The first several PROC OPTMODEL statements declare index sets and parameters and then read the input data:
proc optmodel; set <str,str> ARCS; num cost {ARCS}; read data arc_data into ARCS=[i j] cost; set <str> FACTORIES; num capacity {FACTORIES}; read data factory_data into FACTORIES=[factory] capacity; set <str> DEPOTS; num throughput {DEPOTS}; read data depot_data into DEPOTS=[depot] throughput; set <str> CUSTOMERS; num demand {CUSTOMERS}; read data customer_data into CUSTOMERS=[customer] demand;
The following statements use the UNION set operator to declare the NODES index set, declare the supply parameter with an initial value of 0, and populate supply for both factories and customers:
set NODES = FACTORIES union DEPOTS union CUSTOMERS; num supply {NODES} init 0; for {i in FACTORIES} supply[i] = capacity[i]; for {i in CUSTOMERS} supply[i] = -demand[i];
The following statements declare the variables, constraints, and TotalCost
objective:
var Flow {ARCS} >= 0; con Flow_balance_con {i in NODES}: sum {<(i),j> in ARCS} Flow[i,j] - sum {<j,(i)> in ARCS} Flow[j,i] <= supply[i]; con Depot_con {i in DEPOTS}: sum {<(i),j> in ARCS} Flow[i,j] <= throughput[i]; min TotalCost = sum {<i,j> in ARCS} cost[i,j] * Flow[i,j];
The following statements call the default linear programming algorithm (which is the dual simplex algorithm), print the positive
variables in the resulting optimal solution, and print the left-hand side (.body
), right-hand side (.ub
), and dual value (.dual
) of each constraint:
put 'Minimizing TotalCost...'; solve; print {<i,j> in ARCS: Flow[i,j].sol > 0} Flow; print Flow_balance_con.body Flow_balance_con.ub Flow_balance_con.dual; print Depot_con.body Depot_con.ub Depot_con.dual;
Figure 19.2 shows the output when you use the (default) dual simplex algorithm.
Figure 19.2: Output from Dual Simplex Algorithm, Minimizing TotalCost
Problem Summary | |
---|---|
Objective Sense | Minimization |
Objective Function | TotalCost |
Objective Type | Linear |
Number of Variables | 29 |
Bounded Above | 0 |
Bounded Below | 29 |
Bounded Below and Above | 0 |
Free | 0 |
Fixed | 0 |
Number of Constraints | 16 |
Linear LE (<=) | 16 |
Linear EQ (=) | 0 |
Linear GE (>=) | 0 |
Linear Range | 0 |
Constraint Coefficients | 75 |
Performance Information | |
---|---|
Execution Mode | Single-Machine |
Number of Threads | 1 |
Solution Summary | |
---|---|
Solver | LP |
Algorithm | Dual Simplex |
Objective Function | TotalCost |
Solution Status | Optimal |
Objective Value | 198500 |
Primal Infeasibility | 0 |
Dual Infeasibility | 0 |
Bound Infeasibility | 0 |
Iterations | 15 |
Presolve Time | 0.00 |
Solution Time | 0.00 |
[1] | [2] | Flow |
---|---|---|
Birmingham | C2 | 10000 |
Birmingham | C4 | 35000 |
Birmingham | C5 | 5000 |
Brighton | Birmingham | 50000 |
Brighton | London | 55000 |
Exeter | C3 | 40000 |
Liverpool | C1 | 50000 |
Liverpool | C6 | 20000 |
Liverpool | Exeter | 40000 |
London | C5 | 55000 |
[1] | Flow_balance_con.BODY | Flow_balance_con.UB | Flow_balance_con.DUAL |
---|---|---|---|
Birmingham | 0 | 0 | -0.3 |
Brighton | 105000 | 200000 | 0.0 |
C1 | -50000 | -50000 | -1.0 |
C2 | -10000 | -10000 | -1.0 |
C3 | -40000 | -40000 | -1.0 |
C4 | -35000 | -35000 | -1.5 |
C5 | -60000 | -60000 | -1.0 |
C6 | -20000 | -20000 | -1.0 |
Exeter | 0 | 0 | -0.2 |
Liverpool | 110000 | 150000 | 0.0 |
London | 0 | 0 | -0.5 |
Newcastle | 0 | 0 | -0.5 |
[1] | Depot_con.BODY | Depot_con.UB | Depot_con.DUAL |
---|---|---|---|
Birmingham | 50000 | 50000 | -0.2 |
Exeter | 40000 | 40000 | -0.6 |
London | 55000 | 100000 | 0.0 |
Newcastle | 0 | 70000 | 0.0 |
The following statements call the network simplex linear programming algorithm and print the same solution information as before:
put 'Minimizing TotalCost by using network simplex...'; solve with LP / algorithm=ns; print {<i,j> in ARCS: Flow[i,j].sol > 0} Flow; print Flow_balance_con.body Flow_balance_con.ub Flow_balance_con.dual; print Depot_con.body Depot_con.ub Depot_con.dual;
Figure 19.3 shows the output when you use the ALGORITHM=NS option to invoke the network simplex algorithm.
Figure 19.3: Output from Network Simplex Algorithm, Minimizing TotalCost
Problem Summary | |
---|---|
Objective Sense | Minimization |
Objective Function | TotalCost |
Objective Type | Linear |
Number of Variables | 29 |
Bounded Above | 0 |
Bounded Below | 29 |
Bounded Below and Above | 0 |
Free | 0 |
Fixed | 0 |
Number of Constraints | 16 |
Linear LE (<=) | 16 |
Linear EQ (=) | 0 |
Linear GE (>=) | 0 |
Linear Range | 0 |
Constraint Coefficients | 75 |
Performance Information | |
---|---|
Execution Mode | Single-Machine |
Number of Threads | 1 |
Solution Summary | |
---|---|
Solver | LP |
Algorithm | Network Simplex |
Objective Function | TotalCost |
Solution Status | Optimal |
Objective Value | 198500 |
Primal Infeasibility | 0 |
Dual Infeasibility | 0 |
Bound Infeasibility | 0 |
Iterations | 15 |
Iterations2 | 5 |
Presolve Time | 0.00 |
Solution Time | 0.00 |
[1] | [2] | Flow |
---|---|---|
Birmingham | C2 | 10000 |
Birmingham | C4 | 35000 |
Birmingham | C5 | 5000 |
Brighton | Birmingham | 50000 |
Brighton | Exeter | 40000 |
Brighton | London | 55000 |
Exeter | C3 | 40000 |
Liverpool | C1 | 50000 |
Liverpool | C6 | 20000 |
London | C5 | 55000 |
[1] | Flow_balance_con.BODY | Flow_balance_con.UB | Flow_balance_con.DUAL |
---|---|---|---|
Birmingham | 0 | 0 | -0.3 |
Brighton | 145000 | 200000 | 0.0 |
C1 | -50000 | -50000 | -1.0 |
C2 | -10000 | -10000 | -1.0 |
C3 | -40000 | -40000 | -1.0 |
C4 | -35000 | -35000 | -1.5 |
C5 | -60000 | -60000 | -1.0 |
C6 | -20000 | -20000 | -1.0 |
Exeter | 0 | 0 | -0.2 |
Liverpool | 70000 | 150000 | 0.0 |
London | 0 | 0 | -0.5 |
Newcastle | 0 | 0 | -0.5 |
[1] | Depot_con.BODY | Depot_con.UB | Depot_con.DUAL |
---|---|---|---|
Birmingham | 50000 | 50000 | -0.2 |
Exeter | 40000 | 40000 | -0.6 |
London | 55000 | 100000 | 0.0 |
Newcastle | 0 | 70000 | 0.0 |
The following statements call the linear programming solver to minimize NonpreferredFlow
and print both objectives, the positive variables in the resulting optimal solution, and the flow along nonpreferred arcs:
set <str,str> PREFERRED_ARCS; read data preferred_arc_data into PREFERRED_ARCS=[i j]; set CUSTOMERS_WITH_PREFERENCES = setof {<i,j> in PREFERRED_ARCS} j; min NonpreferredFlow = sum {<i,j> in ARCS diff PREFERRED_ARCS: j in CUSTOMERS_WITH_PREFERENCES} Flow[i,j]; put 'Minimizing NonpreferredFlow...'; solve; print TotalCost NonpreferredFlow; print {<i,j> in ARCS: Flow[i,j].sol > 0} Flow; print {<i,j> in ARCS diff PREFERRED_ARCS: j in CUSTOMERS_WITH_PREFERENCES} Flow;
Figure 19.4 shows the output from the linear programming solver.
Figure 19.4: Output from Linear Programming Solver, Minimizing NonpreferredFlow
Problem Summary | |
---|---|
Objective Sense | Minimization |
Objective Function | NonpreferredFlow |
Objective Type | Linear |
Number of Variables | 29 |
Bounded Above | 0 |
Bounded Below | 29 |
Bounded Below and Above | 0 |
Free | 0 |
Fixed | 0 |
Number of Constraints | 16 |
Linear LE (<=) | 16 |
Linear EQ (=) | 0 |
Linear GE (>=) | 0 |
Linear Range | 0 |
Constraint Coefficients | 75 |
Performance Information | |
---|---|
Execution Mode | Single-Machine |
Number of Threads | 1 |
Solution Summary | |
---|---|
Solver | LP |
Algorithm | Dual Simplex |
Objective Function | NonpreferredFlow |
Solution Status | Optimal |
Objective Value | 10000 |
Primal Infeasibility | 0 |
Dual Infeasibility | 0 |
Bound Infeasibility | 0 |
Iterations | 14 |
Presolve Time | 0.00 |
Solution Time | 0.00 |
TotalCost | NonpreferredFlow |
---|---|
284000 | 10000 |
[1] | [2] | Flow |
---|---|---|
Birmingham | C5 | 50000 |
Brighton | Birmingham | 50000 |
Brighton | Exeter | 5000 |
Brighton | London | 10000 |
Exeter | C6 | 20000 |
Liverpool | C1 | 50000 |
Liverpool | C3 | 40000 |
Liverpool | C4 | 35000 |
Liverpool | Exeter | 15000 |
Liverpool | Newcastle | 10000 |
London | C5 | 10000 |
Newcastle | C2 | 10000 |
[1] | [2] | Flow |
---|---|---|
Birmingham | C1 | 0 |
Birmingham | C2 | 0 |
Brighton | C1 | 0 |
Exeter | C5 | 0 |
Liverpool | C6 | 0 |
London | C2 | 0 |
London | C5 | 10000 |
Newcastle | C6 | 0 |
The following CON statement declares a constraint that limits NonpreferredFlow
to the minimum value found in the previous solve:
con Objective_cut: NonpreferredFlow <= NonpreferredFlow.sol;
The following statements call the linear programming solver to minimize TotalCost
with a constrained NonpreferredFlow
and print the same solution information as before:
put 'Minimizing TotalCost with constrained NonpreferredFlow...'; solve obj TotalCost; print TotalCost NonpreferredFlow; print {<i,j> in ARCS: Flow[i,j].sol > 0} Flow; print {<i,j> in ARCS diff PREFERRED_ARCS: j in CUSTOMERS_WITH_PREFERENCES} Flow; quit;
Figure 19.5 shows the output from the linear programming solver. As expected, NonpreferredFlow
remains at its minimum value and TotalCost
is less than its value from Figure 19.4.
Figure 19.5: Output from Linear Programming Solver, Minimizing TotalCost
with Constrained NonpreferredFlow
Problem Summary | |
---|---|
Objective Sense | Minimization |
Objective Function | TotalCost |
Objective Type | Linear |
Number of Variables | 29 |
Bounded Above | 0 |
Bounded Below | 29 |
Bounded Below and Above | 0 |
Free | 0 |
Fixed | 0 |
Number of Constraints | 17 |
Linear LE (<=) | 17 |
Linear EQ (=) | 0 |
Linear GE (>=) | 0 |
Linear Range | 0 |
Constraint Coefficients | 83 |
Performance Information | |
---|---|
Execution Mode | Single-Machine |
Number of Threads | 1 |
Solution Summary | |
---|---|
Solver | LP |
Algorithm | Dual Simplex |
Objective Function | TotalCost |
Solution Status | Optimal |
Objective Value | 246000 |
Primal Infeasibility | 0 |
Dual Infeasibility | 2.220446E-16 |
Bound Infeasibility | 0 |
Iterations | 18 |
Presolve Time | 0.00 |
Solution Time | 0.00 |
TotalCost | NonpreferredFlow |
---|---|
246000 | 10000 |
[1] | [2] | Flow |
---|---|---|
Birmingham | C5 | 50000 |
Brighton | Birmingham | 50000 |
Brighton | London | 30000 |
Exeter | C3 | 40000 |
Liverpool | C1 | 50000 |
Liverpool | C4 | 35000 |
Liverpool | Exeter | 40000 |
Liverpool | Newcastle | 10000 |
London | C5 | 10000 |
London | C6 | 20000 |
Newcastle | C2 | 10000 |
[1] | [2] | Flow |
---|---|---|
Birmingham | C1 | 0 |
Birmingham | C2 | 0 |
Brighton | C1 | 0 |
Exeter | C5 | 0 |
Liverpool | C6 | 0 |
London | C2 | 0 |
London | C5 | 10000 |
Newcastle | C6 | 0 |