Suppose the 25-inch screen TVs produced at factory 1 in May can be sold at either shop with an increased profit of 40 dollars each. What is the new optimal solution?
title2 'Using Constraints and Altering arc data'; data new_arc4; set arc4; oldcost=_cost_; oldflow=_flow_; oldfc=_fcost_; if _tail_='f1_may_2' & (_head_='shop1_2' | _head_='shop2_2') then _cost_=_cost_-40; run;
proc intpoint bytes=1000000 printlevel2=2 arcdata=new_arc4 nodedata=node0 condata=con3 sparsecondata rhsobs='CHIP/BO LIMIT' conout=arc5; run;
title2 'Using Constraints and Altering arc data'; proc print data=arc5; var _tail_ _head_ _cost_ _capac_ _lo_ _supply_ _demand_ _name_ _flow_ _fcost_ oldflow oldfc; /* to get this variable order */ sum oldfc _fcost_; run;
The following messages appear on the SAS log:
Production Planning/Inventory/Distribution |
Using Constraints and Altering arc data |
NOTE: Number of nodes= 20 . |
NOTE: Number of supply nodes= 4 . |
NOTE: Number of demand nodes= 4 . |
NOTE: Total supply= 4350 , total demand= 4150 . |
NOTE: Number of arcs= 64 . |
NOTE: Number of <= side constraints= 5 . |
NOTE: Number of == side constraints= 0 . |
NOTE: Number of >= side constraints= 0 . |
NOTE: Number of side constraint coefficients= 16 . |
NOTE: The following messages relate to the equivalent Linear Programming problem |
solved by the Interior Point algorithm. |
NOTE: Number of <= constraints= 5 . |
NOTE: Number of == constraints= 21 . |
NOTE: Number of >= constraints= 0 . |
NOTE: Number of constraint coefficients= 152 . |
NOTE: Number of variables= 68 . |
NOTE: After preprocessing, number of <= constraints= 5. |
NOTE: After preprocessing, number of == constraints= 20. |
NOTE: After preprocessing, number of >= constraints= 0. |
NOTE: The preprocessor eliminated 1 constraints from the problem. |
NOTE: The preprocessor eliminated 9 constraint coefficients from the problem. |
NOTE: 5 columns, 0 rows and 5 coefficients were added to the problem to handle |
unrestricted variables, variables that are split, and constraint slack or |
surplus variables. |
NOTE: There are 74 sub-diagonal nonzeroes in the unfactored A Atranspose matrix. |
NOTE: The 25 factor nodes make up 17 supernodes |
NOTE: There are 88 nonzero sub-rows or sub-columns outside the supernodal |
triangular regions along the factors leading diagonal. |
Iter Complem_aff Complem-ity Duality_gap Tot_infeasb Tot_infeasc Tot_infeasd |
0 -1.000000 201073760 0.894528 65408 35351 10995 |
1 39022799 25967436 0.919693 4741.966761 2562.885742 256.192394 |
2 5186078 1844990 0.589523 0 0 6.174556 |
3 371920 320310 0.197224 0 0 1.074616 |
4 151369 87643 0.060906 0 0 0.267952 |
5 35115 25158 0.018017 0 0 0.072961 |
6 14667 6194.354873 0.004475 0 0 0.005048 |
7 2723.955063 2472.352937 0.001789 0 0 0.001714 |
8 1028.390365 280.346187 0.000203 0 0 0.000235 |
9 39.957867 5.611483 0.000004063 0 0 0 |
10 0.014117 0.000291 9.492379E-11 0 0 0 |
NOTE: The Primal-Dual Predictor-Corrector Interior Point algorithm performed 10 |
iterations. |
NOTE: Optimum reached. |
NOTE: Objective= -1295661.8. |
NOTE: The data set WORK.ARC5 has 64 observations and 17 variables. |
NOTE: There were 64 observations read from the data set WORK.NEW_ARC4. |
NOTE: There were 8 observations read from the data set WORK.NODE0. |
NOTE: There were 21 observations read from the data set WORK.CON3. |
Output 5.4.1: CONOUT=ARC5
Production Planning/Inventory/Distribution |
Using Constraints and Altering arc data |
Obs | _tail_ | _head_ | _cost_ | _capac_ | _lo_ | _SUPPLY_ | _DEMAND_ |
---|---|---|---|---|---|---|---|
1 | fact1_1 | f1_apr_1 | 78.60 | 600 | 50 | 1000 | . |
2 | f1_mar_1 | f1_apr_1 | 15.00 | 50 | 0 | . | . |
3 | f1_may_1 | f1_apr_1 | 33.60 | 20 | 0 | . | . |
4 | f2_apr_1 | f1_apr_1 | 11.00 | 40 | 0 | . | . |
5 | fact1_2 | f1_apr_2 | 174.50 | 550 | 50 | 1000 | . |
6 | f1_mar_2 | f1_apr_2 | 20.00 | 40 | 0 | . | . |
7 | f1_may_2 | f1_apr_2 | 49.20 | 15 | 0 | . | . |
8 | f2_apr_2 | f1_apr_2 | 21.00 | 25 | 0 | . | . |
9 | fact1_1 | f1_mar_1 | 127.90 | 500 | 50 | 1000 | . |
10 | f1_apr_1 | f1_mar_1 | 33.60 | 20 | 0 | . | . |
11 | f2_mar_1 | f1_mar_1 | 10.00 | 40 | 0 | . | . |
12 | fact1_2 | f1_mar_2 | 217.90 | 400 | 40 | 1000 | . |
13 | f1_apr_2 | f1_mar_2 | 38.40 | 30 | 0 | . | . |
14 | f2_mar_2 | f1_mar_2 | 20.00 | 25 | 0 | . | . |
15 | fact1_1 | f1_may_1 | 90.10 | 400 | 50 | 1000 | . |
16 | f1_apr_1 | f1_may_1 | 12.00 | 50 | 0 | . | . |
17 | f2_may_1 | f1_may_1 | 13.00 | 40 | 0 | . | . |
18 | fact1_2 | f1_may_2 | 113.30 | 350 | 40 | 1000 | . |
19 | f1_apr_2 | f1_may_2 | 18.00 | 40 | 0 | . | . |
20 | f2_may_2 | f1_may_2 | 13.00 | 25 | 0 | . | . |
21 | f1_apr_1 | f2_apr_1 | 11.00 | 99999999 | 0 | . | . |
22 | fact2_1 | f2_apr_1 | 62.40 | 480 | 35 | 850 | . |
23 | f2_mar_1 | f2_apr_1 | 18.00 | 30 | 0 | . | . |
24 | f2_may_1 | f2_apr_1 | 30.00 | 15 | 0 | . | . |
25 | f1_apr_2 | f2_apr_2 | 23.00 | 99999999 | 0 | . | . |
26 | fact2_2 | f2_apr_2 | 196.70 | 680 | 35 | 1500 | . |
27 | f2_mar_2 | f2_apr_2 | 28.00 | 50 | 0 | . | . |
28 | f2_may_2 | f2_apr_2 | 64.80 | 15 | 0 | . | . |
29 | f1_mar_1 | f2_mar_1 | 11.00 | 99999999 | 0 | . | . |
30 | fact2_1 | f2_mar_1 | 88.00 | 450 | 35 | 850 | . |
31 | f2_apr_1 | f2_mar_1 | 20.40 | 15 | 0 | . | . |
32 | f1_mar_2 | f2_mar_2 | 23.00 | 99999999 | 0 | . | . |
33 | fact2_2 | f2_mar_2 | 182.00 | 650 | 35 | 1500 | . |
34 | f2_apr_2 | f2_mar_2 | 37.20 | 15 | 0 | . | . |
35 | f1_may_1 | f2_may_1 | 16.00 | 99999999 | 0 | . | . |
36 | fact2_1 | f2_may_1 | 128.80 | 250 | 35 | 850 | . |
37 | f2_apr_1 | f2_may_1 | 20.00 | 30 | 0 | . | . |
38 | f1_may_2 | f2_may_2 | 26.00 | 99999999 | 0 | . | . |
39 | fact2_2 | f2_may_2 | 181.40 | 550 | 35 | 1500 | . |
40 | f2_apr_2 | f2_may_2 | 38.00 | 50 | 0 | . | . |
41 | f1_mar_1 | shop1_1 | -327.65 | 250 | 0 | . | 900 |
42 | f1_apr_1 | shop1_1 | -300.00 | 250 | 0 | . | 900 |
43 | f1_may_1 | shop1_1 | -285.00 | 250 | 0 | . | 900 |
44 | f2_mar_1 | shop1_1 | -297.40 | 250 | 0 | . | 900 |
45 | f2_apr_1 | shop1_1 | -290.00 | 250 | 0 | . | 900 |
46 | f2_may_1 | shop1_1 | -292.00 | 250 | 0 | . | 900 |
47 | f1_mar_2 | shop1_2 | -559.76 | 99999999 | 0 | . | 900 |
48 | f1_apr_2 | shop1_2 | -524.28 | 99999999 | 0 | . | 900 |
49 | f1_may_2 | shop1_2 | -515.02 | 99999999 | 0 | . | 900 |
50 | f2_mar_2 | shop1_2 | -567.83 | 500 | 0 | . | 900 |
51 | f2_apr_2 | shop1_2 | -542.19 | 500 | 0 | . | 900 |
52 | f2_may_2 | shop1_2 | -491.56 | 500 | 0 | . | 900 |
53 | f1_mar_1 | shop2_1 | -362.74 | 250 | 0 | . | 900 |
54 | f1_apr_1 | shop2_1 | -300.00 | 250 | 0 | . | 900 |
55 | f1_may_1 | shop2_1 | -245.00 | 250 | 0 | . | 900 |
56 | f2_mar_1 | shop2_1 | -272.70 | 250 | 0 | . | 900 |
57 | f2_apr_1 | shop2_1 | -312.00 | 250 | 0 | . | 900 |
58 | f2_may_1 | shop2_1 | -299.00 | 250 | 0 | . | 900 |
59 | f1_mar_2 | shop2_2 | -623.89 | 99999999 | 0 | . | 1450 |
60 | f1_apr_2 | shop2_2 | -549.68 | 99999999 | 0 | . | 1450 |
61 | f1_may_2 | shop2_2 | -500.00 | 99999999 | 0 | . | 1450 |
62 | f2_mar_2 | shop2_2 | -542.83 | 500 | 0 | . | 1450 |
63 | f2_apr_2 | shop2_2 | -559.19 | 500 | 0 | . | 1450 |
64 | f2_may_2 | shop2_2 | -519.06 | 500 | 0 | . | 1450 |
Production Planning/Inventory/Distribution |
Using Constraints and Altering arc data |
Obs | _name_ | _FLOW_ | _FCOST_ | oldflow | oldfc |
---|---|---|---|---|---|
1 | prod f1 19 apl | 533.333 | 41920.00 | 533.333 | 41920.00 |
2 | 0.000 | 0.00 | 0.000 | 0.00 | |
3 | back f1 19 may | 0.000 | 0.00 | 0.000 | 0.00 |
4 | 0.000 | 0.00 | 0.000 | 0.00 | |
5 | prod f1 25 apl | 250.000 | 43625.00 | 250.000 | 43625.00 |
6 | 0.000 | 0.00 | 0.000 | 0.00 | |
7 | back f1 25 may | 0.000 | 0.00 | 0.000 | 0.00 |
8 | 0.000 | 0.00 | 0.000 | 0.00 | |
9 | prod f1 19 mar | 333.333 | 42633.33 | 333.333 | 42633.33 |
10 | back f1 19 apl | 20.000 | 672.00 | 20.000 | 672.00 |
11 | 40.000 | 400.00 | 40.000 | 400.00 | |
12 | prod f1 25 mar | 400.000 | 87160.00 | 400.000 | 87160.00 |
13 | back f1 25 apl | 30.000 | 1152.00 | 30.000 | 1152.00 |
14 | 25.000 | 500.00 | 25.000 | 500.00 | |
15 | 128.333 | 11562.83 | 128.333 | 11562.83 | |
16 | 0.000 | 0.00 | 0.000 | 0.00 | |
17 | 0.000 | 0.00 | 0.000 | 0.00 | |
18 | 350.000 | 39655.00 | 350.000 | 39655.00 | |
19 | 0.000 | 0.00 | 0.000 | 0.00 | |
20 | 0.000 | 0.00 | 0.000 | 0.00 | |
21 | 13.333 | 146.67 | 13.333 | 146.67 | |
22 | prod f2 19 apl | 480.000 | 29952.00 | 480.000 | 29952.00 |
23 | 0.000 | 0.00 | 0.000 | 0.00 | |
24 | back f2 19 may | 0.000 | 0.00 | 0.000 | 0.00 |
25 | 0.000 | 0.00 | 0.000 | 0.00 | |
26 | prod f2 25 apl | 550.000 | 108185.00 | 577.500 | 113594.25 |
27 | 0.000 | 0.00 | 0.000 | 0.00 | |
28 | back f2 25 may | 0.000 | 0.00 | 0.000 | 0.00 |
29 | 0.000 | 0.00 | 0.000 | 0.00 | |
30 | prod f2 19 mar | 290.000 | 25520.00 | 290.000 | 25520.00 |
31 | back f2 19 apl | 0.000 | 0.00 | 0.000 | 0.00 |
32 | 0.000 | 0.00 | 0.000 | 0.00 | |
33 | prod f2 25 mar | 650.000 | 118300.00 | 650.000 | 118300.00 |
34 | back f2 25 apl | 0.000 | 0.00 | 0.000 | 0.00 |
35 | 115.000 | 1840.00 | 115.000 | 1840.00 | |
36 | 35.000 | 4508.00 | 35.000 | 4508.00 | |
37 | 0.000 | 0.00 | 0.000 | 0.00 | |
38 | 0.000 | 0.00 | 350.000 | 9100.00 | |
39 | 150.000 | 27210.00 | 122.500 | 22221.50 | |
40 | 0.000 | 0.00 | 0.000 | 0.00 | |
41 | 143.333 | -46963.17 | 143.333 | -46963.16 | |
42 | 250.000 | -75000.00 | 250.000 | -75000.00 | |
43 | 13.333 | -3800.00 | 13.333 | -3800.00 | |
44 | 250.000 | -74350.00 | 250.000 | -74350.00 | |
45 | 243.333 | -70566.67 | 243.333 | -70566.67 | |
46 | 0.000 | 0.00 | 0.000 | 0.00 | |
47 | 0.000 | 0.00 | 0.000 | 0.00 | |
48 | 0.000 | 0.00 | 0.000 | 0.00 | |
49 | 350.000 | -180257.00 | 0.000 | 0.00 | |
50 | 500.000 | -283915.00 | 500.000 | -283915.00 | |
51 | 50.000 | -27109.50 | 400.000 | -216876.00 | |
52 | 0.000 | 0.00 | 0.000 | 0.00 | |
53 | 250.000 | -90685.00 | 250.000 | -90685.00 | |
54 | 250.000 | -75000.00 | 250.000 | -75000.00 | |
55 | 0.000 | 0.00 | 0.000 | 0.00 | |
56 | 0.000 | 0.00 | 0.000 | 0.00 | |
57 | 250.000 | -78000.00 | 250.000 | -78000.00 | |
58 | 150.000 | -44850.00 | 150.000 | -44850.00 | |
59 | 455.000 | -283869.95 | 455.000 | -283869.95 | |
60 | 220.000 | -120929.60 | 220.000 | -120929.60 | |
61 | 0.000 | 0.00 | 0.000 | 0.00 | |
62 | 125.000 | -67853.75 | 125.000 | -67853.75 | |
63 | 500.000 | -279595.00 | 177.500 | -99256.23 | |
64 | 150.000 | -77859.00 | 472.500 | -245255.85 | |
-1295661.80 | -1282708.62 |