
Moving and Accessing SAS®

9.3 Files

SAS® Documentation

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2011. Moving and Accessing SAS® 9.3 Files. Cary, NC: SAS
Institute Inc.

Moving and Accessing SAS® 9.3 Files

Copyright © 2011, SAS Institute Inc., Cary, NC, USA

All rights reserved. Produced in the United States of America.

For a hardcopy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS Institute Inc.

For a Web download or e-book:Your use of this publication shall be governed by the terms established by the vendor at the time you acquire this
publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the publisher is illegal and
punishable by law. Please purchase only authorized electronic editions and do not participate in or encourage electronic piracy of copyrighted
materials. Your support of others' rights is appreciated.

U.S. Government Restricted Rights Notice: Use, duplication, or disclosure of this software and related documentation by the U.S. government is
subject to the Agreement with SAS Institute and the restrictions set forth in FAR 52.227–19, Commercial Computer Software-Restricted Rights
(June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.

1st electronic book, July 2011

SAS® Publishing provides a complete selection of books and electronic products to help customers use SAS software to its fullest potential. For
more information about our e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site at
support.sas.com/publishing or call 1-800-727-3228.

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other
countries. ® indicates USA registration.

Other brand and product names are registered trademarks or trademarks of their respective companies.

http://support.sas.com/publishing

Contents

About This Book . vii
What's New in Moving and Accessing SAS 9.3 Files . xi
Recommended Reading . xiii

PART 1 Introduction 1

Chapter 1 • Moving and Accessing SAS Files between Operating Environments 3
Deciding to Move a SAS File between Operating Environments 3
Deciding to Access a SAS File across Operating Environments 4
Strategies for Moving and Accessing SAS Files . 4
Summary of Strategy Features . 5
Using National Language Support To Move SAS Files between Computers 6
The Data Set Used for Examples . 7
Naming Conventions Used for Examples . 7
Accessibility Features in SAS Products . 8

PART 2 Strategies for Moving and Accessing SAS Files
9

Chapter 2 • Cross-Environment Data Access (CEDA) . 11
Overview of CEDA . 11
CEDA Advantages . 12
CEDA Limitations . 12
Creating or Changing a SAS File's Format . 13
Transferring a SAS File between Computers . 16
Identifying the Format of a SAS File . 16
Reading and Writing a Foreign File . 17

Chapter 3 • PROC CPORT and PROC CIMPORT . 19
Overview of Moving SAS Files Using PROC CPORT and PROC CIMPORT 19
Limitations of Moving SAS Files Using PROC CPORT and PROC CIMPORT 20
Disadvantages of Moving SAS Files Using PROC CPORT and PROC CIMPORT . . . 20
Creating a Transport File at the Source Computer . 20
Transferring Transport Files to a Target Computer . 22
Restoring Transport Files at the Target Computer . 23

Chapter 4 • XPORT Engine with DATA Step or PROC COPY . 27
Overview of the XPORT Engine . 27
XPORT Engine Advantages . 28
XPORT Engine Limitations . 28
Regressing SAS Data Sets to SAS 6 Format . 28
Creating a Transport File at the Source Computer . 30
Transferring Transport Files across a Network . 31
Restoring Transport Files at the Target Computer . 31

Chapter 5 • XML Engine with DATA Step or PROC COPY . 33
Overview of the XML Engine . 33
XML Engine Advantages . 33
XML Engine Limitations . 34
Creating an XML Document at the Source Computer . 34
Transferring an XML Document across a Network . 35
Restoring an XML Document as a Data Set at a Target Computer 36

PART 3 Transferring Transport Files and Foreign Files 37

Chapter 6 • Transferring Files . 39
Overview of File Transfers . 39
Attributes for Transport Files . 40
Using the FILENAME Statement or FTP for Foreign Files and Transport Files 41

PART 4 Operating Environment Specifics 45

Chapter 7 • OpenVMS Operating Environment . 47
Listing OpenVMS System File Attributes . 47
File Attributes Under OpenVMS . 48
Identifying the SAS Version Used to Create a File Under OpenVMS 48
Mounting a Tape Device Under OpenVMS . 49
Error Messages For OpenVMS . 49

Chapter 8 • z/OS Operating Environment . 53
Listing z/OS File Attributes . 53
Identifying the SAS Version Used to Create a File under z/OS 53
z/OS Files and the UNIX System Services Directory . 54
z/OS Batch Statements for File Transport . 54
Transfer Issues for a z/OS Target Computer . 54
Reading Transport Files in z/OS Operating Environments . 55

Chapter 9 • Windows Operating Environment . 57
File Attributes Under Windows . 57
Identifying the SAS Version Used to Create a File under Windows 57
Error Message: Encrypted Data is Invalid . 58

Chapter 10 • UNIX Operating Environment . 59
File Attributes Under UNIX . 59
Identifying the SAS Version Used to Create a File under UNIX 59
Example: Creating a Transport File on Tape . 61
Example: Copying the Transport File from Disk to Tape at the

UNIX Source Computer . 61
Example: Copying the Transport File from Tape to Disk at the Target Computer 61

Chapter 11 • SAS Filename Extensions and File Headers . 63
Filename Extensions: Identifying the SAS Engine and Operating

Environment Used to Create a SAS File . 63
PROC CONTENTS: Identifying the Base SAS Engine Used to Create a SAS File . . . 64
File Headers: Finding Out the Method Used to Create the Transport File 65

iv Contents

PART 5 Troubleshooting 67

Chapter 12 • Preventing and Fixing Problems . 69
Troubleshooting: Transferring and Restoring Transport files . 70
Error and Warning Messages for Transport Files . 73
Verifying Transfer Format and Transport File Attributes . 79
Reblocking a Transport File . 80

PART 6 Samples and Logs 83

Chapter 13 • Examples of Moving SAS Files . 85
The Overview of Examples of Moving SAS Files between Computers 86
Example: OpenVMS to UNIX File Transport . 86
Example: z/OS to Windows File Transport . 93
Example: z/OS JCL Batch to UNIX File Transport . 98
Strategies for Verifying Transport Files . 106

Glossary . 109
Index . 115

Contents v

vi Contents

About This Book

Syntax Conventions for the SAS Language

Overview of Syntax Conventions for the SAS Language
SAS uses standard conventions in the documentation of syntax for SAS language
elements. These conventions enable you to easily identify the components of SAS
syntax. The conventions can be divided into these parts:

• syntax components

• style conventions

• special characters

• references to SAS libraries and external files

Syntax Components
The components of the syntax for most language elements include a keyword and
arguments. For some language elements, only a keyword is necessary. For other
language elements, the keyword is followed by an equal sign (=).

keyword
specifies the name of the SAS language element that you use when you write your
program. Keyword is a literal that is usually the first word in the syntax. In a CALL
routine, the first two words are keywords.

In the following examples of SAS syntax, the keywords are the first words in the
syntax:

CHAR (string, position)
CALL RANBIN (seed, n, p, x);
ALTER (alter-password)
BEST w.
REMOVE <data-set-name>

In the following example, the first two words of the CALL routine are the keywords:

CALL RANBIN(seed, n, p, x)

The syntax of some SAS statements consists of a single keyword without arguments:

DO;
... SAS code ...

vii

END;

Some system options require that one of two keyword values be specified:

DUPLEX | NODUPLEX

argument
specifies a numeric or character constant, variable, or expression. Arguments follow
the keyword or an equal sign after the keyword. The arguments are used by SAS to
process the language element. Arguments can be required or optional. In the syntax,
optional arguments are enclosed between angle brackets.

In the following example, string and position follow the keyword CHAR. These
arguments are required arguments for the CHAR function:

CHAR (string, position)

Each argument has a value. In the following example of SAS code, the argument
string has a value of 'summer', and the argument position has a value of
4:x=char('summer', 4);

In the following example, string and substring are required arguments, while
modifiers and startpos are optional.

FIND(string, substring <,modifiers> <,startpos>

Note: In most cases, example code in SAS documentation is written in lowercase with a
monospace font. You can use uppercase, lowercase, or mixed case in the code that
you write.

Style Conventions
The style conventions that are used in documenting SAS syntax include uppercase bold,
uppercase, and italic:

UPPERCASE BOLD
identifies SAS keywords such as the names of functions or statements. In the
following example, the keyword ERROR is written in uppercase bold:

ERROR<message>;

UPPERCASE
identifies arguments that are literals.

In the following example of the CMPMODEL= system option, the literals include
BOTH, CATALOG, and XML:

CMPMODEL = BOTH | CATALOG | XML

italics
identifies arguments or values that you supply. Items in italics represent user-
supplied values that are either one of the following:

• nonliteral arguments In the following example of the LINK statement, the
argument label is a user-supplied value and is therefore written in italics:

LINK label;

• nonliteral values that are assigned to an argument

In the following example of the FORMAT statement, the argument DEFAULT is
assigned the variable default-format:

FORMAT = variable-1 <, ..., variable-nformat><DEFAULT = default-format>;

viii About This Book

Items in italics can also be the generic name for a list of arguments from which you
can choose (for example, attribute-list). If more than one of an item in italics can be
used, the items are expressed as item-1, ..., item-n.

Special Characters
The syntax of SAS language elements can contain the following special characters:

=
an equal sign identifies a value for a literal in some language elements such as
system options.

In the following example of the MAPS system option, the equal sign sets the value
of MAPS:

MAPS = location-of-maps

< >
angle brackets identify optional arguments. Any argument that is not enclosed in
angle brackets is required.

In the following example of the CAT function, at least one item is required:

CAT (item-1 <, ..., item-n>)

|
a vertical bar indicates that you can choose one value from a group of values. Values
that are separated by the vertical bar are mutually exclusive.

In the following example of the CMPMODEL= system option, you can choose only
one of the arguments:

CMPMODEL = BOTH | CATALOG | XML

...
an ellipsis indicates that the argument or group of arguments following the ellipsis
can be repeated. If the ellipsis and the following argument are enclosed in angle
brackets, then the argument is optional.

In the following example of the CAT function, the ellipsis indicates that you can
have multiple optional items:

CAT (item-1 <, ..., item-n>)

'value' or “value”
indicates that an argument enclosed in single or double quotation marks must have a
value that is also enclosed in single or double quotation marks.

In the following example of the FOOTNOTE statement, the argument text is
enclosed in quotation marks:

FOOTNOTE <n> <ods-format-options 'text' | “text”>;

;
a semicolon indicates the end of a statement or CALL routine.

In the following example each statement ends with a semicolon: data namegame;
length color name $8; color = 'black'; name = 'jack'; game =
trim(color) || name; run;

Syntax Conventions for the SAS Language ix

References to SAS Libraries and External Files
Many SAS statements and other language elements refer to SAS libraries and external
files. You can choose whether to make the reference through a logical name (a libref or
fileref) or use the physical filename enclosed in quotation marks. If you use a logical
name, you usually have a choice of using a SAS statement (LIBNAME or FILENAME)
or the operating environment's control language to make the association. Several
methods of referring to SAS libraries and external files are available, and some of these
methods depend on your operating environment.

In the examples that use external files, SAS documentation uses the italicized phrase
file-specification. In the examples that use SAS libraries, SAS documentation uses the
italicized phrase SAS-library. Note that SAS-library is enclosed in quotation marks:

infile file-specification obs = 100;
libname libref 'SAS-library';

x About This Book

What's New in Moving and
Accessing SAS 9.3 Files

Overview

This document has been updated to include information about the CEDA and the
CPORT and CIMPORT procedures.

Documentation Enhancements

The following enhancement relates to the Cross-Environment Data Access (CEDA)
functionality:

• UNIX File System libraries on z/OS support all CEDA data representations.
However, under z/OS, SAS bound libraries support only SAS data sets that have a
CEDA data representation of MVS_32. “CEDA Limitations” on page 12 are
identified.

The following enhancements relate to the CPORT and CIMPORT procedures:

• SAS name literals that include embedded blanks can now be used with the CPORT
and CIMPORT procedures. Refer to “SAS Name Literals” in Chapter 3 of SAS
Language Reference: Concepts for details.

• When VALIDVARNAME=ANY or VALIDMEMNAME=EXTEND are specified,
the data set names or member names used in the CIMPORT and CPORT procedures
can now be up to 32 bytes in length. Names and member names can also be mixed
case. Refer to “VALIDMEMNAME= System Option” in SAS System Options:
Reference and “VALIDVARNAME= System Option” in SAS System Options:
Reference for details.

• The CPORT SELECT and EXCLUDE statements now support case sensitive names
from the ACCESS Engine.

• The CIMPORT SELECT and EXCLUDE statements now support case sensitive
names from the CPORT file.

xi

xii Moving and Accessing SAS Files

Recommended Reading

Here is the recommended reading list for this title:

• SAS/CONNECT User's Guide

• SAS/SHARE User's Guide

• SAS Statements: Reference

• SAS System Options: Reference

• Base SAS Procedures Guide

• SAS Language Reference: Concepts

• Communications Access Methods for SAS/CONNECT and SAS/SHARE

• SAS XML LIBNAME Engine: User's Guide

• SAS Companion that is specific to your operating environment

For a complete list of SAS publications, go to support.sas.com/bookstore. If you have
questions about which titles you need, please contact a SAS Publishing Sales
Representative:

SAS Publishing Sales
SAS Campus Drive
Cary, NC 27513-2414
Phone: 1-800-727-3228
Fax: 1-919-677-8166
E-mail: sasbook@sas.com
Web address: support.sas.com/bookstore

xiii

mailto:sasbook@sas.com
http://support.sas.com/bookstore

xiv Recommended Reading

Part 1

Introduction

Chapter 1
Moving and Accessing SAS Files between Operating Environments
. 3

1

2

Chapter 1

Moving and Accessing SAS Files
between Operating Environments

Deciding to Move a SAS File between Operating Environments 3

Deciding to Access a SAS File across Operating Environments 4

Strategies for Moving and Accessing SAS Files . 4

Summary of Strategy Features . 5

Using National Language Support To Move SAS Files between Computers 6

The Data Set Used for Examples . 7

Naming Conventions Used for Examples . 7

Accessibility Features in SAS Products . 8

Deciding to Move a SAS File between Operating
Environments

Moving SAS files between operating environments is a common task. Reasons for
moving a SAS file between operating environments include the following:

• to move SAS files to a new operating environment on a different computer (for
example, moving HP-UX files to a RedHat Linux operating environment).

• to move a file and its processing to a high-performance operating environment and
then return the file to the requesting operating environment.

• to make a static copy of a SAS file available to a physically separate operating
environment for continued data processing. Files are duplicated for use in the
receiving operating environment because the SAS files are not available to the
receiving operating environment by means of NFS-mounted file systems.

In all of these scenarios, the move operations recognize differences between operating
environment architectures and SAS releases, allowing the original files to be used in the
receiving operating environment.

3

Deciding to Access a SAS File across Operating
Environments

In some instances, accessing instead of owning and maintaining your own copy of a file
might be preferable. Alternatively, you might need to read data from a locally mounted
tape that was created elsewhere, or you might need to read, write, or update data that is
remotely mounted on your network.

Note: Do not confuse the term access with the product SAS/ACCESS. In the context of
moving or accessing SAS files across operating environments, access means to reach
and process SAS files. SAS/ACCESS enables users to use third-party DBMS files.

You can use these methods to access remote SAS files:

• CEDA (Cross-Environment Data Access) enables you to process SAS 8 and later
SAS files.

• Using SAS/SHARE on your client enables you to access a remote SAS file that
resides on an operating environment that a SAS/SHARE server runs under.
SAS/SHARE facilitates a transparent concurrent access to remote data among
multiple users. Restrictions apply to cross-release access of SAS data.

In addition, SAS/SHARE enables you to access certain third-party DBMS files by
means of engines that are supported by SAS/ACCESS.

• Without the aid of SAS/SHARE or CEDA, you can rely upon network services for
access to remote files (both SAS files and third-party DBMS files). Usually, the
client and the server must share a compatible architecture, and they must run the
same release of SAS software. The operating environment, the network software,
and the security software might control users' permissions to access specific remote
files. For more information, see the SAS companion documentation that is
appropriate to your operating environment, and see the third-party documentation for
the network software and security software that you use.

Strategies for Moving and Accessing SAS Files
You can use these strategies to move or access SAS files:

Cross-Environment Data Access (CEDA)
This feature of SAS enables a SAS file that was created in any directory-based
operating environment (for example, Solaris, Windows, HP-UX, OpenVMS) to be
processed by a SAS session that is running in another directory-based environment.
See “Cross-Environment Data Access (CEDA)” on page 11.

CPORT and CIMPORT procedures
In the source environment, you can use PROC CPORT to write data sets or catalogs
to transport format. In the target environment, PROC CIMPORT can be used to
translate the transport file into the target environment's native format. See “PROC
CPORT and PROC CIMPORT” on page 19.

XPORT engine with DATA step or PROC COPY
In the source environment, you can use the LIBNAME statement with the XPORT
engine and either the DATA step or PROC COPY to create a transport file from a

4 Chapter 1 • Moving and Accessing SAS Files between Operating Environments

SAS data set. In the target environment, the same method can be used to translate the
transport file into the target environment's native format. See “XPORT Engine with
DATA Step or PROC COPY” on page 27.

Note: The XPORT engine does not support SAS 8 and later features, such as long
file and variable names.

XML engine with DATA step or PROC COPY
In the source environment, you can use the LIBNAME statement with the XML
engine and either the DATA step or PROC COPY to create an XML document from
a SAS data set. In the target environment, the same method can be used to translate
the XML document into the target environment's native format. See “XML Engine
with DATA Step or PROC COPY” on page 33.

Data Transfer Services (DTS) in SAS/CONNECT
This feature enables you to transfer data sets and catalogs from the source
environment to the target environment. DTS dynamically translates the data between
operating environment representations and SAS versions, as necessary. The transfer
is accomplished using the SIGNON statement to connect two SAS sessions and then
PROC UPLOAD or PROC DOWNLOAD to move the data.

REMOTE engine and Remote Library Services in SAS/SHARE and
SAS/CONNECTREMOTE engine and Remote Library Services in SAS/SHARE and
SAS/CONNECT

These features give you transparent access to remote data using the REMOTE engine
and the LIBNAME statement.

Summary of Strategy Features
Here is a summary of the features of each strategy that you can use to move or access
SAS files.

Table 1.1 Summary of Strategy Features for Moving or Accessing SAS Files

Features

Strategies That Can Be Used

SAS/CONNECT
DTS

SAS/CONNECT
RLS and
SAS/SHARE
RLS

SAS Member
Types
Supported

Data File,

PROC SQL
views*,

SAS/ACCESS
views (Oracle
and Sybase),

MDDB*

Library,

Data Set,

Catalog,

Catalog
entry

Library,

Data Set

Data File Library,

Data Set,

Catalog,

Catalog entry,

PROC SQL
view,

MDDB,

External third-
party
databases***

Library,

Data Set,

Catalog**,

Catalog entry**,

PROC SQL view,

MDDB,

DATA Step view,

SAS/ACCESS
view,

External third-
party databases***

Summary of Strategy Features 5

Features

Strategies That Can Be Used

SAS/CONNECT
DTS

SAS/CONNECT
RLS and
SAS/SHARE
RLS

Dynamic
Translation or
Create a File
Format

Dynamic Transport† Transport† XML Dynamic Dynamic

SAS Versions
Supported

SAS 8 and later SAS 6 and
later

SAS 6 and
later†

SAS 8.2
and later

SAS 6 and later SAS 6 and later

Regression
from a Later
to an Earlier
SAS Release

No No Yes No Yes Yes

Limited to
Operating
Environments
that Use
Directory-
Based File
Structures

Yes No No No No No

SAS Product
License
Required

Base SAS Base SAS Base SAS Base
SAS

SAS/CONNECT SAS/CONNECT
or SAS/SHARE

* Data set (files) can have read, write, and update access. PROC SQL views and MDDBs are read-only.
** SAS 9 does not support cross-operating environment access to catalog entries or catalogs in operating environments that are

incompatible. For information about architecture groups, see the SAS/CONNECT User's Guide or SAS/SHARE User's Guide.
*** SAS/CONNECT supports external text files and binary files. SAS/CONNECT and SAS/SHARE support third-party external databases

by means of the Remote SQL pass-through facility, but you must have a SAS/ACCESS license to access these databases.
† The XPORT engine does not support features that were introduced in SAS 8 (such as long file and variable names). If the XPORT

engine is used to regress a SAS 8 or later SAS file to an earlier release, the features that are exclusive to SAS 8 and later are removed
from the SAS file. Also, the transport formats that are produced by the XPORT engine and PROC CPORT are not interchangeable.

For complete details about relational databases, see SAS/ACCESS for Relational
Databases: Reference. For details about nonrelational databases, see SAS/ACCESS
Interface to ADABAS: Reference, SAS/ACCESS(R) 9.3 Interface to IMS: Reference,
SAS/ACCESS DATA Step Interface to CA-IDMS: Reference, or SAS/ACCESS Interface
to SYSTEM 2000: Reference, as appropriate.

Using National Language Support To Move SAS
Files between Computers

In order to successfully move a transport file between two computers and operating
environments, the encodings of the source and target SAS sessions must be compatible.
For example, a source SAS session that uses the Wlatin1 encoding that is associated with
the Spanish Mexico locale is compatible with the target SAS session that uses Wlatin1

6 Chapter 1 • Moving and Accessing SAS Files between Operating Environments

encoding that is associated with the Italian Italy locale. Both sessions use the Wlatin1
encoding.

However, a transport file cannot be moved between incompatible source and target SAS
sessions without national language support (NLS). For example, a source SAS session
that uses the Wlatin2 encoding that is associated with the Czech Czechoslovakia locale
is incompatible with the target SAS session that uses the open_ed-1141 z/OS encoding
that is associated with the German Germany locale. The Wlatin2 encoding and the
open_ed-1141 encodings are not compatible.

Before the data can be moved using the appropriate strategy, (for example, the XPORT
engine or PROC CPORT and PROC CIMPORT), you would have to re-set the locale of
the target SAS session to the locale of the source SAS session that created the transport
file. Strategies for specifying locale or encoding vary according to the version of SAS
that is running on the source and target computers.

If you are moving SAS files across locales or encodings, you will use the LOCALE=
and ENCODING= options. For this information, see the SAS National Language
Support (NLS): Reference Guide. For details about using PROC CIMPORT to move
transport files between source and target computers that use different locales and
encodings, see the Base SAS Procedures Guide.

The Data Set Used for Examples
If you choose to experiment, you can create several simple data sets in a library. Here is
a sample SAS program that creates the data set GRADES:

data grades;
 input student $ test1 test2 final;
 datalines;
Fred 66 80 70
Wilma 97 91 98
;
proc print data=grades;
run;

Here is the output:

 The SAS System 10:59 Friday, April 25, 2008

 Obs student test1 test2 final
 1 Fred 66 80 70
 2 Wilma 97 91 98

Naming Conventions Used for Examples
These naming conventions are used in the examples in this documentation:

WORK
is the default libref that points to the library that contains the data set GRADES.

XPORTOUT
is the libref that points to the location where the transport file is created with the
XPORT engine.

Naming Conventions Used for Examples 7

XPORTIN
is the libref that points to the location on the target operating environment that you
transferred the transport file to.

XMLOUT
is the libref that points to the location where the XML file is created with the XML
engine.

XMLIN
is the libref that points to the location on the target operating environment that you
transferred the XML file to.

CPORTOUT
is the fileref that points to the location where the transport file is created with PROC
CPORT.

IMPORTIN
is the fileref that points to the location on the target operating environment that you
transferred the transport file to.

SOURCE
is the libref that points to the location of the source file that is translated into
transport or XML format.

LIST
is a catalog entry type.

GRADES
is the name of a data set.

TARGET
is the libref that points to the location at which the restored SAS file is created.

TESTCAT
is the name of a catalog.

TESTNPGM
is the name of a catalog entry.

Accessibility Features in SAS Products
For information about accessibility for any of the products mentioned in this book, see
the documentation for that product. If you have questions or concerns about the
accessibility of SAS products, send e-mail to accessibility@sas.com.

8 Chapter 1 • Moving and Accessing SAS Files between Operating Environments

Part 2

Strategies for Moving and
Accessing SAS Files

Chapter 2
Cross-Environment Data Access (CEDA) . 11

Chapter 3
PROC CPORT and PROC CIMPORT . 19

Chapter 4
XPORT Engine with DATA Step or PROC COPY 27

Chapter 5
XML Engine with DATA Step or PROC COPY . 33

9

10

Chapter 2

Cross-Environment Data Access
(CEDA)

Overview of CEDA . 11

CEDA Advantages . 12

CEDA Limitations . 12

Creating or Changing a SAS File's Format . 13
Creating a SAS File in a Foreign Format . 13
Example: Creating a Foreign Format Using the OUTREP=

Option in the DATA Step . 13
Changing a SAS File to a Foreign Format . 14
Example: Changing a File's Format Using the OUTREP=

Option in the LIBNAME Statement and the NOCLONE
Option in PROC COPY . 14

Example: Verifying the Changed File's Format in the SAS
Log at the Source Computer . 15

Transferring a SAS File between Computers . 16

Identifying the Format of a SAS File . 16
Example: Reporting That CEDA Is Being Used . 16
Example: Identifying a File's Format Using PROC CONTENTS 16
Restrictions on Accessing a Foreign File . 17

Reading and Writing a Foreign File . 17

Overview of CEDA
CEDA is a simple strategy for file access across a network. CEDA enables you to read a
network-mounted SAS file from any directory-based operating environment that runs
SAS 8 or later, regardless of the file format of the SAS file being accessed. For example,
CEDA enables a PC to read network-mounted SAS files that are in UNIX file format.

Note: Before SAS 8.2, CEDA was packaged with SAS/CONNECT, which requires a
separate license. CEDA is now included as part of Base SAS.

CEDA runs transparently. You can access a supported SAS file without knowing the
file's format. CEDA detects the format of the accessing computer and automatically
translates the “native” format to the representation of the “foreign,” or accessing,
computer.

CEDA is most useful in a heterogeneous networked enterprise in which multiple
applications read data from a centralized SAS file, process the data, and then generate

11

reports. For example, a SAS data set can reside on a UNIX computer and be accessed by
computers that represent data in a format that is foreign to the UNIX computer. For
example, UNIX and Windows computers represent data differently. Without CEDA, a
SAS file could not be dynamically translated when accessed. Instead, a transport file or a
file in foreign format would have to be generated for the accessing computer.

CEDA Advantages
CEDA provides these advantages:

• CEDA runs transparently. The user can read a data set without knowing the native
format of the file.

• CEDA requires a single translation between native and foreign formats versus
multiple translations from native format to transport format to native format.

• No interim transport files are created.

• CEDA eliminates the need to perform explicit steps in order to access the file.

• CEDA does not require a dedicated server as is needed in SAS/SHARE or an explicit
sign-on as is needed in SAS/CONNECT.

CEDA Limitations
CEDA is not the preferred strategy for network file access in all situations. CEDA has
these limitations:

• CEDA features are implemented for SAS 9 or SAS 8 data sets, PROC SQL views,
SAS/ACCESS views for Oracle and Sybase, and MDDBs. CEDA does not support
SAS 9 or SAS 8 stored programs or catalogs, nor does it support any SAS 6 or
earlier files. The type of access that CEDA has to a SAS file depends on the engine
used and the type of file access requested (read, write, update). For more information
about file access limitations, see “SAS File Processing with CEDA ” in Chapter 32
of SAS Language Reference: Concepts.

• CEDA does not support update processing for any SAS files.

• CEDA does not support subsetting by means of an index.

• CEDA can read audit trails but it cannot update them.

• The processing of integrity constraints is not supported.

• Under z/OS, SAS bound libraries support only SAS data sets that have a CEDA data
representation of MVS_32. However, UNIX File System libraries on z/OS support
all CEDA data representations.

• Network resources are consumed each time CEDA translates a SAS file.

• Transcoding could result in character data loss when encodings are incompatible. For
details about encoding and transcoding, see SAS National Language Support (NLS):
Reference Guide.

• If a file that is in a foreign format is damaged, it cannot be repaired because CEDA
does not support update processing, which is the strategy that you use to repair a
damaged data set. To repair the file, you must move it back to the source

12 Chapter 2 • CEDA

environment. For details about repairing a damaged data set, see the REPAIR
statement in the DATASETS procedure in the Base SAS Procedures Guide.

• Numeric variables have a minimum length of either 2 or 3 bytes, depending on the
operating environment. In an operating environment that supports a minimum of 3
bytes (such as Windows or UNIX), CEDA cannot process a numeric variable that
was created with a length of 2 bytes (for example, in z/OS). If you encounter this
restriction, use the XPORT engine or the CPORT and CIMPORT procedures instead
of CEDA.

• Loss of precision can occur in numeric variables when you move data between
operating environments. If a numeric variable is defined with a short length, you can
try increasing the length of the variable. Full-size numeric variables are less likely
than short numeric variables to encounter a loss of precision with CEDA. For more
information, see the topic about numeric precision in SAS Language Reference:
Concepts.

If you have performance problems, analyze file access patterns to determine whether the
data set is located on the correct computer. For example, if the SAS data set is
represented in UNIX data format, but most of the read operations originate from
Windows computers, you might consider moving the data set to a Windows computer
and changing the data set's UNIX file format to Windows format. Windows access to a
network-mounted file in Windows format would not require CEDA. Changing the file's
format would improve performance and allow write and update access. However, CEDA
would be used to translate between the native Windows format of the SAS file being
accessed and the accessing computers other than Windows (such as UNIX, z/OS, and
OpenVMS).

For details about the types of data that CEDA supports and restrictions on using CEDA,
see “Processing Data Using Cross-Environment Data Access (CEDA)” in Chapter 32 of
SAS Language Reference: Concepts.

Creating or Changing a SAS File's Format

Creating a SAS File in a Foreign Format
By default, new SAS files or SAS libraries that you create using the DATA step or the
LIBNAME statement are created in the native format of the source computer. For
example, under Windows, a new data set is created in a Windows native format.
However, you can override the default and create a data set in a foreign format. For
example, under Windows, you could create a new data set in a foreign format, such as a
UNIX data representation.

Example: Creating a Foreign Format Using the OUTREP= Option in
the DATA Step

In order to create a SAS file in a foreign format for a supported member type, use the
OUTREP= option in the DATA step. The OUTREP= option applies the foreign format
to the specified data set.

In this example, assume that the native format is a Windows representation, which is
being overridden by the foreign format, HP_UX_64:

data chem.grades (outrep=HP_UX_64);
 input student $ test1 test2 final;

Creating or Changing a SAS File's Format 13

 datalines;
Fred 66 80 70
Wilma 97 91 98
 run;

In this example, the data set GRADES is created in the foreign format, HP_UX_64.

For supported values for the OUTREP= option, see the “LIBNAME Statement” in SAS
Statements: Reference or the OUTREP= option in SAS Data Set Options: Reference.

Changing a SAS File to a Foreign Format
You can also change the file's native format to a foreign format by using the LIBNAME
statement and the OUTREP= option along with the COPY procedure and the
NOCLONE option at the source computer or at the target computer.

At the source computer, you could change the file's native format to a foreign format,
and then transfer the file to the target computer.

Alternatively, at the source computer, you could transfer the file in its native format to
the target computer. At the target computer, you could then change the file's native
format to the foreign format that is used at the target computer.

Example: Changing a File's Format Using the OUTREP= Option in
the LIBNAME Statement and the NOCLONE Option in PROC COPY

Here is the process to change a SAS file's native format to a foreign format for a
supported member type:

Note: The file format of MDDB files cannot be changed. CEDA supports MDDB files
for read-only access.

1. Use a LIBNAME statement and the OUTREP= option to point to the file that will be
created in foreign format.

2. Use a LIBNAME statement to point to the file that is in native format.

3. Use the COPY procedure to copy the file in native format to the file in foreign
format. Also, use the NOCLONE option, which chooses the data representation of
the file in foreign format instead of the file in native format.

Here is an example:

libname target 'path-to-target-library' outrep=HP_UX_64;
libname source 'path-to-source-library';
proc copy in=source out=target noclone memtype=data;
run;

In this example, the library of data sets in Windows native format is copied to a library
of data sets in HP_UX_64 foreign format.

For supported values of the OUTREP= option, see the “LIBNAME Statement” in SAS
Statements: Reference or the OUTREP= option in SAS Data Set Options: Reference. .
For details about the NOCLONE option, see the COPY procedure in the Base SAS
Procedures Guide.

14 Chapter 2 • CEDA

Example: Verifying the Changed File's Format in the SAS Log at the
Source Computer

You view the SAS log at the source computer that runs the native Windows operating
environment to verify that the SAS file was changed to the HP_UX_64 foreign format.

Output 2.1 Data Representation Specified in the SAS Log

The SAS System 10:15 Friday, December 19, 2003 1

 The CONTENTS Procedure

 Data Set Name WORK.GRADES Observations
 1
 Member Type DATA Variables
 4
 Engine V9 Indexes
 0
 Created 11:03 Friday, December 19, 2003 Observation Length
 32
 Last Modified 11:03 Friday, December 19, 2003 Deleted Observations
 0
 Protection Compressed
 NO
 Data Set Type Sorted
 NO
 Label
 Data Representation HP_UX_64, RS_6000_AIX_64, SOLARIS_64, HP_IA_64
1
 Encoding latin1 Western (ISO)

 Engine/Host Dependent Information

 Data Set Page Size 4096
 Number of Data Set Pages 1
 First Data Page 1
 Max Obs per Page 126
 Obs in First Data Page 1
 Number of Data Set Repairs 0
 File Name C:\TEMP\SAS Temporary
Files_TD228\grades.sas7bdat
 Release Created 9.0000M0
 Host Created WIN_NT 2

 Alphabetic List of Variables and Attributes

 # Variable Type Len

 4 final Num 8
 1 student Char 8
 2 test1 Num 8
 3 test2 Num 8

1 The data set is represented in HP_UX_64 format, which is foreign to the native
Windows environment.

2 The native format is WIN_NT.

Creating or Changing a SAS File's Format 15

Transferring a SAS File between Computers
You can use either of these methods to make a SAS file available for access at the target
computer:

• NFS (Network File Services) to mount the file on the network for operating
environment access. See the documentation for NFS and for your operating
environment.

• FTP (File Transfer Protocol) services to copy a file in binary format to a specific
target operating environment. For an FTP example, see “Example: Using FTP to
Transfer Foreign Files and Transport Files” on page 42 .

CAUTION:
A foreign file must be transferred in BINARY format.

Identifying the Format of a SAS File

Example: Reporting That CEDA Is Being Used
In SAS 9 and later, SAS writes a message to the log when CEDA is used. Here is an
example:

NOTE: Data file HEALTH.GRADES.DATA is in a format that is native to
another host, or the file encoding does not match the session encoding.
Cross Environment Data Access will be used, which might require
additional CPU resources and might reduce performance.

Note: Additional resources are consumed each time you read a foreign file.

Example: Identifying a File's Format Using PROC CONTENTS
You can use the CONTENTS procedure (or the CONTENTS statement in PROC
DATASETS) to find out the format of the specified SAS file.

Here is an example of the code:

proc contents data=grades;
run;

An excerpt of the output follows:

Data Representation HP_UX_64, RS_6000_AIX_64, SOLARIS_64, HP_IA64

In the preceding example, the output shows that the file is represented in UNIX format.

If the target computer uses a format that is the same as the file format, then you can read,
write, and update the file.

Note: No additional resources are consumed.

If the target computer uses a format that is different from the file format (in this
example, UNIX), you can read and write, but you cannot update the files.

16 Chapter 2 • CEDA

Note: Additional resources are consumed each time you read a foreign file.

Restrictions on Accessing a Foreign File
You cannot update a foreign file. However, you can do the following:

• read the file.

Note: Additional resources are consumed each time you read a foreign file.

• change the file's foreign format (for example, UNIX) to the format of the native
(accessing) computer (for example, Windows). Changing from a foreign to a native
format allows you full access (read, write, and update) to the file without any
intermediate translation.

Note: After you change the file's format, no additional resources are consumed when
you access the file.

If you try to update a SAS file that has a format that is foreign to the accessing computer,
an error message is displayed.

Note: The type of access that CEDA is permitted depends on the engine used and the
type of file access requested (read, write, update). For more information about file
access limitations, see “SAS File Processing with CEDA ” in Chapter 32 of SAS
Language Reference: Concepts.

A typical error message follows:

ERROR: File TEST.CMVS cannot be updated because its
encoding does not match the session encoding or the file is in a
format native to another host, such as SOLARIS, HP_UX, RS_6000_AIX,
MIPS_ABI.

Reading and Writing a Foreign File
After a foreign file has been transferred across the network to the target computer, and if
the target computer runs SAS 8 or later, the target computer can read and write the SAS
file. A target computer can transparently access a foreign file for reading or writing, but
not for updating the files.

You can read and write, but you cannot update the files.

Note: Additional resources are consumed each time you read or write a foreign file.

Reading and Writing a Foreign File 17

18 Chapter 2 • CEDA

Chapter 3

PROC CPORT and PROC
CIMPORT

Overview of Moving SAS Files Using PROC CPORT and PROC CIMPORT . . . 19

Limitations of Moving SAS Files Using PROC CPORT and PROC CIMPORT . . 20

Disadvantages of Moving SAS Files Using PROC CPORT
and PROC CIMPORT . 20

Creating a Transport File at the Source Computer . 20
Create a Transport File Using PROC CPORT . 20

Transferring Transport Files to a Target Computer . 22

Restoring Transport Files at the Target Computer . 23
Verifying the Content of the Transport File . 23
Restore the Transport File Using PROC CIMPORT . 23

Overview of Moving SAS Files Using PROC
CPORT and PROC CIMPORT

PROC CPORT creates files in transport format, which uses an environment independent
standard for character encoding and numeric representation. Transport files that are
created by PROC CPORT can be transferred across operating environments and read
using PROC CIMPORT.

Here is the process for creating a transport file at the source computer and reading it at a
target computer:

1. A transport file is created at the source computer using PROC CPORT.

2. The file is transferred from the source computer to the target computer.

3. The transport file is read at the target computer using PROC CIMPORT.

Note: Transport files that are created using PROC CPORT are not interchangeable with
transport files that are created using the XPORT engine.

19

Limitations of Moving SAS Files Using PROC
CPORT and PROC CIMPORT

The CPORT and CIMPORT procedures are preferable for moving members of both
DATA and CATALOG types. PROC COPY is used to move members of type DATA
only.

Disadvantages of Moving SAS Files Using PROC
CPORT and PROC CIMPORT

These are the disadvantages of using PROC CPORT and PROC CIMPORT to move
SAS files:

• PROC CPORT and PROC CIMPORT do not support the transport of any type of
view or MDDB.

• PROC CPORT and PROC CIMPORT do not allow file transport from a later version
to an earlier version, which is known as regressing (for example, from SAS 9 to SAS
6). PROC CPORT and PROC CIMPORT move files from an earlier version to a
later version (for example, from SAS 6 to SAS 9). These procedures also move files
between the same versions (for example, from one SAS 9 operating environment to
another SAS 9 operating environment).

However, you can move files between releases of SAS 6 (for example, from SAS
6.12 to SAS 6.08). For details about the syntax for these procedures, see Chapter 14,
“CPORT Procedure” in Base SAS Procedures Guide and Chapter 10, “CIMPORT
Procedure” in Base SAS Procedures Guide.

• PROC CPORT and PROC CIMPORT can lose precision on numeric values that are
extremely small and large. Refer to “Loss of Numeric Precision and Magnitude” in
Chapter 1 of SAS/CONNECT User's Guide for details.

Creating a Transport File at the Source Computer
Create a transport file that contains one or more SAS data sets or one or more SAS
catalogs by using PROC CPORT.

Create a Transport File Using PROC CPORT

Example: Using PROC CPORT to Create a Transport File for Data
Sets
This example uses the CPORT procedure to create a transport file for one data set.

libname source 'SAS-data-library';
filename cportout 'transport-file';
proc cport data=source.grades file=cportout;
run;

20 Chapter 3 • PROC CPORT and PROC CIMPORT

In the preceding example, the libref SOURCE points to the original location of the data
set that is on the source computer. The fileref CPORTOUT points to a new location
where the transport file will be created. The PROC CPORT statement copies, as its
source, the file that is identified in the DATA= option to the new transport file that is
identified in the FILE= option. The DATA= option specifies only one data set to be
transported.

To include the entire contents of a library, which can contain multiple catalogs and data
sets, specify the LIBRARY= option instead of the DATA= option in PROC CPORT.

Here is an example of PROC CPORT that specifies that all data sets in the library be
transported:

proc cport library=source file=cportout memtype=data;

Example: Using PROC CPORT to Create a Transport File for
Multiple Catalogs
This example uses the CPORT procedure to create a transport file for multiple catalogs
in a library.

libname source 'SAS-data-library';
filename cportout 'transport-file';
proc cport library=source file=cportout memtype=catalog;
run;

In the preceding example, the libref SOURCE points to the library that contains the
catalogs that are on the source computer. The fileref CPORTOUT points to a new
location where the transport file will be created. The PROC CPORT statement copies
from the specified library all members of the types that are identified in the
MEMTYPE= option to the new transport file that is identified in the FILE= option.

You can use the EXCLUDE statement in PROC CPORT to omit explicitly the catalog
entries that you do not want. Another option is to use the SELECT statement in PROC
CPORT to specify the catalog entries that you want.

Example: Using PROC CPORT to Create a Transport File for an
Entire Catalog
This example uses the CPORT procedure to create a transport file for an entire catalog.

libname source 'SAS-data-library';
filename cportout 'transport-file';
proc cport catalog=source.testcat file=cportout;
run;

In the preceding example, the libref SOURCE points to the original location of the
catalog that is on the source computer. The fileref CPORTOUT points to a new location
where the transport file will be created. The PROC CPORT statement copies, as its
source, the file that is identified in the CATALOG= option to the new transport file that
is identified in the FILE= option. SOURCE specifies the libref and TESTCAT specifies
the catalog name. The omission of the SELECT or EXCLUDE statements in PROC
CPORT indicates that the entire catalog should be copied.

Example: Using PROC CPORT to Create a Transport File for a
Specific Catalog Entry Type
This example uses the CPORT procedure to create a transport file for a specific catalog
entry type:

Creating a Transport File at the Source Computer 21

libname source 'SAS-data-library';
filename cportout 'transport-file';
proc cport catalog=source.testcat file=cportout et=list;
run;

In the preceding example, the libref SOURCE points to the original location of the
catalog that is on the source computer. The fileref CPORTOUT points to a new location
where the transport file will be created. The PROC CPORT statement copies, as its
source, the file that is identified in the CATALOG= option to the new transport file that
is identified in the FILE= option. The ET= option in PROC CPORT specifies that all
catalog entries of type LIST be written to the new library. Alternatively, you can use the
EET= option to exclude an entire entry type.

Example: Using PROC CPORT to Create a Transport File for Catalog
Entries
This example uses the CPORT procedure to create a transport file for one or more
catalog entries:

libname source 'SAS-data-library';
filename cportout 'transport-file';
proc cport catalog=source.mycat file=cportout;
 select testnpgm.list;
run;

In the preceding example, the libref SOURCE points to the original location of the
catalog that is on the source computer. The fileref CPORTOUT points to a new location
where the transport file will be created. The PROC CPORT statement copies as its
source the file that is identified in the CATALOG= option to the new transport file that
is identified in the FILE= option.

In this example, SELECT TESTNPGM.LIST explicitly names a single catalog entry.
However, you can specify one or more catalog entries by name.

You can use the EXCLUDE statement in PROC CPORT to omit explicitly the catalog
entries that you do not want. Alternatively, you can use the SELECT statement in PROC
CPORT to specify catalog entries that you want.

Transferring Transport Files to a Target Computer
You can use either of these methods to make a transport file available for access:

• NFS (Network File Services) to mount the file on the network for operating
environment access. See the documentation for NFS and for your operating
environment.

• FTP (File Transfer Protocol) services to copy a file in binary format to a specific
target computer. For an FTP example, see “The FTP Utility” on page 41 .

22 Chapter 3 • PROC CPORT and PROC CIMPORT

Restoring Transport Files at the Target Computer

Verifying the Content of the Transport File
Obtain information about the transport file in advance of the file restore operation when
the person who restores the transport file at the target computer is different from the
person who creates the transport file at the source computer. Here is an example of the
type of information that might be useful for restoring the transport file to native format at
the target computer:

Table 3.1 Description of Transport File

Type of Source
Operating
Environment and
SAS Release Used

Strategy
Used to
Create
Transport
File

Transport
Filename Data Sets Catalogs

Catal
og
Entrie
s

z/OS

SAS 9

PROC CPORT TPORT.D
AT

TEST.CIT
Y

TEST.CLA
SS

TEST.FORM
ATS

REGF
MT

SALE
FMT

SIZEF
MT

You can find out the strategy that was used to create the transport file by using a text
editor. You can also use an operating environment read or view command to read the
transport file. The XPORT engine and PROC CPORT create transport files whose
headers look different. For details, see “File Headers: Finding Out the Method Used to
Create the Transport File” on page 65 .

Also, you can use these SAS procedures to list the contents of the transport file: PROC
CATALOG, PROC CONTENTS, and PROC DATASETS. For details about these
procedures, see the Base SAS Procedures Guide.

Restore the Transport File Using PROC CIMPORT

Example: Using PROC CIMPORT to Import Data Sets from a
Transport File
This example uses the CIMPORT procedure to import multiple data sets from a transport
file.

filename importin 'transport-file';
libname target 'SAS-data-library';
proc cimport infile=importin library=target memtype=data;
run;

In the preceding example, the fileref IMPORTIN points to the location where the
transport file was transferred to the target computer. The libref TARGET points to a new
location where the transport file will be copied. The PROC CIMPORT statement copies
as its source the file that is identified in the INFILE= option to the location identified in

Restoring Transport Files at the Target Computer 23

the LIBRARY= option. The PROC CIMPORT statement implicitly translates the
transport file into the target computer native format.

Because the LIBRARY= option permits both data sets and catalogs to be copied to the
library, you need to specify MEMTYPE=DATA to restrict the operation to data sets in
the library. Omitting the MEMTYPE= option permits both data sets and catalogs, in the
file referenced by the fileref IMPORTIN, to be copied to the location referenced by the
libref TARGET.

In order to subset the destination member in PROC CIMPORT, use either the SELECT
statement, the EXCLUDE statement, or the MEMTYPE= option. Here is an example of
subsetting:

filename importin 'transport-file';
libname target 'SAS-data-library';
proc cimport infile=importin library=target memtype=data;
 select grades;
run;

In the preceding example, the libref TARGET and the MEMTYPE= option point to the
new location where the transport file will be copied. The fileref IMPORTIN points to the
location where the transport file was transferred to the target computer. The
PROC CIMPORT statement copies as its source the file that is identified in the INFILE=
option to the location identified in the LIBRARY= option. The PROC CIMPORT
statement implicitly translates the transport file into the target computer native format.

The SELECT statement selects only the data set GRADES for the library TARGET.

Using Compatible Destination Member Types in PROC CPORT and
PROC CIMPORT
To import catalogs from a transport file, make sure that you use compatible destination
member types in PROC CPORT and PROC CIMPORT as shown in the following table.

Supported Statements at the Source
Computer

Supported Statements at the Target
Computer

CPORT LIBNAME= CIMPORT LIBNAME= or DATA=

CPORT DATA= CIMPORT LIBNAME= or DATA=

CPORT CATALOG= CIMPORT LIBNAME= or CATALOG=

If destination members are incompatible, you receive either an error or a warning
message. See “Preventing and Fixing Problems” on page 70 for recovery actions that
can be taken to fix common errors. For details about PROC CPORT and PROC
CIMPORT syntax, see the Base SAS Procedures Guide.

Example: Using PROC CIMPORT to Import Multiple Catalogs from a
Transport File
This example uses the CIMPORT procedure to import multiple catalogs from a transport
file. To import multiple catalogs, specify the LIBRARY= option and
MEMTYPE=CATALOG in PROC CIMPORT.

filename importin 'transport-file';
libname target 'SAS-data-library';

24 Chapter 3 • PROC CPORT and PROC CIMPORT

proc cimport infile=importin library=target memtype=catalog;
run;

In the preceding example, the fileref IMPORTIN points to the location where the
transport file was transferred to the target computer. The libref TARGET points to a new
location where the transport file will be copied. The PROC CIMPORT statement copies,
as its source, the file that is identified in the INFILE= option to the location identified in
the LIBRARY= option. Because the destination is a library, only the libref is specified.
The MEMTYPE= option restricts the import to catalogs. PROC CIMPORT implicitly
translates the transport file into the target computer native format.

Example: Using PROC CIMPORT to Import a Single Catalog from a
Transport File
This example uses the CIMPORT procedure to import a single catalog from a transport
file. To import a single catalog, specify the CATALOG= option in PROC CIMPORT.

filename importin 'transport-file';
libname target 'SAS-data-library';
proc cimport infile=importin catalog=target.testcat;
run;

Example: Using PROC CIMPORT to Import a Single Catalog Entry
Type from a Transport File
This example uses the CIMPORT procedure to import a single catalog entry type from a
transport file. To import a single catalog entry type, specify the ET= option and the
CATALOG= option in PROC CIMPORT.

filename importin 'transport-file';
libname target 'SAS-data-library';
proc cimport infile=importin catalog=target.testcat et=list;
run;

Example: Using PROC CIMPORT to Import Selected Catalog Entries
from a Transport File
This example uses the CIMPORT procedure to import selected catalog entries from a
transport file. Use a SELECT statement to specify the names of the catalog entries that
you want. In this example, SELECT TESTNPGM.LIST ONE.SCL explicitly names the
selected catalog entries. Also, the CATALOG= option in PROC CIMPORT must be
specified.

filename importin 'transport-file';
libname target 'SAS-data-library';
proc cimport infile=importin catalog=target.testcat;
 select testnpgm.list one.scl;
run;

As an alternative, you can use the EXCLUDE statement in PROC CIMPORT to omit
explicitly catalog entries that you do not want.

Restoring Transport Files at the Target Computer 25

26 Chapter 3 • PROC CPORT and PROC CIMPORT

Chapter 4

XPORT Engine with DATA Step or
PROC COPY

Overview of the XPORT Engine . 27

XPORT Engine Advantages . 28

XPORT Engine Limitations . 28

Regressing SAS Data Sets to SAS 6 Format . 28

Creating a Transport File at the Source Computer . 30
Example: Using the DATA Step to Create a Transport File for One Data Set 30
Example: Using PROC COPY to Create a Transport File for

One or More Data Sets . 30

Transferring Transport Files across a Network . 31

Restoring Transport Files at the Target Computer . 31
Identifying the Content of the Transport File . 31
Example: Using a DATA Step to Restore a Single Data Set

from a Transport File . 32
Example: Using PROC COPY to Restore Data Sets from a Transport File 32

Overview of the XPORT Engine
The XPORT engine creates files in transport format, which uses an environment
independent standard for character encoding and numeric representation. Transport files
that are created by the XPORT engine can be transferred across operating environments
and read using the XPORT engine with the DATA step or PROC COPY.

Here is the process for creating a transport file at the source computer and reading it on a
target computer:

1. A transport file is created at the source computer using the XPORT engine with the
DATA step or PROC COPY.

2. The file is transferred from the source computer to the target computer.

3. The transport file is read at the target computer using the XPORT engine with the
DATA step or PROC COPY.

Note: Transport files that are created using PROC CPORT are not interchangeable with
transport files that are created using the XPORT engine.

27

XPORT Engine Advantages
Using the XPORT engine (with either the DATA step or the COPY procedure) provides
these advantages:

• You can move files between operating environments, regardless of whether you are
moving the transport file to a later or an earlier SAS release.

Note: Regressing a data set (moving from a later release to an earlier release)
eliminates the features that are specific to the later release. For example, when
moving from SAS 9 to SAS 6, the long variable names in SAS 9 are truncated to
eight bytes. For details about file regression, see “Regressing SAS Data Sets to
SAS 6 Format” on page 28 .

• You can use the XPORT engine when sending a transport file to a destination
operating environment when the SAS release is unknown.

• You can create the transport file one time and direct it to multiple target operating
environments that run different SAS releases.

The primary reason for using the XPORT engine with the DATA step is to dynamically
create one or more data sets, to order them, and then to translate them to transport
format. By contrast, PROC COPY enables you to translate multiple data sets that already
exist in a library.

XPORT Engine Limitations
Using the XPORT engine has these limitations:

• The XPORT engine supports only members of type DATA. It does not support
members of type CATALOG or VIEW.

• The XPORT engine supports a feature set that is compatible with SAS 6. The
XPORT engine cannot support SAS 9 features, such as long variable names.
Warning or error messages report limitations that are encountered during the
transport operation. For details about typical error messages and recovery actions,
see “File library.member.DATA has too long a member name for the XPORT
engine” on page 75 .

• The XPORT engine with PROC COPY does not support the transport of any type of
view or MDDB.

Regressing SAS Data Sets to SAS 6 Format
The UPLOAD and DOWNLOAD procedures in SAS/CONNECT and PROC COPY
with the XPORT engine are the only strategies available for regressing a data set to SAS
6.

Note: SAS/CONNECT requires a separate license.

28 Chapter 4 • XPORT Engine with DATA Step or PROC COPY

The support of long variable names, long variable labels, and long data set labels in SAS
9 and SAS 8 can make SAS 9 and SAS 8 data sets incompatible with SAS 6 data sets. In
order to revert back to SAS 6, these long names must be truncated to a length that is
supported in SAS 6. Here are the truncation rules:

SAS 9 and SAS 8 Data Set Object Names to
Regress Number of Characters for SAS 6

Data set labels 40

Variable labels 40

Variable names 8

In order to transport SAS 9 and SAS 8 files back to SAS 6, set the portable
VALIDVARNAME system option to the value V6 in the SAS session in which you are
transporting the file. Here are examples, which are specified in the form of a SAS system
option and a macro variable:

options VALIDVARNAME=V6
%let VALIDVARNAME=V6;

For details about setting the VALIDVARNAME system option, see in SAS System
Options: Reference.

The truncation algorithm that is used to produce the eight-character variable name also
resolves conflicting names:

• The first name that is greater than eight characters is truncated to eight characters. A
truncation from PROPERTYTAXRATE to PROPERTY is the first truncation.

• The next name that is greater than eight characters is truncated to eight characters. If
it conflicts with an existing variable name, it is truncated to seven characters, and a
suffix of 2 is added. For example, PROPERTYTAXRATE is truncated to
PROPERT2.

• The suffix is increased by 1 for each truncated name that conflicts with an existing
name. If the suffix reaches 9, the next conflicting variable name is truncated to 6
characters, and a suffix of 10 is appended. For example, PROPERTYTAXRATE is
truncated to PROPER10.

The VALIDVARNAME option solves the long variable name truncation problem.
However, there are no techniques for regressing these SAS 9 or SAS 8 features to SAS
6:

• data set names that exceed eight characters

• integrity constraints

• data set generations

• audit trail

The solution to regressing data sets that have these features is to re-create the data sets
without the SAS 9 or SAS 8 features in a SAS 9 or SAS 8 session.

Note: SAS/CONNECT does support uploading or downloading some catalog entries
from SAS 9 or 8 to SAS 6. For details, see Chapter 23, “UPLOAD Procedure” in
SAS/CONNECT User's Guide and Chapter 24, “DOWNLOAD Procedure” in
SAS/CONNECT User's Guide .

Regressing SAS Data Sets to SAS 6 Format 29

Creating a Transport File at the Source Computer

Example: Using the DATA Step to Create a Transport File for One
Data Set

This example uses the DATA step to create a transport file for one data set.

libname source 'SAS-data-library';
libname xportout xport 'transport-file';
data xportout.grades;
 set source.grades;
run;

In the preceding example, the libref SOURCE points to the original location of the data
set that is on the source operating environment. The libref XPORTOUT points to a new
location where the transport file will be created. The XPORT engine in this LIBNAME
statement specifies that the data set is to be created in transport format. The SET
statement reads the data set GRADES and re-creates it in transport format at the location
specified in the DATA statement.

Example: Using PROC COPY to Create a Transport File for One or
More Data Sets

This example uses the COPY procedure to create a transport file for multiple data sets.

libname source 'SAS-data-library';
libname xportout xport 'transport-file';
proc copy in=source out=xportout memtype=data;
run;

In the preceding example, the libref SOURCE points to the original location of the
library that is on the source operating environment. The libref XPORTOUT points to a
new location to which the transport file will be copied. The XPORT engine in this
LIBNAME statement specifies that the library is to be created in transport format. The
PROC COPY statement copies all data sets in the library that are identified in the IN=
option to the new library that is identified in the OUT= option. The MEMTYPE=DATA
option limits the files that are copied to type DATA, which excludes catalogs and views.

CAUTION:
Do not omit the MEMTYPE=DATA option. Otherwise, SAS attempts to copy the
entire contents of the library (including catalogs and views) to the transport file. The
XPORT engine does not support the CATALOG or the VIEW member type. Error
and warning messages are written to the SAS log.

This example uses PROC COPY to create a transport file for one data set:

libname source 'SAS-data-library';
libname xportout xport 'transport-file';
proc copy in=source out=xportout memtype=data;
 select grades;
run;

In the preceding example, the libref SOURCE points to the original location of the data
set that is on the source operating environment. The libref XPORTOUT points to a new
location where the transport file will be copied. The XPORT engine in this LIBNAME

30 Chapter 4 • XPORT Engine with DATA Step or PROC COPY

statement specifies that the data set is to be created in transport format. The PROC
COPY statement copies all data sets that are identified in the IN= option to the new
library that is identified in the OUT= option. The MEMTYPE=DATA option limits the
files that are copied to type DATA, which excludes catalogs and views. The SELECT
statement specifies that only the data set GRADES be copied to the new library.
However, you could specify more than one data set here. If you omit the SELECT
statement, all data sets will be copied to the transport file.

Note: You can use the EXCLUDE statement to omit explicitly the data sets that you do
not want instead of using the SELECT statement to specify the data sets that you
want.

Transferring Transport Files across a Network
You can use either of these methods to make a transport file available for access:

• NFS (Network File Services) to mount the file on the network for operating
environment access. See the documentation for NFS and for your operating
environment.

• FTP (File Transfer Protocol) services to copy a file in binary format to a specific
target computer. For an FTP example, see “Transferring Files” on page 39 .

Restoring Transport Files at the Target Computer

Identifying the Content of the Transport File
If the person who restores the transport file at the target operating environment is
different from the person who creates the transport file at the source operating
environment, make sure you obtain information about the transport file in advance of the
file restore operation. Here is an example of the type of information that might be useful
for restoring the transport file to native format at the target operating environment:

Table 4.1 Description of Transport File

Type of Source
Operating Environment
and SAS Release Used

Strategy Used to
Create Transport
File

Transport
Filename Data Sets

z/OS

SAS 9

XPORT Engine TPORT.DAT TEST.CITY

TEST.CLASS

You can find out which strategy was used to create the transport file by examining the
file header. The XPORT engine and PROC CPORT create transport files whose headers
look different. For details, see “File Headers: Finding Out the Method Used to Create the
Transport File” on page 65 .

Also, you can use PROC CONTENTS and PROC DATASETS to list the contents of the
transport file. For details about these procedures, see Base SAS Procedures Guide.

Restoring Transport Files at the Target Computer 31

Example: Using a DATA Step to Restore a Single Data Set from a
Transport File

This example uses the DATA step to restore a data set from a transport file.

libname xportin xport
'transport-file';
libname target 'SAS-data-library';
data target.grades;
 set xportin.grades;
run;

In the preceding example, the libref XPORTIN points to the location of the exported
data set that was transferred to the target operating environment. The XPORT engine
specifies that the data set is to be read in transport format. The libref TARGET points to
a new location where the translated file will be copied. The SET statement reads the data
set XPORTIN.GRADES in transport format and translates it and copies it to the location
specified in the DATA statement. Because a DATA step with the XPORT engine was
used at the source operating environment to create the transport file for a single data set,
only a data set can be restored at the target operating environment.

Example: Using PROC COPY to Restore Data Sets from a Transport
File

This example uses the COPY procedure to restore one or more data sets from a transport
file.

libname xportin xport
'transport-file';
libname target 'SAS-data-library';
proc copy in=xportin out=target;
 select grades;
run;

In the preceding example, the libref XPORTIN points to the location where the transport
file was transferred to the target operating environment. The XPORT engine in this
LIBNAME statement specifies that the transport file at this location is to be read in
transport format. The libref TARGET points to a new location where the transport file
will be copied in native format. The PROC COPY statement copies the selected data set
GRADES from the library that is identified in the IN= option to the new library that is
identified in the OUT= option.

Using a SELECT statement, you specify one or more specific data sets to be copied to
the new library. To specify that all data sets in the transport file be copied, omit the
SELECT statement from PROC COPY.

Note: You can use the EXCLUDE statement in PROC COPY to omit explicitly the
data sets that you do not want instead of using the SELECT statement to specify the
data sets that you want.

32 Chapter 4 • XPORT Engine with DATA Step or PROC COPY

Chapter 5

XML Engine with DATA Step or
PROC COPY

Overview of the XML Engine . 33

XML Engine Advantages . 33

XML Engine Limitations . 34

Creating an XML Document at the Source Computer . 34
Example: Using the DATA Step to Create an XML Document from a Data Set . . 34
Example: Using PROC COPY to Create an XML Document from a Data Set 35

Transferring an XML Document across a Network . 35

Restoring an XML Document as a Data Set at a Target Computer 36
Example: Using a DATA Step to Restore a Data Set from an XML Document . . . 36
Example: Using PROC COPY to Restore a Data Set from an XML Document . . . 36

Overview of the XML Engine
The XML engine enables you to export XML documents from SAS data sets and to
restore XML documents as SAS data sets. XML documents can be transported across
operating environments and read using the XML engine with the DATA step or PROC
COPY.

Here is the process for creating an XML document at the source computer and reading it
on a target computer:

1. An XML document is created at the source computer using the XML engine with the
DATA step or PROC COPY.

2. The file is transferred from the source computer to the target computer.

3. The XML document is read at the target computer using the XML engine with the
DATA step or PROC COPY.

For details about the XML engine, see the SAS XML LIBNAME Engine: User's Guide.

XML Engine Advantages
Using the XML engine with the DATA step or with PROC COPY provides these
advantages:

33

• XML data is stored as text. Unlike SAS files, XML documents can be read and
updated by using a text editor.

• XML documents can be imported into applications other than SAS applications. For
example, an XML document can be input to an Oracle application or it can be
delivered to the Web. It can also be restored as a SAS data set for continued
processing. If compatibility with other programs is important for your data, the XML
engine is recommended.

• The XML engine supports SAS 8 and later features. Unlike the XPORT engine, the
XML engine supports SAS 8 features such as long names.

XML Engine Limitations
The XML engine has these limitations:

• The XML engine supports only SAS data files. Views and other SAS file types are
not supported.

• The XML engine is not supported in SAS 6 and earlier releases. If you are moving to
or from SAS 6, you must use the XPORT engine.

• The XML engine uses more processing time than the other strategies. If processing
time is an issue, XML is not recommended.

• XML documents can be large. If disk space or network bandwidth is an issue, XML
is not recommended.

• The XML engine is dependent on the transfer method for character translation. If
you transfer an XML document as a binary file, it might not be readable at the target
computer.

Creating an XML Document at the Source
Computer

Example: Using the DATA Step to Create an XML Document from a
Data Set

This example uses the DATA step with the XML engine to create an XML document
from a data set.

libname source 'SAS-data-library';
libname xmlout xml 'XML-document';
data xmlout.grades;
 set source.grades;
run;

In the preceding example, the libref SOURCE points to the location of the library that is
on the source computer. The libref XMLOUT points to the location where the XML
document will be created. The XML engine in this LIBNAME statement specifies that
the file is to be created in XML markup. The SET statement reads the data set GRADES
and generates XML markup at the location that is specified in the LIBNAME statement.

Here are the contents of the resulting XML document:

34 Chapter 5 • XML Engine with DATA Step or PROC COPY

Output 5.1 XML Output Generated from Data Set GRADES

<?xml version="1.0" encoding="windows-1252" ?>
<TABLE>
 <GRADES>
 <student> Fred </student>
 <test1> 66 </test1>
 <test2> 80 </test2>
 <final> 90 </final>
 </GRADES>
 <GRADES>
 <student> Wilma </student>
 <test1> 97 </test1>
 <test2> 91 </test2>
 <final> 98 </final>
 </GRADES>
</TABLE>

Example: Using PROC COPY to Create an XML Document from a
Data Set

This example uses the COPY procedure to create an XML document from a data set.

libname source 'SAS-data-library';
libname xmlout xml 'XML-document';
proc copy in=source out=xmlout;
 select grades;
run;

In the preceding example, the libref SOURCE points to the location of the library that is
on the source computer. The libref XMLOUT points to the location at which the XML
document will be created. The XML engine in this LIBNAME statement specifies that
the file is to be created in XML markup. The PROC COPY statement copies data from
the library that is identified in the IN= option to the library that is identified in the OUT=
option. The SELECT statement specifies the data set that will be copied from the input
library.

Note: If you do not specify a single data set in the SELECT statement, the XML engine
processes all members of the input library and concatenates the observations.

Transferring an XML Document across a Network
You can use either of these methods to make an XML document available for access:

• NFS (Network File Services) to mount the file on the network for operating
environment access. See the documentation for NFS and for your operating
environment.

• FTP (File Transfer Protocol) to copy a file to a specific target computer. For details
about FTP, see “Transferring Files” on page 39 .

When transferring the resulting XML document, if you used the default encoding,
transfer the file in ASCII (text) mode. If you specified an explicit encoding value,
transfer the file in binary mode.

Transferring an XML Document across a Network 35

Restoring an XML Document as a Data Set at a
Target Computer

Example: Using a DATA Step to Restore a Data Set from an XML
Document

This example uses the DATA step to restore a data set from an XML document.

libname xmlin xml 'XML-document';
libname target 'SAS-data-library';
data target.grades;
 set xmlin.grades;
run;

In the preceding example, the libref XMLIN points to the location of an XML document.
The XML engine specifies that a SAS data set is to be read. The libref TARGET points
to the location to which the converted SAS data set will be copied. The SET statement
reads the data set XMLIN.GRADES in XML format, translates it, and copies it to the
location that is specified in the DATA statement.

Example: Using PROC COPY to Restore a Data Set from an XML
Document

This example uses the COPY procedure to restore a data set from an XML document.

libname xmlin xml 'XML-document';
libname target 'SAS-data-library';
proc copy in=xmlin out=target;
run;

In the preceding example, the libref XMLIN points to the location of an XML document.
The XML engine specifies that the XML document is to be read in XML format. The
libref TARGET points to the location to which the contents of the XML document will
be copied. The PROC COPY statement copies the contents of the library that is specified
in the IN= option to the library that is specified in the OUT= option.

36 Chapter 5 • XML Engine with DATA Step or PROC COPY

Part 3

Transferring Transport Files and
Foreign Files

Chapter 6
Transferring Files . 39

37

38

Chapter 6

Transferring Files

Overview of File Transfers . 39

Attributes for Transport Files . 40

Using the FILENAME Statement or FTP for Foreign Files and Transport Files . 41
Example: Using the FILENAME Statement for a File Transfer 41
The FTP Utility . 41
Example: Using FTP to Transfer Foreign Files and Transport Files 42
Example: Using a Magnetic Medium to Transfer Foreign

Files and Transport Files . 43

Overview of File Transfers
These types of files can be transferred:

foreign file
A file whose format is foreign to the target computer. For example, a Windows file
format is foreign to a UNIX operating environment.

transport file
A file whose format has been changed to transport format, which can be
subsequently read and changed to the native format of the target computer.

Transfer is the process of conveying a foreign file or a transport file between operating
environments across a network. Various third-party products are available for
performing this operation. This example uses FTP (File Transfer Protocol) to illustrate
the transfer operation.

You perform a transfer operation by doing one of the following actions:

pushing a file
From the source computer, use the FTP put command to copy a file from the source
computer to the target computer.

pulling a file
From the target computer, use the FTP get command to copy a file from the source
computer to the target computer.

Your ability to push a file from the source to the target computer will depend on whether
your access permission enables you to write to the target computer. For complete details,
see your network documentation.

39

Attributes for Transport Files
File attributes describe the organization and format of the data in the transport file that is
transferred to a target computer. A transport file must have these attribute values:

Logical record length (LRECL) 80

Block size (BLKSIZE) 8000 bytes

Record format (RECFM) Fixed block

Note: In some cases, a block size value of less than 8000 bytes might be more efficient
for your storage device. The block size value must be an exact multiple of the logical
record length value.

CAUTION:
For z/OS only, you must specify a Block Size that is 80 or a multiple of 80 (for
example, 160, 240, 320).

Although not required, file attributes can be set for all other source computers. File
attributes are declared according to the source computer that the transport file is created
on and the transfer method used.

In addition, you must specify file attributes for files in operating environments that
require them by using the communications software protocol. For example, if you
transfer a transport file from a UNIX operating environment to a z/OS operating
environment, you must specify file attributes through the communications software.

Besides setting file attributes for those operating environments that require it, ensure that
your communications software does not alter the default file attribute settings for any
operating environment.

Alternatively, in order to transfer a transport file from a source computer to tape and
then from tape to disk at the target computer, you use operating environment-specific
commands that define the input and output devices for the operating environments
involved in the transfer.

After the transport file is created, it must then be transferred to the target computer either
across the network or by means of a mountable magnetic medium such as a disk or a
tape.

File attributes that are set incorrectly can corrupt or invalidate a transport file.

For details about setting file attributes or using tape commands for these operating
environments, see the appropriate topic:

• “OpenVMS Operating Environment” on page 47

• “z/OS Operating Environment” on page 53

• “UNIX Operating Environment” on page 59

• “Windows Operating Environment” on page 57

40 Chapter 6 • Transferring Files

Using the FILENAME Statement or FTP for
Foreign Files and Transport Files

Example: Using the FILENAME Statement for a File Transfer
CAUTION:

Use the FILENAME statement only for transport files, not foreign files.

Here is an example of using the FILENAME statement with the FTP access method to
specify file attributes and to transfer a transport file over the network to a target
computer:

filename tranfile ftp 'tport.dat' lrecl=80 blocksize=8000
 recfm=f cd='mydir' host='myhost.mycompany.com'
 user='myuser' pass='mypass'
 rcmd='site umask 022 recfm=s';

The FILENAME statement specifies the fileref TRANFILE, which specifies the external
file TPORT.DAT for transfer over the network. FTP options specify values for the
record attributes: record length, block size, and record format. Also, FTP options
identify the location for the file transfer on the target computer and the user ID and
password that permit access to the target computer. Finally, the file mode creation mask
on the target computer and a binary transfer are specified. For information about the FTP
access method in the FILENAME statement, see the in SAS Statements: Reference and
the companion documentation that is appropriate to your operating environment.

Note: Besides the FTP access method, you can also use the SOCKET, URL, or SMTP
access method in the FILENAME statement. FTP directs the file to a hard disk,
SOCKET directs the file to a TCP/IP port, URL directs the file to the Web, and
SMTP directs the file to e-mail. For complete information about these access
methods, see“FILENAME Statement, SOCKET Access Method” in SAS Statements:
Reference, “FILENAME Statement, URL Access Method” in SAS Statements:
Referenceor “FILENAME Statement, EMAIL (SMTP) Access Method” in SAS
Statements: Reference.

The FTP Utility
FTP is a user interface to the File Transfer Protocol. FTP copies files across a network
connection between the source computer and a target computer. FTP runs from the
initiating computer, which can be either the source computer or the target computer.

In order to transfer a file to a target computer across a network, a binary (or image)
format transfer must be specified. This format guarantees a consistent file structure for
any operating environment that runs SAS. You must use the FTP BINARY command to
declare binary format. For typical FTP command syntax, see “Example: Using FTP to
Transfer Foreign Files and Transport Files” on page 42 .

Transferring a file in ASCII format places extra characters in the transport file on the
target computer. Usually, these characters are line feeds, carriage returns, end-of-record
markers, and other characters that some operating environments use to define file
characteristics.

Target computers that run SAS expect a transport file to be formatted in a certain
structure, without these characters. The introduction of these characters into a file causes

Using the FILENAME Statement or FTP for Foreign Files and Transport Files 41

corruption, which prevents the file from being successfully restored at the target
computer. Error messages usually warn of file corruption. For details about file
corruption and recovery actions, see “Preventing and Fixing Problems” on page 70 .

Note: SAS 6.11 through SAS 9 support the FILENAME statement with the FTP access
method, which specifies file attributes for file transfer. Releases before SAS 6.11 do
not support the FILENAME statement with the FTP access method.

Example: Using FTP to Transfer Foreign Files and Transport Files
You transfer a foreign file in the same way that you transfer a transport file. The only
difference between the two is the filename. SAS appends a transport filename with an
appropriate member type extension, such as .DAT for a data set. A file that was created
with CEDA features is appended with an appropriate SAS 9 or SAS 8 filename
extension, such as .SAS9BDAT for a data set.

In these examples, TRANFILE specifies the name of the transport file that is transferred
across the network. TARGET specifies the destination for the file in foreign format or
the transport file on the target computer.

This example shows FTP commands that are used at the source computer to put a
foreign file or a transport file on the target computer:

/* putting transport file on the target computer */
 > open target-computer
 > binary
 > put tranfile target-computer-filename
 > close
 > quit

This example shows FTP commands that are used at the target computer to get a foreign
file or a transport file from the source computer:

/* At the target computer, getting transport file from */
/* the source computer */
 > open source-computer
 > binary
 > get tranfile source-computer-filename
 > close
 > quit

If you have access to a UNIX system, see the ftp(1) manual page for more details.

Note: In order to copy a file with the FTP put command to a server location, you must
have write permission to the target location on the server. Because a local user's
permission to put a file at a server location is uncertain, it is recommended that the
remote user use the FTP get command to obtain the file from the client instead. The
local user must give read and write permission to the file that the remote user
accesses.

This code shows an example of user JOE at the target computer getting two transport
files from an OpenVMS source computer:

 hp> ftp myhost.mycompany.com 1

 Connected to myhost.mycompany.com
 220 myhost.mycompany.com MultiNet FTP Server Process V4.0(15)
 at Mon 13-Jan-03 12:59PM-EDT

42 Chapter 6 • Transferring Files

 Name (myhost.mycompany.com:): joe
 331 User name (joe) ok. Password, please.
 Password:
 230 User JOE logged into DISK01:[JOE] at Mon 13-Jan-03
 12:59PM-EDT, job 27a34cef.
 Remote system type is VMS.
 ftp> cd [.xpttest] 2
 250 Connected to DISK01:[JOE.XPTTEST].
 ftp> binary 80 3
 200 Type I ok.
 ftp> get xptds.dat xptds.dat 4
 200 Port 14.83 at Host 10.26.2.45 accepted.
 150 IMAGE retrieve of DISK01:[JOE.XPTTEST]XPTDS.DAT;1 started.
 226 Transfer completed. 1360 (8) bytes transferred. 5
 1360 bytes received in 0.02 seconds (87.59 Kbytes/s)
 ftp> get xptlib.dat xptlib.dat 6
 200 Port 14.84 at Host 10.26.2.45 accepted.
 150 IMAGE retrieve of DISK01:[JOE.XPTTEST]XPTLIB.DAT;1 started.
 226 Transfer completed. 3120 (8) bytes transferred. 7
 3120 bytes received in 0.04 seconds (85.81 Kbytes/s)
 ftp> quit 8

1 From an HP-UX operating environment, the user invokes FTP to connect to the
OpenVMS operating environment MYHOST.MYCOMPANY.COM.

2 After a connection is established between the HP-UX source computer and the
OpenVMS target computer, at the FTP prompt, the user JOE changes to the directory
on the target computer that contains transport file XPTTEST.

3 Transport file attributes BINARY 80 indicate that the OpenVMS transport file be
transferred to the source computer in BINARY format in 80-byte records.

4 The FTP command gets the transport file named XPTDS.DAT from the target
computer and copies it to a new file that has the same name, XPTDS.DAT, in the
current directory.

5 Messages indicate that the transfer was successful and that the length of the transport
file was 1360 bytes.

6 The FTP command gets another transport file named XPTLIB.DAT from the target
computer and copies it to a new file that has the same name, XPTLIB.DAT, in the
current directory.

7 Messages indicate that the transfer was successful and that the length of the transport
file was 3120 bytes.

8 The user quits the FTP session.

Example: Using a Magnetic Medium to Transfer Foreign Files and
Transport Files

When transferring a transport file by means of tape, always use an unlabeled tape.
Although using a standard labeled tape is possible, it usually requires extra work to read
the file at the target computer.

Also, if the transport file exceeds the capacity of one tape, then problems might occur
during the restoration process. Rather than using multi-volume tapes, you should divide
the original library into two or more libraries and create a separate tape for each one. The
original library can be rebuilt at the target computer.

Using the FILENAME Statement or FTP for Foreign Files and Transport Files 43

At the source computer, use the LIBNAME statement to assign the transport file to a
magnetic medium as shown in these examples:

UNIX
libname tranfile xport `/dev/tape';

Windows
libname tran xport `a:\test';

Specification of the file path varies by operating environment.

The method used to move the transport file to a physical tape also varies by operating
environment.

Here is a UNIX example:

dd if=tranfile of=/dev/tape1 bs=8000;

At the source computer, the UNIX dd command copies the specified input file to the
specified output device. Block size is 8000.

At the target computer, you must copy the transport file from tape to disk.

Here is a UNIX example:

dd if=/dev/tape1 of=tranfile bs=8000;

At the target computer, you use the LIBNAME statement to translate the transport file to
native format, assigning the resulting translated file to a specific file location.

Here is a UNIX example:

libname tranfile xport '/dev/tape1';

44 Chapter 6 • Transferring Files

Part 4

Operating Environment Specifics

Chapter 7
OpenVMS Operating Environment . 47

Chapter 8
z/OS Operating Environment . 53

Chapter 9
Windows Operating Environment . 57

Chapter 10
UNIX Operating Environment . 59

Chapter 11
SAS Filename Extensions and File Headers . 63

45

46

Chapter 7

OpenVMS Operating
Environment

Listing OpenVMS System File Attributes . 47

File Attributes Under OpenVMS . 48

Identifying the SAS Version Used to Create a File Under OpenVMS 48

Mounting a Tape Device Under OpenVMS . 49

Error Messages For OpenVMS . 49
Given transport file is bad . 49
Member or library unavailable for use in file . 50
Truncated record . 51
Internal error from getting data . 51

Listing OpenVMS System File Attributes
To list the attributes of a file created under an OpenVMS operating environment system,
specify this command:

DIR/FULL transport-file

Here is the typical output:

 Directory DISK01:[JOE.XPTTEST]

 XPTLIB.DAT;1 File ID: 31223,952,0)
 Size: 7/8 Owner: [DISK01,JOE]
 Created: 25-APR-2008 16:47:31.34
 Revised: 25-APR-2008 16:47:31.69 (1)
 Expires: <No backup recorded>
 Effective: <None specified>
 Recording: <None specified>
 File organization: Sequential
 Shelved state: Online
 File attributes: Allocation: 8, Extend: 0,
 Global buffer count: 0 Version limit: 2
 Record format:Fixed length 512 byte records 1
 Record attributes: None 2
 RMS attributes: None
 Journaling enabled: None
 File protection: System:RWED, Owner:RWED,
 Group:RE, World:

47

 Access Cntrl List: None

 Total of 1 file, 7/8 blocks.
 $ dir/size xptlib.dat

 Directory DISK01:[JOE.XPTTEST]

 XPTLIB.DAT;1 7

 Total of 1 file, 7 blocks.

1 The OpenVMS RECORD FORMAT attribute indicates a fixed record type and a
record length of 512 bytes.

2 The RECORD ATTRIBUTES field can contain the value NONE.

CAUTION:
If this field contains the value CARRIAGE RETURN CARRIAGE CONTROL, file
corruption results. To prevent corruption before you transfer the transport file,
remove this value from the RECORD ATTRIBUTES field. An error message alerts
you to this condition after you try to transfer the corrupted file.

File Attributes Under OpenVMS
You can specify transport file attributes by using FTP or FTP access method options in
the FILENAME statement, whichever is applicable. For details about syntax for the
FILENAME statement, see SAS(R) 9.2 Companion for OpenVMS on HP Integrity
Servers . For an example of specifying file attributes, see “Example: Using the
FILENAME Statement for a File Transfer” on page 41 .

Identifying the SAS Version Used to Create a File
Under OpenVMS

The following table identifies the supported file types that are created under the
OpenVMS system by member and SAS version.

Table 7.1 OpenVMS Filename Extensions by Member and SAS Version

Member Type SAS 6 Filename Extension
SAS 8 and Later
Filename Extension

SAS .SAS .SAS

PROGRAM (DATA step) .SASEB$PROGRAM .sas7bpgm

DATA .SASEB$DATA .sas7bdat

INDEX .SASEB$INDEX .sas7bndx

CATALOG .SASEB$CATALOG .sas7bcat

48 Chapter 7 • OpenVMS

Member Type SAS 6 Filename Extension
SAS 8 and Later
Filename Extension

MDDB .SASEB$MDDB .sas7bmdb

PROC SQL view .SASEB$VIEW .sas7bvew

You can also use the CONTENTS procedure to display information about the data.

Here is an excerpt of typical PROC CONTENTS output, which identifies the member
and the engine that was used to create it:

 The SAS System
 The CONTENTS Procedure
Data Set Name: TEST.RECORDS
Member Type: DATA
Engine: V9

This output reports that the data set TEST.RECORDS is a member of type DATA, and
that it was created with the V9 engine.

Mounting a Tape Device Under OpenVMS
In order to move a transport file from disk to tape at the source computer and to move a
transport file from tape to disk at the target computer, specify these DCL commands to
assign the tape device before starting a SAS session:

Note: Use the INITIALIZE command only if you have a new tape. The INITIALIZE
command destroys any files that already might be on the tape.

$ DEFINE TRANFILE tape-name
$ ALLOCATE TRANFILE
$ INITIALIZE TRANFILE DUMMY
$ MOUNT/FOREIGN/BLOCKSIZE=8000 TRANFILE

Note: TRANFILE in the DCL commands is identical to the libref that points to the
location of the transport file.

Error Messages For OpenVMS

Given transport file is bad
For general recovery actions for this error message, see “Bad Transport File” on page
73 .

The transport file is suspected of being corrupt.

1. Find out whether the transport file contains a corrupting character.

$DIR/FULL transport-file

The output confirms that the transport file contains a corrupting character.

Record attributes: Carriage return Carriage control

Error Messages For OpenVMS 49

2. Your next action will depend on the following conditions that apply to your
environment:

a. If your operating environment has the NFTCOPY (Network File Transfer Copy)
command and you are moving the transport file to a DOS target computer,
remove the carriage return (CC) attribute from the transport file and move the
transport file again to the target computer:

NFTCOPY/IMAGE/FIXED/CC=NONE NODE"userid password"
 ::disk:[dir] tranfile target

Here is an example:

NFTCOPY/IMAGE/FIXED/CC=NONE CHEX "brown bird":
 dua0[brown]tranfile c:\blue\target

b. If your source computer is running SAS 6.08 at maintenance level TS405 or
later, set the NONE value to the CC= option in the LIBNAME or FILENAME
statement, whichever is appropriate.

Note: See the top of the SAS log for the SAS release and maintenance level.

Here is an example.

libname grades 'file-path';
libname tranfile xport 'file-path' cc=none;
proc copy in=grades out=tranfile;
run;

c. If you are running a SAS release that precedes SAS 6.08 at maintenance level
TS405, you must post-process the transport file to remove the carriage returns.

Create a new file named REMCC.FDL to contain these entries, including
CARRIAGE_CONTROL NONE.

RECORD
BLOCK_SPAN YES
CARRIAGE_CONTROL NONE
FORMAT FIXED
SIZE 80

Specify this DCL command to create a new file named NEWTRAN.SEQ:

$ CONVERT/FDL=REMCC.FDL TRAN.SEQ NEWTRAN.SEQ
$ DELETE TRAN.SEQ

Verify that the file attributes of the new transport file do not include carriage
returns:

$ DIR/FULL NEWTRAN.SEQ

3. At the source computer, transfer the transport file to the target computer again.

If you are still unable to import a transport file that has the correct attributes, you can
try using the reblocking program. For details, see “Reblocking a Transport File” on
page 80 .

Member or library unavailable for use in file
The transport file is suspected to be corrupt. For recovery actions, see “Given transport
file is bad ” on page 49 .

50 Chapter 7 • OpenVMS

Truncated record
For general recovery actions for this error message, see “Truncated record” on page
78 .

Usually, this message is displayed when the transport file is moved to a virtual disk or a
shared disk under operating environments such as DOS, Macintosh, or UNIX. Virtual
disk or shared disk directories often have a record format of STREAM instead of
FIXED.

To recover, perform these steps.

1. Verify the transport file attributes by using the DIR/FULL command.

2. To set record attributes correctly, create a new file named FIXREC.FDL file to
contain these entries.

RECORD
BLOCK_SPAN YES
CARRIAGE_CONTROL NONE
FORMAT FIXED
SIZE 80

3. Specify this DCL command to create a new file named NEWTRAN.FDL:

$ EXCHANGE/NETWORK/TRANSFER_MOD=BLOCK/FDL=TRAN.FDL
 TRAN.SEQ NEWTRAN.SEQ

4. Verify that the new transport file attributes do not include carriage returns:

$ DIR/FULL NEWTRAN.SEQ

5. At the source computer, transfer the transport file to the target computer again.

Internal error from getting data
The transport file is suspected to be corrupt. For recovery actions, see “Truncated
record” on page 51 .

Error Messages For OpenVMS 51

52 Chapter 7 • OpenVMS

Chapter 8

z/OS Operating Environment

Listing z/OS File Attributes . 53

Identifying the SAS Version Used to Create a File under z/OS 53

z/OS Files and the UNIX System Services Directory . 54

z/OS Batch Statements for File Transport . 54

Transfer Issues for a z/OS Target Computer . 54
Record Length . 54
Example: FTP and the z/OS Target Computer . 54
Windows Attachmate and the z/OS Target Computer . 55

Reading Transport Files in z/OS Operating Environments 55
z/OS Cannot Read ASCII Transport Files . 55
Example: Translating a Partial Transport File to EBCDIC 55
Example: Reading a Partial Transport File in Hexadecimal Format 56

Listing z/OS File Attributes
To list the attributes of a file created under a z/OS operating environment, issue this
command under TSO.

listd 'file-name'

Here is an example of the output from this command:

The transport file should have the following attributes:
 RECFM: FB
 LRECL: 80
 BLKSIZE: 8000
 DSORG: PS

Identifying the SAS Version Used to Create a File
under z/OS

You can use the CONTENTS procedure to display information about the data.

53

Here is an excerpt of typical PROC CONTENTS output, which identifies the member
and the engine that was used to create it:

 The SAS System
 The CONTENTS Procedure
Data Set Name: TEST.CONTENTS
Member Type: DATA
Engine: V9

This output shows that the data set TEST.CONTENTS is a member of type DATA, and
it was created with the V9 engine.

z/OS Files and the UNIX System Services
Directory

SAS 8 introduced the UNIX System Services Directory as an alternative to the bound
library method of file organization under the z/OS operating environment. Features of
CEDA can be used to create files under a z/OS operating environment that uses the
UNIX System Services Directory. For details about CEDA, see “Cross-Environment
Data Access (CEDA)” on page 11 .

z/OS Batch Statements for File Transport
You can use a SAS batch job to create a transport file. For an example, see “Example:
z/OS JCL Batch to UNIX File Transport” on page 98 . For complete details about JCL
statements, see the SAS Companion for z/OS.

Transfer Issues for a z/OS Target Computer

Record Length
In some instances, a transport file that is transferred to a z/OS target computer has the
correct file format, but it has an incorrect record length. For recovery actions for this
problem, see “Verifying That the Transport File Has Not Been Corrupted” on page 70 .

Example: FTP and the z/OS Target Computer
Here is an FTP example in which the z/OS target computer gets the transport file from
the source computer:

> ftp
> open source-host
> binary
> locsite recfm=fb blksize=8000 lrecl=80
> get xportout target
> close
> quit

54 Chapter 8 • z/OS

Here is an FTP example in which the source computer puts the transport file on the z/OS
target computer:

> ftp
> open target-host
> binary 80
> quote site recfm=fb blksize=8000 lrecl=80
> put xportout target
> close
> quit

Note: In order to transfer a transport file to any directory-based operating environment
such as Windows or UNIX, do not use the FTP QUOTE SITE or the FTP LOCSITE
command to declare file attributes.

Windows Attachmate and the z/OS Target Computer
If you use Extra for Windows, select translation NONE and verify that the File Transfer
dialog box contains this information:

send a:grades xportout lrecl(80) blksize(8000)
 recfm(f) space(10,10)

See your operating environment documentation for details.

Reading Transport Files in z/OS Operating
Environments

z/OS Cannot Read ASCII Transport Files
The transport format uses ASCII encoding, which is foreign to z/OS operating
environments. Because of this incompatibility, you cannot read transport files correctly
in a text editor under the z/OS operating environment.

Example: Translating a Partial Transport File to EBCDIC
This SAS code enables you to read the first few lines of a transport file under the z/OS
operating environment.

Note: This program does not translate the file to EBCDIC. It only interprets the first five
records in the file and writes them to the SAS log. The transport file remains
unchanged.

Example Code 8.1 Code That Interprets the Header of the Transport File

//PEEK JOB (,X101),'SMITH,B.',TIME=(,3)
/*JOBPARM FETCH
//STEP1 EXEC SAS
//transport-file DD
DSN=USERID.XPT6.FILE,DISP=SHR
//SYSIN DD *
data _null_;
 infile tranfile obs=5;

Reading Transport Files in z/OS Operating Environments 55

 input theline $ascii80.;
 put theline;
run;
/*

Log output indicates whether the XPORT engine or PROC CPORT was used to create
the transport file.

This SAS code shows the first 40 characters of the transport file that the XPORT engine
creates.

HEADER RECORD*******LIBRARY HEADER RECORD!!!!!!!00

This SAS code shows the first 40 characters of a transport file that PROC CPORT
creates.

COMPRESSED **COMPRESSED** **COMPRESSED** **COM

Note: If you set the NOCOMPRESS option in the CPORT procedure, compression is
suppressed, which prevents the display of the preceding text in a transport file.

For technical details about the transport format that is used for a data set, see Technical
Support article TS-140, The Record Layout of a SAS Transport Data Set.

Example: Reading a Partial Transport File in Hexadecimal Format
You can use ISPF to browse a transport file that has a hexadecimal format.
Alternatively, you can use the following SAS code to display the first twenty 80-byte
records of a transport file in hexadecimal format:

data _null_;
 infile 'transport-file';
 input;
list;
put '-------------------';
 if _n_ > 20 then stop;
run;

This SAS code shows the hexadecimal representation of the first 40 ASCII characters in
a transport file that the XPORT engine creates.

484541444552205245434F52442A2A2A2A2A2A2A
4C5920484541444552205245434F524421212121

This SAS code shows the hexadecimal representation of the first 40 ASCII characters in
a transport file that PROC CPORT creates.

2A2A434F4D505245535345442A2A202A2A434F4D
50442A2A202A2A434F4D505245535345442A2A20

56 Chapter 8 • z/OS

Chapter 9

Windows Operating Environment

File Attributes Under Windows . 57

Identifying the SAS Version Used to Create a File under Windows 57

Error Message: Encrypted Data is Invalid . 58

File Attributes Under Windows
You can apply file attributes by using FTP or the FTP access method options in the
FILENAME statement, whichever is applicable. For details about the syntax for the
FILENAME statement, see SAS Statements: Reference. For an example of a
FILENAME statement that uses attributes, see “Example: Using the FILENAME
Statement for a File Transfer” on page 41 .

Identifying the SAS Version Used to Create a File
under Windows

This table identifies the supported file types that are created on the Windows operating
environment by member and SAS version:

Table 9.1 Windows Filename Extension by Member and SAS Version

Member Type SAS 6 Filename Extension
SAS 8 and Later Filename
Extension

SAS .sas .sas

PROGRAM (DATA step) .ss2 .sas7bpgm

DATA .sd2 .sas7bdat

INDEX .si2 .sas7bndx

CATALOG .sc2 .sas7bcat

MDDB .sm2 .sas7bmdb

57

Member Type SAS 6 Filename Extension
SAS 8 and Later Filename
Extension

PROC SQL view .sv2 .sas7bvew

SAS 9 and SAS 8 filename extensions are identical.

You can also use the CONTENTS procedure to display information about the data.

Here is an excerpt of typical PROC CONTENTS output, which identifies the member
and the engine that was used to create it:

 The SAS System
 The CONTENTS Procedure
Data Set Name: TEST.CONTENTS
Member Type: DATA
Engine: V9

This output shows that the data set TEST.CONTENTS is a member of type DATA, and
that it was created with the V9 engine.

Error Message: Encrypted Data is Invalid
This message typically appears when using PROC CPORT and PROC CIMPORT to
move files whose name extensions have been changed. For example, an extension on at
least one filename in the directory was replaced with an extension that conflicts with the
version of SAS that was used to create the file. The filename extension could have been
changed using either the DOS rename command or the Windows File Manager. For a
list of valid Windows filename extensions by SAS version, see “SAS Filename
Extensions and File Headers” on page 63 .

Use the following command syntax to verify a questionable filename extension:

type filename.extension

You can pipe the output through the more command.

Here is an example:

type xportout.sd2 | more

You suspect that the filename extension for the SAS 9 data set xportout was
incorrectly changed from .sas7bdat to .sd2.

Note: SAS 9 and SAS 8 filename extensions are identical.

Here is the output:

SAS 9.00 WIN 6.09

The right column shows that a filename extension appropriate for SAS 6.09 was
incorrectly applied to a SAS 9 file. To fix the problem, you must re-apply
the .sas7bdat extension to the filename using the DOS rename command or the
Windows File Manager.

58 Chapter 9 • Windows

Chapter 10

UNIX Operating Environment

File Attributes Under UNIX . 59

Identifying the SAS Version Used to Create a File under UNIX 59

Example: Creating a Transport File on Tape . 61

Example: Copying the Transport File from Disk to Tape at
the UNIX Source Computer . 61

Example: Copying the Transport File from Tape to Disk at
the Target Computer . 61

File Attributes Under UNIX
You can specify transport file attributes by using FTP or FTP access method options in
the FILENAME statement, whichever is applicable. For details about the syntax for the
FILENAME statement, see SAS Companion for UNIX Environments. For an example of
a FILENAME statement that uses attributes, see “Using the FILENAME Statement or
FTP for Foreign Files and Transport Files ” on page 41. For an FTP example, see
“Example: Using the FILENAME Statement for a File Transfer” on page 41 .

Identifying the SAS Version Used to Create a File
under UNIX

This table identifies the supported file types that are created under the UNIX operating
environment by member and SAS version:

Table 10.1 UNIX Filename Extensions by Member and SAS Version

Member Type SAS 6 Filename Extension
SAS 8 and Later Filename
Extension

SAS .sas .sas

PROGRAM (DATA step) .sspnn .sas7bpgm

DATA .ssdnn .sas7bdat

59

Member Type SAS 6 Filename Extension
SAS 8 and Later Filename
Extension

INDEX .snxnn .sas7bndx

CATALOG .sctnn .sas7bcat

MDDB .ssmnn .sas7bmdb

PROC SQL view .snvnn .sas7bvew

In this table, nn is an extension that is used to differentiate among UNIX computer
architectures. Here are the extensions and UNIX operating environment groups:

Table 10.2 UNIX Operating Environment Filename Extensions

SAS
Filename
Extension
nn

UNIX Operating
Environment Group

Supported by SAS Release

6.09 6.10 6.11 6.12

01 HP-UX Yes Not
applicable

Yes Yes

Sun Yes Not
applicable

Yes Yes

Solaris Yes Not
applicable

Yes Yes

AIX Yes Not
applicable

Yes Yes

MIPS ABI Not
applicable

Yes Yes Not
applicable

02 ULTRIX Yes Not
applicable

Not
applicable

Not
applicable

INTEL-ABI Yes Not
applicable

Yes Yes

04 COMPAQ Digital
UNIX

Not
applicable

Yes Yes Yes

SAS 9 and SAS 8 filename extensions are identical.

Because data sets are interchangeable among HP-UX, Sun, Solaris, AIX, and MIPS
operating environments, the creation of a transport file for moving among them is not
necessary. Catalogs are also interchangeable among AIX, HP-UX, Sun, Solaris, and
MIPS operating environments.

You can also use the CONTENTS procedure to display information about the data.

Here is an excerpt of typical PROC CONTENTS output, which identifies the member
and the engine that was used to create it:

60 Chapter 10 • UNIX

 The SAS System
 The CONTENTS Procedure
Data Set Name: TEST.RECORDS
Member Type: DATA
Engine: V9

The output shows that the data set TEST.RECORDS is a member of type DATA, and
that it was created with the V9 engine.

Example: Creating a Transport File on Tape
In order to create a transport file on tape, at the source computer, use either the
LIBNAME statement or the FILENAME statement, whichever is appropriate, to
designate the file path as a tape device. Here are examples:

libname tranfile xport '/dev/tape1';
filename tranfile '/dev/tape1';

Example: Copying the Transport File from Disk to
Tape at the UNIX Source Computer

In order to copy a transport file from disk to tape at the source computer, issue the UNIX
dd command. Here is an example:

dd if=tranfile of=/dev/tape1 bs=8000

dd
copies the specified input file to the specified output device.

if=tranfile
specifies the input file (or transport file).

of=/dev/tape1
specifies the output file (or tape device).

bs=8000
specifies the input file and output file block size as 8000.

See the UNIX dd(1) manual page for more details.

Example: Copying the Transport File from Tape to
Disk at the Target Computer

In order to copy a transport file from tape to disk at the target computer, issue the UNIX
dd command. Here is an example:

dd if=/dev/tape1 of=tranfile bs=8000

dd
copies the specified input file to the specified output device.

Example: Copying the Transport File from Tape to Disk at the Target Computer 61

if=/dev/tape1
specifies the input file (or tape device).

of=tranfile
specifies the output file.

bs=8000
specifies the input file and output file block size as 8000.

See the UNIX dd(1) manual page for more details.

62 Chapter 10 • UNIX

Chapter 11

SAS Filename Extensions and
File Headers

Filename Extensions: Identifying the SAS Engine and
Operating Environment Used to Create a SAS File . 63

PROC CONTENTS: Identifying the Base SAS Engine Used
to Create a SAS File . 64

File Headers: Finding Out the Method Used to Create the Transport File 65

Filename Extensions: Identifying the SAS Engine
and Operating Environment Used to Create a SAS
File

You can infer from the SAS filename extension the SAS engine and the operating
environment under which a SAS file was created. For SAS 6 and later, these operating
environments use filename extensions to reflect the SAS engine and the SAS member
that is created:

• OpenVMS

• z/OS (SAS 8 and later UNIX System Services Directory)

• UNIX

• Windows

This table lists SAS filename extensions for members by operating environment and
SAS version.

Table 11.1 SAS Filename Extension by Operating Environment Type and SAS Version

Member

SAS Filename Extensions

SAS 6 SAS 8 and Later

UNIX OpenVMS Windows
UNIX, OpenVMS,
z/OS*, and Windows

.SAS .sas .SAS .sas .sas

63

Member

SAS Filename Extensions

SAS 6 SAS 8 and Later

UNIX OpenVMS Windows
UNIX, OpenVMS,
z/OS*, and Windows

PROGRAM

(DATA step)

.sspnn .SASEB$PROGRAM .ss2 sas7bpgm

DATA .ssdnn .SASEB$DATA .sd2 .sas7bdat

INDEX .snxnn .SASEB$INDEX .si2 .sas7bndx

CATALOG .sctnn .SASEB$CATALOG .sc2 .sas7bcat

MDDB .ssmnn .SASEB$MDDB .sm2 .sas7bmdb

PROC SQL view .snvnn SASEB$VIEW .sv2 .sas7bvew

ITEMSTOR not applicable not applicable not applicable .sas7bitm

The extension nn is used to differentiate among UNIX computer architectures. To learn
the values of nn under UNIX operating environments, see Table 10.2 on page 60.

* refers to SAS 8 and later z/OS UNIX System Services Directory.

PROC CONTENTS: Identifying the Base SAS
Engine Used to Create a SAS File

You can use the CONTENTS procedure on all operating environments that use SAS 6
and later to identify the Base SAS engine that was used to create a SAS file.

Note: Because z/OS operating environments do not use filename extensions, you must
use PROC CONTENTS in order to identify the Base SAS engine that was used to
create SAS files.

Here is an example of using PROC CONTENTS on a data set in the z/OS environment:

proc contents data=test.records;
run;

Here is an excerpt of the output:

 The SAS System
 The CONTENTS Procedure
Data Set Name: TEST.RECORDS
Member Type: DATA
Engine: V9

The output shows that the data set RECORDS is a member of type DATA, and that it
was created with the V9 engine.

64 Chapter 11 • File Extensions and Headers

You can also use PROC CONTENTS to find out whether a data set's operating
environment format is foreign or native to the accessing operating environment. For
more information, see “Identifying the Format of a SAS File ” on page 16 .

File Headers: Finding Out the Method Used to
Create the Transport File

The method for finding out how the transport file was created (XPORT engine with
PROC COPY or PROC CPORT and PROC CIMPORT) depends on your operating
environment.

• Under operating environments that store character data in ASCII format, use a text
editor or an operating environment read or view command to read the file.

The XPORT engine creates a file whose first 40 characters contain this ASCII text:

HEADER RECORD*******LIBRARY HEADER RECORD!!!!!!!00

PROC CPORT creates a file whose first 40 characters contain this ASCII text:

COMPRESSED **COMPRESSED** **COMPRESSED** **COM

Note: If you specify the NOCOMPRESS option in PROC CPORT, compression is
suppressed, which prevents the display of the preceding text in a transport file.

For technical details about the transport format that is used for a data set, see
Technical Support article TS-140, The Record Layout of a SAS Transport Data Set.

• Under z/OS, because the transport format uses ASCII encoding, non-ASCII
operating environments such as z/OS cannot read them in a text editor. For more
information, see “Reading Transport Files in z/OS Operating Environments” on page
55 .

File Headers: Finding Out the Method Used to Create the Transport File 65

66 Chapter 11 • File Extensions and Headers

Part 5

Troubleshooting

Chapter 12
Preventing and Fixing Problems . 69

67

68

Chapter 12

Preventing and Fixing Problems

Troubleshooting: Transferring and Restoring Transport files 70
Troubleshooting Checklist . 70
Transferring the Transport File in Binary Format . 70
Verifying That the Transport File Has Not Been Corrupted 70
Verifying That the Communications Software Has Not Changed File Attributes . . 71
Invoking the Communications Software at the Target Computer 71
Using Compatible Transport Strategies at the Source and Target Computers 71
Validating the Integrity of the Transport File . 72
Using an Unlabeled Tape . 72
Dividing a Large Transport File into Smaller Files for Tape 72

Error and Warning Messages for Transport Files . 73
Bad Transport File . 73
Catalog file open function is not supported by the XPORT engine 74
DATA= or LIBRARY= parameter expected instead of CATALOG= 74
filename is not a SAS file . 74
Entry type catalog-entry-type is not supported by CPORT 75
Entry type catalog-entry-type is not compatible to earlier release 75
File library.member.DATA has too long a member name for the XPORT engine . 75
File library.member.DATA has too long a member name for the V6 engine 75
File libref.ALL is damaged. I/O processing did not complete 76
Given transport file is bad . 76
Internal error from getting data . 76
Invalid data length . 77
Member or library unavailable for use in file filename . 77
More library members exist in the input file. For all of them

to get converted, please specify LIBRARY=libref
parameter in the PROC statement . 77

PROC SQL will not store a V9 view into a V6 library . 78
Requested function is not supported . 78
Truncated record . 78
Updating not allowed for libref.member-name because it was

created for a different operating system . 78
UTILITY FILE OPEN function is not supported by the XPORT engine 78
The value y code is not a valid SAS name; Skipping data set due to error 79
Variable name variable is illegal for file Version-6-data-set 79

Verifying Transfer Format and Transport File Attributes 79

Reblocking a Transport File . 80

69

Troubleshooting: Transferring and Restoring
Transport files

Troubleshooting Checklist
To avoid potential problems when transferring a transport file to the target computer,
ensure that these conditions have been met:

• If transferring across the network, verify that the transport file is transferred in binary
format. For details, see “Transferring the Transport File in Binary Format” on page
70 .

• Verify that the transport file has not been corrupted. For details, see “Verifying That
the Transport File Has Not Been Corrupted” on page 70 .

• Verify that the communications software does not change file attributes. For details,
see “Verifying That the Communications Software Has Not Changed File
Attributes” on page 71 .

• Consider invoking the communications software at the target computer and getting
the transport file from the source computer. For details, see “Invoking the
Communications Software at the Target Computer” on page 71 .

• Do not mix methods to create the transport file at the source computer and then
restore the transport file at the target computer. For details, see “Using Compatible
Transport Strategies at the Source and Target Computers” on page 71 .

• Before you transfer a transport file to the target computer, validate the integrity of
the transport file by restoring it to the source computer that created it. For details, see
“Validating the Integrity of the Transport File” on page 72 .

• If transferring by means of tape, use an unlabeled tape. For details, see “Using an
Unlabeled Tape” on page 72 .

• If transferring a large transport file by means of tape, break up the library into
multiple libraries and transport each one to tape. For details, see “Dividing a Large
Transport File into Smaller Files for Tape” on page 72 .

Transferring the Transport File in Binary Format
When transferring a transport file using the communications software, verify that the file
is transferred in binary (or image) format. The content of the file must be transferred in
sequential bytes without modification.

If you use FTP to move a transport file to the target computer, you should first specify
BINARY 80 before transferring the file.

If you use PATHWORKS, use the SEQUENTIAL_FIXED attribute when you set the
file_server service using PCSA_MANAGER. The default attribute is STREAM, which
is not appropriate for moving transport files.

Verifying That the Transport File Has Not Been Corrupted
Verify that your communications software does not insert a carriage return to mark an
end of record in the transport file during transfer to the target computer. The insertion of

70 Chapter 12 • Troubleshooting

carriage returns and line feeds corrupts the transport file and makes it impossible to
restore the file at the target computer. For details about how to identify this condition,
see the recovery actions for “File libref.ALL is damaged. I/O processing did not
complete” on page 76 .

Verifying That the Communications Software Has Not Changed File
Attributes

Verify that your communications software does not change file attributes. Here are the
required attributes with values:

Logical record length (LRECL) 80 or an integer that is a multiple of 80 (for example, 160,
240,320).

Block size (BLKSIZE) 8000 blocks

Record format (RECFM) Fixed block

See your communications software documentation for information about controlling
these attributes.

At the target computer, if you have a transport file that has not been corrupted (that is,
carriage returns or line feeds have not been inserted), but its record block size is
incorrect and you are unable to obtain a correctly blocked transport file, you might run a
reblocking program to fix the blocks to the correct size. For details, see “Reblocking a
Transport File” on page 80 .

Invoking the Communications Software at the Target Computer
To transfer the transport file to the target computer, you might be more successful if you
invoke the communications software at the target computer instead of invoking it at the
source computer. You probably cannot put a file in a location on the target computer
because you do not have write permission. If transferring a transport file from UNIX to
z/OS, you are advised to invoke the communications software at the z/OS computer.
Because you probably have read permission at the UNIX computer, you can get the
transport file and write it to your z/OS computer.

Using Compatible Transport Strategies at the Source and Target
Computers

Do not mix strategies to create the transport file at the source computer and then restore
the transport file at the target computer. The strategies that you use must be identical or
be a companion pair. For example, create and restore a transport file using the XPORT
engine and PROC COPY at both the source and target computer. You can also create a
transport file using PROC CPORT at the source computer and import the transport file
using PROC CIMPORT at the target computer. Do not create a transport file using the
XPORT engine and PROC COPY at the source computer and then try to use
PROC CIMPORT to restore the transport file at the target computer.

To identify the strategy that was used to create a transport file, use a text editor or an
operating environment read or view command to read the file in SAS 9 on any computer
that represents character data as ASCII.

Troubleshooting: Transferring and Restoring Transport files 71

Note: For information about viewing transport files on operating environments that
represent character data as EBCDIC, see “Reading Transport Files in z/OS Operating
Environments” on page 55 .

The XPORT engine creates a file whose first line contains this ASCII text:

HEADER RECORD*******LIBRARY HEADER RECORD!!!!!!!00

PROC CPORT creates a file whose first line contains this text:

COMPRESSED **COMPRESSED** **COMPRESSED**

Note: If you specify the NOCOMPRESS option in PROC CPORT, compression is
suppressed, which prevents the display of the preceding text in a transport file.

Validating the Integrity of the Transport File
To validate the integrity of the transport file before it is transferred to the target
computer, use the appropriate strategy and try to read it back into native format at the
source computer.

Here is a PROC COPY example:

/* This PROC COPY creates the transport file TRAN. */
libname tran xport 'transport-file';
libname grades 'SAS-data-library';
proc copy in=grades out=tran memtype=data;
run;
/* This PROC COPY reads back transport file TRAN. */
libname grades 'SAS-data-library';
libname tran xport 'transport-file';
proc copy in=tran out=test;
run;

Here is a PROC CPORT and PROC CIMPORT example:

/* This PROC CPORT creates the transport file. */
libname grades 'SAS-data-library';
filename tran 'transport-file';
proc cport library=grades file=tran;
run;
/* This PROC CIMPORT reads back the transport file. */
filename tran 'transport-file';
libname grades 'SAS-data-library';
proc cimport library=grades infile=tran;
run;

For both examples, check the log for error messages.

Using an Unlabeled Tape
When transferring a transport file by means of tape, use an unlabeled tape. Because tape
labels are processed differently in different computers, reading a file from a standard
labeled tape might be somewhat complicated at the target computer.

Dividing a Large Transport File into Smaller Files for Tape
When transferring a transport file by means of tape, if the transport file exceeds the
capacity of one tape, you should divide the original library into two or more libraries and

72 Chapter 12 • Troubleshooting

create a separate, unlabeled tape for each one. The original library can be restored at the
target computer.

Error and Warning Messages for Transport Files

Bad Transport File
This message appears under one of these conditions:

• You are attempting to use PROC CIMPORT to move a transport file that was created
in SAS 9 to a computer that is running SAS 6. You cannot move a transport file from
a SAS 9 session on a source computer to a SAS 6 session on a target computer.

• A file was transported in a format other than BINARY or the attributes of the
transport file changed during the transfer to the target computer. For recovery
actions, see “Verifying Transfer Format and Transport File Attributes” on page 79 .

• Your site is using a translation table other than the default. A customized translation
table is set with the TRANTAB= system option. For details about this option, see
SAS System Options: Reference. To verify the value of the TRANTAB= system
option, submit these statements:

proc options option=trantab;
run;

If you find that your site is using an alternative translation table, you must restore the
option to its default value by specifying this option:

options trantab=();

Then create the transport file again, transfer it to the target computer, and import the
file at the target computer.

• A source computer that runs SAS 6.12 and a target computer that imports the file at
the target computer runs SAS 6.08, 6.09E, or 6.10. Data set sort features (specified
by using the SORTEDBY= data set option) are included in the SAS 6.12 CPORT
procedure but not in the SAS 6.08 CIMPORT procedure.

Use either of these actions to recover from this problem:

• Disable the sorting feature by using the SORTINFO= option in the SAS 6.12
CPORT procedure. Here is an example:

proc cport data=grades.junior
 file='xgrades.junior'
 sortinfo=no;

• Disable the SAS 6.12 sorting feature by using the V608 or V609 engine option in
the SAS 6.12 CPORT procedure. Here is an example:

proc cport data=grades.junior
 file='xgrades.junior' v609;

The SORTEDBY= data set option information is included in SAS 6.12
PROC CPORT.

Error and Warning Messages for Transport Files 73

Catalog file open function is not supported by the XPORT engine
This message appears when you attempt to create a transport file for a catalog or catalog
entry by using PROC COPY with the XPORT engine. You must use PROC CPORT to
create a transport file for a catalog or catalog entry and use PROC CIMPORT to import
them at the target computer.

DATA= or LIBRARY= parameter expected instead of CATALOG=
This message is displayed at the target computer when PROC CIMPORT contains a
CATALOG= destination member and the source computer used PROC CPORT with the
LIBRARY= destination member. The target computer must use either the DATA= or
LIBRARY= member type. Here is an example:

proc cport file=in libname=out;
proc cimport infile=in catalog=new;

Because the LIBNAME= option in PROC CPORT specifies a destination member of
type LIBRARY, PROC CIMPORT must also specify either a LIBNAME= or a DATA=
option.

In order to select only a catalog entry type from an imported library, specify the ET=
option in PROC CIMPORT. To exclude a catalog entry type, use the EET= option. Here
are examples:

proc cimport infile=in library=new et=program memtype=catalog;
proc cimport infile=in library=new eet=program memtype=catalog;

In the first example, only catalog entries of type PROGRAM are imported. In the second
example, only catalog entries of type PROGRAM are excluded.
MEMTYPE=CATALOG restricts the import to catalogs only.

filename is not a SAS file
Usually, this message appears when you use the CIMPORT procedure to import a data
set at the target computer. There are two possible explanations.

• The transport file that you are trying to import by using PROC CIMPORT might
have been created by using the XPORT engine with either the COPY procedure or
the DATA step. Read the beginning of the file to find out how the transport file was
created. If the XPORT engine created the transport file, the beginning of the file
contains this ASCII text:

HEADER RECORD*******LIBRARY HEADER RECORD!!!!!!!00

If the CPORT procedure created the transport file, the beginning of the file contains
this ASCII text:

COMPRESSED **COMPRESSED** **COMPRESSED** **COM

Note: If you set the NOCOMPRESS option in PROC CPORT, compression is
suppressed, which prevents the display of the preceding text in a transport file.

If incompatible strategies were used to create and then restore the transport file, then
use the correct strategy to restore the transport file.

• This message might also appear if your site is using a translation table other than the
default. For recovery actions for this problem, see “Bad Transport File” on page 73 .

74 Chapter 12 • Troubleshooting

Entry type catalog-entry-type is not supported by CPORT
This message means that transporting this catalog entry type between computer and
across SAS releases is not supported.

Because you cannot retrieve the definitions from the module itself, you can try to move
the SAS statements that defined the entry type (such as IML modules) to the target
computer and then re-create the modules.

Entry type catalog-entry-type is not compatible to earlier release
This message appears when you attempt to use PROC CPORT to move a catalog entry
from SAS 9 back to SAS 6. SAS 9 does not support the backward compatibility of this
catalog entry.

File library.member.DATA has too long a member name for the
XPORT engine

This message appears when you use the XPORT engine with PROC COPY to move a
data set whose name exceeds eight characters from a source computer that is running
SAS 9 to a SAS 6 library. Here is an example of such a message:

ERROR: The file OUT.THIS_IS_LONG_NAMED_DATA.DATA
 has too long a member name for the XPORT engine.

The member name THIS_IS_LONG_NAMED_DATA exceeds the eight-character member
name length, which is enforced by the Version 5 feature set in which the XPORT engine
was introduced.

The VALIDVARNAME system option and the assigned value of V6, which enables
automatic truncation of long variable names, does not support member names. To
recover, copy the member to another member whose name does not exceed eight
characters and try the transport operation again.

File library.member.DATA has too long a member name for the V6
engine

This message appears when you use PROC COPY to move a data set whose name
exceeds eight characters from a source computer that is running SAS 9 to a SAS 6
library. Here is an example of such a message

ERROR: The file V6LIBMYDATABASE.DATA
 has too long a member name for the V6 engine.

The SAS 9 data set name MYDATABASE exceeds the maximum member name length of
eight characters that is supported in SAS 6. SAS 6 interprets the data set name
MYDATABASE as containing 10 characters, which exceeds its maximum length of eight.

The VALIDVARNAME system option and the assigned value of V6, which enables
automatic truncation of long variable names, does not support member names. To
recover, rename the member or copy it to another member whose name does not exceed
eight characters and try the transport operation again.

Error and Warning Messages for Transport Files 75

File libref.ALL is damaged. I/O processing did not complete
Usually, this message indicates a file corruption. The most likely explanation is that your
site's communications software inserted carriage returns into the transport file.

At the target computer, you can use a computer-specific utility (such as the UNIX
hexadecimal dump utility xd) to view the transport file in hexadecimal format to find out
if carriage returns were inserted. See the UNIX xd(1) manual page for details. As
another example, for z/OS, use the SPF 1 command for browsing, select a data set, and
enter hex on in the command line.

This example shows an example of a transport file that contains a carriage-return
character (0D) and a line-feed character (0A) toward the end of the first record. See the
0D and 0A hexadecimal values in the first two positions of the last line.

48 45 41 44 45 52 20 52 45 43 4F 52 44 2A 2A 2A HEADER R ECORD***
2A 2A 2A 2A 4C 49 42 52 41 52 59 20 48 45 41 44 ****LIBR ARY HEAD
45 52 20 52 45 43 4F 52 44 21 21 21 21 21 21 21 ER RECOR D!!!!!
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 00000000 000000
30 30 30 30 30 30 30 30 30 30 30 30 30 30 20 20 00000000 0000
0D 0A 53 41 53 20 20 20 20 20 53 41 53 20 20 20 ...SAS SAS

If you do not see carriage-return or line-feed characters, another form of corruption that
is not immediately apparent might have occurred. To test this possibility, at the target
computer, create another transport file from a member of the same type and then view its
hexadecimal representation. Compare the appearance of the assumed uncorrupted file
that you just created with the suspected corrupted file that you are trying to restore. A
visual comparison might prove that the transport file that you are trying to restore is
corrupt. In this case, re-create the transport file at the source computer, transfer it, and
restore it at the target computer.

At the source computer, find out whether the transport file's attributes include carriage
returns. For information about listing and correcting file attributes, see the chapter that is
appropriate to your operating environment.

At the source computer, transfer the transport file to the target computer again.

If you are still unable to restore a transport file that has the correct file attributes, try
using the reblocking program in “Reblocking a Transport File” on page 80 .

Given transport file is bad
For recovery actions, see “Bad Transport File” on page 73 .

Internal error from getting data
Usually, this message appears because either a file was transported in a format other than
BINARY or the attributes of the transport file changed while in transit to the target
computer.

For recovery actions, see “Verifying Transfer Format and Transport File Attributes” on
page 79 .

76 Chapter 12 • Troubleshooting

Invalid data length
Usually, this message appears because either a file was transported in a format other than
BINARY or the attributes of the transport file changed while in transit to the target
computer.

For recovery actions, see “Verifying Transfer Format and Transport File Attributes” on
page 79 .

Member or library unavailable for use in file filename
Usually, this message appears because either a file was transported in a format other than
BINARY or the attributes of the transport file changed while in transit to the target
computer.

For recovery actions, see “Verifying Transfer Format and Transport File Attributes” on
page 79 .

Another possible explanation applies to a SAS 6.12 session on a source computer and a
SAS 6.08 session on a target computer. Data set sort features (specified by using the
SORTEDBY= data set option) are included in the SAS 6.12 CPORT procedure but not
in the SAS 6.08 CIMPORT procedure.

Use either of these actions to recover from this problem:

• Disable the sorting feature by using the SORTINFO= option in the SAS 6.12
CPORT procedure. Here is an example:

proc cport data=grades.jr file='tranfile.jr' sortinfo=no;

• Disable the SAS 6.12 sorting feature by specifying the V608 engine in the SAS 6.12
CPORT procedure. Here is an example:

proc cport data=grades.jr file='tranfile.j v608;

The SORTEDBY= data set option information is included in SAS 6.12 PROC CPORT.

More library members exist in the input file. For all of them to get
converted, please specify LIBRARY=libref parameter in the PROC
statement

This warning message is displayed at the target computer when PROC CIMPORT
contains a DATA= destination member and the source computer used PROC CPORT
with the LIBRARY= destination member. Although, the target computer successfully
imports only one data set, the message indicates that other members are contained in the
library that can also be imported. Here is an example:

proc cport file=in library=out;
proc cimport infile=in data=new;

In order to expand the import operation to include the entire contents of the destination
library, specify the LIBRARY= option instead of the DATA= option in
PROC CIMPORT.

Error and Warning Messages for Transport Files 77

PROC SQL will not store a V9 view into a V6 library
Usually, this message appears when you use the XPORT engine to create a SAS 9
PROC SQL view in transport format in a SAS 6 library. However, you can use the
XPORT engine to create an SQL table.

To recover, transport the data set that contains the SQL table to the target computer and
re-create the PROC SQL view there.

Requested function is not supported
This message indicates a failure to move a library from a source computer that is running
SAS 9 to a library on a target computer that is running SAS 6 because of cross-version
incompatibilities. For example, SAS 9 features such as generations data sets and
integrity constraints are not supported.

To recover, you must remove SAS 9 features from the library or the member to be
moved to the library on the computer that is running SAS 6 and try the transport
operation again. Preceding notes in the log can give a hint about the offending SAS 9
feature that is not supported. Here is an example:

NOTE: Integrity constraint mc defined.

You can infer from this message that SAS 6 does not support integrity constraints.

For tips about removing SAS 9 features, see the recovery actions for these messages:
“File library.member.DATA has too long a member name for the V6 engine” on page 75
and “Variable name variable is illegal for file Version-6-data-set” on page 79 .

Truncated record
Usually, this message appears because either a file was transported in a format other than
BINARY or the attributes of the transport file changed during transfer to the target
computer.

For recovery actions, see “Verifying Transfer Format and Transport File Attributes” on
page 79 .

This message can indicate that the transport file was moved to a virtual disk or shared
disk with other operating environments such as DOS, Macintosh, or UNIX. For recovery
actions, see the chapter that is appropriate to your operating environment.

Updating not allowed for libref.member-name because it was
created for a different operating system

This message appears when you attempt to update a file whose format is foreign to that
of the accessing computer. Use PROC CONTENTS on the file to verify the file's data
representation. A data representation of FOREIGN proves that the formats of the file and
the accessing computer are incompatible.

UTILITY FILE OPEN function is not supported by the XPORT engine
This message appears when you attempt to use PROC COPY with the XPORT engine to
create a transport file for a utility file, such as an MDDB. The XPORT engine does not
support utility files.

78 Chapter 12 • Troubleshooting

The value y code is not a valid SAS name; Skipping data set due to
error

These error and warning messages appear when you use PROC CIMPORT in SAS 8 to
read a transport file that was created using PROC CPORT in SAS 9.

PROC CPORT and PROC CIMPORT are forward compatible (SAS 9 CIMPORT can
read a SAS file created using SAS 8 CPORT), but they are not backward compatible
(SAS 8 CIMPORT cannot read a SAS file created using SAS 9 CPORT).

To identify the version of SAS that was used to create the transport file, use this SAS
program, specifying the appropriate transport file.

data _null_;
infile 'transport-file-path';
input @109 rel $7.;
put rel=;
stop;
run;

The output shows the version of SAS that was used to create the transport file.

Variable name variable is illegal for file Version-6-data-set
This message appears when using PROC CIMPORT to move a SAS 9 data set that
contains long variable names to a SAS 6 data set. Here is an example:

ERROR: The variable name Region_Of_The_Country
is illegal for file V6LIB.CITY.DATA.

The SAS 9 variable name Region_Of_The_Country exceeds the maximum variable
name length of eight characters that is supported in SAS 6. To recover, in the SAS
session on the client, set the VALIDVARNAME system option to V6 to enable
automatic truncation of long variable names and try the transport operation again. Here
is an example:

options validvarname=v6;

In this example, Region_Of_The_Country truncates to Region_O. However, if the
data set contains multiple variables names in which the first eight characters conflict,
SAS 9 uses a truncation algorithm that ensures uniquely truncated variable names. For
details, see “Regressing SAS Data Sets to SAS 6 Format” on page 28 .

Verifying Transfer Format and Transport File
Attributes

Verify that the communications software that you use to transfer the transport file
specifies BINARY format. For example, if you use FTP, you would specify the FTP
BINARY command. Here is a sample invocation of FTP:

ftp
> open host
> binary
> get file file

Verifying Transfer Format and Transport File Attributes 79

> close
> quit

For details about FTP, see “Transferring Files” on page 39 .

Even if your communications software claims to submit transport files in an appropriate
format by default, always be certain of binary format by explicitly specifying it. For
details about how to specify the transfer format, consult your communications software
documentation.

Also, verify the file attributes of the transport file, which are required in order to restore
the file at the target computer. Although some target computers might not need file
attributes, the transfer method (tape and network) always does. For a list of operating
environments that require file attributes, see “Attributes for Transport Files” on page 40 .
Problems can result when the file attributes that are required by the target operating
environment and those applied by the transfer method are incompatible.

Verify file attributes that are required by the target computer. The method to list and
specify file attributes varies by computer. See the chapter that is appropriate to your
operating environment.

Also verify the file attributes that are set by the transfer method. For example, if using
FTP, you set file attributes in an FTP command. Here is a sample invocation of FTP:

ftp
> open host
> binary
> locsite recfm=fb blocksize=8000 lrecl=80
> get file file
> close
> quit

If transferring a transport file across a network, see your communications software
documentation. For information about transferring a file via tape, see the topic that is
appropriate to your operating environment.

If you can correct the problem, re-create the transport file at the source computer,
transfer it to the target computer, and restore the transport file again.

If the problem persists, try to reblock the transport file and try transporting it again. For
details, see “Reblocking a Transport File” on page 80 .

Reblocking a Transport File
At the target computer, if you find out that the transport file has an incorrect block size
and you are unable to obtain a transport file that contains the correct block size, then use
the reblocking program to reblock the transport file.

Note: The transport file against which the reblocking program is run must be
uncorrupted. That is, no extra carriage returns or line feeds can be inserted. If the
transport file is known to be corrupted, the reblocking program will fail.

This program copies the transport file and produces a new transport file that contains 80-
byte fixed block records.

data _null_;

 /* Note: the INFILE and FILE statements must */

80 Chapter 12 • Troubleshooting

 /* be modified. Substitute your file names. */
 infile 'your_transport.dat' eof=wrapup;
 file 'new_transport.dat' recfm=f lrecl=80;

 length irec $16 outrec $80 nullrec $80;
 retain count 1 outrec nullrec;
 input inrec $char16. @@;
 substr(outrec, count, 16) = inrec;
 count + 16;
 if (count > 80) then do;
 put outrec $char80.;
 count=1;
 end;
 return;

wrapup:;
 file log;
 nullrec = repeat('00'x,80);
 if outrec = nullrec then do;
 put ' WARNING: Null characters may have been'
 ' added at the end of transport file by'
 ' communications software or by a copy'
 ' utility. For a data set transport file,'
 ' this could result in extra null'
 ' observations being added at the end'
 ' of the last data set.';
 end;
run;

In this example, the record format of the original transport file is fixed and the record
length is evenly divisible by 16.

If your record type is fixed but the record length is not evenly divisible by 16, then find
the greatest common denominator that is divisible by both 80 and the transport file
record length. Substitute this number for all occurrences of 16 in the preceding program.

For example, 80 is evenly divisible by 1, 2, 5, 8, and 10. A fixed record length of 99 for
a transport file is evenly divisible by 1, 3, 9, and 11. The only common denominator is 1.
Therefore, 1 is both the lowest common denominator and the greatest common
denominator.

Note: If the transport file has a variable length record type, then use 1 instead of 16 as
the greatest common denominator.

CAUTION:
For a transport file that contains data sets, some communications software
pads the final record with null characters. The reblocking program might add
extra observations that contain all 0 values to the end of the final data set in a library.

Reblocking a Transport File 81

82 Chapter 12 • Troubleshooting

Part 6

Samples and Logs

Chapter 13
Examples of Moving SAS Files . 85

83

84

Chapter 13

Examples of Moving SAS Files

The Overview of Examples of Moving SAS Files between Computers 86

Example: OpenVMS to UNIX File Transport . 86
Using PROC COPY at the Source Computer to Create Transport Files 86
Viewing the SAS Log at the Source Computer . 87
Verifying Transport Files . 88
Transferring the Transport Files to the Target Computer . 89
Using PROC COPY at the Target Computer to Restore

Transport Files into Native Format . 91
Viewing the SAS Log at the Target Computer . 91

Example: z/OS to Windows File Transport . 93
Using PROC CPORT at the Source Computer to Create Transport Files 93
Viewing the SAS Log at the Source Computer . 93
Verifying Transport Files . 94
Transferring Transport Files to the Target Computer . 94
Using PROC CIMPORT at the Target Computer to Import

Transport Files into Native Format . 96
Viewing the SAS Log at the Target Computer . 97

Example: z/OS JCL Batch to UNIX File Transport . 98
Overview of the z/OS JCL Batch Program . 98
Using PROC COPY to Create a Transport File . 98
Transferring the Transport File across the Network . 99
Verifying the Accuracy of the Transport File . 100
Using PROC COPY to Restore the Transport File . 101
Recording the Creation of Data Sets and Transport Files in the SAS Log 101
Recording the Transfer of the Transport File to the Target

Computer in the SAS Log . 103
Recording the Verification of the Transport File in the SAS Log 104
Recording the Restoration of the Transport File to the Source

Computer in the SAS Log . 105

Strategies for Verifying Transport Files . 106
Restoring the Transport File at the Source Computer . 106
Verifying the Size of a Transport File . 106
Comparing the Original Data Set with the Restored Data Set 107

85

The Overview of Examples of Moving SAS Files
between Computers

These examples show the creation, transfer, and restoration of transport files between
two computers that run under different operating environments. This table describes the
basic characteristics of each example:

Table 13.1 Summary of the Examples of Moving SAS Files

Members to Move
Source Computer
and SAS Version

Target Computer
and SAS Version Strategy

Data sets OpenVMS 6.12 UNIX 8 XPORT engine with
PROC COPY

Data sets and catalogs z/OS 6.09 Windows 8 PROC CPORT and
PROC CIMPORT

Data sets JCL Batch z/OS 6.09 UNIX 9 XPORT engine with
PROC COPY

Although the examples are operating environment-specific, the basic SAS command
syntax for all transport methods is identical across operating environments. The
noteworthy syntax difference among operating environment types is the specification of
the SAS library in the LIBNAME statement. For complete details about the syntax for
the LIBNAME statement, see your operating environment companion documentation.

Example: OpenVMS to UNIX File Transport

Using PROC COPY at the Source Computer to Create Transport
Files

This example shows a SAS program that creates three data sets in OpenVMS format and
translates them to transport format.

Example Code 13.1 SAS Program That Creates Data Sets and Transport Files

libname xptlib xport 'xptlib.dat'; 1

libname xptds xport 'xptds.dat'; 2

 /* creates data set GRADES; contains numeric and */
 /* character data */
data grades; 3
 input student $ test1 test2 final;
 datalines;
 Fred 66 80 70
 Wilma 97 91 98
 ;

86 Chapter 13 • Examples of Moving SAS Files

 /* creates data set SIMPLE; contains */
 /* character data only */
data simple; 4
 x='dog';
 y='cat';
 z='fish';
run;

 /* creates data set NUMBERS; contains */
 /* numeric data only */
data numbers; 5
 do i=1 to 10;
 output;
 end;
run;

 /* create a transport file for the entire library */
proc copy in=work out=xptlib; 6
run;

 /* create a transport file for a data set */
proc copy in=work out=xptds; 7
 select grades;
run;

1 The LIBNAME statement assigns the libref XPTLIB to the physical location
XPTLIB.DAT, which stores the entire library to be created. The XPORT engine
creates XPTLIB.DAT.

2 The LIBNAME statement assigns the libref XPTDS to the physical location
XPTDS.DAT, which stores the single data set to be created. The XPORT engine
creates XPTDS.DAT.

3 The DATA step creates the first data set, WORK.GRADES, which contains two
observations. Each observation contains four variables (one character and three
numeric values).

4 The DATA step creates a second data set, WORK.SIMPLE, which contains a single
observation. The observation contains three character values.

5 The DATA step creates a third data set, WORK.NUMBERS, which contains ten
observations. Each observation contains a single numeric value.

6 PROC COPY copies all three data sets from the default WORK library to the new
library XPTLIB. The WORK data sets are written to the output library XPTLIB in
transport format.

7 PROC COPY copies the selected data set GRADES to the new library XPTDS. The
data set GRADES is written to output library XPTDS in transport format.

Viewing the SAS Log at the Source Computer
The following example shows a SAS log for Example Code 13.1 on page 86 .

Example Code 13.2 SAS Log at the Source Computer

 NOTE: SAS (r) Proprietary Software Release 6.12 TS050 1
 NOTE: Running on DEC Model 7000 MODEL 740 Serial Number 80000000. 2
 NOTE: Libref XPTLIB was successfully assigned as follows: 3

Example: OpenVMS to UNIX File Transport 87

 Engine: XPORT
 Physical Name: Device:system-specific file/pathname XPTLIB.DAT
 NOTE: Libref XPTDS was successfully assigned as follows: 4
 Engine: XPORT
 Physical Name:system-specific file/pathname XPTDS.DAT
 NOTE: The data set WORK.GRADES has 2 observations and 4 variables. 5
 NOTE: The data set WORK.SIMPLE has 1 observations and 3 variables.
 NOTE: The data set WORK.NUMBERS has 10 observations and 1 variables.
 NOTE: Copying WORK.GRADES to XPTLIB.GRADES (MEMTYPE=DATA). 6
 NOTE: BUFSIZE is not cloned when copying across dissimilar engines.
 System Option for BUFSIZE was used.
 NOTE: The data set XPTLIB.GRADES has 2 observations and 4 variables.
 NOTE: Copying WORK.NUMBERS to XPTLIB.NUMBERS (MEMTYPE=DATA).
 NOTE: BUFSIZE is not cloned when copying across dissimilar engines.
 System Option for BUFSIZE was used.
 NOTE: The data set XPTLIB.NUMBERS has 10 observations and 1 variables.
 NOTE: Copying WORK.SIMPLE to XPTLIB.SIMPLE (MEMTYPE=DATA).
 NOTE: BUFSIZE is not cloned when copying across dissimilar engines.
 System Option for BUFSIZE was used.
 NOTE: The data set XPTLIB.SIMPLE has 1 observations and 3 variables.
 NOTE: Copying WORK.GRADES to XPTDS.GRADES (MEMTYPE=DATA). 7
 NOTE: BUFSIZE is not cloned when copying across dissimilar engines.
 System Option for BUFSIZE was used.
 NOTE: The data set XPTDS.GRADES has 2 observations and 4 variables.

1 The source computer runs SAS 6.12, which means that the SAS session default
library engine is V612.

2 The source computer is a DEC Model 7000, which refers to AX7000.

3 SAS assigns the libref XPTLIB to the physical device whose specification is
platform-dependent. The XPORT engine creates XPTLIB.

4 SAS assigns the libref XPTDS to the physical device whose specification is
platform-dependent. The XPORT engine creates XPTDS.

5 The first three notes in this series report the creation of the data sets
WORK.GRADES, WORK.SIMPLE, and WORK.NUMBERS.

6 The next series of notes report that SAS copies WORK.GRADES to
XPTLIB.GRADES, WORK.NUMBERS to XPTLIB.NUMBERS, and
WORK.SIMPLE to XPTLIB.SIMPLE. The XPORT engine translates each data set
from OpenVMS format to transport format.

Note: The following notes about the SAS system option BUFSIZE do not indicate
an error condition. BUFSIZE specifies the permanent buffer size for an output
data set, which can be adjusted to improve system performance. The system
value that is assigned to the BUFSIZE option is used because the XPORT engine
does not support the BUFSIZE= option. See your operating environment
companion documentation for details.

7 SAS copies WORK.GRADES to XPTDS.GRADES. The XPORT engine translates
the data set from OpenVMS format to transport format.

Verifying Transport Files
You should verify the integrity of your transport files at the source computer before the
files are transferred to the target computer. A successful verification at the source
computer can eliminate the possibility that the transport file was created incorrectly.

88 Chapter 13 • Examples of Moving SAS Files

After you transfer the transport file to the target computer, compare the transport file that
was sent from the source computer with the file that was received at the target computer.
For details, see “Strategies for Verifying Transport Files” on page 106 .

Transferring the Transport Files to the Target Computer
Before you transfer a transport file to the target computer, verify its file attributes. This
example shows typical output:

Example Code 13.3 Using DIR/FULL to Verify the Attributes of the Transport File

vms> DIR/FULL xptlib.dat
Directory HOSTVAX:[JOE.XPTTEST]

 XPTLIB.DAT;1 File ID: (31223,952,0)
 Size: 7/8 Owner: [HOSTVAX,JOE]
 Created: 25-APR 2008 16:47:31.34
 Revised: 25-APR-2008 16:47:31.69 (1)
 Expires: Effective: File organization: Sequential
 Shelved state: Online
 File attributes: Allocation: 8, Extend: 0, Global buffer count: 0
 Version limit: 2
 Record format: Fixed length 80 byte records 1
 Record attributes: None 2
 RMS attributes: None
 Journaling enabled: None
 File protection: System:RWED, Owner:RWED, Group:RE, World:
 Access Cntrl List: None

 Total of 1 file, 7/8 blocks.
 $ dir/size xptlib.dat

 Directory HOSTVAX:[JOE.XPTTEST]

 XPTLIB.DAT;1 7

 Total of 1 file, 7 blocks.

1 The RECORD FORMAT attribute indicates a fixed record type and an 80-byte
record size. These values are required for a successful file transfer across the
network.

2 The RECORD ATTRIBUTES field should contain the value NONE.

CAUTION:
If this field contains CARRIAGE RETURN CARRIAGE CONTROL, file corruption
results. To prevent corruption before you transfer the transport file, remove this
value from the RECORD ATTRIBUTES field. An error message alerts you to this
condition after you attempt to transfer the corrupted file.

After you verify the attributes of a transport file, use FTP to transfer the transport file to
the target computer.

In this example, the target computer retrieves the transport file from the source computer
because the source computer does not have permission to write to the operating
environment directory of the target computer. A source computer is unlikely to have
permission to write a transport file to a target computer.

Example: OpenVMS to UNIX File Transport 89

At the target computer, change the directory to the location to which the transport file
will be copied. The following example shows the FTP commands that are used to get the
transport files.

Example Code 13.4 FTP Dialog for File Transfer

hp> ftp ax7000.vms.sas.com 1
 Connected to ax7000.vms.com.
 220 ax7000.vms.com MultiNet FTP Server Process V4.0(15) at Thu-Sep 30-99
 12:59PM-EDT
 Name (ax7000.vms.com:): joe
 331 User name (joe) ok. Password, please.
 Password:
 230 User JOE logged into HOSTVAX:[JOE] at Thu 30-Sep-99 12:59PM-EDT, job
 27a34cef.
 Remote system type is VMS.
ftp> cd [.xpttest] 2
 250 Connected to system-specific file/pathname.
ftp> binary 3
 200 Type I ok.
ftp> get xptds.dat xptds.dat 4
 200 Port 14.83 at Host 10.26.2.45 accepted.
 150 IMAGE retrieve of system-specific file/pathname XPTDS.DAT;1 started.
 1360 bytes received in 0.02 seconds (87.59 Kbytes226 Transfer completed.
 1360 (8) bytes transferred. 5 /s)
ftp> get xptlib.dat xptlib.dat 6
 200 Port 14.84 at Host 10.26.2.45 accepted.
 150 IMAGE retrieve of system-specific file/pathname XPTLIB.DAT;1 started.
 3120 bytes received in 0.04 seconds (85.81 Kbytes226 Transfer completed.
 3120 (8) bytes transferred. 7 /s)
ftp> quit 8

1 From the UNIX target computer, the user invokes FTP to connect to the OpenVMS
source operating environment AX7000.VMS.SAS.COM.

2 After a connection is established, at the FTP prompt, user JOE changes to the
subdirectory on the source computer that contains the transport files.

3 The transport file attribute BINARY indicates that the OpenVMS transport file
should be transferred from the source computer in BINARY format.

4 The FTP get command obtains the transport file named XPTDS.DAT from the
source computer. The command then copies it to a new file that has the same name,
XPTDS.DAT, in the current directory of the target operating environment that runs
on the target computer.

5 Messages indicate that the transfer was successful and that the size of the transport
file was 1360 bytes. Compare the sizes of the transport files at the source computer
and the target computer. If the sizes are identical, then the network successfully
transferred the file. For details about listing file size, see “Verifying the Size of a
Transport File” on page 106 .

6 The FTP get command obtains another transport file named XPTLIB.DAT from the
source computer and copies it to a new file that has the same name, XPTLIB.DAT,
in the current directory of the target operating environment on the target computer.

7 Messages indicate that the transfer was successful. Compare the sizes of the transport
files at the source computer and the target operating environment.

8 The user quits the FTP session.

90 Chapter 13 • Examples of Moving SAS Files

For complete details about using the file transfer utility, see your FTP documentation.

Using PROC COPY at the Target Computer to Restore Transport
Files into Native Format

The following example shows a SAS program that translates a transport file to native file
format.

Example Code 13.5 SAS Program That Restores Transport Files into Native File Format

libname xptlib xport 'xptlib.dat'; 1
libname xptds xport 'xptds.dat'; 2

libname natvlib v7 'natvlib' 3
libname natvds v7 'natvds'; 4

 /* translate transport file for library */
 /* to native format on target computer. */

proc copy in=xptlib out=natvlib; 5
run;

 /* translate transport file for data set*/
 /* to native format on target computer */

proc copy in=xptds out=natvds; 6
 select grades;
run;

1 The LIBNAME statement assigns the libref XPTLIB to the physical location
XPTLIB.DAT, which stores the entire library that was transferred to the target
computer. The XPORT engine reads XPTLIB.

2 The LIBNAME statement assigns the libref XPTDS to the physical location
XPTDS.DAT, which stores the single data set that was transferred to the target
computer. The XPORT engine reads XPTDS.

3 The LIBNAME statement assigns the libref NATVLIB to the physical location
NATVLIB, which stores the entire library to be translated from transport format to
native format. The V7 engine creates NATVLIB.

4 The LIBNAME statement assigns the libref NATVDS to the physical location
NATVDS, which stores the single data set to be translated from transport format to
native format. The V7 engine creates NATVDS.

5 PROC COPY copies all three data sets from the libref XPTLIB to the new libref
NATVLIB. The XPORT engine reads all data sets from XPTLIB in transport format.
The V7 engine writes the data sets to the output libref NATVLIB in native UNIX
format.

6 PROC COPY selects the data set GRADES to copy to the new library NATVDS.
The XPORT engine reads the data set GRADES in transport format. The V7 engine
writes the output library XPTDS in native UNIX format.

Viewing the SAS Log at the Target Computer
This example shows a SAS log that documents the successful execution of the SAS
program shown in Example Code 13.5 on page 91.

Example: OpenVMS to UNIX File Transport 91

Example Code 13.6 SAS Log at the Target Computer

NOTE: Copyright (c) 1999 by SAS Institute Inc., Cary, NC, USA.
NOTE: SAS (r) Proprietary Software Version 8 (TS00.00P1D090398) 1
 Licensed to SAS Institute Inc., Site 0000000001.
NOTE: This session is executing on the UNIX B.10.20 platform. 2
NOTE: Running on HP Model 9000/715 Serial Number 2005516582.
libname xptlib xport 'xptlib.dat'; 3
NOTE: Libref XPTLIB was successfully assigned as follows:
 Engine: XPORT
 Physical Name: system-specific file/pathname/xptlib.dat
libname xptds xport 'xptds.dat'; 4
NOTE: Libref XPTDS was successfully assigned as follows:
 Engine: XPORT
 Physical Name:
 system-specific file/pathname/xptds.dat
libname natvlib v7 'natvlib'; 5
NOTE: Libref NATVLIB was successfully assigned as follows:
 Engine: V7
 Physical Name:
 system-specific file/pathname/natvlib
libname natvds v7 'natvds'; 6
NOTE: Libref NATVDS was successfully assigned as follows:
 Engine: V7
 Physical Name:
 system-specific file/pathname/natvds

/* translate transport file for library to native */
/* format on target computer. */
proc copy in=xptlib out=natvlib;
run;
NOTE: Input library XPTLIB is sequential.
NOTE: Copying XPTLIB.GRADES to NATVLIB.GRADES (memtype=DATA). 7
NOTE: BUFSIZE is not cloned when copying across different engines.
 System Option for BUFSIZE was used.
NOTE: The data set NATVLIB.GRADES has 2 observations and 4 variables.
NOTE: Copying XPTLIB.NUMBERS to NATVLIB.NUMBERS (memtype=DATA). 8
NOTE: BUFSIZE is not cloned when copying across different engines.
 System Option for BUFSIZE was used.
NOTE: The data set NATVLIB.NUMBERS has 10 observations and 1 variables.
NOTE: Copying XPTLIB.SIMPLE to NATVLIB.SIMPLE (memtype=DATA). 9
NOTE: BUFSIZE is not cloned when copying across different engines.
 System Option for BUFSIZE was used.
NOTE: The data set NATVLIB.SIMPLE has 1 observations and 3 variables.
/* translate transport file for data set to native */
/* on target computer */
proc copy in=xptds out=natvds;
 select grades;
run;
NOTE: Input library XPTDS is sequential.
NOTE: Copying XPTDS.GRADES to NATVDS.GRADES (memtype=DATA). 10
NOTE: BUFSIZE is not cloned when copying across different engines.
 System Option for BUFSIZE was used.
NOTE: The data set NATVDS.GRADES has 2 observations and 4 variables

1 The target computer runs SAS 8, which means that the SAS session on the target
operating environment uses the default library engine V8.

92 Chapter 13 • Examples of Moving SAS Files

2 The target computer runs UNIX.

3 The LIBNAME statement assigns the libref XPTLIB to the physical device whose
specification is platform-dependent. In this example, the physical device indicates a
UNIX operating environment. The XPORT engine reads XPTLIB.

4 The LIBNAME statement assigns the libref XPTDS to the physical device whose
specification is platform-dependent. The XPORT engine reads XPTDS.

5 The LIBNAME statement assigns the libref NATVLIB to the physical device whose
specification is platform-dependent. In this example, the physical device indicates a
UNIX operating environment. The V7 engine writes to NATVLIB.

6 The LIBNAME assigns the libref NATVDS to the physical device whose
specification is platform-dependent. In this example, the physical device indicates a
UNIX operating environment. The V7 engine writes to NATVDS.

7 PROC COPY copies XPTLIB.GRADES to NATVLIB.GRADES. The NATVLIB
data set is written in V7 format.

8 PROC COPY copies XPTLIB.NUMBERS to NATVLIB.NUMBERS. The
NATVLIB data set is written in V7 format.

9 PROC COPY copies XPTLIB.SIMPLE to NATVLIB.SIMPLE. The NATVLIB data
set is written in V7 format.

10 PROC COPY copies XPTDS.GRADES to NATVDS.GRADES. The NATVDS data
set is written in V7 format.

Example: z/OS to Windows File Transport

Using PROC CPORT at the Source Computer to Create Transport
Files

This example shows a SAS program that copies two data sets and two catalogs from a
library in z/OS format and writes them to a default output file in transport format.

Example Code 13.7 SAS Program That Copies Data Sets and Catalogs to a Transport File

filename tport 'joe.mytest.data' disp=rep;
libname test 'joe.mytest.sas';
proc cport library=test file=tport;
run;

The LIBNAME statement assigns the libref TEST to the physical location
JOE.MYTEST.SAS, which points to the library to be transported. JOE is the user-ID
that is associated with the SAS session in which the transport operation is performed.
The FILENAME statement assigns the fileref TPORT to the transport file
JOE.MYTEST.DATA. DISP=REP will create a new file or replace an existing file.

Viewing the SAS Log at the Source Computer
This example shows a SAS log that documents the successful execution of the SAS
program shown in Example Code 13.7 on page 93.

Example: z/OS to Windows File Transport 93

Example Code 13.8 Source Computer SAS Log File

filename tport 'joe.mytest.data';
libname test 'joe.mytest.sas';
proc cport lib=test file=tport;
run;
WARNING: No output file is specified. Default output
file JOE.SASCAT.DATA is used.

NOTE: Proc CPORT begins to transport data set TEST.CITY
NOTE: The data set contains 7 variables and 72 observations.
NOTE: Transporting data set index information.

NOTE: Proc CPORT begins to transport catalog TEST.FORMATS
NOTE: The catalog has 3 entries
NOTE: Transporting entry REGFMT .FORMATC
NOTE: Transporting entry SALEFMT .FORMATC
NOTE: Transporting entry SIZEFMT .FORMATC

NOTE: Proc CPORT begins to transport catalog TEST.TEST
NOTE: The catalog has 11 entries
NOTE: Transporting entry ABOUT .CBT
NOTE: Transporting entry APPEND .CBT
NOTE: Transporting entry BOOKMENU.CBT
NOTE: Transporting entry DEFAULT .FORM
NOTE: Transporting entry HELP .HELP
NOTE: Transporting entry CLIST .LIST
NOTE: Transporting entry ENTRYTYP.LIST
NOTE: Transporting entry SPELLALL.PMENU
NOTE: Transporting entry SPELLSUG.PMENU
NOTE: Transporting entry ADDON1 .PROGRAM
NOTE: Transporting entry ADDON2 .PROGRAM
NOTE: Proc CPORT begins to transport data set TEST.VARNUM
NOTE: The data set contains 10 variables and 100 observations.

Note: Default output filenames are operating environment-specific.

PROC CPORT reads the contents of the entire library that is referenced by the libref
TEST and writes to the default transport file. The remaining series of notes indicate that
PROC CPORT transports the data set TEST.CITY, the catalog TEST.FORMATS, the
catalog TEST.TEST, and the data set TEST.VARNUM into the transport file
JOE.MYTEST.DATA.

Verifying Transport Files
You should verify the integrity of your transport files at the source computer before the
files are transferred to the target computer. A successful verification at the source
computer can eliminate the possibility that the transport file was created incorrectly.
Also, after you transfer a file to the target computer, you can compare the transport file
that was sent from the source computer with the file that was received at the target
computer. For details, see “Strategies for Verifying Transport Files” on page 106 .

Transferring Transport Files to the Target Computer
Verify the file attributes of the transport files before they are transferred to the target
computer. This example shows typical output for TSO.

94 Chapter 13 • Examples of Moving SAS Files

Example Code 13.9 Using TSO LISTD Command to Verify the Attributes of the Transport
File

listd "userid.mytest.data"
USERID.MYTEST.DATA
--RECFM-LRECL-BLKSIZE-DSORG
 FB 80 8000 PS
--VOLUMES--
 APP009

After you verify the attributes of the transport files, you can use FTP to transfer them
over the network. Change the default DCB attributes as necessary in the FTP dialog. In
this example, because the user on the source computer has permission to write to the
target computer, the FTP put command is used to write the transport file to the target
computer.

This example shows the FTP commands that you specify at the source computer to write
the transport files to the target computer.

ftp mypc 1
 EZA1450I MVS TCP/IP FTP V3R2
 EZA1554I Connecting to SPIDER 10.24.2.32, port 21
 220 spider FTP server (Version 4.162 Tue Nov 1
 10:50:37 PST 1988) ready.
 EZA1459I USER (identify yourself to the host):
userid password
 EZA1701I >>>USER joe
 331 Password required for joe.
 EZA1701I >>>PASS ********
 230 User joe logged in.
 EZA1460I Command: 2

binary
 EZA1701I >>>TYPE i
 200 Type set to I.
 EZA1460I Command: 3
put 'joe.mytest.data' c:\tport.dat
 EZA1701I >>>SITE VARrecfm Lrecl=80 4
 Recfm=FB BLKSIZE=8000
 500 'SITE VARRECFM Lrecl=80 Recfm=FB BLKSIZE=23440':
 EZA1701I >>>PORT 10,253,1,2,129,50
 200 PORT command
 EZA1701I >>>STOR c:\tport.dat 5
 150 Opening BINARY mode data connection for c:\tport.dat
 226 Transfer complete. 6
 EZA2517I 6071600 bytes transferred in 13 seconds.
 Transfer rate 466.18 Kbytes/sec.
 EZA1460I Command: 7
quit
 EZA1701I >>>QUIT
 221 Goodbye.
 READY

1 From the z/OS source computer, the user invokes FTP to connect to the Windows
target computer MYPC.

2 The transport file attribute BINARY indicates that the z/OS transport file should be
transferred from the source computer in BINARY format.

Example: z/OS to Windows File Transport 95

3 The FTP put command copies the transport file named JOE.MYTEST.DATA from
the source computer to the target computer physical location C:\TPORT.DAT.

4 The FTP file attribute commands indicate a record length of 80 bytes, a fixed record
type, and a block size of 8000.

5 TPORT.DAT is saved to drive C.

6 Messages indicate that the transfer was successful. For details about listing a file
size, see “Verifying the Size of a Transport File” on page 106 .

7 The user quits the FTP session.

Using PROC CIMPORT at the Target Computer to Import Transport
Files into Native Format

This example shows a SAS program that translates the transport file from transport
format into native format.

Example Code 13.10 SAS Program That Imports Transport Files into Native Format

libname newlib 'c:\mylib';
proc cimport infile='c:\tport.dat' library=newlib;
run;

This LIBNAME statement assigns the libref NEWLIB to the physical location c:
\mylib, which stores the entire V7 library. PROC CIMPORT reads the entire content
of the transport file that is identified in the INFILE= option and writes it to the output
location that is identified in the LIBNAME= option.

As an alternative to importing the entire contents of the library into native V7 format,
you can select or exclude specific entities from the transport library.

Here are examples:

Example Code 13.11 Selecting One or More Data Sets

filename target 'c:\tport.dat';
libname newlib 'c:\mylib';
proc cimport infile=target library=newlib;
 select varnum;
run;

In the preceding example, the fileref TARGET points to the location where the transport
file was transferred to the target computer. The libref NEWLIB points to the location to
store the selected member. PROC CIMPORT reads the entire content of the transport
file that is identified in the INFILE= option and writes only the member that is identified
in the SELECT statement. The data set VARNUM is written to the library NEWLIB in
Windows format.

Example Code 13.12 Selecting a Catalog Entry Type

filename target 'c:\tport.dat';
libname newlib 'c:\mylib';
proc cimport infile=target library=newlib
 memtype=catalog et=program;
run;

In the preceding example, PROC CIMPORT reads the entire content of the transport file
that is identified in the INFILE= option and writes only members of type CATALOG
and entries of type PROGRAM to the library NEWLIB in Windows format.

96 Chapter 13 • Examples of Moving SAS Files

Example Code 13.13 Selecting Catalog Entries

filename target 'c:\tport.dat';
libname newlib 'c:\mylib';
proc cimport infile=target library=newlib memtype=cat;
 select spellsug.pmenu addon1.program;
run;

In the preceding example, PROC CIMPORT reads the entire content of the transport file
that is identified in the INFILE= option and writes only the entries SPELLSUG.PMENU
and ADDON1.PROGRAM of member type CATALOG to the library NEWLIB in
Windows format.

Viewing the SAS Log at the Target Computer
This example shows a SAS log that documents the successful execution of the SAS
program that is shown in Example Code 13.10 on page 96.

NOTE: Proc CIMPORT begins to create/update data set NEWLIB.CITY
NOTE: The data set index REGION is defined.
NOTE: Data set contains 7 variables and 72 observations.
NOTE: Proc CIMPORT begins to create/update catalog NEWLIB.FORMATS
NOTE: Entry REGFMT.FORMATC has been imported.
NOTE: Entry SALEFMT.FORMATC has been imported.
NOTE: Entry SIZEFMT.FORMATC has been imported.
NOTE: Total number of entries processed in catalog NEWLIB.FORMATS: 3

NOTE: Proc CIMPORT begins to create/update catalog NEWLIB.TEST
NOTE: Entry ABOUT.CBT has been imported.
NOTE: Entry APPEND.CBT has been imported.
NOTE: Entry BOOKMENU.CBT has been imported.
NOTE: Entry DEFAULT.FORM has been imported.
NOTE: Entry HELP.HELP has been imported.
NOTE: Entry CLIST.LIST has been imported.
NOTE: Entry ENTRYTYP.LIST has been imported.
NOTE: Entry SPELLALL.PMENU has been imported.
NOTE: Entry SPELLSUG.PMENU has been imported.
NOTE: Entry ADDON1.PROGRAM has been imported.
NOTE: Entry ADDON2.PROGRAM has been imported.
NOTE: Total number of entries processed in catalog NEWLIB.TEST: 11

NOTE: Proc CIMPORT begins to create/update data set NEWLIB.VARNUM
NOTE: Data set contains 10 variables and 100 observations.

PROC CIMPORT creates the data set NEWLIB.CITY, the catalog
NEWLIB.FORMATS, the catalog NEWLIB.TEST, and the data set
NEWLIB.VARNUM at the target computer in Windows format.

Example: z/OS to Windows File Transport 97

Example: z/OS JCL Batch to UNIX File Transport

Overview of the z/OS JCL Batch Program
Although presented in four parts, the following program is designed as a single program.
The following processes are performed:

1. PROC COPY is used to create a transport file on the z/OS source computer.

2. The transport file is transferred over the network to the UNIX target computer.

3. The accuracy of the transport file is verified.

4. PROC COPY is used to restore the transport file to the z/OS source computer.

Embedded comments document the program.

Using PROC COPY to Create a Transport File
Example Code 13.14 on page 98 shows the first part of the program that creates three
data sets in z/OS format and translates them to transport format. For details in the SAS
log that pertains to the execution of this program part, see “Recording the Creation of
Data Sets and Transport Files in the SAS Log” on page 101 .

Example Code 13.14 Creating Data Sets and Transport Files

//XPORTTST JOB job-card-information
//*--
//* Run SAS step that creates a transport library
//* for the three SAS test data sets.

//*--
//SASOUT EXEC SAS
//*--
//* Allocate the SAS XPORTOUT library.
//* The XPORTOUT library should have the
//* following data set information:
//* Record format: FB
//* Record length: 80
//* Block size: 8000
//* Organization: PS
//*--

//XPORTOUT DD DSN=userid.XPORTOUT.DAT, DISP=(NEW,CATLG,DELETE),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=8000),
// SPACE=(TRK,(1,1))
//SYSIN DD *
 /*--*/
 /* Assign the SAS test xport library */
 /*--*/
libname xportout xport;

 /*--*/
 /* Creates data set GRADES which contains */

98 Chapter 13 • Examples of Moving SAS Files

 /* numeric and character data. */
 /*--*/
data grades;
 input student $ test1 test2 final;
 datalines;
Fred 66 80 70
Wilma 97 91 98
;

 /*-----------------------------------*/
 /* Creates data set SIMPLE which */
 /* contains character data only. */
 /*-----------------------------------*/
data simple;
 x='dog';
 y='cat';
 z='fish';
run;

 /*------------------------------------*/
 /* Creates data set NUMBERS which */
 /* contains numeric data only. */
 /*------------------------------------*/
data numbers;
 do i=1 to 10;
 output;
 end;
run;
 /*------------------------------------*/
 /* Copy the three test data sets to */
 /* the XPORT library. */
 /*------------------------------------*/
proc copy in=work out=xportout;
run;
/*

Transferring the Transport File across the Network
This example shows the generation of the FTP command file and the transfer of the
transport file over the network to the target computer. For details in the SAS log that
pertains to the execution of this part of the program, see “Recording the Transfer of the
Transport File to the Target Computer in the SAS Log” on page 103 .

Example Code 13.15 Using FTP to Transfer Transport Files

//*---
//* Generate FTP command file for sending XPORTOUT
//* test library to the target computer.
//*---
//FTPCMDO EXEC PGM=IEBGENER,COND=EVEN
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY
//SYSUT2 DD DSN=userid.FTP.OUT,
// UNIT=DISK,DISP=(NEW,CATLG),
// SPACE=(TRK,(1,1)),DCB=(RECFM=FB,LRECL=80,BLKSIZE=6160)
//*---

Example: z/OS JCL Batch to UNIX File Transport 99

//* Ensure that the FTP commands specify a BINARY
//* mode transfer.
//*---
//SYSUT1 DD *
userid password
cd mydir
binary
put 'userid.xportout.dat' xportout.dat
quit
/*
//*--
//* FTP library XPORTOUT to the target computer.
//*--
//FTPXEQO EXEC PGM=IKJEFT01,REGION=2048K,DYNAMNBR=50,COND=EVEN
//SYSPRINT DD SYSOUT=*
//SYSTSOUT DD SYSOUT=*
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
ALLOC FI(input) DA('userid.FTP.OUT') SHR
FTP target-host (EXIT
/*

Verifying the Accuracy of the Transport File
This example shows the verification of the transport file by transferring it from the
UNIX target computer to the z/OS source computer in native format. A successful
translation from transport format to native z/OS format verifies the accuracy of the
transport file. For details in the SAS log that pertain to the execution of this part of the
program, see “Recording the Verification of the Transport File in the SAS Log” on page
104 .

Example Code 13.16 Verifying Transport Files

//*---
//* The following steps retrieve the XPORTOUT library
//* from the target computer and read the three test
//* data sets back into the WORK library.
//*---
//* Generates the FTP command file for getting
//* the test library XPORTOUT from the target computer.
//*---
//FTPCMDI EXEC PGM=IEBGENER,COND=EVEN
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY
//SYSUT2 DD DSN=userid.FTP.IN,
// UNIT=DISK,DISP=(NEW,CATLG),
// SPACE=(TRK,(1,1)),DCB=(RECFM=FB,LRECL=80,BLKSIZE=6160)
//*---
//* The FTP commands specify a BINARY mode
//* transfer. Uses the LOCSITE command to define
//* the correct XPORT library data set information.
//*---
//SYSUT1 DD *
userid password
cd mydir
locsite recfm=fb blocksize=8000 lrecl=80

100 Chapter 13 • Examples of Moving SAS Files

binary
get xportout.dat 'userid.xportin.dat'
quit
/*
//*--
//* Connects to the target computer and retrieves
//* the library XPORTOUT.
//*--
//FTPXEQI EXEC PGM=IKJEFT01,REGION=2048K,DYNAMNBR=50,COND=EVEN
//SYSPRINT DD SYSOUT=*
//SYSTSOUT DD SYSOUT=*
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
ALLOC FI(input) DA('userid.FTP.IN') SHR
FTP target-host (EXIT
/*

Using PROC COPY to Restore the Transport File
This example restores the transport file to native format on the z/OS source computer.
For details in the SAS log that pertains to the execution of this part of the program, see
“Recording the Restoration of the Transport File to the Source Computer in the SAS
Log” on page 105 .

Example Code 13.17 Restoring the Transport File to Native Format

//*--
//* Runs SAS step that reads the transport library
//* and writes the three SAS test data sets to
//* library WORK.

//*--
//SASIN EXEC SAS
//XPORTIN DD DSN=userid.XPORTIN.DAT,DISP=SHR
//SYSIN DD *
 /*--*/
 /* Assigns the SAS test library XPORTIN. */
 /*--*/
libname xportin xport;

 /*--*/
 /* Reads the transport file and writes the test */
 /* data sets to library WORK. */
 /*--*/

proc copy in=xportin out=work;
run;
/*

Recording the Creation of Data Sets and Transport Files in the SAS
Log

This SAS log shows the creation of the data sets and corresponding transport files.

Example: z/OS JCL Batch to UNIX File Transport 101

Example Code 13.18 Viewing the SAS Log at the z/OS Source Computer (Part 1 of 4)

 The SAS System
 11:03 Monday, October 26, 1999

 NOTE: Copyright (c) 1999 by SAS Institute Inc.,
 Cary, NC, USA.
 NOTE: SAS (r) Proprietary Software Version 6.09.0460P0304986
 Licensed to SAS INSTITUTE INC., Site 0000000001.

 NOTE: Running on IBM Model 9672,
 IBM Model 9672,
 IBM Model 9672.

 NOTE: No options specified.

 /*--*/
 /* Assigns the SAS test library XPORTOUT. */
 /*--*/
 libname xportout xport;
 NOTE: Libref XPORTOUT was successfully assigned
 as follows:
 Engine: XPORT
 Physical Name: JOE.XPORTOUT.DAT

 /*---*/
 /* Creates data set GRADES which contains */
 /* numeric and character data. */
 /*---*/
 data grades;
 input student $ test1 test2 final;
 datalines;

 NOTE: The data set WORK.GRADES has 2 observations
 and 4 variables.

 /*------------------------------------*/
 /* Creates data set SIMPLE which */
 /* contains character data only. */
 /*------------------------------------*/
 data simple;
 x='dog';
 y='cat';
 z='fish';
 run;

 NOTE: The data set WORK.SIMPLE has
 1 observations and 3 variables.

 /*------------------------------------*/
 /* Creates data set NUMBERS which */
 /* contains numeric data only. */
 /*------------------------------------*/
 data numbers;
 do i=1 to 10;

102 Chapter 13 • Examples of Moving SAS Files

 output;
 end;
 run;
 NOTE: The data set WORK.NUMBERS has
 10 observations and 1 variables.
 /*------------------------------------*/
 /* Copies the three test data sets to */
 /* the XPORTOUT library. */
 /*------------------------------------*/
 proc copy in=work out=xportout;
 run;

 NOTE: Copying WORK.GRADES to XPORTOUT.GRADES
 (MEMTYPE=DATA).
NOTE: BUFSIZE is not cloned when copying across different engines.
 System Option for BUFSIZE was used.
 NOTE: The data set XPORTOUT.GRADES has
 2 observations and 4 variables.
 NOTE: Copying WORK.NUMBERS to XPORTOUT.NUMBERS
 (MEMTYPE=DATA).
NOTE: BUFSIZE is not cloned when copying across different engines.
 System Option for BUFSIZE was used.
 NOTE: The data set XPORTOUT.NUMBERS has
 10 observations and 1 variables.
 NOTE: Copying WORK.SIMPLE to XPORTOUT.SIMPLE
 (MEMTYPE=DATA).
NOTE: BUFSIZE is not cloned when copying across different engines.
 System Option for BUFSIZE was used.
 NOTE: The data set XPORTOUT.SIMPLE has 1 observations and 3 variables.

Note: The notes about the SAS system option BUFSIZE do not indicate an error
condition. BUFSIZE specifies the permanent buffer size for an output data set, which
can be adjusted to improve system performance. The system value that is assigned to
the BUFSIZE option is used because the XPORT engine does not support the
BUFSIZE= option. See your operating environment companion documentation for
details.

Recording the Transfer of the Transport File to the Target Computer
in the SAS Log

This SAS log shows the transfer of the transport file to the target computer.

Example Code 13.19 Viewing the SAS Log at the z/OS Source Computer (Part 2 of 4)

EZA1450I MVS TCP/IP FTP V3R2
EZA1772I FTP: EXIT has been set.
EZA1736I conn MYHOST.MYCOMPANY.COM
EZA1554I Connecting to MYHOST.MYCOMPANY.COM
 10.26.11.235, port 21
220 myhost FTP server (Version 4.162 Tue Nov 1 10:50:37 PST 1988)
 ready.
EZA1459I USER (identify yourself to the host):
EZA1701I >>>USER joe
331 Password required for joe.
EZA1701I >>>PASS ********
230 User joe logged in.

Example: z/OS JCL Batch to UNIX File Transport 103

EZA1460I Command:
EZA1736I cd joe
EZA1701I >>>CWD joe
250 CWD command successful.
EZA1460I Command:
EZA1736I binary
EZA1701I >>>TYPE i
200 Type set to I.
EZA1460I Command:
EZA1736I put 'joe.xportout.dat'
 xportout.dat
EZA1701I >>>SITE VARrecfm Lrecl=80
 Recfm=FB BLKSIZE=8000
500 'SITE VARrecfm Lrecl=80 Recfm=FB
 BLKSIZE=8000': command not understood
EZA1701I >>>PORT 10,253,1,2,33,182
200 PORT command.
EZA1701I >>>STOR xportout.dat
150 Opening BINARY mode data connection for
 xportout.dat.
226 Transfer complete.
EZA1460I Command:
EZA1736I quit
EZA1701I >>>QUIT

Recording the Verification of the Transport File in the SAS Log
This SAS log shows the portion of the program that verifies the accuracy of the transport
files that were transferred.

Example Code 13.20 Viewing the SAS Log at the z/OS Source Computer (Part 3 of 4)

EZA1450I MVS TCP/IP FTP V3R2
EZA1772I FTP: EXIT has been set.
EZA1736I conn MYHOST.MYCOMPANY.COM
EZA1554I Connecting to MYHOST.MYCOMPANY.COM
 10.26.11.235, port 21
220 myhost FTP server (Version 4.162 Tue Nov 1 10:50:37 PST 1988)
 ready.
EZA1459I USER (identify yourself to the host):
EZA1701I >>>USER joe
331 Password required for joe.
EZA1701I >>>PASS ********
230 User joe logged in.
EZA1460I Command:
EZA1736I cd joe
EZA1701I >>>CWD joe
250 CWD command successful.
EZA1460I Command:
EZA1736I locsite recfm=fb blocksize=8000 lrecl=80
EZA1460I Command:
EZA1736I binary
EZA1701I >>>TYPE i
200 Type set to I.
EZA1460I Command:
EZA1736I get xportout.dat 'joe.xportin.dat'

104 Chapter 13 • Examples of Moving SAS Files

EZA1701I >>>PORT 10,253,1,2,33,184
200 PORT command
EZA1701I >>>RETR xportout.dat
150 Opening BINARY mode data connection for
 xportout.dat(3120 bytes).
226 Transfer complete.
EZA1617I 3120 bytes transferred in 0.198 seconds. Transfer rate
 9.12 Kbytes/sec.
EZA1460I Command:
EZA1736I quit
EZA1701I >>>QUIT

Recording the Restoration of the Transport File to the Source
Computer in the SAS Log

This SAS log shows the part of the program that copies the transport file to native format
on the z/OS computer.

Example Code 13.21 Viewing the SAS Log at the z/OS Source Computer (Part 4 of 4)

NOTE: SAS (r) Proprietary Software Release 6.09.0460P030498
 Licensed to SAS INSTITUTE INC., Site 0000000001.
NOTE: Running on IBM Model 9672,
 IBM Model 9672,
 IBM Model 9672.

NOTE: No options specified.

/*---------------------------------------*/
/* Assigns the SAS test library XPORTIN. */
/*---------------------------------------*/
libname xportin xport;
NOTE: Libref XPORTIN was successfully assigned
 as follows:
 Engine: XPORT
 Physical Name: JOE.XPORTIN.DAT
/*---*/
/* Reads the transport file and writes the */
/* test data sets to the library WORK. */
/*---*/
proc copy in=xportin out=work;
run;

NOTE: Input library XPORTIN is sequential.
NOTE: Copying XPORTIN.GRADES to WORK.GRADES
 (MEMTYPE=DATA).
NOTE: BUFSIZE is not cloned when copying across
 different engines. System Option for BUFSIZE was used.
NOTE: The data set WORK.GRADES has 2 observations
 and 4 variables.
NOTE: Copying XPORTIN.NUMBERS to WORK.NUMBERS
 (MEMTYPE=DATA).
NOTE: BUFSIZE is not cloned when copying across
 different engines. System Option for BUFSIZE was used.
NOTE: The data set WORK.NUMBERS has 10 observations
 and 1 variables.

Example: z/OS JCL Batch to UNIX File Transport 105

NOTE: Copying XPORTIN.SIMPLE to WORK.SIMPLE
 (MEMTYPE=DATA).

Note: The notes about the SAS system option BUFSIZE do not indicate an error
condition. BUFSIZE specifies the permanent buffer size for an output data set, which
can be adjusted to improve system performance. The system value that is assigned to
the BUFSIZE option is used because the XPORT engine does not support the
BUFSIZE= option. See your operating environment companion documentation for
details.

Strategies for Verifying Transport Files

Restoring the Transport File at the Source Computer
Use the appropriate strategy (PROC COPY or PROC CIMPORT) to restore the transport
file to your source computer. A successful translation of the transport file to native
format on the source computer verifies the integrity of the transport file to be transferred.

This example shows the creation of a transport file:

libname xptlib xport 'xptlib.dat';
/* create a transport file for the entire library */
proc copy in=work out=xptlib;
run;

PROC COPY reads the library from the libref WORK and writes the transport file to the
libref XPTLIB.

This example restores the transport file that was just created to the source computer:

libname test 'test';
/* restore the transport file at the source computer */
proc copy in=xptlib out=test;
run;

The value for the OUT= option in the example that creates the transport file becomes the
value for the IN= option in the example that restores the transport file to the source
computer. To protect against overwriting the original data library that is created in
WORK, direct output to the library TEST. The transport file is read from the libref
XPTLIB and restored to the libref TEST in native format by PROC COPY.

For complete details about the syntax for these procedures, see the Base SAS Procedures
Guide.

Verify the outcome of this test by viewing the SAS log at the source computer. If the
transport operation succeeded at the source computer, then you can assume that the
transport file content is correct. If the transport operation failed, then you can assume
that the transport file was not created correctly. In this case, re-create the transport file
and restore it again at the source computer.

Verifying the Size of a Transport File
Use your operating environment's list command to verify that the transport file was
successfully created. Here is an OpenVMS example:

vms> dir/size=all *dat

106 Chapter 13 • Examples of Moving SAS Files

 Directory HOSTVAX:[JOE.XPTTEST]

 XPTDS.DAT;1 7/8
 XPTLIB.DAT;1 7/8

The sizes of both files are 7/8 of a block, which is equivalent to 448 bytes.

Here is a UNIX example:

$ ls -l *dat
-rw-r--r-- 1 joe mkt 448 Oct 13 14:24 xptds.dat
-rw-r--r-- 1 joe mkt 890 Oct 13 14:24 xptlib.dat

The size of XPTDS.DAT is 448 bytes; XPTLIB.DAT is 890 bytes.

The method for listing a file size varies according to operating environment.

Compare the size of the transport file on the source computer with the size of the
transport file that is transferred to the target computer. If the sizes of the transport files
are identical, then you can assume that the network successfully transferred these files. If
the sizes are not the same, you can assume that the network transfer failed. In this case,
review the transfer options and try the transfer again.

Comparing the Original Data Set with the Restored Data Set
You can use the CONTENTS procedure to reveal discrepancies between the original
data set at the source computer and the restored data set at the target computer. A
comparison could reveal a misconception about the transported data. For example, upon
examination of the data set, you might learn that an entire library of data sets was
mistakenly transported instead of only the intended data set.

Use the CONTENTS procedure or the PRINT procedure to list the contents of members
of type DATA.

In this example, PROC CONTENTS shows the contents of a single data set in a library:

Example Code 13.22 Using PROC CONTENTS to Show the Contents of a Data Set

proc contents data=xptds._all_;
 CONTENTS PROCEDURE

 Data Set Name: XPTDS.GRADES Observations: .
 Member Type: DATA Variables: 4
 Engine: XPORT Indexes: 0
 Created: . Observation Length: 32
 Last Modified: . Deleted Observations: 0
 Protection: Compressed: NO
 Data Set Type: Sorted: NO
 Label:

 -----Alphabetic List of Variables and Attributes-----

 # Variable Type Len Pos

 4 FINAL Num 8 24
 1 STUDENT Char 8 0
 2 TEST1 Num 8 8
 3 TEST2 Num 8 16
 DATAPROG: Creates data sets for TRANSPORTING

Strategies for Verifying Transport Files 107

 CONTENTS PROCEDURE

 -----Directory-----

 Libref: XPTDS
 Engine: XPORT
 Physical Name: 1DUA330:[HOSTVAX.JOE.XPTTEST]XPTDS.DAT

 # Name Memtype Indexes

 1 GRADES DATA

If you detect problems, re-create the transport file and restore it again at the source
computer.

108 Chapter 13 • Examples of Moving SAS Files

Glossary

access method
See communications access method.

backward compatibility
the ability of a SAS client that runs a particular version of SAS (such as SAS 9 or
SAS 8) to read, write, and update a SAS file that was created using an earlier version
of SAS (such as SAS 6) as long as the client's application does not implement new
features such as long names. The SAS client and application that run the later version
are said to be backward compatible with the SAS file that was created using the
earlier version.

catalog entry
See SAS catalog entry.

CEDA
a feature of SAS software that enables a SAS data file that was created in any
directory-based operating environment (for example, Solaris, Windows, HP-UX,
OpenVMS) to be read by a SAS session that is running in another directory-based
environment. You can access the SAS data files without using any intermediate
conversion steps. Short form: CEDA.

client session
a SAS session that is running on a client computer. A client session accepts SAS
statements and passes those that are submitted to the server for processing. The client
session manages the output and messages from both the client session and the server
session.

communications access method
an interface between SAS and the network protocol or interface that is used to
connect two operating environments. Depending on the operating environments,
SAS/SHARE and SAS/CONNECT use either the TCP/IP or XMS communications
access method.

Cross-Environment Data Access
See CEDA.

data control block
on IBM mainframe operating systems such as z/OS, a storage area that contains
information about the physical characteristics of an operating system data set. Short
form: DCB.

109

data precision
the reliability of numeric data in a SAS file that is exchanged between operating
environments. Compatible operating environments, which use the same internal
representation for storing floating-point numeric data, exchange numeric data with
no loss of precision. Precision is lost when numeric data is passed between
incompatible operating environments.

data representation
the form in which data is stored in a particular operating environment. Different
operating environments use different standards or conventions for storing floating-
point numbers (for example, IEEE or IBM 390); for character encoding (ASCII or
EBCDIC); for the ordering of bytes in memory (big Endian or little Endian); for
word alignment (4-byte boundaries or 8-byte boundaries); and for data-type length
(16-bit, 32-bit, or 64-bit).

data set
See SAS data set.

data view
See SAS data view.

DCB
See data control block.

engine
a component of SAS software that reads from or writes to a file. Various engines
enable SAS to access different types of file formats.

entry type
a characteristic of a SAS catalog entry that identifies the catalog entry's structure and
attributes to SAS. When you create a SAS catalog entry, SAS automatically assigns
the entry type as part of the name.

Extensible Markup Language
See XML.

external file
a file that is created and maintained by a host operating system or by another
vendor's software application. An external file can read both data and stored SAS
statements.

file corruption
the result of an operation that changes a file's data or the file's header, causing the
file's structure or contents to be inaccessible. A common cause of corruption during
file transport is that the transport file contains one or more incorrectly placed
carriage returns or line feeds to mark the end of record, which makes the entire file
unreadable after it is transferred across a network. Communications software can
also cause corruption if it changes file attributes such as logical record length, block
size, or record format.

file reference
See fileref.

110 Glossary

fileref
a name that is temporarily assigned to an external file or to an aggregate storage
location such as a directory or a folder. The fileref identifies the file or the storage
location to SAS.

foreign file format
a relative term that contrasts the internal data representation of a file with that of an
operating environment. If the internal formats are not the same, the file format is
considered to be foreign to the operating environment. For example, the format of a
file that is created in an OS/390 or z/OS operating environment is considered to be
foreign to Windows operating environments. Foreign file formats are also referred to
as non-native file formats.

forward compatibility
the ability of a SAS client that runs a particular version of SAS to read, write, and
update a SAS file that was created using a later version of SAS as long as the SAS
file does not implement features such as long names that are specific to the later
version. The accessing SAS client and the application that run the earlier version of
SAS are said to be forward compatible with the SAS file that was created using the
later version.

importing transport files
the process of returning SAS transport files to their original form (SAS library, SAS
catalog, or SAS data set) in a format that is appropriate for the target operating
environment. The terms 'import' and 'restore' can both be used to describe this
process, but 'import' usually refers to the use of the CIMPORT procedure.

integrity constraints
a set of data validation rules that you can specify in order to restrict the data values
that can be stored for a variable in a SAS data file. Integrity constraints help you
preserve the validity and consistency of your data.

item store
a SAS data set that consists of pieces of information that can be accessed
independently. The contents of an item store are organized in a directory tree
structure, which is similar to the directory structures that are used by UNIX System
Services or by Windows. For example, a particular value might be stored and located
using a directory path (root_dir/sub_dir/value). The SAS Registry is an example of
an item store.

JCL
See Job Control Language.

Job Control Language
a language that is used in the z/OS and OS/390 operating environments to
communicate information about a job to the operating system, including information
about the data sets, execution time, and amount of memory that the job needs. Short
form: JCL.

library reference
See libref.

libref
a SAS name that is associated with the location of a SAS library. For example, in the
name MYLIB.MYFILE, MYLIB is the libref, and MYFILE is a file in the SAS
library.

Glossary 111

long names
an enhancement that was implemented in SAS 7 to extend the maximum length of
names from the maximum lengths that were applicable in SAS 6. This enhancement
applies to the names of variables, data sets, procedures, options, statement labels,
librefs, and filerefs. Maximum lengths for long names vary according to the type of
name. Truncation rules are applied to long names when a file that was created using
SAS 7 or later is used in a SAS 6 operating environment.

member type
a SAS name that identifies the type of information that is stored in a SAS file.
Member types include ACCESS, AUDIT, DMBD, DATA, CATALOG, FDB,
INDEX, ITEMSTOR, MDDB, PROGRAM, UTILITY, and VIEW.

moving SAS files
the process of passing SAS files from one operating environment to another
operating environment, either by means of magnetic media or across a network.
Three specific variations of moving a SAS file are converting, copying, and
transporting.

native file format
a relative term that compares the internal data representation of a file with that of an
operating environment. If the internal formats are the same, the file format is
considered to be native to the operating environment. For example, the format of a
file that is created in a Windows operating environment is considered to be native to
Windows operating environments.

precision
See data precision.

regressing SAS files
the process of moving SAS files from a particular version of SAS to an earlier
version -- for example, from SAS 9 to SAS 6.12. If the files created in the later
version contain features such as integrity constraints that are not supported in the
earlier version, then you cannot regress the files. Instead, you re-create the files in an
operating environment that runs the later version of SAS.

restoring transport files
the process of returning SAS transport files to their original form (SAS library, SAS
catalog, or SAS data set) in the format that is appropriate to the target operating
environment. Restoration is performed using either of two techniques, as
appropriate: 1) the COPY procedure to restore a SAS transport file that was created
by the COPY procedure with the XPORT engine, 2) the CIMPORT procedure to
restore a SAS transport file that was created by the CPORT procedure. Restoring is
also referred to as reading or importing transport files.

SAS catalog
a SAS file that stores many different kinds of information in smaller units called
catalog entries. A single SAS catalog can contain different types of catalog entries.

SAS catalog entry
a separate storage unit within a SAS catalog. Each entry has an entry type that
identifies its purpose to SAS.

SAS data file
a type of SAS data set that contains data values as well as descriptor information that
is associated with the data. The descriptor information includes information such as

112 Glossary

the data types and lengths of the variables, as well as the name of the engine that was
used to create the data.

SAS data set
a file whose contents are in one of the native SAS file formats. There are two types
of SAS data sets: SAS data files and SAS data views. SAS data files contain data
values in addition to descriptor information that is associated with the data. SAS data
views contain only the descriptor information plus other information that is required
for retrieving data values from other SAS data sets or from files whose contents are
in other software vendors' file formats.

SAS data view
a type of SAS data set that retrieves data values from other files. A SAS data view
contains only descriptor information such as the data types and lengths of the
variables (columns) plus other information that is required for retrieving data values
from other SAS data sets or from files that are stored in other software vendors' file
formats. Short form: data view.

SAS filename extension
a standard filename identifier that conveys information about these file attributes: 1)
the SAS engine that was used to create the file, 2) the architecture of the operating
environment in which the file was created, and 3) the member type. SAS uses
filename extensions to identify the appropriate files for access.

SAS library
one or more files that are defined, recognized, and accessible by SAS and that are
referenced and stored as a unit. Each file is a member of the library.

TCP/IP
an abbreviation for a pair of networking protocols. Transmission Control Protocol
(TCP) is a standard protocol for transferring information on local area networks such
as Ethernets. TCP ensures that process-to-process information is delivered in the
appropriate order. Internet Protocol (IP) is a protocol for managing connections
between operating environments. IP routes information through the network to a
particular operating environment and fragments and reassembles information in
transfers.

transferring SAS files
the process of delivering SAS files from a source operating environment to a target
operating environment, either by means of a magnetic medium or across a network.

translation table
an operating environment-specific SAS catalog entry that is used to translate the
value of one character to another. Translation tables often are needed to support the
use of multiple national languages in an application. An example of a translation
table is one that converts characters from EBCDIC to ASCII-ISO.

transport engine
a facility that transforms a SAS file from its operating environment-specific internal
representation to transport format.

transport format
either of two file formats that are used to move SAS data sets, SAS data libraries,
and SAS catalogs from one operating environment to another. One transport format
is produced when the COPY procedure is used with the XPORT engine. The other

Glossary 113

transport format is produced by the CPORT and CIMPORT procedures. Each of
these transport formats is the same in all operating environments.

transporting SAS files
the process of putting SAS files into transport format and moving them between
incompatible operating environments. The transport process creates a transport file in
the source operating environment, transfers the transport file to the target operating
environment, and restores the transport file to the native format in the target
operating environment. If the source and target operating environments run different
versions of SAS, the transport process implicitly converts the file only from an
earlier version of SAS to a later version.

V7 engine
the default engine for SAS 7. This engine accesses SAS files in SAS 7 data libraries.
The SAS 9, SAS 8, and SAS 7 file formats are identical.

V8 engine
the default engine for SAS 8. This engine accesses SAS files in SAS 8 data libraries.
The SAS 9, SAS 8, and SAS 7 file formats are identical.

V9 engine
the default engine for SAS 9. This engine accesses SAS files in SAS 9 data libraries.
The SAS 9, SAS 8, and SAS 7 file formats are identical.

XML
a markup language that structures information by tagging it for content, meaning, or
use. Structured information contains both content (for example, words or numbers)
and an indication of what role the content plays. For example, content in a section
heading has a different meaning from content in a database table. Short form: XML.

XML LIBNAME engine
the SAS engine that processes XML documents. The engine exports an XML
document from a SAS data set by translating the proprietary SAS file format to XML
markup. The engine also imports an external XML document by translating XML
markup to a SAS data set.

XPORT engine
the SAS transport engine. This engine accesses SAS files in transport format.

114 Glossary

Index

A
accessibility features 8
accessing SAS files 4

CEDA 11
international environments 6
reading and writing foreign files 17
strategies for 4, 5
troubleshooting 70
updating foreign files 17

attributes of transport files
See transport file attributes

B
Bad transport file 73
batch statements

z/OS file transport 54
BINARY command (FTP) 41
binary format 70
block size 40

reblocking transport files 80
BLOCKSIZE= option

FILENAME statement 41

C
carriage returns 70
catalog entries, transport files for

CIMPORT procedure 25
CPORT procedure 21, 93

Catalog file open function is not
supported 74

CATALOG= option
CIMPORT procedure 24, 25
CPORT procedure 21

CATALOG= parameter
CIMPORT procedure 74

catalogs, transport files for
CPORT procedure 20, 93
troubleshooting 75

CC= option

FILENAME statement 50
LIBNAME statement 50

CEDA (cross-environment data access) 11
advantages of 12
changing file formats 13
identifying file formats 16
limitations of 12
reading and writing foreign files 17
transferring files 16

CIMPORT procedure 19
CATALOG= option 24, 25
CATALOG= parameter 74
DATA= option 24, 77
EET= option 74
ET= option 74
EXCLUDE statement 24, 25
importing data sets from transport files

23
INFILE= option 23
LIBNAME= option 24, 74
LIBRARY= option 24
LIBRARY= parameter 74
MEMTYPE= option 24, 74
mixing transport strategies 71
moving files, z/OS to Windows 96
regressing not allowed 20
SELECT statement 24, 25
validating transport file integrity 72

communications software 71
CONTENTS procedure 16, 107

identifying SAS engine 64
identifying SAS version 49, 53, 58, 60

CONTENTS statement
DATASETS procedure 16

COPY procedure 28
creating transport files 30
creating XML documents from data sets

35
EXCLUDE statement 31, 32
IN= option 30, 32
JCL batch to UNIX transport 101

115

MEMTYPE= option 30
moving files, OpenVMS to UNIX 86,

91
moving files, z/OS to Windows 98
OUT= option 30, 32
restoring data sets 32, 36
SELECT statement 30, 32, 35
validating transport file integrity 72

corruption, checking for 70, 76
CPORT procedure 19

CATALOG= option 21
DATA= option 21
EET= option 22
entry type not supported by 75
ET= option 21
EXCLUDE statement 21, 22
file headers 65
FILE= option 21
LIBNAME= option 74
LIBRARY= option 21, 77
MEMTYPE= option 21
mixing transport strategies 71
moving files, z/OS to Windows 93
NOCOMPRESS option 65, 74
regressing not allowed 20
SELECT statement 22
SORTINFO= option 73
transport files 20
validating transport file integrity 72

cross-environment data access
See CEDA (cross-environment data

access)

D
damaged files 76
data corruption, checking for 70, 76
data sets

creating XML documents from 34, 35
discrepancies between original and

restored 107
exporting XML documents from 33
for examples 7
importing from transport files 23, 32,

96
regressing to SAS 6 format 28
restoring from transport files 32
restoring XML documents as 36
transport files for 20, 30

DATA step
creating transport files 30, 86, 91, 98,

101
creating XML documents from data sets

34
restoring data sets from XML

documents 36

restoring transport files 32
DATA= option

CIMPORT procedure 24, 77
CPORT procedure 21

DATA= or LIBRARY= parameter
expected 74

DATA= parameter
CIMPORT procedure 74

DATASETS procedure
CONTENTS statement 16

dd command (UNIX) 44, 61
discrepancies, between original and

restored data sets 107
DOWNLOAD procedure 28

E
EET= option

CIMPORT procedure 74
CPORT procedure 22

ENCODING= system option 7
Encrypted data is invalid (Windows) 58
engines

identifying engine used 63
identifying version 64

Entry type is not compatible 75
Entry type is not supported 75
error messages 73

OpenVMS 49
Windows 58

ET= option
CIMPORT procedure 74
CPORT procedure 21

examples
data set for 7
naming conventions 7

EXCLUDE statement
CIMPORT procedure 24, 25
COPY procedure 31, 32
CPORT procedure 21, 22

exporting XML documents
from data sets 33

F
file formats

binary format 70
changing 13
identifying 16
magnetic media 43, 49, 61
reading and writing foreign files 17
transport files, creating 27
transport files, transferring 19
updating foreign files 17
verifying 79

File has too long a member name 75

116 Index

file headers 65
File is damaged 76
FILE= option

CPORT procedure 21
filename extensions

identifying operating environment used
63

identifying SAS engine used 63
FILENAME statement

BLOCKSIZE= option 41
CC= option 50
creating transport files on tape 61
FTP option 41
HOST= option 41
LRECL= option 41
PASS= option 41
RCMD= option 41
RECFM= option 41
SMTP option 41
SOCKET option 41
specifying transport file attributes 41
UMASK= option 41
URL option 41
USER= option 41

foreign files
reading and writing 17
updating 17

FTP (File Transfer Protocol) 41
transferring files with 99
transferring foreign files 42
z/OS 54

FTP option
FILENAME statement 41

G
GET command (FTP) 42
Given transport file is bad (OpenVMS)

49
GRADES data set (example) 7

H
hexadecimal data

reading z/OS transport files as 56
HOST= option

FILENAME statement 41

I
I/O processing incomplete 76
importing data sets 23, 32
IN= option

COPY procedure 30, 32
INFILE= option

CIMPORT procedure 23

INITIALIZE command (DCL) 49
integrity of transport files 72
Internal error from getting data 51, 76
international environments 6
Invalid data length 77

J
JCL batch to UNIX transport (z/OS) 98

L
large transport files

dividing into smaller files for tape 72
LIBNAME statement

CC= option 50
creating transport files on tape 61
OUTREP= option 14
transferring files, magnetic media 44

LIBNAME= option
CIMPORT procedure 24, 74
CPORT procedure 74

LIBRARY= option
CIMPORT procedure 24
CPORT procedure 21, 77

LIBRARY= parameter
CIMPORT procedure 74

LISTD command (TSO) 53, 94
LOCALE= system option 7
log

OpenVMS to UNIX transport 87, 91
viewing at source machine 15
z/OS JCL batch to UNIX 101, 103,

104, 105
z/OS to Windows transport 93, 97

logical record length 40
long variable names

truncating 29
LRECL= option

FILENAME statement 41

M
magnetic media 43

dividing large files 72
mounting on OpenVMS 49
UNIX 61
unlabeled tape 43, 72

Member or library unavailable for use in
file 50, 77

MEMTYPE= option
CIMPORT procedure 24, 74
COPY procedure 30
CPORT procedure 21

More library members exist in the input
file 77

Index 117

moving files
See transferring SAS files

MSGLEVEL= system option 16

N
naming conventions 7, 79
National Language Support (NLS) 6
NFTCOPY command (DCL) 50
NLS (National Language Support) 6
NOCOMPRESS option

CPORT procedure 65, 74
Not a SAS file 74

O
OpenVMS 47

error messages 49
identifying SAS version used 48
listing file attributes 47
mounting tape device on 49
moving files to UNIX 86, 91
specifying file attributes 48
transport file attributes 47
transport files 49

operating environment
identifying 63
invoking communications software 71

OUT= option
COPY procedure 30, 32

OUTREP= data set option 13
OUTREP= option

LIBNAME statement 14

P
PASS= option

FILENAME statement 41
PATHWORKS 70
PROC SQL will not store a V9 view 78
PUT command (FTP) 42

R
RCMD= option

FILENAME statement 41
reading foreign files 17
reading transport files

z/OS 55
reblocking transport files 80
RECFM= option

FILENAME statement 41
record length

z/OS 54
Record truncated 78
regressing 20, 79

data sets to SAS 6 format 28
rename command (DOS) 58
Requested function is not supported 78
restoring data sets 32
restoring transport files

at target machine 23, 31
CIMPORT procedure for 23
identifying file content 23, 31
JCL batch to UNIX transport 101
troubleshooting 70
verifying 106
XPORT engine for 91

restoring XML documents
as data sets 36

S
SAS engines

identifying 63
identifying version used 64

SAS names 79
SAS version, identifying

OpenVMS 48
UNIX 59
Windows 57
z/OS 53

SELECT statement
CIMPORT procedure 24, 25
COPY procedure 30, 32, 35
CPORT procedure 22

SEQUENTIAL_FIXED attribute 70
size of transport file 106
SMTP option

FILENAME statement 41
SOCKET option

FILENAME statement 41
SORTINFO= option

CPORT procedure 73
SQL procedure 78
strategies

compatibility of 71
determining the strategy used 65
moving and accessing files 4, 5
verifying transport files 106

T
tape

See magnetic media
TRANFILE command (DCL) 49
transfer files

creating for data sets 30
transferring SAS files 3, 16, 39

CPORT and CIMPORT procedures 19
examples 86

118 Index

exporting XML documents from data
sets 33

FILENAME statement 41
FTP 41
international environments 6
magnetic media for 43, 49, 61, 72
OpenVMS to UNIX 86, 91
strategies for 4, 5
troubleshooting 70
XML documents across network 35
XPORT engine 27
z/OS JCL batch to UNIX 98
z/OS to Windows 93

transport file attributes 40
changed by communications software

71
OpenVMS 47
specifying with FILENAME statement

41
UNIX 59
verifying 79
Windows 57
z/OS 53

transport files 19, 22, 31, 70
accuracy of 100
bad transport file 73, 76
binary format 70
corruption, checking for 76
creating 30
creating at source machine 20
creating for catalogs and entries 20, 93
creating for data sets 20, 30, 93
creating on tape 61
dividing large files 72
file headers 65
identifying content of 23, 31
importing data sets 23, 32
OpenVMS 49
reading as hexadecimal data 56
reading in z/OS 55
reblocking 80
restoring at target machine 23, 31
restoring data sets from 23, 32
size of, verifying 106
troubleshooting 70
validating integrity 72
verifying, strategies for 106
verifying format and file attributes 79
Windows 58
XPORT engine 27
z/OS 54

transport format 27
transport strategies 4, 5

compatibility of 71
determining the strategy used 65

troubleshooting

error and warning messages 73
reblocking transport files 80
restoring transport files 70
transferring transport files 70
verifying format 79
verifying transport file attributes 79

Truncated record error 51, 78
truncating long variable names 29, 75, 79
type command (DOS) 58

U
UMASK= option

FILENAME statement 41
UNIX

copying transport files 61
creating transport files on tape 61
identifying SAS version used 59
JCL batch to UNIX transport 98
moving files from OpenVMS 86, 91
specifying file attributes 59

UNIX System Services Directory 54
unlabeled tape 43, 72
updating foreign files 17
Updating not allowed 78
UPLOAD procedure 28
URL option

FILENAME statement 41
USER= option

FILENAME statement 41
UTILITY FILE OPEN function is not

supported 78

V
V6 engine

member name too long 75
V9 views 78
validating integrity of transport files 72
VALIDVARNAME system option 29,

75, 79
Value y code is not a valid SAS name 79
Variable name is illegal 79
variable names

truncating 29
verifying transfer format and file

attributes 79
verifying transport files 106
views 78

W
warning messages 73
Windows

encrypted data 58
error messages 58

Index 119

identifying SAS version used 57
moving files from z/OS 93
specifying file attributes 57
transport files 58

writing foreign files 17

X
XML documents

creating at source machine 34
creating from data sets 34, 35
exporting from data sets 33
restoring as data sets 36
transferring across network 35

XML engine 33
advantages of 33
limitations of 34

XPORT engine 27
advantages of 28
catalog file open function 74
creating transport files 30
file headers 65
limitations of 28
member name too long 75
moving files, OpenVMS to UNIX 86,

91, 98

regressing data sets 28
restoring data sets 32
restoring transport files 31
transferring transport files across

network 31
truncating variable names 28
UTILITY FILE OPEN function not

supported 78

Z
z/OS

batch statements for file transport 54
FTP 54
hexadecimal transport files 56
identifying SAS version used 53
JCL batch to UNIX transport 98
listing file attributes 53
moving files to Windows 93
reading transport files 55
record length 54
transferring transport files 54
transport file attributes 53
UNIX System Services Directory and

54

120 Index

	Contents
	About This Book
	Syntax Conventions for the SAS Language
	Overview of Syntax Conventions for the SAS Language
	Syntax Components
	Style Conventions
	Special Characters
	References to SAS Libraries and External Files

	What's New in Moving and Accessing SAS 9.3 Files
	Overview
	Documentation Enhancements

	Recommended Reading
	Introduction
	Moving and Accessing SAS Files between Operating Environments
	Deciding to Move a SAS File between Operating Environments
	Deciding to Access a SAS File across Operating Environments
	Strategies for Moving and Accessing SAS Files
	Summary of Strategy Features
	Using National Language Support To Move SAS Files between Computers
	The Data Set Used for Examples
	Naming Conventions Used for Examples
	Accessibility Features in SAS Products

	Strategies for Moving and Accessing SAS Files
	Cross-Environment Data Access (CEDA)
	Overview of CEDA
	CEDA Advantages
	CEDA Limitations
	Creating or Changing a SAS File's Format
	Creating a SAS File in a Foreign Format
	Example: Creating a Foreign Format Using the OUTREP= Option
in the DATA Step
	Changing a SAS File to a Foreign Format
	Example: Changing a File's Format Using the OUTREP= Option
in the LIBNAME Statement and the NOCLONE Option in PROC COPY
	Example: Verifying the Changed File's Format in the SAS Log
at the Source Computer

	Transferring a SAS File between Computers
	Identifying the Format of a SAS File
	Example: Reporting That CEDA Is Being Used
	Example: Identifying a File's Format Using PROC CONTENTS
	Restrictions on Accessing a Foreign File

	Reading and Writing a Foreign File

	PROC CPORT and PROC CIMPORT
	Overview of Moving SAS Files Using PROC CPORT and PROC CIMPORT
	Limitations of Moving SAS Files Using PROC CPORT and PROC CIMPORT
	Disadvantages of Moving SAS Files Using PROC CPORT and PROC
CIMPORT
	Creating a Transport File at the Source Computer
	Create a Transport File Using PROC CPORT

	Transferring Transport Files to a Target Computer
	Restoring Transport Files at the Target Computer
	Verifying the Content of the Transport File
	Restore the Transport File Using PROC CIMPORT

	XPORT Engine with DATA Step or PROC COPY
	Overview of the XPORT Engine
	XPORT Engine Advantages
	XPORT Engine Limitations
	Regressing SAS Data Sets to SAS 6 Format
	Creating a Transport File at the Source Computer
	Example: Using the DATA Step to Create a Transport File for
One Data Set
	Example: Using PROC COPY to Create a Transport File for One
or More Data Sets

	Transferring Transport Files across a Network
	Restoring Transport Files at the Target Computer
	Identifying the Content of the Transport File
	Example: Using a DATA Step to Restore a Single Data Set from
a Transport File
	Example: Using PROC COPY to Restore Data Sets from a Transport
File

	XML Engine with DATA Step or PROC COPY
	Overview of the XML Engine
	XML Engine Advantages
	XML Engine Limitations
	Creating an XML Document at the Source Computer
	Example: Using the DATA Step to Create an XML Document from
a Data Set
	Example: Using PROC COPY to Create an XML Document from a Data
Set

	Transferring an XML Document across a Network
	Restoring an XML Document as a Data Set at a Target Computer

	Example: Using a DATA Step to Restore a Data Set from an XML
Document
	Example: Using PROC COPY to Restore a Data Set from an XML
Document

	Transferring Transport Files and Foreign Files
	Transferring Files
	Overview of File Transfers
	Attributes for Transport Files
	Using the FILENAME Statement or FTP for Foreign Files and Transport
Files
	Example: Using the FILENAME Statement for a File Transfer
	The FTP Utility
	Example: Using FTP to Transfer Foreign Files and Transport
Files
	Example: Using a Magnetic Medium to Transfer Foreign Files
and Transport Files

	Operating Environment Specifics
	OpenVMS Operating Environment
	Listing OpenVMS System File Attributes
	File Attributes Under OpenVMS
	Identifying the SAS Version Used to Create a File Under OpenVMS
	Mounting a Tape Device Under OpenVMS
	Error Messages For OpenVMS
	Given transport file is bad
	Member or library unavailable for use in file
	Truncated record
	 Internal error from getting data

	z/OS Operating Environment
	Listing z/OS File Attributes
	Identifying the SAS Version Used to Create a File under z/OS
	z/OS Files and the UNIX System Services Directory
	z/OS Batch Statements for File Transport
	Transfer Issues for a z/OS Target Computer
	Record Length
	Example: FTP and the z/OS Target Computer
	Windows Attachmate and the z/OS Target Computer

	Reading Transport Files in z/OS Operating Environments
	z/OS Cannot Read ASCII Transport Files
	Example: Translating a Partial Transport File to EBCDIC
	Example: Reading a Partial Transport File in Hexadecimal Format

	Windows Operating Environment
	File Attributes Under Windows
	Identifying the SAS Version Used to Create a File under Windows
	Error Message: Encrypted Data is Invalid

	UNIX Operating Environment
	File Attributes Under UNIX
	Identifying the SAS Version Used to Create a File under UNIX
	Example: Creating a Transport File on Tape
	Example: Copying the Transport File from Disk to Tape at the
UNIX Source Computer
	Example: Copying the Transport File from Tape to Disk at the
Target Computer

	SAS Filename Extensions and File Headers
	Filename Extensions: Identifying the SAS Engine and Operating
Environment Used to Create a SAS File
	PROC CONTENTS: Identifying the Base SAS Engine Used to Create
a SAS File
	File Headers: Finding Out the Method Used to Create the Transport
File

	Troubleshooting
	Preventing and Fixing Problems
	Troubleshooting: Transferring and Restoring Transport files
	Troubleshooting Checklist
	Transferring the Transport File in Binary Format
	Verifying That the Transport File Has Not Been Corrupted
	Verifying That the Communications Software Has Not Changed
File Attributes
	Invoking the Communications Software at the Target Computer
	Using Compatible Transport Strategies at the Source and Target
Computers
	Validating the Integrity of the Transport File
	Using an Unlabeled Tape
	Dividing a Large Transport File into Smaller Files for Tape

	Error and Warning Messages for Transport Files
	Bad Transport File
	Catalog file open function is not supported by the XPORT engine
	DATA= or LIBRARY= parameter expected instead of CATALOG=
	filename is not a SAS
file
	Entry type catalog-entry-type is not supported by CPORT
	Entry type catalog-entry-type is not compatible to earlier release
	File library.member.DATA has too long a member name for the
XPORT engine
	File library.member.DATA
has too long a member name for the V6 engine
	File libref.ALL is damaged.
I/O processing did not complete
	Given transport file is bad
	Internal error from getting data
	Invalid data length
	Member or library unavailable for use in file filename
	More library members exist in the input file. For all of them
to get converted, please specify LIBRARY=libref parameter in the PROC
statement
	PROC SQL will not store a V9 view into a V6 library
	Requested function is not supported
	Truncated record
	Updating not allowed for libref.member-name because it was created for a different operating system
	UTILITY FILE OPEN function is not supported by the XPORT engine
	The value y code is not a valid SAS name; Skipping data set
due to error
	Variable name variable is illegal for file Version-6-data-set

	Verifying Transfer Format and Transport File Attributes
	Reblocking a Transport File

	Samples and Logs
	Examples of Moving SAS Files
	The Overview of Examples of Moving SAS Files between Computers
	Example: OpenVMS to UNIX File Transport
	Using PROC COPY at the Source Computer to Create Transport
Files
	Viewing the SAS Log at the Source Computer
	Verifying Transport Files
	Transferring the Transport Files to the Target Computer
	Using PROC COPY at the Target Computer to Restore Transport
Files into Native Format
	Viewing the SAS Log at the Target Computer

	Example: z/OS to Windows File Transport
	Using PROC CPORT at the Source Computer to Create Transport
Files
	Viewing the SAS Log at the Source Computer
	Verifying Transport Files
	Transferring Transport Files to the Target Computer
	Using PROC CIMPORT at the Target Computer to Import Transport
Files into Native Format
	Viewing the SAS Log at the Target Computer

	Example: z/OS JCL Batch to UNIX File Transport
	Overview of the z/OS JCL Batch Program
	Using PROC COPY to Create a Transport File
	Transferring the Transport File across the Network
	Verifying the Accuracy of the Transport File
	Using PROC COPY to Restore the Transport File
	Recording the Creation of Data Sets and Transport Files in
the SAS Log
	Recording the Transfer of the Transport File to the Target
Computer in the SAS Log
	Recording the Verification of the Transport File in the SAS
Log
	Recording the Restoration of the Transport File to the Source
Computer in the SAS Log

	Strategies for Verifying Transport Files
	Restoring the Transport File at the Source Computer
	Verifying the Size of a Transport File
	Comparing the Original Data Set with the Restored Data Set

	Glossary
	Index

