I
Gsas

SAS/OR" 9.2 User’s Gl_lidq _
Local Search Optimization

SAS® Documentation

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2008. SAS/OR® 9.2
User’s Guide: Local Search Optimization. Cary, NC: SAS Institute Inc.

SAS/OR® 9.2 User’s Guide: Local Search Optimization
Copyright © 2008, SAS Institute Inc., Cary, NC, USA

ISBN 978-1-59047-947-6

All rights reserved. Produced in the United States of America.

For a hard-copy book: No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without
the prior written permission of the publisher, SAS Institute Inc.

For a Web download or e-book: Your use of this publication shall be governed by the terms
established by the vendor at the time you acquire this publication.

U.S. Government Restricted Rights Notice: Use, duplication, or disclosure of this software and related
documentation by the U.S. government is subject to the Agreement with SAS Institute and the
restrictions set forth in FAR 52.227-19, Commercial Computer Software-Restricted Rights (June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.

1st electronic book, March 2008
2nd electronic book, February 2009

Ist printing, February 2009

SAS® Publishing provides a complete selection of books and electronic products to help customers use
SAS software to its fullest potential. For more information about our e-books, e-learning products, CDs,
and hard-copy books, visit the SAS Publishing Web site at support.sas.com/pubs or call 1-800-727-
3228.

SAS®and all other SAS Institute Inc. product or service names are registered trademarks or trademarks
of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are registered trademarks or trademarks of their respective companies.

Contents

Chapter 1. The GA Procedure
SubjectIndex L

Syntax Indexo

v

Credits

Documentation

Writing
Editing
Documentation Support

Technical Review

Joe Hutchinson
Virginia Clark, Ed Huddleston
Tim Arnold, Michelle Opp, Remya Chandran

Feng Chen, Gehan A. Corea, Tao Huang,
Radhika V. Kulkarni

Software

PROC GA

Joe Hutchinson

Support Groups

Software Testing

Technical Support

Yong Wang, Feng Chen, Tao Huang

Tonya Chapman

vi

What's New in SAS/OR 9.2

Overview

SAS/OR 9.2 continues the improvements delivered starting with SAS/OR 9.1.3 re-
lease 3.1 and release 3.2. Several new and enhanced features expand the scale and
scope of problems that SAS/OR can address. These enhancements also make it easier
for you to use the capabilities of SAS/OR. Brief descriptions of these new features
are presented in the following sections. For more information, see the SAS/OR doc-
umentation, available in the following volumes:

o SAS/OR User’s Guide: Bills of Material Processing
SAS/OR User’s Guide: Constraint Programming
SAS/OR User’s Guide: Local Search Optimization
SAS/OR User’s Guide: Mathematical Programming
SAS/OR User’s Guide: Project Management
SAS/OR User’s Guide: The QSIM Application

Online help can also be found under the corresponding classification.

The NETFLOW Procedure

The NETFLOW procedure for network flow optimization contains a new feature that
enables you to specify and solve generalized network problems. In generalized net-
works, the amount of flow that enters an arc might not equal the amount of flow that
leaves the arc, signifying a loss or a gain as flow traverses the arc. A new PROC
NETFLOW option, GENNET, indicates that the network is generalized. Generalized
networks have a broad range of practical applications, including the following:

transportation of perishable goods (weight loss due to drying)

financial investment account balances (interest rates)

e manufacturing (yield ratios)

electrical power generation (loss during transmission along lines)

Another new option, EXCESS=, enables you to use PROC NETFLOW to solve an
even wider variety of network flow optimization problems for both standard and gen-
eralized networks. As a result, PROC NETFLOW is equipped to deal with many
frequently encountered challenges to successful network flow optimization, such as
the following:

vii ¢ What's New in SAS/OR 9.2

e networks with excess supply or demand
e networks that contain nodes with unknown supply and demand values

e networks with nodes that have range constraints on supply and demand

In SAS/OR 9.2, the MPSOUT= option directs the NETFLOW procedure to save in-
put problem data in an MPS-format SAS data set. Invoking the MPSOUT= option
causes the NETFLOW procedure to output the data and halt without attempting opti-
mization. The MPS-format SAS data set corresponds closely to the MPS-format text
file (commonly used in the optimization community). Problems that are specified in
this format can be solved by using the OPTLP procedure.

The INTPOINT Procedure

In SAS/OR 9.2, the MPSOUT= option directs the INTPOINT procedure to save in-
put problem data in an MPS-format SAS data set. Invoking the MPSOUT= option
causes the INTPOINT procedure to output the data and halt without attempting opti-
mization. The MPS-format SAS data set corresponds closely to the MPS-format text
file (commonly used in the optimization community). Problems that are specified in
this format can be solved by using the OPTLP procedure.

The LP Procedure

In SAS/OR 9.2, the MPSOUT= option directs the LP procedure to save input problem
data in an MPS-format SAS data set. Invoking the MPSOUT= option causes the LP
procedure to output the data and halt without attempting optimization. The MPS-
format SAS data set corresponds closely to the MPS-format text file (commonly used
in the optimization community). Problems that are specified in this format can be
solved by using the OPTLP or OPTMILP procedure.

The OPTLP Procedure

The OPTLP procedure enables you to choose from three linear programming solvers:
primal simplex, dual simplex, and interior point (experimental). The simplex solvers
implement a two-phase simplex method, and the interior point solver implements a
primal-dual predictor-corrector algorithm.

The TIMETYPE= option enables you to specify the type of time (real time or
CPU time) that can be limited via the MAXTIME= option and reported via the
OROPTLP macro variable.

PROC OPTLP accepts linear programming problems that are submitted in an MPS-
format SAS data set. The MPS-format SAS data set corresponds closely to the MPS-
format text file (commonly used in the optimization community). Problem data in
formats that are used by the LP, INTPOINT, and NETFLOW procedures can be con-
verted into MPS-format SAS data sets by using the new MPSOUT= option in each
of these procedures.

The OPTMODEL Procedure ¢+ ix

New in SAS/OR 9.2, the experimental 1IS= option enables you to identify, for an
infeasible problem, constraints and variable bounds that form an irreducible infea-
sible set (IIS). Identifying an IIS can be very helpful in diagnosing and remedy-
ing infeasibility in a linear program. Information about the IIS is contained in the
PRIMALOUT= and DUALOUT= data sets.

Also new in SAS/OR 9.2, the value “2” for the PRINTLEVEL= option directs the
OPTLP procedure to produce an ODS table called “ProblemStatistics” in addition to
the “ProblemSummary” and “SolutionSummary” ODS tables that are produced for
PRINTLEVEL=1.

The OPTMILP Procedure

The OPTMILP procedure solves mixed-integer linear programming problems with
an LP-based branch-and-bound algorithm that has been completely rewritten for this
release. The algorithm also implements advanced techniques including presolvers,
cutting planes, and primal heuristics. The resulting improvements in efficiency enable
you to use PROC OPTMILP to solve larger and more complex optimization problems
than you could solve with previous releases of SAS/OR.

PROC OPTMILP accepts mixed-integer linear programming problems that are sub-
mitted in an MPS-format SAS data set.

New in SAS/OR 9.2, the value “2” for the PRINTLEVEL= option directs the
OPTMILP procedure to produce an ODS table called “ProblemStatistics” in addition
to the “ProblemSummary” and “SolutionSummary” ODS tables that are produced for
PRINTLEVEL=1.

The OPTMODEL Procedure

The OPTMODEL procedure provides a modeling environment that is tailored to
building, solving, and maintaining optimization models. This makes the pro-
cess of translating the symbolic formulation of an optimization model into PROC
OPTMODEL virtually transparent, since the modeling language mimics the symbolic
algebra of the formulation as closely as possible. PROC OPTMODEL also stream-
lines and simplifies the critical process of populating optimization models with data
from SAS data sets. All of this transparency produces models that are more easily
inspected for completeness and correctness, more easily corrected, and more easily
modified, whether through structural changes or through the substitution of new data
for old.

The OPTMODEL procedure comprises the powerful OPTMODEL modeling lan-
guage and state-of-the-art solvers for several classes of mathematical programming
problems.

x ¢ What's New in SAS/OR 9.2

Seven solvers are available to OPTMODEL as listed in Table 1:
Table 1. List of OPTMODEL Solvers

Problem Solver
linear programming LP
mixed integer programming MILP
quadratic programming (experimental) QP
nonlinear programming, unconstrained NLPU
general nonlinear programming NLPC
general nonlinear programming SQP

general nonlinear programming (experimental) IPNLP

New in SAS/OR 9.2, the experimental IIS= option for the LP solver enables you to
identify, for an infeasible linear program, constraints and variable bounds that form
an irreducible infeasible set (IIS). Identifying an IIS can be very helpful in diagnosing
and remedying infeasibility in a linear program.

The OPTQP Procedure

The OPTQP procedure solves quadratic programming problems with a new infeasible
primal-dual predictor-corrector interior point algorithm. Performance is excellent for
both sparse and dense quadratic programming problems, and PROC OPTQP excels
at solving large problems efficiently.

PROC OPTQP accepts quadratic programming problems that are submitted in a QPS-
format SAS data set. The QPS-format SAS data set corresponds closely to the format
of the QPS text file (a widely accepted extension of the MPS format).

Earned Value Management Macros

The set of earned value management macros complements the current SAS/OR pro-
cedures for project and resource scheduling (PROC CPM and PROC PM) by provid-
ing diagnostic information about the execution of scheduled projects. Earned value
management (EVM) is growing in prominence and acceptance in the project man-
agement community due to its ability to turn information about partially completed
projects into valid, early projections of overall project performance. EVM measures
current project execution against the project execution plan on a cost and schedule
basis.

SAS/OR provides two sets of EVM macros: a set of four analytical macros to com-
pute EVM metrics, and a set of six macros to create graphical reports based on these
metrics. A wide variety of EVM metrics and performance projections, for both task-
by-task and project-wide evaluations, are supported.

The GA Procedure ¢ Xi

Microsoft Project Conversion Macros

The SAS macros %MDBTOPM and %MP2KTOPM have been used in previous
releases of SAS/OR to convert files saved by Microsoft Project 98 and Microsoft
Project 2000 (and later), respectively, into SAS data sets that can be used as input for
project scheduling with SAS/OR. Now these two macros are combined in the SAS
macro %MSPTOSAS, which converts Microsoft Project 98 (and later) data. This
macro generates the necessary SAS data sets, determines the values of the relevant
options, and invokes PROC PM in SAS/OR with the converted project data. The
9%MSPTOSAS macro enables you to use Microsoft Project for the input of project
data and still take advantage of the excellent project and resource scheduling capabil-
ities of SAS/OR.

In SAS/OR 9.2, the experimental %SASTOMSP macro converts data sets used by
the CPM and PM procedures into an MDB file that is readable by Microsoft Project.
The macro converts information that is common to both PROC CPM / PROC PM
and Microsoft Project, including hierarchical relationships, precedence relationships,
time constraints, resource availabilities, resource requirements, project calendars, re-
source calendars, task calendars, holiday information, and work-shift information. In
addition, the early and late schedules, the actual start and finish times, the resource-
constrained schedule, and the baseline schedule are also extracted and stored as start-
finish variables.

Execution of the %MSPTOSAS and %SASTOMSP macros requires SAS/ACCESS
software.

The GA Procedure

The GA procedure solves optimization problems through the use of genetic algo-
rithms. The procedure uses functions and call routines to set parameters such as
crossover operators and mutation probabilities for genetic algorithm optimization. In
SAS/OR 9.2, the routines that are used to specify procedure-supplied mutation and
crossover operators (SetMut and SetCross), objective functions (SetObj), and selec-
tion options (SetSel) have been revised to a more flexible and readable form. The
operator type is now specified as a parameter in these routines instead of being incor-
porated into the name of a separate call routine. Parameters for each operator type
are now specified as property name-value pairs.

Note: Several call routines that were available in SAS/OR 9.1.3 have been replaced
by new call routines and are not available in SAS/OR 9.2. Table 2 lists the routines
and their replacements.

xii ¢ What's New in SAS/OR 9.2

Table 2. PROC GA Routines Replaced in SAS/OR 9.2

New Routine Routines Replaced

Cross call CrossSimple call, Cross2Point call, CrossUniform call,
CrossArithmetic call, CrossHeuristic call, CrossOrder call,
CrossPMatch call, CrossCycle call

Mutate call MutDelta call, MutUniform call, MutSwap call, MutInvert call

SetCross call ~ SetCrossSimple call, SetCross2Point call, SetCrossUniform call,
SetCrossArithmetic call, SetCrossHeuristic call,
SetCrossOrder call, SetCrossPMatch call, SetCrossCycle call

SetMut call SetMutRoutine call, SetMutDelta call, SetMutUniform call,
SetMutSwap call, SetMutlnvert call

SetObj call SetObj TSP call

SetSel call SetSelTournament call, SetSelDuel call

In addition, the following new routines are provided:

e Objective function

e ReadCompare call

e SetCompareRoutine call
e SetObjFunc call

o SetProperty call

o ShellSort call

o Shuffle call

The Boolean encoding has been modified so that 0/1 values can be read from and writ-
ten to solution segments directly, instead of requiring the PackBits and UnpackBits
routines. In addition, each Boolean value is represented by one variable in a
LASTGEN= or FIRSTGEN= data set, similar to the other encodings.

If the FIRSTGEN= data set has a field named “OBJECTIVE,” then in the Initialize
call, the value of that field (if nonmissing) is used as the initial objective value for the
solution represented by that observation.

The default crossover and mutation probabilities have been changed to 0.
New options have been implemented for the Initialize call and the ReEvaluate call.

New in SAS/OR 9.2, the option LIBRARY= specifies an external library of routines.
The NOVALIDATE= and NOVALIDATEWARNING= options control the level of
feasibility checks performed by the GA procedure.

The CLP Procedure (Experimental) ¢ xiii

The CLP Procedure (Experimental)

The CLP procedure features improved algorithms for the “alldifferent” constraint
as well as several extensions to the edgefinder algorithm for resource-constrained
scheduling. The EDGEFINDER option can now determine whether an activity must
be the first (last) to be scheduled from among a set of activities, while the NF= and
NL= options specify the level of propagation for the “not first” and “not last” ex-
tensions. A new activity selection strategy RIRAND and a corresponding activity
assignment strategy MAXTW have been added; these strategies tend to favor right-
justified schedules. The MAXTIME= option enables you to specify a time limit on
the CPU time for controlling execution times.

xiv ¢ What's New in SAS/OR 9.2

Chapter 1
The GA Procedure

Chapter Contents
OVERVIEW: GAPROCEDURE 3
GETTING STARTED: GA PROCEDURE 4
Initializing the Problem Data 5
Choosing the Problem Encoding 8
Setting the Objective Function 9
Controlling the Selection Process 9
Setting Crossover Parameters 10
Setting Mutation Parameters L oL 11
Creating the Initial Generation 11
Monitoring Progress and Reporting Results 12
ASimple Example 13
SYNTAX: GAPROCEDURE 15
PROC GA Statement 16
ContinueFor Call 18
CrossCall e 18
Dynamic_array Call 19
EvaluateLC Call e 20
GetDimensions Call L oo 21
GetObjValues Call 21
GetSolutions Call 22
Initialize Call 22
MarkPareto Call 23
Mutate Call 25
Objective Function L 26
PackBits Call 27
Programming Statements Lo 28
ReadChild Call 29
ReadCompare Call 30
ReadMember Call 31
ReadParentCall 31
ReEvaluate Call 32
SetBounds Call 32
SetCompareRoutine Call 33

SetCross Call e 33

SetCrossProb Call 34

SetCrossRoutine Call 35
SetElite Call 35
SetEncoding Call L 36
SetFinalize Call 0 ... 36
SetMut Call e 37
SetMutProb Call 38
SetMutRoutine Call 38
SetObj Call 38
SetObjFunc Call 39
SetProperty Call 40
SetSel Call 40
SetUpdateRoutine Call 41
ShellSort Call 41
Shuffle Call 42
UnpackBits Function 42
UpdateSolutions Call, 43
WriteChild Callo oo 43
WriteMember Call L L 44
DETAILS: GAPROCEDURE 44
Using Multisegment Encoding 44
Using Standard Genetic Operators and Objective Functions 46
Defining a User Fitness Comparison Routine 56
Defining User Genetic Operators 57
Defining a User Update Routine 60
Defining an Objective Function 62
Defining a User Initialization Routine 63
Specifying the Selection Strategy 64
Incorporating Heuristics and Local Optimizations 65
Handling Constraints i 66
Optimizing Multiple Objectives 67
EXAMPLES: GAPROCEDURE 69
Example 1.1. Traveling Salesman Problem with Local Optimization 69
Example 1.2. Nonlinear Objective with Constraints Using Repair Mechanism 73
Example 1.3. Quadratic Objective with Linear Constraints 76

REFERENCES 82

Chapter 1
The GA Procedure

Overview: GA Procedure

Genetic algorithms are a family of local search algorithms that seek optimal solutions
to problems by applying the principles of natural selection and evolution. Genetic al-
gorithms can be applied to almost any optimization problem and are especially useful
for problems where other calculus-based techniques do not work, such as when the
objective function has many local optima, when it is not differentiable or continuous,
or when solution elements are constrained to be integers or sequences. In most cases
genetic algorithms require more computation than specialized techniques that take
advantage of specific problem structures or characteristics. However, for optimiza-
tion problems with no such techniques available, genetic algorithms provide a robust
general method of solution.

In general, genetic algorithms use some variation of the following procedure to search
for an optimal solution:

initialization: An initial population of solutions is randomly generated, and the
objective function is evaluated for each member of this initial
generation.

selection: Individual members of the current generation are chosen

stochastically either to parent the next generation or to be passed
on to it, such that those members who are the fittest are more
likely to be selected. A solution’s fitness is based on its objec-
tive value, with better objective values reflecting higher fitness.

crossover: Some of the selected solutions are passed to a crossover oper-
ator. The crossover operator combines two or more parents to
produce new offspring solutions for the next generation. The
crossover operator tends to produce new offspring that retain
the common characteristics of the parent solutions, while com-
bining the other traits in new ways. In this way new areas of
the search space are explored, hopefully while retaining optimal
solution characteristics.

mutation: Some of the next-generation solutions are passed to a mutation
operator, which introduces random variations in the solutions.
The purpose of the mutation operator is to ensure that the solu-
tion space is adequately searched to prevent premature conver-
gence to a local optimum.

repeat: The current generation of solutions is replaced by the new gen-
eration. If the stopping criterion is not satisfied, the process
returns to the selection phase.

4 + Chapter 1. The GA Procedure

The crossover and mutation operators are commonly called genetic operators.
Selection and crossover distinguish genetic algorithms from a purely random search
and direct the algorithm toward finding an optimum. Mutation is designed to ensure
diversity in the search to prevent premature convergence to a local optimum.

There are many ways to implement the general strategy just outlined, and it is also
possible to combine the genetic algorithm approach with other heuristic solution im-
provement techniques. In the traditional genetic algorithm, the solutions space is
composed of bit strings, mapped to an objective function, and the genetic operators
are modeled after biological processes. Although there is a theoretical foundation
for the convergence of genetic algorithms formulated in this way, in practice most
problems do not fit naturally into this paradigm. Modern research has shown that
optimizations can be set up by using the natural solution domain (for example, a real
vector or integer sequence) and applying crossover and mutation operators analogous
to the traditional genetic operators, but more appropriate to the natural formulation of
the problem. This is the approach, sometimes called evolutionary computing, taken
in the GA procedure. It enables you to model your problem by using a variety of
solution forms including sequences, integer or real vectors, Boolean encodings, and
combinations of these. The GA procedure also provides you with a choice of genetic
operators appropriate for these encodings, while permitting you to write your own.

The GA procedure enables you to implement the basic genetic algorithm by default,
and to employ other advanced techniques to handle constraints, accelerate conver-
gence, and perform multiobjective optimizations. These advanced techniques are
discussed in the section “Details: GA Procedure” on page 44.

Although genetic algorithms have been demonstrated to work well for a variety of
problems, there is no guarantee of convergence to a global optimum. Also, the con-
vergence of genetic algorithms can be sensitive to the choice of genetic operators,
mutation probability, and selection criteria, so that some initial experimentation and
fine-tuning of these parameters is often required.

Getting Started: GA Procedure

The optimization problem is described by using programming statements, which ini-
tialize problem data and specify the objective, genetic operators, and other optimiza-
tion parameters. The programming statements are executed once, and are followed by
a RUN statement to begin the optimization process. The GA procedure enables you
to define subroutines and designate them to be called during the optimization process
to calculate objective functions, perform genetic mutation or crossover operations, or
monitor and control the optimization. All variables created within a subroutine are
local to that routine; to access a global variable defined within the GA procedure, the
subroutine must have a parameter with the same name as the variable.

To set up a genetic algorithm optimization, your program needs to perform the fol-
lowing steps:

Initializing the Problem Data

1. Initialize the problem data, such as cost coefficients and parameter limits.

2. Specity five basic optimization parameters:

e Encoding: the general structure and form of the solution
e Objective: the function to be optimized
e Selection: how members of the current solution generation are cho-

sen to propagate the next generation

o Crossover: how the attributes of parent solutions are combined to pro-
duce new offspring solutions

e Mutation: how random variation is introduced into the new offspring
solutions to maintain genetic diversity

3. Generate a population of solutions for the initial generation.

4. Control the execution of the algorithm and record your results.

The following sections discuss each of these items in detail.

Initializing the Problem Data

The GA procedure offers great flexibility in how you initialize the problem data.
Either you can read data from SAS data sets that are created from other SAS proce-
dures and DATA steps, or you can initialize the data with programming statements.

In the PROC GA statement, you can specify up to five data sets to be read with the
DATAn= option, where n is a number from 1 to 5, that can be used to initialize
parameters and data vectors applicable to the optimization problem. For example,
weights and rewards for a knapsack problem could be stored in the variables WEIGHT
and REWARD in a SAS data set. If you specify the data set with a DATA 1= option,
the arrays WEIGHT and REWARD are initialized at the start of the procedure and
are available for computing the objective function and evaluating the constraints with
program statements. You could store the number of items and weight limit constraint
in another data set, as illustrated in the sample programming statements that follow:

data inputl;
input weight reward;
datalines;

5

w NDNoyow R, &DNR
WoLwWVWWDhDIW

6 ¢ Chapter 1. The GA Procedure

data input2;
input nitems limit;
datalines;

10 20

14

inputl /* creates arrays weight and reward x*/
input2; /* creates variables nitems and limit */

proc ga datal
data2

function objective(selected[x], reward[*], nitems);
array x[1] /nosym;
call dynamic_array(x, nitems);
call ReadMember (selected, 1, x);
obj = 0;
do i=1 to nitems;
obj = obj + reward[x[i]];
end;
return (obj);
endsub;

[Other statements follow]

With these statements, the DATA1= option first establishes the arrays weight and
reward from the data set input1, and the DATA2= option causes the variables nitems
and limit to be created and initialized from the data set input2. The reward array and
the nitems variable are then used in the objective function.

For convenience in initializing two-dimensional data such as matrices, the GA pro-
cedure provides you with the MATRIXn= option, where n is a number from 1 to
5. A two-dimensional array is created within the GA procedure with the same name
as the option, containing the numeric data in the specified data set. For example, a
table of distances between cities for a traveling salesman problem could be stored
as a SAS data set, and a MATRIX1= option specifying that data set would cause a
two-dimensional array named MATRIX1 to be created containing the data at the start
of the GA procedure. This is illustrated in the following program:

data distance;
input d1-d10;
datalines;

o o
S O U
o b W
R NP
wo NN

proc ga matrixl = distance;

ncities = 10;

call SetEncoding(’S10’);

call SetObj(’'TSP’,’distances’ ,matrixl);

[Other statements follow]

Initializing the Problem Data

In this example, the data set distance is used to create a two-dimensional array ma-
trix1, where matrix1[é, j] is the distance from city ¢ to city j. The GA procedure
provides a simple traveling salesman Problem (TSP) objective function, which is
specified by the user with the SetObj call. The distances between locations are spec-
ified with the distances property of the TSP objective, which is set in the call to be
matrix1. Note that when a MATRIXn= option is used, the names of variables in the
data set are not transferred to the GA procedure as they are with a DATAn= option;
only the numeric data are transferred.

You can also initialize problem data with programming statements. The programming
statements in the GA procedure are executed before the optimization process begins.
The variables created and initialized can be used and modified as the optimization
progresses. The programming statement syntax is much like the SAS DATA step,
with a few differences (see the section “Syntax: GA Procedure” on page 15). Special
calls are described in the next sections that enable you to specify the objective func-
tion and genetic operators, and to monitor and control the optimization process. In
the following program, a two-dimensional matrix is set up with programming state-
ments to provide the distances for a 10-city symmetric traveling salesman problem,
between locations specified in a SAS data set:

data positions;
input x y;
datalines;

100 230

50 20

150 100

7
proc ga datal = positions;

call SetEncoding(’S10’);
ncities = 10;

array distance[10,10] /nosym;

do i = 1 to ncities;
do j =1 to i;
distancel1i, j]
distance[j, i]
end;
end;

distanceli, j];

call SetObj(’'TSP’,’distances’, distance);

In this example, the DATA 1= option creates arrays x and y containing the coordinates
of the cities in an x-y grid, read in from the positions data set. An ARRAY program-
ming statement creates a matrix of distances between cities, and the loops calculate
Euclidean distances from the position data. The ARRAY statement is used to create
internal data vectors and matrices. It is similar to the ARRAY statement used in the

sart ((x[1]-x[J]1)**2 + (y[i] - y[3])**2);

8 ¢ Chapter 1. The GA Procedure

SAS DATA step, but the /NOSYM option is used in this example to set up the array
without links to other variables. This option enables the array elements to be indexed
more efficiently and the array to be passed efficiently to subroutines. You should use
the /NOSYM option whenever you are creating an array that might be passed as an
argument to a function or call routine.

Choosing the Problem Encoding

Problem encoding refers to the structure or type of solution space that is to be opti-
mized, such as real-valued fixed-length vectors or integer sequences. The GA proce-
dure offers encoding options appropriate to several types of optimization problems.
You specify the problem encoding with a SetEncoding CALL statement,

call SetEncoding (‘encoding’) ;

where the encoding string is a letter followed by a number, which specifies the type
of encoding and the number of elements. The permitted letters and corresponding
types of encoding are as follows:

Rorr: real-valued vector. This type of encoding is used for general non-
linear optimization problems.

Tori: integer-valued vector. This encoding is used for integer-valued
problems. The integer size is 32 bits, which imposes a maximum
value of 2,147,483,647 and a minimum value of —2,147,483,648
for any element of the vector. The integer vector encoding can
also be used to represent bit vectors, where the 0—1 value of each
bit in the integer vector is treated as a separate element. An exam-
ple might be an assignment problem, where the positions within
the vector represent different tasks, and the integer values repre-
sent different machines or other resources that might be applied
to each task.

Bor b: Boolean vector. Each element represents one true/false value.

Sors: sequence or permutation. In this encoding, each solution is com-
posed of a sequence of integers ranging from 1 to the number of
elements, with different solutions distinguished by different or-
derings of the elements. This encoding is commonly used for
routing problems such as the traveling salesman problem or for
scheduling problems.

For example, the following statement specifies a 10-element integer vector encoding:

call SetEncoding(’I10’);

For problems where the solution form requires more than one type of encoding, you
can specify multiple encodings in the encoding string. For example, if you want to
optimize the scheduling of 10 tasks and the assignment of resources to each task, you
could use a segmented encoding, as follows:

Controlling the Selection Process

call SetEncoding(’I10S10');

Here the 110 (10-element integer vector) is assigned to the first segment, and repre-
sents the resource assignment. The S10 (10-element sequence) is assigned to a second
segment, and represents the sequence of tasks. The use of segmented encodings is
described in the section “Using Multisegment Encoding” on page 44.

Setting the Objective Function

Before executing a genetic algorithm, you must specify the objective function to be
optimized. Either you can define a function in your GA procedure input and des-
ignate it to be your objective function with the SetObjFunc call, or you can specify
an objective function that the GA procedure provides with a SetObj call. The GA
procedure currently supports the traveling salesman problem objective.

Controlling the Selection Process

There are two competing factors that need to be balanced in the selection process:
selective pressure and genetic diversity. Selective pressure, the tendency to select
only the best members of the current generation to propagate to the next, is required
to direct the genetic algorithm to an optimum. Genetic diversity, the maintenance
of a diverse solution population, is also required to ensure that the solution space is
adequately searched, especially in the earlier stages of the optimization process. Too
much selective pressure can lower the genetic diversity so that the global optimum
is overlooked and the genetic algorithm converges prematurely. Yet, with too little
selective pressure, the genetic algorithm might not converge to an optimum in a rea-
sonable time. A proper balance between the selective pressure and genetic diversity
must be maintained for the genetic algorithm to converge in a reasonable time to a
global optimum.

The GA procedure uses a standard technique for the selection process commonly
known as tournament selection. In general, the tournament selection process ran-
domly chooses a group of members from the current population, compares their
fitness, and selects the fittest from the group to propagate to the next generation.
Tournament selection is one of the fastest selection methods, and it offers good con-
trol over the selection pressure.

You can control the selective pressure by specifying the tournament size, the number
of members chosen to compete in each tournament. This number should be 2 or
greater, with 2 implying the weakest selection pressure. Tournament sizes from 2 to
10 have been successfully applied to various genetic algorithm optimizations, with
sizes over 4 or 5 considered to represent strong selective pressure. This selection
option is chosen with the following SetSel call:

call SetSel (‘tournament’, ‘size’, size) ;
where size is the desired tournament size.

For tournament size of 2, you can further weaken the selective pressure by specifying
a probability for selecting the most fit solution from the 2 competing solutions. By

10 ¢ Chapter 1. The GA Procedure

default this probability is 1, but the GA procedure permits you to set it to a value
between 0.5 (equivalent to pure random selection) and 1. This selection option is
chosen with the following SetSel call:

call SetSel (‘duel’, ‘pbest’, bestprob) ;

where bestprob is the probability for choosing the most fit solution. This option can
prove useful when conventional tournament selection tends to result in premature
convergence.

One potential problem with tournament selection is that it does not guarantee that the
best solution in the current generation is passed on to the next. To resolve this prob-
lem, the GA procedure enables you to specify an elite parameter, which ensures that
the very best solutions are passed on to the next generation unchanged by mutation
or crossover. Use the SetElite call:

call SetElite (elite);

where elite is an integer greater than or equal to 0. The GA procedure preserves the
elite best solutions in the current generation and ensures that they are passed on to
the next generation unchanged. When writing out the final solution population, the
first elite members are the best of the generation and are sorted by their fitness, such
that the fittest is first. By default, if you do not call SetElite in your program, an
elite value of 1 is used. Setting the elite parameter to a higher number accelerates
the convergence of the genetic algorithm; however, it can also lead to premature
convergence before reaching a global optimum, so it should be used with care.

If you do not call SetSel in your input, then the default behavior for the GA procedure
is to use tournament selection with size 2.

Setting Crossover Parameters

There are two crossover parameters that need to be specified: the crossover probabil-
ity and the crossover operator. Members of the current generation that have passed
the selection process either go to the crossover operator or are passed unchanged into
the next generation, according to the crossover probability. To set the probability, you
use a SetCrossProb CALL statement:

call SetCrossProb (prob) ;

where prob is a real number between 0 and 1. A value of 1 implies that the crossover
operator is always applied, while O effectively turns off crossover. If you do not
explicitly set the crossover probability with this call, a default value of 0 is used.

The GA procedure enables you to choose your crossover operator from several stan-
dard crossover operators appropriate for each type of encoding, or to code your own
crossover operator as a subroutine. To specify one of the crossover operators provided
by the GA procedure, use a SetCross call. See the section “Crossover Operators’” on
page 46 for more detail on the available operators. To supply your own operator, use
a SetCrossRoutine call:

call SetCrossRoutine (‘routine’) ;

Creating the Initial Generation ¢ 11

where routine is the name of your crossover subroutine. See the section “Defining
User Genetic Operators” on page 57 for a description of defining genetic operators
with user subroutines. If the crossover probability is greater than 0, you must use a
SetCross or SetCrossRoutine call to set the crossover operator.

After initialization, you can reset any of the crossover parameters or their properties
during the optimization process by calling one of the preceding routines from a user
update routine. This makes it possible to adapt the crossover operators as desired in
the optimization process.

Setting Mutation Parameters

There are two mutation parameters: the mutation probability and the mutation opera-
tor. Members of the next generation are chosen to undergo mutation with the mutation
probability you specify. To set the mutation probability, you use a SetMutProb CALL
statement:

call SetMutProb (prob) ;

where prob is a real number between 0 and 1. This probability is usually fairly low
(0.05 or less), since mutation tends to slow the convergence of the genetic algorithm.
If you do not explicitly set the mutation probability with this call, a default value of
0 is used.

The GA procedure enables you to choose your mutation operator from several stan-
dard mutation operators appropriate for each type of encoding, or to code your own
mutation operator as a subroutine. To specify one of the mutation operators provided
by the GA procedure, use a SetMut call. See the section “Mutation Operators” on
page 53 for more detail on the available operators. To supply your own operator, use
a SetMutRoutine call:

call SetMutRoutine (‘routine’) ;

where routine is the name of your mutation subroutine. See the section “Defining
User Genetic Operators” on page 57 for a description of defining genetic operators
with user subroutines. If the mutation probability is greater than 0, you must use a
SetMut or SetMutRoutine call to set the mutation operator.

After initialization, you can reset any of the mutation parameters or their properties
during the optimization process by calling one of the preceding routines from a user
update routine. This makes it possible to adapt the mutation operators to create more
or less diversity as needed in the optimization process.

Creating the Initial Generation

The last step in the initialization for the genetic algorithm optimization is to create the
initial solution population, the first generation. The GA procedure provides you with
the Initialize call to accomplish this task. The procedure provides several options
for initializing the first population or reinitializing the solution population during the
optimization process. For example, you can specify a data set in the FIRSTGEN=
option of the PROC GA statement to be read to populate the initial generation, and
use the initialize call:

12 ¢ Chapter 1. The GA Procedure

call Initialize (‘_dataset_’, PopulationSize) ;

Other possible initialization options include generating solutions uniformly dis-
tributed over the solution domain, executing a user-defined initialization routine, car-
rying over a portion of the previous population (for reinitialization), or any combina-
tion of those actions. See the section “Initialize Call” on page 22 for a full explanation
of initialization actions.

Monitoring Progress and Reporting Results

The GA procedure enables your program to monitor and alter parameters during the
optimization process and record final results.

If a data set is specified in the LASTGEN= option of the PROC GA statement, then
the last generation of solutions is written to the data set. See the section “PROC GA
Statement” on page 16 for a description of the data set created by the LASTGEN=
option.

You can define a subroutine and designate it to be called at each iteration in an up-
date phase, which occurs after the evaluation phase and before selection, crossover,
and mutation. Your subroutine can check solution values and update and store vari-
ables you have defined, adjust any of the optimization parameters such as the muta-
tion probability or elite value, or check termination criteria and end the optimization
process. An update routine can be especially helpful in implementing advanced tech-
niques such as multiobjective optimization. You can specify an update subroutine
with a SetUpdateRoutine call:

call SetUpdateRoutine (‘routine’) ;
where routine is the name of your subroutine to be executed at each iteration.

You can set the maximum number of iterations permitted for the optimization process
with the MAXITER= option in the PROC GA statement. If none is specified, a
default value of 500 iterations is used. You can also control the number of iterations
dynamically in your program by using the ContinueFor call:

call ContinueFor (n);

where n is the number of iterations to permit beyond the current iteration. A value
of 0 ends the optimization process at the current iteration. One common way this
call might be used is to include it in the logic of an update subroutine declared in
the SetUpdateRoutine call. The update subroutine could check the objective values
and end the optimization process when the optimal value of the objective function
has not improved for a specific number of iterations. A ContinueFor call overrides an
iteration limit set with the MAXITER= option.

To perform post processing of the optimization data, you can use a SetFinalize call
to instruct the GA procedure to call a subroutine you have defined, after the last
iteration:

call SetFinalize (‘routine’);

A Simple Example ¢+ 13

where routine is the name of a subroutine you have defined. Your finalize subrou-
tine could perform some post processing tasks, such as applying heuristics or a local
optimization technique to try to improve the final solution.

A Simple Example

The example that follows illustrates the application of genetic algorithms to function
optimization over a real-valued domain. It finds the minimum of the Shubert function:

5 5

Zicos [(i+ 1)z + 1] Z icos|[(i+ 1)xe + 1]

i=1 i=1

where —10 < x; < 10for: =1, 2.

proc ga seed = 12 maxiter = 30;

/* the objective function to be optimized x*/
function shubert (selected[*]);

array x[2] /nosym;

call ReadMember (selected, 1,x);

x1 = x[1];
x2 = x[2];
suml = 0;
do i =1 to 5;
suml = suml + i * cos((i+l)* x1 + i);
end;
sum2 = 0;
do i =1 to 5;
sum2 = sum2 + i * cos((i+l) * x2 + 1i);
end;
result = suml * sum2;
return (result);
endsub;

/* Set the problem encoding */
call SetEncoding('R2’);

/* Set upper and lower bounds on the solution components */
array LowerBound[2] /nosym (-10 -10);

array UpperBound[2] /nosym (10 10);

call SetBounds (LowerBound, UpperBound);

/* Set the objective function */
call SetObjFunc(’shubert’,0);

/* Set the crossover parameters x*/
call SetCrossProb(0.65);
call SetCross(’Heuristic’);

/* Set the mutation parameters */

call SetMutProb (0.15);

array del[2] /nosym (0.2 0.2);

call SetMut ('Delta’, 'nchange’, 1, ’'delta’,del);

/* Set the selection criteria */

14 + Chapter 1. The GA Procedure

call SetSel(’tournament’,’size’, 2);
call SetElite(2);

/* Initialize the first generation, with 120 random solutions =*/
call Initialize (’'DEFAULT’, 120);

/* Now execute the Genetic Algorithm x*/
run;
quit;

At the beginning of the program, the PROC GA statement sets the initial random
number seed and sets the maximum number of iterations to 30.

A routine to compute the objective function (function shubert) is then defined.
This function is called by the GA procedure once for each member of the solution
population at each iteration. Note that the GA procedure passes the array selected
as the first parameter of the function, and the function uses that array to obtain the
selected solution elements with a ReadMember call, which places the solution in the
array x. The second parameter of the ReadMember call is 1, specifying that segment 1
of the solution be returned, which in this case is the only segment. The programming
statements that follow compute the value of the objective function and return it to the
GA procedure.

After the function definition, the ‘R2’ passed to the SetEncoding call specifies that
solutions are single-segment, with that segment containing two elements that are real-
valued. Next, a lower bound of —10 and an upper bound of 10 are set for each solu-
tion element with the SetBounds call. The SetObjFunc call specifies the previously
defined Shubert function as the objective function for the optimization; the second
parameter value of O indicates that a minimum is desired. The SetCrossProb call sets
the crossover probability to 0.65, which means that, on average, 65% of the solutions
passing the selection phase will undergo the crossover operation. The crossover op-
erator is set to the heuristic operator by the SetCross call. Similarly, the mutation
probability is set to 0.15 with the SetMutProb call, and the delta operator is set as
the mutation operator with the SetMut call. The selection criteria are then set: a con-
ventional tournament of size 2 is specified with SetSel call, and an elite value of 2 is
specified with the SetElite call. The elite value implies that the best two solutions of
each generation are always carried over to the next generation unchanged by muta-
tion or crossover. The last step before beginning the optimization is the Initialize call.
This call sets the population size at 120, and specifies the default initialization strat-
egy for the first population. For real encoding, this means that an initial population
randomly distributed between the upper and lower bounds specified in the SetBounds
call is generated. Finally, when the RUN statement is encountered, the GA proce-
dure begins the optimization process. It iterates through 30 generations, as set by the
MAXITER= option.

The Shubert function has 760 local minima, 18 of which are global minima, with
a minimum of —186.73. If you experiment with different random seeds with the
SEED= option, PROC GA generally converges to a different global minimum each
time. Figure 1.1 shows the output for the chosen seed.

Syntax: GA Procedure

L

15

PROC GA Optimum Values
Objective

-186.7309031

Solution
Element Value
1 -7.708309818
2 -0.800371886

Figure 1.1. Shubert Function Example Output

Syntax: GA Procedure

To initialize your data and describe your model, you use programming statements
with a syntax similar to the SAS DATA step, augmented with some special function
calls to communicate with the genetic algorithm optimizer. Most of the programming
statements used in the SAS DATA step can be used in the GA procedure, and these
are described fully in the SAS Language Reference: Dictionary and BASE SAS doc-
umentation. Following is an alphabetical list of the statements and special function

calls used.

PROC GA options ;
ContinueFor Call;
Cross Call;
Dynamic_array Call;
EvaluateLC Call;
GetDimensions Call;
GetObjValues Call;
GetSolutions Call;
Initialize Call;
MarkPareto Call;
Mutate Call;
Objective Call;
PackBits Call;
Program Statements;
ReadChild Call;
ReadCompare Call;
ReadMember Call;
ReadParent Call;
ReEvaluate Call;
SetBounds Call;
SetCross Call;
SetCrossProb Call;

16 ¢ Chapter 1. The GA Procedure

SetCrossRoutine Call;
SetElite Call;
SetEncoding Call;
SetFinalize Call;
SetMut Call;
SetMutProb Call;
SetMutRoutine Call;
SetObj Call;
SetObjFunc Call;
SetProperty Call;
SetSel Call;
SetUpdateRoutine Call;
ShellSort Call;
Shuffle Call;
UnpackBits Function;
UpdateSolutions Call;
WriteChild Call;
WriteMember Call;

PROC GA Statement

invokes the GA procedure
PROC GA options ;
The following options are used with the PROC GA statement.

DATAn=SAS-data-set
specifies a data set containing data required to specify the problem, where n is an
integer from 1 to 5. The data set is read and variables created matching the variables
of the data set. If the data set has more than one observation, then the newly created
variables are vector arrays with the size equal to the number of observations.

FIRSTGEN=SAS-data-set
specifies a SAS data set containing the initial solution generation. Different segments
in the solution should be identified by variable names consisting of a letter followed
by numbers representing the elements in the segments, in alphabetical order. For
example, if the first segment of the solution uses real encoding and contains 10 ele-
ments, it should be represented by the numeric variables A1, A2, ..., A10. A second
segment with integer encoding and five elements would be specified in the variables
B1, B2, ..., B5. For Boolean encoding each Boolean element is represented by one
variable in the data set, and for sequence encoding each position in the sequence is
represented by one variable. If the data set contains a field named OBJECTIVE, then
the value of that field becomes the objective value for that solution at initialization
time (overriding the value computed by the input objective function), unless the field
value is a missing value. The FIRSTGEN= and LASTGEN= options are designed
to work together, so that a data set generated from a run of the GA procedure with a
LASTGEN= option set can be specified in the FIRSTGEN= option of a subsequent
run of the GA procedure, to continue the optimization from where it finished. If the

PROC GA Statement ¢ 17

number of observations in the data set is less than the population size specified in the
Initialize call, additional members are generated as specified in the Initialize call to
complete the population. This feature makes it easy to seed an initial randomly gener-
ated population with chosen superior solutions generated by heuristics or a previous
run of the GA procedure. If the data set contains more observations than the popu-
lation size, the population is filled starting at the first observation, and the additional
observations are not used.

LASTGEN=SAS-data-set

specifies a SAS data set into which the final solution generation is written. Different
segments in the solution are identified by variable names consisting of a letter fol-
lowed by numbers representing the elements in the segments, in alphabetical order.
For example, if the first segment of the solution uses real encoding and contains 10 el-
ements, it would be represented by the numeric variables A1, A2, ..., A10. A second
segment with integer encoding and five elements would be specified in the variables
B1, B2, ..., B5. For Boolean encoding each Boolean element is represented by one
variable in the data set, and for sequence encoding each position in the sequence is
represented by one variable. In addition to the solutions elements, the final objective
value for each solution is output in the OBJECTIVE variable. The FIRSTGEN= and
LASTGEN= options are designed to work together, so that a data set generated with
a LASTGEN= option can be specified in the FIRSTGEN= option of a later run of the
GA procedure.

LIBRARY=library-list

specifies a library or group of libraries for the procedure to search to resolve sub-
routine or function calls. The libraries can be created by using PROC FCMP and
PROC PROTO. This option supplements the action of the CMPLIB= SAS option,
but it permits you to designate libraries specific to this procedure invocation. Use the
libref.catalog format to specify the two-level name of the library; library-list can be
either a single library, a range of library names, or a list of libraries. The following
examples demonstrate the use of the LIBRARY= option.

proc ga library = sasuser.xlib;
proc ga library x1ibl-x1ib5;
proc ga library (sasuser.xlib xlibl-x1ib5 work.example);

MATRIXn=SAS-data-set
specifies a data set containing two-dimensional matrix data, where n is an integer
from 1 to 5. A two-dimensional numeric array with the same name as the option
is created and initialized from the data set. This option is provided to facilitate the
input of tabular data to be used in setting up the optimization problem. Examples of
data that might be provided by this option include a distance matrix for a traveling
salesman problem or a matrix of coefficients for linear constraints.

MAXITER=n
specifies the maximum number of iterations to permit for the optimization process.
A ContinueFor call overrides a limit set by this option.

NOVALIDATE=n
controls the amount of solution validity checking performed by the procedure. By

18 ¢+ Chapter 1. The GA Procedure

default, the procedure verifies that valid solutions are being supplied at initialization
and when the solution population is being updated by genetic operators or other user
actions. If a solution segment has elements that exceed bounds set by a SetBounds
call, those elements will be reset to the bound and a warning will be issued. If a so-
lution segment contains other illegal values, an error will be signaled. This action is
useful for maintaining the validity of the optimization and avoiding some errors that
are often difficult to trace. However, this activity does consume CPU time, and you
might want to use a strategy where you generate infeasible solutions at initialization
or via genetic operators and then repair the solutions later in an update or objective
routine. The NOVALIDATE= option enables you to do so, by turning off the val-
idation checks. If n is 1, validation is turned off for initialization only, and if n is
2, validation is turned off for update only. If n is 3, all solution validity checking is
turned off.

NOVALIDATEWARNING=n
controls the output of warning messages related to solution validation checking.
Depending on the value of the NOVALIDATE option, warning messages will be is-
sued when the procedure repairs initial or updated solution segments to fit within
bounds set with the SetBounds call. If n is 1, validation warnings are turned off for
initialization only; and if n is 2, validation warnings are turned off for update only. If
n is 3, all solution validation warnings are turned off.

SEED=n
specifies an initial seed to begin random number generation. This option is provided
for reproducibility of results. If it is not specified, or if it is set to 0, a seed is chosen

based on the system clock. The SEED value should be a nonnegative integer less than
231 — 1.

ContinueFor Call

sets the number of additional iterations for the genetic algorithm optimization
call ContinueFor(niter);
The input to the ContinueFor subroutine is as follows:

niter specifies that the optimization continue for nifer more iterations.
To stop at the current iteration, set niter to 0.

Cross Call

executes a genetic crossover operator from within a user subroutine
call Cross(selected, seg, type<, parameteri1, parameter2, ...>);

The inputs to the subroutine are as follows:

Dynamic_array Call + 19

selected is an array that specifies the solutions to be crossed.

seg is the desired segment of the solution to which the crossover oper-
ator should be applied.

type is the type of crossover operator to apply, which also determines

the number and type of parameters expected.

parameter]- are optional parameters applicable to some operators.

n

The accepted values for fype and the corresponding parameters are summarized in

Table 1.1.

Table 1.1. Crossover Operator Types

Type Encodings Parameters

‘arithmetic’ real, integer

‘cycle’ sequence

‘heuristic’ real

‘null’ all encodings

‘order’ sequence

‘pmatch’ sequence

‘simple’ real, integer, Boolean alpha

‘twopoint’ real, integer, Boolean alpha

‘uniform’ real, integer, Boolean alpha, p
The parameters are as follows:

alpha is a number such that 0 < alpha < 1.

p is a probability such that 0 < p < 0.5.

The Cross call should be made only from within a user crossover subroutine. The
precise action of these crossover operators is described in the section “Crossover

Operators” on page 46.

Dynamic_array Call

allocates a numeric array

call Dynamic_array(arrayname, dimi<, dim2, ..., dimé>);

The inputs to the Dynamic_array call are as follows:

arrayname is a previously declared array, whose dimensions are to be re-

allocated.

diml is the size of the first dimension.

dim2,...,dim6 are optional. Up to six dimensions can be specified.

20 ¢ Chapter 1. The GA Procedure

The Dynamic_array call is normally used to allocate working arrays when the re-
quired size of the array is data-dependent. It is often useful in user routines for genetic
operators or objective functions to avoid hard-coding array dimensions that might de-
pend on segment length or population size. The array to be allocated must first be
declared in an ARRAY statement with the expected number of dimensions, as in the
following example:

subroutine sub(nx, ny);
array x[1] /nosym;
call dynamic_array(x, nx);
array xy[l,1] /nosym;
call dynamic_array(xy, nx, ny);

EvaluateLC Call

evaluates linear constraints
call EvaluateLC(Ic, results, sum, selected, seg<, child>);
The inputs to the EvaluateLC subroutine are as follows:
lc is a two-dimensional array representing the linear constraints.

results is a numeric array to receive the magnitude of the constraint viola-
tion for each linear constraint.

Sum is a variable to receive the sum of the constraint violations over all
the constraints.

selected is an array identifying the selected solution.
seg is the segment of the solution to which the linear constraints apply.
child is an optional parameter, and should be specified only when

Evaluate.C is called from a user crossover operator.

The EvaluateLC routine can be called from a user crossover operator, mutation op-
erator, or objective function to determine if a solution violates linear inequality con-
straints of the form Ax < b. For n linear constraints in m variables, the Ic ar-
ray should have dimension n x (m + 1). For each linear constraint i = 1,...,n,
leli, j] = Ali, j] for j = 1,...,m, and Ic[i,m + 1] = b[i]. The results array should
be one-dimensional with size n. The EvaluateLC call fills in the elements of results
such that

m

0, if ;A[i,ﬂw[ﬂ < b[i]

results[i] = m
> Ali, jlz[j] — b[i], otherwise
j=1

In the variable sum, the EvaluateLC call returns the value) ", results[i]. Note
that sum > 0, and sum= 0 implies that no constraints are violated. When you call

GetObjValues Call + 21

EvaluateL.C from your user routine, the selected parameter of the EvaluateL.C call
must be the same as the first parameter passed to your user routine to properly identify
the solution to be checked. The seg parameter identifies which segment of the solution
should be checked. Real, integer, or Boolean encodings can be checked with this
routine. If EvaluateL.C is called from a user crossover operator, the child parameter
must be specified to indicate which offspring is to be checked. The value child = 1
requests the first offspring, child = 2 requests the second, and so on.

GetDimensions Call

gets the dimensions of an array variable
call GetDimensions(source, dest);
The inputs to the GetDimensions subroutine are as follows:

source is the array variable whose dimensions are desired.

dest is an array to receive the dimensions of source.

The GetDimensions subroutine is used to get the dimensions of an array passed into
a user subroutine. The input dest should be an array of one dimension, with at least
as many elements as there are dimensions in source (a maximum of 6). Any extra
elements in dest are filled with zeros.

GetObjValues Call

retrieves objective function values from the current solution generation
call GetObjValues(dest, n);
The inputs to the GetObjValues subroutine are as follows:

dest is an array to receive the objective values.

n is the number of objective values to get.

The GetObjValues subroutine is used to retrieve the objective values for the current
solution generation. It can be called from a user update routine or finalize routine. If
itis called from a finalize routine, and if the elite parameter from a SetElite call is 1 or
greater, then the first elite members of the population are the fittest of the population,
and they are sorted in order, starting with the most fit. The input dest should be a
dimensioned variable, with dimension greater than or equal to n.

22 + Chapter 1. The GA Procedure

GetSolutions Call

retrieves solutions from the current generation
call GetSolutions(sol, n, seg);

The inputs to the GetSolutions subroutine are as follows:

sol is an array to receive the solution elements.
n is the number of solutions to get.
seg is the segment of the solution to retrieve.

The GetSolutions subroutine is used to retrieve solutions from the current generation.
You would normally call it from an update or finalize subroutine for post processing
or analysis. If the elite parameter has been set with a SetElite call, then the first elite
members of the population are the fittest, and they are sorted in order, starting with
the most fit. The sol variable should have two dimensions, with the first dimension
representing the solution number, and the second representing the element within the
solution. For example, if the encoding of the problem was 110, then sol[2, 3] would
be the value of the third element of the second solution in the current population. For
real, integer, Boolean, and sequence encoding, each solution element is mapped to
the corresponding element of the sol array. The seg parameter specifies the solution
segment desired. For example, if the encoding was set in the SetEncoding call to
‘R10I5’, then segment 1 is R10 and segment 2 is I5.

Initialize Call

creates the initial solution generation
call Initialize(option, size <,option, size> ...);
The inputs to the Initialize subroutine are as follows:
option is a string that specifies an initialization option.

size is the number of solutions to create by using a given option.

The Initialize subroutine must be called to create the first solution generation, and
can be used to reinitialize a solution population during the optimization process. The
available options and their effect are as follows:

‘_uniform_’

‘_dataset_’

‘default’

‘_retain_’

‘user-
routine’

MarkPareto Call

generate uniformly distributed solutions —for integer and real en-
coded segments for which SetBounds has been called, segment el-
ements will be uniformly distributed between the upper and lower
bounds. If no bounds have been specified for an integer or real
encoded segment, then the elements will be set to 0. For Boolean
encoded segments the elements will be randomly assigned O or
1, and for sequence encoded segments random sequences will be
generated.

read solutions from the data set specified in a FIRSTGEN= option.
If the data set has more observations than requested, the extra ob-
servations are ignored.

read solutions from the data set specified in a FIRSTGEN= option,
if one was specified. If none was specified or the data set has
fewer observations than requested, fill in the remaining solution
population by using the ‘_uniform_" option.

bring forward the best solutions from the current generation. This
option cannot be used for the first initialization.

Any string not matching the preceding options is interpreted to
be a user-defined initialization routine. See the section “Defining
a User Initialization Routine” on page 63 for information about
defining an initialization subroutine.

After the Initialize call, the current solution population size is the sum of the popu-
lation sizes specified for each option. The following rules also apply to the option

specifications:

1. All options must be literal quoted strings.

2. No option type can be specified more than once in the same Initialize call. No
more than one user initialization routine can be specified.

3. ‘default’

cannot be specified in combination with the ‘_uniform_’ or

‘_dataset_’ options.

4. If the ‘_uniform_’ option is specified, the solution encoding must include at
least one segment that is either Boolean or sequential, or that has bounds spec-
ified with a SetBounds call.

MarkPareto Call

identifies the Pareto-optimal set from a population of solutions

call MarkPareto(result, n, objectives, minmax);

The inputs to the MarkPareto call are as follows:

L

23

24 + Chapter 1. The GA Procedure

result is a one-dimensional array to accept the results of the evaluation.
Its size should be the same as the size of the population being eval-
uated; result[i| = 1 if solution 7 is Pareto optimal, and O otherwise.

n is a variable to receive the number of Pareto-optimal solutions.

objectives is a two-dimensional array that contains the multiple objective val-
ues for each solution. It should be dimensioned [p, g], where p is
the size of the population, and ¢ is greater than or equal to the
number of objectives to be considered.

minmax is a one-dimensional array to specify how the objective values are
to be used. It should be of size g, where ¢ is greater than or equal
to the number of objectives to be considered. minmax[k] = —1 if
objective k is to be minimized, minmax[k] = 1 if objective k is to
be maximized, minmax[k] = 0 if objective & is not to be consid-

ered, and minmax[k] = —2 designates an objective that prevents
the member from being considered for Pareto optimality if it is
nonzero.

The MarkPareto call is used to identify the Pareto-optimal subset from a population
of solutions. See the section “Optimizing Multiple Objectives” on page 67 for a full
discussion of Pareto optimality. MarkPareto can be called from a user update routine,
which is called after the individual solution objective values have been calculated
and before selection takes place. To make best use of this routine, in your encoding
you need to set up a segment to record all the objective values you intend to use in
the Pareto-optimal set evaluation. In a user objective function, you should calculate
the multiple objectives and write them to the chosen segment. In an update routine
(designated with a SetUpdateRoutine call), you can use a GetSolutions call to retrieve
these segments, and then pass them to a MarkPareto call. The following statements
shows how this could be done:

subroutine update (popsize);

array objectives[1l,1] /nosym;
call dynamic_array(objectives, popsize, 3);

array pareto[l] /nosym;
call dynamic_array (pareto, popsize);

array minmax[3] /nosym (1 -1 0);
call GetSolutions (objectives, popsize, 2);

call MarkPareto (pareto, npareto, objectives, minmax);

do i = 1 to popsize;
objectives[i, 3] = paretol[i];
end;

call UpdateSolutions (objectives, popsize, 2);

Mutate Call + 25

call SetElite (npareto);

endsub;

This is an example of a user update routine that might be used in a multiobjective
optimization problem. It is assumed that a user objective function has calculated two
different objectives and placed their values in the first two elements of segment 2 of
the problem encoding. The first objective is to be maximized, and the second is to
be minimized. Segment 2 has three elements, and the third element is used to mark
the Pareto-optimal solutions. After dynamically allocating the necessary arrays from
the popsize (population size) parameter, the update routine first retrieves the current
solutions into the objectives array with the GetSolutions call. It then passes the objec-
tives array directly to the MarkPareto call to perform the Pareto-optimal evaluations.
Note that the minmax array directs the MarkPareto call to maximize the first element,
minimize the second, and ignore the third. After the MarkPareto call, the update
routine writes the results back to the third element of the objectives array, and writes
the objectives array back to the solution population with the UpdateSolutions call.
This marks the solutions that compose the Pareto-optimal set. The update routine
then sets the elife parameter equal to the number of Pareto-optimal solutions with
the SetElite call. It is assumed that the user has provided a fitness comparison func-
tion (designated with a SetCompareRoutine call) that always selects a Pareto-optimal
solution over a non-Pareto-optimal one, so the elite setting guarantees that all the
Pareto-optimal solutions are retained from generation to generation. Example 1.3 on
page 76 illustrates the use of the MarkPareto call.

Mutate Call

executes a genetic mutation operator from within a user subroutine
call Mutate(selected, seg, type<, parameteri, parameter2, ...>);

The inputs to the subroutine are as follows:

selected is an array that specifies the solution to be mutated.

seg is the desired segment of the solution to which the mutation should
be applied.

type is the type of mutation operator to apply, which also determines

the number and type of parameters expected.

parameterl- are optional parameters applicable to some operators.
n

The accepted values for type and the corresponding parameters are summarized in
Table 1.2.

26 ¢ Chapter 1. The GA Procedure

Table 1.2. Mutation Operator Types

Type Encodings Parameters
‘delta’ real, integer delta
n
‘invert’ sequence
‘swap’ sequence n
“uniform’ real, integer, Boolean np

The parameters are as follows:

delta is a vector of delta values for each component of the solution, used
only for the Delta mutation operator.

n specifies the number of solution elements that should be mutated
for the Delta operator, and the number of swaps that should be
made for the Swap operator.

np specifies the number of solution elements that should be mutated,
if np is integer; specifies the mutation probability for each solution
element if 0 < np < 1.

The Mutate call should be made only from within a user mutation subroutine. The
precise action of these mutation operators is described in the section “Mutation
Operators” on page 53.

Objective Function

evaluates a standard objective function from within a user subroutine
r = Objective(selected, seg, type<, parameter1, parameter2, ...>);

The inputs to the function are as follows:

selected is an array that specifies the solution to be evaluated.
seg is the desired segment of the solution to be evaluated.
type is objective function name, which also determines the number and

type of parameters expected.

parameterl- are optional parameters applicable to particular objective func-
n tions.

The accepted values for fype and the corresponding parameters are summarized in
Table 1.3.

Table 1.3. Objective Function Types

type encodings parameters
‘TSP’ sequence distances

PackBits Call + 27

The parameters are as follows:

distances 1s a matrix of distances between locations, such that
distances]i, j] is the distance between location 7 and j.

The Objective call should be made only from within a user objective function.
The precise actions of the standard objective functions are described in the section
“Objective Functions” on page 56.

PackBits Call

writes bits to a packed integer array
call PackBits(array, start, width, value);

The inputs to the PackBits subroutine are as follows:

array is an array to which the value is to be assigned.

start is the starting position for the bit assignments.

width is the number of bits to assign.

value is the value to be assigned to the bits. For a single bit, this should
beOor 1.

The PackBits subroutine facilitates the assignment of bit values into an integer array,
effectively using the integer array as an array of bits. One common use for this routine
is within a user genetic operator subroutine to pack bit values into an integer vector
solution segment. The bit values assigned with the PackBits call can be retrieved with
the UnpackBits function.

The start parameter is the lowest desired bit position in the bit vector, where the least
significant bit of value is to be stored. The start parameter can range in value from 1
to maxbits, where maxbits is the product of 32 times the number of elements in the
integer array.

The width parameter is the number of bits of value to be stored. It is bounded by
0 < width < (maxbits — start + 1) and must also not exceed 32.

Bits not within the range defined by start and width are not changed. If the magnitude
of value is too large to express in width bits, then the width least significant bits of
value are transferred. The following program fragment, which might occur in a mu-
tation subroutine, first reads a selected solution segment into s with the ReadMember
call and then overwrites the first and second least significant bits of the solution with
ones before writing it back to the current generation.

array s[2];
call ReadMember (selected, seg, s);

/* intervening code */

28 ¢ Chapter 1. The GA Procedure

call PackBits(s, 1, 2, 3);/x start
* value
*/

call WriteMember (selected, seg, s);

1, width = 2,
3 = binary 11

Programming Statements

This section lists the programming statements used to initialize the model, code the
objective function, and control the optimization process in the GA procedure. It
documents the differences between programming statements in the GA procedure and
programmming statements in the DATA step. The syntax of programming statements
used in PROC GA is identical to that of programming statements used in the FCMP
procedure.

Most of the programming statements that can be used in the SAS DATA step can also
be used in the GA procedure. See the SAS Language Reference: Dictionary or BASE
SAS documentation for a description of the SAS programming statements.

variable = expression;
variable + expression,
arrayvar|[subscript] = expression;
ABORT;
CALL subroutine < (parameter-1 <, ...parameter-n >) >;
DELETE;
DO program-statements;, END;
DO variable = expression TO expression <BY expression>;
program-statements; END;
DO WHILE expression ;
program-statements; END;
DO UNTIL expression ;
program-statements; END;
GOTO statement_label ;
IF expression THEN program-statement;
<ELSE program-statement>;
PUT < variable(s)> <@ | @ @> ;
RETURN <(expression)>;
SELECT <(select-expression)>;
WHEN-! (expression-1 <...,expression-n>)program-statement ;
<WHEN-n (expression-1 <...,expression-n>)program-statement ;>
<OTHERWISE program-statement ;>
STOP;
SUBSTRY(variable, index, length) = expression;

For the most part, the SAS programming statements work as they do in the SAS

DATA step as documented in the SAS Language Reference: Dictionary. However,
there are several differences that should be noted.

o The ABORT statement does not permit any arguments.

ReadChild Call + 29

e The DO statement does not permit a character index variable. Thus
do i =1,2,3;
is supported; however,
do i = ‘A’,'B’,C’;
is not.

e The PUT statement, used mostly for program debugging in PROC GA, sup-
ports only some of the features of the DATA step PUT statement, and has some
new features that the DATA step PUT statement does not:

— The PROC GA PUT statement does not support line pointers, factored
lists, iteration factors, overprinting, _INFILE_, the colon (:) format mod-
ifier, or “$”.

— The PROC GA PUT statement does support expressions, but the expres-
sion must be enclosed inside parentheses. For example, the following
statement displays the square root of X: put (sgrt(x));

— The PROC GA PUT statement permits an array name without subscripts.
The statement PUT A; prints all the elements of array A. The statement
PUT A=; prints the elements of array A with each value labeled with the
name of the element variable.

— The PROC GA PUT statement supports the print item _PDV_ to print a
formatted listing of all variables in the program. For example, the follow-
ing statement displays a more readable listing of the variables than the
all printitem: put _pdv_;

e The WHEN and OTHERWISE statements permit more than one target state-
ment. That is, DO/END groups are not necessary for multiple-statement
WHEN:Ss. For example, the following syntax is valid:

SELECT;

WHEN (expl) stmtl;
stmt2;

WHEN (exp2) stmt3;
stmt4;

END;

ReadChild Call

reads a segment from a selected child solution into an array, within a user
crossover operator

call ReadChild(selected, seg, n, values);

The inputs to the ReadChild subroutine are as follows:

30 ¢ Chapter 1. The GA Procedure

selected specifies the family (parents and children) obtained from the selec-
tion process.

seg specifies the solution segment to be read.

n specifies the child in the family from which to read the solution
segment.

values specifies an array to receive the solution elements.

The ReadChild call is used to obtain the solution values for manipulation within a
user crossover operator subroutine. Normally it is needed only if you need to aug-
ment the action of a GA procedure-supplied crossover operator. You might need to
make modifications to satisfy constraints, for example. The selected parameter is
passed into the user subroutine by the GA procedure. The seg parameter is the de-
sired segment of the solution to be obtained. Segments, which correspond to different
encodings in the encoding string, are numbered, starting from 1 as the first segment.
The parameter n should be 1 to get the first child and 2 for the second. The parameter
values is an array, which should be dimensioned large enough to contain the seg-
ment’s encoding. For example, the following subroutine illustrates how you could
use the Read/WriteChild calls to modify offspring generated with a standard genetic
operator:

call SetEncoding('R5’);
subroutine cross (selected[*]);

/* generate offspring with arithmetic crossover operator =*/
call CrossArithmetic(selected, 1); /* here 1 refers to segment 1x/

array childl[5];
array child2[5];

/* get elements of first child solution */
call ReadChild(selected, 1, 1, childl);

/* get elements of second child solution values */
call ReadChild(selected, 1, 2, child2);

/* code to modify elements in childl and child2 */

call WriteChild(selected,1l,1,childl);
call WriteChild(selected, 1,2,child2);

ReadCompare Call

reads a segment from a selected solution into an array, within a user fitness
comparison subroutine

ReadParent Call + 31

call ReadCompare(selected, seg, n, values);
The inputs to the ReadCompare subroutine are as follows:

selected specifies the pair of solutions to be compared, obtained from the
selection process.

seg specifies the solution segment to be read.
n specifies the solution (1 or 2) from which to read the segment.
values specifies an array to receive the solution elements.

The ReadCompare call is used to obtain the solution values for manipulation within a
user fitness comparison subroutine, which can be designated in a SetCompareRoutine
call.

ReadMember Call

reads the selected solution into an array for a user objective function or mutation
operator

call ReadMember(selected, seg, destination);
The inputs to the ReadMember subroutine are as follows:

selected is a parameter passed to the user subroutine by the GA procedure,
which points to the selected solution.

seg specifies which segment of the solution to retrieve.

destination ~ specifies an array in which to store the solution elements.

The ReadMember call is used within a user objective function or mutation operator
to obtain the elements of a selected solution and write them into a specified vector.
They can then be used to compute an objective value, or in the case of a mutation
operator, manipulated and written back out with a WriteMember call.

ReadParent Call

reads selected solution elements into an array in a user crossover subroutine
call ReadParent(selected, seg, n, destination);
The inputs to the ReadParent subroutine are as follows:

selected is a parameter passed to the user subroutine by the GA procedure,
which points to the selected solution family.

seg is the segment of the desired parent solution to be obtained.
n is the number of the parent, starting at 1.

destination is an array in which to store the solution elements.

32 + Chapter 1. The GA Procedure

The ReadParent subroutine is called inside a user crossover operator subroutine to
obtain the elements of selected parent solutions. Normally you would then manipu-
late and combine the elements of the two parents and use a WriteChild call to create
the child offspring and complete the action of the crossover operator.

ReEvaluate Call

reruns the evaluation phase of the genetic algorithm
call ReEvaluate(<index>);
The inputs to the ReEvaluate subroutine are as follows:

index is a numeric scalar or array that specifies the indices of the solu-
tions to be updated. The indices correspond to the order of the
solutions obtained from a GetSolutions call.

The ReEvaluate call recomputes the objective values for the current generation. You
do not normally need to use this call, because the GA procedure evaluates the objec-
tive function during the optimization process in the evaluation phase. This subroutine
should be called from a user update or finalize routine if a parameter that affects the
objective value or solution is changed. The optional index parameter enables you to
restrict the recomputation to the solution or subset of solutions specified. If the in-
dex parameter is not supplied, then the objective values of all the solutions will be
recomputed.

For example, you might have a user objective function that can perform an additional
local optimization if a particular parameter is set. If your update routine changes that
parameter, then you should call the ReEvaluate subroutine to update the solutions and
objective function values.

SetBounds Call

sets constant upper and lower bounds
call SetBounds(/lower, upper <, seg>);

The inputs to the SetBounds subroutine are as follows:

lower is a lower bound for the solution components.

upper is an upper bound for the solution components.

seg is optional, and specifies a segment of the solution to which the
bounds apply. If seg is not specified, then it defaults to a value of
1.

The SetBounds subroutine is used to establish upper and lower bounds on the solution
space. It applies only to integer and real encoding. For multiple segment encoding,
use the seg parameter to specify a segment other than the first. upper and lower
must be arrays, with the same dimension as the encoding size. SetBounds must be

SetCross Call + 33

called for all integer or real encoded segments to which you apply the Uniform mu-
tation operator. The action of the standard mutation and crossover operators supplied
by the GA procedure is automatically modified so that the bounds established by a
SetBounds call are respected. For an integer encoded segment, only integer values
are allowed for the upper and lower bounds.

SetCompareRoutine Call

installs a user function to compare the fitness of solutions
call SetCompareRoutine(‘routine’);
The input to the SetCompareRoutine subroutine is as follows:

routine is the name of a function you have defined, which is called when
necessary to compare the fitness of solutions. This parameter must
be a string literal; a variable is not accepted.

The SetCompareRoutine call enables you to designate a function you have defined
to be used in the selection process when comparing the fitness of two solutions. The
selector options that involve ranking solutions by fitness, including tournament and
duel selection, will use the designated function instead of comparing the objective
values directly. If the SetCompareRoutine is not called, or if it is called with an input
value of ‘default’, then the objective function value will be used to compare solution
fitness. The SetCompareRoutine call provides you with a way to factor multiple
fitness criteria into the selection process. See the section ‘“Defining a User Fitness
Comparison Routine” on page 56 for a full description of how the fitness comparison
routine should be structured and what it should return. You can use this feature to
implement multiobjective optimization and other advanced optimization strategies.

SetCross Call

sets the crossover operator
call SetCross(type<, seg><, pname, pvalue><, pname, pvalue>...);
The inputs to the SetCross subroutine are as follows:

type is the name of the crossover operator to be applied.

seg is optional, and specifies a segment of the solution to which the
operator should be applied. If seg is not specified, then it defaults
to a value of 1. seg needs to be specified only if multisegment
encoding is used.

pname is optional, and specifies the name of a particular property to be set
for the crossover operator.

pvalue specifies the value to be assigned to the corresponding property
name.

34 ¢ Chapter 1. The GA Procedure

The SetCross routine is used to assign a standard crossover operator. For multiseg-
ment encoding, the operator can be assigned to a particular solution segment with
the seg parameter; otherwise a default segment of 1 is assumed. You can set differ-
ent crossover operators for different segments with multiple SetCross calls. When
a crossover event occurs, all segments in the parent solutions for which a crossover
operator has been designated will undergo crossover. If more than one SetCross call
is made for the same segment, then the last call nullifies any previous call for that
segment. Also, a SetCrossRoutine call nullifies all previous SetCross calls, and a
SetCross call nullifies a previous SetCrossRoutine call. Properties for the chosen
crossover operator can be set with optional pname-pvalue pairs. It is also possible to
set or reset operator properties with a SetProperty call.

The accepted values for type and the corresponding properties are summarized in
Table 1.4. See the section “Crossover Operators” on page 46 for a full description of
the available operators.

Table 1.4. Crossover Operator Types and Properties

type encodings properties

‘arithmetic’ real, integer

‘cycle’ sequence

‘heuristic’ real

‘order’ sequence

‘pmatch’ sequence

‘simple’ real, integer, Boolean ‘alpha’

‘twopoint’ real, integer, Boolean ‘alpha’

‘uniform’ real, integer, Boolean ‘alpha’, ‘p’
SetCrossProb Call

sets the crossover probability
call SetCrossProb(p);

The input to the SetCrossProb subroutine is as follows:

p is the crossover probability.

The SetCrossProb subroutine is used to set the crossover probability for the genetic
algorithm optimization process. The crossover probability p should be between 0 and
1. Typical values for this parameter range from 0.6 to 1.0. The crossover probabil-
ity will be overridden if required by a SetElite call. The elite solutions are passed
on to the next generation without undergoing crossover, regardless of the crossover
probability.

SetElite Call

SetCrossRoutine Call

installs a user subroutine for the crossover operator
call SetCrossRoutine(‘routine’<, nparents, nchildren>);
The inputs to the SetCrossRoutine subroutine are as follows:

routine is the name of a subroutine you have defined, which is called when
the mutation operator is applied. This parameter must be a string
literal; a variable is not accepted.

nparents is optional, and specifies the number of parent solutions the oper-
ator requires. If not specified, 2 is assumed.

nchildren is optional, and specifies the number of children solutions the op-
erator will generate. If not specified, 2 is assumed.

SetElite Call

sets the number of best solutions to pass to the next generation
call SetElite(elite);
The input to the SetElite subroutine is as follows:

elite is the number of best solutions to be passed unmodified from the
current solution generation to the next.

The SetElite subroutine is used to ensure that the best solutions encountered in the
optimization are not lost by the random selection process. In pure tournament selec-
tion, although better solutions are more likely to be selected, it is also possible that
any given solution will not be chosen to participate in a tournament, and even if it is
selected, it might be modified by crossover or mutation. The SetElite call modifies
the optimization process such that the best elite solutions in the current population
are exactly preserved and passed on to the next generation. This behavior is observed
regardless of the crossover or mutation settings. When a SetElite call is made, the
first elite solutions in the population retrieved by a GetSolutions call or output to a
data set are the fittest, and these elite solutions are sorted so that the most fit is first. In
general, using the SetElite call speeds the convergence of the optimization process.
However, it can also lead to premature convergence before a true global optimum
is reached. If no SetElite call is made, a default elite value of 1 is used by the GA
procedure to make sure that the best solution encountered in the optimization process
is never lost.

36 ¢ Chapter 1. The GA Procedure

SetEncoding Call

specifies the problem encoding
call SetEncoding(encoding);

The input to the SetEncoding subroutine is as follows:

encoding is a string used to specify the form of the solution.

The SetEncoding subroutine is used to establish the type of problem solution encod-
ing. The encoding parameter should be a string of letter-number pairs, where the let-
ter determines the type of encoding: I for integer, R for real-valued, S for sequences,
and B for Boolean values. Each letter is followed by a number to indicate the number
of components for that encoding. Multiple letter-number pairs can be used to specify
a multisegment encoding. For example, the following call specifies that solutions be
in the form of a 10-member integer vector:

call SetEncoding(’I10’);

The following call specifies that solutions have a 5-component integer segment and a
10-component real-valued segment:

call SetEncoding(’I5R10’);

See the section “Using Multisegment Encoding” on page 44 for details on using mul-
tisegment encoding.

SetFinalize Call

designates a user subroutine to perform post processing at the end of the opti-
mization process

call SetFinalize(‘routine’);
The input to the SetFinalize subroutine is as follows:

routine is the name of a subroutine you have defined, which is called when
the optimization process ends. This parameter must be a string
literal; a variable is not accepted.

The SetFinalize subroutine enables you to define a subroutine to be called at the end
of the optimization process. You might use this subroutine to perform additional
refinements of the best solution, or you could generate and write out additional data
for plots or reports.

SetMut Call

SetMut Call

sets the mutation operator
call SetMut(type<, seg><, pname, pvalue><, pname, pvalue>...);
The inputs to the SetMut subroutine are as follows:

type is the name of the mutation operator to be applied.

seg is optional, and specifies a segment of the solution to which the
operator should be applied. If seg is not specified, then it defaults
to a value of 1. seg needs to be specified only if multisegment
encoding is used.

pname is optional, and specifies the name of a particular property to be set
for the mutation operator.

pvalue specifies the value to be assigned to the corresponding property
name.

The SetMut routine is used to assign a standard mutation operator. For multisegment
encoding, the operator can be assigned to a particular solution segment with the seg
parameter; otherwise a default segment of 1 is assumed. You can set different mu-
tation operators for different segments with multiple SetMut calls. When a mutation
event occurs, all the operators will applied to the same solution. If more than one
SetMut call is made for the same segment, then the last call nullifies any previous
call for that segment. Also, a SetMutRoutine call nullifies all previous SetMut calls,
and a SetMut call nullifies a previous SetMutRoutine call. Properties for the chosen
mutation operator can be set with optional pname-pvalue pairs. It is also possible to
set or reset operator properties with a SetProperty call.

The accepted values for type and the corresponding properties are summarized in
Table 1.5. See the section “Mutation Operators” on page 53 for a full description of
the available operators.

Table 1.5. Mutation Operator Types and Properties

type encodings properties

‘delta’ real, integer ‘delta’
‘nchange’

‘invert’ sequence

‘null’ all encodings

‘swap’ sequence ‘nswap’

‘uniform’ real, integer, Boolean ‘nchange’

‘pchange’

37

38 ¢ Chapter 1. The GA Procedure

SetMutProb Call

sets the mutation probability
call SetMutProb(p);

The input to the SetMutProb subroutine is as follows:

p is the mutation probability.

The SetMutProb subroutine is used to set the mutation probability for the genetic
algorithm optimization. The probability p should be a number between 0 and 1, and
is interpreted as the probability that a solution in the next generation should have
the mutation operator applied to it. If a SetElite call has been made, then the elite
solutions do not undergo mutation. Generally, a high mutation probability degrades
the convergence of the genetic algorithm optimization, but some level of mutation
is required to assure a thorough search and avoid premature convergence before the
global optimum is found. Typical values for p are near 0.05 or less.

SetMutRoutine Call

installs a user subroutine for the mutation operator
call SetMutRoutine(‘routine’);
The input to the SetMutRoutine subroutine is as follows:

routine is the name of a subroutine you have defined, which is called when
the mutation operator is applied. This parameter must be a string
literal; a variable is not accepted.

The SetMutRoutine call enables you to designate a subroutine you have defined to be
used for the mutation operator. Your subroutine will be called whenever the mutation
operation is performed. See the section “Defining User Genetic Operators” on page
57 for more information about defining a mutation operator.

SetObj Call

sets the objective function

call SetObj(type, minmax, <, seg><, pname, pvalue><, pname, pvalue>...

)

The inputs to the SetObj subroutine are as follows:

type

minmax

seg

pname

pvalue

The SetObj routine is used to assign a procedure-supplied objective function. For
multisegment encoding, the objective can be assigned to a particular solution seg-
ment with the seg parameter; otherwise a default segment of 1 is assumed. If more
than one SetObj call is made, then the last call nullifies any previous call. Also, a
SetObjFunc call nullifies all previous SetObj calls, and a SetObj call nullifies a pre-
vious SetObjFunc call. Properties for the chosen objective can be set with optional
pname-pvalue pairs. It is also possible to set or reset objective properties with a

SetObjFunc Call

is the name of the objective function to be used.

is an indicator to maximize or minimize the objective. A value of
0 is used to specify a minimization, and a value of 1 to specify
maximizing the objective.

is optional, and specifies a segment of the solution to which the
objective function should be applied. If seg is not specified, then it
defaults to a value of 1. seg needs to be specified only if multiseg-
ment encoding is used.

is optional, and specifies the name of a particular property to be set
for the objective function.

specifies the value to be assigned to the corresponding property
name.

SetProperty call.

The accepted values for fype and the corresponding properties are summarized in
Table 1.6. See the section “Objective Functions™ on page 56 for a full description of

the available obj

ectives.

Table 1.6. Objective Function Types and Properties

type encodings properties
‘TSP’ real, integer ‘distances’
SetObjFunc Call

sets the objective to a user-defined function

call SetObjFunc(fname’, minmax);

The inputs to the SetObjFunc subroutine are as follows:

fname

minmax

The SetObjFunc subroutine is used to designate a user function to be the objective
for the optimization process. The SetObjFunc call accepts a literal string only for the
function name; you cannot use a variable or expression. See the section “Defining

is the name of a user objective function. This parameter must be a
literal string.

is set to 0 to minimize the objective, 1 to maximize.

L

39

40 ¢+ Chapter 1. The GA Procedure

an Objective Function” on page 62 for more information about defining your own
objective function. If multiple SetObjFunc calls are made, only the last one is in
effect; the last call nullifies any previous SetObjFunc or SetObj calls.

SetProperty Call

modifies properties of genetic operators, objective functions, and selectors
call SetProperty(optype <, seg>, pname, pvalue <, pname, pvalues...);
The inputs to the SetProperty subroutine are as follows:

optype is the type of operator. It should have a value of ‘cross’ for a
crossover operator, ‘mut’ for a mutation operator, ‘obj’ for an ob-
jective function, or ‘sel’ for a selector.

seg is optional, used only for mutation and crossover operators, and
specifies the segment in which the operator resides. It is necessary
only for multisegment encoding. The default value if seg is not
specified is 1.

pname specifies the name of a particular property to be set.

pvalue specifies the value to be assigned to the corresponding property
name. Multiple property name-value pairs can be supplied in a
SetProperty call.

The SetProperty call is used to set or modify properties of a genetic operator, objec-
tive function, or a selector. It can be called anytime during the optimization process to
dynamically adapt optimization parameters. For example, you might call SetProperty
from a user update routine to reduce the magnitude of the delta vector of a delta mu-
tation operator as the optimization progresses to an optimum.

SetSel Call

sets the selection parameters
call SetSel(selector <, pname, pvalue><, pname, pvalue>...);
The inputs to the SetSel subroutine are as follows:

selector is the type of selection strategy to be used.

pname is optional, and specifies the name of a particular property to be set
for the selector operator.

pvalue specifies the value to be assigned to the corresponding property
name.

The SetSel call is used to specify a selector for the regeneration process, which selects
members of the current generation to be propagated to the next. Generally, selection
is based on solution fitness, with the fittest solutions more likely to be selected.

ShellSort Call + 41

The supported values for selector and the corresponding selector properties and their
default values are summarized in Table 1.7. See the section “Specifying the Selection
Strategy” on page 64 for a full description of the available selectors and their proper-
ties.

Table 1.7. Selectors and Properties

Selector Properties Default values
‘tournament’ ‘size’ 2
‘duel’ ‘pbest’ 0.8

SetUpdateRoutine Call

designates a control subroutine to be called at each iteration
call SetUpdateRoutine(‘routine’);
The input to the SetUpdateRoutine subroutine is as follows:

routine is the name of a subroutine you have defined that is called once
during each iteration of the optimization process. This parameter
must be a string literal; a variable is not accepted.

The SetUpdate subroutine enables you to define a subroutine to be called at each
iteration of the optimization process, in order to monitor the progress of the genetic
algorithm, adjust optimization parameters, or perform calculations that depend on
the population as a whole. The specified routine is called once at each iteration, just
before the selection process and after the evaluation phase. See the section “Defining
a User Update Routine” on page 60 for a discussion of how an update routine might
be used.

ShellSort Call

sorts a numeric array

call ShellSort(x, <, by<, descend> >);

The inputs to the ShellSort subroutine are as follows:

X is a one or two dimensional array to be sorted.

by is an optional numeric scalar or array that specifies the columns by
which the array is to be sorted. If not specified, column 1 is the
default.

descend is an optional numeric scalar or array used to specify which

columns in the by parameter are to be in descending order. Any
columns not specified in a descend parameter will be in ascending
order.

42 + Chapter 1. The GA Procedure

The ShellSort subroutine sorts the x array by the columns specified in the by parame-
ter, with the first column having highest precedence, and subsequent columns applied
within the preceding by groups. Sorting will be done in ascending order for each
column unless that column is also specified in the descend parameter. In general the
ShellSort routine does not preserve the original order in case of ties.

For example, the following statements sort an array x into ascending order with re-
spect to the first column, and sort groups with the same first column value by de-
scending order of third column values:

array x[100, 3] /nosym;

array by[2] /nosym;

by[l] = 1;

by[2] = 3;

descend = 3;

call ShellSort (x, by, descend);

Shuffle Call

randomly reorders a numeric array
call Shuffle(x);
The input to the Shuffle subroutine is as follows:

X is a numeric array to be randomly shuffled.

The Shuffle subroutine randomly rearranges the elements of the x array. One example
of where it might be used is in a user-supplied initialization routine, to generate a
random sequence-encoded solution segment.

UnpackBits Function

retrieves bit values from a packed integer array
r = UnpackBits(source, start, width);

The inputs to the UnpackBits function are as follows:

source is an array containing the packed bit values.
start is the starting bit, with the lowest bit starting at 1.
width is the number of bits to retrieve. A value of 1 retrieves a single bit.

The UnpackBits function facilitates the extraction of bit values from arbitrary loca-
tions in an integer array. One common use for it is to retrieve bit values from an
integer solution segment in a user objective or genetic operator routine. The return

WriteChild Call + 43

value, start, and width parameters are consistent with the PackBits call, which you
can use to store bit values to an integer array.

The start parameter is the lowest desired bit position in the bit vector, corresponding
to the least significant bit of the return value. The start parameter can range in value
from 1 to maxbits, where maxbits is the product of 32 times the number of elements
in the integer array.

The width parameter is the number of bits to be read into the return value from the
array. It is bounded by 0 < width < (mazbits — start 4+ 1), and must also not
exceed 32.

UpdateSolutions Call

updates current solution population
call UpdateSolutions(sol/, n, seg);

The inputs to the UpdateSolutions subroutine are as follows:

sol is an array containing the replacement solution elements.
n is the number of solutions to update.
seg is the segment of the solution to replace.

The UpdateSolutions subroutine is used to replace the values of the selected solution
segment with new values computed in an update routine. The update routine can
be designated in a SetUpdateRoutine call. The UpdateSolutions call is often used
to implement advanced strategies such as marking Pareto-optimal sets or employing
local optimizations. The sol parameter should have 2 dimensions. The first dimension
represents the solution number, and should have a value of n or greater. The second
dimension represents the element within the solution seg, and should be equal to the
segment size.

WriteChild Call

assigns values to a selected child solution from within a user crossover operator
call WriteChild(selected, seg, n, source);
The inputs to the WriteChild subroutine are as follows:

selected is an array specifying the selected family of solutions. The se-
lected array is normally passed into the user subroutine that calls
WriteChild, and should be passed unaltered to WriteChild.

seg is the segment to which the elements are to be written.

n is the child within the family to which the elements are to be writ-
ten. A value of 1 is for the first child, 2 for the second, and so
on.

source is an array containing the values to be written.

44 + Chapter 1. The GA Procedure

The WriteChild subroutine is called inside a user crossover operator subroutine to
assign to the elements of a selected child solution. It is normally used to complete
the action of the crossover operator.

WriteMember Call

assigns values to a selected solution from within a user objective function or
mutation operator

call WriteMember(selected, seg, source);
The inputs to the WriteMember subroutine are as follows:

selected is an array specifying the selected family of solutions. The se-
lected array is normally passed into the user subroutine that calls
WriteMember, and should be passed unaltered to WriteMember.

seg is the segment to which the elements are to be written.

source is an array containing the values to be written.

The WriteMember subroutine is called inside a user objective function or mutation
operator subroutine to assign values to the elements of a selected solution. It is nor-
mally used to complete the action of the objective function or mutation operator.

Details: GA Procedure

Using Multisegment Encoding

The GA procedure enables you to represent problems with solutions consisting of
mixed parameter types by using multisegment encoding. Solutions can contain mul-
tiple segments, where each segment is a vector of one particular parameter type.
Multiple segments can also be used to store additional information you want to keep
for each solution for user objective functions or genetic operators. The utility func-
tions provided by the GA procedure give you full access to read from and write to
individual solution segments you define.

Segments are set up with a SetEncoding call. The input parameter to this call is a
string consisting of letter-number pairs, with each pair describing the type and num-
ber of elements in one segment. The permitted letters and corresponding encodings
are as follows:

Using Multisegment Encoding

Rorr specifies real encoding. The elements of the solution segment are
real numbers. One common problem where this encoding is used
is nonlinear function optimization over the real domain.

lori specifies integer encoding. The elements of the solution segment
are integers. Examples of where this encoding might be used in-
clude assignment problems where the integers represent which
resources are assigned to particular tasks, or problems involving
real variables that are constrained to be integers.

Borb specifies Boolean encoding. The elements of the solution consist
of binary (0 or 1) bits. This type of encoding might be used, for
example, to represent variables in a variable selection problem, or
inclusion of particular items in a 0/1 knapsack problem.

Sors specifies sequence encoding. The segment consists of randomly
ordered sequences of integers ranging from 1 to the number of el-
ements. For example, [2, 4, 5, 1, 3] is an example of S5 encoding,
asis [5, 3, 2, 1, 4]. Sequence encoding is a natural way to repre-
sent routing optimizations like the traveling salesman problem, or
any problem optimizing permutations of parameters.

Suppose the problem is to optimize the scheduling of 20 tasks, and for each task you
need to choose one machine out of a set of appropriate machines for each task. The
natural encoding for that problem could be set up with the following call:

call SetEncoding(’I20S20');

This call specifies a two-segment solution encoding, with segment 1 (I20) an inte-
ger vector representing the machine assignment for each task, and segment 2 (S20)
representing the sequence of tasks.

When you use multisegment encoding, you must specify the segment parameter in
SetMut or SetCross calls to specify an operator in a segment other than the first one.
If you code your own operator subroutines, you can use utility functions provided
by the GA procedure to extract and write out values to individual segments of the
solution, and routines provided by the GA procedure to perform standard genetic
crossover and mutation operations on selected segments. See the section “Using
Standard Genetic Operators and Objective Functions” on page 46 for a discussion of
the operators provided by the GA procedure. See the section “Defining User Genetic
Operators” on page 57 and the section “Defining an Objective Function” on page 62
for details of defining user routines.

L

45

46 ¢+ Chapter 1. The GA Procedure

Using Standard Genetic Operators and Objective Functions

The GA procedure includes a set of objective functions and crossover and mutation
operators, and also enables you to define your own with a subroutine. The standard
operators and objectives that are provided for each encoding type are summarized in
Table 1.8.

Table 1.8. Standard Genetic Operators for Each Encoding

Encoding Crossover Mutation Objective
real arithmetic delta
heuristic null
null uniform
simple
twopoint
uniform
integer arithmetic delta
null null
simple uniform
twopoint
uniform
Boolean simple null
null uniform
twopoint
uniform
sequence cycle invert TSP
null null
order swap
pmatch

The following sections describe the standard genetic operators and objectives and
how to invoke them.

Crossover Operators
Arithmetic

This operator is defined for real and integer encoding. It treats the solution segment
as a vector, and computes offspring of parents P and () as

childl = aP + (1 —a)Q

child?2 = aQ + (1 —a)P

where a is a random number between 0 and 1 generated by the GA procedure. For
integer encoding, each component is rounded to the nearest integer. It has the ad-
vantage that it always produces feasible offspring for a convex solution space. A
disadvantage of this operator is that it tends to produce offspring toward the interior

Cycle

Using Standard Genetic Operators and Objective Functions ¢ 47

of the search region, so it might not work if the optimum lies on or near the search re-
gion boundary. For single-segment encoding, you can specify the use of this operator
with the call

call SetCross(‘Arithmetic’) ;

For multisegment encoding, you can specify the segment to which the operator should
be applied with the call

call SetCross (‘Arithmetic’, segment) ;
From within a user crossover subroutine, you can use the call
call Cross (selected, segment, ‘Arithmetic’) ;

where selected is the selection parameter passed to your subroutine, and segment is
the segment to which the arithmetic crossover operator is to be applied.

This operator is defined for sequence encoding. It produces offspring such that the
position of each element value in the offspring comes from one of the parents. For
example, consider parents P and @),

P=11,2,3,4,5,6,7,8,9]
Q=1[8,7,9,3,4,1,2,5,6]

For the first child, pick the first element from the first parent:
childl = [1,., .5y eyeyeyny]

To maintain the condition that the position of each element value must come from
one of the parents, the position of the ‘8’ value must come from P, because the ‘8’
position in () is already taken by the ‘1’ in child1:

childl =[1,., ..., .8, .]

Now the position of ‘5’ must come from P, and so on until the process returns to the
first position:

child1 =[1,.,3,4,5,6,.,8,9]
At this point, choose the remaining element positions from Q:

childl = [1,7,3,4,5,6,2,8,9]

48 ¢+ Chapter 1. The GA Procedure

For the second child, starting with the first element from the second parent, similar
logic produces

child? = [8,2,9,3,4,1,7,5,6]

This operator is most useful when the absolute position of the elements is of most
importance to the objective value. For single-segment encoding, you can specify this
operator with the call

call SetCross(‘Cycle’);

For multisegment encoding, you can specify the segment to which the operator should
be applied with the call

call SetCross (‘Cycle’, segment) ;
From within a user crossover subroutine, you can use the use the call
call Cross (selected, segment, ‘Cycle’) ;

where selected is the selection parameter passed to your subroutine, and segment is
the segment to which the cycle crossover operator is to be applied.

Heuristic

This operator is defined for real encoding. It treats the solution segments as real
vectors. It computes the first offspring from two parents P and (), where () is the
parent with the best objective value, as

childl = a(Q — P) +Q
child2 = aQ + (1 — a)P

where a is a random number between 0 and 1 generated by the GA procedure. The
first child is a projection, and the second child is a convex combination, as with the
arithmetic operator. This operator is unusual in that it uses the objective value. It has
the advantage of directing the search in a promising direction, and automatically fine-
tuning the search in an area where solutions are clustered. If the solution space has
upper and lower bound constraints, the offspring are checked against the bounds, and
any component outside its bound is set equal to that bound. The heuristic operator
performs best when the objective function is smooth, and might not work well if the
objective function or its first derivative is discontinuous.

For single-segment encoding, you can specify this operator with the call
call SetCross (‘Heuristic’) ;

For multisegment encoding, you can specify the segment to which the operator should
be applied with the call

call SetCross (‘Heuristic’, segment) ;

Null

Order

Using Standard Genetic Operators and Objective Functions ¢ 49

From within a user crossover subroutine, you can use the call
call Cross (selected, segment, ‘Heuristic’) ;

where selected is the selection parameter passed to your subroutine, and segment is
the segment to which the heuristic crossover operator is to be applied.

This operator is used to specify that no crossover operator be applied. It is not usually
necessary to specify the null operator, except when you want to cancel a previous
operator selection. You can specify the null operator with the call

call SetCross(‘null’);

For multisegment encoding, you can specify a segment to which the operator should
be applied with the call

call SetCross (‘null’, segment) ;

This operator is defined for sequence encoding. It produces offspring by transferring
a randomly chosen subsequence of random length and position from one parent, and
filling the remaining positions according to the order from the other parent. For
parents P and @, first choose two random cutpoints to define a subsequence:

P =11,2,13,4,5,6,|7,8,9]
Q=108,7,19,3,4,1,]2,5, 6]
childl =[.,.,3,4,5,6,.,.,.]
child2 = [.,.,9,3,4,1, .,]

Starting at the second cutpoint and cycling back to the beginning, the elements of @
in order are as follows:

256879341

After removing 3, 4, 5 and 6, which have already been placed in child!, you have the
following entries:

28791

Placing these back in order starting at the second cutpoint yields the following se-
quence:

child1 =19,1,3,4,5,6,2,8,7]

50 ¢ Chapter 1. The GA Procedure

Applying this logic to child2 yields the following sequence:
child2 = [5,6,9,3,4,1,7,8,2]

This operator maintains the similarity of the relative order, or adjacency, of the se-
quence elements of the parents. It is especially effective for circular path-oriented
optimizations, such as the traveling salesman problem. For single-segment encoding,
you can specify this operator with the call

call SetCross(‘Order’);

For multisegment encoding, you can specify the segment to which the operator should
be applied with the call

call SetCross(‘Order’, segment) ;
From within a user crossover subroutine, you can use the call
call Cross (selected, segment, ‘Order’) ;

where selected is the selection parameter passed to your subroutine, and segment is
the segment to which the order crossover operator is to be applied.

Pmatch

The partial match operator is defined for sequence encoding. It produces offspring
by transferring a subsequence from one parent, and filling the remaining positions in
a way consistent with the position and ordering in the other parent. Start with two
parents and randomly chosen cutpoints as indicated:

P=11,2,13,4,5,6,|7,8,9]
Q=1[8,7,19,3,4,1,12,5,6]

(3]

The first step is to cross the selected subsegments as follows (note that ‘. indicates
positions yet to be determined):

child1 =1.,.,9,3,4,1,.,.,.]
child2 =1.,.,3,4,5,6,.,.,.]

Next, define a mapping according to the two selected subsegments:
9-3, 3-4, 4-5, 1-6

Then, fill in the positions where there is no conflict from the corresponding parent, as
follows:

childl = [.,2,9,3,4,1,7,8,]

Using Standard Genetic Operators and Objective Functions ¢ 51

child? = [8,7,3,4,5,6,2,.,]

Last, fill in the remaining positions from the subsequence mapping. In this case, for
the first child, 1 — 6 and 9 — 3, 3 — 4, 4 — 5, and for the second child, 5 — 4,
4—3,3—9,and 6 — 1.

childl = [6,2,9,3,4,1,7,8,5]
child2 = [8,7,3,4,5,6,2,9,1]

This operator tends to maintain similarity of both the absolute position and relative
ordering of the sequence elements, it and is useful for a wide range of sequencing
problems. For single-segment encoding, you can specify this operator with the call

call SetCross(‘Pmatch’);

For multisegment encoding, you can specify the segment to which the operator should
be applied with the call

call SetCross(‘Pmatch’, segment) ;
From within a user crossover subroutine, you can use the call
call Cross (selected, segment, ‘Pmatch’) ;

where selected is the selection parameter passed to your subroutine, and segment is
the segment to which the Pmatch crossover operator is to be applied.

Simple

This operator is defined for integer, real, and Boolean encoding. It has one property,
alpha. This operator performs the following action: a position £ within an encoding
of length n is chosen at random, such that 1 < k < n. Then for parents P and @), the
offspring are as follows:

childl = [PlaPQa "'7Pk7Qk’+1>Qk+2a ey Qn]

child2 = [le Q27 seey Qka Pk+17 Pk+27 ooy Pn]

For integer and real encoding, you can specify an additional alpha property of value
a, where 0 < a < 1. It modifies the offspring as follows:

pi=aP+(1—-a)Qi, i=k+1,k+2,..,n
qi:aQi+(1—a)Pi, i=k+1,k+2,...,n
childl = [Pl,PQ, -"7Pk7qk+17qk+27 --~7Qn]

Chlldg - [le Q27 ceey Qkapk-l—hpk—i—?a "')pn]

52 ¢ Chapter 1. The GA Procedure

For integer encoding, the elements are then rounded to the nearest integer. For
Boolean encoding, the a parameter is ignored, and is effectively 1.

For single-segment encoding, you can specify this operator with the call
call SetCross (‘Simple’, ‘alpha’, a) ;

For multisegment encoding, you can specify the segment to which the operator should
be applied with the call

call SetCross (‘Simple’, segment, ‘alpha’, a) ;
From within a user crossover subroutine, you can use
call Cross (selected, segment, ‘Simple’, a) ;

where selected is the selection passed to your subroutine, and segment is the segment
to which the simple crossover operator is to be applied.

Twopoint

This operator is defined for integer, real, and Boolean encoding of length n > 3, and
has one property, alpha. Two positions, k1 and k2, are chosen at random, such that
1 < k1 < k2 < n. Element values between those positions are swapped between
parents. For parents () and P, the offspring are as follows:

childl = [Pl, Pg, veey Pk:la le-i-l? ceny ng, Pk2+1, cey Pn]

child2 = [Q1, Q2 .., Qr1, Priy1, -, Pr2, Qr241, -+, Qn)

For integer and real encoding, you can specify an additional alpha property of value
a, where 0 < a < 1. It modifies the offspring as follows:

pi=aP+(1—a)Q;, i=kl1+1,k1+2,...,k2
g =aQ;+(1—a)P,i=kl1+1,kl1+4+2,.. k2
childl = [P17P27 "'7Pk‘17qk)1+17 --~an2;Pk2+1a 7Pn]

Ch’leQ = [Ql) Q27 ceey le)pkl—i-ly «oy PE2, Qk2+17 ceey Qn]

Note that small values of a reduce the difference between the offspring and parents.
For Boolean encoding, a is always 1. For single-segment encoding, you can specify
the use of this operator with the call

call SetCross (‘Twopoint’, ‘alpha’, a) ;

For multisegment encoding, you can specify the segment to which the operator should
be applied with the call

call SetCross (selected, segment, “Twopoint’, ‘alpha’, a) ;

Using Standard Genetic Operators and Objective Functions ¢ 53

From within a user crossover subroutine, you can use the call
call Cross (selected, segment, ‘“Twopoint’, a) ;

where selected is the selection passed to your subroutine, and seg is the segment to
which the two-point crossover operator is to be applied.

Uniform

This operator is defined for integer, real, and Boolean encoding of length n > 3, and
has two properties, alpha and p, where 0 < alpha < 1 and 0 < p < 0.5. For
alpha = a and parents S and 7', offspring s and ¢ are generated such that

. — aT; + (1 —a)S;, with probability p
1S otherwise

aS; + (1 —a)T;, with probability p
t; = ')
T otherwise

Note that alpha and p determine how much interchange there is between parents.
Lower values of alpha and p imply less change between offspring and parents. For
Boolean encoding, alpha is always assigned to be 1. If you do not specify alpha, it
defaults to a value of 1. If you do not specify p, it defaults to a value of 0.5.

For single-segment encoding, you can specify the use of this operator with the call
call SetCross(‘Uniform’, ‘alpha’, a, ‘p’, p) ;

For multisegment encoding, you can specify the segment to which the operator should
be applied with the call

call SetCross (‘Uniform’, segment, ‘alpha’, a, ‘p’, p) ;
From within a user crossover subroutine, you can use the call
call Cross (selected, seg, ‘Uniform’, a, p) ;

where selected is the selection parameter passed to your crossover subroutine, and
seg is the segment to which the uniform crossover operator is to be applied. In both
cases, if the encoding is Boolean, the a parameter is ignored, and a is effectively 1.

Mutation Operators
Delta

This operator is defined for integer and real encoding. It has two properties, delta and
nchange. It first chooses n elements of the solution at random, where n is the value
of the nchange property, and then perturbs each chosen element by a fixed amount,
set by d, the value of the delta property. d must be an array with the same length as
the encoding. A randomly chosen element & of the solution S' is modified such that

Sk S {Sk — dk, Sk + dk}

Invert

Null

54 '+ Chapter 1. The GA Procedure

If upper and lower bounds are specified with a SetBounds call, then S}, is adjusted as
necessary to fit within the bounds. This operator gives you the ability to fine-tune the
search by modifying the magnitude of the delta property. One possible strategy is to
start with larger d values, and then reduce them as the search progresses and begins
to converge to an optimum. This operator is also useful if the optimum is known to
be on or near a boundary, in which case d can be set large enough to always perturb
the solution element to a boundary. For single-segment encoding, you can specify
this operator with the call

call SetMut (‘delta’, ‘nchange’, n, ‘delta’, d) ;

For multisegment encoding, you can specify the segment to which the operator should
be applied with the call

call SetMut (‘delta’, segment, ‘nchange’, n, ‘delta’, d) ;

You can invoke this operator on a solution segment from within a user mutation sub-
routine with the call

call Mutate (selected, segment, ‘delta’, d, n) ;

where selected is the selection parameter passed into the subroutine.

This operator is defined for sequence encoding. It picks two locations at random and
reverses the order of elements between them. This operator is most often applied to
the traveling salesman problem. For single-segment encoding, you can specify this
operator with the call

call SetMut (‘invert’);

For multisegment encoding, you can specify the segment to which the operator should
be applied with the call

call SetMut (‘invert’, segment) ;

You can invoke this operator on a solution segment from within a user mutation sub-
routine with the call

call Mutate (selected, segment, ‘invert’) ;

where selected is the selection parameter passed into the subroutine.

This operator is used to specify that no mutation operator be applied. It is not usually
necessary to specify the null operator, except when you want to cancel a previous
operator selection. You can specify the null operator with the call

call SetMut (‘null’);

For multisegment encoding, you can specify a segment to which the operator should
be applied with

call SetMut (‘null’, segment) ;

Swap

Using Standard Genetic Operators and Objective Functions

This operator is defined for sequence problem encoding. It picks two random loca-
tions in the solution vector and swaps their values. You can also specify that multiple
swaps be made for each mutation, by setting the nswap property. For single-segment
encoding, you can specify the swap operator with the call

call SetMut (‘swap’, ‘nswap’, n) ;

where n is the number of swaps for each mutation. For multisegment encoding, you
can specify the segment to which the operator should be applied with the call

call SetMut (‘swap’, segment, ‘nswap’, n) ;

You can invoke this operator on a solution segment from within a user mutation sub-
routine with the call

call Mutate (selected, segment, ‘swap’, n) ;

where selected is the selection parameter passed into the subroutine.

Uniform

This operator is defined for Boolean encoding or for real or integer encoding with
upper and lower bounds specified with a SetBounds call. To apply this operator, a
position £ is randomly chosen within the solution .S, and S is modified to a random
value between the upper and lower bounds for element k. There are two properties
you can specify, nchange and pchange. If you set the nchange property to n, the
operator is applied to n locations. If you set the pchange property to a value p, where
0 < p < 1, the operator is applied at each position with probability p. Only the last
property setting is active, overriding any previous settings. If no property is set, a
default nchange value of 1 is used. You can specify this operator with one of the
following two calls:

call SetMut (‘uniform’, ‘nchange’, n) ;
call SetMut (‘uniform’, ‘pchange’, p) ;

For multisegment encoding, you can specify the segment to which the operator should
be applied with the call

call SetMut (‘uniform’, segment, ‘nchange’, n) ;

You can invoke this operator on a solution segment from within a user mutation sub-
routine by using one of the following statements, where selected is the selection
parameter passed into the subroutine:

call Mutate (selected, segment, ‘uniform’, n) ;
call Mutate (selected, segment, ‘uniform’, p) ;

This operator can prove especially useful in early stages of the optimization, since it
tends to distribute solutions widely across the search space, and to avoid premature
convergence to a local optimum. However, in later stages of an optimization, when
the search needs to be fine-tuned to home in on an optimum, the uniform operator
can hinder the optimization.

L

55

56 ¢ Chapter 1. The GA Procedure

Objective Functions

TSP

The TSP objective calculates the value of the traveling salesman problem objective. It
has one property, distances, which is a two-dimensional array representing distances
between locations. If distances = d, then d[i,5] is the distance between location ¢
and location j.

Defining a User Fitness Comparison Routine

Most of the selection techniques used in this procedure require comparisons of fitness
to decide which solutions should be propagated into the next generation. Normally
fitness is directly related to the solution objective value, with the better objective
value indicating the higher fitness. However, sometimes it is useful to base fitness
on multiple criteria, not just a single calculated objective value. Doing so enables
you to solve multiobjective optimization problems, or to find optima that also satisfy
secondary objectives. For example, for a multiobjective problem you might want to
find a set of construction schedules that simultaneously minimize completion time
and minimize cost, so that you can examine the tradeoff between the two objectives
and choose a schedule that best meets your needs. You might also have a scheduling
problem where there is more than one solution that meets your primary objective, but
you would like to converge on the one that also provides adequate worker breaks, or
minimizes overtime. One single-valued objective function might not be adequate to
express these preferences.

You can define a function and designate that function to be used for comparing the
fitness of two competing solutions with the call

call SetCompareRoutine (‘routine’) ;

where routine is the name of the function you have defined. The function name
must be a quoted string. The first parameter of the function, designated the selection
parameter, must be a numeric array. The procedure calls your compare function
whenever it needs to compare the fitness of two solutions. Your function can also have
an arbitrary number of additional parameters, whose names and data types should
match variables defined in the global portion of your input. When the procedure calls
your function, the selection parameter will be filled in with information identifying
which solutions are to be compared, and any other parameters will be filled in with
the corresponding global symbol values. Your function should not alter the selection
parameter in any way, but pass it unchanged into a ReadCompare Call to obtain the
solution elements your program needs to compare the fitness. If solution 1 has higher
fitness than solution 2, then your function should return a positive number. If solution
2 is more fit than solution 1, then a negative number should be returned. If the two
solutions have the same fitness then a value of 0 might be returned. Following is a
simple example of a fitness comparison function.

/* This function is designed to maximize a

* primary and secondary objective. The objectives
* are stored in segment 2 of the encoding. If

* the difference in primary objective is less than

Defining User Genetic Operators ¢ 57

* the value of delta, then the secondary objective
* is used to determine the fitness
*/

function compare2 (selected[x], delta);

/* arrays to hold solution elements x*/
array memberl[2] /nosym;
array member2[2] /nosym;

/* read segment 2 of solution 1 into memberl =/
call ReadCompare (selected, 2, 1, memberl);

/* read segment 2 of solution 2 into member2 x*/
call ReadCompare (selected, 2, 2, member2);

/* element 1 contains the primary objective value, */
/* element 2 contains a secondary objective value */

/* if objective 1 is nearly the same, then use */
/* objective 2 to compare the fitness */
if(abs(memberl[l] - member2[l]) < delta) then do;
/* primary objectives are nearly the same, check secondary */
if (memberl[2] > member2[2]) then
return(l);
if (member2[2] > memberl[2]) then
return(-1);
end;

/* base fitness on primary objective */

if (memberl[l] > member2[1l]) then
return(1l);

if (member2[1l] > memberl[l]) then
return(-1);

/* all objectives are the same, return 0 */
return (0);
endsub;

/* in global scope of the input */
delta = 0.01;
call SetCompareRoutine (' compare2’);

For an example of a comparison routine used in a multiobjective optimization, see
Example 1.3 on page 76.

Defining User Genetic Operators

You can define new genetic operators with subroutines. The GA procedure calls your
subroutine when it is necessary to perform mutation or crossover operations. You can
designate that a subroutine be used for crossover with the call

call SetCrossRoutine (‘routine’) ;

58 ¢ Chapter 1. The GA Procedure

where routine is the name of the subroutine you have defined. Similarly, you can
designate a subroutine for the mutation operator with the call

call SetMutRoutine (‘routine’) ;

The subroutine name must be a quoted string. The first parameter of the crossover
or mutation subroutine you define must be a numeric array. When the GA procedure
calls your subroutine, it passes information in the first parameter, referred to as the
selection parameter, which designates the selected members for the operation. You
should not alter the selection parameter in any way, but pass it unchanged into special
utility routines provided by the GA procedure in order to obtain the solution elements
and write them to the selected members. You can define as many other parameters to
your subroutine as you need; they are filled in with values from variables of the same
name created in the global portion of your program. Any array parameters must be
numeric and of the type /NOSYMBOLS.

For a crossover subroutine, use the ReadParent call to get the elements of the selected
parents into arrays that you can then manipulate with programming statements. The
results can be written to the designated offspring with a WriteChild call. The fol-
lowing code is an example of a crossover subroutine. The subroutine creates two
new offspring from two selected parents by switching the odd-numbered elements
between the two parents.

/* single-segment integer encoding of size 10 */
call SetEncoding(’I10');

/* encoding size is 10 */
n = 10;

subroutine swapodd (selected[x], n);
array childl[1] /nosym;
array child2[1] /nosym;

/* reallocate child arrays to right size */
call dynamic_array(childl,n);
call dynamic_array(child2,n);

/* read segment 1 from parent 1 into childl =*/
call ReadParent (selected, 1, 1, childl);

/* read segment 1 from parent 2 into child2 x/
call ReadParent (selected, 1, 2, child2);

/* swap the odd elements in the solution */
do i =1 to n by 2;

temp = childl[i];

childl[i] = child2[i];

child2[i] = temp;
end;

/* write offspring out to selected children =/
call WriteChild(selected, 1, 1, childl);

Defining User Genetic Operators
call WriteChild(selected, 1, 2, child2);
endsub;

/* designate swapodd as the crossover routine */
call SetCrossRoutine (' swapodd’);

The next sample program illustrates a crossover routine that might be used for mul-
tisegment mixed integer and sequence encoding. The subroutine uses the standard
Simple crossover operator for the integer segment, and the Pmatch operator for the
sequence-encoded segment.

/* Solution has 2 segments, integer I5 and sequence S5 */
call SetEncoding(’I5S5');

/* alpha parameter for Simple crossover operator */
alpha = 1;

subroutine mixedIS (selected[*], alpha);

/* execute simple operator on segment 1 x/
call Cross(selected, 1, ’'Simple’, alpha);

/* execute pmatch operator on segment 2 *x/
call Cross(selected, 2, ’'Pmatch’);

endsub;

call SetCrossRoutine ('mixedIS’);

For a mutation subroutine, use a ReadMember call to obtain the elements of the
solution selected to be mutated, and use a WriteMember call to write the mutated
elements back to the solution. For example, the following statements define a muta-
tion subroutine that swaps two adjacent elements at a randomly chosen position in a
sequence:

/* Solution has 1 segment, sequence S10 */
call SetEncoding(’S10’);

n = 10;
subroutine swap2 (selected[x], n);

/* declare an array for working memory x/
array member[l] /nosym;

/* allocate array to required length */
call dynamic_array (member, n);

/* read segment 1 of selected member into array =/
call ReadMember (selected, 1, member) ;

¢ 59

60 ¢ Chapter 1. The GA Procedure

/* generate random number between 0 and 1 */
r = rand('uniform’);

/* convert r to integer between 1 and n-1 */
i=int(r * (n - 1)) + 1;

/* swap element values =*/
temp = member[i];
member[i] = member[i+l];
member[i+l] = temp;

/* write result back out to solution */
call WriteMember (selected, 1, member) ;

endsub;

/* Set the mutation routine to swap2 =*/
call SetMutRoutine(’swap2’);

Defining a User Update Routine

The GA procedure enables you to define a routine that is to be called at each gen-
eration in the optimization process, after the designated objective function has been
evaluated for each solution, before the selection process takes place. Some of the
tasks that can be handled with an update routine include evaluating global solution
fitness criteria, logging intermediate optimization progress, evaluating termination
criteria and stopping the optimization, modifying the properties of the genetic opera-
tors to intensify or diversify the search process, or even to reinitialize portions of the
solution population. You can designate a user update function with the call

call SetUpdateRoutine (‘name’);
where name is the name of the routine you have defined.

The parameters defined for the update routine must correspond to variables of the
same name established in the global portion of your procedure input. If you desire to
update a parameter and have that update retained across generations, that parameter
must also be declared in an OUTARGS statement in the update routine definition. The
following program snippet illustrates how a user might specify an update routine that
monitors the best objective value at each generation and terminates the optimization
when no improvement is seen after a specified number of iterations.

subroutine no_improvement_terminator (iteration,
saved_value,
nsame,
same_limit,
populationSize);
outargs iteration, saved _value, nsame;

array objValues[l] /nosym;

Defining a User Update Routine ¢ 61

/* dynamically allocate array to fit populationSize =*/
call dynamic_array(objValues, populationSize);

/* read in current objective values */
call GetObjValues (objValues, populationSize);

/* f£ind best wvalue */
current_best = objValues[1];
do i = 2 to populationSize;
/* for a minimization problem, use < here */
if (objValues[i] > current_best) then
current_best = objValues[i];
end;

if iteration > 0 then do;
/* for a minimization problem, use < here x*/
if current_best > saved_value then do;
/* reset same value counter */
nsame = 1;
saved_value = current_best;
end;
else do;
/* increment same value counter =*/
nsame = nsame + 1;
/* if counter equals limit, then make this the last generation */
if nsame >= same_limit then
call ContinueFor (0);
end;
end;
else do;
saved_value = current_best;
nsame = 1;
end;

iteration iteration + 1;

endsub;

iteration = 0;

saved_value = 0;

nsame = 0;

/* terminate when no improvement after 30 generations */
same_limit = 30;

populationSize = 100;

call SetUpdateRoutine (’'no_improvement_terminator’);

From within a user update routine you can use a GetObjValues call to get the current
solution objective values, a GetSolutions call to get the current solution population,
an UpdateSolutions call to reset solution values, a ReEvaluate call to recompute ob-
jective values, or an Initialize call to reinitialize and resize the solution population.

62 ¢ Chapter 1. The GA Procedure

Defining an Objective Function

The GA procedure enables you to specify your objective to be optimized with a func-
tion you create, or as a standard objective function that the GA procedure provides.
Currently the only standard objective you can specify without writing an objective
function is the traveling salesman problem, which can be specified with a SetObj
call. In the future, other objective functions will be added. You can designate a user
objective function with the call

call SetObjFunc (‘name’, minmax) ;

where name is the name of the function you have defined, and minmax is set to 0 to
specify a minimum or 1 to specify a maximum.

A user objective function must have a numeric array as its first parameter. When
the GA procedure calls your function, it passes an array in the first parameter that
specifies the selected solution, which is referred to as the selection parameter. The
selection parameter must not be altered in any way by your function. Your function
should pass the selection parameter to a ReadMember call to read the elements of the
selected solution into an array. Your function can then access this array to compute an
objective value, which it must return. As with the genetic operator routines, you can
define additional arguments to your objective function, and the GA procedure passes
in variables with corresponding names that you have created in your global program.
For example, the following statements set up an objective function that minimizes the
sum of the squares of the solution elements:

call SetEncoding('R5');
n = 5;
function sumsq(selected[*], n);

/* set up a scratch array to hold solution elements =*/
array x[1] /nosym;

/* allocate x to hold all solution elements */
call dynamic_array(x, n);

/* read members of the selected solution into x x/
call ReadMember (selected, 1, x);

/* compute the sum of the squares */
sum = 0;
do i =1 to n;
sq = x[i] » x[i];
sum = sum + sq;
end;

/* return the objective value */
return (sum) ;

endsub;

call SetObjFunc(’sumsq’, 0);

Defining a User Initialization Routine ¢ 63

In this example, the function SUMSQ is defined, and the SetObjFunc call establishes
it as the objective function. The O for the second parameter of the SetObjFunc call
indicates that the objective should be minimized. Note that the second parameter to
the SUMSQ function, 7, is defined in the procedure, and the value assigned to it there
is passed into the function.

Defining a User Initialization Routine

For problems with simple constant bounds or simple sequencing problems it is not
necessary to define a user initialization subroutine; simply specify ‘DEFAULT’ in
the Initialize call. Defining a routine is necessary only if you need to satisfy more
complicated constraints or apply some initial heuristics or local optimizations. A
user initialization routine is specified with an Initialize call, as follows:

call Initialize (‘name’, size) ;

where name is the name of your initialize routine. The first parameter of the sub-
routine you define must be a numeric array. When the GA procedure calls your
subroutine, it passes information in the first parameter, referred to as the selection
parameter, which designates the member selected for initialization. Your subroutine
should generate one solution and write the values of the solution elements with a
WriteMember call, using the selection parameter passed to your subroutine. The ran-
dom number functions from BASE SAS are available to your subroutine, if needed.
You can define as many other parameters to your subroutine as you need; they are
filled in with values from variables of the same name created in your global program.
The array used to write the generated solution to the population must be numeric and
declared with the /NOSYMBOLS option, as well as any arrays passed as parameters
into your subroutine.

The following sample statements illustrate how to define an initialization routine. The
feasible region is a triangle with vertices (0,0), (0,1) and (1,1).

call SetEncoding(’'R2’);

/* set vertices of triangle (0,0), (0,1), and (1,1) =*/

array vertexl[2] /nosym (0,0);

array vertex2[2] /nosym (0,1);

array vertex3[2] /nosym (1,1);

subroutine triangle (selected[x], vertexl[2], vertex2[2], vertex3[2]);

array x[2] /nosym;

/* select 3 random numbers 0 < r < 1 */

rl = rand('uniform’);
r2 = rand('uniform’);
r3 = rand('uniform’);

/* normalize so rl + r2 + r3 =1 x/
sumr = rl + r2 + r3;

64 ¢ Chapter 1. The GA Procedure

rl = rl / sumr;
r2
r3 = r3 / sumr;

[
R
N

~
7]
§
‘H

/* form a convex combination of vertices in x x/
do i =1 to 2;

x[i] = rl *x vertexl[i] + r2 * vertex2[i] + r3 * vertex3[i];
end;

/* write x out to the selected population member, to segment 1 */
call WriteMember (selected, 1, x);
endsub;

[other programming statements]

call Initialize(’'triangle’,100);

In this example, the triangle initialization subroutine generates a solution that is a
random convex combination of three points, which places it in the interior of the tri-
angular region defined by the points. Note the use of the BASE SAS RAND () function
to get random numbers uniformly distributed between 0 and 1. The random numbers
are then normalized so that their sum is 1. In the loop, they are used to compute a
convex linear combination of the vertices, and the WriteMember call writes the so-
lution to the selected population member. The encoding specified a single segment,
so the WriteMember call specifies segment 1 as the target. When the GA procedure
executes the Initialize call, it executes the triangle routine 100 times, once for each
member of the initial population.

Specifying the Selection Strategy

There are a number of different strategies that can employed to select the most fit solu-
tions from a population to be propagated into the next solution generation. Regardless
of the strategy chosen, the user must try set the selection properties to maintain a pro-
ductive balance between selection pressure and preservation of diversity. Enough
selective pressure must be maintained to drive the algorithm toward an optimum in
a reasonable time, but too much selective pressure will eliminate the diversity of the
population too quickly and lead to premature convergence to a suboptimal solution.
One effective technique is to start the optimization process at a lower selective pres-
sure, and increase it as the optimization continues. You can easily do this in the
GA procedure by modifying the selection strategy with a SetProperty call inside an
update routine. A description of the selection strategies and their properties follows.

Tournament Selector

This selector has one property, size. The selector repeats the following process until
the next generation of solutions has been specified: randomly choose a small subset
of the current population, and then select the most fit from that subset. The selection
pressure is controlled by the size of the subset chosen, specified by the size prop-
erty. Tournament sizes from 2 to 10 have been successfully applied to various genetic

Incorporating Heuristics and Local Optimizations ¢ 65

algorithm optimizations, with sizes over 4 or 5 considered to represent strong selec-
tive pressure. If the size property is not set by the user, it defaults to a value of 2.
The Duel selector is a modification of this selector that permits further lowering of
selection pressure.

With this selector the objective value is normally used to compare the fitness of
competing solutions, with better objective values corresponding to higher fitness.
However, there are techniques for multiple objective optimization and constraint han-
dling that use more complicated criteria than just the objective value. See the section
“Optimizing Multiple Objectives” on page 67 for further discussion of this topic. You
can set your own fitness comparison routine to implement those techniques with the
SetCompareRoutine call, and that routine will be used by the tournament selector to
compare solution fitness. For a simple single-objective problem you normally do not
need to specify a special fitness comparison routine, unless have a secondary objec-
tive you might want to use to break a tie.

Duel Selector

This selector has one property, bprob. It operates in the same manner as the
Tournament selector with tournament size 2, except it permits you to reduce selec-
tion pressure further by specifying a probability, bprob, for selecting the most fit
solution from the pair. The bprob property is assigned a default value of 0.8, but
you can change it to a value between 0.5 (corresponding to pure random selection)
and 1. By default, solution fitness is compared by comparing the solution objec-
tive values. However, you can also set your own fitness comparison routine with the
SetCompareRoutine call. See the tournament selector for a discussion of when you
would need to specify a special fitness comparison routine.

Incorporating Heuristics and Local Optimizations

It is often effective to combine the genetic algorithm technique and other local op-
timizations or heuristic improvements. This can be done within the GA procedure
by incorporating a local optimization into a user objective function and returning an
improved objective value. Either your user objective function can replace the original
solution with the optimized one, or you can leave the solution unchanged, replacing
it with the optimized one only at the final iteration.

Replacing the original solution with the locally optimized one speeds convergence,
but it also increases the risk of converging prematurely. If you choose to do so, you
can modify the solution by writing the changed solution back to the population with a
WriteMember call. You could also consider replacing the original solution with some
probability p. For some problems, values of p from 0.05 to 0.15 have been shown to
significantly improve convergence while avoiding premature convergence to a local
optimum. This technique is illustrated in Example 1.1 on page 69.

66 ¢ Chapter 1. The GA Procedure

Handling Constraints

Practical optimization problems usually involve constraints, which can make the
problems harder to solve. Constraints are handled in genetic algorithms in several
ways.

Encoding Strategy

The simplest approach is to set the problem encoding, genetic operators, and initial-
ization such that the constraints are automatically satisfied. Fixed constant bounds
are easily handled in this manner in the GA procedure with the SetBounds call. The
default initialization process and genetic operators provided by the GA procedure au-
tomatically respect bounds specified in this manner. For some types of constraints,
you might be able to create a direct mapping from a constrained solution domain to a
second domain with simple constant bounds. You could then define your genetic op-
erator to map the solution into the second domain, apply one of the standard genetic
operators, and then map the result back to the original domain.

If the problem contains equality constraints, you should try to transform the problem
to eliminate the equality constraints and reduce the number of variables. This strat-
egy is opposite from what is usually done in linear programming, where inequality
constraints are turned into equality constraints by the addition of slack variables.

Repair Strategy

If the constraints are more complex and cannot be easily satisfied automatically by the
genetic operators, you might be able to employ a repair strategy: check the solution
and modify it to satisfy the constraints. The check and repair can be done in a user
genetic operator when the solution is generated, or it can be done in the evaluation
phase in a user objective function. Possible strategies for making a repair inside
an objective function include projecting the solution onto the constraint boundary;
while inside a genetic operator you might try adjusting an operator parameter until
the constraint is satisfied. If you do the repair in the objective function, you should
compute the objective value after performing the repair. You can write the repaired
solution back out to the population with a WriteMember call from a user objective
function or mutation subroutine, and with a WriteChild call from within a crossover
subroutine. Example 1.2 on page 73 illustrates the use of the repair strategy.

Penalty Strategy

Another technique is to permit solutions to violate constraints, but also to impose a
fitness penalty that causes the population to evolve toward satisfying constraints as
well as optimizing the objective. One way of employing this strategy is to simply add
a penalty term to the objective function, but this approach should be used with care,
because it is not always obvious how to construct the penalty function in a way that
does not bias the optimization of the desired objective.

Optimizing Multiple Objectives ¢+ 67

Direct Comparison Strategy

Using tournament selection opens another possibility for handling constraints. Define
a fitness comparison routine (designated in a SetCompareRoutine call) that employs
the following logic:

1 If neither solution is feasible, choose the one closest to satisfying the con-
straints.

2 If one solution is feasible, and the other is not, choose the feasible one.

If both solutions are feasible, choose the one with the best objective value.

This strategy has the advantage that the objective function does not have to be cal-
culated for infeasible solutions. To implement this method, you need to provide a
measure of constraint violation and compute it in a user objective function; this value
can be used in the first comparison step outlined previously. For linear constraints, the
GA procedure provides the EvaluateL.C call for this purpose. The technique works
best when the solution space normally contains a significant number of solutions that
satisfy the constraints. Otherwise it is possible that a single feasible solution might
quickly dominate the population. In such cases, a better approach might be the fol-
lowing Bicriteria Comparison Strategy.

Bicriteria Comparison Strategy

A variation of the direct comparison strategy that has proved effective in many ap-
plications is the multiobjective, bicriteria approach. This strategy involves adding a
second objective function, which is the magnitude of the constraint violation. Based
on the original and constraint violation objective functions, a Pareto-optimal set of
solutions is evolved in the population, and the Pareto-optimal set is evolved toward
zero constraint violation. This technique is illustrated in Example 1.3 on page 76.
See the section “Optimizing Multiple Objectives” on page 67 for a full discussion of
Pareto optimality and how to apply this technique.

Optimizing Multiple Objectives

Many practical optimization problems involve more than one objective criteria, where
the decision maker needs to examine trade-offs between conflicting objectives. With
traditional optimization methods, these problems are often handled by aggregating
multiple objectives into a single scalar objective, usually accomplished by some lin-
ear weighting of the multiple criteria. Other approaches involve turning objectives
into constraints. One disadvantage of this strategy is that many separate optimiza-
tions with different weighting factors or constraints need to be performed to examine
the trade-offs between different objectives. Genetic algorithms enable you to attack
multiobjective problems directly, in order to evolve a set of solutions in one run of
the optimization process instead of solving multiple separate problems.

This approach seeks to evolve the Pareto-optimal set: the set of solutions such that
for each solution, all the objective criteria cannot be simultaneously improved. This
is expressed mathematically by the concept of Pareto optimality. A Pareto-optimal

68 ¢ Chapter 1. The GA Procedure

set is the set of all nondominated solutions, according to the following definition of
dominated:

For an n-objective minimizing optimization problem, for each objective function f;,
a solution p is dominated by q if

filp) > fi(q) foralli =1,...,nand fj(p) > fj(q) forsome j =1,...,n

The following is one strategy that can be employed in the GA procedure to evolve a
set of Pareto-optimal solutions to a multiobjective optimization problem:

user objective function: Define and specify a user objective function in a
SetObjFunc call that computes each of the objective criteria and stores the
objective values in one single solution segment.

user update routine: Define and specify a wuser update routine in a
SetUpdateRoutine call that examines the entire solution population and
marks those in the Pareto-optimal set. This can be done with the MarkPareto call
provided by the GA procedure. Also, set the elite parameter equal to the number
of Pareto-optimal solutions found.

selection criteria: Define a fitness comparison routine that favors the least domi-
nated solutions, and designate it in a SetCompareRoutine call. For selecting be-
tween two solutions when neither solution dominates the other, your routine can
check a secondary criterion to direct the search to the area of ultimate interest.

The multiple objective values are recorded in one segment to enable the use of the
MarkPareto call provided by the GA procedure. Setting the elite selection parameter
to the size of the Pareto-optimal set, in conjunction with the comparison criteria,
guarantees that the Pareto-optimal set in each generation is preserved to the next.

The secondary comparison criterion can be used to ensure that the final Pareto-
optimal set is distributed in the area of ultimate interest. For example, for the
Bicriteria Constraint Strategy described previously, the actual area of interest is where
there is zero constraint violation, which is the second objective. The secondary com-
parison criterion in that case is to minimize the value of the constraint violation ob-
jective. After enough iterations, the population should evolve to the point that the
best solution to the bicriteria problem is also the best solution to the original con-
strained problem, and the other Pareto-optimal solutions can be examined to analyze
the sensitivity of the optimum solution to the constraints. For other types of problems,
you might need to implement a more complicated secondary comparison criterion to
avoid “crowding” of solutions about some arbitrary point, and ensure the evolved
Pareto-optimal set is distributed over a range of objective values.

Example 1.1. Traveling Salesman Problem with Local Optimization

Examples: GA Procedure

Example 1.1. Traveling Salesman Problem with Local
Optimization

This example illustrates the use of the GA procedure to solve a traveling salesman
problem (TSP); it combines a genetic algorithm with a local optimization strategy.
The procedure finds the shortest tour of 20 locations randomly oriented on a two-
dimensional x-y plane, where 0 < x < 1 and 0 < y < 1. The location coordinates
are input in the following DATA step:

/* 20 random locations for a Traveling Salesman Problem */
data locations;
input x y;

datalines;
0.0333692 0.9925079
0.6020896 0.0168807
0.1532083 0.7020444
0.3181124 0.1469288
0.1878440 0.8679120
0.9786112 0.4925364
0.7918010 0.7943144
0.5145329 0.0363478
0.5500754 0.8324617
0.3893757 0.6635483
0.9641841 0.6400201
0.7718126 0.5463923
0.7549037 0.4584584
0.2837881 0.7733415
0.3308411 0.1974851
0.7977221 0.1193149
0.3221207 0.7930478
0.9201035 0.1186234
0.2397964 0.1448552
0.3967470 0.6716172

~.

L

69

70 ¢ Chapter 1. The GA Procedure

First, the GA procedure is run with no local optimizations applied:

proc ga datal = locations seed = 5554;
call SetEncoding(’S20');
ncities = 20;
array distances[20,20] /nosym;
do i =1 to 20;
do j =1 to i;
distances|[i, j] sgrt ((x[1i] - x[j])**2 + (y[i] - y[]3])*=*x2);
distances[j,i] = distances][i, j];
end;
end;
call SetObj('TSP’,0,’'distances’, distances);
call SetCross(’'Order’);
call SetMut (' Invert’);
call SetMutProb (0.05);
call SetCrossProb(0.8);
call SetElite(1l);
call Initialize (' DEFAULT’, 200);
call ContinueFor (140);
run;

The PROC GA statement uses a DATA 1= option to get the contents of the locations
data set, which creates array variables x and y from the corresponding fields of the
data set. A solution will be represented as a circular tour, modeled as a 20-element
sequence of locations, which is set up with the SetEncoding call. The array variable
distances is created, and the loop initializes distances from the x and y location co-
ordinates such that distances|i, j] is the Euclidean distance between location i and j.
Next, the SetObj call specifies that the GA procedure use the included TSP objec-
tive function with the distances array. Then, the genetic operators are specified, with
SetCross for the crossover operator and SetMut for the mutation operator. Since the
crossover probability and mutation probability are not explicitly set in this example,
the default values of 1 and 0.05, respectively, are used. The selection parameters are
not explicitly set (with SetSel and SetElite calls), so by default, a tournament of size
2 is used, and an elite parameter of 1 is used. Next, the Initialize call specifies default
initialization (random sequences) and a population size of 100. The ContinueFor call
specifies a run of 220 iterations. This value is a result of experimentation, after it was
determined that the solution did not improve with more iterations. The output of this
run of PROC GA is given in Output 1.1.1.

Example 1.1. Traveling Salesman Problem with Local Optimization

Output 1.1.1. Simple Traveling Salesman Problem

L

71

PROC GA Optimum Values

3.

Element

0O JdoUldWDNR

NRERREHRRBERRERRRERRBR
CWVWOWNUILdWNKOW

Objective

7465311323

Solution
Value

12
13
18
16
2
8
15
4
19
3
1
5
14
17
10
20
9
7
11
6

The following program illustrates how the problem can be solved in fewer itera-
tions by employing a local optimization. Inside the user objective function, before
computing the objective value, every adjacent pair of cities in the tour is checked
to determine if reversing the pair order would improve the objective value. For a
pair of locations .S; and S;,1, this means comparing the distance traversed by the
subsequence {S;_1,5;, Si+1,Si+2} to the distance traversed by the subsequence
{Si—1, Sit+1, Si, Si+2}, with appropriate wrap-around at the endpoints of the se-
quence. If the distance for the swapped pair is smaller than the original pair, then

the reversal is done, and the improved solution is written back to the population.

proc ga datal = locations seed = 5554;

call SetEncoding(’S20');
ncities = 20;

array distances[20,20] /nosym;

do i =1 to 20;
do j =1 to ij;
distances|[i, j]

sqgrt ((x[i] - x[j]1)»*2 + (y[i]

distances[j,i] = distances]|i, jl;

end;
end;

/* Objective function with local optimization =/
function TSPSwap (selected[*],ncities,distances[*,*]);

= y[31)*=*2);

72 + Chapter 1. The GA Procedure

array s[l] /nosym;
call dynamic_array(s,ncities);
call ReadMember (selected, 1, s);

/* First try to improve solution by swapping adjacent cities x/

do i = 1 to ncities;
cityl = s[i];
inext = 1 + mod(i,ncities);

city2 = s[inext];
if i=1 then
before = s[ncities];
else
before = s[i-1];
after = s[1l + mod(inext,ncities)];
if (distances[before,cityl]+distances[city2,after]) >
(distances[before,city2]+distances[cityl, after]) then do;
s[i] = city2;
s[inext] = cityl;
end;
end;
call WriteMember (selected, 1, s);

/* Now compute distance of tour x*/
distance = distances[s[ncities],s[1]];
do i = 1 to (ncities - 1);
distance + distances|[s[i],s[i+1l]];

end;
return (distance);

endsub;

call SetObjFunc ('’ TSPSwap’,0);

call SetCross(’'Order’);

call SetMut (' Invert’);

call SetMutProb (0.05);

call SetCrossProb(0.8);

call SetElite(1l);

call Initialize ('DEFAULT’, 200);

call ContinueFor (35);

run;

The output after 85 iterations is given in Output 1.1.2.

Example 1.2. Nonlinear Objective with Constraints Using Repair Mechanism ¢ 73

Output 1.1.2. Traveling Salesman Problem with Local Optimization

PROC GA Optimum Values
Objective
3.7465311323
Solution
Element Value
1 13
2 18
3 16
4 2
5 8
6 15
7 4
8 19
9 3
10 1
11 5
12 14
13 17
14 10
15 20
16 9
17 7
18 11
19 6
20 12

Since all tours are circular, the actual starting point does not matter, and this solution
is equivalent to that reached with the simple approach without local optimization. It
is reached after only 85 iterations, versus 220 with the simple approach.

Example 1.2. Nonlinear Objective with Constraints Using
Repair Mechanism

This example illustrates the use of a repair mechanism to satisfy problem constraints.
The problem is to minimize the six-hump camel-back function (Michalewicz 1996,
Appendix B):

4
flx) = (4 — 2123 + ?) x3 + z122 + (—4 + 423) 23

where z is within the triangle with vertices Vi = (—2,0), Vo = (0,2), and
V3 = (2,—2). The problem formulation takes advantage of the fact that all fea-
sible solutions can be expressed as a convex combination of Vi, V5, and V3 in the
following form:

x=aVi+bVe 4+ cVj

74 + Chapter 1. The GA Procedure

In this form, a, b, and c are nonnegative coefficients and satisfy the following linear
equality constraint:

a+b+c=1

Therefore, the solution encoding ‘R3’ is used with the three elements corresponding
to the values of a, b, and c. Note that this strategy can be generalized to any solution
domain that can be specified by a convex hull. An additional ‘R2’ segment is also
created to store the corresponding x value. In the following program, FUNCTION
SIXHUMP computes the objective value. Lower and upper bounds of 0 and 1, re-
spectively, are used to ensure that solution elements are nonnegative. Violations of
the linear equality constraint are fixed by a simple repair strategy, implemented in
FUNCTION SIXHUMP: the sum of the solution elements is computed, and each
element is divided by the sum, so that the sum of the new elements is 1. For the spe-
cial case of all elements equal to 0, equal values are assigned to the solution elements.

proc ga seed = 555;
call SetEncoding(’R3R2’);
npoints = 3;
array cvxhull[3,2] /nosym (-2 0
0 2
2 -2);
/* Objective function x*/
function sixhump (selected[*],cvxhull[x, x], npoints);

/* Function has global minimum value of -1.0316
* at x = {-0.0898 0.7126} and

* b { 0.0898 -0.7126}

*/

array w[l] /nosym;

call dynamic_array (w,npoints);

array x[2] /nosym;

call ReadMember (selected, 1l,w);

/* make sure that weights add up to 1 */
sum = 0;
do i = 1 to npoints;
sum + wl[i];
end;

/* if all weights 0, then reinitialize */
if sum=0 then do;
sum = npoints;
do i = 1 to npoints;
w[i] = 1;
end;
end;

/* re-normalize weights */
do i = 1 to npoints;

Example 1.2. Nonlinear Objective with Constraints Using Repair Mechanism

w[i] = w[i] / sum;
end;

call WriteMember (selected,1l,w);

/* convert weights to x—-coordinate form x/
x[1] = 0;
x[2] = 0;
do i = 1 to npoints;
x[1] + w[i] * cvxhull[i,1];
x[2] + w[i] * cvxhull[i, 2];
end;

/* write out x coordinates to second segment =*/
call WriteMember (selected, 2, x);

/* compute objective value =*/

r= (4 - 2.1*xx[1]**2 + x[1]**4/3)*x[1]**2 + x[1]*x[2] +

(4 + 4*x[2]**x2)*x[2]**x2;
return(r);
endsub;

call SetObjFunc(’sixhump’,0);

array lower[l] /nosym;
array upper[l] /nosym;

call dynamic_array(lower, npoints);
call dynamic_array (upper, npoints);
do i = 1 to npoints;

lower[i] = O;
upper[i] = 1;
end;

call SetBounds (lower, upper, 1);

array delta[3] /nosym (0.01 0.01 0.01);

call SetMut ('delta’, ’'nchange’, 1, ’'delta’, delta);
call SetMutProb (0.05);

call SetCross(’'Twopoint’, ’'alpha’, 0.9);
call SetCrossProb(0.8);

call SetSel(’'tournament’, ’'size’, 2);
call SetElite(3);

call Initialize ('’DEFAULT’, 200);
call ContinueFor (200);
run;

Note that this problem uses the standard genetic operators and default initialization,
even though they generate solutions that violate the constraints. This is possible
because all solutions are passed into the user objective function for evaluation, where

they are repaired to fit the constraints. The output is shown in Output 1.2.1.

L

75

76 ¢ Chapter 1. The GA Procedure

Output 1.2.1. Nonlinear Objective with Constraints Using Repair Mechanism

PROC GA Optimum Values
Objective

-1.031617314

Solution
Segment Element Value
1 1 0.2439660392
1 2 0.5561415112
1 3 0.1998924497
2 1 -0.088147179
2 2 0.712498123

This objective function has a global minimum at —1.0316, at two different points:
(x1,x2) = (—0.0898,0.7126) and (z1,x2) = (0.0898, —0.7126). The genetic algo-
rithm can converge to either of these minima, depending on the random number seed
set by the SEED= option.

Example 1.3. Quadratic Objective with Linear Constraints,
Using Bicriteria Approach

This example (Floudas and Pardalos 1992) illustrates the bicriteria approach to han-
dling constraints. The problem has nine linear constraints and a quadratic objective
function.

Minimize

4 4 13
EEE) SETE) O B 917
i=1 i=1 i=5
subject to

221 + 229 + 210 + 211 < 10
2x1 4+ 2x3 + x10 + 212 < 10
21 4+ 2x3 + x11 + 212 < 10
—8r1 4+ 2190 L0
—8x2+x11 <0

—8r3+ 212 <0

—2x4 — x5+ 2100

—22¢ —x7+211 <0

—2x3 —x9 + 212 <0

Example 1.3. Quadratic Objective with Linear Constraints ¢ 77

and

0<z <1, i=1,2,...,9
0 < z; <100, 1 =10,11,12
0<z3<1

In this example, the linear constraint coefficients are specified in the SAS data set
lincon and passed to the GA procedure with the MATRIX1= option. The upper and
lower bounds are specified in the bounds data set specified with a DATA 1= option,
which creates the array variables upper and lower, matching the variables in the data
set.

/* Input linear constraint matrix */
data lincon;
input Al-Al3 b;

datalines;
2 2 0 0 0 0 0OO 0O 1 1 0 010
2 0 2 0 0 0O OO 0O 1 0 1 010
2 0 2 0 0 0O OO O O 1 1 010
-8 0 0 0O 0O OOO O 1 O O 0 O
0-8 0 0 0 O OOO 01 0 0 O
0O 0-8 0 0 0 0 O O OOO1T 0 O
0O 0 0-2-1 0 0 0 0 1 0 O 0 O
0O 0o 0 0 0-2-1 0 0 0 1 0 0 O
0O 0o 0o 0 0 0 0-2-1 0 0 1 0 O

4

/* Input lower and upper bounds */
data bounds;

input lower upper;

datalines;

HRrRRRRBRRRPR

B R
o
o

100
100

O O0OO0OO0OO0OO0OO0OO0OO0OOOOO

~.

proc ga lastgen = out matrixl = lincon
seed = 12345 datal = bounds;

78 ¢ Chapter 1. The GA Procedure

Note also that the LASTGEN= option is used to designate a data set to store the final
solution generation.

In the following statements, the solution encoding is specified, and a user function is
defined and designated as the objective function.

call SetEncoding(’R13R3’);
nvar = 13;
ncon = 9;
function quad(selected[*], matrixl[x,*], nvar, ncon);
array x[1] /nosym;
array r[3] /nosym;
array violations[l] /nosym;
call dynamic_array(x, nvar);
call dynamic_array(violations, ncon);
call ReadMember (selected, 1, x);
suml = 0;
do i =1 to 4;

suml + x[i] - x[i] * =x[i];
end;
sum2 = 0;

do i =5 to 13;
sum2 + x[i];

end;

obj = 5 % suml - sum2;

call EvaluatelC (matrixl,violations, sumvio, selected,1);
r[1l] = obj;

r[2] = sumvio;

call WriteMember (selected, 2,r);
return (obj) ;

endsub;

call SetObjFunc(’quad’,0);

The SetEncoding call specifies two real-valued segments. The first segment, R13,
holds the 13 variables, and the second segment, R3, holds the two objective crite-
ria and the marker for Pareto optimality. As described in the section “Defining an
Objective Function” on page 62, the first parameter of the objective function is a
numeric array that designates which member of the solution population is to be eval-
uated. When the quad function is called by the GA procedure during the optimization
process, the matrix1, nvar, and ncon parameters receive the values of the correspond-
ing global variables; nvar is set to the number of variables, and ncon is set to the
number of linear constraints. The function computes the original objective as the first
objective criterion, and the magnitude of constraint violation as the second. With
the first dynamic_array call, it allocates a working array, X, large enough to hold the
number of variables, and a second array, violations, large enough to tabulate each
constraint violation. The ReadMember call fills x with the elements of the first seg-
ment of the solution, and then the function computes the original objective f(x). The
EvaluateL.C call is used to compute the linear constraint violation. The objective and
sum of the constraint violations are then stored in the array r, and written back to
the second segment of the solution with the WriteMember call. Note that the third
element of r is not modified, because that element of the segment is used to store the

Example 1.3. Quadratic Objective with Linear Constraints ¢

Pareto-optimality mark, which cannot be determined until all the solutions have been
evaluated.

Next, a user routine is defined and designated to be an update routine. This routine is
called once at each iteration, after all the solutions have been evaluated with the quad
function. The following program illustrates this:

subroutine update (popsize);
/* find pareto-optimal set */
array minmax[3] /nosym (-1 -1 0);
array results[1l,1] /nosym;
array scratch[l] /nosym;
call dynamic_array (scratch, popsize);
call dynamic_array(results, popsize, 3);
/* read original and constraint objectives, stored in
* solution segment 2, into array =*/
call GetSolutions (results, popsize, 2);
/* mark the pareto-optimal set */
call MarkPareto(scratch, npareto, results, minmax);
/* transfer the results to the solution segment x*/
do i = 1 to popsize;
results[i, 3] = scratch[i];
end;
/* write updated segment 2 back into solution population
*/
call UpdateSolutions (results,popsize, 2);
/* Set Elite parameter to preserve the first 15 pareto-optimal
* solutions
*/
if npareto < 16 then
call SetElite (npareto);
else
call SetElite(15);
endsub;
call SetUpdateRoutine (’'update’);

This subroutine has one parameter, popsize, defined within the GA procedure, which
is expected to be the population size. The working arrays results, scratch, and min-
max are declared. The minmax array is to be passed to a MarkPareto call, and is
initialized to specify that the first two elements (the original objective and constraint
violation) are to be minimized and the third element is not to be considered. The
results and scratch arrays are then dynamically allocated to the dimensions required
by the population size.

Next, the results array is filled with the second segment of the solution population,
with the GetSolutions call. The minmax and results arrays are passed as inputs to
the MarkPareto call, which returns the number of Pareto optimal solutions in the
npareto variable. The MarkPareto call also sets the elements of the scratch array to
1 if the corresponding solution is Pareto-optimal, and to O otherwise. The next loop
then records the results in the scratch array in the third column of the results array,
effectively marking the Pareto-optimal solutions. The updated solution segments are
written back to the population with the UpdateSolutions call.

80 ¢ Chapter 1. The GA Procedure

The final step in the update routine is to set the elite selection parameter to guaran-
tee the survival of at least a minimum of 15 of the fittest (Pareto-optimal) solutions
through the selection process.

With the following statements, a routine is defined and designated as a fitness com-
parison routine with a SetCompareRoutine call. This routine works in combination
with the update routine to evolve the solution population toward Pareto optimality
and constraint satisfaction.

function paretocomp (selected[x]);
array memberl[3] /nosym;
array member2[3] /nosym;
call ReadCompare (selected,2,1, memberl);
call ReadCompare (selected, 2,2, member2);
/* if one member is in the pareto-optimal set
* and the other is not, then it is the
* most fit
*/
if (memberl[3] > member2[3]) then
return(l);
if (member2[3] > memberl[3]) then
return (-1);
/* if both are in the pareto-optimal set, then
* the one with the lowest constraint wviolation
* is the most fit
*/
if (memberl[3] = 1) then do;
if memberl[2] <= member2[2] then
return (1) ;
return(-1);
end;
/* if neither is in the pareto-optimal set, then
* take the one that dominates the other
*/
if (memberl[2] <= member2[2]) &
(memberl[1l] <= member2[1l]) then
return(l);
if (member2[2] <= memberl[2]) &
(member2[1] <= memberl[l]) then
return(-1);
/* if neither dominates, then consider fitness to be
* the same
*/
return(0);
endsub;
call SetSel ('tournament’, ’'size’, 2);
call SetCompareRoutine (’'paretocomp’);

The PARETOCOMP subroutine is called in the selection process to compare the
fitness of two competing solutions. The first parameter, selected, designates the two
solutions to be compared.

Example 1.3. Quadratic Objective with Linear Constraints

The ReadCompare calls retrieve the second segments of the two solutions, where the
objective criteria are stored, and writes the segments into the member1 and member2
arrays. The logic that follows first checks for the case where only one solution is
Pareto optimal, and returns it. If both the solutions are Pareto optimal, then the one
with the smallest constraint violation is chosen. If neither solution is Pareto optimal,
then the dominant solution is chosen, if one exists. If neither solution is dominant,
then no preference is indicated. After the function is defined, it is designated as a
fitness comparison routine with the SetCompareRoutine call.

Next, subroutines are defined and designated as user crossover and mutation opera-
tors:

/* set up crossover parameters *x/
subroutine Crossl (selected[*], alpha);
call Cross(selected, 1, ’twopoint’, alpha);
endsub;
call SetCrossRoutine(’'Crossl’,K 2,2);
alpha = 0.5;
call SetCrossProb(0.8);
/* set up mutation parameters x*/
subroutine Mutl (selected[*], delta[x]);
call Mutate (selected, 1l,’delta’,delta,l);
endsub;
call SetMutRoutine (’'Mutl’);
array delta[l13] /nosym (.5 .5 .5 .5 .5 .5 .5 .5 .5 10 10 10 .1);
call SetMutProb (0.05);

These routines execute the standard genetic operators twopoint for crossover and
delta for mutation; see the section “Using Standard Genetic Operators and Objective
Functions” on page 46 for a description of each. The alpha and delta variables defined
in the procedure are passed as parameters to the user operators, and the crossover and
mutation probabilities are set with the SetCrossProb and SetMutProb calls.

At this point, the GA procedure is directed to initialize the first population and begin
the optimization process:

/* Initialize first population =*/
call SetBounds (lower, upper);
popsize = 100;

call Initialize (’'DEFAULT’ , popsize);
call ContinueFor (500);

run;

First, the upper and lower bounds are established with values in the lower and upper
array variables, which were set up by the DATA 1= option in the PROC GA statement.
The SetBounds call sets the bounds for the first segment, which is the default if none
is specified in the call. The desired population size of 100 is stored in the popsize
variable, so it will be passed to the update subroutine as the popsize parameter. The
Initialize call specifies the default initialization, which generates values randomly dis-
tributed between the lower and upper bounds for the first encoding segment. Since no
bounds were specified for the second segment, it is filled with zeros. The ContinueFor

L

81

82 ¢ Chapter 1. The GA Procedure

call sets the requested number of iterations to 500, and the RUN statement ends the
GA procedure input and begins the optimization process. The output of the procedure

is shown in Output 1.3.1.

Output 1.3.1. Bicriteria Constraint Handling Example Output

Bicriteria Constraint Handling Example
PROC GA Optimum Values
Objective
-14.99871988
Solution

Segment Element Value
1 1 1
1 2 0.9999997423
1 3 0.9999991741
1 4 0.9999997454
1 5 0.9999982195
1 6 1
1 7 0.9999674484
1 8 0.9999961238
1 9 0.9999691145
1 10 2.9999914332
1 11 2.9999103023
1 12 2.9988939259
1 13 1
2 1 -14.99871988
2 2 0
2 3 1

The minimum value of f(z)is —15atz* = (1,1,1,1,1,1,1,1,1,3,3,3,1).

References

Floudas, C. A. and Pardalos, P. M. (1992), Recent Advances in Global Optimization,

Princeton, NJ: Princeton University Press.

Michalewicz, Z. (1996), Genetic Algorithms + Data Structures
Programs, New York: Springer-Verlag.

Evolution

Subject Index

bicriteria comparison strategy, 67

Cc

choosing problem encoding, 8
constraints, 66
bicriteria comparison strategy, 67
direct comparison strategy, 67
encoding strategy, 66
penalty strategy, 66
repair strategy, 66
controlling selection process, 9
creating initial generation, 11
crossover operators, 46

D

defining
fitness comparison routine, 56
genetic operators, 57
initialization routine, 63
objective functions, 62
update routine, 60

direct comparison strategy, 67

duel selector, 65

E

encoding strategy, 66

F

fitness comparison routine

defining, 56

G

GA procedure
debugging options, 29
overview, 3

program statements, 28
genetic algorithms, 3
genetic operators, 46
defining, 57

H

heuristics, 65

initialization routine
defining, 63
initializing problem data, 5

L

local optimizations, 65

monitoring progress, 12
multiple objectives, 67
multisegment encoding, 44
mutation operators, 53

o
objective functions, 46, 56
defining, 62
overview
GA procedure, 3

P

penalty strategy, 66
program statements
GA procedure, 28

R

repair strategy, 66
reporting results, 12

S

selection strategy, 64

setting crossover parameters, 10
setting mutation parameters, 11
setting objective function, 9

T

tournament selector, 64

U

update routine
defining, 60

84

Syntax Index

A
ABORT statement

GA program statements, 28
D

DATAn= option
PROC GA statement, 16
DO statement

GA program statements, 29

F
FIRSTGEN= option
PROC GA statement, 16

G

GA procedure
ContinueFor Call, 18
Cross call, 18
dynamic_array, 19
EvaluateLC, 20
GetDimensions, 21
GetObjValues, 21
GetSolutions Call, 22
Initialize Call, 22
MarkPareto Call, 23
Mutate Call, 25
Objective Call, 26
PackBits Call, 27
PROC GA statement, 16
ReadChild Call, 29
ReadCompare Call, 30
ReadMember Call, 31
ReadParent Call, 31
ReEvaluate Call, 32
SetBounds Call, 32
SetCross Call, 33
SetCrossProb Call, 34
SetCrossRoutine Call, 35
SetElite Call, 35
SetEncoding Call, 36
SetFinalize Call, 36
SetMut Call, 37
SetMutProb Call, 38

SetMutRoutine Call, 33, 38

SetObj Call, 38
SetObjFunc Call, 39
SetProperty Call, 40
SetSel Call, 40

SetUpdateRoutine Call, 41
ShellSort Call, 41

Shuffle Call, 42
UnpackBits Function, 42
UpdateSolutions Call, 43
WriteChild Call, 43
WriteMember Call, 44

L
LASTGEN= option

PROC GA statement, 17
LIBRARY= option

PROC GA statement, 17

M
MATRIXn= option
PROC GA statement, 17

N
NITER= option
PROC GA statement, 17
NOVALIDATE-= option
PROC GA statement, 17
NOVALIDATEWARNING= option
PROC GA statement, 18

0
OTHERWISE statement
GA program statements, 29

P
PROC GA statement,
See also GA procedure
statement options, 16
PUT statement
GA program statements, 29

S
SEED= option

PROC GA statement, 18
SELECT statement

GA program statements, 29

w
WHEN statement
GA program statements, 29

86

Your Turn

We welcome your feedback.

e If you have comments about this book, please send them to
yourturn@sas .com. Include the full title and page numbers (if
applicable).

e If you have comments about the software, please send them to
suggest@sas.com.

SAS Publishing Delivers!

Whether you are new to the work force or an experienced professional, you need to distinguish yourself in this rapidly
changing and competitive job market. SAS® Publishing provides you with a wide range of resources to help you set
yourself apart. Visit us online at support.sas.com/bookstore.

SAS’ Press

Need to learn the basics? Struggling with a programming problem? You’ll find the expert answers that you
need in example-rich books from SAS Press. Written by experienced SAS professionals from around the
world, SAS Press books deliver real-world insights on a broad range of topics for all skill levels.

support.sas.com/saspress
SAS° Documentation
To successfully implement applications using SAS software, companies in every industry and on every
continent all turn to the one source for accurate, timely, and reliable information: SAS documentation.
We currently produce the following types of reference documentation to improve your work experience:
¢ Online help that is built into the software.
e Tutorials that are integrated into the product.
¢ Reference documentation delivered in HTML and PDF - free on the Web.
. -
Fard-copy books. support.sas.com/publishing
SAS’° Publishing News
Subscribe to SAS Publishing News to receive up-to-date information about all new SAS titles, author
podcasts, and new Web site features via e-mail. Complete instructions on how to subscribe, as well as

access to past issues, are available at our Web site.
support.sas.comlspn

Ve

POWER
TO KNOW.

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.
Other brand and product names are trademarks of their respective companies. © 2009 SAS Institute Inc. All rights reserved. 518177_1US.0109

http://support.sas.com/saspress
http://support.sas.com/publishing
http://support.sas.com/LE

	Contents

	Credits

	What's New in SAS/OR 9.2

	Overview
	The NETFLOW Procedure
	The INTPOINT Procedure
	The LP Procedure
	The OPTLP Procedure
	The OPTMILP Procedure
	The OPTMODEL Procedure
	The OPTQP Procedure
	Earned Value Management Macros
	Microsoft Project Conversion Macros
	The GA Procedure
	The CLP Procedure (Experimental)

	Chapter 1. The GA Procedure
	Overview: GA Procedure
	Getting Started: GA Procedure
	Initializing the Problem Data
	Choosing the Problem Encoding
	Setting the Objective Function
	Controlling the Selection Process
	Setting Crossover Parameters
	Setting Mutation Parameters
	Creating the Initial Generation
	Monitoring Progress and Reporting Results
	A Simple Example

	Syntax: GA Procedure
	PROC GA Statement
	ContinueFor Call
	Cross Call
	Dynamic_array Call
	EvaluateLC Call
	GetDimensions Call
	GetObjValues Call
	GetSolutions Call
	Initialize Call
	MarkPareto Call
	Mutate Call
	Objective Function
	PackBits Call
	Programming Statements
	ReadChild Call
	ReadCompare Call
	ReadMember Call
	ReadParent Call
	ReEvaluate Call
	SetBounds Call
	SetCompareRoutine Call
	SetCross Call
	SetCrossProb Call
	SetCrossRoutine Call
	SetElite Call
	SetEncoding Call
	SetFinalize Call
	SetMut Call
	SetMutProb Call
	SetMutRoutine Call
	SetObj Call
	SetObjFunc Call
	SetProperty Call
	SetSel Call
	SetUpdateRoutine Call
	ShellSort Call
	Shuffle Call
	UnpackBits Function
	UpdateSolutions Call
	WriteChild Call
	WriteMember Call

	Details: GA Procedure
	Using Multisegment Encoding
	Using Standard Genetic Operators and Objective Functions
	Defining a User Fitness Comparison Routine
	Defining User Genetic Operators
	Defining a User Update Routine
	Defining an Objective Function
	Defining a User Initialization Routine
	Specifying the Selection Strategy
	Incorporating Heuristics and Local Optimizations
	Handling Constraints
	Optimizing Multiple Objectives

	Examples: GA Procedure
	Example 1.1. Traveling Salesman Problem with Local Optimization
	Example 1.2. Nonlinear Objective with Constraints Using Repair Mechanism
	Example 1.3. Quadratic Objective with Linear Constraints

	References

	Subject Index
	Syntax Index

