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Introduction

This book contains all 29 examples from the classic book Model Building in Mathematical Programming by
H. Paul Williams. For each example, the problem statement is first repeated verbatim from Williams (1999)
for the first 24 chapters and from Williams (2013) for the remaining chapters.! Then the problem is solved
using the OPTMODEL procedure in SAS/OR software.

The examples cover linear programming, mixed integer linear programming, and quadratic programming. In
most cases, the problem is solved with a single call to one of the mathematical programming solvers available
in PROC OPTMODEL. The purpose of this book is to supplement the SAS/OR User’s Guide: Mathematical
Programming with additional examples that demonstrate best practices.

Each chapter contains five sections, described as follows.

e Problem Statement:

Repeats verbatim the problem description, including any tables and figures, from Williams (1999) or
Williams (2013).

e Mathematical Programming Formulation:
Describes the index sets, parameters, decision variables, objectives, and constraints for one formulation
of the problem.

e Input Data:
Creates the input data sets and macro variables to be used by PROC OPTMODEL.

e PROC OPTMODEL Statements and Output:
Shows and discusses the PROC OPTMODEL statements that declare sets and parameters, read the
input data, formulate the mathematical programming problem, solve the problem, and output the
solution. Also shows the output that is created by PROC OPTMODEL and occasionally other SAS
procedures.

e Features Demonstrated:
Lists the important PROC OPTMODEL features demonstrated in this example.

IFigures and tables are numbered differently so that they match the chapter organization of this book. To be consistent with the
verbatim problem statement, all other sections use British spelling. However, for clarity, large numbers and decimals are punctuated
in American style (for example, 10,000 instead of 10 000 and 0.5 instead of 0-5), words are occasionally added or changed (with the
changes shown inside square brackets), and punctuation is occasionally changed.
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Although PROC OPTMODEL is case-insensitive, in the interest of clarity a few typographical conventions
are observed regarding capitalization of names:

OPTMODEL Expression Capitalization

Index set names All uppercase

Index set member names All lowercase
Parameter names All lowercase

Variable names (including implicit variables) First letter of each word
Objective names First letter of each word
Constraint names First letter

The examples shown here are small and not computationally challenging. Throughout, a separation between
data and model is maintained so that you can solve larger or more difficult instances without modifying the
PROC OPTMODEL statements. A user who learns the techniques demonstrated in these examples will
be well-prepared to use PROC OPTMODEL to tackle similar modeling challenges that arise in real-world
problems.



Chapter 1
Food Manufacture 1: When to Buy and How to
Blend

Contents

Problem Statement . . . . . . . . ... 3
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Features Demonstrated . . . . . . . . . . . ... 23

Problem Statement

A food is manufactured by refining raw oils and blending them together.! The raw oils come in two categories:

vegetable oils VEG 1
VEG 2

non-vegetable oils OIL 1
OIL 2
OIL 3

Each oil may be purchased for immediate delivery (January) or bought on the futures market for delivery in a
subsequent month. Prices now and in the futures market are given below (in £/ton):

VEG1 VEG2 OIL1 OIL2 OIL3

January 110 120 130 110 115
February 130 130 110 90 115
March 110 140 130 100 95
April 120 110 120 120 125
May 100 120 150 110 105
June 90 100 140 80 135

The final product sells at £150 per ton.

Vegetable oils and non-vegetable oils require different production lines for refining. In any month it is not
possible to refine more than 200 tons of vegetable oils and more than 250 tons of non-vegetable oils. There is
no loss of weight in the refining process and the cost of refining may be ignored.

IReproduced with permission of John Wiley & Sons Ltd. (Williams 1999, pp. 231-232).
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It is possible to store up to 1000 tons of each raw oil for use later. The cost of storage for vegetable and
non-vegetable oil is £5 per ton per month. The final product cannot be stored, nor can refined oils be stored.

There is a technological restriction of hardness on the final product. In the units in which hardness is measured
this must lie between 3 and 6. It is assumed that hardness blends linearly and that the hardnesses of the raw
oils are

VEG1 838
VEG2 6.1
OIL1 20
OIL2 42
OIL3 5.0

What buying and manufacturing policy should the company pursue in order to maximize profit?

At present there are 500 tons of each type of raw oil in storage. It is required that these stocks will also exist
at the end of June.

Mathematical Programming Formulation

Index Sets and Their Members

The following index sets and their members are used in this example:

e oil € OILS
e period € PERIODS
e VEG C OILS: vegetable oils

e NONVEG = OILS \ VEG: non-vegetable oils
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Parameters

Table 1.1 shows the parameters that are used in this example.

Table 1.1 Parameters

Parameter Name Interpretation

costfoil,period] Cost of raw oil per period

hardnessjoil] Hardness of raw oil

revenue_per_ton Revenue per ton of final product

veg_ub Tons of vegetable oils that can be refined per period
nonveg_ub Tons of non-vegetable oils that can be refined per period
store_ub Tons of raw oil that can be stored per period
storage_cost per_ton Storage cost per ton of raw oil per period
hardness_Ib Lower bound on hardness of final product
hardness_ub Upper bound on hardness of final product
init_storage Initial tons of each type of raw oil in storage

hardness_solfperiod] = Hardness of final product per period

Variables

Table 1.2 shows the variables that are used in this example.

Table 1.2 Variables

Variable Name Interpretation

Buy/oil,period] Tons of raw oil to buy per period

Use[oil,period] Tons of raw oil to use per period

Manufacture[period] Tons of final product to manufacture per period
Store|oil,period] Tons of raw oil to store as inventory at the end of each period

Objective

The objective is to maximize the following profit function, where Revenue, RawCost, and StorageCost are
linear functions of Manufacture, Buy, and Store, respectively:

Profit = Revenue — RawCost — StorageCost
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Constraints

The following constraints are used in this example:
e bounds on decision variables
e for period € PERIODS,

Manufacture[period] = Z Useloil,period]
0il€OILS

for period € PERIODS,

Z UseJoil,period] < veg_ub
ollEVEG

for period € PERIODS,

Z Use[oil,period] < nonveg ub
0ilENONVEG

for oil € OILS and period € PERIODS,

Store]oil,period — 1] + BuyJoil,period] = Use]oil,period] + Store[oil,period]

for period € PERIODS,

> hardness]oil] - Useloil,period]
0il€OILS

Manufacture[period]

hardness_Ib < < hardness_ub

Input Data
The following data sets contain the input data that are used in this example:

data cost_data;
input vegl-veg2 o0ill-o0il3;
datalines;

110 120 130 110 115

130 130 110 90 115

110 140 130 100 95

120 110 120 120 125

100 120 150 110 105

90 100 140 80 135

14

data hardness_data;
input o0il $ hardness;
datalines;
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vegl 8.8
veg2 6.1
oill 2.0
oil2 4.2

5.0

0il3
It is possible to store the other (scalar) parameters in an additional data set that contains one observation, with
one data set variable per parameter. But the SAS macro language is used instead, with one macro variable
per parameter.

%$let revenue_per_ton = 150;
%$let veg ub = 200;

%$let nonveg_ub = 250;

%$let store_ub = 1000;

%let storage_cost_per_ _ton = 5;
%$let hardness_1lb = 3;

%$let hardness_ub = 6;

%$let init_storage = 500;

PROC OPTMODEL Statements and Output
The first READ DATA statement populates the OILS index set and reads the one-dimensional hardness data:

proc optmodel;
set <str> OILS;
num hardness {OILS};
read data hardness_data into OILS=[o0il] hardness;
print hardness;

The PRINT statement results in the first section of output, shown in Figure 1.1.

Figure 1.1 hardness Parameter
The OPTMODEL Procedure

[11 hardness

oil1 20
oil2 4.2
oil3 5.0
veg1 8.8
veg2 6.1

The second READ DATA statement populates the PERIODS index set and uses the already-populated OILS
index set to loop across data set variables when reading the two-dimensional cost data. The PERIODS index
set is numeric and is populated by using the automatic variable _N_ from the cost_data data set, rather than
by using the month names.
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set PERIODS;

num cost {OILS, PERIODS};

read data cost_data into PERIODS=[_N_] {o0il in OILS}
<cost[oil, N ]=col(oil)>;

print cost;

The PRINT statement results in the second section of output, shown in Figure 1.2.

Figure 1.2 cost Parameter

cost
1 2 3 4 5 6
oill 130 110 130 120 150 140
oil2 110 90 100 120 110 80
oil3 115 115 95 125 105 135
veg1 110 130 110 120 100 90
veg2 120 130 140 110 120 100

You can declare implicit variables with the IMPVAR statement, instead of defining explicit variables by using
the VAR statement with an additional constraint. When you use the IMPVAR statement, PROC OPTMODEL
performs an algebraic substitution, thereby reducing the number of variables and constraints passed to the
solver.

var Buy {OILS, PERIODS} >= 0;
var Use {OILS, PERIODS} >= O0;
impvar Manufacture {period in PERIODS} = sum {oil in OILS} Use[oil,period];

The initial and terminal storage constraints for each raw oil are imposed by using the FIX statement to fix the
values of the corresponding Store[oil,period] variables. An alternate approach is to use the CON statement to
explicitly declare an equality constraint that contains exactly one variable.

num last_period = max {period in PERIODS} period;
var Store {OILS, PERIODS union {0}} >= 0 <= &store_ub;
for {oil in OILS} do;
fix Store[oil, 0] &init_storage;
fix Store[oil,last_period] = &init_storage;
end;

The following SET statement uses the SAS function SUBSTR together with the colon operator (:) to select
the subset of oils whose name starts with ‘veg’:

set VEG = {oil in OILS: substr(oil,1,3) = 'veg'};

The following SET statement uses the DIFF operator to declare the non-vegetable oils to be the oils that do
not appear in the set VEG:

set NONVEG = OILS diff VEG;
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The following statements declare implicit variables, the objective, and constraints:

impvar Revenue =

sum {period in PERIODS} &revenue_per_ton * Manufacture|[period];
impvar RawCost =
sum {oil in OILS, period in PERIODS} cost[oil,period] #* Buy[oil,period];
impvar StorageCost =
sum {oil in OILS, period in PERIODS}
&storage_cost_per_ton * Store[oil,period];
max Profit = Revenue - RawCost - StorageCost;

con Veg_ub_con {period in PERIODS}:
sum {oil in VEG} Use[oil,period] <= &veg_ub;

con Nonveg_ub_con {period in PERIODS}:
sum {oil in NONVEG} Use[oil,period] <= &nonveg_ ub;

con Flow_balance_con {oil in OILS, period in PERIODS}:
Store[oil,period-1] + Buy[oil,period]
= Use[oil,period] + Store[oil,period];

As expressed on page 6, the hardness of the final product is a ratio of linear functions of the decision variables.
To increase algorithmic performance and reliability, the following two CON statements take advantage of the
constant limits on hardness to linearize the nonlinear range constraint by clearing the denominator:

con Hardness_ub_con {period in PERIODS}:
sum {oil in OILS} hardness[oil] * Use[oil, period]
>= &hardness_1lb * Manufacture[period];

con Hardness_lb_con {period in PERIODS}:
sum {oil in OILS} hardness[oil] * Use[oil, period]
<= &hardness_ub * Manufacture[period];

The following EXPAND statement displays the resulting model with all data populated, as shown in Figure 1.3:

expand;

This optional statement is useful for debugging purposes, to make sure that the model that PROC OPTMODEL
creates is what you intended.
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Var
Var
Var
Var
Var
Var
Var
Var
Var
Var
Var
Var
Var
Var
Var
Var
Var
Var
Var
Var
Var
Var
Var
Var
Var
Var
Var
Var
Var
Var
Var
Var
Var
Var
Var
Var
Var
Var
Var
Var
Var
Var
Var
Var
Var
Var
Var
Var
Var
Var
Var
Var
Var
Var

Food Manufacture 1

Buy[veg1,1]
Buy[veg1,2]
Buy[veg1,3]
Buy[veg1,4]
Buy[veg1,5]
Buy[veg1,6]
Buy[veg2,1]
Buy[veg2,2]
Buy[veg2,3]
Buy[veg2,4]
Buy[veg2,5]
Buy[veg2,6]
Buy[o0il1,1]
Buy[o0il1,2]
Buy[0il1,3]
Buy[o0il1,4]
Buy[0il1,5]
Buy[0il1,6]
Buy[0il2,1]
Buy[0il2,2]
Buy[0il2,3]
Buy[0il2,4]
Buy[o0il2,5]
Buy[0il2,6]
Buy[0113,1]
Buy[011l3,2]
Buy[0113,3]
Buy[0113,4]
Buy[0il3,5]
Buy[0113,6]
Use[veg1,1]
Use[veg1,2]
Use[veg1,3]
Use[veg1,4]
Use[veg1,5]
Use[vegl,6]
Use[veg2,1]
Use[veg2,2]
Use[veg2,3]
Use[veg2,4]
Use[veg2,5]
Use[veg2,6]
Use[o0ill,1]
Use[0il1,2]
Use[0il1,3]
Use[0il1,4]
Use[0il1,5]
Use[0il1,6]
Use[0il2,1]
Use[0il2,2]
Use[0il2,3]
Use[0il2,4]
Use[0il2,5]
Use[0il2,6]

Figure 1.3 Output from EXPAND Statement

The OPTMODEL Procedure

O OO0 0O 0000000000000 O0DO0DO0DO0DO0DO0DO0DO0DO0DO0DO0DO0DO0DO0DO0DO0DO0DO0DO0DO0DO0DO0DO0ODO0DO0DO0ODO0ODO0OO0DO0ODO0OOOOOOO
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Figure 1.3 continued

\
1l

Var Use[0i13,1]
Var Use[0il3,2]
Var Use[0il3,3]
Var Use[0113,4]
Var Use[0il3,5]
Var Use[0il3,6]
Var Store[vegl,1]
Var Store[vegl,2] >=
Var Store[veg1,3] >= 0 <= 1000
Var Store[veg1,4] >= 0 <= 1000
Var Store[vegl,5] >= 0 <= 1000
Fix Store[veg1,6] = 500

Fix Store[veg1,0] = 500

Var Store[veg2,1] >= 0 <= 1000
Var Store[veg2,2] >= 0 <= 1000
Var Store[veg2,3] >= 0 <= 1000
Var Store[veg2,4] >= 0 <= 1000
Var Store[veg2,5] >= 0 <= 1000
Fix Store[veg2,6] = 500

Fix Store[veg2,0]
Var Store[o0ill,1]

\
1l

\
1l

\
1l

\
1l

\4
1l
I © OO0 o oo

\

<= 1000
<= 1000

Il
o
o
o

<= 1000

>= 0

Var Store[o0ill,2] >= 0 <= 1000
Var Store[o0ill,3] >= 0 <= 1000
Var Store[o0il1,4] >= 0 <= 1000
Var Store[o0ill,5] >= 0 <= 1000
Fix Store[0il1,6] = 500

Fix Store[o0il1,0] = 500

Var Store[o0il2,1] >= 0 <= 1000
Var Store[o0il2,2] >= 0 <= 1000
Var Store[o0il2,3] >= 0 <= 1000
Var Store[o0il2,4] >= 0 <= 1000
Var Store[o0il2,5] >= 0 <= 1000
Fix Store[0il2,6] = 500

Fix Store[0il2,0] = 500

Var Store[o0il3,1] >= 0 <= 1000
Var Store[0il3,2] >= 0 <= 1000
Var Store[0il3,3] >= 0 <= 1000
Var Store[0il3,4] >= 0 <= 1000
Var Store[0il3,5] >= 0 <= 1000

Fix Store[0il3,6] = 500

Fix Store[0il3,0] = 500

Impvar Manufacture[1] = Use[vegl,1] + Use[veg2,1] + Use[o0il1,1] + Use[o0il2,1] +
Use[0il13,1]

Impvar Manufacture[2] = Use[vegl1,2] + Use[veg2,2] + Use[o0il1,2] + Use[0il2,2] +
Use[0il3,2]

Impvar Manufacture[3] = Use[veg1,3] + Use[veg2,3] + Use[0il1,3] + Use[0il2,3] +
Use[0il3,3]

Impvar Manufacture[4] = Use[vegl1,4] + Use[veg2,4] + Use[0il1,4] + Use[0il2,4] +
Use[0il13,4]

Impvar Manufacture[5] = Use[vegl1,5] + Use[veg2,5] + Use[o0il1,5] + Use[o0il2,5] +
Use[0il3,5]

Impvar Manufacture[6] = Use[veg1,6] + Use[veg2,6] + Use[o0il1,6] + Use[o0il2,6] +
Use[0il3,6]

Impvar Revenue = 150*Manufacture[1] + 150*Manufacture[2] + 150*Manufacture[3] +
150*Manufacture[4] + 150*Manufacture[5] + 150*Manufacture([6]

Impvar RawCost = 110*Buy[vegl1,1] + 130*Buy[vegl1,2] + 110*Buy[vegl1,3] + 120*
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Figure 1.3 continued

Buy[veg1,4] + 100*Buy[veg1,5] + 90*Buy[vegl1,6] + 120*Buy[veg2,1] + 130*
Buy[veg2,2] + 140*Buy[veg2,3] + 110*Buy[veg2,4] + 120*Buy[veg2,5] + 100*
Buy[veg2,6] + 130*Buy[o0il1,1] + 110*Buy[o0il1,2] + 130*Buy[0ill,3] + 120*
Buy[o0il1,4] + 150*Buy[o0il1,5] + 140*Buy[o0ill1,6] + 110*Buy[o0il2,1] + 90*
Buy[0il2,2] + 100*Buy[0il2,3] + 120*Buy[o0il2,4] + 110*Buy[0il2,5] + 80*
Buy[0il2,6] + 115*Buy[0il3,1] + 115*Buy[0il3,2] + 95*Buy[0il3,3] + 125%
Buy[0il3,4] + 105*Buy[0il3,5] + 135*Buy[0il3,6]

Impvar StorageCost = 5*Store[veg1,1] + 5*Store[veg1,2] + 5*Store[vegl,3] + 5%
Store[veg1,4] + 5*Store[vegl1,5] + 5*Store[vegl,6] + 5*Store[veg2,1] + 5*
Store[veg2,2] + 5*Store[veg2,3] + 5*Store[veg2,4] + 5*Store[veg2,5] + 5*
Store[veg2,6] + 5*Store[o0il1,1] + 5*Store[o0ill,2] + 5*Store[0il1,3] + 5*
Store[o0il1,4] + 5*Store[o0ill,5] + 5*Store[o0ill,6] + 5*Store[0il2,1] + 5*
Store[0il2,2] + 5*Store[0il2,3] + 5*Store[o0il2,4] + 5*Store[0il2,5] + 5*
Store[0il2,6] + 5*Store[0il3,1] + 5*Store[0il3,2] + 5*Store[0il3,3] + 5*
Store[0il3,4] + 5*Store[0il3,5] + 5*Store[0il3,6]

Maximize Profit=Revenue - RawCost - StorageCost

Constraint Veg_ub_con[1]: Use[vegl,1] + Use[veg2,1] <= 200

Constraint Veg_ub_con[2]: Use[vegl,2] + Use[veg2,2] <= 200

Constraint Veg_ub_con[3]: Use[vegl,3] + Use[veg2,3] <= 200

Constraint Veg_ub_con[4]: Use[vegl,4] + Use[veg2,4] <= 200

Constraint Veg_ub_con[5]: Use[vegl,5] + Use[veg2,5] <= 200

Constraint Veg_ub_con[6]: Use[vegl,6] + Use[veg2,6] <= 200

Constraint Nonveg ub_con[1]: Use[oil1,1] + Use[0il2,1] + Use[0il3,1] <= 250
Constraint Nonveg ub_con[2]: Use[o0il1,2] + Use[0il2,2] + Use[0il3,2] <= 250
Constraint Nonveg ub_con[3]: Use[o0il1,3] + Use[0il2,3] + Use[0il3,3] <= 250
Constraint Nonveg ub_con[4]: Use[o0il1,4] + Use[0il2,4] + Use[0il3,4] <= 250
Constraint Nonveg ub_con[5]: Use[o0il1,5] + Use[0il2,5] + Use[0il3,5] <= 250
Constraint Nonveg ub_con[6]: Use[o0il1,6] + Use[0il2,6] + Use[0il3,6] <= 250
Constraint Flow_balance_con[veg1,1]: Store[veg1,0] + Buy[vegl,1] - Use[vegl,1]
Store[veg1,1] = 0

Constraint Flow_balance_con[veg1,2]: Store[vegl1,1] + Buy[vegl,2] - Use[vegl,2]
Store[veg1,2] = 0

Constraint Flow_balance_con[veg1,3]: Store[veg1,2] + Buy[veg1,3] - Use[vegl,3]
Store[veg1,3] = 0

Constraint Flow_balance_con[veg1,4]: Store[veg1,3] + Buy[vegl,4] - Use[vegl,4]
Store[veg1,4] = 0

Constraint Flow_balance_con[veg1,5]: Store[veg1,4] + Buy[vegl,5] - Use[vegl,5]
Store[veg1,5] = 0

Constraint Flow_balance_con[veg1,6]: Store[vegl1,5] + Buy[vegl,6] - Use[vegl,6]
Store[veg1,6] = 0

Constraint Flow_balance_con[veg2,1]: Store[veg2,0] + Buy[veg2,1] - Use[veg2,1]
Store[veg2,1] = 0

Constraint Flow_balance_con[veg2,2]: Store[veg2,1] + Buy[veg2,2] - Use[veg2,2]
Store[veg2,2] = 0

Constraint Flow_balance_con[veg2,3]: Store[veg2,2] + Buy[veg2,3] - Use[veg2,3]
Store[veg2,3] = 0

Constraint Flow_balance_con[veg2,4]: Store[veg2,3] + Buy[veg2,4] - Use[veg2,4]
Store[veg2,4] = 0

Constraint Flow_balance_con[veg2,5]: Store[veg2,4] + Buy[veg2,5] - Use[veg2,5]
Store[veg2,5] = 0

Constraint Flow_balance_con[veg2,6]: Store[veg2,5] + Buy[veg2,6] - Use[veg2,6]
Store[veg2,6] = 0

Constraint Flow_balance_con[oil1,1]: Store[o0il1,0] + Buy[o0oil1,1] - Use[oill,1]
Store[oil1,1] = 0

Constraint Flow_balance_con[o0il1,2]: Store[o0oill1,1] + Buy[o0il1,2] - Use[o0ill,2]

Store[o0ilfl,

21 =0



Figure 1.3 continued

Constraint Flow_balance_con[o0il1,3]:
Store[0il1,3] = 0
Constraint Flow_balance_con[o0il1,4]:
Store[o0ill,4] = 0
Constraint Flow_balance_con[o0il1,5]:
Store[0il1,5] = 0
Constraint Flow_balance_con[o0il1,6]:
Store[0il1,6] = 0
Constraint Flow_balance_con[0il2,1]:
Store[0il2,1] = 0
Constraint Flow_balance_con[0il2,2]:
Store[0il2,2] = 0
Constraint Flow_balance_con[0il2,3]:
Store[0il2,3] = 0
Constraint Flow_balance_con[0il2,4]:
Store[0il2,4] = 0
Constraint Flow_balance_con[0il2,5]:
Store[0il2,5] = 0O
Constraint Flow_balance_con[0il2,6]:
Store[0il2,6] = 0
Constraint Flow_balance_con[0il3,1]:
Store[0il3,1] = 0
Constraint Flow_balance_con[0il3,2]:
Store[0il3,2] = 0
Constraint Flow_balance_con[0113,3]:
Store[0il3,3] = 0
Constraint Flow_balance_con[0il3,4]:
Store[0il3,4] = 0
Constraint Flow_balance_con[01l3,5]:
Store[0il3,5] = 0
Constraint Flow_balance_con[011l3,6]:
Store[0il3,6] = 0
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Store[o0ill,2]

Store[0ill,3]

Store[oill,4]

Store[0ill,5]

Store[0il2,0]

Store[0il2,1]

Store[0il2,2]

Store[0il2,3]

Store[0il2,4]

Store[0il2,5]

Store[0il3,0]

Store[0il3,1]

Store[0il3,2]

Store[0il3,3]

Store[0il3,4]

Store[0il3,5]

+

Buy[0il1,3]
Buy[o0il1,4]
Buy[o0il1,5]
Buy[0il1,6]
Buy[o0il2,1]
Buy[o0il2,2]
Buy[o0il2,3]
Buy[o0il2,4]
Buy[o0il2,5]
Buy[o0il2,6]
Buy[0113,1]
Buy[01l13,2]
Buy[011l3,3]
Buy[0113,4]
Buy[01l3,5]

Buy[01l1l3,6]

Constraint Hardness_ub con[1]: 8.8*Use[vegl,1] + 6.1*Use[veg2,1]

+ 4.2*Use[0il2,1] + 5*Use[0il3,1]

- 3*Manufacture[1] >= 0

Constraint Hardness_ub con[2]: 8.8*Use[veg1,2] + 6.1*Use[veg2,2]

+ 4.2*Use[0il2,2] + 5*Use[0il3,2]

- 3*Manufacture[2] >= 0

Constraint Hardness ub_con[3]: 8.8*Use[vegl,3] + 6.1*Use[veg2,3]

+ 4.2*Use[0i12,3] + 5*Use[0il3,3]

- 3*Manufacture[3] >= 0

Constraint Hardness_ub con[4]: 8.8*Use[vegl,4] + 6.1*Use[veg2,4]

+ 4.2*Use[0i12,4] + 5*Use[0il3,4]

- 3*Manufacture[4] >= 0

Constraint Hardness ub_con[5]: 8.8*Use[vegl,5] + 6.1*Use[veg2,5]

+ 4.2*Use[0il2,5] + 5*Use[0il3,5]

- 3*Manufacture[5] >= 0

Constraint Hardness ub_con[6]: 8.8*Use[vegl,6] + 6.1*Use[veg2,6]

+ 4.2*Use[0il2,6] + 5*Use[0il3,6]

- 3*Manufacture[6] >= 0

Constraint Hardness_lb con[1]: 8.8*Use[vegl,1] + 6.1*Use[veg2,1]

+ 4.2*Use[0il12,1] + 5*Use[0il3,1]

- 6*Manufacture[1] <= 0

Constraint Hardness_lb con[2]: 8.8*Use[veg1l,2] + 6.1*Use[veg2,2]

+ 4.2*Use[0il12,2] + 5*Use[0il3,2]

- 6*Manufacture[2] <= 0

Constraint Hardness_1b con[3]: 8.8*Use[veg1,3] + 6.1*Use[veg2,3]

+ 4.2*Use[0i12,3] + 5*Use[0il3,3]

- 6*Manufacture[3] <= 0

Constraint Hardness_lb con[4]: 8.8*Use[vegl,4] + 6.1*Use[veg2,4]

+ 4.2*Use[0i12,4] + 5*Use[0il3,4]

- 6*Manufacture[4] <= 0

Constraint Hardness_1lb _con[5]: 8.8*Use[vegl,5] + 6.1*Use[veg2,5]

+ 4.2*Use[0il2,5] + 5*Use[0il3,5]

- 6*Manufacture[5] <= 0

Constraint Hardness_1lb con[6]: 8.8*Use[vegl,6] + 6.1*Use[veg2,6]

+ 4.2*Use[0il2,6] + 5*Use[0il3,6]

- 6*Manufacture[6] <= 0

Use[0ill,3] -

Use[o0ill,4] -

Use[0ill,5] -

Use[0ill,6] -

Use[0il2,1] -

Use[0il2,2] -

Use[0il2,3] -

Use[0il2,4] -

Use[0il2,5] -

Use[0il2,6] -

Use[0il3,1] -

Use[0il3,2] -

Use[0il3,3] -

Use[0il3,4] -

Use[0il3,5] -

Use[0il3,6] -

2*Use[0ill,1]

2*Use[0ill,2]

2*Use[0il1,3]

2*Use[0ill,4]

2*Use[0ill,5]

2*Use[0il1,6]

2*Use[0ill,1]

2*Use[0ill,2]

2*Use[0il1,3]

2*Use[0ill,4]

2*Use[0ill,5]

2*Use[0il1,6]
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By using the . sol suffix, the numeric parameter hardness_sol computes hardness of the final product from
the optimal decision variable values returned by the solver:

num hardness_sol {period in PERIODS} =
(sum {oil in OILS} hardness[oil] * Use[oil, period].sol)
/ Manufacture[period].sol;

You can declare hardness_sol even before the solver is called. Because the declaration includes an equals
sign, the values are automatically updated each time the right-hand side changes. The following statements
call the solver and print the solution:

solve;
print Buy Use Store Manufacture hardness_sol;

Multiple CREATE DATA statements, with the variables of interest grouped according to their index sets,
create multiple output data sets (not shown):

create data sol_datal from [0il period] Buy Use Store;
create data sol_data2 from [period] Manufacture;

In this example, all variables are real, the objective function is linear, and all constraints are linear. So
PROC OPTMODEL automatically recognizes that this model is a linear programming problem, and the first
SOLVE statement calls the default linear programming algorithm, which is the dual simplex algorithm. To
invoke a non-default algorithm (such as primal simplex, interior point, or network simplex), you can use the
ALGORITHM-= option in the SOLVE statement:

solve with lp / algorithm=ps;
print Buy Use Store Manufacture hardness_sol;
solve with lp / algorithm=ip;
print Buy Use Store Manufacture hardness_sol;
solve with 1lp / algorithm=ns;
print Buy Use Store Manufacture hardness_sol;
quit;
Each algorithm returns an optimal solution with a profit of £107,843, although the optimal solutions differ
from each other, as shown in Figure 1.4 through Figure 1.7.
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Figure 1.4 shows the output when you use the (default) dual simplex algorithm.

Figure 1.4 Output from Dual Simplex Algorithm

Problem Summary

Objective Sense Maximization
Objective Function Profit
Objective Type Linear
Number of Variables 95
Bounded Above 0
Bounded Below 60
Bounded Below and Above 25
Free 0
Fixed 10
Number of Constraints 54
Linear LE (<=) 18
Linear EQ (=) 30
Linear GE (>=) 6

Linear Range
Constraint Coefficients 210
Performance Information
Execution Mode Single-Machine

Number of Threads 1

Solution Summary

Solver LP
Algorithm Dual Simplex
Objective Function Profit
Solution Status Optimal

Objective Value 107842.59259

Primal Infeasibility 1.136868E-13
Dual Infeasibility 0
Bound Infeasibility 2.842171E-14

Iterations 66
Presolve Time 0.00
Solution Time 0.00
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Figure 1.4 continued

[
oil1
oil1
oil1
oil1
oil1
oil1
oil1
oil2
oil2
oil2
oil2
oil2
oil2
oil2
oil3
oil3
oil3
oil3
oil3
oil3
oil3
veg1l
veg1l
veg1l
veg1l
veg1l
veg1l
veg1l
veg2
veg2
veg2
veg2
veg2
veg2
veg2

Buy

0.00
0.00
0.00
0.00
0.00
0.00

0.00
500.00
0.00
0.00
0.00
750.00

0.00
0.00
250.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
-0.00
659.26

0.00
0.00
0.00
0.00
0.00
540.74

Use

0.000
0.000
0.000
0.000
0.000
0.000

250.000
250.000
250.000

0.000
250.000
250.000

0.000
0.000
0.000
250.000
0.000
0.000

159.259
159.259
22.222
0.000
159.259
159.259

40.741
40.741
177.778
200.000
40.741
40.741

Store
500.000
500.000
500.000
500.000
500.000
500.000
500.000
500.000
250.000
500.000
250.000
250.000

0.000
500.000
500.000
500.000
500.000
750.000
500.000
500.000
500.000
500.000
340.741
181.481
159.259
159.259

0.000
500.000
500.000
459.259
418.519
240.741

40.741

0.000

500.000

[1] Manufacture hardness_sol
450
450
450
450
450
450

o Ul A W IN =

6.0000
6.0000
5.1778
5.4889
6.0000
6.0000
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Figure 1.5 shows the output when you use the ALGORITHM=PS option to invoke the primal simplex
algorithm.

Figure 1.5 Output from Primal Simplex Algorithm

Problem Summary

Objective Sense Maximization
Objective Function Profit
Objective Type Linear
Number of Variables 95
Bounded Above 0
Bounded Below 60
Bounded Below and Above 25
Free 0
Fixed 10
Number of Constraints 54
Linear LE (<=) 18
Linear EQ (=) 30
Linear GE (>=) 6
Linear Range 0
Constraint Coefficients 210

Performance Information
Execution Mode Single-Machine
Number of Threads 1

Solution Summary

Solver LP
Algorithm Primal Simplex
Objective Function Profit
Solution Status Optimal

Objective Value 107842.59259

Primal Infeasibility 5.684342E-14

Dual Infeasibility 0
Bound Infeasibility 0
Iterations 56
Presolve Time 0.00

Solution Time 0.00
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Figure 1.5 continued

[
oil1
oil1
oil1
oil1
oil1
oil1
oil1
oil2
oil2
oil2
oil2
oil2
oil2
oil2
oil3
oil3
oil3
oil3
oil3
oil3
oil3
veg1l
veg1l
veg1l
veg1l
veg1l
veg1l
veg1l
veg2
veg2
veg2
veg2
veg2
veg2
veg2

Buy

0.00
0.00
0.00
0.00
0.00
0.00

0.00
250.00
0.00
0.00
0.00
750.00

0.00
0.00
0.00
0.00
500.00
0.00

0.00
0.00
0.00
0.00
0.00
659.26

0.00
0.00
0.00
0.00
0.00
540.74

Use

0.000
0.000
0.000
0.000
0.000
0.000

0.000
250.000
0.000
250.000
250.000
250.000

250.000
0.000
250.000
0.000
0.000
0.000

0.000
96.296
85.185

159.259
159.259
159.259

200.000
103.704
114.815
40.741
40.741
40.741

Store
500.000
500.000
500.000
500.000
500.000
500.000
500.000
500.000
500.000
500.000
500.000
250.000

0.000
500.000
500.000
250.000
250.000

0.000

0.000
500.000
500.000
500.000
500.000
403.704
318.519
159.259

0.000
500.000
500.000
300.000
196.296

81.481
40.741

0.000

500.000

[1] Manufacture hardness_sol
450
450
450
450
450
450

o Ul A W IN =

5.4889
5.6222
6.0000
6.0000
6.0000
6.0000
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Figure 1.6 shows the output when you use the ALGORITHM=IP option to invoke the interior point algorithm.

Figure 1.6 Output from Interior Point Algorithm

Problem Summary

Objective Sense Maximization
Objective Function Profit
Objective Type Linear
Number of Variables 95
Bounded Above 0
Bounded Below 60
Bounded Below and Above 25
Free 0
Fixed 10
Number of Constraints 54
Linear LE (<=) 18
Linear EQ (=) 30
Linear GE (>=)

Linear Range 0
Constraint Coefficients 210

Performance Information
Execution Mode Single-Machine
Number of Threads 4

Solution Summary

Solver LP
Algorithm Interior Point
Objective Function Profit
Solution Status Optimal

Objective Value 107842.59259

Primal Infeasibility 1.136868E-13
Dual Infeasibility = 1.976197E-14

Bound Infeasibility 0
Duality Gap 0
Complementarity 0
lterations 9
Iterations2 17
Presolve Time 0.60

Solution Time 0.60
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Figure 1.6 continued

[
oil1
oil1
oil1
oil1
oil1
oil1
oil1
oil2
oil2
oil2
oil2
oil2
oil2
oil2
oil3
oil3
oil3
oil3
oil3
oil3
oil3
veg1l
veg1l
veg1l
veg1l
veg1l
veg1l
veg1l
veg2
veg2
veg2
veg2
veg2
veg2
veg2

Buy

0.00
0.00
0.00
0.00
0.00
0.00

0.00
750.00
0.00
0.00
0.00
750.00

0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
659.26

0.00
0.00
0.00
0.00
0.00
540.74

Use Store

0.000
0.000
0.000
0.000
0.000
0.000

250.000
250.000
250.000
250.000
250.000
250.000

0.000
0.000
0.000
0.000
0.000
0.000

159.259
22.222
159.259
159.259
0.000
159.259

40.741
177.778
40.741
40.741
200.000
40.741

500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
250.00
750.00
500.00
250.00

0.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
500.00
340.74
318.52
159.26

0.00

0.00
500.00
500.00
459.26
281.48
240.74
200.00

0.00
500.00

[1] Manufacture hardness_sol

o Ul A W IN =

450
450
450
450
450
450

6.0000
5.1778
6.0000
6.0000
5.0444
6.0000
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Figure 1.7 shows the output when you use the ALGORITHM=NS option to invoke the network simplex

algorithm.

Figure 1.7 Output from Network Simplex Algorithm

Problem Summary

Objective Sense
Objective Function
Objective Type

Number of Variables
Bounded Above

Bounded Below

Bounded Below and Above
Free

Fixed

Number of Constraints
Linear LE (<=)

Linear EQ (=)

Linear GE (>=)

Linear Range

Constraint Coefficients

Maximization
Profit
Linear

95
0
60
25
0
10

54
18
30
6
0

210

Performance Information

Execution Mode Sing
Number of Threads 1

le-Machine

Solution Summary

Solver LP
Algorithm Network Simplex
Objective Function Profit
Solution Status Optimal
Objective Value 107842.59259
Primal Infeasibility = 1.136868E-13

Dual Infeasibility 2.842171E-14

Bound Infeasibility 5.

Iterations
Iterations2
Presolve Time
Solution Time

20249E-14

38
41
0.00
0.00
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Figure 1.7 continued

[
oil1
oil1
oil1
oil1
oil1
oil1
oil1
oil2
oil2
oil2
oil2
oil2
oil2
oil2
oil3
oil3
oil3
oil3
oil3
oil3
oil3
veg1l
veg1l
veg1l
veg1l
veg1l
veg1l
veg1l
veg2
veg2
veg2
veg2
veg2
veg2
veg2

Buy

0.00
0.00
0.00
0.00
0.00
0.00

0.00
250.00
0.00
0.00
0.00
750.00

0.00
0.00
0.00
0.00
500.00
0.00

0.00
0.00
0.00
0.00
0.00
659.26

0.00
0.00
0.00
0.00
0.00
540.74

Use

0.000
0.000
0.000
0.000
0.000
0.000

0.000
0.000
250.000
250.000
250.000
250.000

250.000
250.000
0.000
-0.000
0.000
0.000

85.185
85.185
159.259
11.111
159.259
159.259

114.815
114.815
40.741
188.889
40.741
40.741

Store
500.000
500.000
500.000
500.000
500.000
500.000
500.000
500.000
500.000
750.000
500.000
250.000

0.000
500.000
500.000
250.000

0.000

-0.000

0.000
500.000
500.000
500.000
414.815
329.630
170.370
159.259

0.000
500.000
500.000
385.185
270.370
229.630

40.741

0.000

500.000

[1] Manufacture hardness_sol
450
450
450
450
450
450

o Ul A W IN =

6.0000
6.0000
6.0000
51111
6.0000
6.0000
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Features Demonstrated

The following features are demonstrated in this example:

e problem type: linear programming

e numeric and string index sets

e reading dense two-dimensional data

e bounds in the VAR statement

e FIX statement

o IMPVAR statement

e MAX aggregation operator

e SUBSTR function

e using a colon (:) to select members of a set
e set operators DIFF and UNION

e linearizing a ratio constraint

e range constraint

e EXPAND statement

e using a variable suffix (such as . sol) in the declaration of a numeric parameter
e multiple input and output data sets

o ALGORITHM-= option
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Food Manufacture 2: Limiting the Number of
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Problem Statement

It is wished to impose the following extra conditions on the food manufacture problem: '

(1) The food may never be made up of more than three oils in any month.
(2) If an oil is used in a month at least 20 tons must be used.

(3) If either of VEG 1 or VEG 2 is used in a month then OIL 3 must also be used.

Extend the food manufacture model to encompass these restrictions and find the new optimal solution.

Mathematical Programming Formulation

This formulation builds on the formulation used in Chapter 1. This section includes only the new elements of
the formulation.

IReproduced with permission of John Wiley & Sons Ltd. (Williams 1999, p. 232).
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Parameters

Table 2.1 shows the additional parameters that are used in this example.

Table 2.1 Parameters

Parameter Name Interpretation

max_num_oils _used Maximum number of oils used per period
min_oil_used_threshold Minimum tons of oil used per period if used in that period
Usefoil,period].ub Upper bound on Use[oil,period]

Variables

Table 2.2 shows the additional variables that are used in this example.

Table 2.2 Variables

Variable Name Interpretation

IsUsed[oil,period] 1 if Use]oil,period] is positive; 0 otherwise

Objective

The objective is the same as in Chapter 1.

Constraints

The following additional constraints are used in this example:
e for oil € OILS and period € PERIODS,

Useloil,period] < Use/oil,period].ub - IsUsed[oil,period]
e for period € PERIODS,

Z IsUsed|oil,period] < max_num_oils_used
0il€OILS

e for oil € OILS and period € PERIODS,

Useloil,period] > min_oil_used_threshold - IsUsed][oil,period]

e for oil € {'veg1’,veg2’} and period € PERIODS,

IsUsedoil,period] < IsUsed['0il3’,period]
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Input Data

The following macro variables contain the additional input data that are used in this example:

%$let max _num oils_used = 3;
%let min_oil_ used threshold = 20;

PROC OPTMODEL Statements and Output

For completeness, all statements are shown. Statements that are new or changed from Chapter 1 are indicated.

proc optmodel;
set <str> OILS;
num hardness {OILS};
read data hardness_data into OILS=[o0il] hardness;

set PERIODS;

num cost {OILS, PERIODS};

read data cost_data into PERIODS=[_N_] {oil in OILS}
<cost[o0il, _N_]=col(oil)>;

var Buy {OILS, PERIODS} >= 0;
var Use {OILS, PERIODS} >= O0;
impvar Manufacture {period in PERIODS} = sum {oil in OILS} Use[oil,period];

num last_period = max {period in PERIODS} period;
var Store {OILS, PERIODS union {0}} >= 0 <= &store_ub;
for {oil in OILS} do;
fix Store[oil, 0] &init_storage;
fix Store[oil,last_period] = &init_storage;
end;

set VEG = {o0il in OILS: substr(oil,1,3) = 'veg'};
set NONVEG = OILS diff VEG;

impvar Revenue =

sum {period in PERIODS} &revenue_per_ton * Manufacture|[period];
impvar RawCost =

sum {oil in OILS, period in PERIODS} cost[oil,period] * Buy[oil,period];
impvar StorageCost =

sum {oil in OILS, period in PERIODS}

&storage_cost_per _ton * Store[oil,period];

max Profit = Revenue - RawCost - StorageCost;

con Veg_ub_con {period in PERIODS}:
sum {oil in VEG} Use[oil,period] <= &veg_ub;

con Nonveg ub_con {period in PERIODS}:
sum {oil in NONVEG} Use[oil,period] <= &nonveg_ ub;
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con Flow_balance_con {oil in OILS, period in PERIODS}:
Store[oil,period-1] + Buy[oil,period]
= Use[oil,period] + Store[oil,period];

con Hardness_ub_con {period in PERIODS}:
sum {oil in OILS} hardness[oil] * Use[oil, period]
>= ghardness_lb * Manufacture[period];

con Hardness_lb_con {period in PERIODS}:
sum {oil in OILS} hardness[oil] * Use[oil, period]
<= &hardness_ub * Manufacture[period];
The remaining statements are new in this example. The BINARY option in the following VAR statement
declares IsUsed to be a binary variable:

var IsUsed {OILS, PERIODS} binary;

The . ub variable suffix imposes an upper bound on the Use variable, in preparation for the subsequent Link
constraint. The validity of this upper bound follows from the Veg_ub_con and Nonveg_ub_con constraints.

for {period in PERIODS} do;
for {o0il in VEG} Use[oil,period] .ub = &veg_ub;
for {oil in NONVEG} Use[oil,period] .ub = &nonveg_ ub;
end;

The following Link constraint enforces the rule that Use[oil,period] > 0 implies that IsUsed[oil,period] = 1:
con Link {oil in OILS, period in PERIODS}:
Use[oil,period] <= Use[oil,period].ub * IsUsed[oil,period];

The following Logicall, Logical2, and Logical3 constraints correspond directly to the three extra conditions
in the problem statement:

con Logicall {period in PERIODS}:
sum {oil in OILS} IsUsed[oil,period] <= &max num_oils_used;

con Logical2 {oil in OILS, period in PERIODS}:
Use[oil,period] >= &min_oil_used_threshold *x IsUsed[oil, period];

con Logical3 {o0il in {'vegl',6 'veg2'}, period in PERIODS}:
IsUsed[oil,period] <= IsUsed['o0il3',6 period];

num hardness_sol {period in PERIODS} =
(sum {o0il in OILS} hardness[oil] x Use[oil, period].sol)
/ Manufacture[period].sol;

Because PROC OPTMODEL automatically recognizes that this model is a mixed integer linear programming
problem, the following SOLVE statement calls the MILP solver, as shown in Figure 2.1:

solve;
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Figure 2.1 Summaries from Mixed Integer Linear Programming Solver

The OPTMODEL Procedure

Problem Summary

Objective Sense
Objective Function
Objective Type

Number of Variables
Bounded Above
Bounded Below

Bounded Below and Above

Free
Fixed
Binary
Integer

Number of Constraints
Linear LE (<=)

Linear EQ (=)

Linear GE (>=)

Linear Range

Constraint Coefficients

Maximization
Profit
Linear

125
0
30
85
0
10
30
0

132
66
30
36

384

Performance Information

Execution Mode
Number of Threads 4

Single-Machine

Solution Summary

Solver

Algorithm
Objective Function
Solution Status
Objective Value

Relative Gap
Absolute Gap
Primal Infeasibility
Bound Infeasibility
Integer Infeasibility

Best Bound
Nodes
lterations
Presolve Time
Solution Time

MILP
Branch and Cut
Profit

Optimal within Relative Gap

100278.70394

0.0000982655
9.8549012096
2.096101E-13
4.940492E-14
1.0566756E-6

100288.55884
359

6333

0.01

0.22
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The following PRINT statement creates the output shown in Figure 2.2:

print Buy Use Store IsUsed Manufacture hardness_sol Logicall.body;

The .body constraint suffix accesses the left-hand side value of the Logicall constraint. For each period, the
solution uses no more than three oils, as shown in Figure 2.2. The following CREATE DATA statements
create multiple output data sets, as in Chapter 1:

create data sol_datal from [0il period] Buy Use Store IsUsed;
create data sol_data2 from [period] Manufacture;

quit;

Figure 2.2 Output from Mixed Integer Linear Programming Solver

[11 [2] Buy Use Store IsUsed
oill 0 500.00

oill 1 0.00 0.00000000 500.00 0.0000000000
oill 2 0.00 0.00000000 500.00 0.0000000000
oill 3 0.00 0.00000000 500.00 0.0000000000
oill 4 0.00 0.00000000 500.00 0.0000000000
oill 5 -0.00 -0.00000000 500.00 0.0000000000
oill 6 -0.00 0.00001304 500.00 0.0000000521
oil2 0 500.00

oil2 1 0.00 0.00000000 500.00 0.0000000000
oil2 2 190.00 230.00000000 460.00 1.0000000000
oil2 3 0.00 0.00000000 460.00 0.0000000000
oil2 4  -0.00 230.00000000 230.00 1.0000000000
oil2 5 0.00 230.00000000 0.00 1.0000000000
oil2 6 730.00 230.00000696 500.00 0.9999999433
oil3 0 500.00

oil3 1 0.00 250.00000000 250.00 1.0000000000
oil3 2 -0.00 20.00000000 230.00 1.0000000000
oil3 3  40.00 250.00000000 20.00 1.0000000000
oil3 4 0.00 20.00000000 0.00 1.0000000000
oil3 5 540.00 20.00000000 520.00 1.0000000000
oil3 6 -0.00 19.99998001 500.00 0.9999990003
vegl 0 500.00

vegl 1 0.00 85.18518519 414.81 1.0000000000
vegl 2 0.00 0.00000000 414.81 0.0000000000
vegl 3  -0.00 85.18518519 329.63 1.0000000000
vegl 4  -0.00 155.00000000 174.63 1.0000000000
vegl 5 -0.00 155.00000000 19.63 1.0000000000
vegl 6 480.37 0.00017144 500.00 0.0000010567
veg2 0 500.00

veg2 1 0.00 114.81481481 385.19 1.0000000000
veg2 2 0.00 200.00000000 185.19 1.0000000000
veg2 3 0.00 114.81481481 70.37 1.0000000000
veg2 4 0.00 0.00000000 70.37 0.0000000000
veg2 5 0.00 0.00000000 70.37 0.0000000000

6

veg2 629.63 199.99980006 500.00 0.9999990003
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Note that the maximum profit of £100,279 is smaller than in Chapter 1. This result is expected because this
model contains additional constraints.

Features Demonstrated

The following features are demonstrated in this example:

problem type: mixed integer linear programming

numeric and string index sets

reading dense two-dimensional data

bounds in the VAR statement

FIX statement

IMPVAR statement

MAX aggregation operator

SUBSTR function

using a colon (:) to select members of a set

set operators DIFF and UNION

using a variable suffix (such as .sol) in the declaration of a numeric parameter

multiple input and output data sets

BINARY option
.ub variable suffix

.body constraint suffix
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Problem Statement

An engineering factory makes seven products (PROD 1 to PROD 7) on the following machines: four
grinders, two vertical drills, three horizontal drills, one borer, and one planer.! Each product yields a certain
contribution to profit (defined as £/unit selling price minus cost of raw materials). These quantities (in £/unit)
together with the unit production times (hours) required on each process are given below. A dash indicates
that a product does not require a process.

PROD PROD PROD PROD PROD PROD PROD

1 2 3 4 5 6 7

Contribution to 10 6 8 4 11 9 3
profit

Grinding 0.5 0.7 — — 0.3 0.2 0.5
Vertical drilling 0.1 0.2 — 0.3 — 0.6 —
Horizontal drilling 0.2 — 0.8 — — — 0.6
Boring 0.05 0.03 — 0.07 0.1 — 0.08
Planing — — 0.01 — 0.05 — 0.05

In the present month (January) and the five subsequent months certain machines will be down for maintenance.
These machines will be:

January 1 grinder
February 2 horizontal drills
March 1 borer

April 1 vertical drill
May 1 grinder and 1 vertical drill
June 1 planer and 1 horizontal drill

IReproduced with permission of John Wiley & Sons Ltd. (Williams 1999, pp. 233-234).
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There are marketing limitations on each product in each month. These are:

1 2 3 4 5 6 7
January 500 1000 300 300 800 200 100
February 600 500 200 0 400 300 150
March 300 600 0 0 500 400 100
April 200 300 400 500 200 0 100
May 0 100 500 100 1000 300 0
June 500 500 100 300 1100 500 60

It is possible to store up to 100 of each product at a time at a cost of £0.5 per unit per month. There are no
stocks at present but it is desired to have a stock of 50 of each type of product at the end of June.

The factory works a 6 day week with two shifts of 8 hours each day.
No sequencing problems need to be considered.

When and what should the factory make in order to maximize the total profit? Recommend any price
increases and the value of acquiring any new machines.

N.B. It may be assumed that each month consists of only 24 working days.

Mathematical Programming Formulation

Index Sets and Their Members

The following index sets and their members are used in this example:

e product € PRODUCTS
e machine_type € MACHINE_TYPES

e period € PERIODS
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Parameters

Table 3.1 shows the parameters that are used in this example.

Table 3.1 Parameters

Parameter Name Interpretation

profitfproduct] Profit per unit of product
demand|product,period] Demand for each product per period
num_machines[machine_type] Total number of machines for each machine type
num_machines_per_period[machine_type,period] For each machine type, the number of machines

available per period
num_machines_down_per_period[machine_type,period] For each machine type, the number of machines
down per period

production_time[product,machine_type] Production time per unit of product on each
machine type

store_ub Number of units that can be stored for each
product per period

storage _cost_per_unit Storage cost per unit per period

final_storage Number of units of each product in storage at the
end of the last period

num_hours_per_period Number of working hours per period (month)

Variables

Table 3.2 shows the variables that are used in this example.

Table 3.2 Variables

Variable Name Interpretation

Make[product,period] Number of units of each product to make per period
Sell[product,period] Number of units of each product to sell per period
Store[product,period] Number of units of each product to store as inventory at the end of each period

Objective

The objective is to maximize the following function, where StorageCost is a linear function of Store:

TotalProfit = Z Z profitfproduct] Sell[product,period] — StorageCost
productePRODUCTS period€PERIODS
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Constraints

The following constraints are used in this example:

e bounds on decision variables

e for machine_type € MACHINE_TYPES and period € PERIODS,

Z production_time[product,machine_type] - Make[product,period]
productePRODUCTS

< num_hours_per_period - num_machines_per_period[machine_type,period]

e for product € PRODUCTS and period € PERIODS,

(if period — 1 € PERIODS, then Store[product,period — 1]; else 0)
+ Make[product,period]
= Sell[product,period] + Store[product,period]

Input Data
The following data sets and macro variables contain the input data that are used in this example:

data product_data;
input product $ profit;

datalines;

prodl 10
prod2 6
prod3 8
prodd 4
prod5 11
prod6é 9

3

prod7

4

data demand_data;
input prodl-prod7;
datalines;
500 1000 300 300 800 200 100
600 500 200 0 400 300 150
300 600 0 0 500 400 100
200 300 400 500 200 0 100
0 100 500 100 1000 300 0
500 500 100 300 1100 500 60

4

data machine_type_data;
input machine_type $ num_machines;
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datalines;
grinder 4
vdrill 2
hdrill 3
borer 1
planer 1

4

data machine_type_period_data;
input machine_type $ period num_down;

datalines;

grinder 1 1
hdrill 2 2
borer 31
vdrill 4 1
grinder 5 1
vdrill 5 1
planer 6 1

61

hdrill

’

data machine_ type_ product_data;
input machine_type $ prodl-prod7;

datalines;
grinder 0.5 0.7 O 0 0.3 0.2 0.5
vdrill 0.1 0.2 O 0.3 0 0.6 0
hdrill 0.2 O 0.8 O 0 0 0.6
borer 0.05 0.03 0 0.07 0.1 O 0.08
planer O 0 0.01 0 0.05 0 0.05

’

%$let store_ub = 100;

%let storage_cost_per_unit = 0.5;

%$let final storage = 50;

%$let num_hours_per period = 24 x 2 x 8;

PROC OPTMODEL Statements and Output

This example uses both one-dimensional and dense two-dimensional data, as in Chapter 1 and Chapter 2:

proc optmodel;
set <str> PRODUCTS;
num profit {PRODUCTS};
read data product_data into PRODUCTS=[product] profit;

set PERIODS;
num demand {PRODUCTS, PERIODS};
read data demand_data into PERIODS=[_N_]
{product in PRODUCTS} <demand[product, N_]=col (product)>;

set <str> MACHINE_TYPES;
num num_machines {MACHINE_TYPES},;
read data machine_type data into MACHINE_TYPES=[machine_type] num _machines;
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But this problem also has sparse two-dimensional data: for most (machine_type, period) pairs, the number
of machines down is 0. In the following statements, the INIT option in the second NUM statement initializes
num_machines_down_per_period to 0. The read of the sparse data set machine_type_period_data populates
only the nonzero values. The subsequent computation of num_machines_per_period[machine_type,period]
then uses the initial value of num_machines_down_per_period[machine_type,period] when no other value
has been supplied:

num num_machines_per_ period {machine_type in MACHINE_TYPES, PERIODS}
init num_machines|[machine_type];

num num_machines_down_per_ period {MACHINE_TYPES, PERIODS} init O;

read data machine_type_period_data into [machine_type period]
num_machines_down_per_period=num_down;

for {machine_type in MACHINE_TYPES, period in PERIODS}
num_machines_per_period[machine_type, period] =
num_machines_per_ period|[machine_type, period]

— num_machines_down_per_period[machine_type, period];
print num machines_per_ period;

Figure 3.1 shows the resulting values of num_machines_per_period.

Figure 3.1 num_machines_per_period Parameter
The OPTMODEL Procedure

num_machines_per_period

1 2 3 4 5 6
borer 1 1 0 1 1 1
grinder 3 4 4 4 3 4
hdrill 3 1 3 3 3 2
planer 1 1 1 1 1 0
vdrill 2 2 2 1 1 2

The following statements declare and read dense two-dimensional data:

num production_time {PRODUCTS, MACHINE_TYPES};

read data machine_type_product_data into [machine_type]
{product in PRODUCTS}
<production_time[product,machine_type]=col (product)>;
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The following statements are straightforward:

var Make {PRODUCTS, PERIODS} >= 0;
var Sell {product in PRODUCTS, period in PERIODS} >= 0
<= demand[product, period];

num last_period = max {period in PERIODS} period;
var Store {PRODUCTS, PERIODS} >= 0 <= &store_ub;
for {product in PRODUCTS}

fix Store[product, last_period] = &final_storage;

impvar StorageCost =
sum {product in PRODUCTS, period in PERIODS}
&storage_cost_per_unit * Store[product,period];
max TotalProfit =
sum {product in PRODUCTS, period in PERIODS}
profit[product] * Sell[product, period]
— StorageCost;

con Machine_hours_con {machine_type in MACHINE_TYPES, period in PERIODS}:
sum {product in PRODUCTS}
production_time[product,machine_type] * Make[product, period]
<= &num_hours_per_period * num _machines_per_ period[machine_type,period];

The following Flow_balance_con constraint uses an IF-THEN/ELSE expression to handle the boundary
conditions: if a previous period exists, the units in storage at the end of the previous period are available to
be sold in the current period. (Because ELSE 0 is the default, you could use just an IF-THEN expression
instead.)

con Flow_balance_con {product in PRODUCTS, period in PERIODS}:
(if period - 1 in PERIODS then Store[product,period-1] else 0)

+ Make|[product, period]

= Sell[product,period] + Store[product, period];

solve;
print Make Sell Store;
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The maximum total profit is £93,715, as shown in Figure 3.2.

Figure 3.2 Output from Linear Programming Solver

Problem Summary

Objective Sense Maximization
Objective Function TotalProfit
Objective Type Linear

Number of Variables
Bounded Above

Bounded Below

Bounded Below and Above
Free

Fixed

Number of Constraints
Linear LE (<=)

Linear EQ (=)

Linear GE (>=)

Linear Range

Constraint Coefficients

Performance Information

126
0
42
71
0
13

72
30
42

0

281

Execution Mode Single-Machine

Number of Threads 1

Solution Summary

Solver LP
Algorithm Dual Simplex
Objective Function TotalProfit
Solution Status Optimal

Objective Value 93715.178571

Primal Infeasibility 1.421085E-14
Dual Infeasibility  2.220446E-16

Bound Infeasibility

Iterations
Presolve Time
Solution Time

0

32

0.00
0.00
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Figure 3.2 continued

[1] [2] Make Sell Store

0.00 100.00 0.0
100.00 100.00 0.0
100.00 0.00 100.0

0.00 50.00 50.0

prod?7
prod?7
prod?7

prod1 1 500.00 500.00 0.0
prod1 2 700.00 600.00 100.0
prod1 3 0.00 100.00 0.0
prod1 4 200.00 200.00 0.0
prod1 5 0.00 0.00 0.0
prod1 6 550.00 500.00 50.0
prod2 1 888.57 888.57 0.0
prod2 2 600.00 500.00 100.0
prod2 3 0.00 100.00 0.0
prod2 4 300.00 300.00 0.0
prod2 5 100.00 100.00 0.0
prod2 6 550.00 500.00 50.0
prod3 1 382,50 300.00 825
prod3 2 117.50 200.00 0.0
prod3 3 0.00 0.00 0.0
prod3 4 400.00 400.00 0.0
prod3 5 600.00 500.00 100.0
prod3 6 0.00 50.00 50.0
prod4 1 300.00 300.00 0.0
prod4 2 0.00 0.00 0.0
prod4 3 0.00 0.00 0.0
prod4 4 500.00 500.00 0.0
prod4 5 100.00 100.00 0.0
prod4 6 350.00 300.00 50.0
prod5 1 800.00 800.00 0.0
prod5 2 500.00 400.00 100.0
prod5 3 0.00 100.00 0.0
prod5 4 200.00 200.00 0.0
prod5 5 1100.00 1000.00 100.0
prod5 6 0.00 50.00 50.0
prodé6 1 200.00 200.00 0.0
prod6 2 300.00 300.00 0.0
prod6 3 400.00 400.00 0.0
prod6 4 0.00 0.00 0.0
prod6 5 300.00 300.00 0.0
prod6 6 550.00 500.00 50.0
prod7 1 0.00 0.00 0.0
prod7 2 250.00 150.00 100.0

3

4

5

6

prod?7
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You can use the .dual constraint suffix to access the optimal dual variables returned by the solver:

print Machine_hours_con.dual;
create data sol_datal from [product period] Make Sell Store;
quit;
These values, shown in Figure 3.3, suggest the change in optimal objective value if the factory acquires
an additional machine in that period. For this test instance, it turns out that the positive dual variables all
correspond to machines that are down.

Figure 3.3 Optimal Dual Variables

Machine_hours_con.DUAL
1 2 3 4 5 6
borer 0.0000 0.0000 200.0000 0.0000 0.0000  0.0000
grinder 8.5714 0.0000 0.0000 0.0000 0.0000  0.0000
hdrill  0.0000 0.6250 0.0000 0.0000 0.0000  0.0000
planer 0.0000 0.0000 0.0000 0.0000 0.0000 800.0000
vdrill  0.0000 0.0000 0.0000 0.0000 0.0000  0.0000

Features Demonstrated

The following features are demonstrated in this example:

e problem type: linear programming

e numeric and string index sets

e reading dense two-dimensional data
e reading sparse two-dimensional data
e INIT option

e bounds in the VAR statement

e FIX statement

o IMPVAR statement

e MAX aggregation operator

e [F-THEN/ELSE expression

e .dual constraint suffix
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Problem Statement

Instead of stipulating when each machine is down for maintenance in the factory planning problem, it is
desired to find the best month for each machine to be down.!

Each machine must be down for maintenance in one month of the six apart from the grinding machines, only
two of which need be down in any six months.

Extend the model to allow it to make these extra decisions. How much is the extra flexibility of allowing
down times to be chosen worth?

Mathematical Programming Formulation

This formulation builds on the formulation used in Chapter 3. This section includes only the new elements of
the formulation.

IReproduced with permission of John Wiley & Sons Ltd. (Williams 1999, p. 234).
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Parameters

Table 4.1 shows the additional parameters that are used in this example.

Table 4.1 Parameters

Parameter Name Interpretation

num_machines_needing_maintenance[machine_type] For each machine type, the number of machines that
need maintenance

Variables

Table 4.2 shows the additional variables that are used in this example.

Table 4.2 Variables

Variable Name Interpretation

NumMachinesDown[machine_type,period] For each machine type, the number of machines down per period

Objective

The objective is the same as in Chapter 3.

Constraints

The following additional constraints are used in this example:

e for machine_type € MACHINE_TYPES and period € PERIODS,

Z production_time[product,machine_type] - Make[product,period]
productePRODUCTS

< num_hours_per_period - (num_machines[machine_type] — NumMachinesDown[machine_type,period])

e for machine_type € MACHINE_TYPES,

Z NumMachinesDown[machine_type,period] = num_machines_needing _maintenance[machine_type]
period€PERIODS
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Input Data
Ignore machine_type_period_data from Chapter 3, and replace machine_type_data as follows:

data machine_type_data;
input machine_type $ num _machines num machines_needing maintenance;

datalines;
grinder 4 2
vdrill 2 2
hdrill 3 3
borer 11
planer 1 1

4

PROC OPTMODEL Statements and Output

For completeness, all statements are shown. Statements that are new or changed from Chapter 3 are indicated.

proc optmodel;
set <str> PRODUCTS;
num profit {PRODUCTS},
read data product_data into PRODUCTS=[product] profit;

set PERIODS;
num demand {PRODUCTS, PERIODS};
read data demand_data into PERIODS=[_N_]
{product in PRODUCTS} <demand[product,_ N_]=col (product)>;

set <str> MACHINE_TYPES;
num num machines {MACHINE_TYPES};

The following statements declare and populate the num_machines_needing_maintenance parameter:

num num_machines_needing _maintenance {MACHINE_TYPES};
read data machine_type_data into MACHINE_TYPES=[machine_type]
num_machines num machines_needing maintenance;

The following statements are the same as in Chapter 3:

num production_time {PRODUCTS, MACHINE_TYPES};

read data machine_type product_data into [machine_type]
{product in PRODUCTS}
<production_time[product,machine_type]=col (product)>;

var Make {PRODUCTS, PERIODS} >= 0;
var Sell {product in PRODUCTS, period in PERIODS} >= 0

<= demand[product, period];

num last_period = max {period in PERIODS} period;
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var Store {PRODUCTS, PERIODS} >= 0 <= &store_ub;
for {product in PRODUCTS}
fix Store[product, last_period] = &final_storage;

impvar StorageCost =
sum {product in PRODUCTS, period in PERIODS}

&storage_cost_per_unit * Store[product,period];
max TotalProfit =

sum {product in PRODUCTS, period in PERIODS}

profit[product] * Sell[product, period]
— StorageCost;

Most of the remaining statements are new or modified from Chapter 3. The INTEGER option in the following
VAR statement declares NumMachinesDown to be an integer variable:

var NumMachinesDown {MACHINE_TYPES, PERIODS} >= 0 integer;

con Machine_hours_con {machine_type in MACHINE_TYPES, period in PERIODS}:
sum {product in PRODUCTS}

production_time[product,machine_type] * Make[product, period]
<= &num_hours_per_period =*
(num_machines[machine_type] - NumMachinesDown[machine_type,period]);

con Maintenance_con {machine_type in MACHINE_TYPES}:
sum {period in PERIODS} NumMachinesDown|[machine_type, period]
= num_machines_needing_maintenance[machine_type];

con Flow_balance_con {product in PRODUCTS, period in PERIODS}:

(if period - 1 in PERIODS then Store[product,period-1] else 0)
+ Make[product, period]

= Sell[product,period] + Store[product, period];

Because the problem contains integer variables, the SOLVE statement automatically invokes the MILP solver:

solve;
print Make Sell Store;
print NumMachinesDown;
create data sol_datal from [product period] Make Sell Store;
create data sol_data2 from [machine_type period] NumMachinesDown;
quit;
The solver determines when machines should be down and obtains a total profit of £108,855, as shown in
Figure 4.1. This objective value represents an increase of £15,140 from the optimal objective in Chapter 3.
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Figure 4.1 Output from Mixed Integer Linear Programming Solver
The OPTMODEL Procedure

Problem Summary

Objective Sense Maximization
Objective Function TotalProfit
Objective Type Linear
Number of Variables 156
Bounded Above 0
Bounded Below 72
Bounded Below and Above 71

Free 0
Fixed 13
Binary 0
Integer 30
Number of Constraints 77
Linear LE (<=) 30
Linear EQ (=) 47
Linear GE (>=) 0
Linear Range 0
Constraint Coefficients 341

Performance Information
Execution Mode Single-Machine
Number of Threads 4

Solution Summary

Solver MILP
Algorithm Branch and Cut
Objective Function TotalProfit
Solution Status Optimal within Relative Gap
Objective Value 108855
Relative Gap 1.1326824E-6
Absolute Gap 0.123298281
Primal Infeasibility 2.850885E-13
Bound Infeasibility 3.410605E-13
Integer Infeasibility 1.054292E-15
Best Bound 108855.1233
Nodes 7
lterations 1330
Presolve Time 0.01

Solution Time 0.10
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Figure 4.1 continued
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1000 -0
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As expected, the optimal numbers of machines down differ from the num_machines_down_per_period

parameter values in Chapter 3.

Features Demonstrated

The following features are demonstrated in this example:

e problem type: mixed integer linear programming
e numeric and string index sets

e reading dense two-dimensional data

e bounds in the VAR statement

e FIX statement

e IMPVAR statement

e MAX aggregation operator

e [F-THEN/ELSE expression

e multiple input and output data sets

e INTEGER option
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Problem Statement

A company is undergoing a number of changes which will affect its manpower requirements in future years. !

Owing to the installation of new machinery, fewer unskilled but more skilled and semi-skilled workers will
be required. In addition to this a downturn in trade is expected in the next year which will reduce the need for
workers in all categories. The estimated manpower requirements for the next three years are as follows:

Unskilled Semi-skilled Skilled

Current strength 2000 1500 1000
Year 1 1000 1400 1000
Year 2 500 2000 1500
Year 3 0 2500 2000

The company wishes to decide its policy with regard to the following over the next three years:

(1) Recruitment

(2) Retraining

(3) Redundancy

(4) Short-time working.

There is a natural wastage of labour. A fairly large number of workers leave during their first year. After this
the rate is much smaller. Taking this into account, the wastage rates can be taken as below:

IReproduced with permission of John Wiley & Sons Ltd. (Williams 1999, pp. 234-236).
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Unskilled Semi-skilled Skilled
Less than one year’s service 25% 20% 10%
More than one year’s service 10% 5% 5%

There has been no recent recruitment and all workers in the current labour force have been employed for
more than one year.

Recruitment

It is possible to recruit a limited number of workers from outside. In any one year the numbers which can be
recruited in each category are:

Unskilled Semi-skilled Skilled
500 800 500

Retraining

It is possible to retrain up to 200 unskilled workers per year to make them semi-skilled. This costs £400 per
worker. The retraining of semi-skilled workers to make them skilled is limited to no more than one quarter of
the skilled labour at the time as some training is done on the job. To retrain a semi-skilled worker in this way
costs £500.

Downgrading of workers to a lower skill is possible but 50% of such workers leave, although it costs the
company nothing. (This wastage is additional to the ‘natural wastage’ described above.)

Redundancy

The redundancy payment to an unskilled worker is £200 and to a semi-skilled or skilled worker £500.

Overmanning

It is possible to employ up to 150 more workers over the whole company than are needed but the extra costs
per employee per year are:

Unskilled Semi-skilled Skilled
£1500 £2000 £3000
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Short-time Working

Up to 50 workers in each category of skill can be put on short-time working. The cost of this (per employee
per year) is:

Unskilled Semi-skilled Skilled
£500 £400 £400

An employee on short-time working meets the production requirements of half an employee.
The company’s declared objective is to minimize redundancy. How should they operate in order to do this?

If their policy were to minimize costs, how much extra would this save? Deduce the cost of saving each type
of job each year.

Mathematical Programming Formulation

Index Sets and Their Members

The following index sets and their members are used in this example:

e worker €¢ WORKERS

period € PERIODSO

period € PERIODS = PERIODSO \ {0}

(i, j) € RETRAIN_PAIRS: worker i retrained as worker j

(i, j) € DOWNGRADE_PAIRS: worker i downgraded to worker j
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Parameters

Table 5.1 shows the parameters that are used in this example.

Table 5.1 Parameters

Parameter Name

Interpretation

waste new|worker]
waste_old[worker]
recruit_ub[worker]
redundancy_cost[worker]
overmanning_cost[worker]
shorttime_ubfworker]
shorttime_cost[worker]
demand|worker,period]
retrain_ubli,j]

retrain_costfi,j]
semiskill_retrain_frac_ub

downgrade_leave_frac
overmanning_ub
shorttime_frac

Fraction of workers who leave during their first year

Fraction of workers who leave after their first year

Upper bound on number of workers who are recruited from outside

Cost per worker made redundant

Cost per excess worker

Upper bound on number of short-time workers

Cost per short-time worker

Manpower requirements

Upper bound on number of workers who can be retrained from i to j per
year

Cost to retrain worker i as worker j

Upper bound on fraction of semi-skilled workers who can be retrained to
skilled

Fraction of downgraded workers who leave

Upper bound on number of excess workers

Fraction of production requirements of a full-time employee that is met by
each short-time employee

Variables

Table 5.2 shows the variables that are used in this example.

Table 5.2 Variables

Variable Name Interpretation
NumWorkers[worker,period] Number of workers per period
NumRecruits[worker,period] Number of recruited workers per period

NumRedundant[worker,period] Number of workers made redundant per period
NumShortTime[worker,period]  Number of short-time workers per period
NumExcess[worker,period] Number of excess workers per period
NumRetrain[i,j,period] Number of workers retrained from i to j per period
NumDowngradeli,j,period] Number of workers downgraded from i to j per period
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Objectives

One objective is to minimize the following function:

Redundancy = Z Z NumRedundant[worker,period]
worker€ WORKERS periodePERIODS

A second objective is to minimize the following function:

Cost = Z Z redundancy_cost[worker] - NumRedundant[worker,period]
+ Z Z shorttime_cost[worker] - NumShorttime[worker,period]
+ Z Z overmanning_cost[worker] - NumExcess[worker,period]

+ Z Z retrain_cost]i,j] - NumRetrain[i,j,period]
(i,j) ERETRAIN_PAIRS periodePERIODS

Constraints

The following constraints are used in this example:

e bounds on variables

e for worker € WORKERS and period € PERIODS,

NumWorkers[worker,period]
— (1 — shorttime_frac) - NumShortTime[worker,period]
— NumExcess[worker,period]
= demand[worker,period]

o for worker € WORKERS and period € PERIODS,

NumWorkers[worker,period]
= (1 — waste_old[worker]) - NumWorkers[worker,period — 1]
+ (1 — waste_new|[worker]) - NumRecruits[worker,period]

+ (1 — waste_old[worker]) - Z NumRetrain[i,worker,period]
(i,worker) ERETRAIN_PAIRS

+ (1 — downgrade_leave_frac) - Z NumDowngradel[i,worker,period]
(i,worker) EDOWNGRADE_PAIRS

- Z NumRetrain[worker,j,period]
(worker,j)€ERETRAIN_PAIRS

- Z NumDowngrade[worker,j,period]
(worker,j))EDOWNGRADE_PAIRS

— NumRedundant[worker,period]
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e for period € PERIODS,
NumRetrain[‘'semiskilled’,‘skilled’,period] < semiskill_retrain_frac_ub-NumWorkers['skilled’,period]
e for period € PERIODS,

Z NumExcess[worker,period] < overmanning_ub
workere WORKERS

Input Data
The following data sets and macro variables contain the input data that are used in this example:

data demand data;
input period unskilled semiskilled skilled;
datalines;
2000 1500 1000
1000 1400 1000
500 2000 1500
0 2500 2000

wWwihNH+HOo

data worker_ data;
input worker $12. waste_new waste_old recruit_ub redundancy_cost
overmanning cost shorttime_ ub shorttime_cost;
datalines;
unskilled 0.25 0.10 500 200 1500 50 500
semiskilled 0.20 0.05 800 500 2000 50 400
skilled 0.10 0.05 500 500 3000 50 400

’

data retrain_data;
input workerl $12. worker2 $12. retrain_ub retrain_cost;

datalines;
unskilled semiskilled 200 400

semiskilled skilled . 500

’

data downgrade_data;
input workerl $12. worker2 $12.;
datalines;

semiskilled unskilled

skilled semiskilled

skilled unskilled

’

%$let semiskill retrain_frac_ub = 0.25;
%$let downgrade_leave_frac = 0.5;

%$let overmanning_ ub 150;

%$let shorttime_frac 0.5;
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PROC OPTMODEL Statements and Output

The first several index sets are one-dimensional, as in all the previous examples:

proc optmodel;

set <str> WORKERS;

num waste_new {WORKERS};

num waste_old {WORKERS};

num recruit_ub {WORKERS};

num redundancy_cost {WORKERS};

num overmanning cost {WORKERS};

num shorttime_ub {WORKERS};

num shorttime_cost {WORKERS};

read data worker_data into WORKERS=[worker]
waste_new waste_old recruit_ub redundancy_cost overmanning_cost
shorttime_ub shorttime_cost;

set PERIODSO;
num demand {WORKERS, PERIODSO0};
read data demand_data into PERIODSO=[period]
{worker in WORKERS} <demand|[worker,period]=col (worker)>;

var NumWorkers {WORKERS, PERIODSO0} >= O;
for {worker in WORKERS} fix NumWorkers|[worker,0] = demand[worker, 0];

set PERIODS = PERIODSO diff {0};

var NumRecruits {worker in WORKERS, PERIODS} >= 0 <= recruit_ub[worker];
var NumRedundant {WORKERS, PERIODS} >= 0;

var NumShortTime {worker in WORKERS, PERIODS} >= 0 <= shorttime_ub[worker];
var NumExcess {WORKERS, PERIODS} >= 0;

Both RETRAIN_PAIRS and DOWNGRADE_PAIRS are two-dimensional index sets, declared by using the
optional <STR,STR> specification in the SET statement so that these sets contain pairs of strings. In general,
a set can consist of tuples of any length and any combination of NUM and STR scalar-types.

set <str,str> RETRAIN_ PAIRS;

num retrain ub {RETRAIN_PAIRS};

num retrain cost {RETRAIN_PAIRS};

read data retrain_data into RETRAIN_PAIRS=[workerl worker2]
retrain_ub retrain_cost;

var NumRetrain {RETRAIN PAIRS, PERIODS} >= 0;
for {<i,j> in RETRAIN_PAIRS: retrain_ubl[i, j] ne .}
for {period in PERIODS} NumRetrain[i, j,period].ub = retrain ubli, j];

set <str, str> DOWNGRADE_PAIRS;
read data downgrade_data into DOWNGRADE_PAIRS=[workerl worker2];
var NumDowngrade {DOWNGRADE_PAIRS, PERIODS} >= O0;

con Demand con {worker in WORKERS, period in PERIODS}:
NumWorkers [worker, period]

(1 - &shorttime_frac) * NumShortTime [worker, period]
NumExcess [worker, period]

demand [worker, period];
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The following Flow_balance_con constraint uses an implicit slice to express a few of the summations
compactly:

con Flow_balance_con {worker in WORKERS, period in PERIODS}:
NumWorkers [worker, period]
(1 - waste_old[worker]) * NumWorkers|[worker, period-1]
+ (1 - waste_new[worker]) * NumRecruits|[worker, period]
+ (1 - waste_old[worker]) =*

sum {<i, (worker)> in RETRAIN_PAIRS} NumRetrain[i,worker, period]
+ (1 - &downgrade_leave_frac) =

sum {<i, (worker)> in DOWNGRADE_PAIRS} NumDowngrade[i,worker, period]
— sum {<(worker), j> in RETRAIN_PAIRS} NumRetrain|[worker, j,period]
- sum {<(worker), j> in DOWNGRADE_PAIRS} NumDowngrade [worker, j, period]
— NumRedundant [worker, period];

For example,

<i, (worker)> in RETRAIN_ PAIRS

is equivalent to

i in slice(<*,worker>,RETRAIN_PAIRS)

which is equivalent to

i in WORKERS: <i,worker> in RETRAIN_ PAIRS

The remaining two constraints are straightforward:

con Semiskill_retrain_con {period in PERIODS}:
NumRetrain['semiskilled', 'skilled', period]
<= &semiskill_retrain_frac_ub * NumWorkers|['skilled',6 period];

con Overmanning con {period in PERIODS}:
sum {worker in WORKERS} NumExcess[worker,period] <= &overmanning_ ub;

This example uses two objectives, Redundancy and Cost, declared in the following MIN statements:

min Redundancy =
sum {worker in WORKERS, period in PERIODS} NumRedundant [worker,period];
min Cost =
sum {worker in WORKERS, period in PERIODS} (
redundancy_cost [worker] x NumRedundant [worker, period]
+ shorttime_cost[worker] * NumShorttime [worker, period]
+ overmanning cost [worker] * NumExcess|[worker,period])
+ sum {<i, j> in RETRAIN_PAIRS, period in PERIODS}
retrain_cost[i, j] * NumRetrain[i, j,period];

The LP solver is called twice, and each SOLVE statement includes the OBJ option to specify which objective
to optimize. The first PRINT statement after each SOLVE statement reports the values of both objectives
even though only one objective is optimized at a time:

solve obj Redundancy;
print Redundancy Cost;
print NumWorkers NumRecruits NumRedundant NumShortTime NumExcess;

print NumRetrain;
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print NumDowngrade;
create data sol_datal from [worker period]
NumWorkers NumRecruits NumRedundant NumShortTime NumExcess;
create data sol_data2 from [workerl worker2 period] NumRetrain NumDowngrade;

solve obj Cost;
print Redundancy Cost;
print NumWorkers NumRecruits NumRedundant NumShortTime NumExcess;
print NumRetrain;
print NumDowngrade;
create data sol_data3 from [worker period]
NumWorkers NumRecruits NumRedundant NumShortTime NumExcess;
create data sol_data4 from [workerl worker2 period] NumRetrain NumDowngrade;
quit;
Figure 5.1 shows the output that results from the first SOLVE statement.

Figure 5.1 Output from First SOLVE Statement, Minimizing Redundancy
The OPTMODEL Procedure

Problem Summary

Objective Sense Minimization
Objective Function Redundancy
Objective Type Linear
Number of Variables 63
Bounded Above 0
Bounded Below 39
Bounded Below and Above 21
Free 0
Fixed 3
Number of Constraints 24
Linear LE (<=) 6
Linear EQ (=) 18
Linear GE (>=) 0
Linear Range 0
Constraint Coefficients 108

Performance Information
Execution Mode Single-Machine
Number of Threads 1
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Figure 5.1 continued

Solution Summary

Solver
Algorithm

Objective Function

Solution Status

Objective Value

LP

Dual Simplex

Redundancy

Optimal

841.796875

Primal Infeasibility 2.842171E-14

Dual Infeasibility 0

Bound Infeasibility 0

lterations 14

Presolve Time 0.02

Solution Time 0.02

Redundancy Cost
841.8 1441390

[1] [21 NumWorkers NumRecruits NumRedundant NumShortTime NumExcess
semiskilled 0 1500
semiskilled 1 1443 0.00 0.00 50 17.969
semiskilled 2 2000 649.30 0.00 0 0.000
semiskilled 3 2500 676.97 0.00 0 0.000
skilled 0 1000
skilled 1 1025 0.00 0.00 50 0.000
skilled 2 1500 500.00 0.00 0 0.000
skilled 3 2000 500.00 0.00 0 0.000
unskilled 0 2000
unskilled 1 1157 0.00 442.97 50 132.031
unskilled 2 675 0.00 166.33 50 150.000
unskilled 3 175 0.00 232.50 50 150.000

1] [2]

semiskilled skilled
semiskilled skilled
semiskilled skilled

[3] NumRetrain

1
2
3

unskilled semiskilled 1

unskilled semiskilled 2

unskilled semiskilled 3

256.250

80.263
131.579
200.000
200.000
200.000
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Figure 5.1 continued

[1] [2] [3] NumDowngrade
semiskilled unskilled 1 0.00
semiskilled unskilled 2 0.00
semiskilled unskilled 3 0.00
skilled semiskilled 1 168.44
skilled semiskilled 2 0.00
skilled semiskilled 3 0.00
skilled unskilled 1 0.00
skilled unskilled 2 0.00
skilled unskilled 3 0.00

Figure 5.2 shows the output that results from the second SOLVE statement.

Figure 5.2 Output from Second SOLVE Statement, Minimizing Cost

Problem Summary

Objective Sense Minimization
Objective Function Cost
Objective Type Linear
Number of Variables 63
Bounded Above 0
Bounded Below 39
Bounded Below and Above 21
Free

Fixed 3
Number of Constraints 24
Linear LE (<=) 6
Linear EQ (=) 18
Linear GE (>=) 0
Linear Range 0
Constraint Coefficients 108

Performance Information
Execution Mode Single-Machine
Number of Threads 1
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Dual Infeasibility 0
Bound Infeasibility 0
lterations 9
Presolve Time 0.00
Solution Time 0.00
Redundancy Cost
1423.7 498677
[1] [21 NumWorkers NumRecruits NumRedundant NumShortTime NumExcess
semiskilled 0 1500
semiskilled 1 1400 0.000 0.00
semiskilled 2 2000 800.000 0.00
semiskilled 3 2500 800.000 0.00
skilled 0 1000
skilled 1 1000 55.556 0.00
skilled 2 1500 500.000 0.00
skilled 3 2000 500.000 0.00
unskilled 0 2000
unskilled 1 1000 0.000 812.50
unskilled 2 500 0.000 257.62
unskilled 3 0 0.000 353.60

Figure 5.2 continued

Solver

Algorithm

Objective Function

Solution Status

Objective Value

Solution Summary

LP

Dual Simplex
Cost

Optimal

498677.28532

Primal Infeasibility 2.842171E-14

[

[2

semiskilled skilled

semiskilled skilled

semiskilled skilled

unskilled
unskilled
unskilled

[3] NumRetrain

1 0.000
2 105.263
3 131.579
semiskilled 1 0.000
semiskilled 2 142.382

semiskilled 3 96.399



Figure 5.2 continued

[1] [2] [3] NumDowngrade
semiskilled unskilled 1 25
semiskilled unskilled 2
semiskilled unskilled 3
skilled semiskilled 1
skilled semiskilled 2
skilled semiskilled 3

skilled unskilled 1
skilled unskilled 2
skilled unskilled 3

O O O O © o o o
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Features Demonstrated

The following features are demonstrated in this example:

problem type: linear programming
numeric and string index sets

reading dense two-dimensional data
reading sparse two-dimensional data
sets of tuples

bounds in the VAR statement

.ub variable suffix

FIX statement

using a colon (:) to select members of a set
set operator DIFF

SLICE expression

implicit slice

multiple objectives and the OBJ option

multiple input and output data sets
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Problem Statement

An oil refinery purchases two crude oils (crude 1 and crude 2).! These crude oils are put through four
processes: distillation, reforming, cracking, and blending, to produce petrols and fuels which are sold.

Distillation

Distillation separates each crude oil into fractions known as light naphtha, medium naphtha, heavy naphtha,
light oil, heavy oil and residuum according to their boiling points. Light, medium and heavy naphthas have
octane numbers of 90, 80 and 70 respectively. The fractions into which one barrel of each type of crude splits
are given in the table:

Light Medium Heavy Light Heavy
naphtha naphtha naphtha oil oil Residuum
Crude 1 0.1 0.2 0.2 0.12 0.2 0.13
Crude2  0.15 0.25 0.18 0.08  0.19 0.12

N.B. There is a small amount of wastage in distillation.

IReproduced with permission of John Wiley & Sons Ltd. (Williams 1999, pp. 236-238).
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Reforming

The naphthas can be used immediately for blending into different grades of petrol or can go through a process
known as reforming. Reforming produces a product known as reformed gasoline with an octane number of
115. The yields of reformed gasoline from each barrel of the different naphthas are given below:

1 barrel of light naphtha yields 0.6 barrels of reformed gasoline;
1 barrel of medium naphtha yields 0.52 barrels of reformed gasoline;
1 barrel of heavy naphtha yields 0.45 barrels of reformed gasoline.

Cracking

The oils (light and heavy) can either be used directly for blending into jet fuel or fuel oil or be put through
a process known as catalytic cracking. The catalytic cracker produces cracked oil and cracked gasoline.
Cracked gasoline has an octane number of 105.

1 barrel of light oil yields 0.68 barrels of cracked oil and 0.28 barrels of
cracked gasoline;
1 barrel of heavy oil yields 0.75 barrels of cracked oil and 0.2 barrels of
cracked gasoline.

Cracked oil is used for blending fuel oil and jet fuel; cracked gasoline is used for blending petrol.

Residuum can be used for either producing lube-oil or blending into jet fuel and fuel oil:

1 barrel of residuum yields 0.5 barrels of lube-oil.

Blending
Petrols (Motor Fuel)

There are two sorts of petrol, regular and premium, obtained by blending the naphtha, reformed gasoline and
cracked gasoline. The only stipulations concerning them are that regular must have an octane number of
at least 84 and that premium must have an octane number of at least 94. It is assumed that octane numbers
blend linearly by volume.

Jet Fuel

The stipulation concerning jet fuel is that its vapour pressure must not exceed 1 kilogram per square centimetre.
The vapour pressures for light, heavy and cracked oils and residuum are 1.0, 0.6, 1.5 and 0.05 kilograms per
square centimetre respectively. It may again be assumed that vapour pressures blend linearly by volume.
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Fuel Oil
To produce fuel oil, light oil, cracked oil, heavy oil and residuum must be blended in the ratio 10:4:3:1.

There are availability and capacity limitations on the quantities and processes used:

(a) The daily availability of crude 1 is 20,000 barrels.

(b) The daily availability of crude 2 is 30,000 barrels.

(c) At most 45,000 barrels of crude can be distilled per day.

(d) At most 10,000 barrels of naphtha can be reformed per day.

(e) At most 8000 barrels of oil can be cracked per day.

(f) The daily production of lube oil must be between 500 and 1000 barrels.

(g) Premium motor fuel production must be at least 40% of regular motor fuel production.
The profit contributions from the sale of the final products are (in pence per barrel)

Premium petrol 700
Regular petrol 600

Jet fuel 400
Fuel oil 350
Lube-oil 150

How should the operations of the refinery be planned in order to maximize total profit?

Mathematical Programming Formulation

The problem is represented as a generalized network flow problem with side constraints. Each node
corresponds to a material, and each arc represents conversion of one material to another via one of the
four processes, as shown in Figure 6.1. The arc multiplier values 6 and 2, together with the Distillation
and Cracking constraints specified later, are used to split the flow into equal parts at the head nodes of the
corresponding arcs.
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Figure 6.1 Generalized Network with Arc Multipliers
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Index Sets and Their Members

The following index sets and their members are used in this example:

e i € NODES

e (i,j) € ARCS

e product € FINAL_PRODUCTS
e crude € CRUDES

e oil € OILS

e oil € CRACKED_OILS

e petrol € PETROLS
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Parameters

Table 6.1 shows the parameters that are used in this example.

Table 6.1 Parameters

Parameter Name Interpretation

arc_multfarc] Arc multiplier (default value of 1)

profitfproduct] Profit from sale of final product (in pounds per barrel)

octaneli] Octane per node

octane_Ib[petrol] Lower bound on octane

vapour_pressure(i] Vapour pressure per node

fuel _oil_coefficient[i] Fuel oil blending coefficient per node

sum_fuel_oil_coefficient Y _; el oiryearcs uel_oil_coefficient]i]

vapour_pressure_ub Upper bound on vapour pressure

crude_total _ub Upper bound on number of barrels of crude distilled per day
naphtha_ub Upper bound on number of barrels of naphtha reformed per day
cracked_oil_ub Upper bound on number of barrels of oil cracked per day
lube_oil_Ib Lower bound on number of barrels of lube oil produced per day
lube_oil_ub Upper bound on number of barrels of lube oil produced per day
premium_ratio Lower bound on ratio of premium motor fuel production to regular motor

fuel production

Variables

Table 6.2 shows the variables that are used in this example.

Table 6.2 Variables

Variable Name Interpretation

Flowl[i,j] Flow across arc (i, j)
CrudeDistilled[crude] Barrels of crude oil distilled
QilCracked[oil] Barrels of oil cracked

Objective

The objective is to maximize the following function:

TotalProfit = > profit]i] - Flow[i,'sink’]
i eFINAL_PRODUCTS
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Constraints

The following constraints are used in this example:

e bounds on variables

e fori € NODES \ {‘source’, ‘sink’},

> Flowlijj= Y arc_multfji] - Flow[j,i]

(i,/)EARCS (j,i)EARCS
e for (i, j) € ARCS such that i € CRUDES,

Flowl[i,j] = CrudeDistilled[i]

e for (i, j) € ARCS such thati € CRACKED_OILS,

Flow[i,j] = QOilCracked]i]

e for petrol € PETROLS,
> octaneli] - arc_multfi,petrol] - Flow[i,petrol]
(i,petrol) EARCS

> arc_multfi,petrol] - Flow[i,petrol]
(i,petrol) eARCS

> octane_IbJpetrol]

> vapour_pressureli] - arc_multfi, jet_fuel’] - Flow[i,"jet_fuel’]
(1 jet_Tuel) SARCS < vapour_pressure_ub
[}
> (- fet_tuetyeaRCs A7C_MUltl, jet_fuel] - Flow[i,jet_fue] = vapourp -

e for (i, ‘fuel_oil’) € ARCS,

Flow[i, fuel_oil’] fuel_oil_coefficientfi]

> Flow[j,fuel_oil] ~ sum_fuel oil_coefficient
(J, fuel_oil') EARCS

° Z CrudeDistilled[i] < crude_total _ub
i €CRUDES

° Z Flow[i,'reformed_gasoline’] < naphtha_ub

(i,‘reformed_gasoline’) €ARCS:
index(i, ‘naphtha’)>0

. Z Flow[i,‘cracked_oil'] < cracked_oil_ub
(i,‘cracked_oil’)EARCS

e Jube_oil_Ib < Flow['lube_oil’,'sink’] < lube_oil_ub

> Flow[‘premium_petrol’,j]
(‘premium_petrol’, j )€ARCS . .
° —— > premium_ratio
> Flow[‘regular_petrol’,j]

(‘regular_petrol’, j)€ARCS
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Input Data

The following data sets and macro variables contain the input data that are used in this example:

data crude_data;

input crude $ crude_ub;

datalines;
crudel 20000
crude2 30000

’

data arc_data;
input i $18. j
datalines;

source

source

crudel

crudel

crudel

crudel

crudel

crudel

crude2

crude2

crude2

crude2

crude2

crude2

light_naphtha

light_naphtha

medium_naphtha

medium_naphtha

heavy_naphtha

heavy_naphtha

light_naphtha

medium_naphtha

heavy_ naphtha

light_oil

light_oil

heavy_oil

heavy_oil

light_oil

light_oil_ cracked

light_oil_cracked

heavy oil

heavy_oil_ cracked

heavy o0il_cracked

cracked_oil

cracked_oil

reformed_gasoline

reformed _gasoline

cracked_gasoline

$18. multiplier;

crudel

crude2
light_naphtha
medium_naphtha
heavy_naphtha
light_oil

heavy oil
residuum
light_naphtha
medium_naphtha
heavy_ naphtha
light_oil

heavy oil
residuum
regular_petrol
premium petrol
regular_ petrol
premium petrol
regular_ petrol
premium_petrol
reformed _gasoline
reformed_gasoline
reformed _gasoline
jet_fuel

fuel_oil

jet_fuel

fuel oil
light_oil_ cracked
cracked oil
cracked_gasoline
heavy_ o0il_cracked
cracked_oil
cracked_gasoline
jet_fuel

fuel oil
regular_petrol
premium petrol
regular_petrol

O OO0 0000000000 O

O oONMNMNOONDN:

NN PR

.13
.15
.25
.18
.08
.19
.12

.52
.45
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cracked_gasoline premium petrol

residuum lube_oil
residuum jet_fuel
residuum fuel oil

’

data octane_data;
input i $18. octane;

datalines;
light_naphtha 90
medium_naphtha 80
heavy_naphtha 70

reformed _gasoline 115
cracked_gasoline 105

’

data petrol_data;
input petrol $15. octane_lb;
datalines;

regular petrol 84

premium petrol 94

14

data vapour_pressure_data;
input o0il $12. vapour_pressure;
datalines;

light_oil 1.0

heavy_oil 0.6

cracked_oil 1.5

residuum 0.05

’

data fuel oil_ratio_data;
input o0il $12. coefficient;
datalines;

light_oil 10

cracked_oil 4

heavy_ oil 3

residuum 1

4

data final_product_data;
input product $15. profit;
datalines;

premium_petrol 700

regular petrol 600

jet_fuel 400
fuel oil 350
lube_oil 150

4

%$let vapour_pressure_ub = 1;
%$let crude_total ub = 45000;
%$let naphtha_ub = 10000;
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%$let cracked oil_ub = 8000;
%$let lube_oil_1b = 500;
%$let lube_oil_ub = 1000;
%$let premium ratio = 0.40;

PROC OPTMODEL Statements and Output

The NOMISS option in the first READ DATA statement ensures that only nonmissing values of the variable
multiplier in the arc_data data set populate the arc_mult parameter. Because arc_mult is declared with an
initial value of 1, parameters with no value default to 1.

proc optmodel;
set <str,str> ARCS;
num arc_mult {ARCS} init 1;
read data arc_data nomiss into ARCS=[i j] arc_mult=multiplier;
var Flow {ARCS} >= 0;

set <str> FINAL_ PRODUCTS;
num profit {FINAL_PRODUCTS},;
read data final_ product_data into FINAL_PRODUCTS=[product] profit;

The following FOR loop converts profit from pence per barrel to pounds per barrel, without altering the input
data set:
for {product in FINAL_ PRODUCTS} profit[product] = profit[product] / 100;

Most arcs appear in the arc_data data set, but the following assignment statement uses the set operators
UNION and CROSS to 