The following constraints are used in this example:
bounds on variables
for
,
![\[ \sum _{v \in \text {VEHICLES}} \Variable{UseNode[i,v]} = 1 \]](images/ormpex_ex270014.png)
for
and
,
![\[ \sum _{(i,j) \in \text {ARCS}} \Variable{UseArc[i,j,v]} = \Variable{UseNode[i,v]} \]](images/ormpex_ex270017.png)
for
and
,
![\[ \sum _{(i,j) \in \text {ARCS}} \Variable{UseArc[i,j,v]} = \Variable{UseNode[j,v]} \]](images/ormpex_ex270019.png)
for
and
,
![\[ \Variable{UseNode[i,v]} \le \Variable{UseVehicle[v]} \]](images/ormpex_ex270020.png)
for
,
![\[ \Variable{UseVehicle[v]} \le \Variable{UseNode[depot,v]} \]](images/ormpex_ex270021.png)
for
,
![\[ \Variable{TimeUsed[v]} = \sum _{(i,j) \in \text {ARCS}} \Argument{travel\_ time[i,j]} \cdot \Variable{UseArc[i,j,v]} \]](images/ormpex_ex270022.png)
for
,
![\[ \sum _{i \in \text {NODES}} \Variable{UseNode[i,v]} \le \sum _{i \in \text {NODES}} \Variable{UseNode[i,v}-\Variable{1]} \]](images/ormpex_ex270024.png)
for
and
and
,
![\[ \sum _{\substack{i \in \text {NODES} \setminus \text {SUBTOUR[s]},\\ j \in \text {SUBTOUR[s]}:\\ (i,j) \in \text {ARCS}}} \Variable{UseArc[i,j,v]} + \sum _{\substack{i \in \text {SUBTOUR[s]},\\ j \in \text {NODES} \setminus \text {SUBTOUR[s]}:\\ (i,j) \in \text {ARCS}}} \Variable{UseArc[i,j,v]} \ge 2 \cdot \Variable{UseNode[k,v]} \]](images/ormpex_ex270027.png)
for
,
![\[ \Variable{MaxTimeUsed} \ge \Variable{TimeUsed[v]} \]](images/ormpex_ex270028.png)