Previous Page | Next Page

The CLP Procedure


Applegate, D. and Cook, W. (1991), “A Computational Study of the Job Shop Scheduling Problem,” ORSA Journal on Computing, 3, 149–156.

Baptiste, P. and Le Pape, C. (1996), “Edge-Finding Constraint Propagation Algorithms for Disjunctive and Cumulative Scheduling,” in Proceedings of the 15th Workshop of the UK Planning Special Interest Group, Liverpool, UK.

Bartusch, M. (1983), Optimierung von Netzplänen mit Anordnungsbeziehungen bei knappen Betriebsmitteln, Ph.D. thesis, Universität Passau, Fakultät für Mathematik und Informatik.

Carlier, J. and Pinson, E. (1989), “An Algorithm for Solving the Job-Shop Scheduling Problem,” Management Science, 35(2), 164–176.

Carlier, J. and Pinson, E. (1990), “A Practical Use of Jackson’s Preemptive Schedule for Solving the Job-Shop Problem,” Annals of Operations Research, 26, 269–287.

Colmerauer, A. (1990), “An Introduction to PROLOG III,” Communications of the ACM, 33, 70–90.

Floyd, R. W. (1967), “Nondeterministic Algorithms,” Journal of the ACM, 14, 636–644.

Garey, M. R. and Johnson, D. S. (1979), Computers and Intractability: A Guide to the Theory of NP-Completeness, New York: W. H. Freeman & Co.

Haralick, R. M. and Elliot, G. L. (1980), “Increasing Tree Search Efficiency for Constraint Satisfaction Problems,” Artificial Intelligence, 14, 263–313.

Jaffar, J. and Lassez, J. (1987), “Constraint Logic Programming,” Conference Record of the 14th Annual ACM Symposium in Principles of Programming Languages, Munich, 111–119.

Kumar, V. (1992), “Algorithms for Constraint-Satisfaction Problems: A Survey,” AI Magazine, 13, 32–44.

Lawrence, S. (1984), Resource Constrained Project Scheduling: An Experimental Investigation of Heuristic Scheduling Techniques (Supplement), Pittsburgh: Graduate School of Industrial Administration, Carnegie Mellon University.

Mackworth, A. K. (1977), “Consistency in Networks of Relations,” Artificial Intelligence, 8, 99–118.

Muth, J. F. and Thompson, G. L., eds. (1963), Industrial Scheduling, Englewood Cliffs, NJ: Prentice Hall.

Nemhauser, G. L. and Wolsey, L. A. (1988), Integer and Combinatorial Optimization, New York: John Wiley & Sons.

Nuijten, W. (1994), Time and Resource Constrained Scheduling, Ph.D. thesis, Eindhoven Institute of Technology.

Smith, B. M., Brailsford, S. C., Hubbard, P. M., and Williams, H. P. (1996), “The Progressive Party Problem: Integer Linear Programming and Constraint Programming Compared,” Constraints, 1, 119–138.

Tsang, E. (1993), Foundations of Constraint Satisfaction, London: Academic Press.

Van Hentenryck, P. (1989), Constraint Satisfaction in Logic Programming, Cambridge, MA: MIT Press.

Van Hentenryck, P., Deville, Y., and Teng, C. (1992), “A Generic Arc-Consistency Algorithm and Its Specializations,” Artificial Intelligence, 57, 291–321.

Waltz, D. L. (1975), “Understanding Line Drawings of Scenes with Shadows,” in P. H. Winston, ed., The Psychology of Computer Vision, 19–91, New York: McGraw-Hill.

Williams, H. P. and Wilson, J. M. (1998), “Connections between Integer Linear Programming and Constraint Logic Programming—An Overview and Introduction to the Cluster of Articles,” INFORMS Journal of Computing, 10, 261–264.

Note: This procedure is experimental.

Previous Page | Next Page | Top of Page