Contents

What's New in the SAS 9.4 OLAP Server .. v

Chapter 1 • MDX Introduction and Overview ... 1
- MDX Overview .. 1
- Basic MDX and Cube Concepts ... 1
- Additional MDX Concepts and Expressions - Tuples and Sets 3

Chapter 2 • MDX Queries and Syntax ... 5
- Basic MDX Queries and Syntax ... 6
- MDX Drillthrough ... 7
- Basic MDX DDL Syntax ... 9
- MDX CASE Statement ... 10
- Using Sets on the Slicer Axis .. 11
- SAS Functions ... 12
- External Functions .. 20
- Using Derived Statistics with the Aggregate Function 23
- SAS OLAP Security Totals and Permission Conditions 29

Chapter 3 • MDX Usage Examples .. 33
- Basic Examples ... 34
- Calculated Member Examples ... 37
- Query-Calculated Member Examples 38
- Session-Level Calculated Member Examples 40
- Drill-Down Examples .. 42
- Session-Named Set Examples ... 45

Appendix 1 • MDX Functions ... 53
- Dimension Functions ... 53
- Hierarchy Functions ... 53
- Level Functions .. 54
- Logical Functions .. 54
- Member Functions ... 54
- Numeric Functions ... 56
- Set Functions .. 58
- String Functions ... 66
- Tuple Functions ... 68
- Miscellaneous Functions and Operators 68

Recommended Reading .. 71
Glossary ... 73
Index ... 79
What's New in the SAS 9.4 OLAP Server

Overview

The SAS 9.4 OLAP Server provides the following changes and enhancements:

- A new OLAPCONTENTS procedure for generating reports of OLAP cube information
- A new OLAPCONFIG method for setting SAS OLAP Server options in batch mode
- Updates to the OLAPOPERATE procedure
- A new MDX CASE statement
- A new VISUALTOTALS_BEHAVIOR option for calculated measures

OLAPCONTENTS

The OLAPCONTENTS procedure enables you to connect to a SAS OLAP Server and generate reports for SAS OLAP cubes. With this procedure, you can gather details about various cube details, including the tables that were used to load the cube, the dimension structures (hierarchy, level, property), and measures. The CONNECT command enables you to connect to a SAS OLAP Server. After you have connected, the DISPLAY CUBE command enables you to specify cube information to include in the output report. See “The OLAPCONTENTS Procedure” in SAS OLAP Server: User's Guide for more information.

OLAPCONFIG

OLAP OPERATE

Several statements for cluster management were added for SAS 9.4. These statements enable you to pause, quiesce, stop, and resume a cluster. The NODEONLY option was also added to several LIST statements. Starting in the first maintenance release for SAS 9.4, a new LOGICALSERVERNAME option has been added to the OLAP OPERATE procedure. See “The OLAP OPERATE Procedure” in SAS OLAP Server: User's Guide for more information.

MDX CASE Statement

The CASE statement is an MDX scripting statement that is used to compare an initial input expression to one or more conditional expression values. There are two types of CASE statements:

- simple CASE statement
- searched CASE statement

The simple CASE statement enables you to compare an initial input expression to one or more WHEN expression values. The searched CASE statement enables you to conduct more complex evaluations, as you can use a Boolean expression to assign a range of scalar values to the WHEN expression. See the “MDX CASE Statement” on page 10 for more information.

VISUALTOTALS_BEHAVIOR Option

The VISUALTOTALS_BEHAVIOR option enables you to clear total rows, subtotal rows, or both total and subtotal rows for calculated measures. When VISUALTOTALS_BEHAVIOR is set on a calculated member, and that calculated member is then used in an MDX statement, subtotal and or total calculations are not computed. See the “OLAP VISUALTOTALS_BEHAVIOR Option” in SAS OLAP Server: User's Guide for more information.

Miscellaneous Updates

- Beginning in SAS 9.4, properties for multilingual cubes are automatically updated in multiple languages when reports are generated.
- When using the SQL pass-through facility for OLAP, the SQLRC macro can be used to determine the success or failure status of a PROC SQL connection and its contents. See “Verifying the SQL Connection with the SQLRC Macro” in SAS OLAP Server: User's Guide for more information.
• You can now remove a drill-through table from a cube with the following syntax: `DT_TABLE=_NULL_UPDATE_DISPLAY_NAMES`. See the option “UPDATE_DISPLAY_NAMES” in *SAS OLAP Server: User's Guide* for more information.

• Beginning in SAS 9.4, sets are now allowed on the slicer axis. See “Using Sets on the Slicer Axis” on page 11 for more information.

• Beginning in SAS 9.4, you can enable execution of user-defined (FORMAT procedure style) formats in SPDS. See the topic “Improving ROLAP Throughput Performance with SPDS” in *SAS OLAP Server: User's Guide* for more information.

• Starting in the first maintenance release for SAS 9.4, a new INSTR MDX function has been added. See “INSTR” on page 67 for more information.

• Starting in the first maintenance release for SAS 9.4, the LOCKDOWN option and statement are supported by the SAS OLAP Server.

• The EXISTS MDX function is now documented. See “Exists” on page 64.

• Starting in the third maintenance release for SAS 9.4, the chapter “SAS OLAP Variations” in *SAS OLAP Server: User's Guide* has been added.

• Starting in the third maintenance release for SAS 9.4, the topic “MDX Function Behavior and Ragged or Unbalanced Hierarchies” in *SAS OLAP Server: User's Guide* has been added.

• The option “THREADPOOLQRY” in *SAS OLAP Server: User's Guide* is now documented.
Chapter 1
MDX Introduction and Overview

MDX Overview
Multidimensional Expressions (MDX) is a powerful syntax that enables you to query multidimensional objects and provide commands that retrieve and manipulate multidimensional data from those objects. MDX is designed to ease the process of accessing data from multiple dimensions. It addresses the conceptual differences between two-dimensional and multidimensional querying. MDX provides functionality for creating and querying multidimensional structures called cubes with a full and complete language of its own.

MDX is similar to the Structured Query Language (SQL), and MDX provides Data Definition Language (DDL) syntax for managing data structures. However, its features can be more complex and robust than SQL's features. The SAS 9.4 OLAP Server technology uses MDX to create OLAP cubes and data queries. MDX is part of the underlying foundation for the SAS 9.4 OLAP Server architecture, and it offers detailed and efficient searches of multidimensional data.

With MDX, specific portions of data from a cube can be extracted and then further manipulated for analysis. This allows for a thorough and flexible examination of SAS OLAP cube data. Users of MDX can take advantage of such features as calculated measures, numeric operations, and axis and slicer dimensions.

Basic MDX and Cube Concepts
To better understand the MDX language and the OLAP technology that it supports, a basic understanding of the OLAP cube components is required.
Dimensions

Dimensions are the top or highest categories of a cube. They contain subcategories of data known as levels and measures. A dimension can have multiple hierarchies and can be used in multiple cubes. A cube can have up to 64 dimensions.

Hierarchies

A dimension might be categorized into different hierarchies. For example, a company might categorize its profit dimension along the verticals of geography, sales territory, or market.

Levels

Levels are categories of organization within a dimension. Levels are hierarchical, and each level descending in a dimension is a component of the previous level. For example, a time dimension could include the following levels: Year, Quarter, Month, Week, and Day.

Members and Measures

An additional component of a dimension and a level is a member. A member is a component of a level and is analogous to the value of a variable on an individual record in a data set. It is the smallest level of data in an OLAP cube. In addition to creating dimension members, a user can create calculated members and named sets that are based on underlying members or on other calculated members and named sets. These user-defined objects are based on evaluated query data from the cube.

Calculated members and named sets can be created in three different ways:

<table>
<thead>
<tr>
<th>Type</th>
<th>Scope</th>
<th>Creation Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Query scope calculated member</td>
<td>available only during the query that defines it. It is created by using the WITH MEMBER/SET keyword.</td>
<td></td>
</tr>
<tr>
<td>Session scope calculated member</td>
<td>available for the user that defines the object for the duration of that session. It is created by using the CREATE SESSION MEMBER/SET keyword.</td>
<td></td>
</tr>
<tr>
<td>Global scope calculated member</td>
<td>available for anyone to use and is stored with the cube. It is created by using the CREATE GLOBAL MEMBER/SET keyword. Named sets have the same three scopes.</td>
<td></td>
</tr>
</tbody>
</table>

Calculated members can be created in the Measures dimension and can include any combination of members. Calculated members can also be created in any other dimension and are known as nonmeasure-based calculated members. Examples of measures include sales counts, profit margins, and distribution costs.
MDX extracts multidimensional views of data. A *tuple* is a slice of data from a cube. It is a selection of members (or cells) across dimensions in a cube. It can also be viewed as a cross-section or vector of member data in a cube. A tuple can be composed of member(s) from one or more dimensions. However, a tuple cannot be composed of more than one member from the same dimension.

Sets are collections of tuples. The order of tuples in a set is important when querying cube data and is known as *dimensionality*. It is important to note that the order of the dimension members in every tuple must be the same. For example, if your first tuple is (time_dimension_member, geography_dimension_member), then every other tuple in that set must also have two members in it, the first from the time dimension and the second from the geography dimension.
Chapter 2

MDX Queries and Syntax

Basic MDX Queries and Syntax .. 6
MDX SELECT Statement ... 6
MDX Syntax .. 7
MDX Drillthrough ... 7
DRILLTHROUGH Statement 7
Specifying the Maximum Number of Drill-Through Rows 8
Ensuring That Tables Are Accessible at Query Time 8
Working with User-Defined Formats 9
Basic MDX DDL Syntax .. 9
MDX CASE Statement .. 10
Overview .. 10
Simple CASE Statement ... 10
Searched CASE Statement .. 11
MDX CASE Statement Arguments 11
Using Sets on the Slicer Axis .. 11
SAS Functions .. 12
SAS Function in an MDX Query 12
SAS Functions Available for Use in MDX Expressions 13
Function Arguments and Return Types 15
Numeric Precision ... 16
Differences with Microsoft Analysis Services 2000 17
SAS MDX Reserved Keywords 17
External Functions ... 20
External Function Example ... 20
Gaining Access to an External Function Library or Class 21
State Information ... 21
Function Arguments and Return Types 22
Performance .. 22
Deployment ... 23
Security .. 23
Differences with Microsoft Analysis Server (AS2K) 23
Using Derived Statistics with the Aggregate Function 23
Example 1 ... 23
Example 2 ... 24
Example 3 ... 25
Example 4 ... 26
Example 5 ... 26
Basic MDX Queries and Syntax

MDX SELECT Statement

Basic MDX queries use the SELECT statement to identify a data set that contains a subset of multidimensional data. The basic MDX SELECT statement consists of the following clauses:

WITH clause (optional)
This allows calculated members or named sets to be computed during the processing of the SELECT and WHERE clauses.

Note: You might encounter a syntax error when a member name containing a single quotation mark is used for a calculated member in an MDX query. To prevent this, include an additional single quotation mark in the member name that contains the quotation mark.

SELECT clause
The SELECT clause defines the axes for the MDX query structure by identifying the dimension members to include on each axis. The number of axis dimensions of an MDX SELECT statement is also determined by the SELECT clause. The members from each dimension (to include on each axis of the MDX query) must be identified.

FROM clause
The cube that is being queried is named in the FROM clause. It determines which multidimensional data source will be used when extracting data to populate the result set of the MDX SELECT statement. The FROM clause (in an MDX query) can list only a single cube. Queries are restricted to a single data source or cube.

WHERE clause (optional)
The WHERE clause further restricts the result data. The axis that is formed by the WHERE clause is often referred to as the slicer. The WHERE clause determines which dimension or member is used as a slicer dimension. This restricts the extracting of data to a specific dimension or member. Any dimension that does not appear on an axis in the SELECT clause can be named on the slicer.

Note: Beginning in SAS 9.4, sets are now allowed on the slicer axis. See “Using Sets on the Slicer Axis” on page 11 for more information.

Note: MDX queries, and specifically the SELECT statement, can have up to 128 axis dimensions. The first five axes have aliases. Furthermore, an axis can be referred to by its ordinal position within an MDX query or by its alias. In total you can have a maximum of 64 different axes.
The SELECT clause of the statement supports using MDX functions to construct different members in a set on axes. The WITH clause of the statement supports using MDX functions to construct calculated members to be used in an axis or slicer. The following example shows the syntax for the SELECT statement:

```markdown
[WITH
 [MEMBER <member-name> AS '<value-expression>' |
  SET <set-name> AS '<set-expression>' ] . . . ]
SELECT [<axis_specification> | |
  [, <axis_specification> . . . ] ]
FROM [<cube_specification>]
[WHERE [<slicer_specification>]]
```

MDX Syntax

When you create and edit MDX queries, be aware of the following syntax guidelines:

- MDX keywords are case insensitive. However, to easily locate keywords in your code, consider using uppercase text when documenting keywords in an MDX query.

- Do not use reserved words as names or identifiers. You can, however, quote reserved words.

 Note: For more information about reserved words see “SAS MDX Reserved Keywords” on page 17.

- Brackets used in MDX queries should balance.---for example: [], (), and { }. If brackets do not balance, you should use the SAS option VALIDVARNAME.

- Single and double quotation marks should balance.

MDX Drillthrough

DRILLTHROUGH Statement

The DRILLTHROUGH statement is used in Multidimensional Expressions (MDX) to retrieve the source rowset or rowsets from the source data for a cube cell or specified tuple. This statement enables a client application to retrieve the rowsets that were used to create a specified cell in a cube. An MDX statement is used to specify the subject cell. All of the rowsets that make up the source data of that cell are returned. The total number of rowsets that are returned can also be affected by the MAXROWS and FIRSTROWSET modifiers. Not all cubes support drill–through. Only cubes that have a drill-through table that is specified at cube creation support drill-through.

Here is the syntax for the DRILLTHROUGH statement:

```markdown
<drillthrough> ::=DRILLTHROUGH
[maxrows] [firstrowset] <MDX select>
[maxrows] ::= MAXROWS <positive number>
[firstrowset] ::= FIRSTROWSET <positive number>
```

The following modifiers can be used with the DRILLTHROUGH statement:
MAXROWS
indicates the maximum number of rows that should be returned by the resulting rowset.

FIRSTROWSET
specifies the first rowset to return.

Specifying the Maximum Number of Drill-Through Rows

You can limit the number of drill-through rows that users request in a query by selecting the OLAP server definition setting **Maximum number of flattened rows** from SAS Management Console. This setting controls the maximum number of flattened rows that are allowed for flattened (two-dimensional) data sets.

The following steps enable you to specify the maximum number of flattened rows:

1. In the tree view for the Server Manager plug-in of SAS Management Console, select the node for your OLAP server. This is the physical OLAP server and is located by drilling down from the top of the Server Manager tree view.

2. After selecting the physical OLAP server, right-click and select **Properties**.

3. At the **SAS OLAP Server Properties** dialog box, select the **Options** tab, and then the **Advanced Options** button.

4. At the Advanced Options dialog box, select the **Server** tab and enter the needed value for the **Maximum number of flattened rows** field. The default setting is 300,000 rows.

Ensuring That Tables Are Accessible at Query Time

Data that is external to a cube must be available to the SAS OLAP Server under the following conditions:

- If the cube does not include an NWAY, then the SAS OLAP Server must have access to the input data source table (also called the detail data) and any specified dimension tables.

- If the cube is associated with a drill-through table, then the SAS OLAP Server must have access to the drill-through table.

- If the cube uses pre-summarized aggregation tables, then the SAS OLAP Server must have access to those tables.

To ensure that the necessary tables are accessible at query time, the applicable library names need to be allocated. This is necessary when the OLAP server (that is associated with the OLAP schema that contains the cubes) is invoke.

Note: If any of the tables contain user-defined formats, then the SAS OLAP Server also needs information about how to find those formats. User-defined formats cannot be used with drill-through tables.

Note: For more information, see the SAS Intelligence Platform: Data Administration Guide and the SAS Intelligence Platform: System Administration Guide.
Working with User-Defined Formats

If you have existing SAS data sets, you might also have a catalog of user-defined formats and informats. You have two options for making these formats available to applications such as SAS Data Integration Studio:

- The preferred solution is to name the format catalog *formats.sas7bcat* and to place the catalog in the following directory: *path-to-configuration-directory\Lev1\SASMain\SASEnvironment\SASFormats*

- An alternative method of making user-defined formats “visible” is to follow this procedure:
 1. Add a line to the configuration file *path-to-configuration-directory\Lev1\SASMain\sasv9.cfg* that points to a configuration file for handling user-defined format catalogs. For example, you might add the following line:

     ```
     -config
     path-to-configuration-directory\Lev1\SASMain\userfmt.cfg
     ```

 2. In the file *userfmt.cfg*, enter a SET statement and a FMTSEARCH statement.

     ```
     -set fmtlib1
     "path-to-configuration-directory\Lev1\Data\orformat"
     -fmtsearch (work fmtlib1.orionfmt library)
     ```

 This makes the format catalog *fmtlib1.orionfmt* available. For more information, see the SAS Intelligence Platform: Data Administration Guide.

Basic MDX DDL Syntax

The SAS OLAP Server provides support for the MDX Data Definition Language (DDL). DDL enables users and administrators to manage the definitions of calculated members and named sets at either a session or a global level. Management of calculated members and named sets is provided by the CREATE and DROP DDL statements.

By using the CREATE DDL statement, a user can create definitions of calculated members or named sets for use within a client session or for use within a cube on a global scale. Here is the format for the CREATE DDL statement:

```
CREATE [global | session]
    [MEMBER . AS '' |
    SET AS ''] . . .
```

If **GLOBAL** or **SESSION** is not specified, then the default scope is **SESSION**. When a calculated member or named set is defined within the **SESSION** scope, the definition is available only for the lifetime of the user's client session. When a calculated member or named set is defined within the **GLOBAL** scope, the definition is permanently attached to the cube definition and is visible to all current and future client sessions.

By using the DROP DDL statement, a user can remove definitions of calculated members or a named set from use within a client session or from use within a cube on a global scale. Here is the format for the DROP DDL statement:

```
DROP [MEMBER . . .] |
    [SET ] . . .]
```
When using the DROP statement, only calculated members or named sets can be dropped at the same time. However, a user cannot drop both calculated members and named sets in a single DROP statement.

Note: The name of the calculated member or named set must contain the cube name.

MDX CASE Statement

Overview

The CASE statement is an MDX scripting statement that is used to compare an initial input expression to one or more conditional expression values. The statement then identifies and returns scalar data values that are based on expressions in the script. If a conditional expression matches the initial input expression, a designated value is returned. You can compare an initial input expression against single conditional values or a range of conditional values.

The CASE statement is similar to the IIF function but can process more conditions. There are two types of CASE statements; the Simple CASE statement and the Searched CASE statement.

Simple CASE Statement

The simple CASE statement enables you to compare an initial input expression to one or more WHEN expression values. As the script evaluates the input expression against WHEN expressions, it searches for a match between these expressions. If the two values match, the value immediately after THEN for that WHEN expression is returned. The cycle is repeated for every WHEN expression in the script. WHEN expressions are evaluated in the order in which they are listed in the CASE statement. If no match is found, and you would like a default value returned, you can include an optional ELSE clause in the script to apply a default value if needed. Otherwise, a value of NULL is returned.

Here is the syntax for the simple CASE statement:

```plaintext
CASE [input_expression] WHEN when_expression THEN when_true_result_expression[...n] [ELSE else_result_expression] END
```

Here is an example of the simple CASE statement. It measures performance ratings for a company:

```plaintext
WITH MEMBER [measures].[Performance] AS 
CASE [measures].[PerfRating] 
  WHEN 5 THEN 'Excellent'
  WHEN 4 THEN 'Very Good'
  WHEN 3 THEN 'Good'
  WHEN 2 THEN 'Poor'
  WHEN 1 THEN 'Very Poor'
ELSE 'Unknown'
END 
```
Searched CASE Statement

The searched CASE statement enables you to conduct more complex evaluations. Like the simple CASE statement, it enables you to compare an initial input expression to one or more WHEN expression values. However, with this statement, you can use a Boolean expression to assign a range of scalar values to the WHEN expression. The CASE statement analyzes that range of values, and if a match is made to the input expression, the value immediately after THEN for that WHEN expression is returned. If no match is found, and you would like a default value returned, you can include an optional ELSE clause in the script to apply a default value if needed. Otherwise, a value of NULL is returned.

Here is the syntax for the searched CASE statement:

```
CASE WHEN Boolean_expression THEN when_true_result_expression [...]
    [ELSE else_result_expression] END
```

Here is an example of the searched CASE statement. It assigns color coding to specific age ranges:

```sql
WITH MEMBER [Measures].[Age_Category] AS
    CASE
        WHEN [Measures].[Age] > 65 THEN 'Gold'
        WHEN [Measures].[Age] > 55 THEN 'Silver'
        WHEN [Measures].[Age] > 45 THEN 'Bronze'
        WHEN [Measures].[Age] > 35 THEN 'Blue'
        WHEN [Measures].[Age] > 25 THEN 'Green'
        ELSE "BLACK"
    END
```

MDX CASE Statement Arguments

The following arguments are used with the CASE statement:

- `input_expression` is an MDX expression that resolves to a scalar value.
- `when_expression` specifies a scalar value against which the `input_expression` is evaluated. When evaluated to true, it returns the scalar value of the `else_result_expression`.
- `when_true_result_expression` is the scalar value returned when the WHEN clause evaluates to true.
- `else_result_expression` is the scalar value returned when none of the WHEN clauses evaluate to true.
- `Boolean_expression` is an MDX expression that evaluates to a scalar value.

Using Sets on the Slicer Axis

Beginning in SAS 9.4, sets are now allowed on the slicer axis. The set can either be expressed as a grouping of sets of members from different hierarchies or as a set
expression that will be evaluated. Here are two MDX query examples for applying sets to the slicer axis:

```mdx
select
cars.[all cars].children on 0
from mddbcars
where ({dealers.[all dealers].finch, dealers.[all dealers].smith},
  {[DATE].[All DATE].[February], [DATE].[All DATE].[April],
   [DATE].[All DATE].[May]})
select
cars.[all cars].children on 0
from mddbcars
where crossjoin({dealers.[all dealers].finch, dealers.[all dealers].smith},
  {[DATE].[All DATE].[February], [DATE].[All DATE].[April],
   [DATE].[All DATE].[May]})
```

Both of these MDX queries return the same results. The aggregation of these members is used to determine the value for each cell in the query. The values for the cars in both queries only reflect those cars that were sold by either dealer Finch or dealer Smith and only for the months of February, April, and May.

When sets are used on the slicer and the `CurrentMember` function is used either directly or indirectly for one of the hierarchies with sets on the slicer, then the first member of the set is used. Here is an example:

```mdx
with
  member [measures].[dealercm] as 'dealers.currentmember.name'
select
  [measures].[dealercm] on 0
from mddbcars
where ({dealers.[all dealers].finch, dealers.[all dealers].smith})
```

This returns:

```
dealercm
Finch
```

Previously, beginning in SAS 9.2, implicit sets on the slicer were used. Currently, using implicit sets on the slicer is considered the optimal way to apply sets to the slicer axis.

SAS Functions

SAS Function in an MDX Query

SAS functions are functions that anyone can reference in MDX expressions. SAS functions are slightly limited in the arguments that they accept and return. Here is an MDX query that uses a SAS function called “MDY”:

```mdx
WITH MEMBER measures.mdy AS 'SAS!mdy(2,9,2003)'
SELECT {cars.members} ON 0 FROM mddbcars
WHERE (measures.mdy)
```

The resulting cells look like this:

```
NOTE: 0.3[0]: f=15742 (u=15742.00)
```
In order to gain access to a SAS function library and before you can use a SAS function in a query, you must define or open the library for the current session. To do this, apply the USE statement at the beginning of your MDX query:

USE
LIBRARY "SAS"

SAS Functions Available for Use in MDX Expressions

Table 2.1
SAS Functions Available for Use in MDX Expressions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
<th>Argument</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATE</td>
<td>Returns the current date in SAS date format.</td>
<td>(none)</td>
</tr>
<tr>
<td>DATEJUL</td>
<td>Converts a Julian date to a SAS date value.</td>
<td>«julian-date»</td>
</tr>
<tr>
<td>DATEPART</td>
<td>Returns a SAS date value that corresponds to the date portion of a SAS datetime value.</td>
<td>«SAS datetime»</td>
</tr>
<tr>
<td>DATETIME</td>
<td>Returns the current data and time in SAS datetime format.</td>
<td>(none)</td>
</tr>
<tr>
<td>DAY</td>
<td>Returns an integer that represents the day of the month from a SAS date value.</td>
<td>«SAS date»</td>
</tr>
<tr>
<td>DHMS</td>
<td>Returns a SAS datetime value from a numeric expression that represents the date, hour, minute, and second.</td>
<td>«SAS date», «hour», «minute», «second»</td>
</tr>
<tr>
<td>HMS</td>
<td>Returns a SAS time value from a numeric expression that represents the hour, minute, and second.</td>
<td>«hour», «minute», «second»</td>
</tr>
<tr>
<td>Function</td>
<td>Description</td>
<td>Argument</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td>----------</td>
</tr>
<tr>
<td>HOUR</td>
<td>Returns a numeric value that represents the hour from a SAS time or datetime value.</td>
<td>«SAS time»</td>
</tr>
<tr>
<td>IN</td>
<td>Returns TRUE if the first expression is contained in the list of expressions that start from the second parameter to the end of the parameters provided; otherwise, FALSE.</td>
<td>«expression», «expression1», . . ., «expressionN»</td>
</tr>
<tr>
<td>JULDATE</td>
<td>Converts a SAS date value to a numeric value that represents a Julian date.</td>
<td>«SAS date»</td>
</tr>
<tr>
<td>JULDATE7</td>
<td>Converts a SAS date value to a numeric value that represents a Julian date with the year represented in 4 digits.</td>
<td>«SAS date»</td>
</tr>
<tr>
<td>LEFT</td>
<td>Returns the argument with leading blanks moved to the end of the value; the argument's length does not change.</td>
<td>«argument»</td>
</tr>
<tr>
<td>MDY</td>
<td>Returns a SAS date value from numeric expressions that represent the month, day, and year.</td>
<td>«month», «day», «year»</td>
</tr>
<tr>
<td>MINUTE</td>
<td>Returns a numeric value that represents the minute from a SAS time or datetime value.</td>
<td>«SAS time»</td>
</tr>
<tr>
<td>MONTH</td>
<td>Returns a numeric value that represents the month from a SAS time.</td>
<td>«SAS date»</td>
</tr>
<tr>
<td>QTR</td>
<td>Returns a value of 1, 2, 3, or 4 from a SAS date value to indicate the quarter of the year during which the SAS date value falls.</td>
<td>«SAS date»</td>
</tr>
<tr>
<td>RIGHT</td>
<td>Returns the argument with trailing blanks moved to the beginning of the value; the argument's length does not change.</td>
<td>«argument»</td>
</tr>
<tr>
<td>ROUND</td>
<td>Rounds the first argument to the nearest multiple of the second argument, or to the nearest integer when the second argument is omitted.</td>
<td>(argument <,rounding-unit>)</td>
</tr>
<tr>
<td>SECOND</td>
<td>Returns a numeric value that represents the second from a SAS time or datetime value.</td>
<td>«SAS time»</td>
</tr>
<tr>
<td>Function</td>
<td>Description</td>
<td>Argument</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td>----------</td>
</tr>
<tr>
<td>SUBSTR</td>
<td>Returns a portion of the string expression argument, starting at the index position and returning up to “n” characters. If “n” is not specified, then the rest of the string is returned.</td>
<td>«argument», «position» <, «n»></td>
</tr>
<tr>
<td>TIME</td>
<td>Returns the current time in SAS time format.</td>
<td>(none)</td>
</tr>
<tr>
<td>TIMEPART</td>
<td>Returns a SAS time value that corresponds to the time portion of a SAS datetime value.</td>
<td>«SAS datetime»</td>
</tr>
<tr>
<td>TODAY</td>
<td>Returns the current date in SAS date format.</td>
<td>(none)</td>
</tr>
<tr>
<td>TRIM</td>
<td>Returns the argument with the trailing blanks removed; if the argument contains all blanks, then the result is a string with a single blank .</td>
<td>«argument»</td>
</tr>
<tr>
<td>TRIMN</td>
<td>Returns the argument with the trailing blanks removed; if the argument contains all blanks, then the result is a null string.</td>
<td>«argument»</td>
</tr>
<tr>
<td>TRUNC</td>
<td>Truncates a numeric value to a specified length.</td>
<td>(number,length)</td>
</tr>
<tr>
<td>UPCASE</td>
<td>Returns the argument with all lowercase characters converted to uppercase characters.</td>
<td>«argument»</td>
</tr>
<tr>
<td>WEEKDAY</td>
<td>Returns an integer that represents the day of the week, where 1 = Sunday, 2 = Monday, . . ., 7 = Saturday, from a SAS date value.</td>
<td>«SAS date»</td>
</tr>
<tr>
<td>YEAR</td>
<td>Returns a numeric value that represents the month from a SAS time.</td>
<td>«SAS date»</td>
</tr>
<tr>
<td>YYQ</td>
<td>Returns a SAS date value that corresponds to the first day of the specified quarter.</td>
<td>«year», «quarter»</td>
</tr>
</tbody>
</table>

Function Arguments and Return Types

Currently only floating-point (double) arguments, character string arguments, and return values are supported. There is no limit to the number of arguments. The promotion of arguments from MDX types to SAS data types is automatically performed when there is a difference between the two types.
Numeric Precision

Floating-point Representation
To store numbers of large magnitude and to perform computations that require many digits of precision to the right of the decimal point, the SAS OLAP Server stores all numeric values as floating-point representation. Floating-point representation is an implementation of scientific notation, in which numbers are represented as numbers between 0 and 1 times a power of 10.

In most situations, the way the SAS OLAP Server stores numeric values does not affect you as a user. However, floating-point representation can account for anomalies that you might notice in MDX numeric expressions. This section identifies the types of problems that can occur and how you can anticipate and avoid them.

Magnitude versus Precision
Floating-point representation allows for numbers of very large magnitude (such as 2^{30}) and high degrees of precision (many digits to the right of the decimal place). However, operating systems differ on how much precision and how much magnitude to allow. Whether magnitude or precision is more important depends on the characteristics of your data. For example, if you are working with engineering data, very large numbers might be needed and magnitude will probably be more important. However, if you are working with financial data where every digit is important, but the number of digits is not great, then precision is more important. Most often, applications that are created with the SAS OLAP Server need a moderate amount of both magnitude and precision, which is handled well by floating-point representation.

Computational Considerations of Fractions
Regardless of how much precision is available, there is still the problem that some numbers cannot be represented exactly. For example, the fraction 1/3 cannot be rendered exactly in floating-point representation. Likewise, .1 cannot be rendered exactly in a base 2 or base 16 representation, so it also cannot be accurately rendered in floating-point representation. This lack of precision is aggravated by arithmetic operations. Consider the following example:

```
((10 * .1) = 1)
```

This expression might not always return TRUE due to differences in numeric precision. However, the following expression uses the ROUND function to compensate for numeric precision and therefore will always return TRUE:

```
(round((10 * .1), .001) = 1)
```

Usually, if you are doing comparisons with fractional values, it is good practice to use the ROUND function.

Using the TRUNC Function
The TRUNC function truncates a number to a requested length and then expands the number back to full precision. The truncation and subsequent expansion duplicate the effect of storing numbers in less than full precision. So in the following example, the first expression would return FALSE and the second would return TRUE:

```
((1/3) = .333)

(TRUNC((1/3), 3) = .333)
```
When you compare the result of a numeric expression to be equal to a specific value, such as 0, it is important that you use the TRUNC and ROUND functions to ensure that the comparison evaluates as intended.

Differences with Microsoft Analysis Services 2000

Microsoft Analysis Services 2000 (AS2K) labels external functions as user-defined functions (UDFs). Because AS2K runs only on Windows, it supports calling COM libraries (usually written in Visual Basic). Because MDX evaluation can occur on either the client or the server, Microsoft provides a means to install and use libraries on either location (due to a dual-mode OLE DB for OLAP provider, MSOLAP).

If you use a client-side function, then all the execution is on the client. The SAS OLAP Server is a thin-client system that is designed for high volume and scalability, with all evaluation done on the server. Therefore, external function libraries such as SAS functions can be installed only on the server. In addition, with the proper license, you can run a server on your own computer and install any libraries that you need.

SAS MDX Reserved Keywords

A reserved keyword should not be used to reference a dimension, hierarchy, level, or member name unless the reference is enclosed in square brackets []. Otherwise, the keyword might be interpreted incorrectly.

Note: The SAS OLAP Server currently does not support the use of square brackets in cube, dimension, hierarchy, level, or member names or captions.

<table>
<thead>
<tr>
<th>Table 2.2 SAS MDX Reserved Keywords</th>
</tr>
</thead>
<tbody>
<tr>
<td>()</td>
</tr>
<tr>
<td>)</td>
</tr>
<tr>
<td>*</td>
</tr>
<tr>
<td>+</td>
</tr>
<tr>
<td>’</td>
</tr>
<tr>
<td>-</td>
</tr>
<tr>
<td>.</td>
</tr>
<tr>
<td>/</td>
</tr>
<tr>
<td>:</td>
</tr>
<tr>
<td><</td>
</tr>
<tr>
<td><=</td>
</tr>
<tr>
<td><></td>
</tr>
<tr>
<td>=</td>
</tr>
<tr>
<td>DRILLDOWNMEMBER</td>
</tr>
<tr>
<td>DRILLDOWNMEMBERBOTTOM</td>
</tr>
<tr>
<td>DRILLDOWNMEMBERTOP</td>
</tr>
<tr>
<td>DRILLTHROUGH</td>
</tr>
<tr>
<td>DRILLUPLEVEL</td>
</tr>
<tr>
<td>DRILLUPMEMBER</td>
</tr>
<tr>
<td>DROP</td>
</tr>
<tr>
<td>ELSE</td>
</tr>
<tr>
<td>EMPTY</td>
</tr>
<tr>
<td>END</td>
</tr>
<tr>
<td>EXCEPT</td>
</tr>
<tr>
<td>EXCLUDEEMPTY</td>
</tr>
<tr>
<td>EXTRACT</td>
</tr>
<tr>
<td>NONEMPTYCROSSJOIN</td>
</tr>
<tr>
<td>NOT</td>
</tr>
<tr>
<td>NULL</td>
</tr>
<tr>
<td>ON</td>
</tr>
<tr>
<td>OPENINGPERIOD</td>
</tr>
<tr>
<td>OR</td>
</tr>
<tr>
<td>ORDER</td>
</tr>
<tr>
<td>ORDINAL</td>
</tr>
<tr>
<td>PAGES</td>
</tr>
<tr>
<td>PARALLELPERIOD</td>
</tr>
<tr>
<td>PARENT</td>
</tr>
<tr>
<td>PARENT_COUNT</td>
</tr>
<tr>
<td>PARENT_LEVEL</td>
</tr>
<tr>
<td>True</td>
</tr>
<tr>
<td>------------</td>
</tr>
<tr>
<td>True >=</td>
</tr>
<tr>
<td>{</td>
</tr>
<tr>
<td>}</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>True ABSOLUTE</td>
</tr>
<tr>
<td>True ADDCALCULATEDMEMBERS</td>
</tr>
<tr>
<td>True AFTER</td>
</tr>
<tr>
<td>True AGGREGATE</td>
</tr>
<tr>
<td>True ALL</td>
</tr>
<tr>
<td>True ALLMEMBERS</td>
</tr>
<tr>
<td>True ANCESTOR</td>
</tr>
<tr>
<td>True ANCESTORS</td>
</tr>
<tr>
<td>True AND</td>
</tr>
<tr>
<td>True AS</td>
</tr>
<tr>
<td>True ASC</td>
</tr>
<tr>
<td>True ASCENDANTS</td>
</tr>
<tr>
<td>True AVG</td>
</tr>
<tr>
<td>True AXIS</td>
</tr>
<tr>
<td>True BACK_COLOR</td>
</tr>
<tr>
<td>True BASC</td>
</tr>
<tr>
<td>True BDESC</td>
</tr>
<tr>
<td>True BEFORE</td>
</tr>
<tr>
<td>True BEFORE_AND_AFTER</td>
</tr>
<tr>
<td>True BOTTOMCOUNT</td>
</tr>
<tr>
<td>True BOTTOMPERCENT</td>
</tr>
<tr>
<td>Function Name</td>
</tr>
<tr>
<td>---------------</td>
</tr>
<tr>
<td>BOTTOMSUM</td>
</tr>
<tr>
<td>CALCULATIONCURRENTPASS</td>
</tr>
<tr>
<td>CALCULATIONPASSVALUE</td>
</tr>
<tr>
<td>CALL</td>
</tr>
<tr>
<td>CAPTION</td>
</tr>
<tr>
<td>CASE</td>
</tr>
<tr>
<td>CATALOG_NAME</td>
</tr>
<tr>
<td>CELL</td>
</tr>
<tr>
<td>CELL_ORDINAL</td>
</tr>
<tr>
<td>CHAPTERS</td>
</tr>
<tr>
<td>CHILDREN</td>
</tr>
<tr>
<td>CHILDREN_CARDINALITY</td>
</tr>
<tr>
<td>CLOSINGPERIOD</td>
</tr>
<tr>
<td>COALESCEEMPTY</td>
</tr>
<tr>
<td>COLUMNS</td>
</tr>
<tr>
<td>CORRELATION</td>
</tr>
<tr>
<td>COUNT</td>
</tr>
<tr>
<td>COUSIN</td>
</tr>
<tr>
<td>COVARIANCE</td>
</tr>
<tr>
<td>COVARIANCECN</td>
</tr>
<tr>
<td>CREATE</td>
</tr>
<tr>
<td>CROSSJOIN</td>
</tr>
<tr>
<td>CUBE_NAME</td>
</tr>
<tr>
<td>CURRENT</td>
</tr>
<tr>
<td>CURRENTMEMBER</td>
</tr>
<tr>
<td>DATAMEMBER</td>
</tr>
</tbody>
</table>
External Functions

External Function Example

External functions are functions that can be written on a server that clients can later reference in MDX expressions. External functions can be written by most MDX users. External function names are case sensitive, and unlike internal functions, they are more limited in the arguments that they can take. Here is an example of an MDX query that uses an external function called `addOne()`, which takes one parameter, a double argument, and adds one (1) to it. It then returns another double argument:

```sql
WITH MEMBER measures.x AS 'addone(measures.sales_sum)'
SELECT {cars.members} ON 0 FROM Mddbcars
WHERE (measures.x)
```

The resulting cells look like this:

```
0.0[0]: 229001
0.0[1]: 27001
0.0[2]: 40001
0.0[3]: 86001
0.0[4]: 76001
0.0[5]: 17001
```
Here is the query and the resulting cells without the external `addOne()` function:

```
SELECT {cars.members} ON 0 FROM Mddbcars WHERE (measures.sales_sum)
Array(0)=229000 Array(1)=27000 Array(2)=170000 Array(3)=10000
Array(4)=40000 Array(5)=20000 Array(6)=20000 Array(7)=86000
Array(8)=10000 Array(9)=44000 Array(10)=17000 Array(11)=15000
Array(12)=76000 Array(13)=4000 Array(14)=14000 Array(15)=58000
```

Gaining Access to an External Function Library or Class

Before you can use a function in a query, you must define or open the library for the current session. To do this, you execute the `USE` statement in MDX:

```mdx
USE LIBRARY "Hello"
```

You do not add the `.class` extension, because it is automatically provided. When the session ends, the library is released. You can use a `DROP` statement to release the library before the session ends:

```mdx
DROP LIBRARY "Hello"
```

State Information

The class is instantiated when the `USE` statement is first encountered in a session, and then it is released when the session ends or the `DROP` statement is executed. As a result, the state can be kept in a normal class and static variables can be maintained. Here is an example:

```java
public class Hello {
    static int count = 0;
    int instance;
    int iteration = 0;
    public Hello()
    {
        instance = count++;
        System.out.println("Hello constructor "+ instance);
    }
}
```
public double addOne(double d) {
 System.out.println("addOne, world! "+instance +" "+iteration++);
 return d+1.0;
}

public void finalize() {
 System.out.println("Hello finalize");
}

Note: System.out is used in the above example for illustration and cannot be used in a real function except for debugging.

Here is an example of the debugging output that is generated:

Hello constructor 0
addOne, world! 0 0
addOne, world! 0 2
Hello constructor 1
addOne, world! 0 3
addOne, world! 1 0
addOne, world! 1 1

Each time a new session (a user or client connection) uses this class, the Java constructor is called and a new Hello object is created. The count is incremented so that instance has a unique value. Example items that you might want to save in a real application include file handles, shopping cart lists, and database connection handles.

Although cleanup is automatic, you can have an optional finalize method for special circumstances. Normal Java garbage collection of the class occurs some time after the class is no longer needed. The finalize method should then be called. However, in accordance with Java standards, it is possible that the finalize method will never be called (for example, if the server is shut down early, or the class never needs to be removed by the garbage collector).

Function Arguments and Return Types

Only floating-point (double) arguments and return values are supported by SAS 9.4 OLAP Server. Java function overloading is also supported and there is no limit to the number of arguments that are supported.

SAS OLAP Server looks at the parameters that are passed to an external function and creates a Java signature from that. It then looks up the function and signature in the class. In the addOne() example that was mentioned earlier, there is one parameter. Also, because it is a double argument, it looks for the signature “D(D)”.

Performance

Certain OLAP hosts use an in-process Java virtual machine (JVM), whereas other OLAP hosts use an out-of-process JVM. An out-of-process JVM is much less efficient because each method call has to be packaged (marshaled) and transmitted to the JVM process. It is then unpackaged (unmarshaled) and run, and a return packet is sent back. Currently HP-UX, OpenVMS, and z/OS use out-of-process JVMs. In later releases, hosts should
be able to use in-process JVMs. z/OS will use a shared address space so that it can be optimized.

Although synthetic benchmarks show that calling Java is considerably slower than calling built-in functions, real-world performance tests show that the performance impact of calling Java methods was negligible (at least with in-process Java implementations). If you encounter a problem, reducing the number of function calls per output cell, the number of cells queried, and the number of parameters to the function can all boost performance.

Deployment

To make a Java class available, copy the .class file to a directory that is listed in the CLASSPATH environment variable when the server is started. The CLASSPATH can contain any number of directories that are separated by semicolons (;). The current release of SAS OLAP Server does not contain a method to make the server reload a .class file after it has been loaded. Therefore, if you update the .class file after using it one time, the server will continue to use the old version. Currently you need either to restart the server or give the new class a different name.

It is possible that later releases of SAS OLAP Server will not use CLASSPATH. A benefit of using Java for external functions is that the .class files are portable. As a result, you can use JavaC to compile your class one time, and deploy it on different machines without recompiling.

Security

Because the Java classes are loaded from the server's local file system, they have full access to the server's system (under the ID that started the server). Any public methods (on any classes) in the CLASSPATH can be invoked by any client. As a result, use caution when you decide which classes and directories to make visible.

Differences with Microsoft Analysis Server (AS2K)

See “Differences with Microsoft Analysis Services 2000” on page 17

Using Derived Statistics with the Aggregate Function

Example 1

When the aggregate function is used in a calculated member, the statistic associated with the current measure will determine how the values are aggregated. For example:

WITH

MEMBER [measures].[calc] AS ' [measures].[actual_max]-[measures].[actual_min]'

MEMBER [time].[agg complexfunc] AS 'aggregate([time].[all time].[1994].children)'
SELECT
{[time].[all time].[1994].children, [time].[agg complexfunc]} ON 0,
{measures].[actual_max], [measures].[actual_min],
[measures].[actual_sum], [measures].[actual_n],
[measures].[actual_avg], measures.calc} on 1
FROM [prdmddb]

This example returns the following:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>actual_max</td>
<td>$1,000.00</td>
<td>$987.00</td>
<td>$992.00</td>
<td>$1,000.00</td>
</tr>
<tr>
<td>actual_min</td>
<td>$13.00</td>
<td>$3.00</td>
<td>$20.00</td>
<td>$15.00</td>
</tr>
<tr>
<td>actual_sum</td>
<td>$89,763.00</td>
<td>$93,359.00</td>
<td>$92,049.00</td>
<td>$88,689.00</td>
</tr>
<tr>
<td>actual_n</td>
<td>180</td>
<td>180</td>
<td>180</td>
<td>180</td>
</tr>
<tr>
<td>actual_avg</td>
<td>$498.68</td>
<td>$518.66</td>
<td>$494.72</td>
<td>$492.72</td>
</tr>
<tr>
<td>calc</td>
<td>987</td>
<td>984</td>
<td>972</td>
<td>985</td>
</tr>
</tbody>
</table>

For each current measure listed on the left, the aggregate function does the following:

actual_max
- It takes the MAX of the actual_max values associated with the children of 1994.

actual_min
- It takes the MIN of the actual_min values associated with the children of 1994.

actual_sum
- It summarizes the actual_sum values associated with the children of 1994.

actual_n
- It counts the actual_n values associated with the children of 1994.

actual_avg

calculated measure calc
- It takes the MAX of the actual_max values for the children of 1994 (1000) and subtracts the MIN of the actual_min values for the children of 1994 (3).

Example 2

This example shows what happens when the query is changed to include a numeric expression:

```
WITH
MEMBER [time].[agg complexfunc] AS
'aggregate(([time].[all time].[1994].children, measures.actual_max + 1)'
```

SELECT
{[time].[all time].[1994].children, [time].[agg complexfunc]} ON 0,
{measures].[actual_max], [measures].[actual_min],
[measures].[actual_sum], [measures].[actual_n],
[measures].[actual_avg]} on 1
FROM [prdmddb]

This example returns the following:
For each current measure listed on the left, the aggregate function does the following:

- **actual_max**
 - It takes the MAX of the actual_max values associated with the children of 1994 and adds 1 to it.

- **actual_min**
 - It takes the MIN of the actual_max values associated with the children of 1994 and adds 1 to it.

- **actual_sum**
 - It adds 1 to each of the actual_max values associated with the children of 1994 and SUMs the values.

- **actual_n**
 - It adds 1 to each of the actual_max values associated with the children of 1994 and SUMs the values.

- **actual_avg**
 - It cannot compute a derived measure based on another measure, so it returns a missing value.

Example 3

This example shows what happens when the query is changed to include a numeric expression with measures that aggregate differently.

```sql
WITH

MEMBER [time].[agg complexfunc] AS
    'aggregate([time].[all time].[1994].children, measures.actual_max - measures.actual_min)'

SELECT
    {[time].[all time].[1994].children, [time].[agg complexfunc]} ON 0,
    {[measures].[actual_max], [measures].[actual_min],
     [measures].[actual_sum], [measures].[actual_n],
     [measures].[actual_avg]} on 1
FROM [prdmddb]
```

This example returns the following:

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>actual_max</td>
<td>$1,000.00</td>
<td>$987.00</td>
<td>$992.00</td>
</tr>
<tr>
<td>actual_min</td>
<td>$13.00</td>
<td>$3.00</td>
<td>$20.00</td>
</tr>
<tr>
<td>actual_sum</td>
<td>$89,763.00</td>
<td>$93,359.00</td>
<td>$89,049.00</td>
</tr>
<tr>
<td>actual_n</td>
<td>180</td>
<td>180</td>
<td>180</td>
</tr>
<tr>
<td>actual_avg</td>
<td>$498.68</td>
<td>$518.66</td>
<td>$494.72</td>
</tr>
</tbody>
</table>

For each current measure listed on the left, the aggregate function does the following:
actual_max
It subtracts the actual_min value associated with each child of 1994 from the corresponding actual_max value. It selects the MAX of these values (1000–13).

actual_min
It subtracts the actual_min value associated with each child of 1994 from the corresponding actual_max value. It selects the MIN of these values (992 - 20).

actual_sum
It subtracts the actual_min value associated with each child of 1994 from the corresponding actual_max value. It then sums all of these values.

actual_n
It subtracts the actual_min value associated with each child of 1994 from the corresponding actual_max value. It then sums all of these values.

actual_avg
It cannot compute a derived measure based on other measures, so it returns a missing value.

Example 4

This example shows what happens when the query is changed to have the aggregate function on a calculated measure, and the numeric expression is the actual_avg measure.

```mdx
WITH
  MEMBER [measures].[agg complexfunc] AS
      'aggregate([time].[all time].[1994].children, measures.actual_avg)'

SELECT
  {[measures].[actual_sum], [measures].[actual_n],
   [measures].[agg complexfunc]}
  ON 0,
  {[time].[all time].[1994].children} ON 1
FROM [prdmddb]
```

This example returns the following:

<table>
<thead>
<tr>
<th></th>
<th>actual_sum</th>
<th>actual_n</th>
<th>agg complexfunc</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$89,763.00</td>
<td>180 501.194444444444</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>$93,359.00</td>
<td>180 501.194444444444</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>$89,049.00</td>
<td>180 501.194444444444</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>$88,689.00</td>
<td>180 501.194444444444</td>
<td></td>
</tr>
</tbody>
</table>

The current measure is the calculated measure [agg complexFunc]. However, using this would cause infinite recursion, so the aggregate function aggregates based only on the numeric expression. In this case, the statistic is average, which divides the sum by the count. For each child of 1994, the sum is divided by the count, and these values are summed together. This total is then divided by the number of children of 1994 to give the aggregate value.

Example 5

This example shows what happens when the numeric expression is changed to an expression that used a derived statistic.

```mdx
WITH
```
MEMBER [measures].agg complexfunc] AS
 'aggregate([time].[all time].[1994].children, measures.actual_avg + 12)'

SELECT
 {[measures].[actual_sum], [measures].[actual_n],
 [measures].[agg complexfunc]} ON 0,
 {[time].[all time].[1994].children} ON 1
FROM [prdmddb]

This example returns the following:

<table>
<thead>
<tr>
<th>actual_sum</th>
<th>actual_n</th>
<th>agg complexfunc</th>
</tr>
</thead>
<tbody>
<tr>
<td>$89,763.00</td>
<td>180</td>
<td></td>
</tr>
<tr>
<td>$93,359.00</td>
<td>180</td>
<td></td>
</tr>
<tr>
<td>$89,049.00</td>
<td>180</td>
<td></td>
</tr>
<tr>
<td>$88,689.00</td>
<td>180</td>
<td></td>
</tr>
</tbody>
</table>

In this case, the value of the aggregation is missing. When measures that are associated
with derived statistics are used in an expression for the aggregate function, it is not able
to calculate the correct value. Therefore, it simply returns missing.

Example 6

This example shows what happens when the query is changed to have a standard statistic
in the expression.

WITH

MEMBER [measures].[agg complexfunc] AS
 'aggregate([time].[all time].[1994].children, measures.actual_max + 12)'

SELECT
 {[measures].[actual_max],
 [measures].[agg complexfunc]} ON 0,
 {[time].[all time].[1994].children} ON 1
FROM [prdmddb]

This example returns the following:

<table>
<thead>
<tr>
<th>actual_max</th>
<th>agg complexfunc</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1,000.00</td>
<td>1012</td>
</tr>
<tr>
<td>$987.00</td>
<td>1012</td>
</tr>
<tr>
<td>$992.00</td>
<td>1012</td>
</tr>
<tr>
<td>$1,000.00</td>
<td>1012</td>
</tr>
</tbody>
</table>

In this case, the aggregate function looks for the max value associated with the
actual_max measure for the children of 1994. Then 12 is added to this value.

Example 7

This example shows what happens when the query is changed to still have the aggregate
function on a calculated measure, and it has a numeric expression that includes measures
that aggregate differently.

WITH
MEMBER [measures].[agg complexfunc] AS 'aggregate([time].[all time].[1994].children, measures.actual_max + measures.actual_min)'

SELECT [{measures].[actual_max], measures.actual_min, [measures].[agg complexfunc]] ON 0, [{time].[all time].[1994].children] ON 1
FROM [prmdmdb]

This example returns the following:

<table>
<thead>
<tr>
<th>actual_max</th>
<th>actual_min</th>
<th>agg complexfunc</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1,000.00</td>
<td>$13.00</td>
<td></td>
</tr>
<tr>
<td>$987.00</td>
<td>$3.00</td>
<td></td>
</tr>
<tr>
<td>$992.00</td>
<td>$20.00</td>
<td></td>
</tr>
<tr>
<td>$1,000.00</td>
<td>$15.00</td>
<td></td>
</tr>
</tbody>
</table>

In this case, one measure is a max and the other a min. It is unclear how to aggregate the values, so a missing value is returned.

Standard Statistics

Here are the standard statistics and how they are aggregated.

Table 2.3 Standard Statistics

<table>
<thead>
<tr>
<th>Standard Statistic</th>
<th>How it is aggregated</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX</td>
<td>Get the MAXIMUM of the values</td>
</tr>
<tr>
<td>MIN</td>
<td>Get the MINIMUM of the values</td>
</tr>
<tr>
<td>N</td>
<td>Count the values</td>
</tr>
<tr>
<td>NMISS</td>
<td>Sum the NMISS values</td>
</tr>
<tr>
<td>SUM</td>
<td>Sum the SUM values</td>
</tr>
<tr>
<td>SUMWGT</td>
<td>Sum the SUMWGT values</td>
</tr>
<tr>
<td>USS</td>
<td>Sum the USS values</td>
</tr>
<tr>
<td>UWSUM</td>
<td>Sum the UWSUM values</td>
</tr>
</tbody>
</table>

Derived Statistics

For measures associated with these statistics, the system will use the values that are being aggregated to determine the result value based on the statistic. For example, for...
A VG, it will take the SUM of the values and divide it by the N of the values. Here are the derived statistics:

- AVG
- RANGE
- CSS
- VAR
- STD
- ERR
- CV
- T
- PRT
- LCLM
- UCLM
- NUNIQUE

SAS OLAP Security Totals and Permission Conditions

SECURITY_SUBSET Option

As part of the SAS security model, SAS OLAP cubes can have member-level authorizations applied as permission conditions. Permission conditions limit access to a cube dimension so that only designated portions of the data is visible to a user or group of users. These permission conditions can affect the rolled-up values for measures at query time. In order for a cube to control the roll-up values for designated members, the PROC OLAP option SECURITY_SUBSET = YES must be set when the cube is built. In addition, users who access the cube must have the necessary permissions to see the members in the roll-up values. If the PROC OLAP option SECURITY_SUBSET = YES is set for a cube, then the rolled-up values will include only those members that the user has permission to see.

When you create MDX queries for security totals, there is no designated MDX code that needs to be written in order to apply security totals to a cube. The only difference between a query written against a cube without the SECURITY_SUBSET option and the same query written against a cube with the SECURITY_SUBSET option is in the values of the output.

Example 1 Applying the SECURITY_SUBSET Option to an MDX Query

Below is an example of an MDX query:

```sql
SELECT measures
  on_columns,
dealers.members on_rows
FROM mddbcars
```
This query has the following applied permission condition:

\{
 [dealers].[all dealers],
 descendants([dealers].[all dealers].[smith])
\}

Here is the resulting data table if the SECURITY_SUBSET option has not been set.

<table>
<thead>
<tr>
<th>MeasuresLevel</th>
<th>sales_sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Dealers</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>All Dealers</td>
<td>$108,000.00</td>
</tr>
<tr>
<td>Smith</td>
<td>$12,000.00</td>
</tr>
<tr>
<td>CA</td>
<td>$15,000.00</td>
</tr>
<tr>
<td>NC</td>
<td>$25,000.00</td>
</tr>
<tr>
<td>NJ</td>
<td>$56,000.00</td>
</tr>
</tbody>
</table>

However, if the SECURITY_SUBSET option has been set to YES, then here is the resulting data table:

<table>
<thead>
<tr>
<th>MeasuresLevel</th>
<th>sales_sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Dealers</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>All Dealers</td>
<td>$108,000.00</td>
</tr>
<tr>
<td>Smith</td>
<td>$12,000.00</td>
</tr>
<tr>
<td>CA</td>
<td>$15,000.00</td>
</tr>
<tr>
<td>NC</td>
<td>$25,000.00</td>
</tr>
<tr>
<td>NJ</td>
<td>$56,000.00</td>
</tr>
</tbody>
</table>

Note that the members displayed in both resulting data tables do not change. This is because both data tables were built with the same permission condition. It is the final value for the All Dealers member that changes from $229,000 in the first table to $108,000 in the second table and shows the sales value of Smith only. The $229,000 in the first table includes sales figures for all dealers.

Example 2 Applying the SECURITY_SUBSET Option to an MDX Query

Here is a second example of an MDX query:

```
SELECT
  measures on 0,
  date.members on 1
FROM mddbcars
```

This query has the following applied permission condition:

\{
 [dealers].[all dealers],
 descendants([dealers].[all dealers].[smith])
\}

Here is the resulting data table:
However, if the SECURITY_SUBSET option is applied, then the resulting data table is as follows:

Note that the members in the output data are the same for both queries. It is the date values that are different. The table values in the first data set reflect sales values for All Dealers, even if the dealers are not displayed. It is when the SECURITY_SUBSET option is applied in the second data table that the sales values reflect only dealer Smith.

Default Member and the All Member

Every dimension for a cube has a default member. That member is implicitly used if no other members of that dimension are explicitly selected in a cube query. In addition, if you do not have permission to see the default member, then the default member will be the first member in the permission condition set. Usually, the All member of a dimension is also the default member.

Note: The All member (parent of the highest level node in the cube) is a system-generated member. It does not have a corresponding column in the underlying data table.

Virtual Members and Security Totals

Virtual members are associated with those records that have missing values in one or more columns. The values associated with virtual members will be included in the roll-up for security totals if you have permission conditions set to see the virtual parent of the virtual member.

For example, here is a sample data set.

<table>
<thead>
<tr>
<th>DISTRICT</th>
<th>REGION</th>
<th>ACTUAL</th>
<th>BUDGET</th>
</tr>
</thead>
<tbody>
<tr>
<td>.</td>
<td>.</td>
<td>30</td>
<td>5</td>
</tr>
<tr>
<td>Atlantic</td>
<td>.</td>
<td>10</td>
<td>35</td>
</tr>
<tr>
<td>Atlantic</td>
<td>Eastern US</td>
<td>5</td>
<td>.</td>
</tr>
<tr>
<td>Atlantic</td>
<td>Great Britain</td>
<td>12</td>
<td>.</td>
</tr>
</tbody>
</table>
Atlantic France 8 .
Atlantic Spain 5 .
Pacific . -5 30
Pacific Western US 8 .
Pacific Japan 12 .
Pacific Korea 10 .

In this data set, if the user has a permission conditions to see the following:

```
{[salesregion].[all regions],
 [salesregion].[all regions].[atlantic],
 [salesregion].[all regions].[atlantic].children}
```

then the value for the [salesregion].[all regions] member would include records from rows 1 through 6.

Here is a possible query of that data:

```
SELECT
    measures on 0,
    salesregion.members on 1
FROM nonleaf
```

Here is the resulting data from that query:

```
sum of actual
all regions 70
atlantic 40
eastern us 5
great britain 12
france 8
spain 5
```

These are the values that you will see when the permission condition is set and the SECURITY_SUBSET option is set to YES. Note that if the permission condition is set, but the SECURITY_SUBSET option is not set, then the values will be different.
Chapter 3
MDX Usage Examples

Basic Examples
Basic MDX queries ... 34
Additional Basic Examples 34
Joins and Extractions for Queries Examples 36
Examples of Displaying Multiple Dimensions on Columns and Eliminating Empty Cells 36

Calculated Member Examples 37

Query-Calculated Member Examples 38
Example Data .. 38
Example 1 ... 38
Example 2 ... 39
Example 3 ... 39

Session-Level Calculated Member Examples 40
Example Data .. 40
Example 1 ... 40
Example 2 ... 40
Example 3 ... 40
Example 4 ... 40

Drill-Down Examples .. 42
Example Data .. 42
Example 1 ... 42
Example 2 ... 43
Example 3 ... 44
Example 4 ... 45

Session-Named Set Examples 45
Example Data .. 45
Example 1 ... 46
Example 2 ... 46
Example 3 ... 46
Example 4 ... 47
Example 5 ... 48
Example 6 ... 50
Example 7 ... 50
Additional Named Set Examples 51
Basic Examples

Basic MDX queries

This topic shows several basic MDX queries. For detailed information about the MDX functions used in these examples see “Basic MDX Queries and Syntax” on page 6 and Appendix 1, “MDX Functions,” on page 53.

The data that is used in these simple examples is from a company that sells various makes and models of cars. The company needs to report sales figures for different months.

Example of a simple two-dimensional query:
```mdx
SELECT
    { [cars].[all cars].[chevy], [cars].[all cars].[ford] } ON COLUMNS,
    { [date].[all date].[march], [date].[all date].[april] } ON ROWS
FROM mddbcars
```

Example of how you can flip the rows and columns:
```mdx
SELECT
    { [cars].[all cars].[chevy], [cars].[all cars].[ford] } ON ROWS,
    { [date].[all date].[march], [date].[all date].[april] } ON COLUMNS
FROM mddbcars
```

Example of selecting a different measure (sales_n) to be the default:
```mdx
SELECT
    { [cars].[all cars].[chevy], [cars].[all cars].[ford] } ON COLUMNS,
    { [date].[all date].[march], [date].[all date].[april] } ON ROWS
FROM mddbcars
WHERE ([measures].[sales_n])
```

Example of using ":" to get a range of members:
```mdx
SELECT
    { [cars].[all cars].[chevy], [cars].[all cars].[ford] } ON COLUMNS,
    { [date].[all date].[january] : [date].[all date].[april] } ON ROWS
FROM mddbcars
```

Example of the .MEMBERS function:
```mdx
SELECT
    { [cars].[all cars].[chevy], [cars].[all cars].[ford] } ON COLUMNS,
    { [date].members } ON ROWS
FROM mddbcars
```

Example of the .CHILDREN function:
```mdx
SELECT
    { [cars].[all cars].[ford].children } ON COLUMNS,
    { [date].members } ON ROWS
FROM mddbcars
```

Example of selecting more than one dimension in a tuple:
```mdx
SELECT
    { ( [cars].[all cars].[chevy], [measures].[sales_sum] ),
```
Example of how the CROSSJOIN function makes tuple combinations for you:

```sql
SELECT 
  { CROSSJOIN ( 
    { [cars].[all cars].[chevy], [cars].[all cars].[ford] },
    { [measures].[sales_sum], [measures].[sales_n] }  
  ) } ON COLUMNS,
  { [date].members } ON ROWS
FROM mddbcars
```

Example of using the NON_EMPTY keyword to discard the row with no sales:

```sql
SELECT 
  { CROSSJOIN ( 
    { [cars].[all cars].[chevy], [cars].[all cars].[ford] },
    { [measures].[sales_sum], [measures].[sales_n] }  
  ) } ON COLUMNS,
  NONEMPTY { [date].members } ON ROWS
FROM mddbcars
```

Additional Basic Examples

Example of a basic two-dimension table:

```sql
SELECT {[time].[all yqm]}  ON COLUMNS ,
  {[geography].[global].[all global]} ON ROWS
FROM [orionstar]
```

Example of a basic two-dimension table with an analysis variable (Measures):

```sql
SELECT {[time].[all yqm]}  ON COLUMNS ,
  {[geography].[global].[all global]} ON ROWS
FROM [orionstar]
WHERE [measures].[total_retail_pricesum]
```

Example of a basic two-dimension table with specific columns selected within the same level:

```sql
SELECT {[time].[all yqm].[2001] , [time].[all yqm].[2002]}  ON COLUMNS ,
  {[geography].[global].[all global]} ON ROWS
FROM [orionstar]
WHERE [measures].[total_retail_pricesum]
```

Example of a basic two-dimension table with specific rows selected within the same level:

```sql
SELECT {[time].[all yqm].[2001] ,
  [time].[all yqm].[2002]}  ON COLUMNS ,
  {[geography].[global].[all global].[europe] , [geography].[global].[all global].[asia]} ON ROWS
FROM [orionstar]
WHERE [measures].[total_retail_pricesum]
```
Joins and Extractions for Queries Examples

Example of the CROSSJOIN function:

```
SELECT
  CROSSJOIN(
    {[yqm].[all yqm]},
    {[measures].[actualsalessum]})
ON COLUMNS,
{[geography].[all geography]} ON ROWS
FROM [booksnall]
```

Example of the UNION function:

```
SELECT
  { union([yqm].[all yqm].[1999],
    [yqm].[all yqm].[2000],all) }
ON COLUMNS,
{[geography].[all geography] } ON ROWS
FROM [booksnall]
WHERE [measures].[predictedsalessum]
```

Example of the EXCEPT function as a query:

```
SELECT
  { except({[yqm].[qtr].members},
    {[yqm].[all yqm].[1998].[1]:
      ([yqm].[all yqm].[2001].[1])}) }
ON COLUMNS,
{[geography].[all geography]} ON ROWS
FROM [booksnall]
```

Example of the EXTRACT function:

```
SELECT
  { extract ({{[yqm].[all yqm].[1998]},
    ([yqm].[all yqm].[2000]),time }) }
ON COLUMNS,
{[geography].[all geography]} ON ROWS
FROM [booksnall]
```

Examples of Displaying Multiple Dimensions on Columns and Eliminating Empty Cells

Example of displaying a measure as a column by using the CROSSJOIN function:

```
SELECT
  CROSSJOIN ([time].[yqm].[year_id].members ,
    [measures].[total_retail_pricesum])
ON COLUMNS,
{[geography].[global].[all global].children } ON ROWS
FROM [orionstar]
```

Example of eliminating empty values by using the NON EMPTY function (in the previous example there are several missing values for Year and Regions):

```
SELECT
  NONEMPTY (CROSSJOIN ([time].[yqm].[all yqm].children ,
    [measures].[total_retail_pricesum]))
ON COLUMNS,
NONEMPTY({[geography].[global].[all global].children }) ON ROWS
FROM [orionstar]
```

Example of using a second CROSSJOIN to combine all three values:

```
SELECT
```
non_empty(CROSSJOIN(CROSSJOIN ([time].[yqm].[all yqm].children , [measures].[total_retail_pricesum]), {[demographics].[all demographics].female})) ON COLUMNS,
non_empty({[geography].[global].[all global].children }) ON ROWS
FROM [orionstar]

Example of executing the previous step with one function and adding a third set:

Note: The number controls which columns are viewed as well as the crossjoins.

SELECT
NONEMPTY CROSSJOIN ([time].[all yqm].children,[measures].[total_retail_pricesum],
{[demographics].[all demographics].female},3) ON COLUMNS,
NONEMPTY({[geography].[global].[all global].children }) ON ROWS
FROM [orionstar]

Example of the COALESCE EMPTY function:

WITH MEMBER
[measures].[quantity_nomiss] as 'COALESCE EMPTY
(measures.[quantitysum], 0)'

Calculated Member Examples

Example of the WITH MEMBER statement:

WITH MEMBER [measures].[target_difference] AS
' [measures].[actualsalessum]-[measures].[predictedsalessum]'
SELECT
CROSSJOIN([yqm].[all yqm].[2000],
[measures].[actualsalessum],
[measures].[predictedsalessum],
[measures].[target_difference]) ON COLUMNS ,
[geography].[all geography].[mexico],
[geography].[all geography].[canada] ON ROWS
FROM [booksnall]

Example of the WITH MEMBER statement and Format:

WITH MEMBER [measures].[target_difference] AS
' [measures].[actualsalessum]-[measures].[predictedsalessum]',
format_string="dollar20.2"

Example of the CREATE GLOBAL MEMBER statement:

CREATE GLOBAL MEMBER
[booksnall].[measures].[percentage_increase] AS
' ([measures].[actualsalessum] - [measures].[predictedsalessum])/
[measures].[actualsalessum]',
format_string="Percent8.2"

Example of the DEFINE MEMBER statement:

DEFINE MEMBER
[booksnall].[Measures].[Percentage_Increase] AS
' ([Measures].[ActualSalesSUM] - [Measures].[PredictedSalesSUM])/
Example of defining a member with a dimension other than Measures:

WITH MEMBER [geography].[all geography].[non usa]
AS
'SUM([geography].[all geography].[canada],[geography].[all geography].[mexico])'

SELECT {CROSSJOIN([time].[yqm].[all yqm], [measures].[actualsalessum])} ON COLUMNS,
{[geography].[all geography].[u.s.a], [geography].[all geography].[non usa]} ON ROWS
FROM [booksnall]

Example of the DROP MEMBER statement:

DROP MEMBER [booksnall].[measures].[percentage_increase]

Query-Calculated Member Examples

Example Data

The data that is used in these examples is from a company that sells various makes and models of cars. The company needs to report on sales figures for different months.

Example 1

This query creates a calculation for the average price of a car. The average price of a car is calculated by dividing the sales_sum by the count (sales_n). The query returns the sales_sum, sales_n, and the average price for March and April.

WITH
MEMBER[measures].[avg price] AS
'([measures].[sales_sum] / [measures].[sales_n])'
SELECT
{[measures].[sales_sum], [measures].[sales_n], [measures].[avg price]} ON COLUMNS,
{[date].[all date].[march], [date].[all date].[april]} ON ROWS
FROM mddbcars

Here is the resulting output:

Table 3.1 Query Results

<table>
<thead>
<tr>
<th>Date</th>
<th>Sales_sum</th>
<th>Sales_n</th>
<th>Avg Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>March</td>
<td>$59,000.00</td>
<td>4</td>
<td>14750</td>
</tr>
<tr>
<td>April</td>
<td>$34,000.00</td>
<td>3</td>
<td>11333.33</td>
</tr>
</tbody>
</table>
Example 2

This query has the same calculation that was created in example 1. This time the calculation is put in the slicer instead of an axis. In this query, the types of cars that were sold are on the column and the months that the cars were sold are on the rows. The value in the cells is the average price of the car for that month.

```
WITH
    MEMBER [measures].[avg price] as ' [measures].[sales_sum] / [measures].[sales_n] ' 
SELECT
    { [cars].[car].members } ON COLUMNS,
    { [date].members } ON ROWS
FROM mddbcars
WHERE ([measures].[avg price])
```

Here is the resulting output:

<table>
<thead>
<tr>
<th>Date</th>
<th>Chevy</th>
<th>Chrysler</th>
<th>Ford</th>
<th>Toyota</th>
</tr>
</thead>
<tbody>
<tr>
<td>All date</td>
<td>13500</td>
<td>20000</td>
<td>12285.71</td>
<td>8444.45</td>
</tr>
<tr>
<td>January</td>
<td>20000</td>
<td>10000</td>
<td>8000</td>
<td></td>
</tr>
<tr>
<td>February</td>
<td>20000</td>
<td>11000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>March</td>
<td>17000</td>
<td>14000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>April</td>
<td>10000</td>
<td>12000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>May</td>
<td></td>
<td>10000</td>
<td>4000</td>
<td></td>
</tr>
</tbody>
</table>

Example 3

This query adds the values of the Chevy, Chrysler, and Ford cars and combines them into one calculation called US. The query shows the sales SUM for the U.S. cars and the Toyota for January through May.

```
WITH
    MEMBER [cars].[all cars].[us] AS ' SUM( { [cars].[all cars].[chevy], [cars].[all cars].[chrysler], [cars].[all cars].[ford] } ) ' 
SELECT
    { [cars].[all cars].us, [cars].[all cars].toyota } ON COLUMNS,
    { [date].members } ON ROWS
FROM mddbcars
```

Here is the resulting output:
Session-Level Calculated Member Examples

Example Data

The data that is used in these examples is from a company that sells electronics and outdoor and sporting goods equipment.

Example 1

This example creates the session-level calculated member called avg_price in the sales cube on the Measures dimension. This calculated measure shows the average price:

```plaintext
create session
    member [sales].[measures].[avg_price] as
        '[Measures].[total] / [Measures].[qty]' 
```

Nothing is returned when you create a session-level calculated member.

Example 2

This example uses the session-level calculated member called “avg_price.” It shows the quantity, total, and average price of goods sold from 1998 through 2000.

```plaintext
SELECT
    {[measures].[qty], [measures].[total],
    [measures].[avg_price]} ON COLUMNS,
    {[time].[all time].children} ON ROWS
FROM sales
```

Here is the resulting output:
Table 3.4 Query Results

<table>
<thead>
<tr>
<th>Year</th>
<th>Qty</th>
<th>Total</th>
<th>Average Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1998</td>
<td>440,852</td>
<td>10,782,352.94</td>
<td>24.4579880322648</td>
</tr>
<tr>
<td>1999</td>
<td>539,433</td>
<td>14,080,419.58</td>
<td>26.102584544418</td>
</tr>
<tr>
<td>2000</td>
<td>32,267</td>
<td>859,108.83</td>
<td>26.6249986053863</td>
</tr>
</tbody>
</table>

Example 3

This example uses the session-level calculated member called “avg_price.” It shows the quantity, total, and average price of goods sold in different customer regions.

SELECT
 { [measures].[qty], [measures].[total], [measures].[avg_price] } ON COLUMNS,
 { [customer].[all customer].children } ON ROWS
FROM sales

Here is the resulting output:

Table 3.5 Query Results

<table>
<thead>
<tr>
<th>Region</th>
<th>Qty</th>
<th>Total</th>
<th>Average Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central</td>
<td>157,659</td>
<td>3,942,290.26</td>
<td>25.0051710336866</td>
</tr>
<tr>
<td>Mid-Atlantic</td>
<td>79,555</td>
<td>2,011,008.77</td>
<td>25.278219722048</td>
</tr>
<tr>
<td>Midwest</td>
<td>259,759</td>
<td>6,614,999.09</td>
<td>25.4659091311562</td>
</tr>
<tr>
<td>Mountains</td>
<td>32,768</td>
<td>838,064.62</td>
<td>25.5757025146485</td>
</tr>
<tr>
<td>Northeast</td>
<td>143,934</td>
<td>3,658,452.99</td>
<td>25.4175732627454</td>
</tr>
<tr>
<td>South-Central</td>
<td>64,943</td>
<td>1,662,479.79</td>
<td>25.5990605607995</td>
</tr>
<tr>
<td>Southeast</td>
<td>122,888</td>
<td>3,134,589.55</td>
<td>25.507694406611</td>
</tr>
<tr>
<td>West</td>
<td>151,046</td>
<td>3,859,996.28</td>
<td>25.5551042728705</td>
</tr>
</tbody>
</table>

Example 4

This example uses the session-level calculated member called “avg_price.” It shows the quantity, total, and average price of goods sold in the different product groups.

SELECT
 { [measures].[qty], [measures].[total], [measures].[avg_price] } ON COLUMNS,
Drill-Down Examples

Example Data

The data that is used in these examples is from a company that sells electronics and outdoor and sporting goods equipment.

Example 1

This example drills down on the electronics and outdoor and sporting goods members from the family level.

```sql
SELECT
    {[measures].[qty]} on 0,
    drilldownlevel
FROM
    {[product].[all product].[children] ON ROWS
     FROM sales

Here is the resulting output:

Table 3.7  Query Results

<table>
<thead>
<tr>
<th>Item</th>
<th>Qty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronics</td>
<td>330,977</td>
</tr>
<tr>
<td>Auto Electronics</td>
<td>13,862</td>
</tr>
<tr>
<td>Item</td>
<td>Qty</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>Computers, Peripherals</td>
<td>78,263</td>
</tr>
<tr>
<td>Digital Photography</td>
<td>9,008</td>
</tr>
<tr>
<td>Home Audio</td>
<td>38,925</td>
</tr>
<tr>
<td>Personal Electronics</td>
<td>31,979</td>
</tr>
<tr>
<td>Phones</td>
<td>59,964</td>
</tr>
<tr>
<td>Portable Audio</td>
<td>27,645</td>
</tr>
<tr>
<td>TV, DVD, Video</td>
<td>47,725</td>
</tr>
<tr>
<td>Video Games</td>
<td>23,606</td>
</tr>
<tr>
<td>Outdoor &amp; Sporting</td>
<td>304,345</td>
</tr>
<tr>
<td>Bikes, Scooters</td>
<td>45,297</td>
</tr>
<tr>
<td>Camping, Hiking</td>
<td>63,362</td>
</tr>
<tr>
<td>Exercise, Fitness</td>
<td>50,700</td>
</tr>
<tr>
<td>Golf</td>
<td>41,467</td>
</tr>
<tr>
<td>Outdoor Gear</td>
<td>52,305</td>
</tr>
<tr>
<td>Sports Equipment</td>
<td>51,214</td>
</tr>
</tbody>
</table>

**Example 2**

This example drills down on the electronics and outdoor and sporting goods members to the family level, but it shows only the top two members at each level based on the value of Qty.

```sql
SELECT

{[measures].[qty]} on 0,

drilldownleveltop

{

[product].[all product].[electronics],
[product].[all product].[outdoor & sporting]
},

2,

[product].[family],
[measures].[qty]

) on 1

FROM sales

Here is the resulting output:
Table 3.8 Query Results

<table>
<thead>
<tr>
<th>Item</th>
<th>Qty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronics</td>
<td>330,977</td>
</tr>
<tr>
<td>Computers, Peripherals</td>
<td>78,263</td>
</tr>
<tr>
<td>Phones</td>
<td>59,964</td>
</tr>
<tr>
<td>Outdoor & Sporting</td>
<td>304,345</td>
</tr>
<tr>
<td>Camping, Hiking</td>
<td>63,362</td>
</tr>
<tr>
<td>Outdoor Gear</td>
<td>52,305</td>
</tr>
</tbody>
</table>

Example 3

This example drills down on the electronics and outdoor and sporting goods members to the family level, but it shows only the bottom two members at each level based on the value of Qty.

```
SELECT
    {[measures].[qty]} on 0,
    drilldownlevelbottom
    (
        {[product].[all product].[electronics],
        [product].[all product].[outdoor & sporting]
    ),
    2,
    [product].[family],
    [measures].[qty]
) on 1
FROM sales
```

Here is the resulting output:

Table 3.9 Query Results

<table>
<thead>
<tr>
<th>Item</th>
<th>Qty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronics</td>
<td>330,977</td>
</tr>
<tr>
<td>Digital Photography</td>
<td>9,008</td>
</tr>
<tr>
<td>Auto Electronics</td>
<td>13,862</td>
</tr>
<tr>
<td>Outdoor & Sporting</td>
<td>304,345</td>
</tr>
<tr>
<td>Golf</td>
<td>41,467</td>
</tr>
<tr>
<td>Bikes, Scooters</td>
<td>45,297</td>
</tr>
</tbody>
</table>
Example 4

This example drills up to the members of the set that are below the category level. It returns only those members that are at the category level or higher.

```sql
SELECT
  {[measures].[qty]} on 0,
  drilluplevel
  {
    [product].[all product].[electronics].[computers, peripherals],
    [product].[all product].[electronics].[tv, dvd, video],
    [product].[all product].[electronics].[video games].[gameplace],
    [product].[all product].[electronics].[video games].[play guy color].[caller],
    [product].[all product].[outdoor & sporting],
    [product].[all product].[outdoor & sporting].[bikes, scooters].[kids' bikes],
    [product].[all product].[outdoor & sporting].[golf].[clubs].[designed],
    [product].[all product].[outdoor & sporting].[sports equipment],
    [product].[all product].[outdoor & sporting].[sports equipment].[baseball]
  },
  [product].[category]
) on 1
FROM sales
```

Here is the resulting output:

Table 3.10 Query Results

<table>
<thead>
<tr>
<th>Item</th>
<th>Qty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computers, Peripherals</td>
<td>78,263</td>
</tr>
<tr>
<td>TV, DVD, Video</td>
<td>47,725</td>
</tr>
<tr>
<td>Outdoor & Sporting</td>
<td>304,345</td>
</tr>
<tr>
<td>Sports Equipment</td>
<td>51,214</td>
</tr>
</tbody>
</table>

Session-Named Set Examples

Example Data

The data that is used in these examples is from a company that sells electronics and outdoor and sporting goods equipment.
Example 1

This example creates the session-named set called “prod in SE” in the sales cube. This named set shows the crossing of the product family with the customer members in the Southeast.

```
CREATE SESSION
set sales.[prod in se] as 'CROSSJOIN
{[customer].[all customer].[southeast].children,
 [product].[family].members}
'
```

Nothing is returned when you create a session-named set.

Example 2

This example creates the session-named set called “prod in NE” in the sales cube. This named set shows the crossing of the product family with the customer members in the Northeast.

```
CREATE SESSION
set sales.[prod in ne] as 'CROSSJOIN
{[customer].[all customer].[northeast].children,
 [product].[family].members}
'
```

Nothing is returned when you create a session-level named set.

Example 3

This example uses the session-named set called “prod in SE.” It shows the quantity and total sales for products that customers in the Southeast purchased.

```
SELECT
{[measures].[qty], [measures].[total]} ON COLUMNS,
[prod in se] ON ROWS
FROM sales
```

Here is the resulting output:

Table 3.11 Query Results

<table>
<thead>
<tr>
<th>State</th>
<th>Product</th>
<th>Qty</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>FL</td>
<td>Doing</td>
<td>21,091</td>
<td>550,672.41</td>
</tr>
<tr>
<td>FL</td>
<td>Electronics</td>
<td>31,056</td>
<td>794,730.61</td>
</tr>
<tr>
<td>FL</td>
<td>Health & Fitness</td>
<td>16,321</td>
<td>415,708.57</td>
</tr>
</tbody>
</table>
Example 4

This example uses the session-named set called “prod in NE.” It shows the quantity and total sales for products that customers in the Northeast purchased.

```sql
SELECT 
    {[measures].[qty], [measures].[total]} ON COLUMNS, 
    [prod in ne] ON ROWS 
FROM sales
```

Here is the resulting output:

Table 3.12 Query Results

<table>
<thead>
<tr>
<th>State</th>
<th>Product</th>
<th>Qty</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT</td>
<td>Doing</td>
<td>844</td>
<td>20,961.12</td>
</tr>
<tr>
<td>CT</td>
<td>Electronics</td>
<td>2,659</td>
<td>69,540.52</td>
</tr>
<tr>
<td>CT</td>
<td>Health & Fitness</td>
<td>969</td>
<td>22,995.63</td>
</tr>
<tr>
<td>CT</td>
<td>Outdoor & Sporting</td>
<td>2,569</td>
<td>61,528.35</td>
</tr>
<tr>
<td>State</td>
<td>Product</td>
<td>Qty</td>
<td>Total</td>
</tr>
<tr>
<td>-------</td>
<td>---------------</td>
<td>------</td>
<td>----------------</td>
</tr>
<tr>
<td>MA</td>
<td>Doing</td>
<td>7,918</td>
<td>206,472.36</td>
</tr>
<tr>
<td>MA</td>
<td>Electronics</td>
<td>11,184</td>
<td>281,371.34</td>
</tr>
<tr>
<td>MA</td>
<td>Health & Fitness</td>
<td>4,339</td>
<td>105,356.59</td>
</tr>
<tr>
<td>MA</td>
<td>Outdoor & Sporting</td>
<td>10,076</td>
<td>250,323.21</td>
</tr>
<tr>
<td>ME</td>
<td>Doing</td>
<td>1,362</td>
<td>35,151.55</td>
</tr>
<tr>
<td>ME</td>
<td>Electronics</td>
<td>4,496</td>
<td>110,153.94</td>
</tr>
<tr>
<td>ME</td>
<td>Health & Fitness</td>
<td>2,218</td>
<td>58,342.02</td>
</tr>
<tr>
<td>ME</td>
<td>Outdoor & Sporting</td>
<td>3,014</td>
<td>79,426.68</td>
</tr>
<tr>
<td>NH</td>
<td>Doing</td>
<td>141</td>
<td>4,207.76</td>
</tr>
<tr>
<td>NH</td>
<td>Electronics</td>
<td>466</td>
<td>10,750.48</td>
</tr>
<tr>
<td>NH</td>
<td>Health & Fitness</td>
<td>1,095</td>
<td>26,158.29</td>
</tr>
<tr>
<td>NH</td>
<td>Outdoor & Sporting</td>
<td>603</td>
<td>14,893.73</td>
</tr>
<tr>
<td>NY</td>
<td>Doing</td>
<td>17,493</td>
<td>435,513.26</td>
</tr>
<tr>
<td>NY</td>
<td>Electronics</td>
<td>29,246</td>
<td>759,166.44</td>
</tr>
<tr>
<td>NY</td>
<td>Health & Fitness</td>
<td>13,880</td>
<td>347,481.77</td>
</tr>
<tr>
<td>NY</td>
<td>Outdoor & Sporting</td>
<td>26,714</td>
<td>692,416.36</td>
</tr>
<tr>
<td>RI</td>
<td>Doing</td>
<td>265</td>
<td>6,437.18</td>
</tr>
<tr>
<td>RI</td>
<td>Electronics</td>
<td>833</td>
<td>22,723.54</td>
</tr>
<tr>
<td>RI</td>
<td>Health & Fitness</td>
<td>693</td>
<td>17,760.85</td>
</tr>
<tr>
<td>RI</td>
<td>Outdoor & Sporting</td>
<td>857</td>
<td>19,320.02</td>
</tr>
</tbody>
</table>

Example 5

This example uses both of the session-named sets called “prod in NE” and “prod in SE”. It shows the quantity and total sales for products that customers in the Northeast and the Southeast purchased.

```sql
SELECT
  {[measures].[qty], [measures].[total]} ON COLUMNS,
  {[prod in ne], [prod in se]} ON ROWS
```
Here is the resulting output:

Table 3.13 Query Results

<table>
<thead>
<tr>
<th>State</th>
<th>Product</th>
<th>Qty</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT</td>
<td>Doing</td>
<td>844</td>
<td>20,961.12</td>
</tr>
<tr>
<td>CT</td>
<td>Electronics</td>
<td>2,639</td>
<td>69,540.52</td>
</tr>
<tr>
<td>CT</td>
<td>Health & Fitness</td>
<td>969</td>
<td>22,995.63</td>
</tr>
<tr>
<td>CT</td>
<td>Outdoor & Sporting</td>
<td>2,569</td>
<td>61,528.35</td>
</tr>
<tr>
<td>MA</td>
<td>Doing</td>
<td>7,918</td>
<td>206,472.36</td>
</tr>
<tr>
<td>MA</td>
<td>Electronics</td>
<td>11,184</td>
<td>281,371.34</td>
</tr>
<tr>
<td>MA</td>
<td>Health & Fitness</td>
<td>4,339</td>
<td>105,356.59</td>
</tr>
<tr>
<td>MA</td>
<td>Outdoor & Sporting</td>
<td>10,076</td>
<td>250,323.21</td>
</tr>
<tr>
<td>ME</td>
<td>Doing</td>
<td>1,362</td>
<td>35,151.55</td>
</tr>
<tr>
<td>ME</td>
<td>Electronics</td>
<td>4,496</td>
<td>110,153.94</td>
</tr>
<tr>
<td>ME</td>
<td>Health & Fitness</td>
<td>2,218</td>
<td>58,342.02</td>
</tr>
<tr>
<td>ME</td>
<td>Outdoor & Sporting</td>
<td>3,014</td>
<td>79,426.68</td>
</tr>
<tr>
<td>NH</td>
<td>Doing</td>
<td>141</td>
<td>4,207.76</td>
</tr>
<tr>
<td>NH</td>
<td>Electronics</td>
<td>466</td>
<td>10,750.48</td>
</tr>
<tr>
<td>NH</td>
<td>Health & Fitness</td>
<td>1,095</td>
<td>26,158.29</td>
</tr>
<tr>
<td>NH</td>
<td>Outdoor & Sporting</td>
<td>603</td>
<td>14,893.73</td>
</tr>
<tr>
<td>NY</td>
<td>Doing</td>
<td>17,493</td>
<td>435,513.26</td>
</tr>
<tr>
<td>NY</td>
<td>Electronics</td>
<td>29,246</td>
<td>759,166.44</td>
</tr>
<tr>
<td>NY</td>
<td>Health & Fitness</td>
<td>13,880</td>
<td>347,481.77</td>
</tr>
<tr>
<td>NY</td>
<td>Outdoor & Sporting</td>
<td>26,714</td>
<td>692,416.36</td>
</tr>
<tr>
<td>RI</td>
<td>Doing</td>
<td>265</td>
<td>6,437.18</td>
</tr>
<tr>
<td>RI</td>
<td>Electronics</td>
<td>833</td>
<td>22,723.54</td>
</tr>
<tr>
<td>RI</td>
<td>Health & Fitness</td>
<td>693</td>
<td>17,760.85</td>
</tr>
<tr>
<td>State</td>
<td>Product</td>
<td>Qty</td>
<td>Total</td>
</tr>
<tr>
<td>-------</td>
<td>------------------</td>
<td>-----</td>
<td>-------------</td>
</tr>
<tr>
<td>RI</td>
<td>Outdoor & Sporting</td>
<td>857</td>
<td>19,320.02</td>
</tr>
<tr>
<td>FL</td>
<td>Doing</td>
<td>21,091</td>
<td>550,672.41</td>
</tr>
<tr>
<td>FL</td>
<td>Electronics</td>
<td>31,056</td>
<td>794,730.61</td>
</tr>
<tr>
<td>FL</td>
<td>Health & Fitness</td>
<td>16,321</td>
<td>415,708.57</td>
</tr>
<tr>
<td>FL</td>
<td>Outdoor & Sporting</td>
<td>30,065</td>
<td>742,907.85</td>
</tr>
<tr>
<td>GA</td>
<td>Doing</td>
<td>1,907</td>
<td>44,360.08</td>
</tr>
<tr>
<td>GA</td>
<td>Electronics</td>
<td>2,316</td>
<td>61,577.03</td>
</tr>
<tr>
<td>GA</td>
<td>Health & Fitness</td>
<td>1,318</td>
<td>35,589.84</td>
</tr>
<tr>
<td>GA</td>
<td>Outdoor & Sporting</td>
<td>2,458</td>
<td>68,438.03</td>
</tr>
<tr>
<td>NC</td>
<td>Doing</td>
<td>235</td>
<td>5,404.65</td>
</tr>
<tr>
<td>NC</td>
<td>Electronics</td>
<td>3,727</td>
<td>101,688.42</td>
</tr>
<tr>
<td>NC</td>
<td>Health & Fitness</td>
<td>1,228</td>
<td>31,310.45</td>
</tr>
<tr>
<td>NC</td>
<td>Outdoor & Sporting</td>
<td>835</td>
<td>21,312.83</td>
</tr>
<tr>
<td>SC</td>
<td>Doing</td>
<td>1,266</td>
<td>31,596.69</td>
</tr>
<tr>
<td>SC</td>
<td>Electronics</td>
<td>2,646</td>
<td>66,565.97</td>
</tr>
<tr>
<td>SC</td>
<td>Health & Fitness</td>
<td>3,483</td>
<td>89,633.82</td>
</tr>
<tr>
<td>SC</td>
<td>Outdoor & Sporting</td>
<td>2,936</td>
<td>73,092.30</td>
</tr>
</tbody>
</table>

Example 6

This example removes (drops) the session-named set called “prod in SE” in the sales cube.

```sql
DROP SET
sales.[prod in SE]
```

Nothing is returned when you drop a session-named set.

Example 7

This example removes (drops) the session-named set called “prod in NE” in the sales cube.

```sql
DROP SET
```
Nothing is returned when you drop a session-named set.

Additional Named Set Examples

Example of a session set using SQL pass-through and CREATE SET:

```sql
proc sql;
    connect to olap (host=host-name port=port-number
        user="userid" pass="password");
    execute
        {
            create set booksnall.threeyears as
                {[YQM].[All YQM].[1999] :[YQM].[All YQM].[2001]}
        } by olap;
    create table temp as select * from connection to olap
        {
            SELECT threeyears ON COLUMNS,
                {[products].[all products].[books]} ON ROWS
            FROM [booksnall]
        };
    disconnect from olap;
quit;
```

Example of how to drop a set by using DROP SET:

```sql
proc sql;
    connect to olap (host=host-name port=port-number user="userid"
        pass="password");
    execute
        {
            DROP SET booksnall.threeyears
        } by olap;
    disconnect from olap;
quit;
```
Dimension Functions

The MDX functions that are listed here indicate their return type.

Dimension

- Returns a dimension that contains a specified member, level, or hierarchy: `<Member>.Dimension<Level>.Dimension<Hierarchy>.Dimension`

Dimensions

- Returns a dimension that is specified by a numeric or string expression: `Dimensions(<Numeric Expression>)Dimensions(<String Expression>)`

Hierarchy Functions

The MDX functions that are listed here indicate their return type.
Hierarchy
returns a hierarchy that contains a specified member or level.

\[\text{<Member>.Hierarchy} \]
\[\text{<Level>.Hierarchy} \]

Level Functions

The MDX functions that are listed here indicate their return type.

Level
returns the level of a member. \[\text{<Member>.Level} \]

Levels
returns levels that are specified by a numeric or string expression.

\[\text{<Dimension>.Levels(<NumericExpression>)} \]
\[\text{Levels(<StringExpression>)} \]

Logical Functions

The MDX functions that are listed here indicate their return type.

IsEmpty
returns TRUE if the evaluated expression is an empty cell value. Otherwise, FALSE is returned. \[\text{IsEmpty(<Value Expression>)} \]

IS
returns TRUE if two compared objects are equivalent. Otherwise, FALSE is returned. \[\text{<Object 1>IS Null} \]
\[\text{<Object 1>IS <Object 2>} \]

IsAncestor
returns TRUE if a specified member is an ancestor of another specified member. Otherwise, FALSE is returned. \[\text{IsAncestor(<Member1>,<Member2>)} \]

IsLeaf
returns TRUE if a specified member is a leaf member. Otherwise, FALSE is returned. \[\text{IsLeaf(<Member>)} \]

IsSibling
returns TRUE if a specified member is a sibling of another specified member. Otherwise, FALSE is returned. \[\text{IsSibling(<Member1>,<Member2>)} \]

Member Functions

The MDX functions that are listed here indicate their return type.

Ancestor
returns the ancestor of a member at a specified level or distance. \[\text{Ancestor(<Member>,<Level>)} \]
\[\text{Ancestor(<Member>,<Numeric Expression>)} \]
The `Member Functions` page of a document, including the following sections:

- **ClosingPeriod**
 - Returns the last sibling among the descendants of a member to a specified level.
 - `ClosingPeriod([<Level>,<Member>])`

- **Cousin**
 - Returns the child member with the same relative position under its parent member as the specified child member.
 - `Cousin(<Member1>,<Member2>)`

- **CurrentMember**
 - Returns the current member of a dimension or hierarchy during an iteration over a set of members of that dimension or hierarchy.
 - `<Dimension>.CurrentMember<Hierarchy>.CurrentMember`

- **DataMember**
 - Returns a system-generated data member that is associated with a non-leaf member of a dimension.
 - `<Member>.DataMember`

- **DefaultMember**
 - Returns the default member of a dimension or hierarchy.
 - `<Dimension>.DefaultMember<Hierarchy>.DefaultMember`

- **FirstChild**
 - Returns the first child of a specified member.
 - `<Member>.FirstChild`

- **FirstSibling**
 - Returns the first child of the parent of a specified member.
 - `<Member>.FirstSibling`

- **Item**
 - Returns a member from a specified tuple. Alternatively, it returns a tuple from a set.
 - `<Tuple>.Item(<Index>)`
 - **Note:** If a tuple is returned, then it is a tuple function, not a member function.

- **Lag**
 - Returns a member that is located at a specified number of positions before a designated member at the same level as that member.
 - `<Member>.Lag(<Numeric Expression>)`

- **LastChild**
 - Returns the last child of a specified member.
 - `<Member>.LastChild`

- **LastSibling**
 - Returns the last child of the parent of a specified member.
 - `<Member>.LastSibling`

- **Lead**
 - Returns a member that is located at a specified number of positions before a designated member at the same level as that member.
 - `<Member>.Lead(<Numeric Expression>)`

- **NextMember**
 - Returns the next member of the level that contains the specified member.
 - `<Member>.NextMember`

- **OpeningPeriod**
 - Returns the first sibling among the descendants of a specified member at the specified level.
 - `OpeningPeriod([<Level>,<Member>])`

- **ParallelPeriod**
 - Returns a member at the level of the specified member that is in the same relative position under its ancestor at the specified level.
Numeric Functions

The MDX functions that are listed here indicate their return type.

Aggregate
returns a calculated value by using the appropriate aggregate function, which is based on the aggregation type of the member. \(\text{Aggregate}(<\text{Set}[,<\text{Numeric Expression}>]) \)

Avg
returns the average value of a numeric expression that is evaluated over a set. \(\text{Avg}(<\text{Set}[,<\text{Numeric Expression}>]) \)

Example: The following example shows a moving average across all dimensions of time.\(\text{Avg}(\text{time.currentmember.lag} \ (\text{if}(\text{time.currentmember.level} \ \text{is} \ \text{time.month_num},2, \ \text{if}(\text{time.currentmember.level} \ \text{is} \ \text{time.quarter},1,0)))) :\text{time.currentmember}, \ \text{measures}.[\text{total_retail_pricesum}]) \) The Total_Retail_PriceSUM is included in the following query to see the difference between the moving average and the total retail price.\(\text{SELECT} \ {\{\text{measures}.[\text{movingaverage}],[\text{measures}.[\text{total_retail_pricesum}] \}} \ \text{ON \ COLUMNS} , \ {\{\text{time}.[\text{yqm}].[\text{all yqm}].children \}} \ \text{ON \ ROWS} \ \text{FROM} \ [\text{orionstar}] \)

CoalesceEmpty
returns a coalesced value. This value is derived when an empty cell value is coalesced to a number or string. \(\text{CoalesceEmpty}(<\text{Numeric Expression}>[,<\text{Numeric Expression}>]) \)

Correlation
returns the correlation of two series that are evaluated over a set. \(\text{Correlation}(<\text{Set},<\text{Numeric Expression}>[,<\text{Numeric Expression}>]) \)

Count
depending on the collection, returns the number of items in a collection.\(<\text{Dimension}> | <\text{Hierarchy}>().\text{Levels}.\text{Count}<\text{Tuple}>().\text{Count}<\text{Set}>().\text{CountCount}(<\text{Set}[,\text{ExcludeEmpty} | \text{IncludeEmpty}]) \)

Covariance
returns the population covariance of two series that are evaluated over a set by using the biased population formula.\(\text{Covariance}(<\text{Set},<\text{Numeric Expression}>[,<\text{Numeric Expression}>]) \)
CovarianceN returns the sample covariance of two series that are evaluated over a set by using the unbiased population formula.
\[
\text{CovarianceN}(<\text{Set}>,<\text{Numeric Expression}>,<\text{Numeric Expression}>)
\]

DistinctCount returns the number of distinct, non-empty tuples in a set.
\[
\text{DistinctCount}(<\text{Set}>)
\]

IIf returns one of two numeric or string values that are determined by a logical test.
\[
\text{IIF}(<\text{Logical Expression}>,<\text{Numeric Expression1}>,<\text{Numeric Expression2}>)
\]

Note: If a string is returned, then it is a string function, not a numeric function.

LinRegIntercept calculates the linear regression of a set and returns the value of b in the regression line \(y = ax + b \).
\[
\text{LinRegIntercept}(<\text{Set}>,<\text{Numeric Expression}>,<\text{Numeric Expression}>)
\]

LinRegPoint calculates the linear regression of a set and returns the value of \(y \) in the regression line \(y = ax + b \).
\[
\text{LinRegPoint}(<\text{NumericExpression}>,<\text{Set}>,<\text{NumericExpression}>)
\]

LinRegR2 calculates the linear regression of a set and returns \(R^2 \) (the coefficient of determination).
\[
\text{LinRegR2}(<\text{Set},\text{Numeric Expression},\text{Numeric Expression}>)
\]

LinRegSlope calculates the linear regression of a set and returns the value of \(a \) in the regression line \(y = ax + b \).
\[
\text{LinRegSlope}(<\text{Set}>,<\text{NumericExpression}>,<\text{NumericExpression}>)
\]

LinRegVariance calculates the linear regression of a set and returns the variance associated with the regression line \(y = ax + b \).
\[
\text{LinRegVariance}(<\text{Set},\text{Numeric Expression},\text{Numeric Expression}>)
\]

Max returns the maximum value of a numeric expression that is evaluated over a set.
\[
\text{Max}(<\text{Set}>,<\text{Numeric Expression}>)
\]

Median returns the median value of a numeric expression that is evaluated over a set.
\[
\text{Median}(<\text{Set}>,<\text{Numeric Expression}>)
\]

Min returns the minimum value of a numeric expression that is evaluated over a set.
\[
\text{Min}(<\text{Set}>,<\text{Numeric Expression}>)
\]

Ordinal returns the zero-based ordinal value that is associated with a level.
\[
<\text{Level}>().\text{Ordinal}
\]

Range returns the range, which is the difference between the maximum and minimum value of a numeric expression that is evaluated over a set.
\[
\text{Range}(<\text{Set}>,<\text{Numeric Expression}>)
\]
Rank returns the one-based rank of a specified tuple in a specified set.

\[\text{Rank}(<\text{Tuple}>,<\text{set}>,[,<\text{Calc Expression}>]) \]

RollupChildren returns a value that is generated by rolling up the values of the children of a specified member by using the specified unary operator.

\[\text{RollupChildren}(<\text{Member}>,<\text{String Expression}>) \]

Stddev using the unbiased population formula, returns the sample standard deviation of a numeric expression that is evaluated over a set.

\[\text{Stddev}(<\text{set}>,[,<\text{Numeric Expression}>]) \]

StddevP using the biased population formula, returns the population standard deviation of a numeric expression that is evaluated over a set.

\[\text{StddevP}(<\text{set}>,[,<\text{Numeric Expression}>]) \]

StrToValue returns a value from a string expression.

\[\text{StrToValue(<StringExpression>)} \]

Sum returns the sum of a numeric expression that is evaluated over a set.

\[\text{Sum}(<\text{Set}>,[,<\text{Numeric Expression}>]) \]

Value returns the value of a measure.

\[<\text{Member}>.\text{Value} \]

Var using the unbiased population formula, returns the sample variance of a numeric expression that is evaluated over a set.

\[\text{Var}(<\text{set}>,[,<\text{Numeric Expression}>]) \]

VarP using the biased population formula, returns the population variance of a numeric expression that is evaluated over a set.

\[\text{VarP}(<\text{set}>,[,<\text{Numeric Expression}>]) \]

Set Functions

The MDX functions that are listed here indicate their return type.

AddCalculatedMembers returns a set that includes calculated members that meet the criteria of a given set definition (by default, calculated members are not returned by set functions).

\[\text{AddCalculatedMembers}(<\text{Set}>) \]

Example:

```
WITH MEMBER [geography].[geography].[all geography].[u.s.a]. [north u.s.a] AS 'SUM( {[geography].[geography].[all geography].[u.s.a].[north central], [geography].[geography].[all geography].[u.s.a].[north east], [geography].[geography].[all geography].[u.s.a].[north west]})' SELECT [Measures].ActualSalesSUM ON COLUMNS, AddCalculatedMembers({[geography].[geography].[All geography].[u.s.a].[north central]}) ON ROWS FROM [booksall]
```
AllMembers
returns a set that contains all members of the specified dimension, hierarchy, or level, including calculated members.

<Dimension>.AllMembers<Hierarchy>.AllMembers<Level>.AllMembers

The following example references all levels and members below a specific level using AllMembers Function. You can include calculated Members (set function).

```
SELECT {[time].AllMembers} ON COLUMNS , {[geography].[global].[all global].[europe]} ON ROWS FROM [orionstar]
WHERE [measures].[total_retail_pricesum] 
SELECT {[measures].AllMembers} ON COLUMNS , [geography].[global]. [all global].[europe] on ROWS FROM [orionstar]
```

Ancestors
returns the set of ancestors of a member to a specified level or distance. This includes or excludes ancestors at other levels. Here is the syntax for the Ancestors function:

```
Ancestors(<member>, [level][,<anc_flags>])
```

The following example shows retrieving the Ancestor at a particular level:

```
WITH MEMBER [measures].[product family sales] AS
'(ancestor([product].currentmember,[product].[product family]),[measures].[unit sales])' SELECT {[measures].[unit sales],[measures].[product family sales]} ON COLUMNS, {[product].members} ON ROWS FROM [sales]
```

Level
returns the set of ancestors of a member that are specified by <Member> to the level that is specified by <Level>. Optionally, the set is modified by a flag that is specified in <Anc_flags>

```
Level(<member>,<member>.Level,
SELF_BEFORE_AFTER)
```

Distance
returns the set of ancestors of a member. The set of ancestors is specified by <member> and is <distance> steps away in the hierarchy. Optionally, the set is modified by a flag that is specified in <Anc_flags>

```
Distance(<member>,[<distance>][,<Anc_flags>])
```

Table A1.1 Ancestor Flag Options

<table>
<thead>
<tr>
<th>Options</th>
<th>Value Returned</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFTER</td>
<td>Returns ancestor members from all levels between <Level> and <Member>, including <Member> itself, but not member(s) found at <Level>.</td>
</tr>
<tr>
<td>BEFORE</td>
<td>Returns ancestor members from all levels above <Level>.</td>
</tr>
<tr>
<td>BEFORE_AND_AFTER</td>
<td>Returns ancestor members from all levels above the level of <Member> except members from <Level>.</td>
</tr>
</tbody>
</table>
Options | Value Returned
---|---
ROOT | Returns the root-level member. This flag is the opposite of the LEAVES flag for the Descendants function.
SELF (default) | Returns ancestor members from \(<Level>\) only. Includes \(<Member>\), if and only if \(<Level>\) that is specified is the level of \(<Member>\).
SELF_AND_AFTER | Returns ancestor members from \(<Level>\) and all levels below \(<Level>\), down to and including \(<Member>\).
SELF_AND_BEFORE | Returns ancestor members from \(<Level>\) and all levels between and above \(<Member>\).
SELF_BEFORE_AFTER | Returns ancestor members from all levels above the level of \(<Member>\), including \(<Member>\) and member(s) at \(<Level>\).

Note: By default, only members at the specified level or distance are included. This function corresponds to an \(<Anc_flags>\) value of SELF. By changing the value of \(<Anc_flags>\), you can include or exclude ancestors at the specified level or distance, the ancestors before or the ancestors after the specified level or distance (until the root node), as well as all requests of the root ancestor or ancestors regardless of the specified level or distance.

Assuming that the levels in the Location dimension are named in a hierarchical order, an example of levels would be All, Countries, States, Counties, and Cities.

Table A1.2 Ancestor Expressions and Returned Values

<table>
<thead>
<tr>
<th>Expressions</th>
<th>Value Returned</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ancestors (USA)</td>
<td>All members</td>
</tr>
<tr>
<td>Ancestors (Wake, Counties)</td>
<td>USA</td>
</tr>
<tr>
<td>Ancestors (Wake, Counties, SELF)</td>
<td>USA</td>
</tr>
<tr>
<td>Ancestors (Wake, States, BEFORE)</td>
<td>USA, All</td>
</tr>
<tr>
<td>Ancestors (Wake, Counties, AFTER)</td>
<td>Wake (includes member itself), North Carolina</td>
</tr>
<tr>
<td>Ancestors (Raleigh, States, BEFORE_AND_AFTER)</td>
<td>Raleigh, Wake, USA, All members</td>
</tr>
<tr>
<td>Ancestors (Raleigh, States, SELF_BEFORE_AFTER)</td>
<td>Raleigh, Wake, NC, USA, All members</td>
</tr>
<tr>
<td>Ancestors (NC, Counties, Root)</td>
<td>All members</td>
</tr>
<tr>
<td>Expressions</td>
<td>Value Returned</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Ancestors (Wake, 1)</td>
<td>North Carolina</td>
</tr>
<tr>
<td>Ancestors (Wake, 2, SELF_Before_After)</td>
<td>Wake, NC, USA, All members</td>
</tr>
</tbody>
</table>

Ascendants

returns all ancestors of the specified member up through the root level, including the member itself. **Ascendants** (<Member>) Example: The following example shows retrieving the member at the specific level above and the current member dynamically using the Ascendants function (set function). `SELECT {Ascendants([time].[all yqm] .[2002])} ON COLUMNS , {Descendants([geography].[global].[all global],2)} ON ROWS FROM [orionstar] WHERE [measures].[total_retail_pricesum]`

Axis

returns a set that is defined in an axis. Axis (0) pertains to row members, where Axis (1) pertains to column members. **Axis** (<Numeric Expression>) Example: **Axis (0)** **Axis (1)**

Note: The Axis function is not allowed in session- or global-named sets or calculations.

BottomCount

returns a specified number of items from the bottom of a set. **BottomCount**(<Set>,<Count>[,<Numeric Expression>[,<True|False>]])

Example: The following example shows displaying the bottom 5 products in the Clothes product category for 2002Q4 using the BottomCount function. `SELECT {{[time].[yqm].[all yqm].[2002].[2002q4] } ON COLUMNS , {BottomCount([product].[all product].[clothes & shoes].[clothes].children ,5,[measures].[total_retail_pricesum]) } ON ROWS FROM [orionstar] WHERE [measures].[total_retail_pricesum]`

Note: The True|False flag is for including duplicates. If it is set to TRUE, then any member that has the same value as the last member will also be returned. If it is set to FALSE, then it will work as it always did. The default value for the flag is FALSE.

Note: Constant numeric expressions should not be entered for this function.

BottomPercent

sorts a set and returns the specified number of bottommost elements whose cumulative total is at least a specified percentage. **BottomPercent**(<Set>,<Percentage>[,<Numeric Expression>])

Example: The following example shows displaying the bottom 25% of Clothes Items in the Product Category for 2002 using the BottomPercent function. `SELECT {{[time].[yqm].[all yqm].[2002] } ON COLUMNS , {BottomPercent([product].[all product].[clothes & shoes].[clothes].children ,25,[measures].[total_retail_pricesum]) } ON ROWS FROM [orionstar] WHERE [measures].[total_retail_pricesum]`

Note: Constant numeric expressions should not be entered for this function.
BottomSum
sorts a set by using a numeric expression and returns the specified number of
bottommost elements whose sum is at least a specified value.
\[\text{BottomSum} \left(\langle \text{Set}, \langle \text{Value} \rangle \rangle, \langle \text{Numeric Expression} \rangle \right)\]

Example: The following example shows obtaining the items that have a cumulative
total below the specified amount using BottomSum function.
\[
\text{SELECT } \{ \{ \text{time} \}. \{ \text{yqm} \}. \{ \text{all yqm} \}. \{ 2002 \} \} \text{ ON COLUMNS, } \{ \text{BottomSum}(\{ \text{product} \}. \{ \text{all product} \}. \{ \text{clothes & shoes} \}. \{ \text{clothes}. \text{children} \}, 6000000, \{ \text{measures} \}. \{ \text{total_retail_pricesum} \}) \} \text{ ON ROWS FROM } \{ \text{orionstar} \} \text{ WHERE } \{ \text{measures} \}. \{ \text{total_retail_pricesum} \} \text{ WHERE } \{ \text{measures} \}. \{ \text{total_retail_pricesum} \}
\]

Note: Constant numeric expressions should not be entered for this function.

Children
returns the children of a member. \(<\text{Member}>. \text{Children}\)

Crossjoin
returns the cross-product of two sets. \(<\text{Crossjoin}(\langle\text{Set1}\rangle, \langle\text{Set2}\rangle)\>

Descendants
returns the set of descendants of a member to a specified level or distance.
Optionally, this includes or excludes descendants at other levels. By default, only
members at the specified level or distance are included.
\[\text{Descendants} \left(\langle \text{Member} \rangle, \langle \text{Level} \rangle \right)\]

\[\text{Descendants} \left(\langle \text{Member} \rangle, \langle \text{Distance} \rangle \right)\]

\[\text{Descendants} \left(\langle \text{Member} \rangle, \langle \text{Desc_flags} \rangle \right)\]

Table A1.3 Descendants Flag Options

<table>
<thead>
<tr>
<th>Options</th>
<th>Value Returned</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFTER</td>
<td>Returns descendant members from all levels that are subordinate to (<\text{Level}>).</td>
</tr>
<tr>
<td>BEFORE</td>
<td>Returns descendant members from all levels between (<\text{Member}>) and (<\text{Level}>), not including members from (<\text{Level}>).</td>
</tr>
<tr>
<td>BEFORE_AND_AFTER</td>
<td>Returns descendant members from all levels that are subordinate to the level of (<\text{Member}>), except members from (<\text{Level}>).</td>
</tr>
<tr>
<td>LEAVES</td>
<td>Returns leaf descendant members between (<\text{Member}>) and (<\text{Level}>) or (<\text{Distance}>)>. This flag is the opposite of the ROOT flag for the Ancestors function.</td>
</tr>
<tr>
<td>SELF (default)</td>
<td>Returns descendant members from (<\text{Level}>) only. Includes (<\text{Member}>), only if (<\text{Level}>) is specified at the level of (<\text{Member}>).</td>
</tr>
<tr>
<td>SELF_AND_AFTER</td>
<td>Returns descendant members from (<\text{Level}>) and all levels subordinate to (<\text{Level}>).</td>
</tr>
</tbody>
</table>
Options | Value Returned
--- | ---
SELF_AND_BEFORE | Returns descendant members from `<Level>` and all levels between `<Member>` and `<Level>`.

SELF_BEFORE_AFTER | Returns descendant members from all levels that are subordinate to the level of `<Member>`.

Distinct
returns a set by removing duplicate tuples from a specified set. Duplicates are eliminated from the tail. `Distinct(<Set>)`.

DrilldownLevel
drills down to the members of a set one level below the lowest level that is represented in the set, or to one level below an optionally specified level of a member that is represented in the set. `DrilldownLevel(<Set>[, {<Level> | <Index>}]])`.

DrilldownLevelBottom
drills down the members of a set to one level below the lowest level that is represented in the set, or to one level below an optionally specified level of a member that is represented in the set. However, instead of including all children for each member at the specified `<Level>`, only the bottom `<Count>` of children is returned, based on `<Numeric Expression>`. `DrilldownLevelBottom(<Set>,<Count>[,[<Level>] [,,<Numeric Expression>]])`.

Note: Constant numeric expressions should not be entered for this function.

DrilldownLevelTop
drills down the members of a set to one level below the lowest level that is represented in the set, or to one level below an optionally specified level of a member that is represented in the set. However, instead of including all children for each member at the specified `<Level>`, only the top `<Count>` of children is returned, based on `<Numeric Expression>`. `DrilldownLevelTop(<Set>,<Count>[,[<Level>] [,,<Numeric Expression>]])`.

Note: Constant numeric expressions should not be entered for this function.

DrilldownMember
drills down to the members in a specified set that are present in a second specified set. `DrilldownMember(<Set1>,<Set2>[,Recursive])`.

DrilldownMemberBottom
drills down to the members in a specified set that are present in a second specified set, therefore limiting the result set to a specified number of members. `DrilldownMemberBottom(<Set1>,<Set2>, <Count>[, [<Numeric Expression>]] [,Recursive]])`.

Note: Constant numeric expressions should not be entered for this function.

DrilldownMemberTop
drills to the members in a specified set that are present in a second specified set, therefore limiting the result set to a specified number of members. `DrilldownMemberTop(<Set1>,<Set2>, <Count>[, [<Numeric Expression>]] [,Recursive]])`.
DrillupLevel
removes all members in the set that are below the specified level. If the level is not
given, then it determines the lowest level in the set and removes all members at that
level. **DrillupLevel**(<Set>[,<Level>])

DrillupMember
drills to the members in a specified set that are present in a second specified set.
DrillupMember(<Set1>,<Set2>)

Except
locates the difference between two sets and optionally retains duplicates.
Except(<Set1>,<Set2>[,All])

Exists
returns the members of set 1 which exist. Set 1 is mandatory. You can also have a
second set or a third set (the measures set). The measures set provides a set of
measures to be used to evaluate the members of set 1. In addition, each argument
should be a set.
Exists(<Set1>[,<Set2>[,<MeasureSet>]])

If set 2 is present, the Exists function returns the members in set 1 that are also
present in set 2. If set 2 does not exist, the Exists function returns the matching
members of set 1, based on the selection criteria in set 3 (the measures set).

If set 3 (the measures set) is present, the Exists function matches the specified
measures of set 1 to set 3.

Note: With the Exists function, members with missing data will be kept.

Extract
returns a set of tuples from extracted dimension elements.
Extract(<Set>,<Dimension>[...,<Dimension>])

Filter
returns the set that results from filtering a specified set that is based on a search
condition. **Filter**(<Set>,<Search Condition>)

Generate
applies a set to each member of another set and is joined to the resulting sets.
Generate(<Set1>,<Set2>[,All])

Head
returns the first specified number of elements in a set. **Head**(<Set>[,<Numeric
Expression>])

Hierarchize
orders the members of a set in a hierarchy. **Hierarchize**(<Set>)

Intersect
returns the intersection of two input sets and optionally retains duplicates.
Intersect(<Set1>,<Set2>[,All])

LastPeriods
returns a set of members prior to and including a specified member.
LastPeriods(<Index>[,<Member>])

Members
returns the set of members in a dimension, level, or hierarchy.
<Dimension>.Members**<Level>**.Members**<Hierarchy>**.Members
Mtd
returns the set of members that consist of the descendants of the Month level
ancestor of the specified member, including the specified member itself. This
function is analogous to the PeriodsToDate() function with the level defined as
Month. Mtd([<Member>])

NameToSet
returns a set that contains a single member. The set is based on a string expression
that contains a member name. NameToSet(<Member Name>)

NonEmptyCrossjoin
returns the cross-product of one or more sets as a set. This excludes empty tuples and
tuples without associated fact table data.
NonEmptyCrossjoin(<Set1>[,<Set2>][,<Set3>...] [,<Crossjoin
Set Count>])

Order
arranges members of a specified set and optionally preserves or breaks the hierarchy.
Order(<Set>[,[<Numeric Expression>][,ASC|
BDESC]])Order(<Set>[,[<String Expression>][,ASC|
BDESC]])Order(<Set>,<Numeric Expression>[,ASC|
DESC])Order(<Set>,<String Expression>[,ASC|DESC])

Note: Constant numeric expressions should not be entered for this function.

PeriodsToDate
returns the set of members that consist of the descendants of the ancestor of the
specified member at the specified level, including the specified member itself.
PeriodsToDate([<Level>[,<Member>]])

Qtd
returns the set of members that consist of the descendants of the Quarter level
ancestor of the specified member, including the specified member itself. This
function is analogous to the PeriodsToDate() function with the level defined as
Quarter. Qtd([<Member>])

Siblings
returns the siblings of a specified member, including the member itself.
<Member>.Siblings

StripCalculatedMembers
returns a set that is generated by removing calculated members from a specified set.
StripCalculatedMembers(<Set>)

StrToSet
returns a set that is constructed from a specified string expression in
Multidimensional Expressions (MDX) format. StrToSet (<String
Expression>)

Subset
returns a subset of tuples from a specified set.
Subset(<Set>,<Start>[,<Count>])

Tail
returns a subset from the end of a set. Tail(<Set>[,<Count>])

ToggleDrillState
Toggles the drill state of members.
ToggleDrillState(<Set1>,<Set2>[,RECURSIVE])

Note: In a graphical user interface, drilling up and down is often accomplished by
double-clicking a label to expand or contract the information. Drilling down on a
member causes the member's children to be returned; drilling up causes them to disappear from the results.

TopCount
returns a specified number of items from the topmost members of a specified set.
TopCount(<Set>,<Count>[,<Numeric Expression> [, <True|False>]])

Note: The True|False flag is for including duplicates. If it is set to TRUE, then any member that has the same value as the last member will also be returned. If it is set to FALSE, then it will work as it always did. The default value for the flag is FALSE.

Note: Constant numeric expressions should not be entered for this function.

TopPercent
sorts a set and returns the topmost elements, whose cumulative total is at least a specified percentage. TopPercent(<Set>,<Percentage>[,<Numeric Expression>])

Note: Constant numeric expressions should not be entered for this function.

TopSum
sorts a set and returns the topmost elements whose cumulative total is at least a specified value. TopSum(<Set>,<Value>[,<Numeric Expression>])

Note: Constant numeric expressions should not be entered for this function.

Union
returns a set that is generated by the union of two sets. Optionally, duplicate members are retained. Union(<Set1>,<Set2>[,All])

VisualTotals
returns a set that is generated by dynamically totaling child members in a specified set. A pattern for the name of the parent member in the result set is used.
VisualTotals (<Set>,<Pattern>)

Wtd
returns the set of members that consist of the descendants of the Week level ancestor of the specified member, including the specified member itself. This function is analogous to the PeriodsToDate() function with the level defined as Week.
Wtd([<Member>])

Ytd
returns the set of members that consist of the descendants of the Year level ancestor of the specified member, including the specified member itself. This function is analogous to the PeriodsToDate() function with the level defined as Year.
Ytd([<Member>])

String Functions

The MDX functions that are listed here indicate their return type.

CoalesceEmpty
coalesces an empty cell value to a number or string and returns the coalesced value.
CoalesceEmpty(<String Expression>[,<String Expression>])
Generate
returns a concatenated string that is created by evaluating a string expression over a set. \texttt{Generate(<Set>,<String Expression>[,Delimiter])}

If
returns one of two numeric or string values that are determined by a logical test. \texttt{If(<Logical Expression>,<String Expression1>, <String Expression2>)}

\textit{Note:} If a numeric value is returned, then it is a numeric function, not a string function.

INSTR
searches a string expression for another string and returns the first occurrence of that string. \texttt{InStr([start,]searched_string, search_string[, compare])}
The compare argument is an optional integer value. This argument is always ignored. It is defined for compatibility with other INSTR functions in other languages.

MemberToStr
returns a string in Multidimensional Expressions (MDX) format from a member. \texttt{MemberToStr(<Member>)}

Name
returns the name of a level, dimension, member, or hierarchy.
\texttt{<Level>.Name<Dimension>.Name<Member>.Name<Hierarchy>.Name}

Properties
returns a string that contains a member property value.
\texttt{<Member>.Properties(Caption)<Member>.Properties(Name)<Member>.Properties(UniqueName)<Member>.Properties(<String Expression>,<TRUE | FALSE>)}

\textit{Note:} The raw data associated with the property can be either numeric or character, depending on the property type. If the parameter is set to TRUE, then the function returns the raw value for the property instead of the formatted value. If the parameter is set to FALSE, then the function returns the formatted string property. The default value is FALSE.

Put
returns a string that contains the formatted output based on a SAS format. \texttt{Put(<Numeric Expression>,<String Expression>)Put(<String Expression>,<String Expression>)}

SetToStr
constructs a string in Multidimensional Expressions (MDX) format from a set. \texttt{SetToStr(<Set>)}

TupleToStr
returns a string in Multidimensional Expressions (MDX) format from a specified tuple. \texttt{TupleToStr(<Tuple>)}

UniqueName
returns the unique name of a specified level, dimension, member, or hierarchy.
\texttt{<Level>.UniqueName<Dimension>.UniqueName<Member>.UniqueName<Hierarchy>.UniqueName}

UserName
returns the domain name and user name of the current connection. \texttt{UserName}
<member>.member_caption
 returns the caption of the member. It is in non-standard MDX format.

<dimention>.caption
 returns the caption of the member. It is in non-standard MDX format.

<hierarchy>.caption
 returns the caption of the member. It is in non-standard MDX format.

<level>.caption
 returns the caption of the member. It is in non-standard MDX format.

<member>.caption
 returns the caption of the member. It is in non-standard MDX format.

Tuple Functions

The MDX functions that are listed here indicate their return type.

Current
returns the current tuple from a set during an iteration. *<Set>.Current*

Item
returns a member from a specified tuple. Alternatively, it returns a tuple from a set. *<Set>.Item(<Index>)*

Note: If a member is returned, then it is a member function, not a tuple function.

StrToTuple
constructs a tuple from a specified string expression in Multidimensional Expressions (MDX) format. *StrToTuple(<String expression>)*

Miscellaneous Functions and Operators

Table A1.4 Miscellaneous Functions and Operators

<table>
<thead>
<tr>
<th>Function or Operator</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>, (comma operator)</td>
<td>An operator that is used to combine tuples to construct sets. For example:</td>
</tr>
<tr>
<td></td>
<td>{ [time].[all time].[2001].[January], [time].[all time].[2001].[February], [time].[all time].[march]}, or to combine members to construct tuples such as</td>
</tr>
<tr>
<td></td>
<td>([Time].[January 2001], [Geography].[U.S.A])</td>
</tr>
<tr>
<td>Function or Operator</td>
<td>Explanation</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------</td>
</tr>
</tbody>
</table>
| : (colon operator) | An operator that is used in part to construct sets and tuples. It replaces a series of comma operators. For example:
{[Time].[all Time].[2001].[January] :
[Time].[all Time].[2001].[March]} |
| {} (braces) | The SET constructor operator. |
| * (asterisk operator)| The alternative for CrossJoin. If you use a single operator, it is a direct replacement. You can nest CrossJoins by stringing additional operators and sets. For example, these expressions are equivalent:
A * B – CrossJoin(A, B)
A * B * C – CrossJoin (A, CrossJoin(B, C)) |
| + (plus operator for sets) | An alternative to union(). |
| + (plus operator for strings) | A concatenation of two strings. |
| // (style comments) | Cause the OLAP server to ignore anything after the double slash until the end of the line. These comments can NOT span lines. |
| - - (style comments) | Cause the OLAP server to ignore anything after the double dash until the end of the line. These comments can NOT span lines.
These are essentially the same as the double-slash comments. |
| NON EMPTY | When applied to an axis, causes the OLAP Server to post-process the results of the axis set and remove any tuples which have empty results.
For the SAS OLAP Server, it works with CrossJoin to provide "Optimize NON EMPTY CrossJoin" performance improvements. |
<p>| <Set> AS aliasname | Creates an alias for an intermediate set. An intermediate set is one which is generated during the evaluation of an axis and has one or more functions operating on it. |
| Supports TRUE and FALSE | TRUE and FALSE conditional operators are supported in MDX queries |</p>
<table>
<thead>
<tr>
<th>Function or Operator</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Call<UDF Name></td>
<td>Executes a void returning user-defined function.</td>
</tr>
<tr>
<td>MAX SET SIZE</td>
<td>Limits the size of sets that the OLAP server creates. A value of 0 indicates there is no limit. The default is 1,000,000 components, where components are defined as the number of tuples in the set times the number of dimensions in each tuple. This function enables the administrator to control the system resources that are used by individual queries.</td>
</tr>
</tbody>
</table>
Recommended Reading

Here is the recommended reading list for this title:

• SAS OLAP Server: User's Guide
• SAS Providers for OLE DB: Cookbook
• What's New in Base SAS: Details
• Step-by-Step Programming with Base SAS
• Base SAS Procedures Guide
• SAS Intelligence Platform: Overview
• SAS Intelligence Platform: System Administration Guide
• SAS Intelligence Platform: Web Application Administration Guide
• SAS Intelligence Platform: Data Administration Guide
• SAS Intelligence Platform: Middle-Tier Administration Guide
• SAS Intelligence Platform: Security Administration Guide
• SAS Intelligence Platform: Desktop Application Administration Guide
• SAS Intelligence Platform: Application Server Administration Guide
• SAS Intelligence Platform: Installation and Configuration Guide
• SAS Intelligence Platform: Migration Guide
• Getting Started with SAS Enterprise Guide
• SAS Information Map Studio: Getting Started with SAS Information Maps
• SAS Add-In for Microsoft Office: Getting Started in Microsoft Excel, Microsoft Word, and Microsoft PowerPoint
• SAS Management Console: Guide to Users and Permissions

For a complete list of SAS publications, go to sas.com/store/books. If you have questions about which titles you need, please contact a SAS Representative:

SAS Books
SAS Campus Drive
Cary, NC 27513-2414
Phone: 1-800-727-0025
Fax: 1-919-677-4444
Email: sasbook@sas.com
Web address: sas.com/store/books
aggregation
a summary of detail data that is stored with or referred to by a cube.

ancestor member
within a dimension hierarchy, a member that resides at a higher level in relation to other members in the hierarchy. For example, if a Geography dimension includes the levels Continent, Country, and City, then Europe and France would be ancestors of Paris, and Asia and Thailand would be ancestors of Bangkok.

Application Response Measurement (ARM)
the name of an application programming interface that was developed by an industry partnership and which is used to monitor the availability and performance of software applications. ARM monitors the application tasks that are important to a particular business.

ARM
See Application Response Measurement.

calculated member
in a dimension, a member whose value is derived from the values of other members.

cell
See cube cell.

child
in a hierarchical database, a segment or node that has one or more superordinate segments, or parents. The branching of parents and children form a tree structure in which each level obtains identifying and qualifying features from the parent level above it.

cube
See OLAP cube.

cube cell (cell)
in a cube, the intersection that is defined by selecting one member from each dimension of that cube.

descendant
a record that a member that resides at a lower level in relation to other members in the hierarchy. A record is a descendant of its ancestors.
detail data
nonsummarized (or partially summarized) factual information that pertains to a single area of interest, such as sales figures, inventory data, or human-resource data.

dimension
a data element that categorizes values in a data set into non-overlapping categories that can be used to group, filter, and label the data in meaningful ways. Hierarchies within a dimension typically represent different groupings of information that pertains to a single concept. For example, a Time dimension might consist of two hierarchies: (1) Year, Month, and Date, and (2) Year, Week, and Day.

dimension level (level)
an element of a dimension hierarchy. Levels describe the dimension from the highest (most summarized) level to the lowest (most detailed) level. For example, possible levels for a Geography dimension are Country, Region, State or Province, and City.

dimension table
in a star schema or snowflake schema, a table that contains data about a particular dimension. A primary key connects a dimension table to a related fact table. For example, if a dimension table named Customers has a primary key column named Customer ID, then a fact table named Customer Sales might specify the Customer ID column as a foreign key.

drill down
to explore data and access information by moving from summary information to more detailed data from which the summary is derived. For example, you could click folders in a hierarchy from the top downwards to find a specific file. Drilling down provides a method of exploring multidimensional data by moving from one level of detail to the next.

drill up
in a view of a data table, multidimensional database (MDDB), or cube, to click on detail data in order to view higher-level, summarized information. For example, if you are looking at sales totals for a sales district, you might drill up to view sales totals for the entire country or sales region that the sales district is part of.

drill-through table
a view, data set, or other data file that contains data that is used to define a cube. Drill-through tables can be used by client applications to provide a view from processed data into the underlying data source.

fact
a single piece of factual information in a data table. For example, a fact can be an employee name, a customer's phone number, or a sales amount. It can also be a derived value such as the percentage by which total revenues increased or decreased from one year to the next.

fact table
the central table in a star schema or snowflake schema. The fact table contains the individual facts that are being stored in the database as well as the keys that connect each fact to the appropriate value in each dimension.

format
See SAS format.
hierarchy
an arrangement of related objects into levels that are based on parent-child relationships. Members of a hierarchy are arranged from more general to more specific. See also dimension, member.

informat
See SAS informat.

leaf member
the lowest-level member of a hierarchy. Leaf members do not have any child members.

level
See dimension level.

MDX language
See multidimensional expressions language.

Measures dimension
a special dimension that contains summarized numeric data values (measures) that are analyzed. Total Sales and Average Revenue are examples of measures. For example, you might drill down within the Clothing hierarchy of the Product dimension to see the value of the Total Sales measure for the Shirts member.

member
an element of a dimension. For example, for a dimension that contains time periods, each time period is a member of the dimension. See also dimension.

metadata repository
a collection of related metadata objects, such as the metadata for a set of tables and columns that are maintained by an application.

metadata server
a server that provides metadata management services to one or more client applications.

model input variable report
reports the frequencies that input variables are used in the models for an organizational folder, a project, or a version.

MOLAP
See multidimensional online analytical processing.

multidimensional expressions language (MDX language)
a standardized, high-level language that is used to query multidimensional data sources. The MDX language is the multidimensional equivalent of SQL (Structured Query Language).

multidimensional online analytical processing (MOLAP)
a type of OLAP that stores aggregates in multidimensional database structures.

NWAY aggregation
the aggregation that has the minimum set of dimension levels that is required for answering any business question. The NWAY aggregation is the aggregation that has the finest granularity.
ODBO
See OLE DB for OLAP.

OLAP
See online analytical processing.

OLAP cube (cube)
a logical set of data that is organized and structured in a hierarchical, multidimensional arrangement to enable quick analysis of data. A cube includes measures, and it can have numerous dimensions and levels of data.

OLAP schema
a container for OLAP cubes. A cube is assigned to an OLAP schema when it is created, and an OLAP schema is assigned to a SAS OLAP Server when the server is defined in the metadata. A SAS OLAP Server can access only the cubes that are in its assigned OLAP schema.

OLE DB for OLAP (ODBO)
an extension to OLE DB that enables users to access multidimensional databases in addition to relational databases. See also multidimensional expressions language.

online analytical processing (OLAP)
a software technology that enables users to dynamically analyze data that is stored in multidimensional database tables (cubes).

parent
in a hierarchical database, a segment or node that has one or more subordinate segments, or children. The branching of parents and children form a tree structure in which each level obtains identifying and qualifying features from the parent level above it.

result set
the set of rows or records that a server or other application returns in response to a query.

SAS ARM interface
an interface that can be used to monitor the performance of SAS applications. In the SAS ARM interface, the ARM API is implemented as an ARM agent. In addition, SAS supplies ARM macros, which generate calls to the ARM API function calls, and ARM system options, which enable you to manage the ARM environment and to log internal SAS processing transactions.

SAS format (format)
a type of SAS language element that is used to write or display data values according to the data type: numeric, character, date, time, or timestamp.

SAS informat (informat)
a type of SAS language element that is used to read data values according to the data's type: numeric, character, date, time, or timestamp.

SAS Management Console
a Java application that provides a single user interface for performing SAS administrative tasks.

SAS Metadata Repository
a container for metadata that is managed by the SAS Metadata Server.
SAS OLAP Cube Studio
a Java interface for defining and building OLAP cubes in SAS System 9 or later. Its main feature is the Cube Designer wizard, which guides you through the process of registering and creating cubes.

SAS OLAP Server
a SAS server that provides access to multidimensional data. The data is queried using the multidimensional expressions (MDX) language.

SAS Open Metadata Architecture
a general-purpose metadata management facility that provides metadata services to SAS applications. The SAS Open Metadata Architecture enables applications to exchange metadata, which makes it easier for these applications to work together.

schema
a map or model of the overall data structure of a database. A schema consists of schema records that are organized in a hierarchical tree structure. Schema records contain schema items.

slice
a subset of data from a cube, where the data in the slice pertains to one or more members of one or more dimensions. For example, from a cube that contains data about customer feedback, one slice might pertain to feedback on one particular product (one member of the Product dimension). Another slice might pertain to feedback on that product from customers residing in particular geographic areas who submitted their feedback during a certain time period (one member of the Product dimension, multiple members of the Geography dimension, one or more members of the Time dimension).

slicer
a control that narrows the displayed data to that which pertains to a single hierarchy member. It provides a way to display a piece, or "slice," of data from a cube.

SMP
See symmetric multiprocessing.

symmetric multiprocessing (SMP)
a type of hardware and software architecture that can improve the speed of I/O and processing. An SMP machine has multiple CPUs and a thread-enabled operating system. An SMP machine is usually configured with multiple controllers and with multiple disk drives per controller.

thread
the smallest unit of processing that can be scheduled by an operating system.

Time dimension
a dimension that divides time into levels such as Year, Quarter, Month, and Day.

tuple
a data object that contains two or more components. In OLAP, a tuple is a slice of data from a cube. It is a selection of members (or cells) across dimensions in a cube. It can also be viewed as a cross-section of member data in a cube. For example, ([time].[all time].[2003], [geography].[all geography].[u.s.a.], [measures].[actualsum]) is a tuple that contains data from the Time, Geography, and Measures dimensions.
wizard

an interactive utility program that consists of a series of pages. Users supply information on each page, and the wizard uses that information to perform a task.
Index

Special Characters
- `.CHILDREN` function 34
- `.class extension` 21
- `.MEMBERS` function 34

A
- aggregate function
 - derived statistics with 23
 - analysis variables 35

C
- calculated members 2
 - examples 37
- `COALESCE EMPTY` function 37
- `CREATE DDL` statement 9
- `CREATE GLOBAL MEMBER` statement 37
- `CROSSJOIN` function 35, 36

D
- `DDL syntax` 9
- `DEFINE MEMBER` statement 37
- derived statistics 28
 - with aggregate function 23
- dimension function 53
- Dimension functions 53
- dimensionality 3
- dimensions 2
 - displaying multiple dimensions on columns 36
 - more than one in a tuple 34
- drillthrough 7
 - examples 42
 - maximum number of rows 8
 - table access at query time 8
 - user-defined formats and 9
- `DRILLTHROUGH` statement 7
- `DROP DDL` statement 9
- `DROP MEMBER` statement 38

E
- `empty values` 36
- examples
 - basic examples 34
 - calculated members 37
 - drill-down 42
 - joins and extractions for queries 36
 - query-calculated members 38
 - session-level calculated members 40
 - session-named sets 45
- `EXCEPT` function 36
- expressions
 - function arguments and return types 15
 - SAS functions and 12
- external functions 20
 - access to libraries or classes 21
 - arguments and return types 22
 - deployment 23
 - performance 22
 - security 23
 - state information 21
- `EXTRACT` function 36

F
- finalize method 22
- flipping rows and columns 34
- floating-point representation 16
- formats
 - user-defined formats and drillthrough 9
 - fractions 16
- functions
 - `.CHILDREN` 34
 - `.MEMBERS` 34
 - arguments and return types 15
 - `COALESCE EMPTY` 37
 - `CROSSJOIN` 35, 36
 - dimension functions 53
 - `EXCEPT` 36
 - external functions 20
 - `EXTRACT` 36
 - hierarchy functions 53
 - in MDX expressions 12
 - level functions 54
lists and tables of 53
logical functions 54
member functions 54
NON EMPTY 36
numeric functions 56
numeric precision 16
set functions 58
string functions 66
tuple functions 68
UNION 36

numeric precision 16
fractions 16
magnitude versus precision 16
TRUNC function 16

out-of-process JVM 22

performance
external functions 22

queries 6
examples 34, 36
syntax 6
query scope calculated members
examples 38

reserved keywords 17

security
external functions 23
SELECT clause 6
SELECT statement 6
session scope calculated members
examples 40
session-named sets 45
Set functions 58
sets 3
session-named 45
slicer 6
statistics
derived statistics 28
derived statistics with aggregate
function 23
standard statistics and aggregation 28
String functions 66

tables
two-dimensional 35
TRUNC function 16
Tuple functions 68
tuples 3
making combinations 35
more than one dimension in 34
two-dimensional tables 35
selecting specific columns 35
selecting specific rows 35
with analysis variable 35

user-defined formats

drillthrough and 9

U
UNION function 36
USE statement 13

W
WHERE clause 6
WITH clause 6
WITH MEMBER statement 37