Constraints

The following constraints are used in this example:

  • bounds on variables

  • for $\text {period} \in \text {PERIODS}$ and $\text {type} \in \text {TYPES}$,

    \[  \Variable{Output[period,type]} = \Argument{min\_ level[type]} \cdot \Variable{NumWorking[period,type]} + \Variable{Excess[period,type]}  \]
  • for $\text {period} \in \text {PERIODS}$,

    \[  \sum _{\text {type} \in \text {TYPES}} \Variable{Output[period,type]} \ge \Argument{demand[period]}  \]
  • for $\text {period} \in \text {PERIODS}$,

    \[  \sum _{\text {type} \in \text {TYPES}} \Argument{max\_ level[type]} \cdot \Variable{NumWorking[period,type]} \ge (1 + \Argument{reserve}) \cdot \Argument{demand[period]}  \]
  • for $\text {period} \in \text {PERIODS}$ and $\text {type} \in \text {TYPES}$,

    \[  \Variable{Excess[period,type]} \le (\Argument{max\_ level[type]} - \Argument{min\_ level[type]}) \cdot \Variable{NumWorking[period,type]}  \]
  • for $\text {period} \in \text {PERIODS}$ and $\text {type} \in \text {TYPES}$,

    $\displaystyle  \Variable{NumStartup[period,type]}  $
    $\displaystyle \ge \Variable{NumWorking[period,type]}  $
    $\displaystyle  $
    $\displaystyle - (\text {if period} - 1 \in \text {PERIODS, then \Variable{NumWorking[period}$-1,$\Variable{type]}}; $
    $\displaystyle  $
    $\displaystyle \quad \text {else \Variable{NumWorking[}$|\text {PERIODS}|$,\Variable{type]}})  $