 0 OK OPTIMAL 26374 0 0 307 55.18
6 5 AIR05 MIN 3 0 -1 2 -1 2 1 -1 0 0 OK OPTIMAL 26374 0 0 203 55.38
7 6 AIR05 MIN 3 -1 -1 2 -1 3 1 -1 0 0 OK OPTIMAL 26374 0 0 189 58.10
8 7 AIR05 MIN 3 -1 -1 -1 -1 2 1 -1 0 0 OK OPTIMAL 26374 0 0 227 60.34
9 8 AIR05 MIN 3 -1 -1 1 -1 2 1 -1 0 0 OK OPTIMAL 26374 0 0 275 69.41

10 9 AIR05 MIN 0 -1 -1 0 -1 0 -1 -1 -1 0 OK OPTIMAL 26374 0 0 105 70.12
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Example 14.2: Tuning a Defined Set of Options for Multiple Problems
This example demonstrates how to specify a set of tuning options and tune them for multiple problems.

The following DATA step creates a PROBLEMS= data set named probs that contains the list of tuning
problems. This data set is the same as in the section “Getting Started: The OPTMILP Option Tuner” on
page 580.

data probs;
input name $1-8;
datalines;

a.air04
a.air05
;

The following DATA step creates an OPTIONVALUES= data set named optvals that is different from the
default set, which is described in the section “Default Set of Tuning Options” on page 588:

data optvals;
input option $1-10 values $12-28 initial $30-32;
datalines;

cutclique -1, 0, 2 -1
cutgomory 1
heuristics
;

The optvals data set contains a nondefault list of tuning values for the CUTCLIQUE= option in addition to
initial values for the CUTCLIQUE= and CUTGOMORY= options. The options for which sets of tuning
values are not specified (in this case, the CUTGOMORY= and HEURISTICS= options) are tuned for all
available values. The options for which initial values are not specified (in this case, the HEURISTICS=
option) are tuned by using the default initial value.

The following statements call the OPTMILP option tuner and then print the ODS table TunerResults and the
TUNEROUT= data set:

proc optmilp maxtime=300;
tuner problems=probs optionvalues=optvals optionmode=user

maxtime=1200 tunerout=out;
performance nthreads=4;

run;

title "Tuner Output";
proc print data=out(obs=20);
run;

The output is shown in Figure 14.2.1.



596 F Chapter 14: The OPTMILP Option Tuner

Output 14.2.1 Multiple Problems with Specified Tuning Options: Output

Tuner Output

The OPTMILP Procedure

Tuner Results

C C C C C C C
o o o o o o o
n n n n n n n
f f f f f f f
i i i i i i i
g g g g g g g

0 1 2 3 4 5 6

cutclique -1 2 -1 2 2 -1 -1
cutgomory 1 0 2 2 0 2 2
heuristics -1 -1 -1 2 2 2 3
Mean of Run Times 76.3 73.36 73.41 73.8 74.48 75.39 109.51
Sum of Run Times 155 149.4 149.49 150.26 151.61 153.79 239.94
Percentage Successful 100 100 100 100 100 100 100

Tuner Results

C
C C C o
o o o n
n n n f
f f f i
i i i g
g g g

1
7 8 9 0

cutclique 2 0 -1 -1
cutgomory 1 0 2 0
heuristics 3 3 0 2
Mean of Run Times 109.57 110.98 24.31 43.09
Sum of Run Times 240.42 236.78 48.63 98.61
Percentage Successful 100 100 0 0
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Output 14.2.1 continued

Tuner Output

S
O
L S
U R A O
T E B L

h I L S U
c c e O O A O T

O u u u N B T L I
P B t t r _ J I U O
R J c g i S S E V T N
O S l o s T T C E E N _

R B E i m t A A T _ _ O T
O A L N q o i T T I G G D I
b N E S u r c U U V A A E M
s K M E e y s S S E P P S E

1 0 air04 MIN -1 1 -1 OK OPTIMAL_RGAP 56137 .000053444 3.00000 96 91.08
2 0 air05 MIN -1 1 -1 OK OPTIMAL 26374 .000000000 0.00000 190 63.91
3 1 air04 MIN 2 0 -1 OK OPTIMAL_RGAP 56137 .000053444 3.00000 96 88.77
4 1 air05 MIN 2 0 -1 OK OPTIMAL 26374 .000000000 0.00000 192 60.63
5 2 air04 MIN -1 2 -1 OK OPTIMAL_RGAP 56137 .000053444 3.00000 96 88.80
6 2 air05 MIN -1 2 -1 OK OPTIMAL 26374 .000000000 0.00000 192 60.69
7 3 air04 MIN 2 2 2 OK OPTIMAL_RGAP 56137 .000053444 3.00000 96 89.16
8 3 air05 MIN 2 2 2 OK OPTIMAL 26374 .000000000 0.00000 192 61.09
9 4 air04 MIN 2 0 2 OK OPTIMAL_RGAP 56137 .000053444 3.00000 96 89.91

10 4 air05 MIN 2 0 2 OK OPTIMAL 26374 .000000000 0.00000 192 61.70
11 5 air04 MIN -1 2 2 OK OPTIMAL_RGAP 56137 .000053444 3.00000 96 92.00
12 5 air05 MIN -1 2 2 OK OPTIMAL 26374 .000000000 0.00000 192 61.79
13 6 air04 MIN -1 -1 2 OK OPTIMAL_RGAP 56137 .000053444 3.00000 96 92.88
14 6 air05 MIN -1 -1 2 OK OPTIMAL 26374 .000000000 0.00000 190 62.45
15 7 air04 MIN -1 1 2 OK OPTIMAL_RGAP 56137 .000053444 3.00000 96 95.99
16 7 air05 MIN -1 1 2 OK OPTIMAL 26374 .000000000 0.00000 190 65.45
17 8 air04 MIN 2 -1 1 OK OPTIMAL_RGAP 56137 .000067097 3.76640 159 126.33
18 8 air05 MIN 2 -1 1 OK OPTIMAL 26374 .000000000 0.00000 192 53.99
19 9 air04 MIN 2 0 0 OK OPTIMAL_RGAP 56137 .000067097 3.76640 162 129.10
20 9 air05 MIN 2 0 0 OK OPTIMAL 26374 .000000000 0.00000 192 54.11

Example 14.3: Tuning a Defined Set of Options for Multiple Problems in
Distributed Mode

This example demonstrates how to run the tuner in distributed mode. The example is similar to Example 14.2.
The only difference between single-machine and distributed mode is that the PERFORMANCE statement
specifies the number of threads and nodes to be used. The following statement changes the operating mode
to distributed:

/* set the numbers of nodes and threads and get performance details */
performance nodes=5 nthreads=4 details;
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The performance information and procedure task timing tables are displayed in Figure 14.3.1. The NODES=5
and NTHREADS=4 options in the PERFORMANCE statement cause the tuner to run in distributed mode,
where each computer node processes up to four threads simultaneously.

Output 14.3.1 Performance Information in Distributed Mode: Output

Tuner Output

The OPTMILP Procedure

Performance Information

Host Node < your grid host >
Execution Mode Distributed
Grid Mode Symmetric
Number of Compute Nodes 5
Number of Threads per Node 4

Procedure Task Timing
Time

Task (sec.) % Time

Data Loading 0.83 0.02%
Data Transfer 0.08 0.00%
Tuner 0.27 0.01%
Solver 3994.81 99.95%
Idle 0.96 0.02%
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Overview: MPS-Format SAS Data Set
The MPS file format is a format commonly used in industry for describing linear programming (LP) and
integer programming (IP) problems (Murtagh 1981; IBM 1988). It can be extended to the QPS format
(Maros and Mészáros 1999), which describes quadratic programming (QP) problems. MPS-format and
QPS-format files are in text format and have specific conventions for the order in which the different pieces
of the mathematical model are specified. The MPS-format SAS data set corresponds closely to the format of
an MPS-format or QPS-format file and is used to describe linear programming, mixed integer programming,
and quadratic programming problems for SAS/OR.
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Observations
An MPS-format data set contains six variables: field1, field2, field3, field4, field5, and field6. The variables
field4 and field6 are numeric type; the others are character type. Among the character variables, only the
value of field1 is case-insensitive and leading blanks are ignored. Values of field2, field3, and field5 are
case-sensitive and leading blanks are NOT ignored. Not all variables are used in a particular observation.

Observations in an MPS-format SAS data set are grouped into sections. Each section starts with an indicator
record, followed by associated data records. Indicator records specify the names of sections and the format
of the following data records. Data records contain the actual data values for a section.

Order of Sections
Sections of an MPS-format SAS data set must be specified in a fixed order.

Sections of linear programming problems are listed in the following order:

• NAME

• ROWS

• COLUMNS

• RHS (optional)

• RANGES (optional)

• BOUNDS (optional)

• ENDATA

Sections of quadratic programming problems are listed in the following order:

• NAME

• ROWS

• COLUMNS

• RHS (optional)

• RANGES (optional)

• BOUNDS (optional)

• QSECTION

• ENDATA

Sections of mixed integer programming problems are listed in the following order:



Sections Format: MPS-Format SAS Data Set F 601

• NAME

• ROWS

• COLUMNS

• RHS (optional)

• RANGES (optional)

• BOUNDS (optional)

• BRANCH (optional)

• ENDATA

Sections Format: MPS-Format SAS Data Set
The following subsections describe the format of the records for each section of the MPS-format data set.
Note that each section contains two types of records: an indicator record and multiple data records. The
following subsections of this documentation describe the two different types of records for each section of
the MPS data set.

NAME Section
The NAME section contains only a single record identifying the name of the problem.

Field1 Field2 Field3 Field4 Field5 Field6
NAME Blank Input

model
name

. Blank .

ROWS Section
The ROWS section contains the name and type of the rows (linear constraints or objectives). The type of
each row is specified by the indicator code in field1 as follows:

• MIN: minimization objective

• MAX: maximization objective

• N: objective

• G: � constraint

• L: � constraint

• E:D constraint
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• Indicator record:
Field1 Field2 Field3 Field4 Field5 Field6
ROWS Blank Blank . Blank .

• Data record:
Field1 Field2 Field3 Field4 Field5 Field6
Indicator
code

Row
name

Blank . Blank .

Notes:

1. At least one objective row should be specified in the ROWS section. It is possible to specify multiple
objective rows. However, among all the data records indicating the objective, only the first one is
regarded as the objective row, while the rest are ignored. If a type-N row is taken as the objective row,
minimization is assumed.

2. Duplicate entries of field2 in the ROWS section are not allowed. In other words, row name is unique.
The variable field2 in the ROWS section cannot take a missing value.

COLUMNS Section
The COLUMNS section defines the column (i.e., variable or decision variable) names of the problem. It also
specifies the coefficients of the columns for each row.

• Indicator record:
Field1 Field2 Field3 Field4 Field5 Field6
COLUMNS Blank Blank . Blank .

• Data record:
Field1 Field2 Field3 Field4 Field5 Field6
Blank Column

name
(e.g., col)

Row
name
(e.g.,
rowi)

Matrix
element
in row
rowi,
column
col

Row
name
(e.g.,
rowj)

Matrix
element
in row
rowj,
column
col

Notes:

1. All elements belonging to one column must be grouped together.

2. A missing coefficient value is ignored. A data record with missing values in both field4 and field6 is
ignored.

3. Duplicate entries in each pair of column and row are not allowed.

4. When a sequence of data records have an identical value in field2, you can specify the value in the first
occurrence and omit the value by giving a missing value in the other records. The value in field2 of the
first data record in the section cannot be missing.
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Mixed Integer Programs

Mixed integer programming (MIP) problems require you to specify which variables are constrained to be
integers. Integer variables can be specified in the COLUMNS section with the use of special marker records
in the following form:

Field1 Field2 Field3 Field4 Field5 Field6
Blank Marker

name
‘MARKER’
(including
the quotation
marks)

. ‘INTORG’
or ‘INTEND’
(including
the quotation
marks)

.

A marker record with field5 that contains the value ‘INTORG’ indicates the start of integer variables. In the
marker record that indicates the end of integer variables, field5 must be ‘INTEND’. An alternative way to
specify integer variables without using the marker records is described in the section “BOUNDS Section
(Optional)” on page 605.

Notes:

1. INTORG and INTEND markers must appear in pairs in the COLUMNS section. The marker pairs can
appear any number of times.

2. The marker name in field2 should be different from the preceding and following column names.

3. All variables between the INTORG and INTEND markers are assumed to be binary unless you specify
a different lower bound and/or upper bound in the BOUNDS section.

RHS Section (Optional)
The RHS section specifies the right-hand-side value for the rows. Any row unspecified in this section is
considered to have an RHS value of 0. Missing the entire RHS section implies that all RHS values are 0.

• Indicator record:
Field1 Field2 Field3 Field4 Field5 Field6
RHS Blank Blank . Blank .

• Data record:
Field1 Field2 Field3 Field4 Field5 Field6
Blank RHS

name
Row
name
(e.g.,
rowi)

RHS
value for
row rowi

Row
name
(e.g.,
rowj)

RHS
value for
row rowj

Notes:

1. The rows that have an RHS element defined in this section need not be specified in the same order in
which the rows were specified in the ROWS section. However, a row in the RHS section should be
defined in the ROWS section.
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2. It is possible to specify multiple RHS vectors, which are labeled by different RHS names. Normally,
the first RHS vector encountered in the RHS section is used, and all other RHS vectors are discarded.
All the elements of the selected RHS vector must be specified before other RHS vectors are introduced.
Within a specific RHS vector, for a given row, duplicate assignments of RHS values are not allowed.

3. An RHS value assigned to the objective row is ignored by PROC OPTLP and PROC OPTMILP, while
it is taken as a constant term of the objective function by PROC OPTQP.

4. A missing value in field4 or field6 is ignored. A data record with missing values in both field4 and
field6 is ignored.

5. When a sequence of data records have an identical value in field2, you can specify the value in the first
occurrence and omit the value by giving a missing value in the other records. If the value in field2 of
the first data record in the section is missing, it means the name of the first vector is the missing value.

RANGES Section (Optional)
The RANGES section specifies the range of the RHS value for the constraint rows. With range specification,
a row can be constrained from above and below.

For a constraint row c, if b is the RHS value and r is the range for this row, then the equivalent constraints
are given in Table 15.1, depending on the type of row and the sign of r .

Table 15.1 Range Effect

Type of Row Sign of r Equivalent Constraints
G ˙ b � c � b C jr j

L ˙ b � jr j � c � b

E C b � c � b C r

E � b C r � c � b

• Indicator record:
Field1 Field2 Field3 Field4 Field5 Field6
RANGES Blank Blank . Blank .

• Data record:
Field1 Field2 Field3 Field4 Field5 Field6
Blank Range

name
Row
name
(e.g.,
rowi)

Range for

RHS of
row rowi

Row
name
(e.g.,
rowj)

Range for

RHS of
row rowj
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Notes:

1. Range assignment for an objective row (i.e., MAX, MIN, or N row) is not allowed.

2. The rows that have a range element defined in this section need not be specified in the same order in
which the rows were specified in the ROWS or RHS section. However, a row in the RANGES section
should be defined in the ROWS section.

3. It is possible to specify multiple range vectors, which are labeled by different range names. Normally,
the first range vector encountered in the RANGES section is used, and all other range vectors are
discarded. All the elements in a range vector must be specified before other range vectors are introduced.
Within the specific range vector, for a given range, duplicate assignments of range values are not
allowed.

4. A missing value in field4 or field6 is ignored. A data record with missing values in both field4 and
field6 is ignored.

5. When a sequence of data records have an identical value in field2, you can specify the value in the first
occurrence and omit the value by giving a missing value in the other records. If the value in field2 of
the first data record in the section is missing, it means the name of the first vector is the missing value.

BOUNDS Section (Optional)
The BOUNDS section specifies bounds for the columns.

• Indicator record:
Field1 Field2 Field3 Field4 Field5 Field6
BOUNDS Blank Blank . Blank .

• Data record:
Field1 Field2 Field3 Field4 Field5 Field6
Bound type Bound

name
Column
name

Bound
for the
column

Blank Blank

Notes:

1. If you do not specify any bound for a column, then the upper bound isC1 for a continuous variable,
and 1 for an integer variable, that is specified in the COLUMNS section. The lower bound is 0 by
default.

2. General bound types include LO, UP, FX, FR, MI, and PL. Suppose the bound for a column identified
in field3 is specified as b in field4. Table 15.2 explains the effects of different bound types.
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Table 15.2 Bound Type Rules

Bound Type Ignore b Resultant Lower Bound Resultant Upper Bound
LO No b unspecified
UP No unspecified b

FX No b b

FR Yes �1 C1

MI Yes �1 unspecified
PL Yes unspecified C1

If a bound (lower or upper) is not explicitly specified, then it takes the default values according to Note
1. There is one exception: if the upper bound is specified as a negative value (b < 0) and the lower
bound is unspecified, then the lower bound is set to �1.

Mixed integer programming problems can specify integer variables in the BOUNDS section. Table 15.3
shows bound types defined for MIP.

Table 15.3 Bound Type Rules

Bound Type Ignore b Variable Type Value
BV Yes binary 0 or 1
LI No integer Œb;1/

UI No integer .�1; b�

3. The columns that have bounds do not need to be specified in the same order in which the columns were
specified in the COLUMNS section. However, all columns in the BOUNDS section should be defined
in the COLUMNS section.

4. It is possible to specify multiple bound vectors, which are labeled by different bound names. Normally,
the first bound vector encountered in the BOUNDS section is used, and all other bound vectors are
discarded. All the elements of the selected bound vector must be specified before other bound vectors
are introduced.

5. When data records in a sequence have an identical value in field2, you can specify the value in the first
occurrence and omit the value by giving a missing value in the other records. If the value in field2 of
the first data record in the section is missing, it means the name of the first vector is the missing value.

6. Within a particular BOUNDS vector, for a given column, if a bound (lower or upper) is explicitly
specified by the bound type rules listed in Table 15.2, any other specification is considered to be an
error.

7. If the value in field1 is LO, UP, FX, LI, or UI, then a data record with a missing value in field4 is
ignored.
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BRANCH Section (Optional)
Sometimes you want to specify branching priorities or directions for integer variables to improve performance.
Variables with higher priorities are branched on before variables with lower priorities. The branch direction
is used to decide which branch to take first at each node. For more information, see the section “Branching
Priorities” on page 438.

• Indicator record:
Field1 Field2 Field3 Field4 Field5 Field6
BRANCH Blank Blank . Blank .

• Data record:
Field1 Field2 Field3 Field4 Field5 Field6
Branch
direction

Blank First
column
name

First
column
priority

Second
column
name

Second
column
priority

Notes:

1. Valid directions include UP (up branch), DN (down branch), RD (rounding) and CB (closest bound).
If field1 is blank, the solver automatically decides the direction.

2. If field4 is missing, then the name defined in field3 is ignored. Similarly, if field6 is missing, then the
name defined in field5 is ignored.

3. The priority value in field4 and field6 must be nonnegative. Zero is the lowest priority and is also the
default.

QSECTION Section
The QSECTION section is needed only to describe quadratic programming problems. It specifies the
coefficients of the quadratic terms in the objective function.

• Indicator record:
Field1 Field2 Field3 Field4 Field5 Field6
QSECTION
or
QUADOBJ

Blank Blank . Blank .

• Data record:
Field1 Field2 Field3 Field4 Field5 Field6
Blank Column

name
Column
name

Coefficient

in
objective
function

Blank .
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Notes:

1. The QSECTION section is required for PROC OPTQP and should not appear for PROC OPTLP. For
PROC OPTQP, there should be at least one valid data record in the QSECTION section. For PROC
OPTLP, an error is reported when the submitted data set contains a QSECTION section.

2. The variables field2 and field3 contain the names of the columns that form a quadratic term in the
objective function. They must have been defined in the COLUMNS section. They need not refer to the
same column. Zero entries should not be specified.

3. Duplicate entries of a quadratic term are not allowed. This means the combination of (field2, field3)
must be unique, where .k; j / and .j; k/ are considered to be the same combination.

4. If field4 of one data record is missing or takes a value of zero, then this data record is ignored.

ENDATA Section
The ENDATA section simply declares the end of all records. It contains only one indicator record, where
field1 takes the value ENDATA and the values of the remaining variables are blank or missing.

Details: MPS-Format SAS Data Set

Converting an MPS/QPS-Format File: %MPS2SASD
As described in the section “Overview: MPS-Format SAS Data Set” on page 599, the MPS or QPS format is
a standard file format for describing linear, integer, and quadratic programming problems. The MPS/QPS
format is defined for plain text files, whereas in the SAS System it is more convenient to read data from SAS
data sets. Therefore, a facility is required to convert MPS/QPS-format text files to MPS-format SAS data sets.
The SAS macro %MPS2SASD serves this purpose.

In the MPS/QPS-format text file, a record refers to a single line of text that is divided into six fields. MPS/QPS
files can be read and printed in both fixed and free format. In fixed MPS/QPS format, each field of a data
record must occur in specific columns:

Field Field 1 Field 2 Field 3 Field 4 Field 5 Field 6
Columns 2–3 5–12 15–22 25–36 40–47 50–61

In free format, fields of a record are separated by a space. Both fixed and free format have limitations. If
users need to use row names or column names longer than 8 characters, then there is not enough space to hold
them in fixed format. If users use a space as a part of a row name or column name, such as “ROW NAME”,
then free-format MPS format interprets this symbol as two fields, “ROW” and “NAME”.

You can insert a comment record, denoted by an asterisk (*) in column 1, anywhere in an MPS/QPS file.
Also, if a dollar sign ($) is the first character in field 3 or field 5 of any record, the information from that point
to the end of the record is treated as a comment. All comments are ignored by the %MPS2SASD macro,
described as follows.
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%MPS2SASD Macro Parameters

%MPS2SASD (MPSFILE=‘infilename’, OUTDATA=mpsdata, MAXLEN=n, FORMAT=FIXED/FREE);

MPSFILE=‘infilename’
specifies the path and name of the input MPS-format file. The input file is a plain text file, normally
with either an “.mps” extension for linear programming problems or a “.qps” extension for quadratic
programming problems. This parameter is required; there is no default value.

OUTDATA=mpsdata
specifies the name of the output MPS-format SAS data set. This parameter is optional; the default
value is mpsdata.

MAXLEN=n
specifies length of the variables field2, field3, and field5 in the output MPS-format SAS data set. This
parameter is optional; the default value is 8.

FORMAT=FIXED/FREE
specifies the format of the input MPS file. Valid values can be either FIXED or FREE. This parameter
is optional; the default value is the one, if any, specified by the flat file and FIXED otherwise.

Length of Variables
In an MPS-format SAS data set, normally the variables field2, field3, and field5 hold the names of the rows
and columns. The length of these character variables is limited to the maximum size of a SAS character
variable. This enables you to use sufficiently long names for the rows and columns in your model.

In a SAS data set generated by the %MPS2SASD macro, the length of the variables field2, field3, and field5
is fixed to be 8 ASCII characters by default. This length fits the fixed-format MPS/QPS file well since field 2,
field 3, and field 5 are fixed at 8 characters. However, the free-format MPS/QPS files might have longer row
names or longer column names. The %MPS2SASD macro provides a parameter MAXLEN = n. Using this
parameter, you can set the variables field2, field3, and field5 to have a length of n characters in the output
SAS data set.

The parameter MAXLEN works only when the given MPS file is in free format. For a fixed-format MPS file,
this parameter is ignored and the length of field2, field3, and field5 is 8 characters by default.

Examples: MPS-Format SAS Data Set

Example 15.1: MPS-Format Data Set for a Product Mix Problem
Consider a simple product mix problem where a furniture company tries to find an optimal product mix
of four items: a desk (x1), a chair (x2), a cabinet (x3), and a bookcase (x4). Each item is processed in a
stamping department (STAMP), an assembly department (ASSEMB), and a finishing department (FINISH).
The time each item requires in each department is given in the input data. Because of resource limitations,
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each department has an upper limit on the time available for processing. Furthermore, because of labor
constraints, the assembly department must work at least 300 hours. Finally, marketing tells you not to make
more than 75 chairs, to make at least 50 bookcases, and to find the range over which the selling price of a
bookcase can vary without changing the optimal product mix.

This problem can be expressed as the following linear program:

max 95x1 C 41x2 C 84x3 C 76x4
subject to 3x1 C 1:5x2 C 2x3 C 2x4 � 800 .STAMP/

10x1 C 6x2 C 8x3 C 7x4 � 1200 .ASSEMB/
10x1 C 6x2 C 8x3 C 7x4 � 300 .ASSEMB/
10x1 C 8x2 C 8x3 C 7x4 � 800 .FINISH/

x2 � 75

x4 � 50

xi � 0 i D 1; 2; 3

The following DATA step saves the problem specification as an MPS-format SAS data set:

data prodmix;
infile datalines;
input field1 $ field2 $ field3$ field4 field5 $ field6;
datalines;

NAME . PROD_MIX . . .
ROWS . . . . .
MAX PROFIT . . . .
L STAMP . . . .
L ASSEMB . . . .
L FINISH . . . .
COLUMNS . . . . .
. DESK STAMP 3.0 ASSEMB 10
. DESK FINISH 10.0 PROFIT 95
. CHAIR STAMP 1.5 ASSEMB 6
. CHAIR FINISH 8.0 PROFIT 41
. CABINET STAMP 2.0 ASSEMB 8
. CABINET FINISH 8.0 PROFIT 84
. BOOKCSE STAMP 2.0 ASSEMB 7
. BOOKCSE FINISH 7.0 PROFIT 76
RHS . . . . .
. TIME STAMP 800.0 ASSEMB 1200
. TIME FINISH 800.0 . .
RANGES . . . . .
. T1 ASSEMB 900.0 . .
BOUNDS . . . . .
UP BND CHAIR 75.0 . .
LO BND BOOKCSE 50.0 . .
ENDATA . . . . .
;
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Example 15.2: Fixed-MPS-Format File
The following file, example_fix.mps, contains the data from Example 15.1 in the form of a fixed-MPS-format
file. The indicator codes MAX and MIN are not available for objective rows in fixed MPS format, so the
PROFIT row is specified as type N. Minimization is assumed for type-N rows; for a maximization objective,
the objective coefficients must be replaced with values of the opposite sign.

* THIS IS AN EXAMPLE FOR FIXED MPS FORMAT.
NAME PROD_MIX
ROWS
N PROFIT
L STAMP
L ASSEMB
L FINISH

COLUMNS
DESK STAMP 3.00000 ASSEMB 10.00000
DESK FINISH 10.00000 PROFIT -95.00000
CHAIR STAMP 1.50000 ASSEMB 6.00000
CHAIR FINISH 8.00000 PROFIT -41.00000
CABINET STAMP 2.00000 ASSEMB 8.00000
CABINET FINISH 8.00000 PROFIT -84.00000
BOOKCSE STAMP 2.00000 ASSEMB 7.00000
BOOKCSE FINISH 7.00000 PROFIT -76.00000

RHS
TIME STAMP 800.00000 ASSEMB 1200.0000
TIME FINISH 800.00000

RANGES
T1 ASSEMB 900.00000

BOUNDS
UP BND CHAIR 75.00000
LO BND BOOKCSE 50.00000

ENDATA

Example 15.3: Free-MPS-Format File
In free format, fields in data records other than the first record have no predefined positions. They can
be written anywhere except column 1, with each field separated from the next by one or more blanks (a
tab cannot be used as a field separator). However, the fields must appear in the same sequence as in the
fixed format. The following file, example_free.mps, is an example. It describes the same problem as in
Example 15.2.

* THIS IS AN EXAMPLE FOR FREE MPS FORMAT.
NAME PROD_MIX FREE
ROWS
N PROFIT

L STAMP
L ASSEMB
L FINISH
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COLUMNS
DESK STAMP 3.00000 ASSEMB 10.00000
DESK FINISH 10.00000 PROFIT -95.00000

CHAIR STAMP 1.50000 ASSEMB 6.00000
CHAIR FINISH 8.00000 PROFIT -41.00000

CABINET STAMP 2.00000 ASSEMB 8.00000
CABINET FINISH 8.00000 PROFIT -84.00000

BOOKCSE STAMP 2.00000 ASSEMB 7.00000
BOOKCSE FINISH 7.00000 PROFIT -76.00000

RHS
TIME STAMP 800.00000 ASSEMB 1200.0000
TIME FINISH 800.00000

RANGES
T1 ASSEMB 900.00000

BOUNDS
UP BND CHAIR 75.00000
LO BND BOOKCSE 50.00000

ENDATA

Example 15.4: Using the %MPS2SASD Macro
We illustrate the use of the %MPS2SASD macro in this example, assuming the files example_fix.mps and
example_free.mps are in your current SAS working directory.

The MPS2SASD macro function has one required parameter, MPSFILE= ‘infilename’, which specifies the
path and name of the MPS/QPS-format file. With this single parameter, the macro reads the file, converts the
records, and saves the conversion to the default MPS-format SAS data set MPSDATA.

Running the following statements converts the fixed-format MPS file shown in Example 15.2 to the MPS-
format SAS data set MPSDATA:

%mps2sasd(mpsfile='example_fix.mps');
proc print data=mpsdata;
run;

Output 15.4.1 displays the MPS-format SAS data set MPSDATA.
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Output 15.4.1 The MPS-Format SAS Data Set MPSDATA

Obs field1 field2 field3 field4 field5 field6

1 NAME PROD_MIX . .
2 ROWS . .
3 N PROFIT . .
4 L STAMP . .
5 L ASSEMB . .
6 L FINISH . .
7 COLUMNS . .
8 DESK STAMP 3.0 ASSEMB 10
9 DESK FINISH 10.0 PROFIT -95
10 CHAIR STAMP 1.5 ASSEMB 6
11 CHAIR FINISH 8.0 PROFIT -41
12 CABINET STAMP 2.0 ASSEMB 8
13 CABINET FINISH 8.0 PROFIT -84
14 BOOKCSE STAMP 2.0 ASSEMB 7
15 BOOKCSE FINISH 7.0 PROFIT -76
16 RHS . .
17 TIME STAMP 800.0 ASSEMB 1200
18 TIME FINISH 800.0 .
19 RANGES . .
20 T1 ASSEMB 900.0 .
21 BOUNDS . .
22 UP BND CHAIR 75.0 .
23 LO BND BOOKCSE 50.0 .
24 ENDATA . .

Running the following statement converts the free-format MPS file shown in Example 15.3 to the MPS-format
SAS data set MPSDATA:

%mps2sasd(mpsfile='example_free.mps');

The data set is identical to the one shown in Output 15.4.1.

In the following statement, when the free-format MPS file is converted, the length of the variables field2,
field3, and field5 in the SAS data set MPSDATA is explicitly set to 10 characters:

%mps2sasd(mpsfile='example_free.mps', maxlen=10, format=free);

If you want to save the converted data to a SAS data set other than the default data set MPSDATA, you can
use the parameter OUTDATA= mpsdata. The following statement reads data from the file example_fix.mps
and writes the converted data to the data set PRODMIX:

%mps2sasd(mpsfile='example_fix.mps', outdata=PRODMIX);
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SOLVE WITH MILP statement, 258

CUTIMPLIED= option
PROC OPTMILP statement, 430
SOLVE WITH MILP statement, 258

CUTKNAPSACK= option
PROC OPTMILP statement, 430
SOLVE WITH MILP statement, 258

CUTLAP= option
PROC OPTMILP statement, 430
SOLVE WITH MILP statement, 258

CUTMILIFTED= option
PROC OPTMILP statement, 430
SOLVE WITH MILP statement, 258

CUTMIR= option
PROC OPTMILP statement, 431
SOLVE WITH MILP statement, 258

CUTOFF= option
PROC OPTMILP statement, 424
SOLVE WITH MILP statement, 252

CUTS= option
PROC OPTMILP statement, 431
SOLVE WITH MILP statement, 259

CUTSFACTOR= option
PROC OPTMILP statement, 431
SOLVE WITH MILP statement, 258

CUTSTRATEGY= option
PROC OPTMILP statement, 431
SOLVE WITH MILP statement, 259

CUTZEROHALF= option
PROC OPTMILP statement, 431
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SOLVE WITH MILP statement, 259

DATA= option
PROC OPTLP statement, 366
PROC OPTMILP statement, 423
PROC OPTQP statement, 482

DECOMP_MASTER_IP=() option
SOLVE WITH MILP statement, 259

DECOMP_MASTER_IP statement
DECOMP option, 519
OPTMILP procedure, 431

DECOMP_MASTER=() option
SOLVE WITH LP statement, 191
SOLVE WITH MILP statement, 259

DECOMP_MASTER statement
DECOMP option, 518
OPTLP procedure, 372
OPTMILP procedure, 431

DECOMP option
DECOMP_MASTER_IP statement, 519
DECOMP_MASTER statement, 518
DECOMP statement, 513
DECOMP_SUBPROB statement, 521
syntax, 511

DECOMP=() option
SOLVE WITH LP statement, 191
SOLVE WITH MILP statement, 259

DECOMP statement
ABSOBJGAP= option, 514
BLOCKS= option, 514
COMPRESSFREQ= option, 514
DECOMP option, 513
INITVARS= option, 514
LOGFREQ= option, 515
LOGLEVEL= option, 515
MASTER_IP_BEG= option, 516
MASTER_IP_END= option, 516
MASTER_IP_FREQ= option, 516
MAXBLOCKS= option, 517
MAXCOLSPASS= option, 517
MAXITER= option, 517
MAXTIME= option, 517
METHOD= option, 517
OPTLP procedure, 372
OPTMILP procedure, 431
RELOBJGAP= option, 518

DECOMP_SUBPROB=() option
SOLVE WITH LP statement, 192
SOLVE WITH MILP statement, 259

DECOMP_SUBPROB statement
DECOMP option, 521
OPTLP procedure, 372
OPTMILP procedure, 431

DECOMP= option

METHOD= option, 517
DECOMP_MASTER statement

INITPRESOLVER= option, 519
DECOMP_MASTER_IP statement

PRIMALIN= option, 521
DECOMP_SUBPROB statement

ALGORITHM= option, 523
INITPRESOLVER= option, 524
PRIMALIN= option, 524
SOL= option, 523
SOLVER= option, 523

DETAILS option
PERFORMANCE statement, 28

DIFF expression
OPTMODEL expression extensions, 103

DO statement
END keyword, 74
OPTMODEL procedure, 74

DO statement, iterative
END keyword, 75
OPTMODEL procedure, 75
UNTIL keyword, 75
WHILE keyword, 75

DO UNTIL statement
END keyword, 76
OPTMODEL procedure, 76

DO WHILE statement
END keyword, 77
OPTMODEL procedure, 77

DROP statement
OPTMODEL procedure, 77

DUALIN= option
PROC OPTLP statement, 366

DUALOUT= option
PROC OPTLP statement, 366
PROC OPTMILP statement, 423

DUALOUT=option
PROC OPTQP statement, 482

ELSE keyword
IF statement, 82

EMPHASIS= option
PROC OPTMILP statement, 424
SOLVE WITH MILP statement, 252

END keyword
DO statement, 74
DO statement, iterative, 75
DO UNTIL statement, 76
DO WHILE statement, 77

ERRORLIMIT= option
PROC OPTMODEL statement, 56

EXPAND statement
CONSTRAINT option, 78
FIX option, 78
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IIS option, 79
IMPVAR option, 79
OBJECTIVE option, 79
OMITTED option, 79
OPTMODEL procedure, 77
SOLVE option, 78
VAR option, 79

FD= option
PROC OPTMODEL statement, 56

FDIGITS= option
PROC OPTMODEL statement, 56

FEASTOL= option
PROC OPTLP statement, 368
PROC OPTMILP statement, 424
SOLVE WITH LP statement, 188
SOLVE WITH MILP statement, 252
SOLVE WITH NLP statement, 310

FILE statement
OPTMODEL procedure, 79

FIX option
EXPAND statement, 78

FIX statement
OPTMODEL procedure, 81

FOR statement
OPTMODEL procedure, 82

FORMAT=option
MPS2SASD Macro Parameters, 609

function expressions
OF keyword, 51

GOAL= option
TUNER statement (OPTMILP), 584

HEURISTICS= option
PROC OPTMILP statement, 427
SOLVE WITH MILP statement, 255

IF expression
OPTMODEL expression extensions, 103

IF statement
ELSE keyword, 82
OPTMODEL procedure, 82
THEN keyword, 82

IIS option
EXPAND statement, 79

IIS= option
PROC OPTLP statement, 367
SOLVE WITH LP statement, 187

IMPVAR option
EXPAND statement, 79

IMPVAR statement
OPTMODEL procedure, 60

IN expression
OPTMODEL expression extensions, 104

IN keyword
index sets, 52

index sets
IN keyword, 52
index set expression, 105
index-set-item, 52

INIT keyword
NUMBER statement, 62
SET statement, 62
STRING statement, 62
VAR statement, 66

INITPRESOLVER= option
DECOMP_MASTER statement, 519
DECOMP_SUBPROB statement, 524

INITVAR option
PROC OPTMODEL statement, 56

INITVARS= option
DECOMP statement, 514

INTER aggregation expression
OPTMODEL expression extensions, 105

INTER expression
OPTMODEL expression extensions, 105

INTFUZZ= option
PROC OPTMODEL statement, 57

INTO keyword
READ DATA statement, 89

INTTOL= option
PROC OPTMILP statement, 425
SOLVE WITH MILP statement, 253

LEAVE statement
OPTMODEL procedure, 83

LOGFREQ= option
DECOMP statement, 515
PROC OPTLP statement, 368
PROC OPTMILP statement, 425
PROC OPTQP statement, 482
SOLVE WITH LP statement, 188
SOLVE WITH MILP statement, 253
SOLVE WITH NLP statement, 309
SOLVE WITH QP statement, 345
TUNER statement (OPTMILP), 584

LOGLEVEL= option
DECOMP statement, 515
PROC OPTLP statement, 369
PROC OPTMILP statement, 425
SOLVE WITH LP statement, 188
SOLVE WITH MILP statement, 253
TUNER statement (OPTMILP), 584

LTRIM option
READ DATA statement, 91

MASTER_IP_BEG= option
DECOMP statement, 516
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MASTER_IP_END= option
DECOMP statement, 516

MASTER_IP_FREQ= option
DECOMP statement, 516

MAX aggregation expression
OPTMODEL expression extensions, 106

MAX statement
OPTMODEL procedure, 61

MAXBLOCKS= option
DECOMP statement, 517

MAXCOLSPASS= option
DECOMP statement, 517

MAXCONFIGS= option
TUNER statement (OPTMILP), 584

MAXITER= option
DECOMP statement, 517
PROC OPTLP statement, 369
PROC OPTQP statement, 483
SOLVE WITH LP statement, 189
SOLVE WITH NLP statement, 310
SOLVE WITH QP statement, 345

MAXLABLEN= option
PROC OPTMODEL statement, 57

MAXLEN=option
MPS2SASD Macro Parameters, 609

MAXNODES= option
PROC OPTMILP statement, 425
SOLVE WITH MILP statement, 253

MAXSOLS= option
PROC OPTMILP statement, 425
SOLVE WITH MILP statement, 253

MAXTIME= option
DECOMP statement, 517
PROC OPTLP statement, 369
PROC OPTMILP statement, 426
PROC OPTQP statement, 483
SOLVE WITH LP statement, 189
SOLVE WITH MILP statement, 253
SOLVE WITH NLP statement, 311
SOLVE WITH QP statement, 345
TUNER statement (OPTMILP), 585

METHOD= option
DECOMP statement, 517
DECOMP= option, 517

MIN aggregation expression
OPTMODEL expression extensions, 106

MIN statement
OPTMODEL procedure, 61

MISSCHECK option
PROC OPTMODEL statement, 57

MPS2SASD Macro Parameters
FORMAT=option, 609
MAXLEN=option, 609
MPSFILE=option, 609

OUTDATA=option, 609
MPSFILE=option

MPS2SASD Macro Parameters, 609
MS option

SOLVE WITH NLP statement, 309
MSBNDRANGE= option

SOLVE WITH NLP statement, 308
MSDISTTOL= option

SOLVE WITH NLP statement, 308
MSGLIMIT= option

PROC OPTMODEL statement, 57
MSLOGLEVEL= option

SOLVE WITH NLP statement, 310
MSMAXSTARTS= option

SOLVE WITH NLP statement, 308
MSMAXTIME= option

SOLVE WITH NLP statement, 308
MSPRINTLEVEL= option

SOLVE WITH NLP statement, 310
MULTISTART option

SOLVE WITH NLP statement, 309

NODESEL= option
PROC OPTMILP statement, 428
SOLVE WITH MILP statement, 256

NOINITVAR option
PROC OPTMODEL statement, 56

NOMISSCHECK option
PROC OPTMODEL statement, 57

NOTRIM option
READ DATA statement, 91

null statement
OPTMODEL procedure, 83

NUMBER statement
INIT keyword, 62
OPTMODEL procedure, 61

OBJECTIVE keyword
SOLVE statement, 96

OBJECTIVE option
EXPAND statement, 79

OBJLIMIT= option
SOLVE WITH NLP statement, 311

OBJSENSE= option
PROC OPTLP statement, 366
PROC OPTMILP statement, 423
PROC OPTQP statement, 483

OF keyword
function expressions, 51

OMITTED option
EXPAND statement, 79

OPTIONMODE= option
TUNER statement (OPTMILP), 585

OPTIONVALUES= option
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TUNER statement (OPTMILP), 586
OPTLP procedure, 365

DECOMP_MASTER statement, 372
DECOMP statement, 372
DECOMP_SUBPROB statement, 372
PERFORMANCE statement, 28, 372

OPTLSO procedure
PERFORMANCE statement, 28

OPTMILP option tuner
PERFORMANCE statement, 583

OPTMILP procedure, 421
DECOMP_MASTER_IP statement, 431
DECOMP_MASTER statement, 431
DECOMP statement, 431
DECOMP_SUBPROB statement, 431
PERFORMANCE statement, 28, 432
TUNER statement, 432, 584

OPTMODEL expression extensions
AND aggregation expression, 102
CARD function, 102
CROSS expression, 102
DIFF expression, 103
IF expression, 103
IN expression, 104
index set expression, 105
INTER aggregation expression, 105
INTER expression, 105
MAX aggregation expression, 106
MIN aggregation expression, 106
OR aggregation expression, 106
PROD aggregation expression, 107
range expression, 107
set constructor expression, 108
set literal expression, 108
SETOF aggregation expression, 109
SLICE expression, 109
SUM aggregation expression, 110
SYMDIFF expression, 111
tuple expression, 111
UNION aggregation expression, 112
UNION expression, 111
WITHIN expression, 112

OPTMODEL Procedure, 52
OPTMODEL procedure

assignment statement, 68
CALL statement, 68
CLOSEFILE statement, 68
CONSTRAINT statement, 59
CONTINUE statement, 69
CREATE DATA statement, 69
DO statement, 74
DO statement, iterative, 75
DO UNTIL statement, 76
DO WHILE statement, 77

DROP statement, 77
EXPAND statement, 77
FILE statement, 79
FIX statement, 81
FOR statement, 82
IF statement, 82
IMPVAR statement, 60
LEAVE statement, 83
MAX statement, 61
MIN statement, 61
null statement, 83
NUMBER statement, 61
PERFORMANCE statement, 28, 84
PRINT statement, 84
PUT statement, 88
QUIT Statement, 89
READ DATA statement, 89
RESET OPTIONS statement, 93
RESTORE statement, 93
SAVE MPS statement, 94
SAVE QPS statement, 95
SET statement, 61
SOLVE statement, 96
STOP statement, 98
STRING statement, 61
SUBMIT statement, 98
UNFIX statement, 101
USE PROBLEM statement, 102
VAR statement, 66

OPTMODEL procedure, LP solver
syntax, 185

OPTMODEL procedure, MILP solver, 249
OPTMODEL procedure, NLP solver

syntax, 307
OPTMODEL procedure, QP solver

syntax, 344
OPTQP procedure, 481

PERFORMANCE statement, 28, 484
OPTTOL= option

PROC OPTLP statement, 369
PROC OPTMILP statement, 426
SOLVE WITH LP statement, 189
SOLVE WITH MILP statement, 254
SOLVE WITH NLP statement, 311

OPTVALS= option
TUNER statement (OPTMILP), 586

OR aggregation expression
OPTMODEL expression extensions, 106

OUTDATA=option
MPS2SASD Macro Parameters, 609

_PAGE_ keyword
PRINT statement, 84
PUT statement, 89
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PARALLELMODE= option
PERFORMANCE statement, 28

PDIGITS= option
PROC OPTMODEL statement, 57

PERFORMANCE statement, 28
DETAILS option, 28
OPTLP procedure, 372
OPTMILP option tuner, 583
OPTMILP procedure, 432
OPTMODEL procedure, 84
OPTQP procedure, 484
PARALLELMODE= option, 28

PMATRIX= option
PROC OPTMODEL statement, 57

PRESOLVER= option
PROC OPTLP statement, 368
PROC OPTMILP statement, 424
PROC OPTMODEL statement, 57
PROC OPTQP statement, 483
SOLVE WITH LP statement, 188
SOLVE WITH MILP statement, 251
SOLVE WITH QP statement, 345

PRESTOL= option
PROC OPTMODEL statement, 58

PRICETYPE= option
PROC OPTLP statement, 370
SOLVE WITH LP statement, 190

PRIMALIN option
SOLVE WITH MILP statement, 252

PRIMALIN= option
DECOMP_MASTER_IP statement, 521
DECOMP_SUBPROB statement, 524
PROC OPTLP statement, 367
PROC OPTMILP statement, 423

PRIMALOUT= option
PROC OPTLP statement, 367
PROC OPTMILP statement, 423
PROC OPTQP statement, 483

PRINT statement
OPTMODEL procedure, 84
_PAGE_ keyword, 84

PRINTFREQ= option
PROC OPTLP statement, 368
PROC OPTMILP statement, 425
PROC OPTQP statement, 482
SOLVE WITH LP statement, 188
SOLVE WITH MILP statement, 253
SOLVE WITH NLP statement, 309
SOLVE WITH QP statement, 345

PRINTLEVEL2= option
PROC OPTLP statement, 369
PROC OPTMILP statement, 425
SOLVE WITH LP statement, 188
SOLVE WITH MILP statement, 253

PRINTLEVEL= option
PROC OPTLP statement, 369
PROC OPTMILP statement, 426
PROC OPTMODEL statement, 58
PROC OPTQP statement, 483

PRIORITY= option
PROC OPTMILP statement, 428
SOLVE WITH MILP statement, 256

PROBE= option
PROC OPTMILP statement, 426
SOLVE WITH MILP statement, 254

PROBLEMS= option
TUNER statement (OPTMILP), 586

PROBS= option
TUNER statement (OPTMILP), 586

PROC OPTLP statement
ALGORITHM2= option, 368
ALGORITHM= option, 367
BASIS= option, 370
CROSSOVER= option, 371
DATA= option, 366
DUALIN= option, 366
DUALOUT= option, 366
FEASTOL= option, 368
IIS= option, 367
LOGFREQ= option, 368
LOGLEVEL= option, 369
MAXITER= option, 369
MAXTIME= option, 369
OBJSENSE= option, 366
OPTTOL= option, 369
PRESOLVER= option, 368
PRICETYPE= option, 370
PRIMALIN= option, 367
PRIMALOUT= option, 367
PRINTFREQ= option, 368
PRINTLEVEL2= option, 369
PRINTLEVEL= option, 369
QUEUESIZE= option, 371
SAVE_ONLY_IF_OPTIMAL option, 367
SCALE= option, 371
SOL= option, 367
SOLVER2= option, 368
SOLVER= option, 367
STOP_DG= option, 371
STOP_DI= option, 371
STOP_PI= option, 371
TIMETYPE= option, 369

PROC OPTMILP statement
ABSOBJGAP= option, 424
CONFLICTSEARCH= option, 428
CUTCLIQUE= option, 430
CUTFLOWCOVER= option, 430
CUTFLOWPATH= option, 430
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CUTGOMORY= option, 430
CUTGUB= option, 430
CUTIMPLIED= option, 430
CUTKNAPSACK= option, 430
CUTLAP= option, 430
CUTMILIFTED= option, 430
CUTMIR= option, 431
CUTOFF= option, 424
CUTS= option, 431
CUTSFACTOR= option, 431
CUTSTRATEGY= option, 431
CUTZEROHALF= option, 431
DATA= option, 423
DUALOUT= option, 423
EMPHASIS= option, 424
FEASTOL= option, 424
HEURISTICS= option, 427
INTTOL= option, 425
LOGFREQ= option, 425
LOGLEVEL= option, 425
MAXNODES= option, 425
MAXSOLS= option, 425
MAXTIME= option, 426
NODESEL= option, 428
OBJSENSE= option, 423
OPTTOL= option, 426
PRIMALIN= option, 423
PRIMALOUT= option, 423
PRINTFREQ= option, 425
PRINTLEVEL2= option, 425
PRINTLEVEL= option, 426
PRIORITY= option, 428
PROBE= option, 426
RELOBJGAP= option, 426
SCALE= option, 426
STRONGITER= option, 428
STRONGLEN= option, 429
TARGET= option, 427
TIMETYPE= option, 427
VARSEL= option, 429

PROC OPTMODEL statement
statement options, 56

PROC OPTQP statement
DATA= option, 482
DUALOUT=option, 482
LOGFREQ= option, 482
MAXITER= option, 483
MAXTIME= option, 483
OBJSENSE= option, 483
PRESOLVER= option, 483
PRIMALOUT= option, 483
PRINTFREQ= option, 482
PRINTLEVEL= option, 483
SAVE_ONLY_IF_OPTIMAL option, 484

STOP_DG= option, 484
STOP_DI= option, 484
STOP_PI= option, 484
TIMETYPE= option, 484

PROD aggregation expression
OPTMODEL expression extensions, 107

PUT statement
_PAGE_ keyword, 89

PWIDTH= option
PROC OPTMODEL statement, 58

QUEUESIZE= option
PROC OPTLP statement, 371
SOLVE WITH LP statement, 190

QUIT Statement
OPTMODEL procedure, 89

range expression
OPTMODEL expression extensions, 107

READ DATA statement
COL keyword, 91
INTO keyword, 89
LTRIM option, 91
NOTRIM option, 91
OPTMODEL procedure, 89
RTRIM option, 91
TRIM option, 91

RELAXINT keyword
SOLVE statement, 96

RELOBJGAP= option
DECOMP statement, 518
PROC OPTMILP statement, 426
SOLVE WITH MILP statement, 254

RESET OPTIONS statement
OPTMODEL procedure, 93

RESTORE statement
OPTMODEL procedure, 93

RTRIM option
READ DATA statement, 91

SAVE MPS statement
OPTMODEL procedure, 94

SAVE QPS statement
OPTMODEL procedure, 95

SAVE_ONLY_IF_OPTIMAL option
PROC OPTLP statement, 367
PROC OPTQP statement, 484

SCALE= option
PROC OPTLP statement, 371
PROC OPTMILP statement, 426
SOLVE WITH LP statement, 190
SOLVE WITH MILP statement, 254

SEED= option
SOLVE WITH NLP statement, 309

set constructor expression
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OPTMODEL expression extensions, 108
set literal expression

OPTMODEL expression extensions, 108
SET statement

INIT keyword, 62
OPTMODEL procedure, 61

SETOF aggregation expression
OPTMODEL expression extensions, 109

SLICE expression
OPTMODEL expression extensions, 109

SOL= option
DECOMP_SUBPROB statement, 523
PROC OPTLP statement, 367
SOLVE WITH LP statement, 187

SOLTYPE= option
SOLVE WITH NLP statement, 310

SOLVE option
EXPAND statement, 78

SOLVE statement
OBJECTIVE keyword, 96
OPTMODEL procedure, 96
RELAXINT keyword, 96
WITH keyword, 96

SOLVE WITH LP statement
ALGORITHM2= option, 187
ALGORITHM= option, 187
BASIS= option, 190
CROSSOVER= option, 191
DECOMP_MASTER=() option, 191
DECOMP=() option, 191
DECOMP_SUBPROB=() option, 192
FEASTOL= option, 188
IIS= option, 187
LOGFREQ= option, 188
LOGLEVEL= option, 188
MAXITER= option, 189
MAXTIME= option, 189
OPTTOL= option, 189
PRESOLVER= option, 188
PRICETYPE= option, 190
PRINTFREQ= option, 188
PRINTLEVEL2= option, 188
QUEUESIZE= option, 190
SCALE= option, 190
SOL= option, 187
SOLVER2= option, 187
SOLVER= option, 187
STOP_DG= option, 191
STOP_DI= option, 191
STOP_PI= option, 191
TIMETYPE= option, 189

SOLVE WITH MILP statement
ABSOBJGAP= option, 252
CONFLICTSEARCH= option, 255

CUTCLIQUE= option, 257
CUTFLOWCOVER= option, 258
CUTFLOWPATH= option, 258
CUTGOMORY= option, 258
CUTGUB= option, 258
CUTIMPLIED= option, 258
CUTKNAPSACK= option, 258
CUTLAP= option, 258
CUTMILIFTED= option, 258
CUTMIR= option, 258
CUTOFF= option, 252
CUTS= option, 259
CUTSFACTOR= option, 258
CUTSTRATEGY= option, 259
CUTZEROHALF= option, 259
DECOMP_MASTER_IP=() option, 259
DECOMP_MASTER=() option, 259
DECOMP=() option, 259
DECOMP_SUBPROB=() option, 259
EMPHASIS= option, 252
FEASTOL= option, 252
HEURISTICS= option, 255
INTTOL= option, 253
LOGFREQ= option, 253
LOGLEVEL= option, 253
MAXNODES= option, 253
MAXSOLS= option, 253
MAXTIME= option, 253
NODESEL= option, 256
OPTTOL= option, 254
PRESOLVER= option, 251
PRIMALIN option, 252
PRINTFREQ= option, 253
PRINTLEVEL2= option, 253
PRIORITY= option, 256
PROBE= option, 254
RELOBJGAP= option, 254
SCALE= option, 254
STRONGITER= option, 256
STRONGLEN= option, 256
TARGET= option, 254
TIMETYPE= option, 254
VARSEL= option, 256

SOLVE WITH NLP statement
ALGORITHM= option, 309
FEASTOL= option, 310
LOGFREQ= option, 309
MAXITER= option, 310
MAXTIME= option, 311
MS option, 309
MSBNDRANGE= option, 308
MSDISTTOL= option, 308
MSLOGLEVEL= option, 310
MSMAXSTARTS= option, 308
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MSMAXTIME= option, 308
MSPRINTLEVEL= option, 310
MULTISTART option, 309
OBJLIMIT= option, 311
OPTTOL= option, 311
PRINTFREQ= option, 309
SEED= option, 309
SOLTYPE= option, 310
SOLVER= option, 309
TECH= option, 309
TECHNIQUE= option, 309
TIMETYPE= option, 311

SOLVE WITH QP statement
LOGFREQ= option, 345
MAXITER= option, 345
MAXTIME= option, 345
PRESOLVER= option, 345
PRINTFREQ= option, 345
STOP_DG= option, 345
STOP_DI= option, 346
STOP_PI= option, 346
TIMETYPE= option, 346

SOLVER2= option
PROC OPTLP statement, 368
SOLVE WITH LP statement, 187

SOLVER= option
DECOMP_SUBPROB statement, 523
PROC OPTLP statement, 367
SOLVE WITH LP statement, 187
SOLVE WITH NLP statement, 309

STOP statement
OPTMODEL procedure, 98

STOP_DG= option
PROC OPTLP statement, 371
PROC OPTQP statement, 484
SOLVE WITH LP statement, 191
SOLVE WITH QP statement, 345

STOP_DI= option
PROC OPTLP statement, 371
PROC OPTQP statement, 484
SOLVE WITH LP statement, 191
SOLVE WITH QP statement, 346

STOP_PI= option
PROC OPTLP statement, 371
PROC OPTQP statement, 484
SOLVE WITH LP statement, 191
SOLVE WITH QP statement, 346

STRING statement
INIT keyword, 62
OPTMODEL procedure, 61

STRONGITER= option
PROC OPTMILP statement, 428
SOLVE WITH MILP statement, 256

STRONGLEN= option

PROC OPTMILP statement, 429
SOLVE WITH MILP statement, 256

SUBMIT statement
OPTMODEL procedure, 98

SUM aggregation expression
OPTMODEL expression extensions, 110

SYMDIFF expression
OPTMODEL expression extensions, 111

TARGET= option
PROC OPTMILP statement, 427
SOLVE WITH MILP statement, 254

TECH= option
SOLVE WITH NLP statement, 309

TECHNIQUE= option
SOLVE WITH NLP statement, 309

THEN keyword
IF statement, 82

TIMETYPE= option
PROC OPTLP statement, 369
PROC OPTMILP statement, 427
PROC OPTQP statement, 484
SOLVE WITH LP statement, 189
SOLVE WITH MILP statement, 254
SOLVE WITH NLP statement, 311
SOLVE WITH QP statement, 346

TOUT= option
TUNER statement (OPTMILP), 586

TRIM option
READ DATA statement, 91

TUNER statement
OPTMILP procedure, 432

TUNER statement (OPTMILP), 584
GOAL= option, 584
LOGFREQ= option, 584
LOGLEVEL= option, 584
MAXCONFIGS= option, 584
MAXTIME= option, 585
OPTIONMODE= option, 585
OPTIONVALUES= option, 586
OPTVALS= option, 586
PROBLEMS= option, 586
PROBS= option, 586
TOUT= option, 586
TUNEROUT= option, 586

TUNEROUT= option
TUNER statement (OPTMILP), 586

tuple expression
OPTMODEL expression extensions, 111

UNFIX statement
OPTMODEL procedure, 101

UNION aggregation expression
OPTMODEL expression extensions, 112



632 F Syntax Index

UNION expression
OPTMODEL expression extensions, 111

UNTIL keyword
DO statement, iterative, 75

USE PROBLEM statement
OPTMODEL procedure, 102

VAR option
EXPAND statement, 79

VAR statement
INIT keyword, 66
OPTMODEL procedure, 66

VARFUZZ= option
PROC OPTMODEL statement, 58

VARSEL= option
PROC OPTMILP statement, 429
SOLVE WITH MILP statement, 256

WHILE keyword
DO statement, iterative, 75

WITH keyword
SOLVE statement, 96

WITHIN expression
OPTMODEL expression extensions, 112
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