Lost Baggage Distribution


Constraints

The following constraints are used in this example:

  • bounds on variables

  • for $i \in \text {NODES} \setminus \{ \text {depot}\} $,

    \[ \sum _{v \in \text {VEHICLES}} \Variable{UseNode[i,v]} = 1 \]
  • for $i \in \text {NODES}$ and $v \in \text {VEHICLES}$,

    \[ \sum _{(i,j) \in \text {ARCS}} \Variable{UseArc[i,j,v]} = \Variable{UseNode[i,v]} \]
  • for $j \in \text {NODES}$ and $v \in \text {VEHICLES}$,

    \[ \sum _{(i,j) \in \text {ARCS}} \Variable{UseArc[i,j,v]} = \Variable{UseNode[j,v]} \]
  • for $i \in \text {NODES}$ and $v \in \text {VEHICLES}$,

    \[ \Variable{UseNode[i,v]} \le \Variable{UseVehicle[v]} \]
  • for $v \in \text {VEHICLES}$,

    \[ \Variable{UseVehicle[v]} \le \Variable{UseNode[depot,v]} \]
  • for $v \in \text {VEHICLES}$,

    \[ \Variable{TimeUsed[v]} = \sum _{(i,j) \in \text {ARCS}} \Argument{travel\_ time[i,j]} \cdot \Variable{UseArc[i,j,v]} \]
  • for $v \in \text {VEHICLES} \setminus \{ 1\} $,

    \[ \sum _{i \in \text {NODES}} \Variable{UseNode[i,v]} \le \sum _{i \in \text {NODES}} \Variable{UseNode[i,v}-\Variable{1]} \]
  • for $s \in \{ 1, \dots , \Argument{num\_ subtours}\} $ and $k \in \text {SUBTOUR[s]}$ and $v \in \text {VEHICLES}$,

    \[ \sum _{\substack{i \in \text {NODES} \setminus \text {SUBTOUR[s]},\\ j \in \text {SUBTOUR[s]}:\\ (i,j) \in \text {ARCS}}} \Variable{UseArc[i,j,v]} + \sum _{\substack{i \in \text {SUBTOUR[s]},\\ j \in \text {NODES} \setminus \text {SUBTOUR[s]}:\\ (i,j) \in \text {ARCS}}} \Variable{UseArc[i,j,v]} \ge 2 \cdot \Variable{UseNode[k,v]} \]
  • for $v \in \text {VEHICLES}$,

    \[ \Variable{MaxTimeUsed} \ge \Variable{TimeUsed[v]} \]