
SAS® Model Manager 12.3
User's Guide

SAS® Documentation

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2013. SAS® Model Manager 12.3: User's Guide. Cary, NC: SAS
Institute Inc.

SAS® Model Manager 12.3: User's Guide

Copyright © 2013, SAS Institute Inc., Cary, NC, USA

All rights reserved. Produced in the United States of America.

For a hard-copy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS Institute Inc.

For a web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at the time you acquire this
publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the publisher is illegal and
punishable by law. Please purchase only authorized electronic editions and do not participate in or encourage electronic piracy of copyrighted
materials. Your support of others' rights is appreciated.

U.S. Government Restricted Rights Notice: Use, duplication, or disclosure of this software and related documentation by the U.S. government is
subject to the Agreement with SAS Institute and the restrictions set forth in FAR 52.227-19, Commercial Computer Software-Restricted Rights
(June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.

November 2014

SAS provides a complete selection of books and electronic products to help customers use SAS® software to its fullest potential. For more
information about our e-books, e-learning products, CDs, and hard-copy books, visit support.sas.com/bookstore or call 1-800-727-3228.

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other
countries. ® indicates USA registration.

Other brand and product names are registered trademarks or trademarks of their respective companies.

Contents

About This Book . ix
What's New in SAS Model Manager 12.3 . xi
Accessibility Features of SAS Model Manager . xv
Recommended Reading . xxvii

PART 1 What Is SAS Model Manager? 1

Chapter 1 • Overview of SAS Model Manager . 3
Managing Models Using SAS Model Manager . 3
The SAS Model Manager Operational Environment . 5
Model Management Process . 6

Chapter 2 • Introduction to SAS Model Manager . 9
Layout of the SAS Model Manager Window . 9
SAS Model Manager User Groups, Roles, and Tasks . 20

PART 2 Working with Projects and Versions 29

Chapter 3 • Working with Data Sources . 31
Overview of Data Sources . 31
Project Tables . 33
Creating Project Input and Output Tables . 37
Creating Scoring Task Input and Output Tables . 39
Creating a Test Table . 40
Creating a Performance Table . 40
Using Tables from a Local or Network Drive . 42

Chapter 4 • Organizing the Project Tree . 47
Overview of the Project Tree . 47
Create an Organizational Folder . 48
Associate Documents with a Folder . 49
Deleting an Object in the Project Tree . 52
Archive and Restore Organizational Folders . 52

Chapter 5 • Working with Projects . 55
Overview of Projects . 55
Planning a Project . 58
Prerequisites for Creating Projects . 60
About Defining Project Input and Output Variables . 61
Create a Project . 61
Modify Project Definition . 64
Lock or Unlock Project Metadata . 66
Setting the Project Champion Model Status . 66
Project Properties . 67

Chapter 6 • Working with Versions . 71
Overview of Versions . 71
Creating Life Cycle Templates . 75
Create a Version . 89
Version Properties . 90
Working with Life Cycles . 92

Chapter 7 • Working with Project Control Groups . 99
Overview of Project Control Groups . 99
Planning a Project Control Group . 100
Prerequisites for Creating Project Control Groups . 101
Creating a Project Control Table . 103
Create a Project Control Group . 103
Create Projects from a Control Table . 104
Add a New Version . 113
Add an Input Variable . 114
Publish Project Champion Models from a Project Control Group 115
Monitor Performance of Project Champion Models . 117

PART 3 Importing, Scoring, and Validating Models 123

Chapter 8 • Importing Models . 125
Overview of Importing Models . 125
Import Models from the SAS Metadata Repository . 127
Import SAS Model Package Files . 128
Import SAS Code Models and R Models Using Local Files . 130
Import PMML Models . 143
Import Partial Models . 144
Set Model Properties . 145
Map Model Variables to Project Variables . 146
User-Defined Model Templates . 148
Specific Properties for a Model . 154

Chapter 9 • Scoring Models . 157
Overview of Scoring Tasks . 157
Scoring Task Tabbed Views . 159
Create Scoring Output Tables . 162
Create a Scoring Task . 164
Modify a Scoring Task . 167
Map Scoring Task Output Variables . 167
Execute a Scoring Task . 168
Schedule Scoring Tasks . 170
Graph Scoring Task Results . 172
Generated Scoring Task Content Files . 175
Scoring Task Properties . 176
Result Set Properties . 177

Chapter 10 • Validating Models Using Reports . 179
Overview of Model Comparison, Validation, and Summary Reports 180
Model Profile Reports . 183
Delta Reports . 184
Dynamic Lift Reports . 186
Interval Target Variable Report . 189
Basel II Reports . 191

iv Contents

Training Summary Data Set Reports . 196
View Reports . 198

Chapter 11 • Validating Models Using User Reports . 199
Overview of User Reports . 199
Ad Hoc Reports . 201
User-Defined Reports . 204

PART 4 Deploying and Publishing Models 213

Chapter 12 • Deploying Models . 215
Overview of Deploying Models . 215
Champion Models . 216
Challenger Models . 219
Freezing Models . 220

Chapter 13 • Publishing Models . 223
Overview of Publishing Models . 223
Publishing Models to a SAS Channel . 224
Publish Models to the SAS Metadata Repository . 228
Publishing Models to a Database . 231
Remove Models from a Database . 244
View Publish History . 246

Chapter 14 • Replacing a Champion Model . 247
Overview of Replacing a Champion Model . 247
Retire a Project . 248

PART 5 Performance Monitoring and Retraining Models
249

Chapter 15 • What is Performance Monitoring? . 251
Overview of Performance Monitoring . 251
Types of Performance Monitoring . 252
Performance Index Warnings and Alerts . 259
The Process of Monitoring Champion Models . 260

Chapter 16 • Create Reports by Defining a Performance Task . 263
Overview of Creating Reports Using a Performance Task . 263
Prerequisites for Running the Define Performance Task Wizard 266
Run the Define Performance Task Wizard . 268
Schedule Performance Monitoring Tasks . 273
View Performance Monitoring Job History . 275
Delete Performance Summary Data Sets . 276

Chapter 17 • Create Reports Using Batch Programs . 277
Overview of SAS Programs to Monitor Model Performance 278
Prerequisites for Running Batch Performance Reports . 279
Report Output in Test and Production Modes . 282
Define the Report Specifications . 283
Extracting the Champion Model from a Channel . 294

Contents v

SAS Code to Run Performance Reports . 297

Chapter 18 • Formatting Performance Reports . 305
Format a Monitoring Report . 305
Format a Champion and Challenger Performance Report . 308
Performance Report Output Files . 310
View Reports . 311

Chapter 19 • Using Dashboard Reports . 313
Overview of Project Dashboard Reports . 313
Create a Dashboard Report Definition . 314
Generate Dashboard Reports . 319
View Dashboard Reports . 320
Edit a Dashboard Report Definition . 324
Manage All Project Dashboard Definitions . 325
Delete a Project Dashboard Report Definition . 325

Chapter 20 • Retraining Models . 327
Overview of Retraining Models . 327
Prerequisites for Retraining a Model . 328
Define a Model Retrain Task . 328
Execute a Model Retrain Task . 333
Viewing Retrained Models and Model Comparison Reports . 334

PART 6 Combining Multiple Reports 337

Chapter 21 • Aggregated Reports . 339
About Aggregated Reports. 339
Create an Aggregated Report . 340
View an Aggregated Report . 341
Edit an Aggregated Report Definition . 341
Delete an Aggregated Report . 342

PART 7 SAS Model Manager Workflow Console 343

Chapter 22 • Using Workflow Console . 345
Overview of Workflow Console . 346
User Interface Layout . 346
Customizing Category Views . 349
Setting Preferences . 355
Working with Objects . 357
Viewing Workflow Activities . 359
Working with Workflow Activities . 360
Editing Activity Properties . 361
Working with Comments . 362
Viewing Workflow Milestones . 365

Chapter 23 • Managing Workflows . 367
Overview of Managing Workflows . 367
Viewing Workflow Definitions . 368
Creating a New Workflow . 369

vi Contents

Viewing Workflows . 370
Editing a Workflow . 372
Editing Workflow Properties . 374
Working with Workflow Participants . 374
Terminating a Workflow . 378

Chapter 24 • SAS Workflow Model Management Components . 379
Overview of SAS Workflow Model Management Components 379
Importing Models . 380
Viewing Models . 381
Setting Champion and Challenger Models . 383
Publishing Models . 384
Add, View, or Delete Attachments . 386
Creating and Viewing Reports . 386
Viewing Performance Results . 388
Viewing All Model Management Components . 389

PART 8 Appendixes 391

Appendix 1 • Query Utility . 393
Overview of the Query Utility . 393
Search for Models . 394
Search By Using a UUID . 396
Search Life Cycles for Tasks Assigned to Users . 398

Appendix 2 • SAS Model Manager Access Macros . 401
Overview of Access Macros . 401
Using the SAS Model Manager Access Macros . 402
Dictionary . 407

Appendix 3 • SAS Model Manager Macro Variables . 441

Appendix 4 • Macros for Registering Models to the SAS Metadata Repository 449
Using Macros to Register Models Not Created by SAS Enterprise Miner 449
Dictionary . 453

Appendix 5 • Macros for Adding Folders, Projects, Versions, and Setting Properties 459
Adding Folders, Projects, Versions, and Properties Using Macros 459
Dictionary . 464
Example: Add a Folder, Project, and Version, Set Properties 470

Appendix 6 • Macros for Generating Score Code . 473
Generating Score Code for COUNTREG Procedure Models 473
Generating Score Code for PROC SEVERITY Models . 474
Dictionary . 474

Appendix 7 • Properties . 503
General Properties . 503
System Properties . 504
Specific Properties for a Project . 505
User-Defined Properties . 508
Specific Properties for a Version . 511
Specific Properties for Milestones and Tasks . 512
Specific Properties for a Model . 514

Contents vii

Scoring Task Properties . 516
Result Set Properties . 517
Schedule Properties . 518

Appendix 8 • SAS Model Manager R Model Support . 519
Overview of Using R Models with SAS Model Manager . 519
Preparing R Model Files to Use with SAS/IML . 520

Appendix 9 • Statistical Measures Used in Basel II Reports . 527

Appendix 10 • Report and Performance Monitoring Examples . 535
Dashboard Report Examples . 535
Model Retrain Comparison Report Example . 544
Monitoring Performance of a Model without Score Code . 551

Glossary . 553
Index . 561

viii Contents

About This Book

Audience

SAS Model Manager is designed for the following users:

• Those who are responsible for developing analytical models.

• Those who are responsible for modeling project management.

• Those who are responsible for model validation and performance testing.

• Scoring officers.

• Analysts.

You might be assigned to a specific user group or role, and that assignment determines
which tasks you can perform. For more information, see “SAS Model Manager User
Groups, Roles, and Tasks” on page 20.

Prerequisites
Here are the prerequisites for using SAS Model Manager:

• The SAS Model Manager client is installed on your computer.

• You have a user ID and password for logging on to SAS Model Manager.

Conventions Used in This Document

The following typographical conventions are used for all text in this document except for
syntax:

bold
identifies an item in the SAS Model Manager window or a menu item.

italics
identifies a book title or a value that is supplied by the user.

monospace
identifies SAS code.

UPPERCASE
identifies a SAS language element, such as the SAS statements KEEP or DROP.

ix

The following typographical conventions are used in SAS Model Manager macro
syntax:

bold
identifies the name of a macro.

italic
identifies an argument that must be supplied by the user.

< >
identifies an optional macro argument.

| (vertical bar)
indicates that you can choose one value from a group. Values that are separated by
the vertical bar are mutually exclusive.

UPPERCASE
indicates a keyword that can be used as a value for an argument.

x About This Book

What's New in SAS Model
Manager 12.3

Overview

SAS Model Manager 12.3 has the following new features and enhancements:

• ability to create and manage multiple projects in a control group

• enhanced performance monitoring and reporting

• support for SAS Enterprise Miner Random Forest and SAS/ETS models

• ability to manage models published to a database

• support for multiple SAS application servers

• ability to add folders, projects, versions, and to set properties by using macros

• ability to create and view reports within a workflow activity

• ability to view the process flow diagram for a workflow

Create and Manage Multiple Projects in a Control
Group

SAS Model Manager enables you to create multiple projects in a control group.
Additional versions can then be created for all projects within the control group.
Champion models for all projects within the control group can be monitored for
performance, and published to the SAS Metadata Repository. For more information, see
“Overview of Project Control Groups” on page 99.

Enhanced Performance Monitoring and Reporting

The following enhancements have been made to performance monitoring and reporting:

• ability to schedule a performance task for a certain date and time on available
servers, and to specify where to save the performance job

• support for multiple data sources and collection dates when defining a performance
task at the project level

xi

• ability to delete performance summary data sets

For more information, see “Schedule Performance Monitoring Tasks” on page 273,
“Run the Define Performance Task Wizard” on page 268, and “Delete Performance
Summary Data Sets” on page 276.

Support for SAS Enterprise Miner Random Forest
and SAS/ETS Models

SAS Model Manager supports importing SAS Enterprise Miner Random Forest
(HPFOREST), as well as SAS/ETS COUNTREG and SEVERITY models that are
contained in a SAS package (SPK) file. Macros have been added to generate the score
code for SAS/ETS COUNTREG and SEVERITY models. The models can then be
registered in the SAS Metadata Repository. For more information, see Appendix 6,
“Macros for Generating Score Code,” on page 473 and Chapter 8, “Importing Models,”
on page 125.

Manage Models Published to a Database

You can view the publish history for champion and challenger models, as well as
remove the published models from a database. For more information, see “View Publish
History” on page 246 and “Remove Models from a Database” on page 244.

Support for Multiple SAS Application Servers

When scoring a model, retraining a model, or monitoring performance of champion and
challenger models, you can select the SAS Application Server. For more information,
see “Create a Scoring Task” on page 164,“Define a Model Retrain Task” on page 328,
and “Run the Define Performance Task Wizard” on page 268.

Add Folders, Projects, Versions, and Set
Properties By Using Macros

SAS Model Manager provides macros that you can use to programmatically add folders,
projects, and versions to the Project Tree, and to set project and version properties. For
more information, see Appendix 5, “Macros for Adding Folders, Projects, Versions, and
Setting Properties,” on page 459.

xii SAS Model Manager

Create and View Reports within a Workflow
Activity

When the Create and View Reports model management component is associated with a
workflow activity, you can create model comparison reports, performance monitoring
reports, and a workflow milestones report using the SAS Model Manager Workflow
Console. For more information, see Chapter 22, “Using Workflow Console,” on page
345.

View the Process Flow Diagram for a Workflow

You define a process flow diagram when you create a workflow definition using SAS
Workflow Studio. The process flow diagram is displayed when you select a workflow in
the SAS Model Manager Workflow Console. For more information, see Chapter 22,
“Using Workflow Console,” on page 345.

View the Process Flow Diagram for a Workflow xiii

xiv SAS Model Manager

Accessibility Features of SAS
Model Manager

Overview
SAS Model Manager 12.3 has been tested with assistive technology tools. It includes
accessibility and compatibility features that improve the usability of the product for
users with disabilities. (Some accessibility issues remain and are noted below.) These
features are related to accessibility standards for electronic information technology that
were adopted by the U.S. Government under Section 508 of the U.S. Rehabilitation Act
of 1973 (2008 draft proposal initiative update). Applications are also tested against Web
Content Accessibility Guidelines (WCAG) 2.0, part of the Web Accessibility Initiative
(WAI) of the Worldwide Web Consortium (W3C). For detailed information about the
accessibility of this product, send e-mail to accessibility@sas.com or call SAS
Technical Support.

Documentation Format
Please contact accessibility@sas.com if you need this document in an alternative
digital format.

Landmarks
Landmarks are references to the primary areas of an application’s user interface. They
provide a quick and easy way for keyboard users to navigate to these areas of the
application.

To access the list of landmarks that are available for a specific context, press Ctrl+F6 to
open the Landmarks window. Use the arrow keys to select a landmark, and then press
Enter to navigate to that area of the application.

User Interface Layout

SAS Model Manager Client
The SAS Model Manager user interface provides you with quick access to data,
metadata, and summary information for your projects and models. The interface includes

xv

a menu bar, a toolbar, a category view button bar, and category views. The menu bar
enables you to perform tasks on your models and projects. The toolbar provides
shortcuts to tasks that you can perform on your models and projects. Many toolbar
options are also available on pop-up menus. The list of active options on the menu bar or
on the toolbar varies based on your category view and the component that is selected.
Inactive options are dimmed. The category views provide information and metadata
about projects, life cycles, and data sources.

For more information about the layout and features of the application window, see
“Layout of the SAS Model Manager Window” on page 9.

SAS Model Manager Workflow Console
The SAS Model Manager Workflow Console provides a framework for working with
SAS workflow. The application window contains three main sections:

• The top of the window contains the application name and an application bar that
includes a menu bar and a Log Off button.

• The left side of the window contains a collapsible navigation pane. This pane can
contain one or more views (depending on your assigned capabilities and roles) that
you select using buttons at the bottom of the pane. The views contain either trees or
lists of objects. You can open these objects (one at a time) into tabs in the work area
next to the navigation pane.

• The center of the window (the work area) contains tabs: personal tabs, open objects,
system reports, and administrative tools. The work area can be split (either vertically
or horizontally) into two groups of tabs.

• The right side of the window can contain a pane for docking the Object Preview
window, the Permissions Inspector window, and the How To window. This pane is
not displayed until a window is docked.

• The bottom of the window contains a status bar that displays information about your
connection to the metadata server.

To customize the application window and its features, select File ð Preferences. For
more information about the layout and features of the application window, see Chapter
22, “Using Workflow Console,” on page 345.

Themes
An application’s theme is the collection of colors, graphics, and fonts that appear in the
application. The following themes are provided with this application: SAS Corporate,
SAS Blue Steel, SAS Light, and SAS Dark. To change the theme for the application,
select File ð Preferences and go to the Global Preferences page.

xvi Accessibility Features of SAS Model Manager

Keyboard Shortcuts

SAS Model Manager Client
The following table contains standard keyboard shortcuts for the application. Keyboard
shortcuts are also documented in tooltips and menu labels.

Task Keyboard Shortcut

Display a Help pop-up window F1

Display the contents of a menu ALT + first letter of the menu name (for
example, press ALT+F to access the File
menu).

Cancel an action in a pop-up window or
wizard

ALT+C

Acknowledge a message or accept an action in
a pop-up window.

ALT+O

View the next page of a wizard ALT+N

Go back to the previous page of a wizard ALT+B

Finish entering information in a wizard. ALT+F

SAS Model Manager Workflow Console
The following table contains the keyboard shortcuts for the application. In the user
interface, the shortcuts are displayed within parentheses in tooltips and menu labels.

Note: When you use a keyboard shortcut to activate a button, move the focus to the field
or section that the button is associated with before you use the keyboard shortcut. For
example, if a table has an associated button, you must first move the focus to the
table before you press Ctrl+?.

Keyboard Shortcuts

Task Keyboard Shortcut

Open a Help pop-up window from the
button.

Ctrl+?

Note: This shortcut does not work on some
keyboards (for example, the Italian keyboard).

Zoom in. Ctrl+plus sign

Zoom out. Ctrl+minus sign

SAS Model Manager Workflow Console xvii

Task Keyboard Shortcut

Reset the zoom state. Ctrl+0

Maximize view (collapses the category pane
and the tile pane, and hides the status bar and
the application bar, which includes the menu
bar and the workspace bar).

or

Exit maximized view (expands the category
pane and the tile pane, and shows the status
bar and the application bar).

Ctrl+Alt+Shift+M

Open a pop-up menu. Shift+F9 (if a menu is available in that
context)

Note: If you use Shift+F9 to display the pop-
up menu, then it is always displayed in the top
left corner of the user interface control that
you are using.

Open the Landmarks window. Ctrl+F6

Temporarily invert or revert application colors
(for the current session only).

Note: You can set the Invert application
colors preference in the Preferences window
if you want the color change to persist across
sessions.

Ctrl+~

Rename the selected tab. Make sure that the focus is on the tab. Press
F2, and specify the new name. To commit
your changes, press Enter. To cancel your
changes, press Esc.

Close the selected tab. Make sure that the focus is on the tab, and
then press Delete.

Note: Some tabs cannot be closed.

Switch in and out of Edit mode for a table
cell.

To enter Edit mode, select a cell, and press F2.

To exit Edit mode, press Esc.

Navigate between table headings and table
content.

For a two-dimensional table, make sure that
the focus is on the table and that you are not in
Edit mode. Press Ctrl+F8 to switch the focus
between column headings and table cells. Use
the arrow keys to navigate from heading to
heading.

For a multidimensional table, make sure that
the focus is on a table cell and that you are not
in Edit mode. Press Ctrl+F8 to switch the
focus between column headings, row
headings, and table cells. Use the arrow keys
to navigate from heading to heading.

xviii Accessibility Features of SAS Model Manager

Task Keyboard Shortcut

Navigate the content rows of a table. When table cells are in Edit mode:

• Press Tab and Shift+Tab to move from cell
to cell horizontally across columns.

• Press Enter and Shift+Enter to move from
cell to cell vertically across rows.

When table cells are not in Edit mode, use the
arrow keys to move from cell to cell.

Sort columns in a table. To sort a single column, navigate to its
column heading (press Ctrl+F8). Press the
spacebar to sort the column.

To sort additional columns, navigate to the
column heading of each additional column
that you want to sort. Press Ctrl+spacebar.

Change the width of the current column. Navigate to the column heading (press Ctrl
+F8). Then press Ctrl+left arrow or Ctrl+right
arrow to change the width of the column.

Move the current column. Navigate to the column heading (press Ctrl
+F8). Then press Shift+left arrow to move one
column to the left, and press Shift+right arrow
to move one column to the right.

Automatically re-size the current column to fit
its contents.

Navigate to the column heading (press Ctrl
+F8). Then press Enter.

Exceptions to Accessibility Standards

SAS Model Manager Client
Exceptions to accessibility standards are documented in the following table.

SAS Model Manager Client xix

Accessibility Issue Workaround

You cannot use the keyboard to open context
menus in the object details section. SHIFT +
F10 does not open the context menus when
focus is on the relevant field in the details
section, such a property field.

Use MouseKeys to open the context menus.
MouseKeys lets you control the mouse pointer
by using the numeric keypad on your
keyboard. In Windows XP, press the Left
ALT, Left SHIFT, and NUM LOCK keys, to
turn on MouseKeys. You can also use the
Control Panel. Select Accessibility Options ð
Mouse tab and then select Use MouseKeys.

For Windows 7, from the Control Panel select
Ease of Access Center ð Make the mouse
easier to use, and then select Turn on Mouse
Keys.

You cannot use the keyboard to expand or
collapse the objects in the Project Tree.

No workaround is available.

The JAWS screen reading software utility
cannot read most of the text in the SAS
Model Manager main window and pop-up
windows. For example, not all of the text in
the Project Tree, icon toolbar, Properties
pane, Resources pane, Annotations pane, and
New Report Wizard is readable by the screen
reader.

No workaround is available.

You can use the keyboard shortcut CTRL +
Tab to move focus to another component in
the main window. However, the toolbar icons
and left navigation icons are not active, even
though they might look active.

No workaround is available.

SAS Model Manager does not properly
inherit the Windows high contrast and large
text settings.

No workaround is available.

The ENTER key does not activate a default
button, such as OK, Next, or Finish in a
window after the required fields have been
completed.

No workaround is available.

When JAWS is in use, some parts of SAS
Model Manager have performance issues. For
example, when you are navigating the Project
Tree, JAWS pauses before reading the
contents of the component that is currently in
focus. If you move quickly through the list
before JAWS reads each entry, JAWS reads
only some but not all of the selections before
reading the current selection. The
performance issues seem to worsen with the
number of levels that are expanded in the
Project Tree, and there is a delay when
expanding and collapsing objects when
navigating.

No workaround is available.

xx Accessibility Features of SAS Model Manager

Accessibility Issue Workaround

When JAWS is in use, the Library drop-down
does not respond correctly to keyboard input.
The Alt+Down Arrow key combination
places focus on the Input Variable table when
using the Create Output Table feature.

A user can use the arrow keys to change the
selection, and then navigate away and back
immediately to enable JAWS to read the
current selection.

SAS Model Manager Workflow Console
Exceptions to accessibility standards are documented in the following table.

Note: The JAWS issues occur when JAWS is used with Internet Explorer. Other
browsers were not tested with JAWS, unless noted.

Exceptions to Accessibility Standards

Accessibility Issue Workaround

Sometimes, you cannot use the keyboard to
sequentially navigate through the interface
and move the focus in a meaningful order.

No workaround is available.

The SAS High Contrast theme has a few
unresolved focus and contrast issues.

For contrast issues, select a different theme,
and then press Ctrl+~ to invert the colors.

The SAS Light theme and SAS Dark theme
might not provide sufficient color contrast for
some users.

Use the SAS Corporate theme or the SAS
High Contrast theme.

JAWS cannot read some of the controls in the
application, such as images, icons, and
buttons.

No workaround is available.

JAWS cannot read the tooltips of items in
trees, lists, and menus.

No workaround is available.

JAWS refers to table controls as list boxes. When JAWS reports that a control is a list
box, keep in mind that it might actually be a
table.

JAWS can sometimes read controls that have
been disabled.

No workaround is available.

Sometimes, JAWS does not correctly work
with the controls in the Preferences window.

When you are in Virtual PC cursor mode in
JAWS, traverse the entire window to
familiarize yourself with its contents before
you change any of the settings. You might
need to switch between Forms mode and
Virtual PC cursor mode to access all of the
controls.

SAS Model Manager Workflow Console xxi

Accessibility Issue Workaround

JAWS does not correctly read the states in a
tri-state check box tree if JAWS is not in
Forms mode.

Disable the JAWS Virtual PC cursor when
you work with the check box tree. Tab to the
tree, and press Insert+Z to disable the Virtual
PC cursor. When you finish interacting with
the tree, press Insert+Z to re-enable the
Virtual PC cursor.

The keyboard shortcuts that are used to
interact with editable tables can conflict with
keyboard shortcuts for the Forms mode in
JAWS.

As a best practice, disable the JAWS Virtual
PC cursor when you work with tables. Tab to
the table, and press Insert+Z to disable the
Virtual PC cursor. When you finish
interacting with the table, press Insert+Z to re-
enable the Virtual PC cursor.

JAWS cannot read two-column property
tables.

No workaround is available.

JAWS does not correctly read the information
in a table:

• JAWS cannot read the column headings of
a table.

• When table cells are not editable and the
focus is on the body of the table, JAWS
reads an entire row at a time instead of cell
by cell.

• When table cells are editable and the focus
is on the body of the table, JAWS reads
only the first row of the table. If you use
the arrow keys to select a cell or row, then
JAWS does not read anything. If you press
Enter to edit a cell, then JAWS reads the
row that contains the edited cell.

No workaround is available.

When a table cell is selected and you press
Home, End, Page Up, or Page Down, the
focus moves to the first displayed column,
regardless of which column you were in.

Use the arrow keys to navigate through the
cells of the table.

You cannot use the keyboard to scroll to the
left and the right in some tables.

No workaround is available.

You cannot use the keyboard to activate the
links within how-to topics and Help pop-up
windows.

Use the Help menu to access the linked
documents.

xxii Accessibility Features of SAS Model Manager

Accessibility Issue Workaround

You cannot use Shift+F10 to open a pop-up
menu.

Use Shift+F9 to open pop-up menus that are
created for the SAS application. The generic
menu that is provided by the Flash player
cannot be opened by Shift+F9.

Note: If you press Shift+F10 in Internet
Explorer and no context menu is available, the
browser moves the focus to the File menu for
the browser tab. To return focus to the
application area of the browser window, press
Esc.

You cannot use the keyboard to access the
close (x) button that is in the top right corner
of a tab.

Make sure that the focus is on the tab, and
then press Delete to close the tab.

You cannot use the keyboard to access the
close (x) button that is in the top right corner
of a tile in the tile pane.

Make sure that the focus is on the tile, and
then press Delete to close the tile. (The object
that is displayed in the tile is not deleted.)

Visual focus for the menu bar is indicated
with an outline around the entire menu bar
instead of around individual menus.

To select individual menus, use the left or
right arrow key.

Sometimes, you cannot use the Tab key to
move the focus to the application area of a
web browser (that is, the part of the browser
window that is controlled by the Flash player).

The following workaround is applicable to
Internet Explorer only.

Press Ctrl+number, where number is the
ordinal position of the application’s tab in the
set of tabs that are open in your browser
window. Then press Tab to move the focus to
the application area.

You cannot use the Tab key to move the focus
outside of a code or expression editor.
Pressing Tab within the editor only inserts
tabs.

For Internet Explorer, press Shift+F10, and
then press Esc to move the focus outside of
the editor.

For Firefox, press Alt+Tab to switch to
another application. When you switch back,
the focus will be outside of the editor.

You cannot use Ctrl+Alt+Shift+M to
minimize or maximize the view if the focus is
on the workspace bar.

No workaround is available.

If you tab to an item that is partially or
entirely off-screen, the item is not
automatically scrolled back into view.

Sometimes, you can use the arrow keys or the
Tab key to scroll the item back into view.

When you use the Ctrl+plus sign keyboard
shortcut to zoom in, some portions of the
interface can become hidden from view.

Use the keyboard to access the hidden parts of
the interface.

SAS Model Manager Workflow Console xxiii

Accessibility Issue Workaround

The Ctrl+plus sign and Ctrl+minus sign
keyboard shortcuts for zooming in and out do
not work on some menus unless the menus are
first opened.

Open the menu before you use the keyboard
shortcut.

The Ctrl+plus sign and Ctrl+minus sign
keyboard shortcuts for zooming in and out do
not work on all elements in the application
window (for example, tooltips and button
labels).

No workaround is available.

If you maximize a tile in the Home workspace
and then use the Tab key to navigate, the
focus appears to be lost after you tab away
from the Log Off button.

After you tab away from the Log Off button,
press the Tab key 5 more times to return the
focus to the maximized tile.

You cannot use the keyboard to navigate in
the Layout section because it is a Read-Only
interface that is used for the visual verification
of the elements that have been created.

Use the test button that is in the Layout
section to preview your elements in a
secondary window. The items that are
displayed in the secondary window are
identical to the items that are displayed in the
Layout section, but unlike the items in the
Read-Only Layout section, you can interact
with the items in the secondary window.

Note: After the application opens the
secondary window, press Tab to move the
focus to the window.

JAWS cannot read the labels for the Red,
Green, and Blue fields in the Custom Colors
window.

No workaround is available.

You cannot use the keyboard to access the
color blocks in the Recently used section of
the color selection control.

No workaround is available.

JAWS does not explain how to open a drop-
down menu or drop-down list.

Press Ctrl+down arrow to open the control.

When JAWS reads the control names in a
breadcrumb, it does not distinguish between
the breadcrumb buttons that contain drop-
down menus and those that do not.

Check for a drop-down menu by pressing Ctrl
+down arrow on a breadcrumb button. A
drop-down menu will open if one exists for
that button.

When you use the down arrow to scroll
through the items in a "combo box," any item
that opens a secondary window will do so
when you scroll down to it. This will prevent
you from navigating to items that are farther
down in the drop-down list.

Press Ctrl+down arrow to scroll through the
items in the drop-down list, and then press
Enter or Tab to make a selection.

xxiv Accessibility Features of SAS Model Manager

Accessibility Issue Workaround

When you add a date value to the predefined
list for a date element, you cannot use the
keyboard to access the date-selection button in
the table cells in the Customize Data window
for the predefined list.

Enter the date value in the field that is next to
the date-selection button.

JAWS cannot read the contents of a tree table
(that is, a table that contains a tree) unless the
table is in Edit mode.

Make sure that the focus is in the tree table,
and press F2 to enter Edit mode.

JAWS cannot read the <name-of-UI-control>. No workaround is available.

JAWS cannot read the content selection tree. No workaround is available.

Sometimes, after you close a tab to hide it
from view, you can still use the keyboard to
access the contents of the tab.

No workaround is available.

After you edit or delete a comment, the focus
does not return to the comment.

Use the Tab key to return the focus to the
comment.

If the list of additional search options contains
a secondary level of options, you cannot use
the keyboard to select the check boxes that are
associated with that secondary level of
options.

No workaround is available.

SAS Model Manager Workflow Console xxv

xxvi Accessibility Features of SAS Model Manager

Recommended Reading

Here is the recommended reading list for this title:

• SAS Model Manager: Administrator's Guide

• Getting Started with SAS Enterprise Miner

• SAS Data Set Options: Reference

• SAS Formats and Informats: Reference

• SAS Functions and CALL Routines: Reference

• SAS In-Database Products: User's Guide

• SAS Macro Language: Reference

• SAS Statements: Reference

• SAS System Options: Reference

For a complete list of SAS books, go to support.sas.com/bookstore. If you have
questions about which titles you need, please contact a SAS Book Sales Representative:

SAS Books
SAS Campus Drive
Cary, NC 27513-2414
Phone: 1-800-727-3228
Fax: 1-919-677-8166
E-mail: sasbook@sas.com
Web address: support.sas.com/bookstore

xxvii

mailto:sasbook@sas.com
http://support.sas.com/bookstore

xxviii Recommended Reading

Part 1

What Is SAS Model Manager?

Chapter 1
Overview of SAS Model Manager . 3

Chapter 2
Introduction to SAS Model Manager . 9

1

2

Chapter 1

Overview of SAS Model Manager

Managing Models Using SAS Model Manager . 3

The SAS Model Manager Operational Environment . 5

Model Management Process . 6

Managing Models Using SAS Model Manager
Using SAS Model Manager, you can organize modeling projects, develop and validate
candidate models, assess candidate models for champion model selection, publish and
monitor champion models in a production environment, and retrain models. All model
development and model maintenance personnel, including data modelers, validation
testers, scoring officers, and analysts, can use SAS Model Manager.

SAS Model Manager in a Business Intelligence environment can meet many model
development and maintenance challenges. Here are some of the services SAS Model
Manager provides:

• You use a single interface, the SAS Model Manager client, to access all of your
business modeling projects. The SAS Model Manager client presents projects in a
tree structure, known as the Project Tree.

• All models are stored in a central, secure model repository.

• All project or model metadata is readily accessible through the SAS Model Manager
client.

• You can track the progress of your project’s version either by creating processes and
activities using the SAS Model Manager Workflow Console or by creating
milestones and tasks using a life cycle. You create custom processes and activities or
milestones and tasks to meet your business requirements and to match your business
processes.

• Data tables that are registered in SAS Management Console or in an accessible SAS
library can be used in SAS Model Manager.

• The models that you import into SAS Model Manager can be SAS Enterprise Miner
models, SAS/STAT linear models, SAS/ETS COUNTEG and SEVERITY models,
models that you develop using SAS code, PMML models, or R models. You can
create custom model templates for SAS code models so that SAS Model Manager
knows exactly what files and metadata are associated with a model.

• After you import candidate models, you can use SAS Model Manager to schedule
and run scoring tasks to validate models.

3

• SAS Model Manager has several reports that you can use to compare and assess
candidate models. You can also write your own SAS reporting programs to assess
candidate models and run them in SAS Model Manager. The aggregated reporting
facility enables you to combine multiple reports into a single report.

SAS Model Manager can also create Basel II model validation reports.

• After you choose a champion model, you can lock the model and its associated data
for future reference or auditing by freezing the containing version.

• SAS Model Manager uses the SAS Integration Technologies Publishing Framework
to publish models to a channel.

• You can flag challenger models and publish them to a production environment.

• You can publish models to the SAS Metadata Repository, or you can publish the
champion model and challenger models to a database for scoring using the SAS
Scoring Accelerator.

• You can monitor the performance of a champion model in a production environment
by scheduling a performance monitoring task to run on a specific day and time, by
executing the performance monitoring task using the SAS Model Manager window,
or by using SAS Model Manager macros in a batch environment. The performance
of challenger models can be monitored in a production environment using the SAS
Model Manager window. After the data is collected, you can create a report that
compares the performance of the champion and challenger models.

• SAS Model Manager provides macro programs for you to run model registration to
SAS Model Manager and scoring in a batch environment. Another macro registers
SAS/STAT item store models and High-Performance Analytic models that were not
created in SAS Enterprise Miner to the SAS Metadata Repository. If you create
models using the COUNTREG or SEVERITY procedures, SAS Model Manager
provides macros for you to generate score code for the models.

• You can retrain models to respond to data or market changes.

• SAS Model Manager provides dashboard reports for you to monitor the state of
projects using performance monitoring reports, and enables you to view the reports
in a web browser.

• If your environment supports multiple SAS Application Servers, you can select the
application server to execute scoring tasks, performance monitoring tasks, and model
retrain tasks.

• Using a query utility, you can look for models by name or identifier, or you can look
for tasks.

Any user who is registered in SAS Management Console can be assigned to a SAS
Model Manager group, and can then work in SAS Model Manager. SAS Model Manager
has three groups.

• Users in the Model Manager Administrator Users group ensure that all aspects of the
modeling project are configured and in working order. Users in the Model
Administrator group can perform all tasks within SAS Model Manager.

• Users in the Model Manager Advanced Users group can perform some of the tasks
that the Model Manager Administrator Users group can perform as well as all tasks
that users in the Model Manager User group can perform.

• Users in the Model Manager Users group can perform development, validation,
reporting, and publishing tasks with some Write access limitations.

Data source tables are an integral part of the modeling process in SAS Model Manager.
You can use project input, output, and scoring output prototype tables to define variables

4 Chapter 1 • Overview of SAS Model Manager

to SAS Model Manager. Data tables are used for scoring, testing, and performance
monitoring. Performance data can be created from your operational data.

You can also create multiple projects in a control group. Additional versions can then be
created for all projects within the control group. Champion models for all projects within
the control group can be monitored for performance, and published to the SAS Metadata
Repository. For more information, see “Overview of Project Control Groups” on page
99.

The SAS Model Manager Operational
Environment

The following figure illustrates the components of a typical SAS Model Manager
operational environment when the data tier uses relational tables:

SAS Model
Manager

Client

SAS
Management

Console

SAS
Model Manager

Middle Tier
Server

SAS Web
Infrastructure

Platform

SAS
Content
Server

SAS
Foundation

SAS
Model Manager

Macros

SAS
Metadata

Server

SAS
Application

Server

SAS
Data Sets

Data
Tier

Server
Tier

Middle
Tier

Client
Tier

Relational
Databases

SAS Model Manager Client
User communication to and from SAS Model Manager is carried out using the SAS
Model Manager client. You use the SAS Model Manager client to create projects and
versions, import models, connect with data sources, validate models, run modeling
reports, run scoring tasks, set project status, declare the champion model, and run
performance tests.

SAS Management Console
Users in the SAS Model Manager Administrator group use SAS Management
Console to define the users, roles, data sources, and publishing channels for use with
SAS Model Manager.

The SAS Model Manager Operational Environment 5

SAS Model Manager Middle Tier Server
The SAS Model Manager Middle Tier Server is a collection of services and
applications that orchestrates the communication and movement of data between all
servers and components in the SAS Model Manager operational environment.

SAS Web Infrastructure Platform
The SAS Web Infrastructure Platform (or WIP) is a collection of middle tier services
and applications that provides basic integration services. It is delivered as part of the
Integration Technologies package. As such, all Business Intelligence applications,
Data Integration applications, and SAS Solutions have access to the Web
Infrastructure Platform as part of their standard product bundling.

SAS Content Server
The SAS Model Manager model repository as well as the SAS Model Manager
metadata are stored in the SAS Content Server. Communication between SAS Model
Manager and the SAS Content Server uses the WebDAV communication protocol.

SAS Foundation
SAS Foundation includes Base SAS and a superset of SAS software that is required
to support the deployment of SAS in your organization. Data modelers can develop
SAS code models using Base SAS and other analytic SAS software such as
SAS/STAT software. The SAS Model Manager Server directs all score code, macro
programs, and reporting and monitoring programs to be processed by SAS
Foundation.

SAS Metadata Server
SAS Model Manager stores and retrieves basic metadata about models from the SAS
Metadata Server. The basic model metadata in a metadata repository includes input
and output metadata as well as score code. All model-related files can be stored with
the model in a metadata repository.

SAS Application Server
There are multiple servers that are used for different processes on the SAS
Application Server. SAS Model Manager uses the JES Java Batch Server to schedule
jobs for both performance tasks and scoring tasks. The execution of all other SAS
Model Manager tasks such as SAS score code, scoring tasks, performance tasks, and
mode retraining tasks is performed on the SAS Workspace Server.

SAS Model Manager Macros
SAS Model Manager Macros is a collection of macros that run under the SAS
Application Server or a SAS session in the SAS Model Manager operational
environment.

SAS Data Sets
SAS data sets can serve as data sources in SAS Model Manager.

Relational Databases
Tables in relational databases can serve as data sources in SAS Model Manager.

See Also
“Publishing Models to a Database” on page 231

Model Management Process
The following diagram illustrates the model management process that you use in SAS
Model Manager:

6 Chapter 1 • Overview of SAS Model Manager

Figure 1.1 The Model Management Process

Deliver or
Publish Model

Freeze
Version

Register
Candidate

Models

Validate
Model

Declare
Champion

or
Challenger

Model

Create
Model

Repository

Compare
Models

Retrain
Models

Monitor
Model

Performance

SAS Content Server

SAS Model Manager

Retire
Model

Here is a summary of the model management process:

• Create Model Repository: create a secure model repository on the SAS Content
Server where SAS code, input and output files, and metadata that is associated with a
model can be stored.

• Register Candidate Models: register input and output files, and then import and
configure a model.

• Compare Models: perform scoring tests and create comparison reports for the
models by using test data sources.

• Declare Champion or Challenger Model: declare the model as champion or
challenger to use for testing and production phases of the life cycle or workflow.

• Validate Model: perform scoring tests and create validation reports for the
champion model and challenger models by using test data sources.

• Freeze Version: lock a version when the champion model in a version folder is
approved for production.

Model Management Process 7

• Deliver or Publish Model: publish a champion or challenger models to a SAS
publish channel, to a database, or to the SAS Metadata Repository.

• Monitor Model Performance: provide comparative model performance
benchmarking.

• Retrain Models: select models to retrain in response to data or market changes.

• Retire Model: retire a model from production.

Here is an example of the model management process for comparing a challenger model
to the champion model to determine the best champion model:

1. Register candidate models in the version that is under development.

2. Create a Dynamic Lift report and compare the model to the champion model. Flag
the model as a challenger based on the results of the Dynamic Lift report.

3. Perform scoring tasks with the champion and challenger models in real time or in
batch. This step can be performed outside SAS Model Manager.

4. Publish the challenger model to a database or to the SAS Metadata Repository.

5. Prepare performance data sources, which include both the actual outcome variable
and predicted variable.

6. Create and execute the performance tasks for the champion and challenger models to
create reports to compare and validate the champion model and challenger models.
One of the reports that are available for this comparison is the Champion and
Challenger Performance report.

7. Set the challenger model as the project champion if the challenger is good enough to
be promoted. Go to step 3, or consider building another model as a challenger with
existing or a new input training data source.

8. Publish the new project champion model with or without a new challenger model.

8 Chapter 1 • Overview of SAS Model Manager

Chapter 2

Introduction to SAS Model
Manager

Layout of the SAS Model Manager Window . 9
Overview of the SAS Model Manager Window . 9
SAS Model Manager Category Views . 10
SAS Model Manager Toolbar and Menus . 15

SAS Model Manager User Groups, Roles, and Tasks . 20
SAS Model Manager Groups . 20
SAS Model Manager Roles . 20
Setting Up SAS Model Manager . 21
Setting Up Projects and Versions . 22
Importing and Assessing Models . 23
Deploying and Delivering Models . 24
Monitor Champion Model Performance and Retrain Models 25
General Tasks . 26

Layout of the SAS Model Manager Window

Overview of the SAS Model Manager Window

About the SAS Model Manager Window
The SAS Model Manager user interface provides you with quick access to data,
metadata, and summary information for your projects and models. The interface includes
a menu bar, a toolbar, a category view button bar, and category views that enable you to
work with modeling projects and to view life cycle templates and project tables. The
menu bar enables you to perform tasks on your models and projects. The toolbar
provides shortcuts to tasks that you can perform on your models and projects. Many
toolbar options are also available on pop-up menus. The list of active options on the
menu bar or on the toolbar varies based on your category view and the component that is
selected. Inactive options are dimmed. For more information about the SAS Model
Manager toolbar and menus, see “SAS Model Manager Toolbar and Menus” on page
15.

The category view button bar enables you to select a category view to display. Each
category view contains views that enable you to view information about your models
and projects, and to perform specific tasks on your life cycle templates, data sources,
models, and projects.

9

Overview of Category Views
The SAS Model Manager interface is divided into three category views.

• Projects category view

• Life Cycles category view

• Data Sources category view

Each category view is a work area for an aspect of model management. The category
views enable you to access specific information and functionality to manage your
projects and models. For example, the Projects category view has three major sections:
the Repository section, the Details section, and the Annotations section.

The category view button bar is located in the upper left corner of the SAS Model
Manager interface. Click the category view button to see that category view in the SAS
Model Manager interface.

Table 2.1 The Category View Buttons

Projects category view button

Life Cycles category view button

Data Sources category view button

Overview of SAS Model Manager Toolbar and Menus
The SAS Model Manager toolbar provides shortcuts to SAS Model Manager tasks. You
can use the toolbar to perform such tasks as creating and organizing a project, importing
a model file, and selecting champion model and challenger models. For more
information about the SAS Model Manager toolbar, see “SAS Model Manager Toolbar”
on page 15.

The SAS Model Manager menus enable you to perform general tasks such as renaming
an object or accessing Help. The menus enable you to perform tasks that are specific to
SAS Model Manager such as creating and organizing a project, importing a model file,
and selecting a champion model. For more information about SAS Model Manager
menus, see “SAS Model Manager Menus” on page 18.

SAS Model Manager Category Views

Projects Category View
When SAS Model Manager opens, the Projects category view is displayed. If you are

working in another category view, click the Projects category view button to display
the Projects category view.

Most of your work in SAS Model Manager is performed in the Projects category view,
where you manage model projects and their components. The Projects category view
contains three major sections: the Repository section, a Details section, and the
Annotations section.

The Repository section displays the Project Tree, which resembles a file utility. In the
Project Tree, you can select and expand organizational folders that contain one or more

10 Chapter 2 • Introduction to SAS Model Manager

single projects or project control groups. Inside a project or project control group, you
can create individual project versions. Project versions are containers that hold
documents, models, modeling reports, and scoring tasks that are associated with the
same time span, such as a retail season, a fiscal quarter, or a fiscal year.

The hierarchical folder or object that is selected in the Project Tree controls the content
that is displayed in the Details section and in the Annotations section. In the following
example, the Project Tree displays an open organizational folder that is named
HMEQProj. The HMEQProj folder contains a project folder that is named HMEQ.
The HMEQ Project folder contains two version folders, 2012 and 2013. The 2013
version folder contains a Models folder that contains three models.

Figure 2.1 The Projects Category View

SAS Model
Manager toolbar

Projects
category
view button

Project Tree

Details section
for the
selected
project

Annotations
(Summary,
History, and
Notes) for the
selected project

The Details section displays the metadata that is associated with the selected component
in the Project Tree. For example, when you select a model component in the Project
Tree, the Details section displays model-level metadata. When you select a version
folder in the Project Tree, the Details section displays the metadata that is associated
with the version.

When you select a component such as an organizational folder, a project folder, or a
version folder in the Project Tree, the Annotations view contains three tabs. In this
example, the Summary tab displays a model aging report. For information about the
model aging report, see “Summary Results” on page 253. The History tab displays a

Layout of the SAS Model Manager Window 11

time-stamped log that documents the following transactions by user ID for the selected
repository component:

• Create

• Modify

• Import

• Publish

• Delete

The Notes tab enables you to record information about the selected component that can
be useful for later reference. For more information about SAS Model Manager projects,
see Chapter 5, “Working with Projects,” on page 55.

Life Cycles Category View

Click the Life Cycles category view button to view the model life cycle templates.
Each life cycle template contains milestones that correspond to key events in the life
span of a modeling project in SAS Model Manager. Example templates are included
with the software so that individuals in your organization can learn about model life
cycle templates. By default, the Life Cycles category view displays three example life
cycle templates: Basic, Standard, and Extended.

The Life Cycle Templates view in the following example displays a User Lifecycle
Template.

12 Chapter 2 • Introduction to SAS Model Manager

Figure 2.2 The Life Cycles Category View

Life Cycles
category
view button

Life Cycle
Extended
template
expanded

Property settings
for the selected
Life Cycle
milestone task

For more information about life cycles, see “Working with Life Cycles” on page 92.

Data Sources Category View

Click the Data Sources category view button to view data sources to SAS Model
Manager. SAS Model Manager data sources are populated from libraries that are defined
through SAS Management Console.

In the following examples, the SAS Metadata Repository tab of the Data Sources
section displays the SAS Folders. This component lists the folders that are available in
the SAS Metadata Repository. The folders contain data tables that are available to SAS
Model Manager projects. The Properties section displays a list of the metadata for the
selected data table. The Details section displays information about the contents of the
selected prototype or table and what objects in the Project Tree are associated with the
prototype or table.

Layout of the SAS Model Manager Window 13

Figure 2.3 The Data Sources Category View

Data Sources
category view
button

Project
input table

SAS Folders
view

Data Sources
tree

Properties for
the selected
table

Table columns
for the selected
data table

If you have data source tables on a local SAS Workspace Server or network drive, you
can define a libref to point to the tables. In the Data Sources category view, you can
view the tables using the SAS Libraries tab. The SAS Libraries tab shows the
MYTABLES libref that was created by using the Edit Start-up Code window:

14 Chapter 2 • Introduction to SAS Model Manager

For more information about data sources, see Chapter 3, “Working with Data Sources,”
on page 31.

SAS Model Manager Toolbar and Menus

SAS Model Manager Toolbar
The buttons on the SAS Model Manager toolbar are shortcuts to SAS Model Manager
tasks. You can also perform these tasks by accessing the main menu or a pop-up menu.
The list of active tasks varies based on your category view and the component that you
select. Inactive tasks are hidden. Tooltips appear when you rest the pointer over an icon
on the toolbar. Click the icon to select a task.

The following example displays a SAS Model Manager toolbar that has all of the
buttons enabled. The individual buttons in the toolbar are enabled only when the proper
usage context exists. When you select a component in the SAS Model Manager user
interface, buttons that are not applicable for that usage context are dimmed and are not
available for use.

1 New Folder creates an organizational folder under the selected folder in the Project
Tree. To enable the New Folder button and menu, select an organizational folder.
For more information, see “Create an Organizational Folder” on page 48.

Layout of the SAS Model Manager Window 15

2 New Project creates a mining project folder under an organizational folder. Project
folders normally contain one or more version folders. To enable the New Project
button and menu, select an organizational folder. For more information, see “Create
a Project” on page 61.

3 New Project Control Group creates a project control group under an organizational
folder. The actions that are taken on a project control group apply to all of the
projects that are defined in the control group. For more information, see“Create a
Project Control Group”.

4 New Version creates a version folder. A version folder contains the models and their
related files. Related files are typically associated with a chronological period, such
as a fiscal year or a quarter. You can create version folders only under a project
folder. To enable the New Version button and menu, select a project folder. For more
information, see “Create a Version” on page 89.

5 New Scoring Task creates a scoring task in the Scoring Task folder that you have
selected in the Project Tree. To enable the New Scoring Task button and menu,
select the Scoring Tasks folder. For more information, see “Create a Scoring Task”
on page 164.

6 New Report creates model comparison, validation, and summary reports. To enable
the New Report button and menu, select the Reports folder. For more information,
see “Overview of Model Comparison, Validation, and Summary Reports” on page
180.

7 Import model from the SAS Metadata Repository imports a model from the SAS
Metadata Repository into the Models folder that is selected in the Project Tree. To
enable the import models button and menu, select the Models folder. For more
information, see “Import Models from the SAS Metadata Repository” on page 127.

8 Import model from a SAS Package File imports a SAS Enterprise Miner package
file (SPK) or a SAS/STAT package file from the user's client machine to the Models
folder that is selected in the Project Tree. To enable the import model buttons and
menu, select the Models folder. For more information, see “Import SAS Model
Package Files” on page 128.

9 Import model from Local Files imports SAS code models that were not developed
in SAS Enterprise Miner (such as PROC LOGISTIC models) into SAS Model
Manager. To enable the import models buttons and menu, select the Models folder.
For more information, see “Import SAS Code Models and R Models Using Local
Files” on page 130.

10 Import model from a PMML Model File imports a PMML model. To enable the
import models buttons and menu, select the Models folder. For more information,
see “Import PMML Models” on page 143.

11 Set as Champion sets a model as the champion model. Setting the champion model
sets the model’s version as the default version. To enable the Set as Champion button
and menu, select a model. For more information, see Chapter 12, “Deploying
Models,” on page 215.

12 Clear Champion Model or Clear Challenger Model deselects the champion model
or the challenger model. To enable this button, select the champion or challenger
model. For more information, see Chapter 12, “Deploying Models,” on page 215.

13 Flag as Challenger identifies a model as a challenger model. To enable the button
and menu, select a model. For more information, see “Challenger Models” on page
219.

14 Execute performs the scoring, performance, or model retrain task that is selected in
the Project Tree. To enable the button and menu, select a scoring task, the

16 Chapter 2 • Introduction to SAS Model Manager

Performance Monitor node, or the Model Retrain node. For more information, see
“Execute a Scoring Task” on page 168, “Run the Define Performance Task Wizard”
on page 268, or Chapter 20, “Retraining Models,” on page 327.

15 New Schedule schedules the execution of a scoring or performance monitoring task
by specifying the date and time intervals. To enable the button and menu, select a
scoring task or the Performance Monitor node. For more information, see
“Schedule Scoring Tasks” on page 170 and “Schedule Performance Monitoring
Tasks” on page 273.

16 Create Output Table creates a new output table structure for one or more SAS
Model Manager scoring tasks. To enable the button and menu, select a model. For
more information, see “Create Scoring Output Tables” on page 162.

17 Quick Mapping Check enables you to compare the input data source variable
names that were submitted to a scoring task with the required input variable names in
the model. If the variables in the scoring input table are an incomplete subset of the
model's required input variables, then the score results might be statistically invalid.
The variable data type is not validated. To enable the button and menu, select a
scoring task. For more information, see “Overview of Scoring Tasks” on page 157.

18 Advanced View displays a SAS Enterprise Miner Package Viewer window that
displays the contents of the SAS Enterprise Miner SPK file if it was created with the
model that is selected in the Project Tree.

When you register a model in the SAS Metadata Repository for SAS Enterprise
Miner, a SAS Enterprise Miner package file is registered if a web folder to store the
file was defined using SAS Management Console. For more information, see model
deployment in the Help for SAS Enterprise Miner 12.1.

19 Publish Model publishes the model that is selected in the Project Tree to the SAS
Metadata Repository. For more information, see “Publish Models to the SAS
Metadata Repository” on page 228.

20 Dashboard Report Definition defines the indicators for the performance monitoring
data that you want to see in a dashboard reports. To enable the button and menu,
select a project.For more information, see “Create a Dashboard Report Definition”
on page 314.

21 Generate Dashboard Reports displays a window that you can use to select style
and report options. Dashboard reports are then created for projects that have
performance monitoring data and have dashboard report indicators that have been
defined. For more information, see “Generate Dashboard Reports” on page 319.

22 Define Performance Task starts a wizard that creates a performance task. A
performance task creates performance monitoring reports. To enable the button and
menu, select a project. For more information, see Chapter 16, “Create Reports by
Defining a Performance Task,” on page 263.

23 Define Model Retrain Task starts a wizard that retrains one or more models. To
enable the button and menu, select a project. For more information, see Chapter 20,
“Retraining Models,” on page 327.

24 View Workflow enables the user to view the workflows that are associated with the
selected version. To enable the button and menu, select a version. For more
information, see “Viewing Workflows” on page 370.

25 New Workflow creates a new workflow from a process definition and associates it
with the selected project or version. To enable the button and menu, select a version.
For more information, see “Creating a New Workflow” on page 369.

Layout of the SAS Model Manager Window 17

26 My Workflow Inbox opens the SAS Model Manager Workflow Console to view the
workflow activities that have been assigned to the user as a potential owner, actual
owner, or business administrator. For more information, see “Viewing Workflow
Activities” on page 359.

SAS Model Manager Menus
The SAS Model Manager main menu varies in content based on whether you select the
Projects category view, the Life Cycles category view, or the Data Sources category
view. If a menu item is not applicable in the selected category view, then it is dimmed
and is not available. Here is a list of all menu items:

File

• New Folder creates a new organizational folder. For more information, see “Create
an Organizational Folder” on page 48.

• New Project creates a new modeling project folder. For more information, see
“Create a Project” on page 61.

• New Project Control Group creates a new project control group folder. For more
information, see“Create a Project Control Group” on page 103.

• New Document Folder creates a Documents folder. For more information, see
“Create a Documents Folder ” on page 50.

• New Version creates a new version folder within a project folder. For more
information, see “Create a Version” on page 89.

• New Scoring Task creates a new scoring task within a Scoring Tasks folder. For
more information, see “Create a Scoring Task” on page 164.

• Import from specifies the method that you want to use to import models into a
version's Models folder. For more information, see Chapter 8, “Importing Models,”
on page 125.

• SAS Metadata Repository displays the SAS Metadata Repository window that
you can use to select a mining results file and then import it into a Models folder.
For more information, see “Import Models from the SAS Metadata Repository”
on page 127.

• SAS Model Package File displays a local file browser window that you can use
to import a model from a SAS Enterprise Miner or SAS/STAT package (SPK)
file. For more information, see “Import SAS Model Package Files” on page 128.

• Local Files displays a local file browser window that you can use to import SAS
code models that were not developed in SAS Enterprise Miner (such as PROC
LOGISTIC models) into SAS Model Manager. For more information, see
“Import SAS Code Models and R Models Using Local Files” on page 130.

• PMML Model File displays a local file browser window that you can use to
import PMML models. For more information, see “Import PMML Models” on
page 143.

• Exit ends the SAS Model Manager session, and then closes the window.

Edit

• Copy creates a copy of the selected object.

• Paste places the object that is in the copy buffer in a location that you select in the
Project Tree.

• Rename enables you to enter a new name for the selected folder or file.

18 Chapter 2 • Introduction to SAS Model Manager

View

• Projects displays the Projects category view. For more information, see “Projects
Category View” on page 10.

• Life Cycles displays the Life Cycles category view. For more information, see “Life
Cycles Category View” on page 12.

• Data Sources displays the Data Sources category view. For more information, see
“Data Sources Category View” on page 13.

• Toolbar toggles the SAS Model Manager toolbar on and off. For more information,
see “SAS Model Manager Toolbar” on page 15.

Tools

• Manage Templates displays the SAS Model Manager Template Editor, which
enables you to create, edit, update, or delete life cycle templates, model templates,
report templates, and SAS files. For more information, see “Creating Life Cycle
Templates” on page 75 and “User-Defined Model Templates” on page 148.

• Edit Start-up Code displays the Edit Start-up Code window. Use this window to
create a libref for libraries that are not defined in the SAS Metadata Repository or in
SAS code. For more information, see “Using Tables from a Local or Network Drive”
on page 42.

• Remove Models from Database removes published models from DB2, Greenplum,
Netezza, Oracle, or Teradata databases. For more information, see “Remove Models
from a Database” on page 244.

• Manage Project Dashboard Indicators displays dashboard indicators for projects
that are used to generate dashboard reports. Use this window to view or delete
dashboard indicators from projects. For more information, see “Manage All Project
Dashboard Definitions” on page 325.

• Generate Dashboard Reports displays a window that you can use to select the style
and report options. Dashboard reports are then created for projects that have
performance monitoring data and have dashboard report indicators that have been
defined. For more information, see “Generate Dashboard Reports” on page 319.

• Manage Workflow opens the SAS Model Manager Workflow Console, which can
be used to manage instances of workflow process definitions and workflow
activities. For more information, see “Overview of Managing Workflows” on page
367.

• My Workflow Inbox opens the SAS Model Manager Workflow Console to view the
workflow activities that have been assigned to the user as a potential owner, actual
owner, or business administrator. For more information, see “Viewing Workflow
Activities” on page 359.

Help

• Help displays the table of contents of the SAS Model Manager Help.

• About SAS Model Manager displays information about the version of SAS Model
Manager that you are using.

Layout of the SAS Model Manager Window 19

SAS Model Manager User Groups, Roles, and
Tasks

SAS Model Manager Groups
When you work in SAS Model Manager, the SAS Model Manager administrator assigns
your user ID to one of three SAS Model Manager groups: Model Manager
Administrators, Model Manager Advanced Users, and Model Manager Users. Groups
can perform certain tasks within SAS Model Manager. For example, users in the Model
Manager Administrator group are the only users who can freeze a version.

Users in the Model Manager Administrator group can perform any task with SAS Model
Manager. The Model Manager Advanced Users and Model Manager Users groups are
more restrictive. See the tables in the subsequent sections for a list of SAS Model
Manager tasks and the groups whose users can perform the task.

A SAS Model Manager administrator can create custom groups for your organization as
well as assign SAS Model Manager roles to those groups. Contact your SAS Model
Manager administrator to find out your group and roles.

The following table lists the abbreviations for groups that are used in the task tables
below:

SAS Model Manager Group Abbreviation

Model Manager Administrator Users MM Admin

Model Manager Advanced Users MM Adv User

Model Manager Users MM User

SAS Model Manager has two other groups, Model Manager Example Life Cycle
Assignees and Model Manager Example Life Cycle Approvers. These groups are used in
the life cycle templates that are provided by SAS Model Manager for example purposes
only. The life cycle templates and groups that are supplied by SAS should not be
modified.

SAS Model Manager Roles
The SAS Model Manager roles enable specific users or groups to be assigned in order to
complete specific tasks within SAS Model Manager. In most cases, roles are assigned to
groups. Three of the roles are general and correspond to the groups that are supplied by
SAS Model Manager. Roles that are associated with the life cycle enable users and
groups to be assigned to complete tasks or to approve that tasks are complete.

The following table describes the roles and lists the role abbreviations that are used in
the list of tasks:

20 Chapter 2 • Introduction to SAS Model Manager

Role Description Abbreviation

Comments Administrator A user who can manage
comments in the SAS Model
Manager Workflow Console.

This role is assigned to the
group Model Manager
Administrators.

:CAdmin

Model Manager:
Administration Usage

A user who can perform all
SAS Model Manager tasks.

This role is assigned to the
group Model Manager
Administrators.

:Admin

Model Manager: Advanced
Usage

A user who can perform all
SAS Model Manager tasks
except for tasks that can be
performed only by a SAS
Model Manager
administrator.

This role is assigned to the
group Model Manager
Advanced User.

:Adv

Model Manager: Usage A SAS Model Manager
general user. The general user
can perform all tasks except
for advanced user tasks and
administrator tasks.

This role is assigned to the
group Model Manager Users.

:User

Model Manager: Life Cycle
Participant Usage

A user or group whose role is
displayed in the Life Cycle
Template Editor Participant
List selection list.

:LC Participant

Model Manager: Life Cycle
Assignee Usage

A user or group who can be
assigned to complete a life
cycle task.

:LC Assignee

Model Manager: Life Cycle
Approval Usage

A user or group who can
approve the completion of a
life cycle task.

:LC Approver

Setting Up SAS Model Manager
Use the following table to determine the users who can complete the tasks to set up SAS
Model Manager:

SAS Model Manager User Groups, Roles, and Tasks 21

Task Group Topic

Create SAS Model Manager
users in SAS Management
Console

SAS Administrator See SAS Model Manager:
Administrator's Guide

Create data libraries in SAS
Management Console

MM Adv User, MM Admin,
SAS Administrator

See SAS Model Manager:
Administrator's Guide

Create channel location
folders on a SAS server

MM Admin See SAS Model Manager:
Administrator's Guide

Create SAS Model Manager
channels in SAS Management
Console

SAS Administrator See SAS Model Manager:
Administrator's Guide

Define channel subscribers in
SAS Management Console

SAS Administrator See SAS Model Manager:
Administrator's Guide

Create project tables MM User, MM Adv User,
MM Admin

Chapter 3, “Working with
Data Sources,” on page 31

Register project tables in SAS
Management Console

MM Adv User, MM Admin See SAS Model Manager:
Administrator's Guide

Configure the SAS Content
Server for SAS Model
Manager

MM Admin See SAS Intelligence
Platform: Web Application
Administration Guide

Create workflow process
definitions

MM Admin See SAS Model Manager:
Administrator's Guide

Setting Up Projects and Versions
Use the following table to determine the users who can complete the tasks to set up
projects and versions in SAS Model Manager:

Task Group Topic

Create organizational folders MM Adv User, MM Admin “Create an Organizational
Folder” on page 48

Create project control groups MM Adv User, MM Admin “Create a Project Control
Group” (p. 103)

Create projects from a control
table

MM Adv User, MM Admin “Create Projects from a
Control Table” (p. 104)

Create projects MM Adv User, MM Admin “Create a Project” on page
61

22 Chapter 2 • Introduction to SAS Model Manager

Task Group Topic

Create versions MM Adv User, MM Admin “Create a Version” on page
89

Delete a node in the Project
Tree

MM Adv User, MM Admin “Deleting an Object in the
Project Tree” on page 52

Archive and restore folders MM Admin “Archive and Restore
Organizational Folders” on
page 52

Create and upload life cycle
templates

MM User, MM Adv User,
MM Admin

“Creating Life Cycle
Templates” on page 75

Create a workflow MM Admin “Creating a New Workflow”
(p. 369)

Assign participants to a
workflow

MM Admin “Working with Workflow
Participants” (p. 374)

View workflows that are
associated with a version

MM Admin “Viewing Workflows” (p.
370)

Importing and Assessing Models
Use the following table to determine the users who can complete the tasks to import and
assess models:

Task Group Topic

Create model templates MM Adv User, MM Admin “User-Defined Model
Templates” on page 148

Import models MM Adv User, MM Admin Chapter 8, “Importing
Models,” on page 125

Configure model properties MM Adv User, MM Admin “Set Model Properties” on
page 145

Map model variables to
project variables

MM Adv User, MM Admin “Map Model Variables to
Project Variables” on page
146

Run model comparison and
model validation reports

MM Adv User, MM Admin Chapter 10, “Validating
Models Using Reports,” on
page 179

Create user reports MM Adv User, MM Admin Chapter 11, “Validating
Models Using User Reports,”
on page 199

SAS Model Manager User Groups, Roles, and Tasks 23

Task Group Topic

Create aggregated reports MM Adv User,MM Admin Chapter 21, “Aggregated
Reports,” on page 339

Create scoring task output
tables

MM Adv User, MM Admin “Create Scoring Output
Tables” on page 162

Create and run scoring tasks MM Adv User, MM Admin Chapter 9, “Scoring Models,”
on page 157

Schedule a scoring task to
execute

MM Adv User, MM Admin “Schedule Scoring Tasks” on
page 170

Deploying and Delivering Models
Use the following table to determine the users who can complete the tasks to deploy and
deliver models:

Task Group Topic

Set a champion model MM Adv User, MM Admin “Champion Models” on page
216

Flag a challenger model MM Adv User, MM Admin “Challenger Models” on page
219

Validate the champion model
by running a scoring task
using test data and reviewing
the scoring task output

MM Adv User, MM Admin Chapter 10, “Validating
Models Using Reports,” on
page 179

Chapter 11, “Validating
Models Using User Reports,”
on page 199

Freeze or unfreeze versions MM Admin “Freezing Models” on page
220

Publish a project, version, or
model to a SAS channel

MM Adv User, MM Admin “Publishing Models to a SAS
Channel” on page 224

Extract a model any user who has the
appropriate access rights to
the SAS Metadata Repository

“Extract a Published Model”
on page 228

Publish a model to the SAS
Metadata Repository

MM Adv User, MM Admin “Publish Models to the SAS
Metadata Repository” on
page 228

Publish a scoring function or
model scoring files to a
database

MM Adv User, MM Admin “Publishing Models to a
Database” on page 231

24 Chapter 2 • Introduction to SAS Model Manager

Monitor Champion Model Performance and Retrain Models
Use the following table to determine the users who can complete the tasks to create and
run the reports that are used to monitor the champion model performance and to retrain
models:

Task Group Topic

Set project properties MM Adv User, MM Admin “Project Properties” on page
67

Monitor performance of
project champion models that
are within a project control
group

MM Adv User, MM Admin “Monitor Performance of
Project Champion Models”
(p. 117)

Run the Define Performance
Task wizard

MM Adv User, MM Admin Chapter 16, “Create Reports
by Defining a Performance
Task,” on page 263

Schedule a performance
monitoring task to execute

MM Adv User, MM Admin “Schedule Performance
Monitoring Tasks” on page
273

Execute the performance
monitoring SAS programs
from the Performance
Monitor node.

MM Adv User, MM Admin “Run the Define Performance
Task Wizard” on page 268

Run performance monitoring
batch jobs

in Test mode: MM User, MM
Adv User, MM Admin

in Production mode: MM
Adv, MM Admin

Chapter 17, “Create Reports
Using Batch Programs,” on
page 277

View monitoring reports and
charts

MM User, MM Adv User,
MM Admin

“View Reports” on page 311

Delete performance
monitoring files from the
Resources folder

MM Adv User, MM Admin “Delete Performance
Summary Data Sets” on page
276

Define dashboard report
indicators

MM Adv User, MM Admin “Create a Dashboard Report
Definition” (p. 314)

Generate dashboard reports MM Adv User, MM Admin “Generate Dashboard
Reports” (p. 319)

View dashboard reports MM User, MM Adv User,
MM Admin

“View Dashboard Reports”
(p. 320)

Define a model retrain task MM Adv User, MM Admin “Define a Model Retrain
Task” (p. 328)

SAS Model Manager User Groups, Roles, and Tasks 25

Task Group Topic

Execute a model retrain task MM Adv User, MM Admin “Execute a Model Retrain
Task” (p. 333)

View retrained models and
the associated model
comparison reports

MM User, MM Adv User,
MM Admin

“Viewing Retrained Models
and Model Comparison
Reports” (p. 334)

General Tasks
Use the following table to determine the users who can complete these general tasks:

Task Group or Role Topic

Manage Documents folders
and subfolders

MM User, MM Adv User,
MM Admin

“Associate Documents with a
Folder” on page 49

Update life cycle status For a version life cycle, any
SAS Model Manager user or
group that is assigned to the
role :LC Assignee.

If no user or group is assigned
to the role :LC Assignee, then
any user or group that is
assigned to the role :LC
Participant can update the life
cycle status.

“Update Milestone Status” on
page 95

Approve a life cycle task For a version life cycle, any
SAS Model Manager user or
group that is assigned to the
role :LC Approver.

If no user or group is assigned
to the role :LC Approver,
then any user or group that is
assigned to the role :LC
Participant can approve a life
cycle task.

“Update Milestone Status” on
page 95

Use the Query utility MM User, MM Adv User,
MM Admin

Appendix 1, “Query Utility,”
on page 393

Set the status of a project
champion model

MM Adv User, MM Admin “Setting the Project
Champion Model Status” on
page 66

Replacing a champion model MM Adv User, MM Admin “Overview of Replacing a
Champion Model” on page
247

26 Chapter 2 • Introduction to SAS Model Manager

Task Group or Role Topic

View workflow activities MM User, MM Adv User,
MM Admin

A user must be the actual
owner of an activity or
assigned the workflow
participant role of potential
owner or business
administrator to view
activities in their workflow
inbox.

“Viewing Workflow
Activities” (p. 359)

Work with workflow
activities

MM User, MM Adv User,
MM Admin

A user who is a workflow
participant can claim, release,
and complete activities.

“Working with Workflow
Activities” (p. 360)

SAS Model Manager User Groups, Roles, and Tasks 27

28 Chapter 2 • Introduction to SAS Model Manager

Part 2

Working with Projects and
Versions

Chapter 3
Working with Data Sources . 31

Chapter 4
Organizing the Project Tree . 47

Chapter 5
Working with Projects . 55

Chapter 6
Working with Versions . 71

Chapter 7
Working with Project Control Groups . 99

29

30

Chapter 3

Working with Data Sources

Overview of Data Sources . 31

Project Tables . 33
Project Control Tables . 33
Project Input Tables . 34
Project Output Tables . 34
Scoring Task Input Tables . 35
Scoring Task Output Tables . 35
Train Tables . 36
Test Tables . 36
Performance Tables . 36

Creating Project Input and Output Tables . 37
Create a Project Input Table . 37
Create a Project Output Table . 38

Creating Scoring Task Input and Output Tables . 39
About Scoring Task Input and Output Tables . 39
Create a Scoring Task Input Table . 39
Create a Scoring Task Output Table . 40

Creating a Test Table . 40

Creating a Performance Table . 40
About Performance Tables . 40
Naming a Performance Table for Use with the Define

Performance Task Wizard . 41
Create a Performance Table . 42

Using Tables from a Local or Network Drive . 42
About Using Tables from a Local or Network Drive . 42
Create a Libref for a Local or Network Drive . 43
Modify the Path for a Libref . 45
Delete a Libref . 45

Overview of Data Sources
Data sources are prototype tables and data tables that reside in the SAS Metadata
Repository or in a SAS library on a local SAS Workspace Server or network drive, and
are used by SAS Model Manager. You can view all registered data sources in SAS

Model Manager by clicking the Data Sources category view button.

31

Project control tables are used to create the structure of the projects within a project
control group. The tables must be registered as data sources in the SAS Management
Console or a libref must be created to access tables on a local or network drive, before
you create a project control table.

You can use prototype tables to import the input and output variables that SAS Model
Manager uses to define projects. SAS Model Manager does not use any data in a
prototype table except for the variable definitions. Data tables contain the data that you
use to train or validate models, test models, and create reports that monitor the
performance of a champion model in production.

The following tables are prototype tables:

• project input tables

• project output tables

If you use prototype tables to define project input and output variables, the tables must
be registered as data sources in SAS Management Console or a libref must be created to
access tables on a local or network drive, before you create a project.

Note: An alternative to using prototype tables to define the project input and output
variables is to copy the variables from the champion or challenger model, or to
modify the project definition. For more information, see “Modify Project Definition”
on page 64.

Use the following data tables to train or validate models, test models, and create
monitoring reports:

• scoring task input tables

• scoring task output tables

• train tables

• test tables

• performance tables

The scoring task input table and the scoring task output table must be registered as data
sources or accessible with a libref before you create a scoring task.

Tables can be registered only by a user who has Write access to the SAS Metadata
Repository. After you create a table, it must be registered in the SAS Metadata
Repository using SAS Management Console or you must define a libref using the Edit
Start-up Code window to be able to access the table using SAS Model Manager.

After tables are accessible, you can view them through the SAS Model Manager Data
Sources category view.

32 Chapter 3 • Working with Data Sources

For information about registering data sources, see the SAS Model Manager:
Administrator's Guide.

See Also
“Using Tables from a Local or Network Drive” on page 42

Project Tables

Project Control Tables
A project control table is a data set that contains the projects, models, and segments that
are used to create the structure of the projects within a project control group in the
Project Tree. The project control table must at least contain a project variable with the
name of project_name. If you want to monitor the performance of the champion models

Project Tables 33

within a control group, then the project control table must also contain a segment ID
variable. The segment ID variable must also be in the performance tables that are used to
monitor performance. If you want to include the models for each project when creating a
project control group, then the control table must also contain the model variable.

Project Input Tables
A project input table is an optional SAS data set that contains the champion model input
variables and their attributes. It is a prototype table that can be used to define the project
input variables and the variable attributes such as data type and length. A project can
have numerous candidate models that use different predictor variables as input. Because
the project input table must contain all champion model input variables, the variables in
the project input table are a super set of all input variables that any candidate model in
the project might use.

A project input table can have one or more observations. Data that is in a project input
table is not used by SAS Model Manager.

If you use a prototype table to define the project input variables, either create the table
and register the table using SAS Management Console or create a libref to access the
table on a local SAS Workspace Server or network drive.

The project input variables must be available to SAS Model Manager either by
specifying a project input table or by defining individual variables before you set a
champion model. You can view input variables for a project in the Input Variables tab
of the project’s Details view or in the Data Sources category view.

Note: An alternative to using prototype tables to define the project input and output
variables is to copy the variables from the champion or challenger model, or to
modify the project definition. For more information, see “Modify Project Definition”
on page 64.

See Also
• “About Defining Project Input and Output Variables” on page 61

• “Creating Project Input and Output Tables” on page 37

Project Output Tables
A project output table is an optional SAS data set or database table that defines project
output variables and variable attributes such as data type and length. It is a prototype
table that contains a subset of the output variables that any model in the project might
create.

A project output table can have one or more observations. Data that is in a project output
table is not used by SAS Model Manager.

If you use a prototype table to define the project output variables, either create the table
and register the table using SAS Management Console or create a libref to access the
table on a local or network drive.

SMM 12.3 Update where the user can view the output table and that the output variables
must be available before you set a champion mode.

The project output variables must be available to SAS Model Manager either by
specifying a project output table or by defining individual variables before you set a
champion model. You can view output variables for a project in the Output Variables
tab of the project’s Details view or in the Data Sources category view.

34 Chapter 3 • Working with Data Sources

Note: An alternative to using prototype tables to define the project input and output
variables is to copy the variables from the champion or challenger model, or to
modify the project definition. For more information, see “Modify Project Definition”
on page 64.

See Also
• “About Defining Project Input and Output Variables” on page 61

• “Creating Project Input and Output Tables” on page 37

Scoring Task Input Tables
A scoring task input table is a SAS data set that contains the input data that is used in a
scoring task.

Before you can create a scoring task, you must create a scoring task input table and
register it in the SAS Metadata Repository using SAS Management Console or create a
libref to access the table on a local or network drive. In SAS Model Manager, you can
view scoring task input tables in the Data Sources category view.

See Also
“Creating Scoring Task Input and Output Tables” on page 39

Scoring Task Output Tables
A scoring task output table is used by a scoring task to define the variables for the
scoring results table.

Depending on the mode in which a scoring task is run, the scoring task output table can
be a prototype table or a physical data table. A SAS Model Manager scoring task can run
in test mode, which is the default mode, or it can run in production mode. In both test
mode and production mode, a scoring task output table is used by the scoring task to
define the structure of the scoring results table. When the scoring task runs, it creates a
scoring results table. In test mode, the scoring results table is stored in the SAS Model
Manager model repository or on a local or network drive. You can view the scoring
results table under the scoring task node in the Scoring Task folder. The scoring task
output table in the SAS Metadata Repository or on a local or network drive is not
updated in test mode. In production mode, the contents of the scoring task output table in
the SAS Metadata Repository or the local or network drive are replaced by the contents
of the scoring results table. The scoring results table is not stored in the SAS Model
Manager model repository or on a local or network drive.

Before you can create a scoring task, the scoring task output table must be added and
accessible from the Data Sources category view. To add the scoring task output table to
SAS Model Manager, perform one the following actions:

• Add the table manually by creating the table. Then, register the table in the SAS
Metadata Repository using SAS Management Console or create a libref for the
library to where the table resides.

• Use the SAS Model Manager Create Output Table window. When you use the
Create Output Table window, SAS Model Manager creates the table in the library
that is specified in the Library box. The table is registered in the SAS Metadata
Repository and is available in the Data Sources category view.

You can view scoring task output tables in the Data Sources category view.

Project Tables 35

See Also
“Creating Scoring Task Input and Output Tables” on page 39

Train Tables
A train table is used to build predictive models. Whether your predictive models are
created using SAS Enterprise Miner or you created SAS code models, you used a train
table to build your predictive model. SAS Model Manager uses this same train table. The
train table must be registered in the SAS Metadata Repository or a libref must exist for a
local or network drive.

You specify a train table as a version-level property. When you define the train table at
the version level, the table can be used to build all predictive models that are defined in
the version's Models folder.

In SAS Model Manager, train tables are used for information purposes only with one
exception. SAS Model Manager uses train tables to validate scoring results immediately
after you publish a scoring function or model scoring files, and if the Validate scoring
results box is selected when you publish scoring functions or model scoring files to a
database.

Note: A train table cannot contain an input variable name that starts with an underscore.

For information about registering train tables using SAS Management Console, see the
SAS Model Manager: Administrator's Guide.

Test Tables
A test table is used to create the Dynamic Lift report and the Interval Target Variable
report that can be used to identify the champion model. Test tables are typically a subset
of a train table, and they are identical in table structure to the corresponding train table.
Update test tables by creating a new subset of the corresponding train table.

To view test tables in SAS Model Manager, the tables must be registered in the SAS
Metadata Repository or a libref must be defined for a local or network drive. In SAS
Model Manager, you can view test tables in the Data Sources category view.

After a test table is added to SAS Model Manager, you can specify the table in the
Default Test Table field in the project properties.

For information about registering test tables using SAS Management Console, see the
SAS Model Manager: Administrator's Guide.

See Also
“Creating a Test Table” on page 40

Performance Tables
A performance table is a SAS data set that is used as the input table for each SAS Model
Manager performance task. A performance task monitors a champion model's
performance by comparing the observed target variable values with the predicted target
variable values. A performance table is a sampling of operational data that is taken at a
single point in time. Each time you run a performance task, you use a new performance
table to take a new sampling of the operational data. For example, a champion model is
deployed to a production environment for the first time in March 2013. You might want
to take a new sampling of the operational data in June 2013, September 2013, and

36 Chapter 3 • Working with Data Sources

January 2014. These new tables are performance tables in the context of SAS Model
Manager.

To view a performance table in SAS Model Manager, you must register the tables in the
SAS Metadata Repository using SAS Management Console or you must define a libref
for a local or network drive. You can view performance tables in the Data Sources
category view. After a performance table is registered or a libref is defined, you can
specify the table in the Default Performance Table field in the project properties. The
default performance table value at the project level is the default value for the
Performance data source field in the Define Performance Task wizard.

Note: If you run SAS Model Manager report macros outside of SAS Model Manager to
monitor a champion model's performance, the macros cannot access the performance
tables in SAS Model Manager to create model performance monitoring reports.

See Also
“Creating a Performance Table” on page 40

See Also
• “Using Tables from a Local or Network Drive” on page 42

• “Deleting a Data Table” in Chapter 6 of SAS Model Manager: Administrator's Guide

Creating Project Input and Output Tables

Create a Project Input Table
You can create a project input table either from the train table that you used to develop
your model, or you can define the project variables in a DATA step. The project input
table must include the input variables that are used by the champion model. Therefore, if
you have several candidate models for your project, make sure that all candidate model
input variables are included in the project input table. If you create the project input table
from the train table, be sure to exclude the target variable from the project input table.

Here is one method that you can use to create the project input table from the train table.
Use the SET statement to specify the train table and the DROP or KEEP statements to
specify the variables from the train table that you want in the project input table. You
can drop the target variable or keep all variables except the target variable.

This DATA step creates the project input table from the train table and drops the target
variable Bad:

data hmeqtabl.invars;
 set hmeqtabl.training (obs=1);
 drop bad;
run;

This DATA step creates the project input table from the train table and keeps all
variables except for the target variable Bad:

data hmeqtabl.invars;
 set hmeqtabl.training (obs=1);
 keep mortdue reason delinq debinc yoj value ninq job clno derog clag loan;
run;

Creating Project Input and Output Tables 37

You can also create the project input table using the LENGTH statement to specify the
variables and their type and length. You could also specify the LABEL, FORMAT, or
INFORMAT statements, or the ATTRIB statement to specify additional variable
attributes. The following DATA step uses the LENGTH statement to specify the project
input variables in the table:

data hmeqtabl.invars;
 length mortdue 8 reason $7 delinq 8
 debinc 8 yoj 8 value 8
 ninq 8 job $7 clno 8 derog 8
 clag 8 loan 8;
run;

If you find that you need to modify the project input variables after you have created a
project input table, you can use the Modify Project Definition window to modify the
project variables. For more information, see “Modify Project Definition” on page 64.

See Also
• “About Defining Project Input and Output Variables” on page 61

• SAS 9.4 Statements: Reference

• SAS 9.4 Language Reference: Concepts

Create a Project Output Table
You can create a project output table either from the train table that you used to develop
your model, or you can define the project variables in a DATA step. The project output
table includes only output variables that are created or modified by the champion model.
Therefore, if you have several candidate models for your project, you must make sure
that all project output variables are mapped to the champion model output variables.

To create the project output table using the training table, use the SET statement to
specify the training table, and use the KEEP statement to specify the variables from the
training table that you want in the project output table. The following DATA step creates
the project output table Hmeqtabl.Outvars:

data hmeqtabl.outvars;
 set hmeqtabl.training (obs=1);
 %include "c:\temp\score.sas";
 keep score;
run;

The following DATA step creates the same project output table using the LENGTH
statement to specify the output variable and its type and variable length:

data hmeqtabl.outvars;
 length score 8;
run;

If you find that you need to modify the project output variables after you have created a
project output table, you can use the Modify Project Definition window to modify the
project variables. For more information, see “Modify Project Definition” on page 64.

See Also
“About Defining Project Input and Output Variables” on page 61

38 Chapter 3 • Working with Data Sources

Creating Scoring Task Input and Output Tables

About Scoring Task Input and Output Tables
The scoring task input table is a data table whose input is used by the scoring task to
score a single model. The scoring task input table must contain the variables and input
data for the variables that the model requires. Typically, a scoring table is identical to its
corresponding train table except that the target variables in the train table are not
included in the scoring table.

A scoring task output table contains the data that is produced when you execute a
scoring task. You can provide a scoring task output table or you can create a scoring
output table definition in SAS Model Manager. When a scoring task is executed, SAS
Model Manager uses the scoring output table definition to create the scoring output
table. The name of the scoring output table definition is used as the name of the scoring
output table.

You can create a scoring output table definition by selecting the Create Output Table
function directly from the model. In the Create Output Table function, you select
variables from a scoring task input table as well as variables from the model’s output.
The variables in the Input Variables table are variables from the scoring task input table
if one is specified for the Default Scoring Task Input Table property for a project,
version, or model property. Otherwise, the Input Variables table is empty. The Output
Variables that appear in the window are model output variables. You use the variables
from both tables to create the scoring output table.

SAS Model Manager saves the table definition as metadata in the SAS Metadata
Repository. The location of the metadata is defined by the SAS library that you specify
when you create the output table definition. After SAS Model Manager creates the table
definition, the table can be selected as the output table for subsequent scoring tasks.

A SAS Model Manager scoring task can run in test mode, which is the default mode, or
it can run in production mode. When the task runs, it populates a scoring task output
table. In test mode, the scoring task output table is stored in the SAS Model Manager
model repository. You view the table under the scoring task node in the version Scoring
Tasks folder. In production mode, if the scoring output table is a table that you provided,
that table is updated. If you created a scoring task output definition, the scoring output
table is located in the designated SAS library that you specified when you created the
table definition in the Create Output Table window. The production scoring task output
table is not stored in the SAS Model Manager repository.

Create a Scoring Task Input Table
This DATA step creates a scoring task input table from customer data, keeping 500 rows
from the train table:

data hmeqtabl.scorein;
 set hmeqtabl.customer (obs=500);
 keep mortdue reason delinq debinc yoj value ninq job clno derog clage loan;
run;

Creating Scoring Task Input and Output Tables 39

Create a Scoring Task Output Table
You can create a scoring output table using the Create Output Table window that you
open from the Project Tree. The Create Output Table window provides a graphical
interface for you to select the variables that you want to include in your scoring output
table. If the library that you select in the Create Output Table window is a folder in the
SAS Metadata Repository, SAS Model Manager registers the table in the repository.
You can view the table in the Data Sources category view of SAS Model Manager. For
information, see “Create Scoring Output Tables” on page 162.

You can also create a scoring task output table using a DATA step to keep or drop
variables from the train table.

The input variables that you might want to keep in the output data set are key variables
for the table. Key variables contain unique information that distinguishes one row from
another. An example would be a customer ID number.

This DATA step keeps the input variable CLNO, the client number, which is the key
variable, and the output variable SCORE:

data hmeqtabl.scoreout;
 length clno 8 score 8;
run;

Creating a Test Table
The test table is used during model validation by the Dynamic Lift report. You can
create a test table by taking a sampling of rows from the original train table, updated
train table, or any model validation table that is set aside at model training time. This
DATA step randomly selects approximately 25% of the train table to create the test
table:

data hmeqtabl.test;
 set hmeqtabl.train;
 if ranuni(1234) < 0.25;
run;

See Also
“Dynamic Lift Reports” on page 186

Creating a Performance Table

About Performance Tables
Here are the requirements for a performance table:

• the input variables that you want reported in a Characteristic report

• if you have score code:

• all input variables that are used by the champion model or challenger models

40 Chapter 3 • Working with Data Sources

• all output variables that are used by the champion model or challenger models

• if you have no score code:

• the actual value of the dependent variable and the predicted score variable

• all output variables that you want reported in a Stability Report

You create a performance table by taking a sampling of data from an operational data
mart. Make sure that your sampling of data includes the target or response variables. The
data that you sample must be prepared by using your extract, transform, and load
business processes. When this step is complete, you can then use that data to create your
performance table.

As part of the planning phase, you can determine how often you want to sample
operational data to monitor the champion model performance. Ensure that the
operational data that you sample and prepare represents the period that you want to
monitor. For example, to monitor a model that determines whether a home equity loan
could be bad, you might want to monitor the model every six months. To do this, you
would have two performance tables a year. The first table might represent the data from
January through June, and the second table might represent the data from July through
December.

Here is another example. You might want to monitor the performance of a champion
model that predicts the delinquency of credit card holders. In this case, you might want
to monitor the champion model more frequently, possibly monthly. You would need to
prepare a performance table for each month in order to monitor this champion model.

In addition to planning how often you sample the operational data, you can also plan
how much data to sample and how to sample the data. Examples in this section show
you two methods of sampling data and naming the performance tables. You can examine
the sampling methods to determine which might be best for your organization.

Naming a Performance Table for Use with the Define Performance
Task Wizard

The Define Performance Task wizard is a graphical interface to assist you in creating a
performance task to monitor the champion model performance. When you run the
Define Performance Task wizard, you specify a performance table that has been
registered using SAS Management Console, or you specify a performance table on a
local or network drive. When you create a performance table, you can collect and name
the performance table using a method that is most suitable for your business process.
Here are two methods of collecting performance data:

• Method 1: You periodically take a snapshot of an operational data set to create a
performance data set. Each time you take a snapshot, you give the performance data
set a new name. Each performance data set must be registered in SAS Management
Console or a libref must be defined for the local or network drive where the data set
resides. For each time interval, you name a new performance data source when you
run the Define Performance Task wizard.

• Method 2: You take a snapshot of the operational data set to create a performance
data set over time, and you reuse the same name for each performance data set every
time you take a snapshot. If the data set resides in the SAS Metadata Repository, you
register the performance data set with SAS Management Console only once. Each
time you take a snapshot, you replace the performance data set at the location where
the performance data set is registered in SAS Management Console or where the data
set is saved on the local or network drive.

Creating a Performance Table 41

When you run the Define Performance Task wizard, the name of the performance
data source does not change. Because you used the performance data source static
name as the Default Performance Table in the project properties, the Performance
data source box in the wizard is completed by SAS Model Manager.

See Also
• “Determine How to Use the Performance Data Sets” on page 264

• “Using Tables from a Local or Network Drive” on page 42

Create a Performance Table
You can use the following DATA steps as examples to create your performance tables.

This DATA step creates a performance table using 5,000 sequential observations from
the operational data:

data hmeqtabl.perform;
 set hmeqop.JulDec (firstobs=12001 obs=17000);
run;

This DATA step creates a performance table from operational data for the past six
months of the year. The IF statement creates a random sampling of approximately 10%
of the operational data:

data hmeqtabl.perform;
 set hmeqop.JulDec;
 if ranuni(1234) < 0.1;
run;

Using Tables from a Local or Network Drive

About Using Tables from a Local or Network Drive
You can use tables from the local SAS Workspace Server or network drive to complete
these SAS Model Manager tasks:

• Create a project

• Create projects from a control table

• Modify a project definition

• Create a scoring task

• Create a model retrain task

• Create reports

• Create a performance monitoring task

To use tables from the local or network drive, you must submit a LIBNAME statement
to define a libref for the drive before you execute the SAS Model Manager task. You
submit LIBNAME statements using the Edit Start-up Code window.

42 Chapter 3 • Working with Data Sources

Here is the syntax:

LIBNAME libref <engine> 'SAS-library' <options>

libref
specifies the one- to eight-character name of the SAS library. The first character
must be a letter or an underscore (_), and all other characters can be either letters or
numbers. The libref cannot contain spaces.

engine
is a SAS engine name. This argument is optional. The default engine is the BASE
engine.

SAS-library
is the physical pathname that is recognized by your operating environment. Enclose
SAS-library in single quotation marks.

options
are LIBNAME statement options or engine-host options. For more information about
options, see the LIBNAME statement in SAS Statements: Reference and the
documentation for your operating environment.

Here is an example LIBNAME statement:

libname SalesLib 's:\sales\2013\october';

The BASE engine is used for tables in this library because the engine name was omitted
from this statement. For more information about the LIBNAME statement, see SAS
Statements: Reference.

SAS Model Manager provides the Edit Start-up Code window where you can submit the
LIBNAME statement. Before you submit the LIBNAME statement, make sure that your
SAS Model Manager user ID has permission to access the directory that you use in SAS-
library.

Create a Libref for a Local or Network Drive
To submit the LIBNAME statement, follow these steps:

1. Ensure that the path to the library that you want to create exists and that your SAS
Model Manager user ID has access to the library.

2. Select Tools ð Edit Start-up Code. The Edit Start-up Code window appears.

Using Tables from a Local or Network Drive 43

3. Enter the LIBNAME statement.

4. Click Run Now.

A message indicates whether the libref was created. Click the Log tab to see the SAS
log.

5. Click OK. The LIBNAME statement is saved in the Edit Start-up Code window.

Note: If you save the code without running it by clicking OK, the code
automatically runs the next time the middle-tier server starts.

If multiple LIBNAME statements are submitted for the same libref, the last LIBNAME
statement defines the libref.

The librefs that you create can be viewed in the Data Sources category view. Select the
SAS Libraries tab to view the list:

44 Chapter 3 • Working with Data Sources

Modify the Path for a Libref
You can modify the path that is used for a libref by resubmitting the LIBNAME
statement using the same libref with a different path.

To modify a libref, delete the libref and resubmit the LIBNAME statement.

Delete a Libref
You delete a libref using the Edit Start-up Code window.

1. Select Tools ð Edit Start-up Code

2. Type libname libref clear.

3. Click Run Now.

Using Tables from a Local or Network Drive 45

46 Chapter 3 • Working with Data Sources

Chapter 4

Organizing the Project Tree

Overview of the Project Tree . 47

Create an Organizational Folder . 48

Associate Documents with a Folder . 49
About Associating Documents . 49
Create a Documents Folder . 50
Create a User-Defined Documents Subfolder . 50
Attach a Document to a Folder or a Subfolder . 51
Show Document Versions and Open or Save Documents . 51

Deleting an Object in the Project Tree . 52

Archive and Restore Organizational Folders . 52
About Archiving and Restoring Organizational Folders . 52
Archive an Organizational Folder . 52
Restore an Organizational Folder . 53

Overview of the Project Tree
The SAS Model Manager repository organizes projects by using folders in the Project
Tree. The root node of the tree, MMRoot, represents the repository. From the root node,
you add organizational folders for your modeling projects. Create as many
organizational folder levels as you need. Then, you can create projects, create project
control groups, or attach associated documents to a folder.

The following example shows how folders can be organized for a global business:

47

The Home Equity folder contains subfolders for five continents. In the Europe folder,
the Spain folder contains the project HMEQ. The HMEQ project has two versions,
2012 and 2013, the Model Retrain folder, the Performance Monitor folder, XML files
that contain the project input and output variables, and the Documents folder. The
Documents folder contains the attached document MMMonitoringProcess.docx.

To learn more about the tasks that you can perform to organize the Project Tree, see the
following topics:

• “Create an Organizational Folder” on page 48

• “Create a Project Control Group” on page 103

• “Create a Project” on page 61

• “Associate Documents with a Folder” on page 49

• “Create a Version” on page 89

• “Create an Aggregated Report” on page 340

Note: SAS Model Manager provides macros that you can use to programmatically add
folders, projects, and versions. For more information, see Appendix 5, “Macros for
Adding Folders, Projects, Versions, and Setting Properties,” on page 459.

Here are some other common tasks that you can perform on an organizational folder, a
project folder, or a version folder:

• Publish models. For more information, see “Publishing Models to a SAS Channel”
on page 224.

• Search for models or tasks that are assigned to SAS Model Manager users. For more
information, see Appendix 1, “Query Utility,” on page 393.

Create an Organizational Folder
To create a folder:

1. Do one of the following:

48 Chapter 4 • Organizing the Project Tree

• To create a folder under the MMRoot node, right-click MMRoot and select New
Folder.

• To create a subfolder, right-click a folder and select New ð Folder.

The New Folder window appears.

2. In the Name field, enter a folder name. The name can contain letters, spaces, the
underscore (_), the hyphen (-), and the period (.). This is a required field.

3. (Optional) In the Description field, enter a folder description.

4. Click OK. SAS Model Manager adds the folder to the Project Tree.

See Also
• Appendix 5, “Macros for Adding Folders, Projects, Versions, and Setting

Properties,” on page 459

Associate Documents with a Folder

About Associating Documents
You associate documents that are stored externally to SAS Model Manager and that are
related to your modeling project by attaching them to a Documents folder or the
Resources folder. For example, you might attach a project plan so that you can reference
the plan while you are working within SAS Model Manager.

SAS Model Manager creates a Documents folder when you create a version. You can
create a Documents folder for an organization folder or for a project folder. You cannot
add a Documents folder to a project control group folder. Documents can be organized
by adding user-defined document subfolders to a Documents folder. The Documents
folder cannot be deleted. Subfolders can be copied to other Documents folders or
deleted.

Here is the user-defined subfolder Planning that is located in the Documents folder:

Associate Documents with a Folder 49

The lock on the Documents folder icon indicates that the folder cannot be deleted.

Documents that were attached to folders in previous releases of SAS Model Manager
and migrated to the current version of SAS Model Manager are copied to the folders
where they originally were attached.

You can edit only those file types that can be viewed in the SAS Model Manager text
editor. Some of the file types are .txt, .sas, .log and .html. You can attach updated files of
the same name to the same folder. To make changes to a document, make the changes to
the file on your computer and then reattach the document in the Project Tree. Each time
you reattach a document, SAS Model Manager creates a new version of the document.
All historical files are saved.

The Show History window displays the versions of a document that have been attached
to a folder in the Project Tree. The Create Date column in the Show History window is
the date on which the document was attached to the folder. From the Show History
window, you can open the document or save a version of a document.

Create a Documents Folder
To create a Documents folder for an organization folder or a project folder, right-click
the folder and select New ð Documents Folder.

Create a User-Defined Documents Subfolder
To create a user-defined Documents subfolder:

1. Right-click the Documents folder and select New Documents Subfolder.

2. In the New Documents Subfolder window Name box, enter a folder name. The name
cannot be Documents.

3. (Optional) In the Description box, enter a folder description.

4. Click OK.

50 Chapter 4 • Organizing the Project Tree

Attach a Document to a Folder or a Subfolder
To attach a document to a Documents folder or to a Resources folder, follow these
steps:

1. Right-click the folder and select Attach File.

The Attach File window appears.

2. In the Attach File window, select the document that you want to attach to the folder.

3. The file format is preselected for you when you select a file. To change the file
format, select Binary or XML or Text.

Note: If the selected file format is Text, the file encoding field is enabled. You can
select the system recognized encoding from the drop-down list.

4. Click OK. SAS Model Manager attaches the document to the folder.

Here is an example of a document that is attached to a subfolder:

Show Document Versions and Open or Save Documents
To show all of a document's versions, open a document, or save a document follow these
steps:

1. Right-click the document and select Show History. The Show History window
appears. The Show History window displays all of a document's versions.

Associate Documents with a Folder 51

2. To open one of the document versions, select the version and then click Open. If the
application that created the document is installed on your computer, the document
opens.

3. To save a document version, select the version and click Save. Complete the location
and filename information in the Save dialog box and click Save.

Deleting an Object in the Project Tree
Only certain objects in the project tree can be deleted. You can delete an organizational
folder, a project, a version that is not frozen, and objects under a version component. For
example, you can delete an individual model, but you cannot delete the Models folder
under a version.

To delete an object:

1. Right-click the object and select Delete.

Note: When a version is frozen, Delete is disabled for the frozen version as well as
all models in the Models folder.

2. Click Yes in the Delete Item message to confirm the deletion of the object.

Archive and Restore Organizational Folders

About Archiving and Restoring Organizational Folders
Using the archive and restore facility, a SAS Model Manager administrator can back up
the MMRoot folder or an organizational folder in one repository and restore it to another
repository. The folder is archived as a compressed ZIP file.

When you restore an organizational folder, you must first create an organizational folder
to restore it to. A best practice is to give the restored organizational folder the same
name as the archived ZIP file. The contents of the archived organizational folder are
restored to the new organizational folder.

Organizational folders cannot be restored in these situations:

• The organizational folder to be restored is the MMRoot folder but the archive folder
is a folder other than MMRoot.

• The name of the organizational folder to be restored is the same as the project name
in the archived folder.

• The same archived ZIP file has already been restored in an organizational folder on
the same WebDAV server.

Archive an Organizational Folder
To archive an organizational folder:

52 Chapter 4 • Organizing the Project Tree

1. If the organizational folder name is the same name as a project in the folder, rename
either the folder or the project. Organizational folders that have the same name as a
project name cannot be restored.

2. Right-click the organizational folder and select Archive.

3. In the Save window, select the folder where the ZIP file is to be saved.

4. In the File name field, name the ZIP file. A best practice is to use the default name,
which is the name of the organizational folder.

5. Click Save.

Restore an Organizational Folder
To restore an archived MMRoot folder:

1. Right-click the MMRoot folder and select Restore.

2. In the Open window, navigate to the archived MMRoot folder and select the ZIP
file. The File name field contains the name of the archived ZIP file.

3. Click Open.

4. A message indicates that the restore was successful. Click Close.

To restore an organizational folder:

1. Right-click the MMRoot folder and select New Folder. Enter a name for the
organizational folder and click OK.

2. Right-click the organizational folder and select Restore.

3. In the Open window, navigate to the archived organizational folder and select the
ZIP file. The File name field contains the name of the archived ZIP file.

4. Click Open.

5. A message indicates that the restore was successful. Click Close.

Archive and Restore Organizational Folders 53

54 Chapter 4 • Organizing the Project Tree

Chapter 5

Working with Projects

Overview of Projects . 55
What Is a SAS Model Manager Project? . 55
How a Project Folder Is Organized . 56
Project Folder Tasks . 57
Project Metadata . 58

Planning a Project . 58

Prerequisites for Creating Projects . 60

About Defining Project Input and Output Variables . 61

Create a Project . 61

Modify Project Definition . 64

Lock or Unlock Project Metadata . 66

Setting the Project Champion Model Status . 66
About the Champion Model Status . 66
Setting the Champion Model Status . 66

Project Properties . 67
About Project Properties . 67
Project-Specific Properties . 67

Overview of Projects

What Is a SAS Model Manager Project?
A SAS Model Manager project consists of the models, reports, documents, scoring tasks,
and other resources that you use to determine a champion model. For example, a
banking project might include models, data, and reports that are used to determine the
champion model for a home equity scoring application. The home equity scoring
application predicts whether a bank customer is an acceptable risk for granting a home
equity loan.

Project work is organized in one or more time-based intervals that are called versions.
Each version contains the documents, models, reports, resources, scoring tasks, and
performance information for a time interval. Each version can have its own life cycle
definition for tracking the progress of a project. For more information, see Chapter 6,
“Working with Versions,” on page 71.

55

Project models can be imported from SAS Enterprise Miner or you can create your own
models.

Multiple projects can be created within a project control group. Some project tasks
cannot be performed for the projects that are within a project control group. For more
information, see “Overview of Project Control Groups” on page 99.

How a Project Folder Is Organized
The SAS Model Manager project is a folder that contains versions, an optional
Documents folder a Model Retrain folder, a Performance Monitor folder, a Publish
Results folder, and the project input and output XML files. Here is the Project Tree view
of a project:

In this Project Tree, the project name is HMEQ.

Here is a description of project folder components:

versions
are time-phased containers for your project. They contain life cycle information,
candidate model files, model comparison reports, resource files, scoring tasks, and
model performance reports. This Project Tree has two versions, 2012 and 2013.

Model Retrain
contains reports for models that have been retrained.

Performance Monitor
is used to execute the SAS code that creates the performance monitoring report data
sets.

Publish Results
contains the results after publishing models to a database.

inputvar.xml
is an XML file that contains information about the project input variables and their
attributes. This file is based on the project input variables that are defined when you
create a project, modify a project, or declare a champion or challenger model.

outputvar.xml
is an XML file that contains information about the project output variables and their
attributes. This file is based on the project output variables that are defined when you
create a project, modify a project, or declare a champion or challenger model.

Documents
contain documents that are associated with the project. This folder is optional.

Note: Documents that were associated with a project in previous releases of SAS
Model Manager and migrated to this release remain in the Project Tree as they
originally were attached and not in the Documents folder.

56 Chapter 5 • Working with Projects

Project Folder Tasks
When you right-click the project folder, SAS Model Manager provides the following
project tasks:

New Version
creates a new time-phased version to contain life cycle information, candidate model
files, model comparison reports, resource files, scoring tasks, and model
performance reports. For more information, see “Create a Version” on page 89.

New Documents Folder
creates a new Documents folder to contain auxiliary documents, such as project
notes and schedules. For more information, see “Associate Documents with a
Folder” on page 49.

Lock Project Metadata
enables a SAS Model Manager administrator to lock the project metadata so that the
project definition cannot be modified while it is locked. For more information, see
“Lock or Unlock Project Metadata” on page 66.

Modify Project Definition
enables a user to modify the project properties and the project input and output table
variables for the selected project. For more information, see “Modify Project
Definition” on page 64.

Publish Models to a Database
transforms DATA step score code of a model to a scoring function or model scoring
files, and writes them to the database. For more information, see “Publishing Models
to a Database” on page 231.

Publish Models to a SAS Channel
publishes models to defined channels, and notifies subscribers of the publication
channel when the models are delivered. For more information, see “Publish a Model
to a Channel” on page 225.

Publish Models to the SAS Metadata Repository
publishes the champion model to the SAS Metadata Repository in order for the
champion model to be run in a test or production scoring environment. For more
information, see “Publish Models to the SAS Metadata Repository” on page 228.

Define Performance Task
starts a wizard that generates the SAS code to monitor the performance of a
champion model or challenger model. For more information, see “Overview of
Creating Reports Using a Performance Task” on page 263.

Dashboard Report Definition
starts a wizard to create performance indicators that are used to execute the
dashboard reports. For more information, see “Create a Dashboard Report
Definition” on page 314.

Define Model Retrain Task
starts a wizard that retrains one or more models. For more information, see Chapter
20, “Retraining Models,” on page 327.

Define Aggregated Report
specifies reports from the Reports folder that are used to create a single aggregated
report. For more information, see Chapter 21, “Aggregated Reports,” on page 339.

Overview of Projects 57

Query
searches for models and tasks that are assigned to SAS Model Manager users. For
more information, see “Overview of the Query Utility” on page 393.

Project Metadata
When you click on a project folder, the detail view on the right has tabs that categorize
the project metadata:

• The Properties tab shows the general metadata for the project. For more
information, see “Project Properties” on page 67.

• The Input Variables tab shows the project input variables and their attributes.

• The Output Variables tab shows the output variables and their attributes.

• The Publish History tab shows the models that have been published to a database, a
SAS channel or to the SAS Metadata Repository. The metadata includes the
published name, the destination, the method of publishing, the server name, the user
ID that published the model, the date on which the model was published, the model
function, whether the model is a champion model or a challenger model, the project
name, the version name, the model name, and the model level.

Here are the project metadata tabs:

Planning a Project
Before you begin a project, you must plan your project resources. Here is a list of
questions to consider and conditions to meet for a modeling project:

58 Chapter 5 • Working with Projects

Note: For more information about creating multiple projects in a control group, see
“Overview of Project Control Groups” on page 99.

• After you know which users are assigned to a project, a SAS Model Manager
administrator must ensure that the user is assigned to the appropriate SAS Model
Manager user group and role. For more information, see “SAS Model Manager User
Groups, Roles, and Tasks” on page 20 and the SAS Model Manager: Administrator's
Guide.

• How do you want to structure your project in the Project Tree? A project is a
subfolder of an organizational folder. The Project Tree enables multiple levels of
organizational folders so that you can customize how you structure the Project Tree.
For example, your Project Tree could be similar to your business departmental
hierarchy or it could list individual project names. For more information, see Chapter
4, “Organizing the Project Tree,” on page 47.

• What models do you want to use in the project? If the models were created using
SAS Enterprise Miner, SAS/STAT, or the SAS/ETS procedures COUNTREG and
SEVERITY, all model components are available to SAS Model Manager when you
import the model. If your model is a SAS code model that is not contained in a
miningresult.spk file or a model that was created by third-party software such as R,
you must ensure that you have imported all of the model component files. For more
information, see “Import SAS Code Models and R Models Using Local Files” on
page 130 and “Import PMML Models” on page 143.

• How do you want to define your project input and output variables? When you create
a project, you can import the variables using input and output prototype tables, copy
the variables from an existing champion model, or define individual variables. If you
use prototype tables to define the project input and output variables, the tables must
be registered in the SAS Metadata Repository using SAS Management Console or
you must create a libref for files that are stored on a local or network drive before
you create the project. For more information, see “About Defining Project Input and
Output Variables” on page 61.

• What method do you want to use to track the progress of a version? The Workflow
Console enables you to track the progress of activities from the version level. A SAS
Model Manager administrator can create a workflow and associate it with a version.
You can also use the life cycle feature to track the life cycle of a model at the version
level.

• If you decide to use the workflow process to track the progress of activities for a
version, you do not need to use the life cycle feature to monitor the progress of
milestones and tasks. For more information, see “Overview of Workflow
Console” on page 346.

• If you decide to use the life cycle feature to monitor the progress of your version,
you must plan your milestones and the tasks for each milestone before you can
create a version for a project. When you have that information, you then create a
life cycle template. The life cycle template enables you to assign users to
complete projects and to monitor the progress of your project. For more
information, see “Creating Life Cycle Templates” on page 75.

• You might have project documents that you would like to access from SAS Model
Manager. SAS Model Manager enables you to attach documents to a Documents
folder in the Project Tree. You can view these documents in SAS Model Manager
only. For more information, see “Associate Documents with a Folder” on page 49.

• SAS Model Manager provides several reports that you can use to help you assess
candidate models. You can review the types of reports that are available and plan for
which reports you want to use. Your plans might also include a custom report that

Planning a Project 59

you can run in SAS Model Manager. For more information, see Chapter 10,
“Validating Models Using Reports,” on page 179 and Chapter 11, “Validating
Models Using User Reports,” on page 199.

• When you publish a project champion model to the SAS Metadata Repository, you
must specify a folder to which you can publish the project champion model. You
might need to create a folder in the SAS Metadata Repository, if one does not
already exist. For more information, see “Publish Models to the SAS Metadata
Repository” on page 228.

• After your champion model is in a production environment, you can monitor the
performance of the model in SAS Model Manager using your organization's
operational data. If you use SAS Model Manager to define and execute performance
tasks, you must first prepare performance tables using the operational data and add
them as a SAS Model Manager performance data source. For more information, see
“Creating a Performance Table” on page 40.

• When you run performance monitoring reports, you can set up performance index
alert and warning conditions to notify users if conditions exceed the indexes. For
more information, see “Performance Index Warnings and Alerts” on page 259.

Prerequisites for Creating Projects
Projects can be created only by SAS Model Manager administrators and SAS Model
Manager advanced users. Ensure that users who create projects are assigned to the group
Model Manager Administrator Users or Model Manager Advanced Users in SAS
Management Console.

All modeling projects require that you know the model function type before you create a
project.

SAS Model Manager has several model function types:

• Analytical

• Prediction

• Classification

• Segmentation

• Any

To determine the model function type for your project, compare your model to the
descriptions in the table Types of Model Functions on page 70.

If you use prototype tables to define the project input and output variables, you must do
one of the following two things before you can create a project: either create the project
input and output tables and register them in the SAS Metadata Repository using SAS
Management Console or create a libref for files on a local SAS Workspace Server or
network drive. You then can view the data tables from the Data Sources category view
in SAS Model Manager. See the following documents for details:

• For instructions about creating project input and output tables, see the topic
“Creating Project Input and Output Tables” on page 37.

• The SAS Model Manager: Administrator's Guide has instructions on registering
project input and output tables in SAS Management Console.

60 Chapter 5 • Working with Projects

For information about prerequisites for project control groups, see “Prerequisites for
Creating Project Control Groups” on page 101.

About Defining Project Input and Output
Variables

Project input and output variables are the input and output variables that are used by the
champion model and challenger models. SAS Model Manager requires that the project
input and output variables be defined before a champion model can be published to a
production environment. You can define the project input and output variables when you
create a project or during the champion model selection process.

You define the project input and output variables using one of the following methods:

• Create input and output prototype tables and import the variables using these tables.
You import the variables using the New Project wizard or the Modify Project
Definition window.

• Copy the input and output variables from an existing champion model. You copy the
champion model variables using the New Project wizard or the Modify Project
Definition window.

• Use the Modify Project Definition window to add, modify, or delete individual input
or output variables.

• If you declare a champion model and the project variables have not been defined,
SAS Model Manager prompts you to add model input variables to the project and to
map model output variables to project output variables.

SAS Model Manager saves the input variables’ definitions in the file inputvar.xml and
the output variables’ definitions in the file outputvar.xml. The inputvar.xml file and the
outputvar.xml file are saved in the project folder. When you set a champion model, the
inputvar.xml file and the outputvar.xml file are copied to the version folder.

See Also
• “Project Tables” on page 33

• “Creating Project Input and Output Tables” on page 37

• “Create a Project” on page 61

• “Modify Project Definition” on page 64

Create a Project
Note: SAS Model Manager does not support tables or models whose data sets contain

special characters and that were created when the system option
VALIDMEMNAME=EXTEND was set. SAS Model Manager can use tables whose
variables contain special characters only when the SAS Model Manager
administrator has enabled the use of the VALIDVARNAME= system option in SAS
Management Console. For more information, see the SAS Model Manager
Administrator’s Guide.

Create a Project 61

To create a project:

1. Right-click the organizational folder in the Project Tree and select New ð Project.
The New Project wizard appears.

2. Enter a name and a description for the project that you are creating. The name can
contain letters, spaces, the underscore (_), the hyphen (-), and the period (.). The
Name field is required.

3. Click the Model Function box and select the function type for the model. Click
Next.

4. Specify the project input and output variables for the project.

• Click Import Variables to import input variables or output variables from a data
set that is located in the SAS Metadata Repository.

• Click Copy Variables to copy variables from another project.

• Click Add to manually enter a new variable.

62 Chapter 5 • Working with Projects

Note: You can also edit or delete existing input variables and output variables.

5. Click Finish. SAS Model Manager creates a new project folder in the Project Tree.

Here is an example of a project in the Project Tree:

When SAS Model Manager creates a project folder, it creates a Model Retrain node and
a Performance Monitor node. It uses the project input and output variable tables to
create the two XML files.

• You use the Model Retrain node to retrain a champion model after it has been in
production for a while.

• You use the Performance Monitor node to execute the SAS programs that create
performance monitoring reports.

• The input and output XML files are used as project input and output metadata. The
input and output XML files are published or exported as part of the model if the
model is published or exported from the project folder.

See Also
• “About Defining Project Input and Output Variables” on page 61

Create a Project 63

• “Create a Project Control Group” on page 103

Modify Project Definition
This feature is used to modify the project properties and the project input and output
variables for a project when the existing table structure is changed using SAS
Management Console. Alternatively, you can use this feature to assign different data
variables. For example, suppose you selected the wrong variables when you created a
project. You do not realize the mistake until you try to set a champion model.

Note: Only SAS Model Manager administrators and advanced users can use this feature.
The project definition cannot be modified if it has been locked. Only SAS Model
Manager administrators can lock or unlock a project definition. The project
definition for projects that are within a project control group cannot be modified.

The project input and output variables cannot be modified in the following cases:

• The project contains a frozen default version.

• The project metadata is locked.

CAUTION:
Modifying the project definition could invalidate the project champion model in
the default version. If you modify the project input or output variables,
inconsistencies might occur in the champion model input and output variables. The
default version for the project is also cleared.

Note: SAS Model Manager does not support tables or models whose data sets contain
special characters and that were created when the system option
VALIDMEMNAME=EXTEND was set. SAS Model Manager can use tables whose
variables contain special characters only when the SAS Model Manager
administrator has enabled the use of the VALIDVARNAME= system option in SAS
Management Console. For more information, see the SAS Model Manager
Administrator’s Guide.

To modify a project input table or project output table property:

1. Right-click the project folder in the Project Tree and select Modify Project
Definition from the pop-up menu. The Modify Project Definition window appears.

64 Chapter 5 • Working with Projects

2. To modify a project property, click the property field in the Value column and enter
a new value.

3. Modify the project input and output variables for the project.

• Click Import Variables to import input variables or output variables from a data
set that is located in the SAS Metadata Repository or from a SAS library.

• Click Copy Variables to copy variables from another project.

• Click Add to manually enter a new variable.

• Select a variable and click Edit to modify the variable information.

• Select a variable and click Delete to remove the variable from the project.

4. Click OK.

See Also
• “Specific Properties for a Project” on page 505

• “Project Tables” on page 33

• “Create a Project” on page 61

Modify Project Definition 65

• “Create a Project Control Group” on page 103

Lock or Unlock Project Metadata
A SAS Model Manager administrator can lock or unlock the metadata for a project. If
the metadata is locked for a project, you cannot modify the project definition.

Note: The project definition for projects that are within a project control group cannot
be modified.

• To lock the metadata for a project, right-click the project folder and select Lock
Project Metadata. Click Close. A check mark appears to the left of the task in the
pop-up menu.

• To unlock the metadata for a project, right-click the project folder and select Lock
Project Metadata. Click Close. The check mark is removed from the task in the
pop-up menu.

See Also
“Modify Project Definition” on page 64

Setting the Project Champion Model Status

About the Champion Model Status
You can set the project State property to indicate the status of the champion model for
the project. Here are the valid values:

Under Development
Indicates that the project has started but a champion model is not yet in production.

Active
Indicates that a champion model for this project is in production.

Inactive
Indicates that the champion model is temporarily suspended from production.

Retired
Indicates that the champion model for this project is no longer in production.

Setting the Champion Model Status
To set the champion model status:

1. Select the project. The project properties appear.

2. Click the State property and select the state of the champion model.

66 Chapter 5 • Working with Projects

Project Properties

About Project Properties
Project properties contain the project metadata. Project metadata includes information
such as the name of the project, the project owner, the project identifier, the name and
path of the SAS Model Manager repository, and tables and variables that are used by
project processes.

Project properties are organized into several types:

• General Properties

• System Properties

• Specific Properties

• User-Defined Properties

The General Properties and System Properties are system-defined properties that you
cannot modify, except for the description of the folder. Specific Properties contain
information about tables that are used by the project as well as various input and output
variables and values that are used in scoring the models in test and production
environments. You can add your own project properties under User-Defined
Properties. The property-value pair is metadata for the project. The background color of
a property distinguishes whether you can modify a property value. You can modify only
the fields that are white. When you click in a field, you either enter a value or select a
value from the list box.

Project-Specific Properties

Property Name Description

Lock Project Metadata Specifies that the project metadata is locked and
the project definition cannot be modified.

Default Test Table Specifies a default SAS data set that can be used
to create model assessment reports such as
dynamic lift charts.

Default Scoring Task Input Table Specifies a default SAS data set that is used as the
input data table for all scoring tasks within the
SAS Model Manager project. If you specify a
value for the Default Scoring Task Input Table
property, the value is used as the default input
table in the New Scoring Task window.

Project Properties 67

Property Name Description

Default Scoring Task Output Table Specifies a default SAS data set that defines the
variables to keep in the scoring results table and
the scoring task output table. If you specify a
value of the Default Scoring Task Output Table
property, the value is used as the default output
table in the New Scoring Task window.

Default Performance Table Specifies the default performance table for all
model performance monitoring tasks within a
SAS Model Manager project.

The value of the Default Performance Table
property is used as the default value for the Data
Source column in the Define Performance Task
wizard if a default performance table is not
specified for a version or for the model.

Default Train Table The train table is optional and is used only as
information. However, when a value is specified
for a model's Default Train Table property, SAS
Model Manager does the following:

• uses default train table to validate scoring
functions or scoring model files when a user
publishes the associated project champion
model or challenger models to a database.

• checks the Validate scoring results box in the
Publish Scoring Function window.

The value of the Default Train Table property is
used to validate scoring functions or scoring
model files only if a default train table is not
specified for a version or for the model.

State Specifies the current state of the project:

Under Development
specifies the time period from the project start
to the time where the champion model is in a
production environment.

Active
specifies the time period where the champion
model is in a production environment.

Inactive
specifies the time period when a project is
temporarily suspended from the production
environment.

Retired
specifies that the champion model for this
project is no longer in production.

Default Version Specifies the version that contains the champion
model in a production environment.

68 Chapter 5 • Working with Projects

Property Name Description

Model Function Specifies the type of output that your predictive
model project generates. The Model Function
property that you specify affects the model
templates that SAS Model Manager provides
when you are ready to import models into one of
your project's version folders. Once declared, the
Model Function property for a project cannot be
changed. Ensure that the types of models that you
are going to use in the project fit within the
selected model function type. For more
information about the types of model functions,
see Types of Model Functions on page 70.

Interested Party Specifies any person or group that has an interest
in the project. For example, an interested party
would be the business department or the business
analyst whose request led to the creation of a SAS
Model Manager project.

Training Target Variable Specifies the name of the target variable that was
used to train the model.

Target Event Value The target variable value that defines the desired
target variable event.

Class Target Values For class, nominal, ordinal, or interval targets, the
set of possible outcome classes, separated by
commas. For example, binary class target values
might be 1, 0 or Yes, No. Nominal class target
values might be Low, Medium, High. These
values are for information only.

Class Target Level Specifies the class target level of binary, nominal,
ordinal, or interval.

Output Event Probability Variable The output event probability variable name, when
the Model Function property is set to
Classification.

Output Prediction Variable The output prediction variable name, when the
Model Function property is set to Prediction.

Output Classification Variable The output classification variable name, when the
Model Function property is set to Classification.

Output Segmentation Variable The output segmentation variable name, when the
Model Function property is set to Segmentation.

Project Properties 69

Table 5.1 Types of Model Functions

Model Function Description Example

Analytical Function for any model that is
not Prediction, Classification,
or Segmentation.

None

Prediction Function for models that have
interval targets with
continuous values.

The score output of a
prediction model could
estimate the weight of a
person. The output of a model
would be P_Weight.

Classification Function for models that have
target variables that contain
binary, categorical, or ordinal
values.

DEFAULT_RISK = {Low,
Med, High}

Segmentation Function for segmentation or
clustering models.

Clustering models

Any Specify Any when you
import a SAS code model and
you want a choice of the
model template to use in the
Local Files window. When
you specify Any, SAS Model
Manager lists the available
model templates in the
Choose a model template
list in the Local Files
window.

None

70 Chapter 5 • Working with Projects

Chapter 6

Working with Versions

Overview of Versions . 71
What Is a SAS Model Manager Version? . 71
How a Version Folder Is Organized . 72
Version Folder Tasks . 73
Version Metadata . 74

Creating Life Cycle Templates . 75
Overview of Creating Life Cycle Templates . 75
The SAS Model Manager Template Editor Window . 76
Life Cycle Template Participants . 78
The Browse Templates Window . 80
Create a Life Cycle Template from a Sample Template . 81
Create a New Life Cycle Template . 82
Modify a Life Cycle Template . 84
Delete a Life Cycle Template . 85
Life Cycle Template Properties . 86

Create a Version . 89

Version Properties . 90
About Version Properties . 90
Version-Specific Properties . 90

Working with Life Cycles . 92
Overview of a Life Cycle . 92
Life Cycle Tasks . 93
Life Cycle Properties . 96

Overview of Versions

What Is a SAS Model Manager Version?
After a project is created, you create a version folder to import your models, score your
models, run reports, and monitor the life cycle of these models. A version is often the
time-phased container for your SAS Model Manager projects. The time interval for a
project cycle is specified when you create the version, and it might represent a calendar
year, a retail season, or a fiscal quarter. A SAS Model Manager project can contain
multiple versions. A version contains all of the candidate model resources that you need
to determine a champion model as well as all champion model resources. For example,
you might develop models for a scoring program that determines whether a customer is

71

eligible for a home equity loan. The version folder could be named 2013. The version
contains all of the models, scoring tasks, and reports that are used to determine the
champion model. After you select the champion model, the subsequent tasks in a
milestone are based on the champion model.

To import a model, you must have at least one version in the project.

How a Version Folder Is Organized
The SAS Model Manager version folder contains life cycle information, auxiliary
version documents, candidate model files, model comparison reports, resource files,
scoring tasks, and model performance reports. A typical version folder for a project
might contain the following:

The SAS Model Manager life cycle template that is associated with a version determines
the milestones and tasks that you complete to develop and implement the scoring model.

SAS Model Manager provides the following functionality for a version:

Documents
contains presentations, rosters, documentation, schedules, and other digital
information that is related to the version that users can easily access.

Life Cycle
contains the milestone phases and tasks that your organization uses to monitor the
modeling process. A time-phased roadmap, called a life cycle template, specifies the
milestone tasks that are required to implement model life cycle activities. Typical
milestone phases for the life cycle of a version are Development, Test, Stage,
Production, and Retire. SAS Model Manager provides example life cycle templates
that you can use as a model to create your own templates. Templates that are
provided by SAS Model Manager cannot be modified. SAS Model Manager
administrators and advanced users can use the SAS Model Manager Template Editor
to customize life cycle templates. You must create a life cycle template for your
version before you create the version.

72 Chapter 6 • Working with Versions

Models
contains the imported candidate models, a champion model after it is selected, and
challenger models. Each model contains the files that SAS Model Manager uses to
run model reports and scoring tasks.

Reports
contains generated reports. Each report contains the report results, the SAS program
that created the report, and a SAS log.

Resources
contains data files that SAS Model Manager creates and uses to monitor the
performance of the champion model. The folder can also contain user-defined
formats that the version models require and version resource files that are not in the
Documents folder.

Scoring Tasks
contains scoring task definitions and files that are generated when model scoring
tasks are completed, such as output data and statistics.

Performance
displays model performance monitoring charts when you select the Performance
node. The data sets that create the charts are stored in the Resources folder under
each version folder.

inputvar.xml
contains a copy of the project input variables. The project inputvar.xml file is copied
to the version inputvar.xml file when a model is set as a champion model. If the
project input variables are modified after a champion model is selected, SAS Model
Manager knows the required input variables for the champion model.

outputvar.xml
contains a copy of the project output variables. The project outputvar.xml file is
copied to the version outputvar.xml file when a model is set as a champion model. If
the project output variables are modified after a champion model is selected, SAS
Model Manager knows the required output variables for the champion model.

Version Folder Tasks
When you right-click the version folder, SAS Model Manager provides the following
functionality for a version:

New Workflow
creates a new workflow from a process definition and associates it with the selected
version. For more information, see “Creating a New Workflow” on page 369.

Freeze Version
disables or enables modifications of some version models properties and files. When
a version is frozen, a check mark appears next to the task. You typically freeze a
version after you declare a champion model and set the project default version in
preparation for deploying the champion model to a production environment.
Freezing a version restricts the activities that you do with the folder. After a version
folder is frozen, you cannot import additional models or change the champion model.
You can continue to add files to the Documents, Reports, Resources, and Scoring
folders. For more information, see “Freezing Models” on page 220.

Publish Models to a SAS Channel
publishes models to defined channels and notifies subscribers of the publication
channel when the models are delivered. For more information, see, “Publishing
Models to a SAS Channel” on page 224.

Overview of Versions 73

Define Aggregate Report
combines multiple reports from the Reports folder to create a single report. For
more information, see Chapter 21, “Aggregated Reports,” on page 339.

Query
searches for model and tasks that are assigned to SAS Model Manager users. For
more information, see Appendix 1, “Query Utility,” on page 393.

View Workflow
enables the user to view the workflow instance that is associated with the selected
version. For more information, see “Viewing Workflows” on page 370.

Generate Training Summary Data Set
generates a data set that is used to create the Train Table Summary report. For more
information, see “Training Summary Data Set Reports” on page 196.

See Also
• “Overview of Importing Models” on page 125

• “Publish Models to the SAS Metadata Repository” on page 228

Version Metadata
When you click on a version folder, the detail view on the right has tabs that categorize
the version metadata:

• The Properties tab shows the general metadata for the version. For more
information, see “Version Properties” on page 90.

• The Input Variables tab shows the input variables and their attributes for the
champion model. Metadata appears on this tab only after the champion model has
been set.

• The Output Variables tab shows the output variables and their attributes for the
champion model. Metadata appears on this tab only after the champion model has
been set.

• The Workflow Milestones shows the activities from the SAS Model Manager
Workflow Console that are associated with milestones. The metadata includes the
milestone or task, the status, the date started, the date completed, and the user ID that
modified the milestone or task status.

• The Publish History tab shows the models that have been published to a database, a
SAS channel or to the SAS Metadata Repository. The metadata includes the
published name, the destination, the method of publishing, the server name, the user
ID that published the model, the date on which the model was published, the model
function, whether the model is a champion model or a challenger model, the project
name, the version name, the model name, and the model level.

Here are the version metadata tabs:

74 Chapter 6 • Working with Versions

Creating Life Cycle Templates

Overview of Creating Life Cycle Templates
A life cycle template is an XML file that defines the milestones and tasks that must be
completed in order to place a champion model in a production environment, and to
monitor and retire that model. You determine the milestones and tasks for a version in a
version planning phase. For each task, you can define dependent tasks and assign users
to complete or approve the tasks. By assigning a weight to each task in a milestone, you
can track the progress of completing a milestone.

You create a life cycle template for a version before you create a version. A life cycle
template is typically shared by multiple versions. When you create a version, the life
cycle template that you want to use must be available from the Life Cycles category
view. Templates that appear in the Life Cycles category view are the life cycle templates
that have been uploaded to the SAS Content Server.

To create a life cycle template, you can use the SAS Model Manager Template Editor or
you can create a life cycle template XML file using a text editor. When you create a life
cycle template using the SAS Model Manager Template Editor, you can browse existing
templates and select one to modify by using a new name. Alternatively, you can create a
new life cycle template.

SAS supplies four life cycle templates that you can use to create a template: Basic,
Standard, Extended, and User Lifecycle templates. The Basic, Standard, and Extended
templates are reserved templates and are provided only as examples. They are not
intended for use by any organization. Reserved templates cannot be modified, but they
can be saved by using another name to create a new template. Templates that are not

Creating Life Cycle Templates 75

reserved can be uploaded to the SAS Content Server. The Browse Templates window
indicates which templates are reserved.

The SAS Model Manager Template Editor uses standard windowing techniques to
access pop-up menus and selection lists. The template editor automatically generates
milestones and task identification numbers. The editor provides a list of SAS Model
Manager users, also known as participants, for you to choose for task assignments.

When you save a template, the template is saved to a local or network location as an
XML file using the required XML element structure. You save templates to create a
backup of a template. A template can be used in SAS Model Manager only by uploading
the template to the SAS Content Server. The SAS Model Manager Template Editor
provides an Upload File menu selection.

If you create a life cycle template using an XML file, you can copy any life cycle
template from the user-templates directory and modify the file with any text editor.
When you modify an XML template file, you specify the milestone and task properties
as XML elements and element attributes. SAS Model Manager does not generate
participant identification numbers or participant lists. You must specify them explicitly
in the XML file.

The SAS Model Manager Template Editor Window
You use the SAS Model Manager Template Editor window to create or modify a life
cycle or model template.

To open a life cycle template in the SAS Model Manager Template Editor window:

1. From the SAS Model Manager window, select Tools ð Manage Templates.

2. From the File menu, open a life cycle template:

• To open an existing template on the SAS Content Server, select Browse ð
Browse Templates. The Browse Templates window appears. Select a template
and click Open.

• To open a new life cycle template, select New Life Cycle Template.

76 Chapter 6 • Working with Versions

• To open a life cycle template that is stored on a local or network location, select
Open.

When you open the SAS Model Manager Template Editor window to access a new or
existing life cycle template, the editor displays three panes:

• the left pane that displays the life cycle template milestones and tasks.

• the upper right pane that displays the properties for the life cycle template or the
selected milestone or task.

• the lower right pane that displays the list of participants. Participants are SAS Model
Manager users and groups.

When you open a new template, the tab at the top of the left pane is titled Untitled
Template. The tab name changes to the template name when you save the template. The
template name appears on the tab and as the root node in the life cycle template tree. The
life cycle template tree has three nodes:

• The root node is the name of the template.

• Milestone nodes appear under the root node.

• Task nodes appear under milestone nodes.

Creating Life Cycle Templates 77

When you select a node in the tree, the properties for that node appear in the upper right
pane. Required properties are indicated by a blue star . For a description of life cycle
template properties, see “Life Cycle Template Properties” on page 86.

The lower right pane displays the life cycle participants. Participants are users and user
groups who can be assigned to a task or who can be assigned to mark a task complete or
approved.

Life Cycle Template Participants

Participant Roles
The following roles are used to determine who can be assigned to complete a task or
who can mark a task complete or approved:

• Model Manager: Usage is assigned to all SAS Model Manager users and groups.

• Model Manager: Life Cycle Participant Usage is assigned to SAS Model Manager
users and groups whose user ID or group ID appears in the Life Cycle Template
Editor Participants list. Only users and groups that are assigned this role for a life
cycle, and are in the Participants list can be assigned to the roles Model Manager:
Life Cycle Assignee Usage and Model Manager: Life Cycle Approval Usage for
the life cycle.

Note: In order to change life cycle properties in SAS Model Manager, a user or a
group must be assigned to the respective life cycle roles and the role of either
Model Manager: Administration Usage or Model Manager: Advanced
Usage.

• Model Manager: Life Cycle Assignee Usage is assigned to users and groups to
complete a task. Users who are assigned this role can be assigned to update the task
Status box to Not Started, Started, and Completed.

• Model Manager: Life Cycle Approval Usage is assigned to users and groups who
can mark a task complete. Users who are assigned this role can be assigned to update
the task Status box to Approved.

78 Chapter 6 • Working with Versions

When you open the template editor, the users and groups that are assigned life cycle
roles appear in the Participants list. You cannot add or delete users and groups from the
Participants list. A best practice is to ensure that all users and groups have the
appropriate life cycle roles assigned to them before you create a life cycle template in the
template editor.

Selecting Life Cycle Participants
When you open a life cycle temple in the SAS Model Manager Life Cycle Template
Editor, the Participants list displays the SAS Model Manager users and groups that
have been assigned the role Model Manager: Life Cycle Participant. Only users and
groups in this list can be assigned to complete a task or approve a task.

In the task Properties pane, you designate a user or group to complete a task in the
Assignee template property. You designate a user or group to approve a task in the
Approver template property. When you click the ellipsis button for the Assignee or
Approver properties, the Select Participants window displays the users and groups that
can be assigned to those tasks.

The participants that you select in the Select Participants window determine the users
that appear as a value in a version’s Life Cycle node task properties To Be Completed
By and To Be Approved By.

• If any user or group that you select in the Select Participants window is assigned the
role Model Manager: Life Cycle Assignee Usage in the SAS Management Console
User Manager, then only the selected users and groups that have that role appear as
values for the To Be Completed By task property. Users that you select do not
appear in the To Be Completed By task property if they are not assigned that role.

• If no user or group is assigned the role Model Manager: Life Cycle Assignee
Usage in SAS Management Console, then all template participants appear as values
for the To Be Completed By task property.

• If any user or group that you select in the Select Participants window is assigned the
role Model Manager: Life Cycle Approver Usage in SAS Management Console,
then only the selected users and groups that have that role appear as values for the
To Be Approved By task property. Users that you select do not appear in the To Be
Completed By task property if they are not assigned that role.

• If no user or group is assigned the role Model Manager: Life Cycle Approver
Usage, then all template participants appear as values for the To Be Approved By
task property.

• If the Assignee or Approver template properties are not assigned to any user or
group, then all template participants appear as values for their respective version life
cycle task properties To Be Completed By or To Be Approved By.

If you select a group to complete a task or approve a task, any or all members of the
group can be responsible for completing the task or marking that the task is complete.
The group members have the authorization to update the task Status box. However, only
one member needs to set the corresponding milestone task to Completed or Approved.

Note: The SAS Model Manager administrator has permission to set any life cycle
property value.

Using Groups as Assignee and Approval Participants
After a version is created, you cannot modify the life cycle definition for that version.
This means that you cannot create new milestones and tasks or remove existing
milestones or tasks. You cannot add or remove users or groups from the Participants
list. However, the value of the task boxes To Be Completed By and To Be Approved

Creating Life Cycle Templates 79

By can be changed to specify another user or group that is listed in the selection list for
those task boxes. These boxes can be modified only by a SAS Model Manager
administrator or by the current user that is assigned to complete or approve the task. If a
group is specified, then any member of the group can modify the boxes.

A best practice is to assign the value of To Be Completed By and To Be Approved By
to a group instead of to a user. If there is a chance that those responsibilities could be
assigned to other users, you can make changes if you assign a group to those
responsibilities instead of assigning an individual user. Specifying a group for the
assignee and approval responsibilities is preferred because of the flexibility you then
have to add or remove users in a group.

When you specify an individual user, only that user has the authorization to update the
task Status box. If you specify a group, any member of the group can update the task
Status box. The user ID of the group member who changed the status appears in the
Completed By or Approved By boxes.

Users can be added to or deleted from a group using SAS Management Console and no
changes are needed in the life cycle template if a group is specified as an Assignee or
Approver. For example, if a user leaves your organization and that user was the only
assignee, then that user's SAS Model Manager user ID cannot be deleted from the
system until the champion model is retired. If your organization hires a new analyst, you
can add that analyst to a group that has the role of Model Manager: Life Cycle
Participant Usage and Model Manager: Life Cycle Assignee Usage. That user can
then complete a task and update the task Status box without having to create a new
version and a life cycle template that includes that individual user.

When you assign a group to be an Assignee or an Approver, all users and groups in that
group have the authority to change the task status. Therefore, ensure that the users and
groups that are defined in the group are those users and groups that you intend to be an
Assignee or Approver.

SAS Model Manager provides two groups, Model Manager Example Life Cycle
Assignee Users and Model Manager Example Life Cycle Approver Users. Use these
groups only as an example of how to configure a group in SAS Management Console for
Assignees and Approver groups. Do not include them in your template.

The Browse Templates Window
Using the Browse Templates window, you can access life cycle templates that are used
by SAS Model Manager and are stored on the SAS Content Server.

To open the Browse Templates window, from the SAS Model Manager Templates
Editor, select File ð Browse ð Browse Templates.

80 Chapter 6 • Working with Versions

The Browse Templates window lists life cycle and model templates that are stored on
the SAS Content Server. The first three templates, Standard.xml, Basic.xml, and
Extended.xml are life cycle templates that are supplied by SAS. A Yes value in the
Reserved column indicates that the template cannot be modified. A No value indicates
that the template can be modified.

You can perform the following tasks in the Browse Templates window:

• To open a template in the Template Editor, select a template and click Open.

• To save a template to a local or network location, select the template and click Save.

• To delete a template, select the template and click Delete.

Create a Life Cycle Template from a Sample Template
SAS Model Manager supplies sample life cycle templates (Basic, Standard, Extended,
and UserLifecycleTemplate) that you can use to create a life cycle template. To view the
sample templates, select File ð Browse ð Browse Templates. The templates that have
Yes in the Reserved column of the Browse Templates window cannot be modified.
Select a template and click Open. You can also view sample templates in the Life
Cycles category view of the SAS Model Manager window.

Note: The UserLifeCycleTemplate.xml template that is supplied by SAS is not a
reserved template and can be modified. When you create a life cycle using this
template, rename the template before you modify it. Only a user or group with the
role of Model Manager: Administration Usage can upload a template.

To create a life cycle template from a sample template:

1. In the Template Editor window, select File ð Browse ð Browse Templates.

2. Select a template and click Open. The template name appears under Template
Editor.

Creating Life Cycle Templates 81

3. Rename the template filename and Name property:

a. Select File ð Save As.

b. Select a directory and a filename for the template. The filename must have an
extension of .xml (for example, myLifeCycle.xml). The new template filename
appears under Template Editor.

c. Modify the template Name property value.

Note: You cannot upload a template if the value of the Name property is the
same for a template that has been uploaded to the SAS Content Server.

4. Modify the template:

a. To add a milestone, right-click the template name and select New Milestone. In
the New Task window, complete the Name, Description, and Type boxes. The
Name and Type boxes are required.

b. To modify milestone properties, click the property and modify the properties in
the Properties pane. Properties with an asterisk (*) are required. For a
description of the properties, see “Milestone Properties” on page 86.

c. To add a task, right-click a milestone and select New Task. In the New Task
window, complete the Name, Description, and Type boxes. The Name and
Type boxes are required.

d. For each task, complete the task properties. For tasks that have multiple values,
such as Dependencies, Assignees, and Approvers, click the value box for a list of
values or click to assign a value. For a description of the properties, see
“Task Properties” on page 87.

e. To change the position of the milestone in the life cycle tree or to change the
position of the task in the milestone tree, right-click the milestone name or the
task name and select Move Up or Move Down. A task or milestone can be
moved up or down only if no tasks are dependent on later tasks in the tree
structure.

Note: You can cut or copy milestones and tasks, and paste them as new
milestones or tasks. To paste a milestone, right-click the template name and
select Paste. To paste a task, right-click a milestone name and select Paste.
When you cut or copy a milestone or task, dependencies on that task or
milestone are deleted.

f. To delete a milestone or a task, right-click the milestone name or task name and
select Delete.

5. When you have completed your changes, upload the template by selecting File ð
Upload File.

Note: Only a user or group with the role of Model Manager: Administration Usage
can upload a template.

6. To save the template, select File ð Save. Select a directory and a filename for the
template. Saving the template creates a backup copy of the template.

Create a New Life Cycle Template
To create a new life cycle template:

82 Chapter 6 • Working with Versions

Note: You can view sample life cycle templates in the Life Cycles category view. Only
a user or group with the role of Model Manager: Administration Usage can upload a
template.

1. From the SAS Model Manager Template Editor window, select File ð New Life
Cycle Template.

The Template Editor opens a template that has the name Untitled Template. Life
cycle template, milestone, and task properties that display an asterisk (*) require a
value for the property.

2. Name the template and save it. Enter a name in the Name box and select File ð
Save As. In the Save window, select the folder to save the template to. In the File
name box, enter the life cycle template name with an extension of .XML and click
Save.

3. Using a text editor, open the life cycle template XML file that you saved. Remove
the individual participants who you do not want to appear in the Participants list.
The participants are enclosed in <Participant> </Participant> tags. Be sure to remove
the mdlmgrexampleassignees and mdlmgrexampleapprovers participants. If you
remove these example groups, the To Be Completed By and the To Be Approved
By version life cycle task properties displays only a list of participants.

Save the file.

4. In the SAS Model Manager Template Editor, select File ð Open. In the Open
window, select the template and click Open.

5. Assign values to the life cycle properties Description, Version, and Default. For
more information, see “Template Properties” on page 86.

6. Create milestones for the life cycle. For each new milestone, right-click the template
name and select New Milestone. The New Milestone window appears.

Complete these boxes:

a. Enter a name and an optional description for the new milestone. The Name box
is required.

Creating Life Cycle Templates 83

b. Click the Type box, select a milestone type, and then click OK. For more
information, see “Milestone Properties” on page 86. The milestone is added to
the template and assigned a Display ID value.

7. For each milestone, define the tasks for the milestone. Right-click the milestone and
select New Task. The New Task window appears.

Complete these boxes:

a. Enter a name and an optional description for the task. The Name box is required.

b. Click the Type box and select a task type. Click OK. For more information, see
“Task Properties” on page 87.

8. For each task, complete the task properties. For more information, see “Task
Properties” on page 87.

9. To change the position of the milestone in the life cycle tree or to change the position
of the task in the milestone tree, right-click the milestone name or the task name and
select Move Up or Move Down. A task or milestone can be moved up or down only
if, after the move is complete, no tasks are dependent on later tasks in the tree
structure.

10. To delete a milestone or a task, right-click the milestone or task and select Delete.
When you delete a task, dependencies on that task are deleted.

Note: You can cut or copy milestones and tasks, and paste them as new milestones
or tasks. To paste a milestone, right-click the template name and select Paste. To
paste a task, right-click a milestone name and select Paste. When you cut or copy
a milestone or task, dependencies on that task or milestone are deleted.

11. When you have completed your changes, upload the template by selecting File ð
Upload File.

Note: Only a user or group with the role of Model Manager: Administration Usage
can upload a template.

12. To save the template, select File ð Save. Select a directory and a filename for the
template. Saving the template creates a backup copy of the template.

Modify a Life Cycle Template
To modify a life cycle template:

84 Chapter 6 • Working with Versions

1. From the SAS Model Manager window, select Tools ð Manage Templates.

2. Select one of the following templates to open:

a. To open a template on the SAS Content Server, select File ð Browse ð Browse
Templates. Select a template and click Open.

b. To open a backup copy of a template, select File ð Open. Select the local or
network location, select the file, and click OK.

3. To modify life cycle properties, select the property and make changes to the property
value. For more information, see “Template Properties” on page 86.

4. Create or modify a milestone:

• To create a new milestone, right-click the template name and select New
Milestone. Complete the milestone properties.

• To modify milestone properties, select the property and make changes to the
property value.

For more information, see “Milestone Properties” on page 86.

5. Create or modify a task:

• To create a new task, right-click a milestone and select New Task. Complete the
task properties. Click to make changes to the property value.

• To modify a task property, select the property and make changes to the property
value. Click to make changes to the property value.

For more information, see “Task Properties” on page 87.

6. To delete a milestone or a task, right-click the milestone or task and select Delete. If
you delete a task, dependencies on that task are deleted.

7. When you have completed your changes, upload the template by selecting File ð
Upload File.

Note: Only a user or group with the role of Model Manager: Administration Usage
can upload a template.

Each time you upload a template to the SAS Content Server, SAS Model Manager
increments the template’s Version property value by 1. If you create a backup copy
of the template after you upload the template to the SAS Content Server, increment
the Version property value by 1 and then save the template. This action ensures that
your backup copy is the same version as the version on the SAS Content Server.

8. To save the template, select File ð Save. Select a directory and a filename for the
template. Saving the template creates a backup copy of the template.

Delete a Life Cycle Template
To delete a life cycle template:

1. Open the Browse Templates window. From the SAS Model Manager Template
Editor, select File ð Browse ð Browse Templates.

2. Select the template. Templates with a Yes in the Reserved column cannot be
deleted.

3. Click Delete. Click Yes to confirm the deletion.

Creating Life Cycle Templates 85

Life Cycle Template Properties

Template Properties
Here is a list of the life cycle template properties.

Property Name Description

Name Identifies the name of the life cycle template. This property is required.

Description Specifies user-defined information about the life cycle template.

Version Specifies a life cycle version number. A version number is an integer
number. Each time you upload a version of a template to the SAS
Content Server, the version number is incremented by 1. The version
number for each life cycle template is unique to that template. This
property is required.

SAS Model Manager checks for new versions each time it starts. If a
new life cycle version is detected, SAS Model Manager uses the updated
life cycle template for new versions that specify that template. Any
subsequent reference of the template uses the newest version of the
template.

Default Specifies whether the life cycle template is the default template that is
used when you create a new version in a project. Only one life cycle
template in the middle-tier server, user-template directory can be the
default template. Select the check box to set the template to be the
default template.

This property is required.

Milestone Properties
Here is a list of the milestone properties for the life cycle template.

Property Name Description

Name Identifies the name of the milestone. This property is required.

Display ID Displays a system-supplied milestone identifier that is an integer greater
than 0. A milestone identifier is based on the order in which it appears in
the life cycle definition. For example, the first milestone in the life cycle
template has an identifier of 1. The second milestone has an identifier of
2.

Description Specifies user-defined information about the milestone.

86 Chapter 6 • Working with Versions

Property Name Description

Milestone Phase Specifies the phase for the milestone. The milestone phase is for
information only. The value that you select does not affect life cycle
processing by SAS Model Manager. Here is a list of valid milestone
phases:

Develop
specifies that the milestone has development tasks such as registering
models and ensuring that a version has all of the required resources
for validating candidate models.

Test
specifies that the milestone has testing tasks such as validating a
model's input and output variable data structure and creating reports
to compare the scores of candidate models.

Staging
specifies that the milestone has staging tasks such as exporting a
champion model to a SAS Metadata Repository, publishing a model
to a channel, and publishing In-Database scoring functions to a
database.

Production
specifies that the milestone has production tasks such as scoring a
champion model in a production environment, and monitoring a
champion model's performance.

Retire
specifies that the milestone has retirement tasks such as removing a
model from a production environment.

User-defined
specifies a custom milestone for your organization, such as indicating
that a champion model is in compliance with government regulations
or industry process standards.

Task Properties
Here is a list of the task properties for the life cycle template.

Property Name Description

Name Identifies the name of the task. This property is required.

Display ID Displays a system-supplied task identifier in the form
milestone#.task# (for example 1.1) that identifies the milestone
that the task is a part of as well as the task. Each milestone and task
identifier is based on the order in which it appears in the life cycle
definition. For example, the first milestone in the life cycle template has
an identifier of 1. The second milestone has an identifier of 2. The
identifier for the first task in milestone 1 is 1.1. The second task in
milestone 1 has an identifier of 1.2.

Dependencies Identifies the display ID for a task that must be completed before this
task can be completed.

Description Displays user-defined information about the task.

Creating Life Cycle Templates 87

Property Name Description

Task Type Specifies a type for the task. Here is a list of valid task types:

User-defined
identifies the task as a custom task for your organization. A user-
defined task represents a step in your organization's model life cycle
that you would like to track using SAS Model Manager. SAS Model
Manager does not perform any tests or verify that any project or
version tasks have been performed for any user-defined tasks.

Sign-off
specifies that all of the milestone tasks are complete and have been
approved.

Declare Production
specifies that the champion model is ready to be exported to the
production environment.

Set Champion
specifies that the task is to determine a champion model. Before this
task can be completed, a champion model must be set for the version
that contains the champion model.

Retire Champion
specifies that the champion model is retired.

Assignees Specifies a user or group name from the Participants list. The specified
user or any member of the specified group is the user who is assigned to
complete the task. The specified user or group members are the only
users who are authorized to set the task Status box to Not Started,
Started, or Completed.

Assignees can be unassigned. If this box is unassigned, the following
rules apply:

• Updates to the task status are not required.

• If any users or groups are assigned the role Model Manager: Life
Cycle Assignee Usage, then only those users and groups can modify
the task status.

• If the role of Model Manager: Life Cycle Assignee Usage is not
assigned to any user or group, then any SAS Model Manager user can
modify the task status.

Approvers Specifies a user or a group from the Participants list. The specified user
or any member of the specified group is the user who is responsible for
approving the task and changing the approval status. The specified user
or any member of the group is authorized to set the task Status box to
Approved.

Approvers can be unassigned. If this box is unassigned, the following
rules apply:

• The task approval status is not required to be updated.

• If any users or groups are assigned the role Model Manager: Life
Cycle Approval Usage, then only those users and groups can modify
the task approval status.

• If the role of Model Manager: Life Cycle Approval Usage is not
assigned to any user or group, then any SAS Model Manager user can
modify the task approval status.

88 Chapter 6 • Working with Versions

Property Name Description

Weight Specifies a percentage either as an integer or a fractional number that
indicates the relative work effort that is required by the task to complete
the milestone. SAS Model Manager uses weight values to calculate the
percentage that is complete for a milestone. The weight appears as a
property for a version's Life Cycle folder. If you use the Weight
property, the weight values for all tasks in a milestone should add up to
100. When weights for a milestone do not add up to 100, SAS Model
Manager performs a weight proportion adjustment so that the sum of
those weights within a milestone adds up to 100.

Note: User-defined weights are not explicitly adjusted. Weights remain
as they were entered and are not adjusted.

Duration Specifies a number that indicates the amount of time that is allocated to
complete the task. The default duration unit is the number of days.

Create a Version
To create a new version:

1. Right-click the project folder in the Project Tree and select New ð Version from the
pop-up menu. The New Version window appears.

2. Specify a name and an optional description for the new version. Use a name that is
unique among versions in this project. The name can contain letters, spaces, the
underscore (_), the hyphen (-), and the period (.).

3. Select the life cycle template that you will use to monitor the milestone phases and
tasks.

Note: SAS Model Manager administrators and advanced users can use the SAS
Model Manager Template Editor to customize life cycle templates. Use the Life

Create a Version 89

Cycle Templates category view to view the contents of a template. If you plan to
use SAS Model Manager Workflow Console to track activities (milestones and
tasks), see Chapter 22, “Using Workflow Console,” on page 345.

4. Review the selections and click OK.

5. Examine the properties of the version folder. The value for Date Created is today's
date. The value for State is Under Development.

Note: SAS Model Manager automatically annotates the version's history and notes.

See Also
• “Overview of Versions” on page 71

• “Creating Life Cycle Templates” on page 75

Version Properties

About Version Properties
Version properties are metadata that describe the version attributes. Version metadata
includes information such as the name of the version, the owner, unique identifiers, the
name and path of the SAS Model Manager repository, and the tables that SAS Model
Manager uses to score the models.

Version properties are organized into several types:

• General Properties

• System Properties

• Specific Properties

• User-Defined Properties

You cannot modify the General Properties or System Properties except to specify a
description for the folder. The Specific Properties contain information about tables that
the version uses and properties to monitor the life cycle of the version. You use User-
Defined Properties to add your own version properties. The background color of a
property determines whether you can modify a property value. You modify only the
fields that are white. When you click in a field, you either enter a value or select a value
from the list box.

Version-Specific Properties
Here is a list of the specific properties for a version.

90 Chapter 6 • Working with Versions

Property Name Description

Default Scoring Task Input Table Specifies a default SAS data set that is used as
the input data table for all scoring tasks within
the SAS Model Manager version. If you
specify a value for the Default Scoring Task
Input Table property, the value is used as the
default input table in the New Scoring Task
window if a default scoring task input table is
not specified for the model.

Default Scoring Task Output Table Specifies a default SAS data set that defines
the variables to keep in the scoring results
table of the scoring task. If you specify a value
for the Default Scoring Task Output Table
property, the value is used as the default
output table in the New Scoring Task window
if a default scoring task output table is not
specified for the model.

Default Performance Table Specifies the default performance table for all
model performance monitoring tasks within a
SAS Model Manager version.

The value of the Default Performance Table
property is used as the default value for the
Performance data source field in the Define
Performance Task wizard if a default
performance table is not specified for the
model.

Default Train Table The train table is optional and is used for
information as well as the Training Data Set
Summary report. When a value is specified for
a model's Default Train Table property, SAS
Model Manager does the following:

• uses default train table to validate scoring
functions or scoring model files when a
user publishes the associated project
champion model or challenger models to a
database.

• checks the Validate scoring results box in
the Publish Scoring Function window.

The value of the Default Train Table
property is used to validate scoring functions
or scoring model files only if a default train
table is not specified for the model.

State Specifies the current status of the version.

Version Properties 91

Property Name Description

Champion Model Name If a champion model has been set for a
project, specifies one of the following:

• the name of the present champion model
for the project

• the name of the model that was last set as
the champion model for the project, when
the champion model has been retired or
cleared

Date Frozen Specifies the date on which the version was
frozen.

Production Date Specifies the date on which the status of the
Production milestone task in the version's life
cycle was changed from Started to
Complete.

Date Retired Specifies the date on which the status of the
Retire milestone task in the version's life
cycle was changed from Started to
Complete.

Working with Life Cycles

Overview of a Life Cycle

What Is a Life Cycle?
A SAS Model Manager life cycle defines the milestones and tasks that your organization
uses to monitor the progress of a modeling project. The life cycle template controls the
milestone tasks and the sequence of activities that are required to implement and deploy
scoring models. SAS Model Manager provides example life cycle templates that you can
use to create your own life cycle templates that are based on your business requirements.

The milestones in life cycle template track the progress of developing, implementing,
and retiring your scoring models. Authorized users indicate when milestone tasks are
started, completed, or approved. The properties of a life cycle template determine who
is authorized to update the status of a milestone task. Precedence rules for successive
milestones ensure that life cycle tasks are completed in the correct order. SAS Model
Manager automatically records the dates, times, and users who are associated with
individual life cycle milestones.

How Life Cycle Milestones Are Organized
The Life Cycle node contains the milestone phases and tasks for a modeling project.
SAS Model Manager applies life cycle milestones to each version. Typical life cycle
milestones for a modeling process might include the following:

92 Chapter 6 • Working with Versions

The life cycle for a version always starts with the first milestone. A milestone is
completed after all of its component tasks are completed. Milestones are normally
completed sequentially, but the ordering sequence is defined at the task level. A task
might be configured to depend on one or more other tasks. If a task has dependent tasks,
then you cannot change the status for a task to Completed until all dependent tasks are
also completed. Task dependencies control the milestone sequences.

Note: You can start another task when it depends on the preceding task even if the
preceding task is not yet completed.

Life Cycle Tasks

About Life Cycle Tasks
Life cycle templates define the milestones that you use to track the modeling and
deployment processes for a project version. Each milestone consists of one or more life
cycle tasks. Milestones for the simple life cycle template might include Development,
Test, Production, and Retire. The milestone tasks for this template describe the
sequential steps to develop, assess, deploy, and retire scoring models that are based on
time requirements and model performance. As a practical minimum, the life cycle
template that you use should include at least two milestones: Development and
Production.

You select the life cycle template when you create a version. Authorized users update
the life cycle to indicate whether milestone tasks have been started, completed, or
approved. The configuration of a life cycle template determines who can update the
status of a life cycle milestone. Precedence rules among successive milestones ensure
that milestone tasks are not completed out of sequence. SAS Model Manager documents
the dates, times, and individuals who are associated with individual life cycle tasks and
milestone status changes.

Working with Life Cycles 93

These are some tasks that you might perform to monitor the life cycle of a model:

• View life cycle templates in the Life Cycles category view. For more information,
see “View Life Cycle Templates” on page 94.

• Update the status for a milestone. For more information, see “Update Milestone
Status” on page 95.

• Search for a task. For more information, see “Search Life Cycles for Tasks Assigned
to Users” on page 398.

For information about users and groups who can update the Status property of a task,
see “Participant Roles” on page 78.

View Life Cycle Templates
To view the life cycle templates that are available in SAS Model Manager:

1. Click the Life Cycles category view button in the SAS Model Manager window.

2. Expand the Templates folder to display the available life cycle templates. The
Templates folder contains your custom the life cycle templates and the SAS Model
Manager example life cycle templates. The following example templates are
provided by SAS Model Manager:

• Basic

• Standard

• User Lifecycle Template

• Extended

These life cycle templates are example templates that you can use as a model to
create life cycle templates that meet your organization’s needs. Life cycle templates
other than the SAS Model Manager example templates are customized templates that
have been specially created by SAS Model Manager administrators and advanced
users.

3. Expand the life cycle template node to explore the structure of the milestones.
Examine the milestone requirements in the Life Cycle Properties pane. The
approximate sequential ordering of the milestone phases is determined by the
Milestone ID property. At the task level, sequential ordering is determined by the
Action ID property.

94 Chapter 6 • Working with Versions

4. Expand the milestone phase to view the milestone tasks. Examine the task
requirements in the Life Cycle Properties pane.

• Action ID determines the order for completing milestones and tasks.

• Dependencies determines whether the task depends on one or more other tasks.
If a task has dependent tasks, then you cannot change the status for a task to
Completed until all dependent tasks are also completed. Task dependencies
control milestone sequences.

• Weight specifies the percentage of work effort the task is assigned to complete
the milestone. The sum of the weighted values for a milestone does not have to
equal 100.

For information about users and groups who can update the Status property of a
task, see “Participant Roles” on page 78.

Update Milestone Status
To modify the status for a life cycle milestone:

1. Right-click the version Life Cycle node in the Project Tree and select Expand All
Items.

2. Select the task that you want to update under the milestone phase. For example, if
your template is modeled after the Standard or Extended life cycle template, then
you can monitor the status of registering models under the Development milestone.

Note: Milestones are normally completed sequentially, but the ordering sequence is
defined at the task level. If a task has dependent tasks, then you cannot change
the status for a task to Completed until all dependent tasks are also completed.
Task dependencies control the milestone sequence. Date requirements are
benchmarks for the start and completion of life cycle milestone and tasks.

Working with Life Cycles 95

3. On the Properties tab, select a value for Status that indicates the progress of
completing this milestone. Possible values are Not Started, Started,
Completed, or Approved.

Note: You must be authorized to set properties for a milestone. Task properties in
the life cycle template determine which users or user groups are responsible for
completing and approving a milestone task.

4. Select the Life Cycle node to examine its properties. The value for Date Modified is
today's date. Under Life Cycle Properties, the bar charts display the percentage of
completed tasks for each milestone.

Life Cycle Properties

About Life Cycle Properties
Life cycle properties are metadata that describe the life cycle milestones and user roles.
Life cycle metadata includes information such as the name of the milestone phase or
task, the owner, unique identifiers, the name and path of the SAS Model Manager
repository, and the status of milestones.

Milestone and task properties are organized into several types:

• General Properties

• System Properties

• Specific Properties

• User-Defined Properties

You cannot modify the General Properties or System Properties except to specify a
description for the folder. The milestone Specific Properties contains information about
start and end dates. The task Specific Properties contains information about status,
dates, and process participants. You use User-Defined Properties to add your own life
cycle properties. The background color of a property signifies whether you can modify a
property value. You modify only the boxes that are white. When you click in a box, you
either enter a value or select a value from the list box.

Specific Properties for Milestones and Tasks
Here is a list of the milestone properties.

Property Name Description

Actual Start Date Specifies the actual date that the first task for
the milestone is started. This property is Read-
only.

Actual End Date Specifies the actual date when all tasks for the
milestone are finished. This property is Read-
only. SAS Model Manager assigns the value
when the status of every milestone task is set
to Completed.

Planned Start Date Specifies the expected date to start the first
task for milestone.

96 Chapter 6 • Working with Versions

Property Name Description

Planned End Date Specifies the expected date to complete all
tasks for the milestone.

Here is a list of task properties:

Property Name Description

Status Specifies the status of task. Possible values are
Not Started, Started, Completed, or
Approved.

Date Completed Specifies the date on which the task is
finished. This property is Read-only. SAS
Model Manager assigns the value when the
status of the milestone task was changed to
Completed.

Completed By Specifies the name of the user who completed
the task. This property is Read-only.

Date Approved Specifies the date on which completion of the
task is approved. This property is Read-only.

Approved By Specifies the name of the user who approved
completion of the task. This property is Read-
only.

Planned Completion Date Specifies the expected date to complete the
task.

To Be Completed By Specifies the user who is responsible for
completing the task.

To Be Approved By Specifies the user who can approve that the
task is completed.

Working with Life Cycles 97

98 Chapter 6 • Working with Versions

Chapter 7

Working with Project Control
Groups

Overview of Project Control Groups . 99

Planning a Project Control Group . 100

Prerequisites for Creating Project Control Groups . 101

Creating a Project Control Table . 103

Create a Project Control Group . 103

Create Projects from a Control Table . 104

Add a New Version . 113

Add an Input Variable . 114

Publish Project Champion Models from a Project Control Group 115

Monitor Performance of Project Champion Models . 117

Overview of Project Control Groups
SAS Model Manager enables you to create a project control group in the model
repository. From a project control group level, you can create multiple projects from a
control table, and then add new versions or new input variables to all projects within the
project control group. After you set the champion model for each project, you can
monitor the performance of the champion models for all projects, and publish the
champion models to the SAS Metadata Repository.

Here are the tasks that can be performed for a project control group:

• “Create a Project Control Group” on page 103

• “Create Projects from a Control Table” on page 104

• “Add a New Version” on page 113

• “Add an Input Variable” on page 114

• “Publish Project Champion Models from a Project Control Group” on page 115

• “Monitor Performance of Project Champion Models” on page 117

99

Planning a Project Control Group
Before you begin a project control group, you must plan your project control group
resources. Here are questions to consider and conditions to meet for a modeling projects
within a project control group:

• After you know which users are assigned to the projects within a project control
group, a SAS Model Manager administrator must ensure that the user is assigned to
the appropriate SAS Model Manager user group and role. For more information, see
“SAS Model Manager User Groups, Roles, and Tasks” on page 20 and the SAS
Model Manager: Administrator's Guide.

• How do you want to structure the projects within the project control group in the
Project Tree? A project control group is a subfolder of an organizational folder. The
Project Tree enables multiple levels of organizational folders so that you can
customize how you structure the Project Tree. For example, your Project Tree could
be similar to your business departmental hierarchy or it could list individual project
names. For more information, see Chapter 4, “Organizing the Project Tree,” on page
47.

• What models do you want to use in each project of the control group? If the models
were created using SAS Enterprise Miner, SAS/STAT, or the SAS/ETS procedures
COUNTREG and SEVERITY, all model components are available to SAS Model
Manager when you import the model. Only models that are contained in an SPK file
can be imported using the Create Projects from a Control Table feature. At least
one SPK file must be prepared for each project and the SPK files should be placed in
the same location. If your model is a SAS code model or a PMML model that is not
contained in an SPK file, you must import it separately into the desired project
within the project control group, and you must ensure that you have imported all of
the model component files. For more information, see “Import SAS Code Models
and R Models Using Local Files” on page 130 and “Import PMML Models” on page
143.

• What model function do you want to use in each project of the control group?

SAS Model Manager has several model function types:

• Analytical

• Prediction

• Classification

• Segmentation

• Any

After the model function is specified for the project control group, the Model
Function property for a project cannot be changed. Ensure that the types of models
that you are going to use in each project of the project control group fit within the
selected model function type. For more information, see Table 5.1 on page 70.

• How do you want to define your project input and output variables? When you create
a project control group, you can import the variables using input and output
prototype tables, copy the variables from an existing champion model, or define
individual variables. The project variables are set for each project within the project
control group. If you use prototype tables to define the project input and output
variables, the tables must be registered in the SAS Metadata Repository using SAS

100 Chapter 7 • Working with Project Control Groups

Management Console, or you must create a libref for files that are stored on a local
or network drive before you create the project control group. For more information,
see “About Defining Project Input and Output Variables” on page 61.

• What method do you want to use to track the progress of a version? The Workflow
Console enables you to track the progress of activities from the version level for each
individual project within a control group. A SAS Model Manager administrator can
create a workflow and associate it with a version. You can also use the life cycle
feature to track the life cycle of models at the version level.

• If you decide to use the workflow process to track the progress of activities for a
version, you do not need to use the life cycle feature to monitor the progress of
milestones and tasks. However, you must select a life cycle when creating a
project control group, but you do not need to use the life cycle feature. You can
associate a workflow at the version level for each project with the control group.
For more information, see “Overview of Workflow Console” on page 346.

• If you decide to use the life cycle feature to monitor the progress of your version,
you must plan your milestones and the tasks for each milestone before you can
create a version for each individual project within a project control group. When
you have that information, you then create a life cycle template. The life cycle
template enables you to assign users at the version level to complete projects and
to monitor the progress of your project. For more information, see “Creating Life
Cycle Templates” on page 75.

• When you publish project champion models from a project control group to the SAS
Metadata Repository, you must specify a folder to which you can publish the project
champion models. You might need to create a folder in the SAS Metadata
Repository, if one does not already exist. For more information, see “Publish Models
to the SAS Metadata Repository” on page 228.

• After your project champion models are in a production environment, you can
monitor the performance of the project champion models within a project control
group in SAS Model Manager using your organization's operational data. If you use
SAS Model Manager to monitor performance of projects within a project control
group, you must first prepare performance tables using the operational data and then
register the tables in the SAS Metadata Repository using SAS Management console
or create a libref for files that are stored on a local or network drive. For more
information, see “Creating a Performance Table” on page 40.

• When you run performance monitoring reports, you can set up performance index
alert and warning conditions to notify users if conditions exceed the indexes. For
more information, see “Performance Index Warnings and Alerts” on page 259.

Prerequisites for Creating Project Control Groups
After you have planned the projects and models that you want to have in your project
control group, you must create a project control table that contains the segment
identifiers, projects, and models. The project control table can then be used by the Create
Projects from a Control Table feature to create a hierarchy of your project control group.

Project control groups can be created only by SAS Model Manager administrators and
SAS Model Manager advanced users. Ensure that users who create project control
groups are assigned to the group Model Manager Administrator Users or Model
Manager Advanced Users in SAS Management Console.

Prerequisites for Creating Project Control Groups 101

The project control table must contain the project names (project_name variable) to
create the projects within the control group. At least one segment identifier variable (for
example, segid) is required, and that segment identifier variable must also be in the
performance data set. When you want to monitor the performance of project champion
models, you must also associate the model name (model variable) with each project
(project_name) and segment identifier (segid, or another name for the segments) in the
table.

This is an example of a control table that can be viewed by using the Create Projects
from a Control Table feature:

You must know the model function type before you create a project control group.

SAS Model Manager has several model function types:

• Analytical

• Prediction

• Classification

• Segmentation

• Any

To determine the model function type for your project, compare your model to the
descriptions in Table 5.1 on page 70.

If you use prototype tables to define the project input and output variables, you must do
one of the following two things before you can create a project control group. Create the
project input and output tables and register them in the SAS Metadata Repository using
SAS Management Console. Create a libref for files on a local SAS Workspace Server or
network drive. You then can view the data tables from the Data Sources category view
in SAS Model Manager. See the following documents for details:

• For instructions about creating project input and output tables, see “Creating Project
Input and Output Tables” on page 37.

• SAS Model Manager: Administrator's Guide has instructions on registering project
input and output tables in SAS Management Console.

102 Chapter 7 • Working with Project Control Groups

Creating a Project Control Table
After you have planned the projects and models that you want to have in your project
control group, you must create a project control table that contains the segment
identifiers, projects, and models. The project control table is then used by the Create
Projects from a Control Table feature to create the hierarchy of your project control
group. The variable names that are required in the project control table are at least one
segment identifier (for example, segid), project_name, and model. All variables other
than project_name and model are treated as segment identifier variables. The segment
identifier variables do not have a required naming convention.

Here is an example of the code to create a project control table.

data control_Table;
 length segid project_name model $20;
 infile datalines dsd dlm=',' missover;
 input segid project_name model;
 datalines;
 seg01,US,reg1.spk
 seg02,Canada,tree1.spk
 seg03,Germany,hpf_class.spk
 ;
 run;

Create a Project Control Group
To create a project control group:

1. Right-click an organizational folder and select New ð Project Control Group. The
New Project Control Group window appears.

Create a Project Control Group 103

2. Enter a name for the project control group.

3. (Optional) Enter a description for the project control group.

4. Click OK. The project control group is created in the Project Tree.

Create Projects from a Control Table
To create projects from a control table:

1. Verify that the project control table contains the required variables. For more
information, see “Prerequisites for Creating Project Control Groups” on page 101.

2. Right-click a project control group in the Project Tree and select Create Projects
from a Control Table. The Create Projects from a Control Table wizard appears.

104 Chapter 7 • Working with Project Control Groups

3. Click Browse to select the control table from the SAS Metadata Repository or from
local SAS libraries.

Click View to view the columns and values in the control table.

Create Projects from a Control Table 105

For information about the required columns in a control table, see “Creating a
Project Control Table” on page 103.

4. Click Browse to select the location of the model SPK files that are in the control
table.

Click Save.

5. Specify the version, life cycle, and model function settings that are to be applied to
all projects in the control table when they are added to the project control group.

6. Click Build Projects to add the projects, versions, and models to the Preview
Projects list.

106 Chapter 7 • Working with Project Control Groups

7. Click Next. The Set Project Variables page appears.

Create Projects from a Control Table 107

8. Specify the input and output variables to apply to all of the projects in the control
group using one of these methods:

• Click Import Variables to import input variables or output variables. Select the
SAS Metadata Repository tab or the SAS Libraries tab, select the table, and
click OK.

• Click Copy Variables to copy variables from another project.

• Click Add to manually enter a new variable.

108 Chapter 7 • Working with Project Control Groups

9. Click Next. The Define Properties for Each Project page appears.

Create Projects from a Control Table 109

10. Specify the task properties and input tables to apply to all projects within the control
group.

110 Chapter 7 • Working with Project Control Groups

11. Click Next to view the summary of information that has been specified.

Create Projects from a Control Table 111

12. Click Finish. The projects are created with the version, life cycle, and model
function that was specified. The models for each project in the control table are
added to the Models folder within each version.

Note: The champion model for each project within the project control group must be
set manually. For more information, see “Set a Champion Model” on page 217.

112 Chapter 7 • Working with Project Control Groups

Add a New Version
To add a new version to all projects within a project control group:

1. Right-click a project control group in the Project Tree and select Add a New
Version. The Add a New Version window appears.

2. Specify a name and an optional description for the new version. Use a name that is
unique among versions in each project.

3. Select a life cycle template to monitor the milestone phases and tasks.

Note: The life cycle template is not associated with a workflow. If you are using the
Workflow Console to track the progress of workflow activities for the version in
each individual project within the project control group, you can choose any of
the life cycle templates.

• SAS Model Manager administrators and advanced users can use the SAS
Model Manager Template Editor to customize life cycle templates. Use the
Life Cycles category view to view the contents of a template.

• SAS Model Manager administrators can use the Workflow Console to create
a workflow and track the progress of activities for an individual version. A
workflow cannot be created at the project control group level or the project
level.

4. Review the selections and click OK.

5. Click Close in the success message. The new version is added to each project within
the control group.

Add a New Version 113

6. Examine the properties of the version folder of each project within the project
control group. The value for Date Created is today's date. The value for State is
Under Development.

Note: SAS Model Manager automatically annotates the version's history and notes.

For more information, see “Overview of Versions” on page 71.

Add an Input Variable
To add an input variable to each project within a control table:

1. Right-click a project control group and select Add a New Input Variable. The Add
a New Input Variable window appears.

114 Chapter 7 • Working with Project Control Groups

2. Specify a name, type, and length for the input variable.

Note: Only the values of character and number are valid for the variable type.

3. (Optional) Specify a description and measurement for the input variable.

4. Click OK.

Publish Project Champion Models from a Project
Control Group

To publish the champion models for projects within a control group, you must have
already set the models that you want to publish as project champion models. When a
champion model is selected, the version that contains the model is automatically set as
the default version for the project. SAS Model Manager examines the projects and
always publishes the champion models. When the champion model for a project changes
and you publish the model again to the same location, the scoring application
automatically uses the latest score code.

Note: SAS Model Manager cannot publish R models.

To publish champion models for projects in a control group:

1. Verify that a champion model has been assigned to all of the projects within a project
control group that you want to publish. Select a project folder to examine its
properties. The Default Version property contains the name of the default version.
For more information, see “Champion Models” on page 216.

2. Right-click the project control group and select Publish. The Publish to the SAS
Metadata Repository window appears.

Publish Project Champion Models from a Project Control Group 115

3. Select one or more champion models to publish.

4. Click Browse to select the location of the folder from the SAS Metadata Repository
that you want to publish the selected champion models to.

116 Chapter 7 • Working with Project Control Groups

Note: The selected champion models can be published only to a folder and you must
have Write permission to the folder on the SAS Metadata Repository.

5. Click OK.

Note: If a MiningResults object is in the SAS Metadata Repository that has the same
name or model UUID, then you are asked whether to overwrite the metadata for
this stored object. Do not overwrite an existing MiningResults object unless you
are certain that the model is from the same project in SAS Model Manager.

6. Click Close for the success message.

See Also
• “Verify the Model Publish” on page 230

• “Publish Models to the SAS Metadata Repository” on page 228

Monitor Performance of Project Champion
Models

To create performance monitoring reports for all projects within a project control group,
you run the Monitor Performance of Champion Models wizard to generate and execute
the code. Execution of the generated code creates the SAS data sets that are used to
display the performance monitoring reports from the version Performance node.

To monitor the performance of the champion models for all projects:

1. Right-click the project control group node in the project tree, and select Monitor
Performance. The Monitor Performance of Champion Models wizard appears.

Monitor Performance of Project Champion Models 117

Note: The Monitor Performance menu item is available only to SAS Model
Manager administrators and advanced users.

2. Specify the performance data options:

• Click Browse to select the performance data source.

Note: The performance data source must contain the same segment identifier
variables as the control table.

• To run the scoring task code in the performance monitor job, select the Run
model score code check box. If the check box is not selected, all of the output
variables for stability analysis must be in the performance data source.

• Click to select a collection date to associate with the performance data. The

date can be any date in the time period when the performance data was collected.

• Enter a report label to associate with the performance data. The report label
represents the time point of the performance data source. Because the report label
appears in the performance charts, use a label that has not been used for another
time period, is short, and is understandable (for example, 2013Q1 or 2013).

Click Next. The Input and Output Variables page appears.

118 Chapter 7 • Working with Project Control Groups

3. In the Output Variables for Stability Analysis table, select one or more output
variables. To select all output variables, click Select All.

4. In the Input Variables for Characteristic Analysis table, select one or more input
variables. To select all input variables, click Select All.

Click Next. The Define Properties for Each Project page appears.

Monitor Performance of Project Champion Models 119

5. Specify the properties that are required to generate the performance monitoring
reports.

Note: The values that are specified for the properties replace the values at the project
level for each project in the control group.

Click Next. The Warnings, Alerts, and E-mail Notifications page appears.

120 Chapter 7 • Working with Project Control Groups

6. Verify or set the condition values for Characteristic Analysis, and specify when and
who should receive e-mail notifications.

(Optional) To send the scoring results by e-mail, click Add in the E-mail
Notifications table. The Add Contact window appears.

a. Enter an e-mail address.

b. Select either Yes or No if you want an alert warning to be sent by e-mail when
alert or warning thresholds have been exceeded.

c. Select either Yes or No if you want a completion notice with the job status to be
sent by e-mail every time the report runs.

Click Next. The summary of the monitor performance task that has been created is
displayed.

Monitor Performance of Project Champion Models 121

7. Click Finish. The running background process status bar appears. The generated
SAS code executes automatically. When it is finished, a status message for the
monitoring results appears. You can view the generated code in the project
Performance Monitor folder for each project within the control group.

To execute the generated code again, right-click the Performance Monitor node in
the project control group folder, and select Execute. The performance task is
executed as a background process. SAS Model Manager saves the data sets that
create the monitoring reports in the version Resources folder of each project.

Note: The Execute pop-up menu item is available only to SAS Model Manager
administrators and advanced users.

8. (Optional) Repeat steps 1–7 to monitor performance of the champion models for
multiple performance data sources.

9. To view Model Monitoring Performance reports, select the Performance node at the
default version level for each project within the control group. The details section
displays a tab for each report. Select a tab to see a report.

See Also
“Prerequisites for Running the Define Performance Task Wizard” on page 266

122 Chapter 7 • Working with Project Control Groups

Part 3

Importing, Scoring, and
Validating Models

Chapter 8
Importing Models . 125

Chapter 9
Scoring Models . 157

Chapter 10
Validating Models Using Reports . 179

Chapter 11
Validating Models Using User Reports . 199

123

124

Chapter 8

Importing Models

Overview of Importing Models . 125

Import Models from the SAS Metadata Repository . 127

Import SAS Model Package Files . 128
What Is a SAS Model Package File? . 128
Create SAS Package Files in SAS Enterprise Miner . 128
About Creating SAS Package Files Using the %AA_Model_Register Macro . . . 129
Import Package Files . 129

Import SAS Code Models and R Models Using Local Files 130
Overview of Importing SAS Code Models . 130
Model Templates . 131
Model Template Component Files . 133
Viewing Model Template Files . 140
Importing a SAS Code Model . 140
Importing an R Model . 142

Import PMML Models . 143

Import Partial Models . 144

Set Model Properties . 145

Map Model Variables to Project Variables . 146

User-Defined Model Templates . 148
Creating a New Model Template . 148
Model Template Properties . 152

Specific Properties for a Model . 154

Overview of Importing Models
After you create a project and version, the next step is to import models into SAS Model
Manager. The Models folder is the container for all of the models under a version. After
model evaluation, one of the candidate models will become the champion model.
However, the first step is to import the candidate models into your version’s Models
folder.

125

SAS Model Manager provides many methods of importing your SAS models into your
project version:

• “Import Models from the SAS Metadata Repository” on page 127

• “Import SAS Model Package Files” on page 128

• “Import SAS Code Models and R Models Using Local Files” on page 130

• “Import Partial Models” on page 144

• “Import PMML Models” on page 143

SAS Model Manager also provides SAS macros so that you can use SAS code to import
or register SAS models into your project version. For more information, see Appendix 2,
“SAS Model Manager Access Macros,” on page 401 and Appendix 4, “Macros for
Registering Models to the SAS Metadata Repository ,” on page 449.

Note:

• Scorecard models can be imported using the SAS Code Models local files
method and the SAS Model Package File import method.

• HPFOREST procedure models can be imported using the SAS Metadata
Repository import and the SAS Model Package File import. You cannot import
PROC HPFOREST models using local files.

• High-Performance analytics models that are not created with SAS Enterprise
Miner can be registered to the SAS Metadata Repository using the
%AA_Model_Repository. These models can then be imported to SAS Model
Manager by importing the models from the SAS Metadata Repository and from a
SAS model package file..

• Before you import COUNTREG procedure and SEVERITY procedure models,
create the model score code using the %MM_Countreg_Create_Scorecode macro
and the %MM_Severity_Create_Scorecode macro. After the score code is
generated, you can use the %MM_Model_Register macro or the local files
method to import these models. For more information, see Appendix 6, “Macros
for Generating Score Code,” on page 473.

• SAS Model Manager cannot publish models to a database whose Score Code
Type model property is set to SAS Program or PMML.

• When you import models using the local file method, the table names that you
specify as model components must start with a letter or underscore, can contain a
period, and cannot be more than 32 characters long. Spaces or special characters
(for example, ~`!@#$%^&*()+={}[]|\\:;'<>?/") are not valid in a table name. For

126 Chapter 8 • Importing Models

more information about the types of model component tables, see “Model
Template Component Files” on page 133.

• Model component table variable names must start with a letter or underscore, and
cannot contain special characters (for example, `~!@#$%^&*()-+=[]\{}|;:'",./
<>?) or spaces. Variables with special characters can be used in SAS Model
Manager only when the SAS Model Manager administrator has set the Valid
Variable Name option to Yes in the SAS Management Console. For more
information, see the SAS Model Manager Administrator’s Guide.

• Unexpected results might occur if you import a model that was previously
exported using SAS Model Manager. A best practice is to import models that
were not previously exported by SAS Model Manager.

Import Models from the SAS Metadata Repository
If your SAS Enterprise Miner 5.1 (or later) model files or your models that are created
by the %AA_Model_Register macro are registered in your SAS Metadata Repository,
you can import them into SAS Model Manager from the repository.

Note: Before you import a model into your project's version, verify that the model type
matches the Model Function property setting on the project Properties tab or set the
Model Function property to Any. For more information about model functions, see
“Specific Properties for a Project” on page 505.

To import a model from a SAS Metadata Repository, follow these steps:

1. In the Project Tree, navigate to the project's version.

MMRoot ð organizational folder ð project folder ð version folder

2. Right-click the Models folder and select Import from ð SAS Metadata
Repository. The SAS Metadata Repository window appears.

3. Navigate to the location of the folder that contains the model.

4. In the Model name box, enter a model name. The name that you enter is used as the
name of the model in the Models folder. If you do not complete this box, SAS
Model Manager imports the model using the model name as it is registered in the
SAS Metadata Repository.

Import Models from the SAS Metadata Repository 127

5. Select a model from the folder.

Note: You can import only one model at a time in the SAS Metadata Repository
window.

6. Click OK. After SAS Model Manager processes the model import request, the new
model appears in the Models folder of your project's version.

You can select the model in the tree, and then view your newly imported model's data
structures using the Model Input, Model Output, and SAS Code tabs on the right.

See Also
• “Import SAS Model Package Files” on page 128

• “Import Partial Models” on page 144

• “Set Model Properties” on page 145

• “Map Model Variables to Project Variables” on page 146

• Appendix 4, “Macros for Registering Models to the SAS Metadata Repository ,” on
page 449

Import SAS Model Package Files

What Is a SAS Model Package File?
A SAS model package (SPK) file is a SAS Enterprise Miner SPK file or an SPK file that
was created by using the %AA_Model_Register macro. SPK files contain complete
model information. They enable a user to import into SAS Model Manager a complete
model that is not registered in a SAS Metadata Repository.

Create SAS Package Files in SAS Enterprise Miner
To create an SPK file for an existing SAS Enterprise Miner model:

1. Open the SAS Enterprise Miner diagram that contains the model, and then run the
model.

2. After the model run is complete, you can right-click the node in the SAS Enterprise
Miner Diagram Workspace, and select Create Model Package. The new SPK
filename appears under the Model Packages folder in your SAS Enterprise Miner
Project Navigator.

3. Right-click the filename and select Save As to copy the SPK file from the SAS
Enterprise Miner server to your computer.

4. Specify a destination folder on your computer, such as, C:\MMData, and save the
file to your workstation folder.

128 Chapter 8 • Importing Models

About Creating SAS Package Files Using the %AA_Model_Register
Macro

These models can be created by SAS procedures and are supported by SAS Model
Manager:

• SAS/STAT item store models

• High-performance models

• SAS/ETS COUNTREG procedure models

• SAS/ETS SEVERITY procedure models

You can use the %AA_Model_Register macro to create an SPK file to contain these
models. For more information, see “Create a SAS Package File Using a SAS/STAT Item
Store” on page 451.

Import Package Files
Note: Before you import a model into your project's version, verify that the model type

matches the Model Function property setting on the Project Properties panel. For
more information about model functions, see “Specific Properties for a Project” on
page 505.

To import package files into SAS Model Manager, follow these steps.

1. In the Project Tree, navigate to the project's version.

MMRoot ð organizational folder ð project folder ð version folder

2. Right-click the Models folder and select Import from ð SAS Model Package File.

3. Navigate to the location of the SAS model package (SPK) file and select the file.

4. To change the name of the model, enter a text value in the Model name box. The
value of the Model name box appears as the model name in the Project Tree.

5. Click OK. After the SAS Model Manager processes the model import request, the
new model appears in the Models folder of your project's version.

Import SAS Model Package Files 129

6. Repeat steps 2 through 5 to import additional model package files from your client
workstation folder.

See Also
• “Import Partial Models” on page 144

• “Set Model Properties” on page 145

• “Map Model Variables to Project Variables” on page 146

Import SAS Code Models and R Models Using
Local Files

Overview of Importing SAS Code Models
You use the Local Files method to import models that you create using SAS code, but
that were not created in or exported from SAS Enterprise Miner, and to import R
models. An example of a model might be a SAS LOGISTIC procedure model, a
SEVERITY model, or an R logistic model.

Note: HPFOREST models cannot be imported using local files.

To use the Local Files method, you must prepare model component files. Model
component files provide the metadata that is used to process a model in SAS Model
Manager. The model component files that you prepare are dependent upon the project's
model function. You can find the model function in the project property Model
Function. The SAS Model Manager model functions for SAS code models are
analytical, classification, prediction, segmentation or any. The model functions for R
models are analytical, classification, or prediction. For a list of component files by
model function, see “Model Template Component Files” on page 133. If you do not
have all of the component files when you import the model, you can create them and add
them later using the SAS Model Manager Partial Import utility. For more information,
see “Import Partial Models” on page 144.

After you have your model component files, you use the Local Files window to import
the component files. To open the Local Files window, right-click the Models folder and
select Import from ð Local Files. In the Local Files window, you select a model
template and assign values to the template model properties and model files. The
following display shows a partial list of model templates that you can select in the Local
Files window as well as the properties and files for the Classification model template:

130 Chapter 8 • Importing Models

Display 8.1 The Local Files Window

After you select your model template, you complete the property values in the General
and Properties section, as well as enter your component filenames in the Files section.

SAS code models, at a minimum, require a score code component file, and other
component files to define the model input and output variables in SAS tables. Prediction
and classification models also require a component file to define target variables.

R models, at a minimum, require SAS and R score code component files, a file for the
output parameter estimate, and the other component files to define the model input and
output variables using either SAS data sets or XML files. Prediction and classification
models also require a component file to define target variables.

Model Templates

What Is a Model Template?
Models that you import into SAS Model Manager are associated with a specific model
template. A model template has properties and component files that define a type of
model. SAS Model Manager processes four types of models: analytical, classification,
prediction, and segmentation. You can create your own model template if your model
requires files other than those named in the SAS Model Manager templates.

A model template is an XML file that has three sections. The General section names
and describes the model template. The Properties section provides properties to name
the model algorithm, the modeler, and a model label. The Files section contains the
component files that can be used in the template for that model function type.

You associate your component file with the appropriate model template component file.
You do this by dragging a component filename from a tree view to the corresponding
SAS Model Manager filename. For example, most templates have a modelinput.sas7bdat
component file. In the Local Files window, navigate to the location of model component
files, drag your myModelInput.sas7bdat file to the Files section, and drop it as the value

Import SAS Code Models and R Models Using Local Files 131

for modelinput.sas7bdat. Here is the local file model template component
myModelInput.sas7bdat as the value for the modelinput.sas7bdat component file:

Your component file filenames do not need to be the same name as the filenames in the
model template.

For information about component files for the different model types, see “Model
Template Component Files” on page 133.

SAS Model Manager Model Templates
SAS Model Manager provides model templates for analytical, classification, prediction,
and segmentation models.

Model Type Description

Analytical The Analytical model template is the most generic SAS
Model Manager template that is designed for models whose
model function does not fall in the prediction, classification,
and segmentation category.

Classification You use the Classification model template if your model is a
prediction model that has a categorical, ordinal, or binary
target, or if your model is a LOGISTIC procedure regression
model. Examples of classification models are models that
might classify a loan applicant as Approved or Not
Approved, or models that might assess a potential customer's
risk of default as Low, Medium, or High.

Prediction The Prediction model template is used for predictive
models. Predictive models declare in advance the outcome of
an interval target. A model that assigns a numeric credit
score to an applicant is an example of a prediction model.

Segmentation The Segmentation model template is used for segmentation
or cluster models that are written in SAS code. Segmentation
models are unsupervised models that have no target variable.
A segmentation or cluster model is designed to identify and
form segments, or clusters, of individuals or observations
that share some affinity for an attribute of interest. The
output from a segmentation model is a set of cluster IDs. R
models cannot have segmentation model function.

Any Specify Any when you import a SAS code model and you
want a choice of the model template to use in the Local Files
window. When you specify Any, SAS Model Manager lists
the available model templates in the Choose a model
template list in the Local Files window.

If you do not have the required component files that are in the model template, you can
add them later, using the SAS Model Manager feature, “Import Partial Models” on page
144.

132 Chapter 8 • Importing Models

User Model Templates
Model templates provide users with a way to define metadata about their own model.
Most users do not need to write model templates because SAS Model Manager delivers
a list of model templates that handle SAS Enterprise Miner models as well as analytical,
prediction, classification, and segmentation models. Users can write their own model
templates if the model templates that are provided by SAS Model Manager do not satisfy
their requirements.

Users can create model templates by using the SAS Model Manager Template Editor.
For more information, see “Creating a New Model Template” on page 148.

You can view the user model template files (as well as all of the other SAS Model
Manager template files) in the Browse window of the SAS Model Manager Template
Editor:

1. Select Tools ð Manage Templates. The SAS Model Manager Template Editor
appears.

2. Select File ð Browse ð Browse Templates. The Browse Templates window
appears.

Note: The Reserved column indicates whether the template can be modified. Yes
indicates that the template cannot be modified. No indicates that the template can
be modified. You use reserved templates as a model to create a customized
template. When a reserved template is uploaded to the SAS Content Server, SAS
Model Manager creates a new file with the same name and changes the new
file’s Reserved value to No.

3. Select a template and click Open. The template opens in the Template Editor.

Model Template Component Files
Here is a list of the component files that are associated with the SAS Model Manager
model templates:

Import SAS Code Models and R Models Using Local Files 133

Filename Analytical Classification Prediction Segmentation

IGN_STATS.csv on page
135

— — —

EMPublishScore.sas on
page 135

— — —

Scorecard_GainsTable.csv
on page 135

— — —

score.sas on page 135

modelinput.sas7bdat on
page 135

modeloutput.sas7bdat on
page 136

target.sas7bdat on page
136

— —

inputvar.xml on page 136

outputvar.xml on page 137

targetvar.xml on page 138 — —

smmpostcode.sas on page
138

trainingvariables.csv on
page 138

— — —

training.sas on page 139

training.log on page 139

training.lst on page 139

outest.sas7bdat on page
139

—

outmodel.sas7bdat on page
139

—

output.spk on page 139

miningResult.spk on page
139

—

layout.xml on page 139 — —

134 Chapter 8 • Importing Models

Filename Analytical Classification Prediction Segmentation

format.sas7bcat on page
139

dataprep.sas on page 139

batch.sas on page 139

pmml.xml on page 139 —

training.r on page 139 —

outmodel.rda on page 140 —

score.r on page 140 —

fitstats.xml on page 140 — —

HPDMForest_VARIMPO
RT.csv on page 140

— —

HPDMForest_ITERATIO
N.csv on page 140

— —

outmdlfile.bin on page 140 — —

IGN_STATS.csv
The value of IGN_STAT.csv is the name of a file whose values are separated by
commas, and whose values are bin definitions for input variables. This is a
component file that is generated by SAS Enterprise Miner for a scorecard model and
is not needed for SAS code models.

EMPublishScore.sas
The value of EMPublishScore.sas is the name of a SAS code file that is used to
change input variables into bins and is a component of a SAS Enterprise Miner
scorecard model. This file is needed to define a performance task. This file is not
needed for SAS code models.

Scorecard_GainsTable.csv
This file includes the bin score definitions and is not used in reporting by SAS Model
Manager. The file's content can be viewed by users.

score.sas
The value of score.sas is the name of a filename for the SAS score code for the
model.

For R models, this file transforms a scoring data set to an R data frame.

modelinput.sas7bdat
The value of modelinput.sas7bdat is the name of a sample data set that is used to
create an inputvar.xml file for the model if one does not exist. When no inputvar.xml
file exists for the model, SAS Model Manager creates the inputvar.xml file using the

Import SAS Code Models and R Models Using Local Files 135

variable name and attributes in the modelinput.sas7bdat file. Observation values are
not used. Therefore, the sample data set can have no observations or it can have any
number of observations. If an inputvar.xml is specified in the model template,
modelinput.sas7bdat is ignored.

When you import a SAS code model, the data set that you used to test your score
code can be used as the value for the modelinput.sas7bdat file.

Note: If the same variables appear in your modelinput.sas7bdat file and your
modeloutput.sas7bdat file, when you import the model, SAS Model Manager
removes the duplicate variables in the outputvar.xml file.

modeloutput.sas7bdat
The value of modeloutput.sas7bdat is the name of a sample data set that is used to
create an outputvar.xml file for the model if one does not exist. When no
outputvar.xml file exists for the model, SAS Model Manager creates the
outputvar.xml file using the variable name and attributes in the modeloutput.sas7bdat
file. Observation values are not used. Therefore, the sample data set can have no
observations or it can have any number of observations. If an outputvar.xml is
specified in the model template, modeloutput.sas7bdat is ignored.

You can create a modeloutput.sas7bdat file by running the score.sas file against the
modelinput.sas7bdat file.

target.sas7bdat
The value of target.sas7bdat is the name of a sample data set that is used to create a
targetvar.xml file for the model if one does not exist. When no targetvar.xml file
exists for the model, SAS Model Manager creates the targetvar.xml file using the
variable name and attributes in the target.sas7bdat file. Data set values are not used.
Therefore, the sample data set can have no observations or it can have any number of
observations. If a targetvar.xml file is specified in the model template,
target.sas7bdat is ignored.

You can create a target.sas7bdat file by creating a data set that keeps only the target
variables that are taken from the training data set, as in this example:

data mydir.target;
 set mydir.myModelTraining (obs-1)
 keep P_BAD;
run;

inputvar.xml
The value of inputvar.xml is the name of an XML file that defines the model input
variables. When your model template includes a file for modelinput.sas7bdat, SAS
Model Manager creates the model inputvar.xml file. Otherwise, you must create the
XML file.

The following XML file is a sample inputvar.xml file that has one variable, CLAGE.
You can use this model to create an inputvar.xml file that contains a VARIABLE
element for each model input variable.

<?xml version="1.0" encoding="utf-8"?>
<TABLE>
 <VARIABLE>
 <NAME>CLAGE</NAME>
 <TYPE>N</TYPE>
 <LENGTH>8</LENGTH>
 <LABEL Missing=""/>
 <FORMAT Missing=""/>
 <LEVEL>INTERVAL</LEVEL>
 <ROLE>INPUT</ROLE>

136 Chapter 8 • Importing Models

 </VARIABLE>
 </TABLE>

NAME
specifies the variable name.

TYPE
specifies the variable type. Valid values are N for numeric variables and C for
character variables.

LENGTH
specifies the length of the variable.

LABEL Missing=""
specifies the character to use for missing values. The default character is a blank
space.

FORMAT Missing=""
specifies a SAS format to format the variable.

LEVEL
specify either NOMINAL, ORDINAL, INTERVAL, or BINARY.

ROLE
specify INPUT for input variables.

outputvar.xml
The value of outputvar.xml is the name of an XML file that defines the model output
variables. When your model template includes a file for modeloutput.sas7bdat, SAS
Model Manager creates the model outputvar.xml file. Otherwise, you must create the
XML file.

The following XML file is a sample outputvar.xml file that has one variable, I_BAD.
You can use this model to create an outputvar.xml file that contains a VARIABLE
element for each model output variable.

<?xml version="1.0" encoding="utf-8"?>
<TABLE>
 <VARIABLE>
 <NAME>I_BAD</NAME>
 <TYPE>C</TYPE>
 <LENGTH>12</LENGTH>
 <LABEL>Into: BAD</LABEL>
 <FORMAT Missing=""/>
 <LEVEL>NOMINAL</LEVEL>
 <ROLE>CLASSIFICATION</ROLE>
 </VARIABLE>
 </TABLE>

NAME
specifies the variable name.

TYPE
specifies the variable type. Valid values are N for numeric variables and C for
character variables.

LENGTH
specifies the length of the variable.

LABEL Missing=""
specifies a label for the output variable.

Import SAS Code Models and R Models Using Local Files 137

FORMAT Missing=""
specifies a SAS format to format the variable.

LEVEL
specify either NOMINAL, ORDINAL, INTERVAL, or BINARY.

ROLE
specify the type of model output. Valid values are CLASSIFICATION,
PREDICT, SEGMENT, and ASSESS.

targetvar.xml
The value of targetvar.xml is the name of an XML file that defines the model target
variables. When your model template includes a file for target.sas7bdat, SAS Model
Manager creates the targetvar.xml file. Otherwise, you must create the XML file.

The following XML file is a sample targetvar.xml file that has one variable, I_BAD.
You can use this model to create an outputvar.xml file that contains a VARIABLE
element for each model output variable.

<?xml version="1.0" encoding="utf-8"?>
<TABLE>
 <VARIABLE>
 <NAME>BAD</NAME>
 <TYPE>N</TYPE>
 <LENGTH>8</LENGTH>
 <LABEL>Missing=””/>
 <FORMAT Missing=""/>
 <LEVEL>BINARY</LEVEL>
 <ROLE>TARGET</ROLE>
 </VARIABLE>
 </TABLE>

NAME
specifies the variable name.

TYPE
specifies the variable type. Valid values are N for numeric variables and C for
character variables.

LENGTH
specifies the length of the variable.

LABEL Missing=""
specifies a label for the target variable.

FORMAT Missing=""
specifies a SAS format to format the variable.

LEVEL
specify either NOMINAL, ORDINAL, INTERVAL, or BINARY.

ROLE
specify TARGET.

smmpostcode.sas
SAS Model Manager creates this file to document the mapping that the user
specified between the model variables and the project variables.

trainingvariables.csv
This optional file contains a list of the training variables.

138 Chapter 8 • Importing Models

training.sas
This file is the optional SAS code that was used to train the model that you are
importing. If at some time, SAS Model Manager reporting utilities detect a shift in
the distribution of model input data values or a drift in the model's predictive
capabilities, the training.sas code can be used to retrain the model on the newer data.
If it is not available at import time, the training.sas code can be added at a later point
using the SAS Model Manager Partial Import utility.

training.log
This file is the optional log file that was produced when the model that you are
importing was trained. The information in the optional SAS training log can be
helpful if the model must be retrained in the future.

training.lst
This file is the optional text output that is produced when the training.sas code is run.
The information in the optional SAS training.lst table can be helpful if the model
must be retrained in the future.

outest.sas7bdat
This data set contains output estimate parameters that are produced by a few SAS
procedures, including the LOGISTIC procedure.

outmodel.sas7bdat
This data set contains output data that is produced by a few SAS procedures,
including the LOGISTIC procedure and the ARBORETUM procedure. It contains
complete information for later scoring by the same SAS procedure using the SCORE
statement.

output.spk
This file is the SAS package file that contains the SPK collection of model
component files.

miningresult.spk
This is a SAS package file that stores detailed information about SAS Enterprise
Miner nodes in the flow from which the model is created and the detailed
information for SAS/STAT item store models.

layout.xml
This optional file contains information about the SAS Enterprise Miner diagram
topology.

format.sas7bcat
This file is the optional SAS formats catalog file that contains the user-defined
formats for their training data. If the model that you are importing does not use a
user-defined format, then you do not need to import a format.sas7bcat catalog file.

dataprep.sas
This file contains optional SAS code that is intended to be executed before each run
of score code.

batch.sas
This file is created by SAS Enterprise Miner and is used for model retraining by SAS
Model Manager.

pmml.xml
This file contains score code in PMML format.

training.r
This is an optional R script file that is used to retrain R models in SAS Model
Manager.

Import SAS Code Models and R Models Using Local Files 139

outmodel.rda
SAS Model Manager requires this file to save the output parameter estimate for R
models.

score.r
This file is an R script that is used to predict new data.

fitstats.xml
This file is created by SAS Enterprise Miner and contains the basic Fit Statistics for
the model.

HPDMForest_VARIMPORT.csv
This CSV file contains the variable importance data for a PROC HPFOREST model.

HPDMForest_ITERATION.csv
This CSV file contains statistics across each iteration of a PROC HPFOREST model.

OUTMDLFILE.bin
This is a binary file that contains the PROC HPFOREST model information to be
used for scoring.

For information about preparing R model component files, see Appendix 8, “SAS Model
Manager R Model Support,” on page 519.

Viewing Model Template Files
You can view model template files using the Browse Templates window. You open the
Browse Templates window from the SAS Model Manager Template Editor:

1. From the SAS Model Manager window, select Tools ð Manage Templates.

2. From the SAS Model Manager Template Editor, select File ð Browse ð Browse
Templates.

3. In the Browse Templates window, select the template.

4. Click Open. The template opens in the SAS Model Manager Template Editor.

Reserved templates cannot be modified.

Importing a SAS Code Model
To import a SAS code model:

1. Copy your SAS code model and all of the associated metadata files to a location on
your local workstation, or map the server that contains these model files to your local
workstation.

2. In the Project Tree, navigate to the project's version.

MMRoot ð organizational folder ð project folder ð version folder

3. Right-click the Models folder and select Import From ð Local Files.

140 Chapter 8 • Importing Models

4. Use the file utility icons to navigate to the folder that contains the component files
for your model.

5. Select a template from the Choose a model template list. For more information
about the type of model templates, see “Model Templates” on page 131.

6. Enter a text value in the model Name field.

7. Complete the template fields. Drag the files from the left of the window to the
corresponding file property on the right.

Import SAS Code Models and R Models Using Local Files 141

Note: The filenames do not have to match, provided that the file contents meets the
file property requirements. For more information, see the following topics:

• “Model Template Component Files” on page 133

• “Model Template Properties” on page 152

8. Click OK. After the SAS Model Manager processes the model import request, the
new model appears in the Models folder of your project's version.

Note: If the same variables appear in your modelinput.sas7bdat file and your
modeloutput.sas7bdat file, SAS Model Manager removes the duplicate variables in
the outputvar.xml file when you import the model.

Importing an R Model
For information about preparing R model files, see Appendix 8, “SAS Model Manager R
Model Support,” on page 519.

To import an R model into SAS Model Manager:

1. In the Project Tree, navigate to the project's version.

MMRoot ð organizational folder ð project folder ð version folder

2. Right-click the Models folder and select Import from ð Local Files.

3. In the Local Files window, select the R model template in the Choose a model
template box.

4. Enter R model-type in the Name field (for example, R Logistic).

5. Expand Desktop and navigate to the location of the R model files. Complete these
required model properties:

a. Drag the model input table to the modelinput.sas7bdat property.

142 Chapter 8 • Importing Models

b. Drag the model output table to the modeloutput.sas7bdat property.

c. Drag the target table to the target.sas7bdat property.

d. Drag the model.rda file to the outmodel.rda property.

e. Drag the R script file for scoring to the score.r property.

f. Drag the SAS scoring program to the score.sas property.

6. If you have other component files, drag them to their respective properties.

7. Click OK. After SAS Model Manager processes the model import request, the new
model appears in the Models folder of your project's version.

8. Repeat steps 2 through 7 to import additional R files from your client computer
folder.

Import PMML Models
PMML (Predictive Modeling Markup Language) is an XML-based standard for
representing data mining results. PMML is designed to enable the sharing and
deployment of data mining results between vendor applications and across data
management systems. The SAS Model Manager Import PMML Models feature enables
users to import PMML models that are produced by using other applications. PMML 4.0
(or later) is supported by SAS Model Manager. Models that are created using PMML 4.0
support DATA step score code. For more information about PMML support in SAS
Enterprise Miner, see the SAS Enterprise Miner Help.

Note: Before you import a PMML model, verify that the model type matches the Model
Function property setting on the Project Properties panel. For more information, see
“Specific Properties for a Project” on page 505.

Note: SAS Model Manager does not support the importing of a PMML file that contains
multiple models.

To import a PMML model into SAS Model Manager, follow these steps:

1. In the Project Tree, navigate to the project's version.

MMRoot ð organizational folder ð project folder ð version folder

2. Right-click the Models folder and select Import from ð PMML Model File. The
PMML Model File window appears.

Import PMML Models 143

3. Navigate to the location of the PMML file and select the file.

4. Enter a text value in the PMML model name field. The name can contain letters,
spaces, the underscore (_), the hyphen (-), and the period (.).

5. Click OK. After the SAS Model Manager processes the model import request, the
new model appears in the Models folder of your project's version.

6. Repeat steps 2 through 5 to import additional PMML files from your folder.

SAS Model Manager generates the score code for the model that is based on the PMML
file. The score.sas file is included with the model under the Models node.

Note: After you import a PMML 4.0 model, you can score the model using a scoring
task and you can create a model comparison report for the model. You can score tree,
regression, and neural PMML models. You cannot define a performance task if the
PMML model is set as the champion model.

Import Partial Models
Suppose you want to import a model, but you lack some of the model component files
that are needed to complete a model import into SAS Model Manager. The Partial Model
Import utility enables you to add files later that were not available when the model was
originally imported.

To add a new file to your incomplete model in SAS Model Manager, follow these steps:

1. In the Project Tree, navigate to the project's version.

MMRoot ð organizational folder ð project folder ð version folder ð Models

2. Right-click model name and select Partial Import. The Partial Import window
appears.

144 Chapter 8 • Importing Models

3. Select a model template component file from the Model template property list.

4. Select a file encoding in the File encoding list.

5. Use the navigation icons to the locate the file to be imported and select the file to
complete the File name field.

6. Click OK.

You can also use the Partial Model Import utility to overwrite model component files
that you have updated externally. If you use the Partial Import utility to import an
existing model component file that has the same name, the newer model component file
will overwrite the older model component file.

See Also
• “Import SAS Code Models and R Models Using Local Files” on page 130

• “Set Model Properties” on page 145

• “Map Model Variables to Project Variables” on page 146

Set Model Properties
After you import a model into SAS Model Manager, you specify additional property
values for your imported model.

To set the model properties, follow these steps:

1. Select the model in the Project Tree.

2. View the Properties tab in the panel on the right.

Set Model Properties 145

3. In the General Properties section, enter a model description for your model, if you
did not do so when the model was imported. The only property that you can edit in
the General Properties section is the Description. For more information, see
“General Properties” on page 503.

4. The System Properties section is a Read-only section that is created after a model has
been imported. The system properties for models do not require any configuration
after the model is imported into SAS Model Manager. To view a model's system
properties, click the + icon to the left of System Properties to expand the section.
For more information, see “System Properties” on page 504.

5. Enter specific properties for a model. Some property values are automatically
populated. Properties that appear in gray cannot be modified. For editable properties,
click the white field, and then enter or select a value. For more information, see
“Specific Properties for a Model” on page 154.

See Also
• “Import Partial Models” on page 144

• “Map Model Variables to Project Variables” on page 146

Map Model Variables to Project Variables
After a model has been imported and the remaining model properties are set on the
Properties tab, you must map the model output variables to the project output variables.
For more information about project input and output tables, see “Project Tables” on page
33.

To map the model variables to the project variables, follow these steps:

1. Select the model in the SAS Model Manager Project Tree.

146 Chapter 8 • Importing Models

2. Click the Model Mapping tab on the right and click Edit. The Set Model Output
Mapping window appears.

Note: Alternatively, you can open the Set Model Output Mapping window by
right-clicking the model name and selecting Set Model Output Mapping.

3. Click the model variable field in the Model Variables column that is displayed next
to the project variable that you want to map.

4. Select a model output variable from the list.

5. Repeat steps 3 and 4 for each model variable that requires mapping. Click OK.

See Also
• “Set Model Properties” on page 145

• “Overview of Importing Models” on page 125

Map Model Variables 147

User-Defined Model Templates

Creating a New Model Template

Overview of Model Templates
When you import a SAS code model or R model, you must define the component files to
be used in the model and specify the properties for the model. SAS Model Manager
provides model templates that you can use as an example to create your own model
template. You use the SAS Model Manager Template Editor to define model component
files and to specify system and user properties for your model template. The model
templates that are included with SAS Model Manager cannot be modified. For a list of
the component files that must be created for the different model types, see “Model
Template Component Files” on page 133. For a list of properties, see “Model Template
Properties” on page 152.

Note: Only a user or group with the role of Model Manager: Administration Usage can
upload a template after it has been created by a user. Several sample user template
XML files are included with the SAS Model Manager installation package and are
available to be used as a starting point for creating your own model template.

To open the Template Editor, select Tools ð Manage Templates.

Create a New Model Template
You can create a new model template either by modifying an existing model template or
by starting from an empty model template. To create a model template by modifying an
existing template, see “Modify a Model Template” on page 150.

To create a new model template from an empty template, follow these steps:

1. From the SAS Model Manager Template Editor window, select File ð New Model
Template. The Template Editor opens a template that has the name Untitled
Template. Properties that display an asterisk (*) require a value for the property.

148 Chapter 8 • Importing Models

2. Assign values to the model Properties on the right. The Name box is required.
Replace Untitled Template with the template name. For more information, see
“Model Template Properties” on page 152.

3. Create a list of component files for the model. For each new filename, right-click the
File List folder and select New File Item. The New File Item window appears.

4. Enter a Name and Description for the file, and then click OK. For more
information, see “Model Template Component Files” on page 133.

5. After all required files have been created, select each filename and assign values for
the properties on the right. For more information, see “File List Properties” on page
153.

6. To create a new property for the template, follow these steps:

a. Right-click the System or User folder and select New Property. The New
Property window appears.

b. Enter a Name and Description for the new property, and then click OK.

c. After all required properties have been created, select each property name and
enter the property field values on the right. For more information, see “System
and User Properties” on page 153.

7. To save the template, select File ð Save As. Then select a directory and filename for
the template. This creates a backup of the template at a local or network location.

8. Upload the template to the SAS Content Server. From the Browse Templates
window, select Upload File.

9. In the Upload File window, ensure that the name is correct and click OK.

User-Defined Model Templates 149

Modify a Model Template
Only user templates can be modified with the use of the SAS Model Manager Template
Editor. Reserved templates can be used as a model to create a customized model
template. When you open a reserved template, modify the template, and upload the
template to the SAS Content Server, SAS Model Manager creates a new user template
using the same name as the reserved template, the template is not reserved.

To modify a model template, follow these steps:

1. From the SAS Model Manager Template Editor window, select File ð Browse ð
Browse Templates.

2. Select a model template, and then click Open. The template properties appear on the
right.

3. To modify model template properties, select the property and make changes to the
property value. For more information, see “Template Properties” on page 152.

4. Create or modify file properties:

• To create a new file property, right-click the File List folder and select New File
Item. Complete the properties, and then click OK.

• To modify file properties, select the filename and make changes to the property
values.

150 Chapter 8 • Importing Models

For more information, see “File List Properties” on page 153.

5. Create or modify system and user properties:

• To create a new property, right-click the System or User folder and select New
Property. Complete the properties, and then click OK.

• To modify system or user properties, select the property and make changes to the
property values on the right.

User-Defined Model Templates 151

For more information, see “System and User Properties” on page 153.

6. To delete a file, system, or user property, right-click the property and select Delete.

7. To save the template, do one of the following:

a. Select File ð Save to save the changes to the existing template.

b. Select File ð Save As, and then select a directory and filename for the template.

Saving the template creates a backup file of the template.

8. Upload the template to the SAS Content Server. From the Browse Templates
window, select Upload File.

9. In the Upload File window, ensure that the name is correct and click OK.

Model Template Properties

Template Properties
Here is a list of the general properties that define the model template.

Property Name Description

Name Identifies the name of the template. This property is required.
The characters @ \ / * % # & $ () ! ? < > ^ + ~ ` = { } [] | ; : ‘ "
cannot be used in the name.

Description Specifies user-defined information about the template.

Type Specifies the type of the model. SAS Model Manager supports
the following model types:

Analytical Model
specifies the type of model that is associated with the
Analytical model function.

Classification Model
specifies the type of model that is associated with the
Classification model function.

Prediction Model
specifies the type of model that is associated with the
Prediction model function.

Clustering Model
specifies the type of model that is associated with the
Segmentation model function.

For more information about the model function types, see “SAS
Model Manager Model Templates” on page 132.

Tool Specifies a text value that describes which tool is used to
produce this type of model.

Validate Indicates that SAS Model Manager verifies that all of the
required files are present when users try to import a model into
SAS Model Manager. If validation fails, the model will not be
successfully imported.

152 Chapter 8 • Importing Models

Property Name Description

Display Name Specifies a text value that is displayed as the name of the model
template.

Score Code Type Specifies whether the imported model score code runs by using a
DATA Step fragment, SAS Program code, or PMML.

File List Properties
Here is a list of the File List properties that specify the files that are contained in a
model.

Property Name Definition

Name Identifies the name of the file. This property is required.

Description Specifies user-defined information about the file.

Required When it is selected, indicates that the file is a required
component file of the model that must be imported before using
the model.

Report When it is selected, indicates that the file is to be included in a
SAS package file when a model is published to a channel.

Type Specifies a file whose type is text or binary.

Fileref Specifies an eight-character (or fewer) SAS file reference to
refer to this file in score.sas code. The fileref is assigned by SAS
Model Manager when a SAS job is submitted.

Note: All user-defined models must have three files.

• score.sas is the model's score code.

• modelinput.sas7bdat is a SAS data set whose variables are used by the model
score code. The contents of the data set is not used by SAS Model Manager.

• modeloutput is a resulting data set when a user runs score.sas against
modelinput.sas7bdat. The data set provides output variables that the model
creates after a scoring task is executed. The contents of the data set is not used by
SAS Model Manager.

System and User Properties
Here is a list of the system-defined and user-defined properties for a model template.
Users can set these properties when they import a model.

Property Name Description

Name Identifies the name of the property. This is a required field.

Description Specifies user-defined information about the property.

User-Defined Model Templates 153

Property Name Description

Type Specifies a property whose type is String or Date.

Edit Indicates that the property can be modified when importing a
model or after the model is imported to SAS Model Manager.

Required Indicates that the property is required.

Initial Value Specifies a text string for the initial value for the property.

Display Name Specifies a text value that is displayed as the name of the
property.

Specific Properties for a Model
Here is a list of specific properties for a model that identify the fundamental model data
structures and some of the critical model life cycle dates. Where applicable, project-
based or version-based data structures automatically populate properties for model-based
data structures.

Property Name Description

Default Scoring Task Input Table Specifies a default SAS data set that is used as the
input data table for all of scoring tasks within the
SAS Model Manager project. The model's Default
Scoring Task Input Table property inherits the
property value from the associated version or
project, if one is specified.

Default Scoring Task Output Table Specifies a default SAS data set that defines the
variables to keep in the scoring results table and the
scoring task output table. The model's Default
Scoring Task Output Table property inherits the
property value from the associated version or
project, if one is specified.

Default Performance Table Specifies the default performance table for all model
performance monitoring tasks within a SAS Model
Manager project.

A model's Default Performance Table property
inherits the property value from the associated
version or project, if one is specified. If you do not
specify a performance table, some of the SAS Model
Manager Model Monitoring reports might not be
enabled.

154 Chapter 8 • Importing Models

Property Name Description

Default Train Table The train table is optional and is used only as
information. However, when a value is specified for
a model's Default Train Table property, SAS
Model Manager does the following:

• uses default train table to validate scoring
functions or scoring model files when a user
publishes the associated project champion model
or challenger models to a database.

• checks the Validate scoring results box in the
Publish Scoring Function window.

Expiration Date Specifies a date property by which the selected
model is obsolete or needs to be updated or replaced.
This property is for informational purposes and is
not associated with any computational action by
SAS Model Manager. This property is optional.

Model Label Specifies a text string that is used as a label for the
selected model in the model assessment charts that
SAS Model Manager creates. If no value is provided
for the Model Label property, SAS Model Manager
uses the text string that is specified for the Model
Name property. The Model Label property can be
useful if the Model Name property that is specified
is too long for use in plots. This property is optional.

Subject Specifies a text string that is used to provide an
additional description for a model, such as a
promotional or campaign code. This property is for
informational purposes and is not associated with
any computational action by SAS Model Manager.
This property is optional.

Algorithm Specifies the computational algorithm that is used
for the selected model. This property cannot be
modified.

Function Specifies the SAS Model Manager function class
that was chosen when the SAS Model Manager
associated project was created. The Function
property specifies the type of output that models in
the predictive model project generate. For more
information, see “Overview of Importing Models”
on page 125.

Modeler Specifies the Modeler ID or, when Modeler ID is
missing, specifies the user ID of the individual who
created the model that is stored in the SPK file for
SAS Enterprise Miner models. Otherwise, the
modeler can be specified during model import for
local files into SAS Model Manager.

Tool Specifies whether the imported model came from
SAS Enterprise Miner or from other modeling tools.

Specific Properties for a Model 155

Property Name Description

Tool Version Specifies the version number of the tool that is
specified in the Tool property.

Score Code Type Specifies whether the imported model score code is
a DATA step fragment, ready-to-run SAS code, or a
PMML file. Valid values are DATA step, SAS
Program, and PMML.

Note: If the model is created using PMML 4.0, the
Score Code Type is DATA step and not PMML.

Note: SAS Model Manager cannot publish models
to a database whose Score Code Type model
property is set to SAS Program and PMML.

Template Specifies the SAS Model Manager model template
that was used to import the model and to create
pointers to its component files and metadata.

Copied From Specifies where the original model is if this model is
copied from another model in the SAS Model
Manager repository.

Target Variable Specifies the name of the target variable for a
classification or prediction model. This property can
be ignored for segmentation, cluster, and other
models that do not use target variables. For example,
if a model predicts when GENDER=M, then the
target variable is GENDER.

Target Event Value Specifies a value for the target event that the model
attempts to predict. This property is used only when
a value is specified for the Target Variable
property. For example, if a model predicts when
GENDER=M, then the target event value is M.

156 Chapter 8 • Importing Models

Chapter 9

Scoring Models

Overview of Scoring Tasks . 157

Scoring Task Tabbed Views . 159

Create Scoring Output Tables . 162
What Is a Scoring Output Table? . 162
How to Create a Scoring Output Table Definition . 162

Create a Scoring Task . 164

Modify a Scoring Task . 167

Map Scoring Task Output Variables . 167

Execute a Scoring Task . 168

Schedule Scoring Tasks . 170
About Scoring Task Schedules . 170
Schedule a Scoring Task . 171
Delete a Scoring Task Schedule . 172

Graph Scoring Task Results . 172

Generated Scoring Task Content Files . 175

Scoring Task Properties . 176

Result Set Properties . 177

Overview of Scoring Tasks
The purpose of a scoring task within SAS Model Manager is to run the score code of a
model and produce scoring results that you can use for scoring accuracy and
performance analysis. The scoring task uses data from a scoring task input table to
generate the scoring task output table. The types of score code for a model that can be
imported are a DATA step fragment and ready-to-run SAS code.

If your environment has its own means of executing the score code, then your use of the
SAS Model Manager scoring tasks is mostly limited to testing the score code. Otherwise,
you can use the SAS Model Manager scoring tasks both to test your score code and
execute it in a production environment. Scoring results for a model in a test environment
are stored on the SAS Content Server. Scoring results for a model in a production
environment are written to the location that the output table metadata specifies. In
Windows, the scoring task output table in a SAS library must have Modify, Read &

157

Execute, Read, and Write security permissions. For more information, see “Scoring Task
Output Tables” on page 35.

CAUTION:
Executing a scoring task in production mode overwrites the scoring task
output table, which might result in a loss of data.

Note: In order to run scoring tasks in a high-performance environment, the scoring
output table must be a SAS table and not a database table.

You create a new scoring task in the Scoring folder of your version. Here is an example
of a Scoring folder under the version 2013.

These are the tasks that you perform as part of the Scoring Task workflow:

• Before creating a scoring task, you must create and register scoring task input and
output tables. For more information, see “Create Scoring Output Tables” on page
162 and “Project Tables” on page 33.

• To create a new scoring task for a model, you use the New Scoring Task window.
When a new scoring task is successfully created, the new scoring task folder is
selected under the Scoring folder. The scoring task tabbed view displays the various
views of the scoring task information. For more information, see “Create a Scoring
Task” on page 164 and “Scoring Task Tabbed Views” on page 159.

• Before you execute the scoring task, it is recommended that you verify the scoring
task output variable mappings on the Output Table view. For more information, see
“Map Scoring Task Output Variables” on page 167.

• After the scoring task output variables are mapped to the model output variables, it is
recommended that you verify the model input variables against the scoring task input
table columns. A convenient way to validate the scoring task input table is to use the
Quick Mapping Check tool. You can then execute the scoring task. For more

information, see “Execute a Scoring Task” on page 168.

• To run a scoring task at a scheduled time, you can open the New Schedule window
to specify the date, time and frequency that you want the scoring task to run. For
more information, see “Schedule Scoring Tasks” on page 170.

• After the successful execution of the scoring task, you can generate a number of
graphical views that represent the contents of the output table. For more information,
see “Graph Scoring Task Results” on page 172.

See Also
• “Create Scoring Output Tables” on page 162

158 Chapter 9 • Scoring Models

• “Create a Scoring Task” on page 164

• “Modify a Scoring Task” on page 167

• “Map Scoring Task Output Variables” on page 167

• “Execute a Scoring Task” on page 168

• “Graph Scoring Task Results” on page 172

Scoring Task Tabbed Views
Associated with each scoring task are tabbed views that provide you with a complete
picture of a scoring task from its creation through graphing the scoring results. The
following is a list of these views:

Tabbed View Description

Properties This view contains five groupings of properties,
some of which have fields that can be modified.
Click Save, when you update any of the properties
in this view. Here is a list of the groupings:

• “General Properties” on page 503

• “System Properties” on page 504

• “Scoring Task Properties” on page 176

• “Result Set Properties” on page 177

• “Schedule Properties” on page 518

Model Input Variables This view shows the model input variables.

Input Table This view shows the variables and attributes of the
scoring task input table. For each input variable the
model lists on the Model Input Variables tab,
there must be a matching variable in the input table.
The input table can contain additional variables.

Model Output Variables This view shows the model output variables.

Scoring Task Tabbed Views 159

Tabbed View Description

Output Table This view shows the variables and attributes of the
scoring task output table. The value of the Map to
Model Variable Name field must be the Model
Output Variable that corresponds to the scoring
task output variable in that row.

When this view is displayed for the first time, SAS
Model Manager attempts to discern the proper
mapping and fills in the initial mapping values for
you if the model output variable name is the same
as the output variable name. If these are not correct
or are incomplete, correct them and then click Save
at the bottom right of the view.

A Permission Denied message is displayed if a user
accesses this view before the creation of the scoring
task. Because users who are only in the SAS Model
Manager Users group do not have Write access,
they cannot perform that task.

Pre-code This view contains the code that SAS Model
Manager generates and places before the model's
score code. The SAS Model Manager generated
code is enclosed in comment tags. The generated
code cannot be changed.

After the generated code, you can append code that
you want to have executed before the score code.
You can use any variables, library references, or
file references that are specified in the generated
code section.

Post-code This view contains the code that SAS Model
Manager generates and places after the model's
score code. The SAS Model Manager generated
code is enclosed. The generated code cannot be
changed.

After the generated code, you can append code that
you want to have executed after the score code.
You can use any variables, library references, or
file references that are specified in the generated
code section.

SAS Code This view shows you the model's score code that is
executed. This is the code that appears between the
pre-code and the post-code. The SAS code cannot
be modified from the Scoring Task tabbed view.

Note that this view shows you the same code as the
model's SAS Code view. To see the code that was
actually executed for a scoring task, expand the
scoring task's folder and select the taskCode.sas
file. If you copy this code into a SAS editor
window and enter values for the user name and
password, you can run the code in SAS.

160 Chapter 9 • Scoring Models

Tabbed View Description

Results This view shows three separate views depending on
which button you click. Here are descriptions of
each view:

• Result Set is the view of the result data set.

• Log is the view of the log from the last
execution of this scoring task. This is the default
view.

• Output is the view of the listing file from the
last execution of this scoring task.

Both the Log and the Output views are visible from
the files taskCode.log and taskCode.lst that can be
found in the scoring task's folder.

What is shown in the Result Set view depends on
the value of the Scoring Task Type property. If
the value of this property is Test, then the results
are read from the .sas7bdat file that is specified in
the Output Table property. This file is in the SAS
Content server and can be found in the scoring task
folder. If the value of this property is Production,
then the results are read from the location of the
data source that is known to the SAS Metadata
Repository. For more information, see “Create
Scoring Output Tables” on page 162.

Graph This view displays graphs of the scoring task
output that you create by clicking the Graph
Wizard button. For more information, see “Graph
Scoring Task Results” on page 172.

Job History This view displays the following metadata about
the execution of a scoring task job:

Job Name specifies the name of the
scoring task job name.

Job Status specifies whether the job is
queued to start, running, or has
been completed.

Execution
Status

specifies whether the job was
completed successfully, was
completed with warnings, or
was completed with errors.

Date Started specifies the date on which the
job started.

Date
Completed

specifies the date on which the
job was completed.

Log specifies the revision number
for the taskCode.log file.

Output specifies the revision number
for the taskcode.lst file.

SAS Code specifies the revision number
for the taskCode.sas file.

Scoring Task Tabbed Views 161

See Also
“Modify a Scoring Task” on page 167

Create Scoring Output Tables

What Is a Scoring Output Table?
A scoring output table is a SAS data set that contains the data from executing a scoring
task. The scoring output table cannot be a database table. You can provide a scoring
output table or you can create a scoring output table definition using SAS Model
Manager. When you create a scoring task, you specify either the scoring output table that
you provide or the scoring task output definition as the scoring task output table.

A SAS data set that you provide as a scoring output table must be registered to the SAS
Metadata Repository or a libref must exist in the Data Sources category view for the
library where the data set resides.

You create a scoring output table definition by using the Create Output Table function
directly from the model. In the Create Output Table function, you select variables from a
scoring task input table as well as variables from the model’s output. The variables in the
Input Variables table are variables from the scoring task input table if one is specified
for the Default Scoring Task Input Table property for a project, version, or model
property. Otherwise, the Input Variables table is empty. The Output Variables that
appear in the window are model output variables. You use the variables from both tables
to create the scoring output table.

SAS Model Manager saves the table definition as metadata in the SAS Metadata
Repository. The location of the metadata is defined by the SAS library that you specify
when you create the output table definition. After SAS Model Manager creates the table
definition, the table can be selected as the output table for subsequent scoring tasks.

You can view a scoring output table definition on the SAS Folders tab of the Data
Sources category view. If you do not see the table, right-click the library name and select
Refresh.

When you execute a scoring task with a type of Test, the output table is located under
the scoring task node in the Project Tree. If the scoring task type is Production, the
output table is stored at the designated SAS library location that you specified in the
Create Output Table window.

How to Create a Scoring Output Table Definition
To create a scoring output table definition, follow these steps:

1. In the Project Tree, navigate to the Models folder.

MMRoot ð organizational folder ð project folder ð version folder ð Models

2. Right-click model name and select Create Output Table from the pop-up menu.

162 Chapter 9 • Scoring Models

Note: If no value for the model property Default Scoring Task Input Table is
specified on the Properties tab, the Input Variables section is empty.

3. Enter a name for the output table definition that is unique to the SAS library. The
names in the Library selection list are the SAS libraries that are defined in the SAS
Metadata Repository under the Data Library Manager folder in SAS Management
Console. The name can contain letters and the underscore (_). Spaces and special
characters are not allowed.

4. Select a SAS library name from the Library list.

Note: You must have Write access to the SAS library.

5. Select the check boxes in the Keep column for the input and output variables that
you want to include in the output table definition.

Note: If you want to use all of the variables in the output table definition, you can
click Add All instead of selecting individual variables. If you use Add All and
you want to use the project output variable names in the scoring table instead of
the model variable names, click Use Project Mappings before you click Add
All.

6. Select the Add model ID check box to add the ModelID variable to the output table
definition. The model UUID appears in all rows of the output table.

7. Select the Use Project Mappings check box to use the project's output variable
names in the output table definition for model variables that are mapped to project
variables.

Note: If you want to use all of the variables in the output table definition and you
want to use the project output variable names in the scoring table instead of the
model variable names, click Use Project Mappings before you click Add All.

Create Scoring Output Tables 163

8. Add the columns to the output table using one of these methods:

• Click Add Columns to add the individual column information from each row
that you selected in the Input Variables table and the Output Variables table.

• Click Add All to add all the columns in the Input Variables table and all the
variables in the Output Variables table.

Note: To clear your output table definition selections, click Remove All.

9. Click OK. The output table definition is created and you receive a confirmation
message. Click Close to close the confirmation message.

Note: You can view the output table definition in the SAS Folders tab or the SAS
Libraries tab of the Data Sources category view. You might need to right-click
the library name and select Refresh to see the table definition.

See Also
• “Overview of Scoring Tasks” on page 157

• “Project Tables” on page 33

Create a Scoring Task
To create a new scoring task, follow these steps:

1. Right-click the Scoring Tasks folder, and select New Scoring Task from the pop-up
menu.

164 Chapter 9 • Scoring Models

2. Enter aName for the scoring task. The name can contain only letters and the
underscore character (_). As an option, enter a Description.

3. Select a model from the Model list.

Note: When a model is selected, the values in the Input Table field and Output
Table fields are cleared.

4. Select Test or Production for the Scoring task type.

By default, a test scoring task scores 1000 records. The scoring output table is saved
to the SAS Content Server. A production scoring task generates either a SAS data set
or a database table and uses all the records in the scoring input table. The scoring
output table is saved to the library that is specified in score.sas.

Note: A best practice is to select Test before beginning all scoring tasks. Later,
when you are satisfied with the results of running the scoring task and you are
ready to put the task into production, you can change the type to Production.
When you run in production mode in the Windows and UNIX environments, the
scoring task output table definition in the SAS Metadata Server must have
Modify, Read and Execute, Read, and Write security permissions. The SAS
Model Manager user who is executing the scoring task must have Write
permission to the physical folder on the SAS Application Server where the
scoring task output table is written. If the user does not have Write permission,
the scoring task fails, and an error message appears.

5. Click Browse and select an input table.

Note: The scoring input table must have at least one column.

6. Click Browse and select an output table.

Create a Scoring Task 165

7. (Optional) Select a SAS Application Server from the Default server list.

8. Click Next.

9. Map the scoring output table variables to the model output variables. For each
variable, click in the Map to Model Variable Name field and select a model output
variable.

10. Click Finish. The scoring task is created under the Scoring Tasks node.

Note: Four of the Scoring Task properties cannot be modified after the scoring task has
been created. To change the following properties, you must create a new scoring
task.

• Name

• Model

• Input Table

• Output Table

See Also
• “Modify a Scoring Task” on page 167

• “Execute a Scoring Task” on page 168

• “Schedule Scoring Tasks” on page 170

• “Generated Scoring Task Content Files” on page 175

• “Scoring Task Properties” on page 176

166 Chapter 9 • Scoring Models

Modify a Scoring Task
The following are the only four tabbed views that can be modified:

• Properties

• Output Table

• Pre-code

• Post-code

For more information, see “Scoring Task Tabbed Views” on page 159.

To modify a scoring task, follow these steps:

1. Expand the Scoring Tasks folder and select your scoring task.

2. Click the tab information that you want to modify. The default is the Properties tab.

3. Make the desired changes to the tab information.

4. Click Save to store the changes before proceeding to the next tabbed view.

See Also
• “Create a Scoring Task” on page 164

• “Execute a Scoring Task” on page 168

• “Schedule Scoring Tasks” on page 170

• “Generated Scoring Task Content Files” on page 175

• “Scoring Task Tabbed Views” on page 159

Map Scoring Task Output Variables
To map scoring task output variables to model output variables, follow these steps:

1. Expand the Scoring Tasks folder and select your scoring task.

Map Scoring Task Output Variables 167

2. Click the Output Table tab.

3. For each Output Table Variable Name, select a model output variable from the
associated Map to Model Variable Name field.

4. Click Save.

See Also
• “Create Scoring Output Tables” on page 162

• “Create a Scoring Task” on page 164

• “Modify a Scoring Task” on page 167

• “Execute a Scoring Task” on page 168

Execute a Scoring Task
To execute a scoring task, follow these steps:

1. Verify that you have mapped the model output variables to the scoring task output
variables. For more information, see “Map Scoring Task Output Variables” on page
167.

2. Select the scoring task name, and click in the toolbar to validate the input

variables.

168 Chapter 9 • Scoring Models

The table in the Quick Mapping Check window compares the column names from
the Scoring Input Table (that is, the input data source) against the model's input
variable names.

A green check mark appears in the Verified column if the variable structures

match. Otherwise, a red X appears if the input scoring table does not contain a
variable that is used in the model. If one or more variables are not verified in the
map, the integrity of the data in the generate Scoring Output Table might be
unreliable.

3. Expand the Scoring Tasks folder. Right-click the scoring task and then select
Execute from the pop-up menu. A progress bar appears at the bottom of the SAS
Model Manager window.

4. After the task has been completed, a success or failure message is displayed. Click
Close, and then review the log for error messages.

5. Click the Result tab and then Result Set to view the scoring task results.

Execute a Scoring Task 169

6. Click the Graph tab and then Graph Wizard to graph the results. For more
information, see “Graph Scoring Task Results” on page 172.

Note: For a description of the content files that are created when a scoring task is
executed, see “Generated Scoring Task Content Files” on page 175.

See Also
• “Create a Scoring Task” on page 164

• “Schedule Scoring Tasks” on page 170

• “Modify a Scoring Task” on page 167

• “Generated Scoring Task Content Files” on page 175

• “Graph Scoring Task Results” on page 172

Schedule Scoring Tasks

About Scoring Task Schedules
Instead of executing a scoring task from the SAS Model Manager Project Tree, you can
schedule a scoring task to run on a particular date and time. You can also schedule how
often you want the scoring task to run. Advanced settings enable you to set the
scheduling server, the batch server to run the scoring task, and the location of the scoring
results.

Before you can schedule a scoring task, the password for your user ID must be made
available to the SAS Metadata Repository. Passwords can be added using SAS

170 Chapter 9 • Scoring Models

Management Console. To add or update your password, contact your SAS Model
Manager Administrator.

Scoring task schedules cannot be edited. If you need to modify a scoring schedule, delete
the schedule and create a new schedule.

Schedule a Scoring Task
To schedule a scoring task:

1. Verify that you have mapped the model output variables to the scoring task output
variables. For more information, see “Map Scoring Task Output Variables” on page
167.

2. Select the scoring task name, and click in the toolbar to validate the input

variables.

The table in the Quick Mapping Check window compares the column names from
the Scoring Input Table (that is, the input data source) against the model's input
variable names.

A green check mark appears in the Verified column if the variable structures

match. Otherwise, a red X appears if the input scoring table does not contain a
variable that is used in the model. If one or more variables are not verified in the
map, the integrity of the data in the generate Scoring Output Table might be
unreliable.

3. Right-click the scoring task and select New Schedule. The New Schedule window
appears.

Schedule Scoring Tasks 171

4. To set how often to run the scoring task, click the Recurrence list box and select a
time interval.

5. To set the time to run the job, select an hour from the Hour list box and select a
minute from the Minute list box.

6. To set the start date, click the calendar and select a start date. Instead of using

the calendar, you can select a month from the Month list box, select a day from the
Day list box, and select a year from the Year list box.

7. (Optional) Click Advanced. Select the server that schedules the job from the
Scheduling server list box. Select the batch server that runs the job from the Batch
server list box. Select a location for the scoring task output from the Location list
box. Click OK.

8. Click OK. A dialog box message confirms that the schedule was created. Click
Close.

Note: Scoring task schedules cannot be edited. To change the schedule, delete the
schedule and create a new schedule.

Delete a Scoring Task Schedule
To delete a scoring task schedule:

1. Right-click the scoring task and select Delete Schedule.

2. A message box confirms that the schedule was deleted. Click Close.

Note: Scoring task schedules cannot be edited. To change the schedule, delete the
schedule and create a new schedule.

Graph Scoring Task Results
After the scoring task successfully executes, you can use the graphics wizard to plot your
customized charts.

To graph scoring task results, follow these steps:

1. Select the scoring task in the Scoring Tasks node.

172 Chapter 9 • Scoring Models

2. Select the Graph tabbed view of the scoring task and then click Graph Wizard. The
Select a Chart Type window appears.

3. Select a chart type from the list box on the left, and then select the chart display
button on the right. A description of how the results are graphed for a chart appears.

4. Click Next. The Select Chart Roles window appears.

5. For each variable, select the row and then select a value from the Role list.

Note: You can also click Use default assignments to assign variables to the
required roles.

6. Click Next.

7. Follow the Graphics Wizard to define the options such as data parameters, color,
title, legend, and so on.

Here are examples of the options that you can define:

Graph Scoring Task Results 173

8. Click Finish to display the graph.

174 Chapter 9 • Scoring Models

See Also
“Execute a Scoring Task” on page 168

Generated Scoring Task Content Files
At various points in the life cycle of a scoring task the SAS Model Manager user can
create any or all of the content files that are described below. After the files are created,
they are written to the scoring task folder.

The conditions under which they are created and a description of their content follows:

Filename Description

<Output Table
Name>.sas7bdat

This file is created whenever the scoring task is executed and
the scoring task property Scoring Task Type is set to Test.
The contents are not the most recent scoring output results if
the type of the scoring task was changed from Test to
Production, and the scoring task is executed.

taskCode.log This file is the SAS log for the scoring task code that is
executed on the SAS Application Server. The SAS log file is in
sync with the taskCode.sas file.

taskCode.lst This file is the SAS listing file and is created only if the score
code executes code that produces a listing file.

taskCode.sas This file is created the first time you execute the scoring task.
This file is updated each time you execute a scoring task. It
contains the code that was last sent to the SAS Application
Server for execution.

Generated Scoring Task Content Files 175

Filename Description

preScoreCode.sas This file is created only if you add code after the generated
code section in the Pre-code view. For more information, see
“Scoring Task Tabbed Views” on page 159.

postScoreCode.sas This file is created only if you add code after the generated
code section in the Post-code view. For more information, see
“Scoring Task Tabbed Views” on page 159.

See Also
• “Execute a Scoring Task” on page 168

• “Scoring Task Tabbed Views” on page 159

Scoring Task Properties
Here is a list of the Scoring Task properties that provide information that is specific to
the scoring task.

Property Name Description

Scoring Task Type Specifies a value of Test or Production for
the type of scoring task.

SAS Application Server Specifies the name of the SAS Application
Server to which SAS Model Manager is
connected. This value is taken from the SAS
Metadata Repository.

Model Specifies the name of the model whose score
code is to be executed on the SAS Application
Server. This value is set when the scoring task
is created and cannot be modified.

Input Table Specifies the name of the input table (data
source) to be used in scoring. This value is set
when the scoring task is created and cannot be
modified.

176 Chapter 9 • Scoring Models

Property Name Description

Output Table Specifies the name of the output table to be
used in scoring. This value is set when the
scoring task is created. If the scoring task type
is Test, this property identifies the name of
the output file (output_filename.sas7bdat) that
is created by the SAS Application Server
when the score code is executed. Upon
creation, the output file is placed in the
scoring task's folder. If the scoring task type is
Production, then this setting identifies the
output table where the results of the scoring
are written.

See Also
• “Create a Scoring Task” on page 164

• “Modify a Scoring Task” on page 167

• “Execute a Scoring Task” on page 168

• “Schedule Scoring Tasks” on page 170

Result Set Properties
The following property provides information that is specific to the scoring task.

Property Name Description

Number of Observations When Scoring Task Type is set to Test, this
property specifies how many observations are
to be read from the scoring task input table.
This setting enables you to limit the number of
records that are written to the scoring task
output table on the SAS Content Server in
order to reduce operation costs. If a value is
not specified, the default value of 1000 rows
is used for the number of observations.

When Scoring Task Type is set to
Production, this property specifies how many
observations are to be read from the scoring
task input table and displayed when you select
Result Set from the Results tab. The default
value is 0, indicating that there is no limit.
This value cannot be changed in the SAS
Model Manager client. The SAS Model
Manager administrator can modify the value
by using SAS Management Console For more
information, see SAS Model Manager:
Administrator's Guide.

Result Set Properties 177

See Also
• “Create a Scoring Task” on page 164

• “Modify a Scoring Task” on page 167

178 Chapter 9 • Scoring Models

Chapter 10

Validating Models Using Reports

Overview of Model Comparison, Validation, and Summary Reports 180
What Are Model Comparison, Validation, and Summary Reports? 180
The Model Comparison, Validation, and Summary Report Input Files 181
The Model Comparison, Validation, and Summary Report Output Files 182

Model Profile Reports . 183
About Model Profile Reports . 183
Create a Model Profile Report . 183

Delta Reports . 184
About Delta Reports . 184
Create a Delta Report . 185

Dynamic Lift Reports . 186
About Dynamic Lift Reports . 186
Verify Project and Model Property Settings . 187
Create a Dynamic Lift Report . 188

Interval Target Variable Report . 189
About Interval Target Variable Reports . 189
Verify Project and Model Properties . 189
Create an Interval Target Variable Report . 189

Basel II Reports . 191
About Basel II Reports . 191
The Loss Given Default and Probability of Default Model

Validation Report Properties . 191
Prerequisites for Loss Given Default Reports . 192
Create a Loss Given Default Report . 193
Prerequisites for Probability of Default Model Validation Reports 194
Create a Probability of Default Model Validation Report 195

Training Summary Data Set Reports . 196
About Training Summary Data Set Reports . 196
Generate the Training Summary Data Sets . 196
Create a Training Summary Data Set Report . 197

View Reports . 198

179

Overview of Model Comparison, Validation, and
Summary Reports

What Are Model Comparison, Validation, and Summary Reports?
The SAS Model Manager model comparison, validation, and summary reports are tools
that you can use to evaluate and compare the candidate models in a version or across
versions to help you select and approve the champion model that moves to production
status. The SAS Model Manager model comparison reports are analytical tools that
project managers, statisticians, and analysts can use to assess the structure, performance,
and resilience of candidate models. The model validation reports use statistical measures
to validate the stability, performance, and calibration of Basel II risk models and
parameters. The training summary data set report creates frequency and distribution
charts that summarize the train table variables.

The reports present information about a number of attributes that can affect model
performance. Together, the reports provide qualified information that can serve as the
analytical basis for choosing and monitoring a champion model.

Here is a description of the comparison reports:

Model Profile Report
For a single model, this report displays the profile data that is associated with input,
output, and target variables. Profile data includes the variable name, type, length,
label, SAS format, measurement level, and role.

Delta Report
This report compares the profile data for two models and notes the differences.

Dynamic Lift Report
The Dynamic Lift report provides visual summaries of the performance of one or
more models for predicting a binary outcome variable.

Interval Target Variable Report
The Interval Target Variable report creates two plots for you to view the actual
versus predicted values for a model and the actual versus residual values for a model.
Interval Target Variable report can be created only for prediction models.

These are the Basel II model validation reports:

Loss Given Default Report
The Loss Given Default (LGD) report calculates the amount that might be lost in an
investment and calculates the economic or regulatory capital for Basel II compliance.

Probability of Default Model Validation Report
The Probability of Default (PD) Validation report estimates the probability of
defaulting on a debt that is owed. Probability of default is used to calculate economic
or regulatory capital for Basel II compliance.

The model validation reports use statistical measures that report on these model
validation measures:

• The model stability measures track the change in distribution for the modeling data
and scoring data.

• The model performance measures check the model’s ability to distinguish between
accounts that have not defaulted and accounts that have defaulted, as well as report

180 Chapter 10 • Validating Models Using Reports

on the relationship between actual default probability and predicted default
probability.

• The model calibration measures check the accuracy of the selected models for the
LGD and the PD reports by comparing the correct quantification of the risk
components with the available standards.

This is the train table data set summary report:

Training Summary Data Set Report
The Training Summary Data Set report creates frequency and distribution charts for
a training data set.

You create the model comparison, validation, and summary reports using the New
Report window that you start from a version's Reports node:

The Model Comparison, Validation, and Summary Report Input Files
SAS Model Manager uses a test table as the input table for the Dynamic Lift report and
the Interval Target Variable report.

Before you can create a Dynamic Lift report or the Interval Target Variable report, make
sure that a test table has been added to the SAS Metadata Repository using SAS
Management Console or that a libref has been defined in the Edit Start-up Code
window for the SAS library where the test table resides. The test table can be viewed in
the Data Sources category view. Then, specify the test table in the project property
Default Test Table.

You specify the input table for Basel II validation reports in the New Report window.
The input file for the validation reports can contain only input variables or it can contain
input and output variables. If the input table contains input and output variables, the
report generation does not need to run a scoring task to obtain the output variables.

Overview of Model Comparison, Validation, and Summary Reports 181

To create a train table summary report, use a train table to create training summary data
sets. The training summary data sets are used to create the train table summary report.
Either the train table must be added to the SAS Metadata Repository or a libref must be
defined in the Edit Start-up Code window for the train table library. The train table must
then be specified in the project or version property for Default Train Table. You create
the training summary data sets by using the Generate Training Summary Data Set
feature of SAS Model Manager from the version node in the Project Tree.

See Also
• “Specific Properties for a Project” on page 505

• “Creating a Test Table” on page 40

The Model Comparison, Validation, and Summary Report Output
Files

The New Reports window stores the model comparison, validation, and summary report
output files in a report node under the Reports node. The name of the report node is the
value of the Name box that you specified in the New Report window Report Properties
table.

Each time you create a report, these files are generated:

• the report in either HTML, PDF, RTF, or EXCEL format

Note: The Loss Given Default and Probability of Default model validation reports
can be created only in PDF and RTF formats.

• taskCode.log

• taskCode.sas

Here is a description of the model comparison output files:

Report File Description

report-name.html This file is the report output in HTML format.

report-name.pdf This file is the report output in PDF format.

report-name.rtf This file is the report output in RTF format.

report-name.xls This file is the report output in Excel format.

taskCode.log This file is the log file that contains messages from running the SAS
code to create the report.

taskCode.sas This file is the SAS code that is used to create the report.

After you create a report, you can view the report from the Reports node:

182 Chapter 10 • Validating Models Using Reports

Note: If you save a report to a local drive, images in the reports, such as graphs, do not
appear. The report images are separate files and are stored in the SAS Content
Server. Always view reports from the Reports node.

Model Profile Reports

About Model Profile Reports
A Model Profile report displays the profile data that is associated with the model input
variables, output variables, and target variables. The report creates three tables, one each
for the model input, output, and target variables.

Here is a description of the model profile data:

Profile Data Description

Name the name of the variable

Type the data type of the variable: character (C) or numeric (N)

Length the length of the variable

Label a label that is associated with the variable

Format the SAS format that is associated with formatting the variable

Level the measurement level: nominal, ordinal, interval, or binary

Role the type of variable: input, output, or target

The reports are created using these auxiliary model files:

• inputvar.xml

• outputvar.xml

• targetvar.xml

These are the tasks that you perform for Model Profile reports:

• “Create a Model Profile Report” on page 183

• “View Reports” on page 198

Create a Model Profile Report
To create a Model Profile report:

1. Expand the version folder .

2. Right-click the Reports node and select Reports ð New Report. The New Report
window appears.

Model Profile Reports 183

3. Select Model Profile Report from the Type list box.

4. In the Format list box, select the type of output that you want to create. The default
is PDF. Other options are HTML, RTF, and EXCEL.

5. In the Style list box, select the style for the output. The default is SAS default. Other
options are Seaside, Meadow, and Harvest.

6. In the Select column of the Select Models table, select the models that you want to
include in the report. This report requires only one model.

7. In the Report Properties table, complete the Name and Description properties if
you do not want to use the default values. The default value for the Name property
uses the form profile_DdateTtime The name can contain letters, spaces, the
underscore (_), the hyphen (-), and the period (.).

8. Click OK. A message confirms that the report was created successfully.

See Also
“View Reports” on page 198

Delta Reports

About Delta Reports
A Delta report compares the input, output, and target variable attributes for each of the
variables that are used to score two candidate models. Delta reports display the
differences in the variables of competing candidate models. The report output is a table
that groups the variables by the variable name. For each variable, the reports lists the

184 Chapter 10 • Validating Models Using Reports

attribute value for each model and whether the attribute value is the same or different
from the other attribute values.

Here is a description of each of the columns in the output of a Delta report:

Column Description

Role Specifies the function that a variable performs in determining a
score code.

Name Specifies the name of the variable that is being compared.

Variable Attribute Specifies the name of the variable attribute that is being
compared.

Model Name-1 Contains the value of the attribute for the first model.

Model Name-2 Contains the value of the attribute for the second model.

Difference Specifies an X if the value of the variable attribute is different
from the value of the variable attributes in the other model. If
the value of the variable attribute is the same, this column is
blank.

Create a Delta Report
To create a Delta report:

1. Expand the version folder .

2. Right-click the Reports node and select Reports ð New Report. The New Report
window appears.

Delta Reports 185

3. Select Delta Report from the Type list box.

4. In the Format list box, select the type of output that you want to create. The default
is PDF. Other options are HTML, RTF, and EXCEL.

5. In the Style list box, select the style for the output. The default is SAS default. Other
options are Seaside, Meadow, and Harvest.

6. In the Select column of the Select Models table, select the check boxes for the two
models that you want to include in the report.

7. In the Report Properties box, complete the Name and Description properties if you
do not want to use the default values. The default value for the Name property uses
the form delta_DdateTtime. The name can contain letters, spaces, the underscore
(_), the hyphen (-), and the period (.).

8. Click OK. A message confirms that the report was created successfully.

See Also
“View Reports” on page 198

Dynamic Lift Reports

About Dynamic Lift Reports
The Dynamic Lift report enables you to view a model's lift at a given point in time or to
compare the lift performance of several models on one chart. The Dynamic Lift report
creates the following charts:

186 Chapter 10 • Validating Models Using Reports

• Lift

• Cumulative Lift

• Percent Response

• Cumulative Percent Response

• Captured Response

• Cumulative Captured Response

A Dynamic Lift report can be created only for classification models with a binary target.

The charts that are created for a Dynamic Lift report are also created in the Monitoring
Report, which creates multiple types of model comparison reports. Before you can create
a Dynamic Lift report, certain project and model property settings must be set.

For PMML 4.0 and later models, the Valid variable name option in SAS Management
Console must be set to Yes by a SAS Model Manager administrator. For more
information, see the SAS Model Manager 12.3 Administrator’s Guide.

Verify Project and Model Property Settings

Verify Project Properties
Select the project name and verify that the following project properties are set:

Default Test Table
Specifies a test table that is listed in the Test Tables data source. The test table must
contain the target variable, as well as values for the variables that are defined by the
project input variables.

Training Target Variable
Specifies the name of the target variable that was used to train the model. The model
must have the same training target variable as the project.

Target Event Value
Specifies the value for the desired target variable event or state. For example, if a
model predicts when RESPONSE=YES, then the target event value is YES.

Output Event Probability Variable
Specifies the name of the output event’s probability variable.

Verify Model Properties
For each model in the Dynamic Lift report, click on the model name and verify the
specified properties on the following tabs:

Model Mapping
Click the Model Mapping tab and verify that the model variables are mapped to the
project variables. If the variable names are the same, you do not need to map the
variables. If they are not mapped, click Edit. Click the Model Variables property
for each project variable and select a model variable.

Properties

Property Description

Target Variable Specifies the name of the target variable.
For example, if a model predicts when
RESPONSE=YES, then the target variable
is RESPONSE.

Dynamic Lift Reports 187

Property Description

Score Code Type Specifies whether the score code runs using
a DATA step fragment or SAS code that is
not a DATA step fragment.

Note: Dynamic Lift reports are not applicable to models whose Score Code Type
property has a value of PMML. For PMML 4.0 and later, a Dynamic Lift report
can be created for a PMML model whose Score Code Type is DATA step.

Create a Dynamic Lift Report
After ensuring that the appropriate project and model properties have been set, create the
report.

1. Expand the version folder .

2. Right-click the Reports node and select Reports ð New Report. The New Report
window appears.

3. Select Dynamic Lift Report from the Type list box.

4. In the Format list box, select the type of output that you want to create. The default
is PDF. Other options are HTML, RTF, and Excel.

5. In the Style list box, select the style for the output. The default is SAS default. Other
options are Seaside, Meadow, and Harvest.

6. In the Select column of the Select Models table, select the boxes for the models that
you want to include in the report.

188 Chapter 10 • Validating Models Using Reports

7. In the Report Properties table, complete the Name and Description properties if
you do not want to use the default values. The default value for the Name property
uses the form dynamicLift_DdateTtime. The name can contain letters, spaces, the
underscore (_), the hyphen (-), and the period (.).

8. Click OK. A message confirms that the report was created successfully.

9. If errors occurred, ensure that the prerequisite properties have been set correctly or
correct the reported model configuration error.

See Also
“View Reports” on page 198

Interval Target Variable Report

About Interval Target Variable Reports
The Interval Target Variable report creates two plots for you to view the actual versus
predicted values for a model and the actual versus residual values for a model. Interval
Target Variable report can be created only for prediction models. Before you can create
an Interval Target Variable report, certain project and model property settings must be
set.

Verify Project and Model Properties
Before you can run an Interval Target Variable report, you must set the following project
properties:

Default Test Table
Specifies a test table that is listed in the SAS Metadata Repository tab or the SAS
Libraries tab in the Data Sources category view. The test table must contain the
target variable, as well as values for the variables that are defined by the project
input variables.

Training Target Variable
Specifies the name of the target variable that was used to train the model. The model
must have the same training target variable as the project.

Output Prediction Variable
Specifies the name of the output prediction variable.

To verify the model mapping, click on the model name and verify that the model
variables are mapped to the project variables. If the variable names are the same, you do
not need to map the variables. If they are not mapped, for each project variable, click
Edit, click the project variable’s Model Variable field, and select a variable name.

Create an Interval Target Variable Report
After ensuring that the appropriate project properties have been set and the model
mapping is set, create the report.

1. (Optional) Change the sample seed in SAS Management Console. The report is
created based on the sample data of the default test table. By default, the sample seed
is 12345.

Interval Target Variable Report 189

2. Expand the version folder .

3. Right-click the Reports node and select Reports ð New Report. The New Report
window appears.

4. Select Interval Target Variable Report from theType list box.

5. In the Format box, select the type of output that you want to create. The default is
PDF. Other options are HTML, RTF, and EXCEL.

6. In the Style box, select a report style. The default is SAS default. Other options are
Seaside, Meadow, and Harvest.

7. In the Select column of the Select Models table, select the box for the models that
you want to include in the report.

8. In the Report Properties box, complete the Name and Description properties if you
do not want to use the default values. The default value for the Name property uses
the form IntervalTarget_DdateTtime. The name can contain letters, spaces, the
underscore (_), the hyphen (-), and the period (.). Click OK. A dialog box
message confirms that the report was created successfully.

9. If errors occurred, ensure that the prerequisite properties have been set correctly or
correct the reported model configuration error.

See Also
“View Reports” on page 198

190 Chapter 10 • Validating Models Using Reports

Basel II Reports

About Basel II Reports
Basel II reports in SAS Model Manager provide several statistical measures and tests to
validate the stability, performance, and calibration using Loss Given Default (LGD) and
Probability of Default (PD) models.

Model stability measures
The model stability measures track the change in distribution of the modeling data
and the scoring data.

Model performance measures
The model performance measures report this information:

• The model’s ability to discriminate accounts that have defaulted with those that
have not defaulted. The score difference between the accounts that default and
those that do not helps determine the cut-off score, which is used to predict
whether a credit exposure is a default.

• The relationship between the actual default probability and the predicted
probability. This information is used to understand a model’s performance over a
period of time.

Model calibration measures
The model calibration measures check the accuracy of the LGD and PD models by
comparing the correct quantification of the risk components with the available
standards.

For a description of the statistical measures, see Appendix 9, “Statistical Measures Used
in Basel II Reports,” on page 527.

The Loss Given Default and Probability of Default Model Validation
Report Properties

In order to create the Basel II reports, SAS Model Manager must know the input and
output variables for the model. To run the reports, the New Report window requires the
name of an input table. The input table can contain only input variables, or it can contain
input and output variables. If the input table contain only input variables only, a scoring
task must be run to obtain the output variable. If the input table contains the input and
output variables, no scoring is necessary. You specify whether a scoring task must be
run by setting the Run Scoring Task property in the New Report window. If the input
table contains the input and output variables, the value of the Run Scoring Task can be
No. If the input table contains only input variables, the Run Scoring Task property must
be set to Yes.

The New Report window report properties requires the name of the variables from the
input and output tables in order to map these variables to variables that are used by SAS
Model Manager uses to create the reports.

The LGD report properties map these variables:

Time Period
Variable

specifies the variable that is used to indicate a time period. The
first time period begins with 1 and typically increments by 1. The
default is period.

Basel II Reports 191

Time Label
Variable

(optional) specifies a label for the time period. If this variable
exists in the input table, the report output contains a table that
maps time periods to time labels.

Actual
Variable

specifies the actual LGD variable. The default is lgd.

Predicted
Variable

specifies the output prediction variable that is used only if scoring
for the report is not performed by SAS Model Manager. If the
report scoring is done by SAS Model Manager, this variable
should be excluded by the input data set. The default is p_lgd.

Pool Variable specifies the variable that names pool IDs. The default is pool_id.

The PD report properties map these variables:

Time Period
Variable

specifies the variable that is used to indicate a time period. The first
time period begins with 1 and typically increments by 1. The
default is period.

Time Label
Variable

(optional) specifies a label for the time period. If this variable exists
in the input table, the report output contains a table that maps time
periods to time labels.

Scorecard
Bin Variable

specifies the scoring output variable that names the scorecard bins.
The input table must include this variable if scoring for the PD
report is performed outside of SAS Model Manager. If scoring is
done by SAS Model Manager, do not include this variable in the
input data set. The default is scorecard_bin.

Scorecard
Points
Variable

specifies the scoring output variable that names the scorecard
points. The input table must include this variable if scoring for the
PD report is performed outside of SAS Model Manager. If scoring
is done by SAS Model Manager, do not include this variable in the
input data set. The default is scorecard_points.

Cut-off
Value

specifies the variable that is used to derive whether a credit
exposure is a default. The cut-off value is also used to compute
accuracy, sensitivity, specificity, precision, and error rate measures.
You can use the score difference between accounts that default on
loans and those that do not default on loans to determine the cut-off
value. The default is 100.

Prerequisites for Loss Given Default Reports
Before you run an LGD report, select the project name and verify that the following
project properties are set:

Training Target Variable
Specifies the name of the target variable that was used to train the model. The model
must have the same training target variable as the project.

Model Function
Specifies the type of model function. For an LGD report, the model function must be
Prediction.

Class Target Level
Specifies an Interval class target level.

192 Chapter 10 • Validating Models Using Reports

Output Prediction Variable
Specifies the name of the output prediction variable.

Create a Loss Given Default Report
To create an LGD report:

1. Expand the version folder .

2. Right-click the Reports node and select Reports ð New Report. The New Report
window appears.

3. Select Loss Given Default Report from the Type box.

4. In the Format box, select the type of output that you want to create. The default is
PDF. The other option is RTF.

5. In the Select Models box, select the model that you want to report on. This report
requires one model.

6. Complete the Report Properties.The properties with an asterisk are required:

• Enter a report name if you do not want to use the default value for the Name
property. The name can contain letters, the underscore (_), hyphen (-), and the
period (.).

• (Optional) Enter a report description.

Basel II Reports 193

• For the Input Table property, click the Browse button and select a table from
the SAS Metadata Repository tab or from the SAS Libraries tab that is used
for scoring during the creation of the LGD report. The table can contain only
input variables or it can contain input and output variables.

• If the input table that is specified in the Input Table property contains only input
variables, set Run Scoring Task to Yes. If the input table contains input and
output variables, set Run Scoring Task to No.

• The Time Period Variable specifies the variable from the input table whose
value is a number that represents the development period. This value is numeric.
The default is period.

• (Optional) In the Time Label Variable field, enter the variable from the input
table that is used for time period labels. When you specify the time label
variable, the report appendix shows the mapping of the time period to the time
label.

• Actual Variable is the actual LGD variable. The default is lgd.

• Predicted Variable is the project scoring output variable. If the scoring for the
LGD report is performed outside SAS Model Manager, the input data set must
include this variable. If the scoring for the LGD report is done by SAS Model
Manager, the input data set should not include this variable. The default is p_lgd.

• Pool Variable is the variable from the input table that is used to identify a two-
character pool identifier. The default is pool_id.

Note: The variable names that you specify can be user-defined variables. A variable
mapping feature maps the user-defined variables to required variables.

7. Click OK. A dialog box message confirms that the report was created successfully.

See Also
“View Reports” on page 198

Prerequisites for Probability of Default Model Validation Reports
Before you can create a PD report, verify that the following project settings are specified
and that the output variables have been mapped:

1. Select the project name and ensure that these properties are set:

Training Target Variable
Specifies the name of the target variable that was used to train the model. The
model must have the same training target variable as the project.

Class Target Level
Specifies a Binary class target level.

Output Event Probability Variable
Specifies the name of the output event probability variable.

2. Expand the Models folder and select the PD model.

3. In the model Details view, select the Model Mapping tab and verify that the project
variables are mapped to model variables. To map output variables, click Edit, select
the cell in the Model Variables for the unmapped project variable, and select an
output variable. Click OK.

194 Chapter 10 • Validating Models Using Reports

Create a Probability of Default Model Validation Report
To create a PD report:

1. Expand the version folder .

2. Right-click the Reports node and select Reports ð New Report. The New Report
window appears.

3. Select Probability of Default Model Validation Report from the Type box.

4. In the Format box, select the type of output that you want to create. The default is
PDF. The other option is RTF.

5. In the Select Models box, select the box for the model that you want to report on.

6. Complete the Report Properties:

• Enter a report name if you do not want to use the default value for the Name
property. The name can contain letters, spaces, the underscore (_), the hyphen
(-), and the period (.).

• (Optional) Enter a report description.

• For the Input Table property, click the Browse button and select a table from
the SAS Metadata Repository tab or from the SAS Libraries tab. The table can
contain only input variables or it can contain both input and output variables.

Note: When a scoring input table for a PD report contains data and one or more
time periods do not contain default or non-default loan information, these

Basel II Reports 195

time periods are not used to calculate the PD measurements. Time periods
that are not used to calculate the PD measurements are represented in a chart
with dashed lines.

• If the input table that contains only input variables, set Run Scoring Task to
Yes. If the input table contains input and output variables, set Run Scoring Task
to No.

• The Time Period Variable specifies the variable from the input table whose
value is a number that represents the development period. This value is numeric.
The time period for PD reports begin with 1. The default is period.

• (Optional) In the Time Label Variable field, enter the variable from the input
table that is used for time period labels. When you specify the time label
variable, the report appendix shows the mapping of the time period to the time
label.

• Scorecard Bin Variable is the variable from the input table that contains the
scorecard bins. If the scoring job for the PD report is run outside SAS Model
Manager, the scorecard bin variable must be a variable in the input table. If
scoring is done within SAS Model Manager, do not include the variable in the
input table. The default is scorecard_bin.

• Scorecard Points Variable is the variable that contains the scorecard points. If
the scoring job for the PD report is run outside SAS Model Manager, the
scorecard points variable must be a variable in the input table. If scoring is done
within SAS Model Manager, do not include the variable in the input table. The
default is scorecard_points.

• Cut-off Value is the maximum value that can be used to derive the predicted
event and to further compute accuracy, sensitivity, specificity, precision, and
error rate. The default is 100.

Note: The variable names that you specify can be user-defined variables. A variable
mapping feature maps the user-defined variables to required variables.

7. Click OK. A dialog box message confirms that the report was created successfully.

See Also
“View Reports” on page 198

Training Summary Data Set Reports

About Training Summary Data Set Reports
A Training Summary Data Set report creates frequency and distribution charts that
summarize the train table variables. Using the default train table, SAS Model Manager
generates data sets in the Resources folder that contain numeric and character variable
summaries, and variable distributions. These data sets are used to create the summary
report. Before you can create the report, you must generate the training summary data
sets.

Generate the Training Summary Data Sets
To generate the training summary data sets:

196 Chapter 10 • Validating Models Using Reports

1. Click on the version folder and verify that the Default Train Table property

contains the train table for the report.

2. Right-click the version and select Generate Training Summary Data Set. The
Generate Training Summary Data Set window appears.

3. Select the variables for the report by selecting the box that is next to each variable in
the Select column. To select all variables, click Select All.

4. Click OK. SAS Model Manager creates data sets in the Resources folder.

Create a Training Summary Data Set Report
To generate a train table summary report for a version:

1. Expand the version folder .

2. Right-click the Reports folder and select New Report. The New Report window
appears.

3. Select Training Summary Data Set Report from the Type list box.

4. In the Format list box, select the type of output that you want to create. The default
is PDF. Other options are HTML, RTF, and EXCEL.

5. In the Style list box, select a style for the output. The default is SAS default. Other
options are Seaside, Meadow, and Harvest.

6. In the Report Properties box, complete Name and Description properties if you do
not want to use the default values. The default value for the Name property uses the

Training Summary Data Set Reports 197

form TrainingSummaryDataSet_DdateTtime. The name can contain letters,
spaces, the underscore (_), the hyphen (-), and the period (.). Click OK.

7. A dialog box message confirms that the report was created successfully.

See Also
“View Reports” on page 198

View Reports
To view a report:

1. Expand the version folder and the Reports folder.

2. Right-click the report name and select View Report. If authentication is required,
enter your user ID and password. The report appears.

198 Chapter 10 • Validating Models Using Reports

Chapter 11

Validating Models Using User
Reports

Overview of User Reports . 199
Ad Hoc Reports and User-Defined Reports . 199
Comparison of Ad Hoc and User-Defined Reports . 200
Output Created by User Reports . 200

Ad Hoc Reports . 201
Overview of Ad Hoc Reports . 201
Create an Ad Hoc Report . 202
Example Ad Hoc Report . 202

User-Defined Reports . 204
Overview of User-Defined Reports . 204
Create a User-Defined Report . 204
Defining SAS Model Manager Macro Variables for a User-Defined Report 205
Upload SAS Programs to the SAS Content Server . 205
The Report Template . 205
Edit a SAS Program on the SAS Content Server . 208
Delete a SAS Program from the SAS Content Server . 208
Run a User-Defined Report . 208
View a User-Defined Report . 209
Example User-Defined Report . 209

Overview of User Reports

Ad Hoc Reports and User-Defined Reports
User reports are SAS programs that you create and import to SAS Model Manager so
that you can customize reports to meet your business requirements. The ad hoc report
enables you to develop, test, and run your report within SAS Model Manager. The user-
defined report can be developed either within or external to SAS Model Manager. It
requires a SAS program and the associated auxiliary files to be installed in a directory
that is available to SAS Model Manager and is run using the New Report window.

Using ad hoc reports, you modify and submit your code from the SAS Editor within the
Create Ad Hoc Reports window. Ad hoc reports are defined and can be run only under
the version where it was created.

A user-defined report is a report that is available for reporting on all models in SAS
Model Manager. The user-defined report requires three files to be installed in your
server's file structure:

199

• a SAS program to create the report

• a report template XML file that specifies the report requirements, such as report
name and the number of required models to run the report

• a SAS program file that lists the SAS Model Manager global macro variables and
macros that are used in your report

After you have these three files, you use the SAS Model Manager Template Editor to
upload the files to the SAS Content Server.

The ad hoc report can be used to develop, test, and debug user-defined reports. When
your ad hoc report is ready for a production environment, you can create the report
template XML file and the macro file, and install the three files in the user-defined
report file structure.

Comparison of Ad Hoc and User-Defined Reports

Report Difference Ad Hoc Report User-Defined Report

Version An ad hoc report is defined
and can be run only under the
version where it was created.

A user-defined report can be
run under any project version.

Report template An ad hoc report does not
require a template.

A user-defined report requires
a template to define the report
parameters.

Report results Each time an ad hoc report is
run, the existing report files
are overwritten.

Each time a user-defined
report is run, a new report
folder is created under the
Reports node.

Location of SAS files used to
generate the report

The ad hoc report SAS
program is stored in the
report folder for the version
where it was created.

The user-defined report SAS
files are uploaded to the SAS
Content Server.

Output Created by User Reports
The first time you create a report, SAS Model Manager creates a node for the report
under the Reports node.

Each time you run create a new ad hoc report, SAS Model Manager creates these files:

• the report in either HTML, PDF, RTF, or Excel format

• smm_userCode.sas

• taskCode.log

• taskCode.sas

Each time you run create a new user-defined report, SAS Model Manager creates these
files:

• the report in either HTML, PDF, RTF, or Excel format

• taskCode.log

200 Chapter 11 • Validating Models Using User Reports

• taskCode.sas

CAUTION:
The wizard overwrites the output files if an output file of the same name already
exists.

Here is a description of the ad hoc report output files:

Report File Description

report-name.html This file is the report output in HTML format.

report-name.pdf This file is the report output in PDF format.

report-name.rtf This file is the report output in RTF format.

report-name.xls This file is the report output in Excel format.

smm_userCode.sas This file contains the SAS program report code that was submitted
in the Create Ad Hoc window.

taskCode.log This file is the log file that contains messages from running the SAS
code to create the report.

taskCode.sas This file is the SAS code that is used to create the report. The file
contains the user-defined report code as well as code that was
generated by SAS Model Manager to create the report.

You can see the contents of these files by selecting them in the Project Tree. You can
also see the taskCode.sas file and the taskCode.log files by selecting the report name.
SAS Model Manager displays tabs for these files to the right of the Properties tab.

Ad Hoc Reports

Overview of Ad Hoc Reports
To create an ad hoc report, you must first write a SAS report program. When the report
code is ready, you copy your code to the SAS Editor tab in the Create Ad Hoc Report
window . You then submit your program. Unlike the user-defined report, the ad hoc
report does not require auxiliary files to be uploaded to the SAS Content Server.

To create your report output in either HTML, PDF, RTF, or Excel, or to specify a style
other than the default style for your report, you modify your report with code that is
provided by SAS and that enables you specify the report output format and style. The
code that you need to add to your program is included in the steps to create an ad hoc
program.

If you find an error in your report code, you must delete the report in the Project Tree,
fix your code in your source file, and submit the code in the Create Ad Hoc Report
window again.

Ad Hoc Reports 201

Create an Ad Hoc Report
To create an ad hoc report, you must first create a SAS program. Test your program in
SAS before you run your program as a SAS Model Manager ad hoc report. After the
code runs successfully, you can create the ad hoc report.

To create an ad hoc report:

1. Expand the version folder .

2. Right-click the Reports node and select Create Ad Hoc Report. The Create Ad
Hoc Report window appears.

3. In the Select Models table, select any number of models.

4. Either add the following code to your report program or copy the code to the SAS
Editor. This code defines the report output format, such as HTML or PDF, and the
report style:

Filename mmreport catalog "sashelp.modelmgr.reportexportmacros.source";
%include mmreport;
%MM_ExportReportsBegin(reportFormat=report-format, reportStyle=report-style,
 fileName=report-name);
 …
 add-your-ad-hoc-code-here
 …
%MM_ExportReportsEnd(reportFormat=report-format);

Replace report-format in the %MM_ExportReportsBegin macro with one of the
following values: HTML, PDF, RTF, or Excel.

Replace report-style with one of the following values: SAS default, Seaside,
Meadow, or Harvest.

Replace report-name with the name of your ad hoc report. The name can contain
letters, the underscore (_), hyphen (-), and the period (.).

5. Copy your SAS program to the SAS Editor. Make sure that your report program is
enclosed by the SAS code that defines the report output format. You can click the
Macro Variables tab to view a list of the Model Manager macro variables that can
be accessed by your program.

6. Enter the report name and a description for the report in the Report Properties table.

7. Click OK. SAS Model Manager runs the report and creates a node under the
Reports node using the name that you provided in the Report Properties table. The
new node contains the output files that were created by running the report.

A message box confirms that the report either was completed successfully or failed.
If the report failed, click Details to review the errors in the SAS log.

Example Ad Hoc Report
The following example code lists the score results in an HTML output format:

Filename mmreport catalog "sashelp.modelmgr.reportexportmacros.source";
%include mmreport;

%MM_ExportReportsBegin(reportFormat=html, reportStyle=Meadow, fileName=PerfDS);

202 Chapter 11 • Validating Models Using User Reports

proc print data=myTable.scoretable;
var loan delinq score;
run;
quit;

%MM_ExportReportsEnd(reportFormat=html);

When you include this program in the Create Ad Hoc Report window, it looks like this:

After you click OK, SAS Model Manager creates the report and places the report output
under the Reports folder in the Project Tree:

Ad Hoc Reports 203

The following HTML output displays selected rows of the output:

User-Defined Reports

Overview of User-Defined Reports
User-defined reports require the following files to be uploaded to the SAS Content
Server:

• the SAS program that creates the report

• a SAS program file that lists the SAS Model Manager global macro variables that are
used in your report

• a report template XML file that specifies the report requirements, such as report
name and the number of required models to run the report

After these three files have been uploaded to the SAS Content Server, the user-defined
report type is included as a report in the Type list box of the New Reports window.

The New Report window includes controls to specify the type of output that the report
creates, such as HTML or PDF, and a style for the report. You can modify your report to
include the SAS code so that the New Report window offers the report output controls
for your report.

Create a User-Defined Report
To create a user-defined report:

1. Write and test your SAS program that creates a report.

2. To format the output for a user-defined report, add the SAS code below to your
report code in order to use the Select Formats list box and the Style list box in the
New Report window. The Select Formats list box enables you to select a report
output format of HTML, PDF, RTF, or Excel. The Style list box enables you to
select a report output style for your report.

204 Chapter 11 • Validating Models Using User Reports

Replace report-name with the name of your user-defined report. The name can
contain letters, the underscore (_), hyphen (-), and the period (.). End your user-
defined report with the %MM_ExportReportsEnd macro.

Filename mmreport catalog "sashelp.modelmgr.reportexportmacros.source";
%include mmreport;
%MM_ExportReportsBegin(fileName=report-name);
 …
 your-user—defined-code
 …
%MM_ExportReportsEnd;

3. In the report XML file, add this SAS program name to the FILENAME= argument
of the <Code> element (for example, <Code
filename="myUserReport.sas"/>). See “The Report Template” on page 205.

For an example of a report, see “Example User-Defined Report” on page 209.

Defining SAS Model Manager Macro Variables for a User-Defined
Report

Executing a user-defined report requires a SAS program that lists the report code’s SAS
Model Manager macro variables. If you do not have SAS Model Manager macro
variables in your report, create a SAS program file with a comment in it. This file is
required.

Here is an example program to define macro variables:

%let _MM_User=miller;
%let _MM_Password=Rumpillstillskin3;

In the report XML file, add this SAS program name to the FILENAME= argument of
the <PreCode> element (for example, <PreCode
filename="myMacroDefs.sas"/>). See “The Report Template” on page 205.

For an example of a SAS Model Manager macro variable program, see “Example User-
Defined Report” on page 209.

For a list of SAS Model Manager macro variables, see Appendix 3, “SAS Model
Manager Macro Variables,” on page 441.

Upload SAS Programs to the SAS Content Server
After you have the two SAS programs for your user report, follow these steps to upload
them to the SAS Content Server:

1. Select Tools ð Manage Templates to open the SAS Model Manager Template
Editor.

2. Select File ð Open, select the program in the Open window, and click OK.

3. Select File ð Upload File to upload the program to the SAS Content Server.

4. Repeat steps 2 and 3 to upload the second file.

The Report Template
You create a report template XML definition file to describe your user-defined report.
After you create the report template, upload the template to the SAS Content Server.

User-Defined Reports 205

SAS Model Manager provides a sample report template that you can use as a model for
your XML template. You can use any template as a model or you can create an XML
file with the required XML elements. A best practice is to open the model XML
template and save the template using another name. To open a sample report template,
follow these steps:

1. Select Tools ð Manage Templates to open the SAS Model Manager Template
Editor.

2. Select File ð Browse ð Browse Templates. Select UserReportTemplate.xml and
click OK.

3. Select File ð Save As. Enter a name in the File name field and click OK.

4. The UserReportTemplate.xml file has arguments in quotation marks that you modify
for your report. Replace the text in quotation marks with values that are appropriate
for your report. See the argument descriptions below.

5. When the report template is complete, select File ð Upload File to upload the report
template to the SAS Content Server.

Here is the report template XML definition:

<?xml version="1.0" encoding="UTF-8" ?>
<ReportTemplate
 name="report-name"
 type="UserDefinedReport"
 displayName="display-name"
 description="model-description"
 >
 <Report>
 <Data datasetName="input-data-set-name"/>
 <Models expectedModelType="model-type"
 requiredNumberOfModels="1"
 level="level">
 </Models>
 <SourceCode>
 <PreCode filename="pre-code-filename.sas"/>
 <Code filename="score-code-filename.sas"/>
 </SourceCode>
 <Output format="output-format" filename="output-name"/>
 </Report>
 <Parameters>
 <Parameter name="parameter-name" value="parameter-value" />
 </Parameters>
</ReportTemplate>

<ReportTemplate> element arguments

name="report-name"
specifies the name of the report. The characters @ \ / * % # & $ () ! ? < > ^ + ~ ` =
{ } [] | ; : ‘ " cannot be used in the name.

displayName="display-name"
specifies the name of the report that is displayed in the Reports list of the New
Reports window.

description="model-description"
specifies a description of the report that displays at the bottom of the New Reports
window when the report is selected in the window.

206 Chapter 11 • Validating Models Using User Reports

<Report> element arguments

<Data datasetName="input-data-set-name"/>
specifies the name of a data source data set that is used for input to the report. The
data set must be in the form libref.filename. You can use the following global macro
variables as a value for input-data-set-name as long as the value of the macro
variable is in the form of libref.filename:

• &_MM_InputLib

• &_MM_OutputLib

• &_MM_PerformanceLib

• &_MM_TestLib

• &_MM_TrainLib

<Models
expectedModelType="model-type"
requiredNumberOfModels="number-of-models"
level="level">
</Models>

specifies information about the model.

expectedModelType="model-type"
specifies the model type.

Valid values: ANALYTICAL, CLASSIFICATION, PREDICTION,
SEGMENTATION, ANY

requiredNumberOfModels="number-of-models"
specifies the number of models that are processed in this report.

level="folder"
specifies where the report is to obtain a list of models. If folder is VERSION, the
report creates a list of models in the version. If folder is PROJECT, the report
creates a list of models from all versions in the project.

Valid values: VERSION, PROJECT

<SourceCode>
<PreCode filename="pre-code-filename.sas"/>
<Code filename="report-code-filename.sas"/>
</SourceCode>

specifies the files that are used to execute the report.

<PreCode filename="pre-code-filename.sas"/>
specifies the name of the SAS program that contains macro variable definitions.

<Code filename="report-code-filename.sas"/>
specifies the name of the SAS program that creates the report.

<Output format="output-format" filename="output-report-name"/>
specifies the output format arguments:

format="output-format"
specified the format of the report output.

Valid values: HTML, PDF, RTF, or Excel

filename="output-report-name"
specifies the name of the output report.

<Parameters> Element Argument

User-Defined Reports 207

<Parameter name="parameter-name" value="parameter-value" />
This element is not used. It is reserved for future use.

Edit a SAS Program on the SAS Content Server
To edit the program after the file has been uploaded to the SAS Content Server, follow
these steps:

1. Select File ð Browse ð Browse SAS Files.

2. Select the program and click Open.

3. Modify the program. When you have finished making changes, upload the file to the
SAS Content Server by selecting File ð Upload File.

4. (Optional) To save a backup of the template, from the Browse Templates window,
select File ð Save As. Select a file location, enter a filename, and click Save.

Delete a SAS Program from the SAS Content Server
Deleting a User Report SAS Content Server is a two-step process. You must delete the
SAS program and the report template.

To delete a user report, follow these steps:

1. Select File ð Browse ð Browse SAS Templates.

2. In the Browse Templates window, select the template. You can delete only templates
that have a value of No in the Reserved column.

3. Click Delete.

4. In the SAS Model Manager Template Editor window, select File ð Browse ð
Browse SAS Files.

5. Select the program and click Delete.

Run a User-Defined Report
To run a user-defined report, follow these steps:

1. Expand the version folder .

2. Right-click the Reports node and select Reports ð New Report. The New Report
window appears.

3. From the Type list box, select a user-defined report.

4. In the Format list box, select the type of output that you want to create. The default
is PDF. Other options are HTML, RTF, and EXCEL.

5. In the Select Models table, select the appropriate model or models for the report.

6. In the Style list box, select a report output style. The default is SAS default. Other
options are Seaside, Meadow, and Harvest.

7. In the Report Properties box, enter a report name or use the default report name.
The default report name is in the form report-name_DdateTtime.

208 Chapter 11 • Validating Models Using User Reports

8. Click OK. The report runs, a report folder is created, and the output is stored in the
report folder. The name of the report folder is the report name that you specified in
the Report Properties box.

View a User-Defined Report
To view a user-defined report, right-click the report name under the Reports node and
select Reports ð View Report.

Example User-Defined Report

Overview of the Example User-Defined Report
The example user-defined report categorizes scoring values into score ranges and then
graphs the results. The program name is Score Range Report. The following SAS
programs and report template file are required to create this report:

• The SAS report program is the file ScoreRange.sas

• The SAS program file that contains macro variables is ScoreRangeMacro.sas

• The report template XML file is ScoreRangeTemplate.xml

The SAS Report Program
Here is the SAS code for a user-defined report to categorize score codes:

filename mmreport catalog "sashelp.modelmgr.reportexportmacros.source";
%include mmreport;

%MM_ExportReportsBegin(fileName=scoreRange);

options NOmprint NOdate;
%let _MM_PosteriorVar=P_1;

proc format;
 value score
 low - 400 = '400 and Below'
 401 - 450 = '401 - 450'
 451 - 500 = '451 - 500'
 501 - 550 = '501 - 550'
 551 - 600 = '551 - 600'
 601 - 650 = '601 - 650'
 651 - 700 = '651 - 700'
 701 - 750 = '701 - 750'
 751 - 800 = '751 - 800'
 801 - high= '801 and Above';
run;
quit;

%Macro scoreRange();

 %if &_MM_ScoreCodeType = %str(SAS Program) %then
 %do;

User-Defined Reports 209

 %let _MM_OutputDS=work.scoreresult;
 %inc &_MM_Score;
 %end;
 %else
 %do;
 data work.scoreresult;
 set &_MM_InputDS;
 %inc &_MM_Score;
 run;
 %end;

 data work.scoreresult2;
 set work.scoreresult;
 keep score;
 if &_MM_PosteriorVar =. then delete;
 score = int (((1-&_MM_PosteriorVar) * 480) + 350 + 0.5);
 run;

 proc freq data=work.scoreresult2;
 table score/out=scoresummary;
 format score score.;
 title 'Credit Score Range';
 quit;

 proc gchart data=work.scoresummary;
 hbar score / sumvar=count discrete;
 title 'Credit Score Range';
 run;
 quit;
%Mend scoreRange;

/* Reporting section */

ods listing close;

%getModelInfo(0);
%scoreRange();
%closeLibsAndFiles();

%MM_ExportReportsEnd;

The SAS Program File for Macro Variables
The file ScoreRangeMacro.sas contains only a comment in it because macro variables
are not used in the report code:

/* ScoreRangeMacro.sas empty file */

The Report Template XML File
Here is the report template XML file for the user-defined Score Range report:

<?xml version="1.0" encoding="UTF-8" ?>
<ReportTemplate
 name="Score Range Report"
 type="UserDefinedReport"
 displayName="Score Range Report"
 description="Score Range Report"

210 Chapter 11 • Validating Models Using User Reports

 >
 <Report>
 <Data datasetName=""/>
 <Models expectedModelType="ANALYTICAL"
 requiredNumberOfModels="1" level="VERSION">
 </Models>
 <SourceCode>
 <PreCode filename="ScoreRangeMacro.sas"/>
 <Code filename="ScoreRange.sas"/>
 </SourceCode>
 <Output format="PDF" filename="ScoreRange"/>
 </Report>
 <Parameters>
 </Parameters>
</ReportTemplate>

The Score Range Report Output
The following Credit Score Range graph is one of the output pages in the PDF report
output:

User-Defined Reports 211

212 Chapter 11 • Validating Models Using User Reports

Part 4

Deploying and Publishing Models

Chapter 12
Deploying Models . 215

Chapter 13
Publishing Models . 223

Chapter 14
Replacing a Champion Model . 247

213

214

Chapter 12

Deploying Models

Overview of Deploying Models . 215

Champion Models . 216
About Champion Models . 216
Requirements for a Champion Model . 217
Set a Champion Model . 217
Clear a Champion Model . 218

Challenger Models . 219
About Challenger Models . 219
Flag a Challenger Model . 219
Clear a Challenger Model . 220

Freezing Models . 220
About Freezing Models . 220
Freeze a Version . 221
Unfreeze a Version . 221

Overview of Deploying Models
The goal of a modeling project is to identify a champion model that a scoring application
uses to predict an outcome. SAS Model Manager provides tools to evaluate candidate
models, declare champion models, and inform your scoring officer that a predictive
model is ready for validation or production.

To deploy a model from SAS Model Manager, you might use the following scenario:

1. Identify the model that outperforms other candidate models and declare this model to
be a champion model. You can also flag challenger models for the champion model.

2. Test and validate the model before you declare the model ready for production.

3. Freeze the model version to prevent changes to the model.

4. Update your life cycle milestones.

5. Publish the champion model and challenger models (optional) so that you can deploy
them to a production environment.

The following figure illustrates activities that might occur before a model is deployed.

215

Figure 12.1 Deploying Analytical Models

Deliver
or

Publish
Model

Freeze
Version

Validate
Model

Declare a
Champion

Model

Note: Prior to SAS Model Manager 12.1, all versions of a project could contain a
champion model, and one of the tasks in deploying models was to set the version that
contained the champion model as the default version for a project. Beginning in
Model Manager 12.1, when you set a champion model, SAS Model Manager sets the
version that contains the champion model as the default version. A project can have
only one champion model. Therefore, the task of setting a default version has been
eliminated.

Champion Models

About Champion Models
The champion model is the best predictive model that is chosen from a pool of candidate
models. Before you identify the champion model, you can evaluate the structure,
performance, and resilience of candidate models. You select the champion model from
the models in a version. When a champion model is ready for production scoring, you

set the model as the champion model. A check mark appears next to the model and
version that are associated with the champion model. The version that contains the
champion model is considered the default version for the project. There can be only one
champion model for a project.

You can publish the champion model to a database, the SAS Metadata Repository, and a
SAS channel.

These are the tasks that you perform to use champion models:

216 Chapter 12 • Deploying Models

• “Set a Champion Model” on page 217

• “Clear a Champion Model” on page 218

• Publish Models on page 224

Requirements for a Champion Model
Before you identify a model as the champion, perform the following tasks:

• Create a version for your project, and register at least one model.

• Verify that the model is active. If the model expiration date has passed, you cannot
set the model as a champion model.

Note: An authorized user can reset the expiration date to a later date so that it is
possible to set the champion model. To reset the expiration date, click the
Properties tab for the model.

• Complete the required life cycle milestones that precede the milestone task of setting
the champion model under a version.

You might use the following criteria to identify a champion model:

• model comparison reports that validate and assess the candidate models

• business decision rules. For example, you might use a decision tree model because of
difficulty interpreting results from a neural network model even when the neural
network model outperforms the decision tree model

• regulatory requirements, such as when the champion model should exclude certain
specific attributes (age or race)

You can flag and publish a challenger model in SAS Model Manager specifically for the
purpose of comparison with the champion model. For example, your champion model
for a production environment might omit restricted attributes during operational scoring
because of regulatory requirements. You can use a challenger model that includes the
restricted attributes in the development environment to evaluate its prediction power
against the prediction of the champion model. Then you can determine the amount of
predictive power that is lost because of the regulatory requirements.

See Also
“Flag a Challenger Model” on page 219

Set a Champion Model
To set a champion model, follow these steps:

1. Expand the Models folder under the version folder .

2. Right-click the model that you want to use as the champion model and select Set as
Champion from the pop-up menu. A dialog box appears. Click Yes to confirm.

3. If there are model input variables that are not defined as project input variables, you
are prompted to add the input variables. Click Yes to confirm. The model input
variables are copied to the project input variables. If project output variables are not
defined, then the Select Project Output Variables window appears for you to select
the output variables. After you select the output variables, click OK.

Champion Models 217

4. If the project output variables have not been mapped to the model output variables,
the Set Model Output Mapping window appears. For each project variable, click the
Model Variables field and select the model output variable. Click OK.

5. If you are replacing the champion model, follow these steps:

a. If there are no challenger models flagged, select Yes to replace the champion
model. If a challenger model is flagged, go to the next step.

b. To keep the current challenger models, select Keep models flagged as
challengers. If you do not select Keep models flagged as challengers,
challenger models are cleared.

c. Click Yes to confirm replacing the current champion model.

d. If the project output variable has not been mapped to the model output variable,
the Set Model Output Mapping window appears. For each project variable, click
the Model Variables field and select the model output variable. Click OK.

6. Verify that the icon appears beside the champion model. and the version

7. Select the version folder to examine its properties. The value for Date Modified is
today's date. The value for the Champion Model Name is the name of the champion
model.

Note: SAS Model Manager automatically annotates the History tab. To document
the reasons for your selection of the champion model, use the version Notes tab.

8. Update the specific properties for the appropriate milestone task in the Life Cycle
node. Specify that Status for selecting a champion model is set to Completed.

Clear a Champion Model
To clear a champion model, follow these steps:

1. Expand the Models folder under the version folder .

2. Right-click the champion model and select Set as Champion from the pop-up menu.
A message box appears.

3. Click Yes to confirm. The Set as Champion check mark is cleared. SAS Model
Manager also clears all challenger models and clears the version check mark.

Note: If the version is frozen, you cannot clear the champion model unless a SAS
Model Manager administrator unfreezes the version first.

218 Chapter 12 • Deploying Models

4. Select the version folder to examine its properties. Verify that the value for Date
Modified property is today's date. The model that you just cleared as the champion
model remains as the value for the Champion Model Name property until another
champion model is set.

5. Update the specific properties for the appropriate milestone task in the Life Cycle
node. Change Status for selecting a champion model to a value that is not
completed, such as Started.

Challenger Models

About Challenger Models
You use challenger models to test the strength of champion models. The champion
model for a project can have one or more challenger models. A model can be flagged as
a challenger model only after a champion model for the project has been selected. A
challenger model can be flagged in any version of a project. When you flag a model as a

challenger model, the icon appears next to the model.

Before you flag a model as the challenger model, verify that the model is active. If the
model expiration date has passed, then you cannot set the model as a challenger model.

Note: An authorized user can reset the expiration date to a later date so that it is possible
to set the challenger model.

To compare a challenger model to a champion model, you can create and run
performance monitoring tasks for the champion model and any challenger models. Then,
using the performance data, you can create a Champion and Challenger Performance
report. You can also compare challenger models to the champion model using other
reports such as the Delta report and Dynamic Lift report that are available through the
New Report wizard. For more information, see “Format a Champion and Challenger
Performance Report” on page 308.

Note: The batch programs for performance monitoring do not support creating
challenger model performance reports.

Challenger models can be published to a database, the SAS Metadata Repository, or to a
SAS channel that has the champion model. They can also be published by themselves. If
testing determines that the challenger model is the better model, you can replace the
champion model by setting the challenger model as the champion model.

Here are the tasks that are associated with challenger models:

• “Flag a Challenger Model” on page 219

• “Clear a Challenger Model” on page 220

• Publish Models on page 224

Flag a Challenger Model
1. Expand the Models folder under the version folder

2. Right-click the model that you want to use as the challenger model and select Flag
as Challenger from the pop-up menu. Click Yes to confirm.

Challenger Models 219

3. If there are model input variables that are not defined as project input variables, you
are prompted to add the input variables. Click Yes to confirm. The model input
variables are copied to the project input variables.

4. If the project output variable has not been mapped to the model output variable, the
Set Model Output Mapping window appears. For each project variable, click the
Model Variables field and select the model output variable. Click OK.

5. Verify that the appears beside the challenger model.

Clear a Challenger Model
1. Expand the Models folder under the version folder .

2. Right-click the challenger model and select Flag as Challenger.

3. Click Yes to confirm. The Flag as Challenger check mark is cleared and the
challenger flag icon to the right of the model is cleared.

Note: If the version is frozen, then you cannot clear the challenger model unless a
SAS Model Manager administrator unfreezes the version first.

Challenger models can also be cleared when the champion model is cleared or replaced.

Freezing Models

About Freezing Models
SAS Model Manager administrators can freeze a project version to prevent users from
modifying some properties and files for the version’s models. A version is frozen when
the champion model in a version folder is approved for production or is pending
approval. After a version is frozen, the Models folder is locked so that SAS Model
Manager advanced users cannot perform the following tasks:

• add or delete models

• modify version or model properties

• add, rename, delete, or modify model objects

• change the champion model

SAS Model Manager administrators remain authorized to perform these activities. If the
champion model is not deployed to an operational environment, then a SAS Model
Manager administrator can unfreeze a frozen version so that users can change the
models. SAS Model Manager advanced users can still modify the Documents, Reports,
Resources, and Scoring Tasks folders after a version is frozen.

When the champion model has been used in production scoring and you must change the
contents of a frozen default version, unfreeze the default version. However, use caution
modifying the version content. If the model UUID and revision number for the score
code in production scoring environments are always recorded, then you can modify a
version even after the version is deployed to production environment.

These are the tasks that you perform to control access to project version:

220 Chapter 12 • Deploying Models

• “Freeze a Version” on page 221

• “Unfreeze a Version” on page 221

If you attempt to delete a project that contains a frozen version, SAS Model Manager
displays a message indicating that you cannot delete a project that contains frozen
versions. You must have a SAS Model Manager administrator unfreeze the versions
before the project can be deleted.

Freeze a Version
Before a version is frozen, you must complete and sign off on the required life cycle
milestones that precede this activity. After the version is frozen, users cannot modify any
properties for the models in the version folder. Projects cannot be deleted if a version is
frozen.

Note: You must be a SAS Model Manager administrator to freeze and unfreeze a
version.

To freeze a version, follow these steps:

1. Right-click the version folder .

2. Select Freeze Version from the pop-up menu.

3. Verify that the icon appears beside the version folder.

4. Select the version folder to examine its properties. The value for Date Frozen is
today's date.

Note: SAS Model Manager automatically annotates the History tab. To document
the reasons or assumptions for freezing the version, use the version Notes tab.

Unfreeze a Version
If changes to a model are required after the version is frozen, a SAS Model Manager
administrator can unfreeze the version.

To unfreeze a version, follow these steps:

1. Right-click the version folder that is frozen.

2. Select Freeze Version from the pop-up menu.

The check mark is cleared.

3. Verify that the icon next to version folder does not contain a lock.

4. Select the version folder to examine its properties. The value for Date Frozen is
cleared.

Freezing Models 221

Note: Changes that are made to a model after a version is frozen can invalidate the
results of life cycle milestones that you completed to deploy the model.

222 Chapter 12 • Deploying Models

Chapter 13

Publishing Models

Overview of Publishing Models . 223

Publishing Models to a SAS Channel . 224
About Publishing Models to a SAS Channel . 224
Publish a Model to a Channel . 225
Extract a Published Model . 228

Publish Models to the SAS Metadata Repository . 228
About Publishing Models to the SAS Metadata Repository 228
Publish a Model . 228
Publish a Project Champion Model . 229
Verify the Model Publish . 230

Publishing Models to a Database . 231
About Publishing Models to a Database . 231
Process Flow . 233
Prerequisites for Publishing to a Database . 234
Make User-Defined Formats Available When Publishing Models to a Database . 235
Publish Models to a Database Field Descriptions . 235
How to Publish Models to a Database . 239
Log Messages . 244
Scoring Function Metadata Tables . 244

Remove Models from a Database . 244

View Publish History . 246

Overview of Publishing Models
SAS Model Manager provides a comprehensive publishing environment for model
delivery that supports sharing life cycle, performance, and scoring data. SAS Model
Manager publishes models to different channels, and to the SAS Metadata Repository.
SAS Model Manager can also publish classification, prediction, and segmentation
(cluster) models with the score code type of DATA step to a database. Application
software, such as SAS Data Integration Studio or SAS Enterprise Guide, enables you to
access models through the SAS Metadata Server and to submit on-demand and batch
scoring jobs.

SAS Model Manager publishes models to defined publication channels. Authorized
users who subscribe to a channel can choose to receive e-mail notifications when
updated models are ready to deploy to testing or production scoring servers, and are
published to a publication channel. From a publication channel, you can extract and

223

validate the scoring logic, deploy champion models to a production environment, and
monitor the performance of your models.

The publish history of models can be viewed from the MMRoot folder, and the project
or version level. You can also remove models that have been published to a database.

Publishing Models to a SAS Channel

About Publishing Models to a SAS Channel
SAS Model Manager uses the SAS Publishing Framework to publish models to defined
channels. The SAS Publishing Framework notifies subscribers of the publication channel
when the models are delivered. You can publish models from the organizational, project,
version, or Models folder in the Project Tree.

SAS Model Manager creates a SAS package (SPK) file for the model in a publication
channel. A user who subscribes to the publication channel can choose to receive e-mail
that includes the SAS package as an attachment.

Note: Before you can deploy a model to a publications channel, a SAS administrator
must configure the publication channel in SAS Management Console to publish
models as archive (binary .SPK) files to a persistent store location. The archive
persistent store location is specified as a physical file location, an FTP server, an
HTTP server, or a path in WebDAV.

The Report attribute for a file element in a model template indicates whether SAS
Model Manager includes a file in the SAS package. You use the SAS Package Reader or
a file archiver and compression utility, such as WinZip, to view the contents of the SPK
file. SAS Model Manager provides SAS macro programs to extract published models
and deploy the models on testing and production scoring servers.

By default, the SAS package with the published model includes the following files:

Filename Description

inputvar.xml input variables for the model

outputvar.xml output variables for the model

targetvar.xml target variable for the model

score.sas SAS code to generate the model

smmpostcode.sas SAS code to map model variables to project
variables

sas001.ref URL of inputvar.xml

sas002.ref URL of outputvar.xml

sas003.ref URL of score.sas

224 Chapter 13 • Publishing Models

The SAS package might contain additional files, depending on the number of file
elements in the model template that have a Report attribute.

Note: The REF file contains the URL for a folder location in the Project Tree, such as
http://MMServer:8080/SASContentServer/repository/default/
ModelManager/MMRoot/organizational folder/project/version/Models/
model_name/code.sas.

These are the tasks that you perform to use a published model:

• “Publish a Model to a Channel” on page 225

• “Extract a Published Model” on page 228

Publish a Model to a Channel
To publish a model to a channel:

1. Right-click the organizational, project, version, or Models folder that contains the
model that you want to publish, and select one of the following menu options to
display the Publish to a SAS Channel window:

• Select Publish Models to a SAS Channel for an organizational or version
folder.

Note: If you select an organization folder, all of models for each project within a
control group are also included in the list of models.

• Select Publish Models ð to a SAS Channel for a project folder.

• Select Publish to a SAS Channel for the Models folder.

Note: To publish a model, you must have a project that contains a version folder
with at least one model.

2. Select a publication channel from the Channel list box.

Publishing Models to a SAS Channel 225

Note: The channel values for Description, Subject, and Subscribers are defined in
the SAS Metadata Repository with SAS Management Console.

3. Select the model to publish in the Select Entries to Publish table. SAS Model
Manager lists all of the models in the selected folder. To view the entire filepath for
the location of the model, expand the ID column heading.

4. Click Next.

5. (Optional) Specify a subject line for the e-mail message in the Message Subject box.
By default, SAS Model Manager uses the value that is defined in the publication
channel. If you omit the subject line, the name of the published model is used.

6. (Optional) Use the Notes box to include information about the model that might be
useful to other users involved with the project.

7. (Optional) Create user-defined properties that you can use to filter the notifications
that are sent to subscribers of the publication channel. SAS Model Manager embeds
user-defined properties in the SAS package file.

To create a user-defined property, complete these steps:

a. Right-click in the Add User-Defined Property table and select Add User-
Defined Property. The Add User-Define Property window appears.

226 Chapter 13 • Publishing Models

b. Specify the property name and its value. For example, specify
CreditScoreModelCode for the property name and V3test for its value.
The property name can contain letters, an underscore (_), and a hyphen (-).
However, a hyphen (-) cannot be the first character.

c. Click OK.

Note: You can also add user-defined properties to the model properties in the
Project Tree. Then the property is already defined each time you publish the
model.

8. Click Finish. A window appears that provides information about whether SAS
Model Manager successfully published the model. Click Details to display a log of
the publication process and any messages.

9. Click Close.

10. (Optional) Update the specific properties for the appropriate milestone task in the
Life Cycle node.

11. (Optional) Add a user-defined property to identify the publication channel:

a. Select the model. Right-click in the Properties view and select Add User-
Defined Property.

b. In the Name field, enter a property name that depicts the channel name that was
used to publish the model, such as PublishedToChannel. The property name can
contain letters, an underscore (_), and a hyphen (-). However, a hyphen (-)
cannot be the first character.

c. In the Value field, enter the channel that was used to publish the model. Click
OK.

If you extract a model using the %MM_GetModels() macro to create performance
reports, you must know the name of the channel that was used to publish the model.

Publishing Models to a SAS Channel 227

Extract a Published Model
When you publish a model, a SAS package is sent to the publication channel. The SAS
package contains the model input, output, SAS code, and its properties. You can submit
a SAS DATA step program that calls the SAS Publish API (Application Programming
Interface) to extract and deploy the model to a testing or scoring server. SAS Model
Manager also provides a SAS macro program, called %MM_GetModels, that extracts
the SAS code and metadata to score the model. Typically, extracted files are placed on a
local drive of the scoring server that is used to deploy the published model.

SAS Model Manager uses the extracted files to generate reports that monitor and
evaluate model performance. Changes in model performance might indicate a need to
adjust the model or identify a new champion model. You can create the reports either by
using the Define Performance Task wizard from the Project Tree or by submitting SAS
macro programs. The %MM_GetModels macro creates the data tables that are required
to run the performance reports. The macro also creates and manages the data sets that
provide metadata to track the current champion models for each project, the extracted
models from channels, and the archived models. For more information, see “Extracting
the Champion Model from a Channel” on page 294.

Publish Models to the SAS Metadata Repository

About Publishing Models to the SAS Metadata Repository
SAS Model Manager publishes a model by creating a MiningResults object in the SAS
Metadata Repository. You can use the model information in the MiningResults object to
set up a scoring environment. A scoring application can use SAS Data Integration Studio
or SAS Enterprise Guide to access the metadata and run a batch job or stored process
that executes the score code. SAS Real-Time Decision Manager can also read the
metadata and use it in that process environment. Therefore, when you publish a project
champion model, challenger model, or other models (with proper configuration), the
scoring application always uses the most current champion model. Only the project
champion model can be published from the project level and from the project control
group level.

Note: SAS Model Manager cannot publish R models.

SAS Model Manager uses the SAS Folders view to publish the model to any folder that
is accessible to the user. These folders include all folders in the SAS Foundation
repository and folders in custom repositories that are created in SAS Management
Console to reflect the structure of your business organization.

These are the tasks that you perform to publish models:

• “Publish a Model” on page 228

• “Publish a Project Champion Model” on page 229

• “Verify the Model Publish” on page 230

Publish a Model
To publish a model:

228 Chapter 13 • Publishing Models

1. Right-click the model that you want to publish and select Publish Model. The SAS
Metadata Repository window appears. SAS Model Manager displays metadata
folders.

2. Select the folder to store the model. You must have Write permission to this folder.

Note: If you created your own subfolders, then select a folder to store the metadata
for the published model.

3. Enter the name for the model and click Save. If a MiningResults object is in the
repository that has the same name as the object, then you are asked whether to
overwrite the metadata for this stored object. In addition, if a MiningResults object is
in the repository that has the same model UUID, you are asked whether you want to
continue with publishing the model.

Note: Do not overwrite an existing MiningResults object unless you are certain that
the model is from the same project in SAS Model Manager.

Note: If the score code for the model changes, then publish the model again to ensure
that your score application uses the current scoring code. If you change the status of
model that has been published, then it is recommended that you publish the model
again. For example, flag or clear a model as a challenger, or set or clear a model as
champion.

Publish a Project Champion Model
To publish the champion model for a project, you must have already set a model as the
champion. When a champion model is selected, the version that contains the model is
automatically set as the default version for the project. SAS Model Manager examines
the project and always publishes the project champion model. When the champion
model for a project changes and you publish the model again to the same location, the
scoring application automatically uses the latest score code.

Note: SAS Model Manager cannot publish R models.

To publish the champion model for a project:

Publish Models to the SAS Metadata Repository 229

1. Verify that the project that you want to publish has a champion model assigned.
Select the project folder to examine its properties. The Default Version property
contains the name of the version that contains the champion model.

2. Right-click the project name and select Publish Models ð to the SAS Metadata
Repository. If the project is not locked, you are prompted to confirm publishing the
champion model. The SAS Metadata Repository window appears. SAS Model
Manager displays the metadata folders.

3. Select a folder that you want to publish the model to.

Note: A champion model can be published only to a folder and you must have
permissions to access the folder on the SAS Metadata Repository. If a folder is
selected when the SAS Metadata Repository window appears, navigate to a list
that contains your folder and select the folder.

4. Click OK. If a MiningResults object is in the SAS Metadata Repository that has the
same name or model UUID, then you are asked whether to overwrite the metadata
for this stored object.

Note: Do not overwrite an existing MiningResults object unless you are certain that
the model is from the same project in SAS Model Manager.

Verify the Model Publish
To verify that SAS Model Manager successfully created the MiningResults object in the
SAS Metadata Repository for the published model, use SAS Management Console. To
view the contents of the published model, you can use SAS Data Integration Studio. You
can also use SAS Management Console to export the MiningResult objects to a SAS
package.

Note: You can also view the publish history of models in the MMRoot, project, or
version object details view. For more information, see “View Publish History” on
page 246.

To view a MiningResult object in the SAS Metadata Repository:

1. In SAS Management Console, open a SAS Model Manager metadata profile that
connects to the SAS Metadata Server.

2. From the SAS Management Console Folders tab, expand the folder to which you
published the model. When you select the folder, the right pane lists the
MiningResult objects for the published models.

3. Right-click the MiningResults object that has the name of published model or project
and select Properties from the pop-up menu. The Properties window appears.

4. Examine the Keywords box on the General tab to verify that the MiningResults
object contains the UUID of the published project or model.

Note: You can use the UUID to conduct filtered searches and query the published
models. For more information, see Query Folders, Projects, and Versions on page
393.

5. Examine the metadata on the Advanced tab to determine when the MiningResults
object was created or most recently updated.

6. Click OK.

230 Chapter 13 • Publishing Models

Publishing Models to a Database

About Publishing Models to a Database
SAS Model Manager enables you to publish the project champion model and challenger
models that are associated with the DATA Step score code type to a configured
database. SAS Model Manager uses the SAS Scoring Accelerator and SAS/ACCESS
interface to the database to publish models to the database. The Scoring Accelerator
takes the models from SAS Model Manager and translates them into scoring files or
functions that can be deployed inside the database. After the scoring functions are
published using the SAS/ACCESS interface to the database, the functions extend the
database’s SQL language and can be used in SQL statements such as other database
functions. After the scoring files are published, they are used by the SAS Embedded
Process to run the scoring model.

If the scoring function publish method is chosen, the scoring metadata tables in the
database are populated with information about the project and pointers to the scoring
function. This feature enables users to review descriptions and definitions of the
published model. The audit logs track the history of the model's usage and any changes
that are made to the scoring project.

For more information about the SAS Scoring Accelerator, see the SAS In-Database
Technology page available at http://support.sas.com.

Note: For more information about the prerequisites before publishing models to a
database, see “Prerequisites for Publishing to a Database” on page 234.

Here is a diagram that represents the relationship between SAS Model Manager and SAS
Model Manager In-Database Support.

Publishing Models to a Database 231

http://support.sas.com/documentation/onlinedoc/indbtech/index.html
http://support.sas.com/documentation/onlinedoc/indbtech/index.html

Figure 13.1 The Relationship between SAS Model Manager 12.3 and SAS Model Manager
In-Database Support

SAS Model
Manager

Client

SAS
Model Manager

Middle Tier
Server

SAS Web
Infrastructure

Platform

SAS
Content
Server

SAS
Metadata

Server

SAS
Model Manager

Server

SAS
Scoring

Accelerator
DBMS

Scoring
Metadata

Tables

Data
Tier

Server
Tier

Middle
Tier

Client
Tier

Database
Tables

Here are descriptions of the diagram's components.

SAS Model Manager Client
The SAS Model Manager Client handles communication to and from SAS Model
Manager. You use the SAS Model Manager Client to create projects and versions,
import models, connect with data sources, validate models, run modeling reports, run
scoring tasks, set project status, declare the champion model, and run performance
tests.

SAS Model Manager Middle Tier Server
The SAS Model Manager Middle Tier Server is a collection of services that are
hosted by an application server that orchestrates the communication and movement
of data between all servers and components in the SAS Model Manager operational
environment.

SAS Web Infrastructure Platform
The SAS Web Infrastructure Platform (or WIP) is a collection of middle tier services
and applications that provides basic integration services. It is delivered as part of the
Integration Technologies package. As such, all Business Intelligence applications,
Data Integration applications, and SAS Solutions have access to the Web
Infrastructure Platform as part of their standard product bundling.

SAS Content Server
The SAS Model Manager model repository and SAS Model Manager project tree
configuration data and metadata are stored in the SAS Content Server.

232 Chapter 13 • Publishing Models

Communication between SAS Model Manager and the SAS Content Server uses the
WebDAV communication protocol.

SAS Metadata Server
SAS Model Manager retrieves metadata about models from the SAS Metadata
Server.

SAS Model Manager Server
The SAS Model Manager Server is a collection of macros on the SAS Workspace
Server that generate SAS code to perform SAS Model Manager tasks.

SAS Scoring Accelerator
The SAS Scoring Accelerator creates scoring functions or model files that can be
deployed inside a database. The scoring functions or model files are based on the
project's champion model score code or challenger model score code.

DBMS
The relational databases in the database management system (DBMS) serve as
output data sources for SAS Model Manager.

Scoring Metadata Tables
These tables contain metadata, and the tables are populated in the database when you
publish a scoring function in SAS Model Manager.

Database Tables
These database tables in relational databases serve as data sources for a scoring
application.

Process Flow
This is an example of the process flow to publish a scoring model to a database. For
more information, see “How to Publish Models to a Database” on page 239.

1. From SAS Model Manager, you select the Publish Models ð to a Database for the
project that contains the champion model or challenger model that you want to
publish to a specific database. For more information, see “How to Publish Models to
a Database” on page 239.

2. After you select the publish method and complete all the required information to
publish the model to a database, SAS Model Manager establishes a connection to the
database using the credentials that were entered. The publish name is validated
against the target database. If the publish name is not unique, an error message is
displayed.

3. The SAS Model Manager middle-tier server then makes the user-defined formats
accessible to the SAS Workspace Server. The format catalog is stored in the
corresponding Resources folder.

4. The SAS Model Manager publishing macro is called, which performs the following
tasks:

• calls the SAS Model Manager transform macro that creates a metadata XML file.
This XML file is used by the model publishing macro.

• calls the SAS model publishing macro, which creates the files that are needed to
build the scoring functions or model files, and publishes the scoring functions or
model files with those files to the specified database.

• validates scoring results by performing the following tasks:

• creates a benchmark scoring result with the SAS Workspace Server using
DATA step score code.

Publishing Models to a Database 233

• copies a scoring input data set to create an equivalent table.

Note: The default train table that is specified in the properties of the
published model is used as the scoring input data set during validation.

• scores the model with the new scoring function or model files using the new
scoring table.

• compares scoring results.

5. The middle-tier server parses the SAS Workspace Server logs to extract the return
code.

6. The middle-tier server updates the scoring metadata tables (for example, table
project_metadata). For more information see, “Scoring Function Metadata Tables”
on page 244.

Note: This step is performed only for the scoring function publish method and the
metadata usage option is enabled in SAS Management Console.

7. The middle-tier server then creates a history entry in the SAS Model Manager
project history.

8. The middle-tier server updates the project user-defined properties with the publish
name that was entered in the Publish Models to a Database window.

Note: For more information about the user-defined properties that are created when
publishing, see “SAS User-Defined Properties” on page 510.

9. A message indicates that the scoring function or model files has been successfully
created and that the scoring results have been successfully validated.

Note: If the publishing job fails, an error message appears. Users can view the
workspace logs that are accessible from a folder that is created for the publish
model in the Publish Results folder in the Project Tree.

Prerequisites for Publishing to a Database
The following prerequisites must be completed before users can publish a model scoring
function using the scoring function publish method, or publish a model’s scoring files
using the SAS Embedded Process publish method:

• The user must have the proper authorization to publish approved models from SAS
Model Manager to the database for SAS In-Database scoring.

• The champion model for the project must be set.

• A predictive (classification or prediction) or segmentation model must have been
selected for production scoring deployment via SAS Model Manager.

Note: SAS Model Manager can publish only the models that are associated with the
DATA step score code type to a database. Models with a score code type of SAS
Program or PMML cannot be published to a database.

• A database must have been configured to install scoring functions or model scoring
files.

• If the model contains user-defined formats, a file that contains the user-defined
formats must be attached to the Resources folder.

• The following prerequisites are only for the scoring function publish method.

234 Chapter 13 • Publishing Models

• (Optional) A project user-defined property DbmsTable is defined for the default
version of the SAS Model Manager project from which to publish the scoring
function.

Note: The DbmsTable property must be defined if you plan to use a scoring
application or SQL code to score your model.

• The JDBC driver must be accessible from the SAS Model Manager middle-tier
server when using the scoring function publish method.

• The scoring function metadata tables are required in the target database if the
Metadata usage option is enables in SAS Management Console.

Make User-Defined Formats Available When Publishing Models to a
Database

In order to publish models with user-defined formats to a database using the Publish
Models to a Database feature, you must make the user-defined formats available to SAS
Model Manager.

To make the user-defined formats available for publishing:

1. Translate the user-defined formats SAS data set (formats.sas7bcat) that was created
with the model into a formats.cport file.

Here is an example:

filename tranfile "C:\formats.cport";
libname source "C:\myformats";

proc cport library=source file=tranfile memtype=catalog;
run;
quit;

2. Attach the formats.cport file to the Resources folder within the version that contains
the project champion model or challenger models.

3. Send a request to the SAS administrator and ask them to either put the user-defined
formats SAS data set (formats.sas7bcat) in the \\SASConfigDirectory\Lev1\SASApp
\SASEnvironment\SASFormats directory or add the LIBNAME definition for the
formats library to the \\SASConfigDirectory\Lev1\SASApp
\appserver_autoexec_usermods file.

Here is an example of a LIBNAME definition:

libname mylib "C:\myformats";
options fmtsearch = (mylib.formats);

See Also
SAS In-Database Products: User's Guide

Publish Models to a Database Field Descriptions
Here is a list of the field names and descriptions for the Publish Models to a Database
window.

Publishing Models to a Database 235

Database type
specifies the type of database to which the scoring function or model scoring files are
published.

Publish method
specifies the method to use when publishing the scoring function or model files to
the database.

Publish name
specifies the name to use when publishing a scoring function or model files to the
database. The publish name is a user-defined value that can be modified. The SAS
Embedded Process publish method uses the publish name as the model name to
publish the model files to the database. The scoring function publish method has a
system-generated prefix and the publish name that makes up the scoring function
name. These are used to publish the model scoring function.

The prefix portion of the scoring function name is 11 characters long and is in the
format of Yyymmddnnn_.

• Y is a literal character and is fixed for all prefixes.

• yy is the two-digit year.

• mm is the month and ranges from 01 to 12.

• dd is the day and ranges from 01 to 31.

• nnn is a counter that increments by 1 each time that a scoring function completes
successfully. The value can range from 001 to 999.

• _ is the underscore that ends the prefix.

The yymmdd value in the prefix is the GMT timestamp that identifies the date on
which you selected the Publish Models ð to a Database menu option. An example
of a function name is Y081107001_user_defined_value. Here are the naming
convention requirements:

236 Chapter 13 • Publishing Models

Here are the naming convention requirements for the publish name:

• The user-defined value is case insensitive. The maximum length of alphanumeric
characters is determined by the database type and publish method that is selected.
No spaces are allowed. An underscore is the only special character that can be
included in the publish name.

• The recommended maximum lengths of the publish name for the scoring
function publish method are the following:

• 19 alphanumeric characters for Teradata

• 32 alphanumeric characters for Netezza, Greenplum, and DB2

UNIX Specifics
The publish name (user-defined) portion of the function name in an AIX
environment has a maximum length of 16 alphanumeric characters for Teradata.

• The recommended maximum length of the publish name for the SAS Embedded
Process publish method is 32 alphanumeric characters for all database types. The
database types that are currently supported by SAS Model Manager are Teradata,
Oracle, Greenplum, and DB2.

The value of the publish name is validated against the target database, when the
option Replace scoring files that have the same publish name is not selected for
the SAS Embedded Process publish method. If the publish name is not unique, an
error message is displayed.

Replace scoring files that have the same publish name
specifies to replace the model scoring files that have the same publish name when
you are using the SAS Embedded Process publish method. The value of the publish
name is validated against the target database when this option is not selected. If the
publish name is not unique, an error message is displayed.

Specify an identifier to add to the database table for each model
specifies the value of the identifier that is added to each model in the database so that
the Database administrator or other users can query the database. The default value is
the project name. This option is available only for the SAS Embedded Process
publish method.

Database server
specifies the name of the server where the database resides.

Database
specifies the name of the database.

User ID
specifies the user identification that is required to access the database.

Password
specifies the password that is associated with the User ID.

Server user ID (DB2 only)
specifies the user ID for SAS SFTP. This value enables you to access the machine on
which you have installed the DB2 database. If you do not specify a value for Server
user ID, the value of User ID is used as the user ID for SAS SFTP.

Schema(Greenplum, Oracle, and DB2)
specifies the schema name for the database. The schema name is owned by the user
that is specified in the User ID field. The schema must be created by your database
administrator.

Publishing Models to a Database 237

Initial wait time (DB2 only)
specifies the initial wait time in seconds for SAS SFTP to parse the responses and
complete the SFTP –batch file process.

Default: 15 seconds

FTP time out (DB2 only)
specifies the time-out value in seconds if SAS SFTP fails to transfer the files.

Default: 120 seconds

Compile database (Netezza only)
specifies the name of the database where the SAS_COMPILEUDF function is
published.

Default: SASLIB

See Also: For more information about publishing the SAS_COMPILEUDF function,
see the SAS In-Database Products: Administrator's Guide.

Jazlib database (Netezza only)
specifies the name of the database where the SAS 9.3 Formats Library for Netezza is
published.

Default: SASLIB

Options
Validate scoring results

specifies to validate the scoring results when publishing a model scoring function
or model scoring files. This option creates a benchmark scoring result on the
SAS Workspace Server using the DATA Step score code. The scoring input data
set is used to create an equivalent database table. Scoring is performed using the
new scoring function or model scoring files and database table. The scoring
results are then compared.

Note: The default training table is used as the scoring input data set during
validation.

Keep scoring function if validation fails(scoring function) or Keep scoring files if
validation fails (SAS Embedded Process)

specifies to save the scoring function or model scoring files if the validation of
the scoring results fails. Saving the scoring function or model scoring files is
useful for debugging if validation fails.

Use model input
specifies to use the selected model input when publishing the scoring function or
model files instead of using the project input, which is the default. This is useful
when the project input variables exceed the limitations for a database.

Here are the limitations for the number of model input variables when publishing a
champion model or challenger model to a database:

Database Type SAS Embedded Process Scoring Function

Teradata If you use Teradata version
13.1 or 14.0, the maximum
is 1024. If you use the SAS
Embedded Process and
Teradata version 14.10, the
maximum is 2048.

128

Netezza 1600 64

238 Chapter 13 • Publishing Models

Database Type SAS Embedded Process Scoring Function

Oracle 1000 Not applicable

Greenplum 1660 100

DB2 The maximum depends on
the page size of the database
table space. For a 4K page
size database, the limit is
500. If you have it
configured for any of the
larger page sizes (8K, 16K,
32K), then the limit is 1012.

90

Protected mode (Teradata only)
specifies the mode of operation to use when publishing a model using the scoring
function publish method. There are two modes of operation, protected and
unprotected. You specify the mode by selecting or deselecting the Protected
mode option. The default mode of operation is protected. Protected mode means
that the macro code is isolated in a separate process from the Teradata database,
and an error does not cause database processing to fail. You should run the
Publish Scoring Function in protected mode during validation. When the model
is ready for production, you can run the Publish Scoring Function in unprotected
mode. You might see a significant performance advantage when you run the
Publish Scoring Function in unprotected mode.

Fenced mode (DB2 and Netezza only)
specifies the mode of operation to use when publishing a model using the scoring
function publish method. There are two modes of operation, fenced and
unfenced. You specify the mode by selecting or deselecting the Fenced mode
option. The default mode of operation is fenced. Fenced mode means that the
macro code is isolated in a separate process from the DB2 database, and an error
does not cause database processing to fail. You should run the Publish Scoring
Function in fenced mode during validation. When the model is ready for
production, you can run the Publish Scoring Function in unfenced mode. You
might see a significant performance advantage when you run the Publish Scoring
Function in unfenced mode.

Display detailed log messages
provides detailed information, which includes warnings and error messages that
occur when you publish a scoring function or scoring model files.

Sample size
specifies the size of the sample to use for validating the scoring function or
model files. The default value is 100. The maximum number of digits that are
allowed is 8.

How to Publish Models to a Database
To publish a model to a database:

1. Verify that you have set the champion model and challenger models that you want to
publish. For more information, see “Set a Champion Model” on page 217.

Publishing Models to a Database 239

2. (Optional) Select the project name and enter a value for the DbmsTable user-defined
property.

Note: If you plan to use scoring application or SQL Code to score this project, you
can set the DbmsTable property to the name of input table in your database that
you want to use for scoring the champion model. When you publish a scoring
function or model files, the information that is associated with the input table in
the database is updated to contain the value of the DbmsTable property. The
scoring application or SQL code can then query the database for the input table
name to use as the scoring input table.

For more information, see “User-Defined Properties” on page 508.

3. Right-click the project's name in the Project Tree and select Publish Models ð to a
Database from the pop-up menu. The Publish Models to a Database window
appears.

4. Select a database type and publish method. The type of database and the publish
method that you choose determine which database settings and options are required.

Operating Environment Information
The SAS Embedded Process can be used with the SAS Scoring Accelerator for
Netezza to run scoring models with the release of SAS 9.4. The SAS
Administrator can enable Netezza support for SAS Model Manager so that the
Netezza database type appears when using the SAS Embedded Process publish
method. For more information, see the SAS Model Manager: Administrator's
Guide.

5. Select the check box next to the models that you want to publish.

240 Chapter 13 • Publishing Models

6. Enter a publish name for each model that you selected to publish. The scoring
function publish method has a system-generated prefix and the publish name. These
are used to publish the model scoring function. The SAS Embedded Process publish
method uses only the publish name to publish the model files to the database. The
publish name is a user-defined value that can be modified.

Here are the naming convention requirements:

• The user-defined value is case insensitive. The maximum length of alphanumeric
characters is determined by the database type and publish method that is selected.
No spaces are allowed. An underscore is the only special character that can be
included in the publish name.

• The recommended maximum lengths of the publish names for the scoring
function publish method are the following:

• 19 alphanumeric characters for Teradata

• 32 alphanumeric characters for Netezza, Greenplum, and DB2

UNIX Specifics
The publish name (user-defined) portion of the function name in an AIX
environment has a maximum length of 16 alphanumeric characters for Teradata.

• The maximum length of the publish name for the SAS Embedded Process
publish method is 128 alphanumeric characters for all databases. However, the
recommended maximum length of the publish name is 32 alphanumeric
characters for all database types. The database types that are currently supported
by SAS Model Manager are Teradata, Oracle, Netezza, Greenplum, and DB2.

Note: The publish name for each model is reserved by default for subsequent use of
the publishing models for a project.

7. (Optional) Select the replace scoring files that have the same publish name check
box. This option is available only for the SAS Embedded Process publish method.

8. Specify an identifier to add to the database target table for each model. The default
value is the project name. This option is available only for the SAS Embedded
Process publish method.

9. Enter a value for the database settings that appear for the selected database type.

Here are the available database settings according to the publish method and
database type:

Database Settings SAS Embedded Process Scoring Function

Database server • Teradata

• Oracle

• Netezza

• Greenplum

• DB2

• Teradata

• Netezza

• Greenplum

• DB2

Database • Teradata

• Oracle

• Netezza

• Greenplum

• DB2

• Teradata

• Netezza

• Greenplum

• DB2

Publishing Models to a Database 241

Database Settings SAS Embedded Process Scoring Function

User ID • Teradata

• Oracle

• Netezza

• Greenplum

• DB2

• Teradata

• Netezza

• Greenplum

• DB2

Password • Teradata

• Oracle

• Netezza

• Greenplum

• DB2

• Teradata

• Netezza

• Greenplum

• DB2

Server user ID Not applicable DB2

Compile database Not applicable Netezza

Jazlib database Not applicable Netezza

Schema • Oracle

• Greenplum

• DB2

• Greenplum

• DB2

Initial wait time (in
seconds)

Not applicable DB2

FTP time out (in seconds) Not applicable DB2

10. Click More Options. The Database Options window appears.

Select the check box for the desired validation options that appear for the selected
database type:

• Validate scoring results

• Keep scoring files if validation fails (SAS Embedded Process) or Keep scoring
function if validation fails (scoring function)

• Display detailed log messages

242 Chapter 13 • Publishing Models

• Use model input

• Protected mode (Teradata scoring function option) or Fenced mode (DB2 and
Netezza scoring function option)

Note: By default, the Validate scoring results and Use model input options are
selected for both publish methods. The Protected mode or the Fenced mode
options are selected by default for the scoring function publish method.

11. Enter a numeric value for Sample Size. The default value for sample size is 100 if
the value is null or zero. The maximum number of digits that are allowed is 8.

12. Click OK. A message is displayed to indicate whether the models were published to
the database successfully or not.

Note: The value of the publish name is validated against the target database, when
the option Replace scoring files that have the same publish name is not
selected for the SAS Embedded Process publish method. If the publish name is
not unique, an error message is displayed.

13. Click Close to complete the publishing process.

See Also
• “Remove Models from a Database” on page 244

Publishing Models to a Database 243

• “View Publish History” on page 246

Log Messages
A user can view the log file after publishing a scoring model to a database. The Publish
Results folder in the Project Tree contains a folder for each model that was published.
The publish name is used to create a folder for each model that is published. That folder
contains the ScoringResults.log file. The time at which the process started, details about
who initiated the process, and the time at which the project was published are recorded.
Error messages are also recorded in the log file. The log file provides an audit trail of all
relevant actions in the publishing process.

Scoring Function Metadata Tables
If the metadata tables are created and configured for use in SAS Management Console,
the following tables are populated in the database when you are publishing a scoring
function:

project_metadata
provides information about the scoring project.

model_metadata
provides information about the champion model, such as the function name and
signature that are stored within this table.

project_model_info
maps a project to the champion model, as well as provides information about the
current active scoring model.

update_log
provides information about the update service process such as when it was started,
errors that occurred, and maintenance messages about what has occurred during the
publishing process. It also serves as the main audit trail.

rollback_error_log
records fatal errors that occur in the publishing process.

Remove Models from a Database
The SAS Embedded Process publish method enables you to replace the model scoring
files, but the scoring function publish method publishes the model as a separate entry in
the database each time. The Remove Models from a Database feature enables you to
remove previously published models, so that you can clean up the test or production

244 Chapter 13 • Publishing Models

database. After you have published models to a database, if you modify the previously
published models or change the champion model or challenger models, you can remove
them to clean up the database for future publishing of models.

To remove models from a database:

1. Select a project and then select Tools ð Remove Models from Database ð
<database type> from the menu toolbar. The Remove Models from Database
window appears.

2. Enter the database settings and click Log On. The Published Models Available for
Removal list is displayed.

3. Select from the list the models that you want to remove from the database. When you
select a model from the list, the publish details are displayed in the box at the bottom
of the window.

4. Click Remove Models. A warning message appears.

Remove Models from a Database 245

5. Click Yes to remove the models from the database.

6. Click Close in the success message that is displayed.

7. Click Cancel to exit the tool.

View Publish History
To view the publish history of models, select the MMRoot folder, a project or a version
from the Project Tree, and then select the Publish History tab in the details section. All
models that have been published to a SAS Channel, to the SAS Metadata Repository,
and to a database are displayed. Select an item from the list to view the full publish
details.

246 Chapter 13 • Publishing Models

Chapter 14

Replacing a Champion Model

Overview of Replacing a Champion Model . 247

Retire a Project . 248

Overview of Replacing a Champion Model
After reviewing production monitoring reports, you might find that it is necessary to
retire a champion model and replace it with a new champion model that performs better.
You might also find that the project is no longer viable, and you need to retire the
project.

You can retire a champion model and replace it with a new champion model that resides
in any version folder for the project.

Use the following table to determine the tasks to perform when you retire a champion
model:

State of the Champion Model Tasks to Perform

A new champion model is available in the
same version folder

Set the new model as the champion model.

Update the model life cycle milestones status
as appropriate. Approval of some tasks was
based on the previous champion model.

Note: If the characteristic or stability analysis
shows significant changes, set a new
champion model in a different version folder.
The bin definition that is used in characteristic
and stability analysis is based on the data that
was developed for the first champion model
that was selected in the version and does not
change after it is created. An out-of-date bin
definition might cause incorrect characteristic
or stability analysis.

A new champion model is available in a
different version folder.

Set the model as the champion model.

247

State of the Champion Model Tasks to Perform

A new champion model is not available when
you want to retire a model but not retire the
project.

Set the project State property to be inactive.

After a new model is ready, do the following:

• Set the model as the champion model.

• Update the appropriate life cycle milestone
tasks. If the new champion model is in the
same version folder as the previous
champion model, ensure that milestone
tasks are based on the new champion
model and not on the previous champion
model.

• Set the project State property to be active.

No other champion models are planned for the
project and the project is to be retired.

Set the project State property to be retired.

(Optional) Set the default version life cycle
retire status as completed.

Retire a Project
To retire a project:

1. Select the project in the Project Tree.

2. Click the State property, and select Retired.

Note: The State property is not set to Retired when you sign off on the milestone
action RetireChampion in the life cycle for the version. You must set the state
for the project manually.

248 Chapter 14 • Replacing a Champion Model

Part 5

Performance Monitoring and
Retraining Models

Chapter 15
What is Performance Monitoring? . 251

Chapter 16
Create Reports by Defining a Performance Task 263

Chapter 17
Create Reports Using Batch Programs . 277

Chapter 18
Formatting Performance Reports . 305

Chapter 19
Using Dashboard Reports . 313

Chapter 20
Retraining Models . 327

249

250

Chapter 15

What is Performance Monitoring?

Overview of Performance Monitoring . 251

Types of Performance Monitoring . 252
Overview of the Types of Performance Monitoring . 252
Summary Results . 253
Data Composition Reports . 254
Model Monitoring Reports . 256

Performance Index Warnings and Alerts . 259

The Process of Monitoring Champion Models . 260

Overview of Performance Monitoring
To ensure that a champion model in a production environment is performing efficiently,
you can collect performance data that has been created by the model at intervals that are
determined by your organization. A performance data set is used to assess model
prediction accuracy. It includes all of the required input variables as well as one or more
actual target variables. For example, you might want to create performance data sets
monthly or quarterly and then use SAS Model Manager to create performance
monitoring tasks for each time interval. After you create and execute the performance
monitoring tasks, you can view the performance data through report charts in SAS
Model Manager that give a graphical representation of the model's performance. SAS
Model Manager enables you to create performance monitoring reports in PDF, HTML,
RTF, and Excel output formats from the Reports node.

Note: Performance monitoring is designed to work only with a project that is associated
with a classification model function and has a binary target, or a prediction model
function and has an interval target. Only models that are associated with the
classification and prediction model types and are set as champion and challenger
models can be monitored for performance.

SAS Model Manager provides the following types of output for performance
monitoring:

• Summaries of the types of information in project folders such as the number of
models, model age distribution, input variables, and target variables.

• Reports that detect and quantify shifts in the distribution of variable values over time
that occur in input data and scored output data.

• Performance monitoring reports that evaluate the predicted and actual target values
for a champion model at multiple points in time.

251

You can create the performance monitoring output, except for summaries, using either of
the following methods:

• In the SAS Model Manager window, use the Define Performance Task wizard to
generate the SAS code that creates the performance output and then execute the
generated code.

• Write your own SAS program using the report creation macros that are provided
with SAS Model Manager and submit your program as a batch job. You can run your
SAS program in any SAS session as long as the SAS session can access the SAS
Content Server.

After you create and execute the performance task, you view the report charts in the SAS
Model Manager window by selecting the Performance node in the default champion
model’s version. The report charts are interactive charts in which you modify charts to
help you assess the champion model performance. For example, you can select different
variables for the x-axis and y-axis, filter observations, and change chart types.

If you have flagged a challenger model to compare with the champion model, you can
use the performance data that you collected for the champion model to create reports for
the challenger model. After all of the performance monitoring tasks have been run, you
can use the New Report window to create a Champion and Challenger Performance
report that compares the champion model to the challenger model.

Types of Performance Monitoring

Overview of the Types of Performance Monitoring
After a champion model is in production, you can monitor the performance of the model
by analyzing the SAS Model Manager performance results. You can create the
performance output interactively using the Define Performance Task wizard and the
Performance Monitor node from the project folder in the Project Tree or you can
submit batch programs within SAS.

You can create the following types of performance output:

Summary Results
The Summary results uses the information within organizational folders, project
folders, and version folders to summarize the number of champion models, the
number of models not in production, the model age, the number of reports, the input
variables, and the target variables. The summary information enables you to compare
the contents of organizational folders, projects, and versions. You view the Summary
results from the Annotations section in the Project category view.

Data Composition Reports
The two data composition reports, the Characteristic report and the Stability report,
detect and quantify shifts in the distribution of variable values that occur in input
data and scored output data over time. The Characteristic report detects shifts in the
distribution of input variables over time. The Stability report measures shifts in the
scored output data that a model produces. By analyzing these shifts, you can gain
insights on scoring input and output variables.

Model Monitoring Reports
The model monitoring reports are a collection of performance assessment reports
that evaluate the predicted and actual target values. The model monitoring reports
create several charts:

252 Chapter 15 • What is Performance Monitoring?

• Lift

• Gini - ROC*

• Gini - Trend

• KS

• MSE (Mean Squared Error) for prediction models

* receiver operating characteristic

When you create Data Composition reports and Model Monitoring reports, you can set
performance index warnings and alerts. When certain thresholds are met, SAS Model
Manager can send a warning and alert notification to e-mail addresses that you configure
either in the Define Performance Task wizard or in a SAS program.

You view the Data Composition reports and the Model Monitoring reports from the
version Performance node.

To explore the degradation of a model's performance over time using these charts, right-
click in the chart and select Data Options. From the Data Options window, you can
modify various values to further explore the degradation of a model. You can set
different data filters and select different variables to replot a chart.

Summary Results
The Summary results summarizes the contents of different organizational folders,
projects, and versions.

The contents of the Summary results is dynamic and is updated according to the folder
that you select in the Project Tree. The scope of the information reported is defined by
the collection of folders and objects that exist beneath the folder that is selected.

To view the Summary results, click the Summary tab that is in the Annotations section

of the Projects category view. Then click .

Use the following sections to evaluate and compare the contents of the different folders
in the Project Tree:

General Properties
Use the General Properties section to browse the number of models, the number of
versions, the number of scoring tasks, and the number of candidate models.
Candidate models are models that are not currently in production.

Production Models Aging Report
Use the Production Models Aging Report to view the number and aging
distribution of champion models. The binned chronology report lists the number of
champion models by deployment age, using six intervals to classify the deployment
ages. The first four intervals combine to create a span of 365 days. The fifth interval
adds another 365 days. The sixth interval reports the number of models that have
been in production for two years or more.

Summary of Reports
Use the Summary of Reports section to browse the number of reports that have
been generated in the Reports folder for the selected folder.

Model Target Variable Report
Use the Model Target Variable Report to see the frequency with which target
variables are used in the models that exist for the selected folder. Each unique model
target variable is reported, listing the number of models that use that variable as a
target variable.

Types of Performance Monitoring 253

Model Input Variable Report
Use the Model Input Variable Report to see the frequency with which input
variables are used in the models for an organizational folder, a project, or a version.
Each unique model input variable is reported, listing the number of models that use
that variable as an input variable.

Data Composition Reports

Variable Distribution Report
When you select the Performance node for a version in the Project Tree, the Variable
Distribution report appears with two charts. The variable distribution chart on the left is
a histogram. This histogram is a graphical representation of the distribution of a selected
variable from the training data set. The Y-axis is the count of observations in a bin.

The variable distribution chart on the right is a line chart. The chart is a graphical
representation of two distributions of a selected variable from the training data set and
the current data set, respectively. The Y-axis is the percentage of observations in a bin
that is proportional to the total count.

To change the variable that appears in the two charts, click the Select variable box and
select a variable.

Overview of Characteristic and Stability Reports
Together, the Characteristic and Stability reports detect and quantify shifts that can occur
in the distribution of model performance data, scoring input data, and the scored output
data that a model produces.

The Characteristic report detects shifts in the distributions of input variables that are
submitted for scoring over time. The Stability report measures shifts in the scored output

254 Chapter 15 • What is Performance Monitoring?

data that a model produces. If a Characteristic report identifies a distribution shift in the
input data, the corresponding Stability report can help assess the model's sensitivity to
the distribution shift in the input data, in terms of the predictive performance of the
scoring input variables.

The Characteristic report indicates changes to the scope and composition of the
submitted data sets over time, and the Stability report evaluates the impact of the data
variation on the model's predictive output during the same interval.

The Characteristic report does not require scoring. The Stability report requires output
data from scoring to generate the deviation statistics of the output variable.

Note: For each time period that you execute the performance task, SAS Model Manager
creates a new point on the Characteristic and Stability charts. Line segments between
points in time do not appear on the charts until after the third iteration of executing
the performance reports.

Characteristic Report
The Characteristic report detects and quantifies the shifts in the distribution of variable
values in the input data over time. Input data variable distribution shifts can point to
significant changes in customer behavior that are due to new technology, competition,
marketing promotions, new laws, or other influences.

To find shifts, the Characteristic report compares the distributions of the variables in
these two data sets:

• the training data set that was used to develop the model

• a current data set

If large enough shifts occur in the distribution of variable values over time, the original
model might not be the best predictive or classification tool to use with the current data.

The Characteristic report uses a deviation index to quantify the shifts in a variable's
values distribution that can occur between the training data set and the current data set.
The deviation index is computed for each predictor variable in the data set, using this
equation:

Deviation_Index = Σ (%Actual - %Expected) *1n (%Actual / %Expected)

Numeric predictor variable values are placed into bins for frequency analysis. Outlier
values are removed to facilitate better placement of values and to avoid scenarios that
can aggregate most observations into a single bin.

If the training data set and the current data set have identical distributions for a variable,
the variable's deviation index is equal to 0. A variable with a deviation index value that
is P1>2 is classified as having a mild deviation. The Characteristic report uses the
performance measure P1 to count the number of variables that receive a deviation index
value that is greater than 0.1.

A variable that has a deviation index value that is P1>5 or P25>0 is classified as having
a significant deviation. A performance measure P25 is used to count the number of
variables that have significant deviations, or the number of input variables that receive a
deviation index score value that is greater than or equal to 0.25.

Stability Report
The Stability report evaluates changes in the distribution of scored output variable values
as models score data over time. It uses the same deviation index function that is used by
the Characteristic report, except that the Stability report detects and quantifies shifts in
the distribution of output variable values in the data that is produced by the models.

Types of Performance Monitoring 255

If an output variable from the training data set and the output variable from the current
data set have identical distributions, then that output variable's deviation index is equal
to zero. An output variable with a deviation index value that is greater than 0.10 and less
than 0.25 is classified as having a mild deviation. A variable that has a deviation index
value that is greater than 0.30 is classified as having a significant deviation. Too much
deviation in predictive variable output can indicate that model tuning, retraining, or
replacement might be necessary.

Example Characteristic and Stability Reports
The following report is an example of Characteristic and Stability reports. By placing the
cursor over a point in the chart, you can view the data for that point.

Model Monitoring Reports

Lift Report
The Lift report provides a visual summary of the usefulness of the information provided
by a model for predicting a binary outcome variable. Specifically, the report summarizes
the utility that one can expect by using the champion model as compared to using
baseline information only. Baseline information is the prediction accuracy performance
of the initial performance monitoring task or batch program using operational data.

A monitoring Lift report can show a model's cumulative lift at a given point in time or
the sequential lift performance of a model's lift over time. To detect model performance
degradation, you can set the Lift report performance indexes Lift5Decay, Lift10Decay,
Lift15Decay, and Lift20Decay. The data that underlies the Lift report is contained in the
report file mm_lift.sas7bdat in the Resources folder.

Here is an example of a monitoring Lift report. By placing the cursor over a point in the
report, you can view the data for that point.

256 Chapter 15 • What is Performance Monitoring?

Gini (ROC and Trend) Report
The Gini (ROC and Trend) reports show you the predictive accuracy of a model that
has a binary target. The plot displays sensitivity information about the y-axis and 1–
Specificity information about the x-axis. Sensitivity is the proportion of true positive
events. Specificity is the proportion of true negative events. The Gini index is calculated
for each ROC curve. The Gini coefficient, which represents the area under the ROC
curve, is a benchmark statistic that can be used to summarize the predictive accuracy of
a model.

Use the monitoring Gini (ROC and Trend) report to detect degradations in the
predictive power of a model.

The data that underlies the monitoring Gini (ROC and Trend) report is contained in the
report component file mm_roc.sas7bdat.

The following chart is an example of a monitoring Gini (ROC and Trend) report. By
placing the cursor over a point in the chart, you can view the data for that point.

KS Report
The KS report contains the Kolmogorov-Smirnov (KS) test plots for models with a
binary target. The KS statistic measures the maximum vertical separation, or deviation
between the cumulative distributions of events and non-events. This trend report uses a

Types of Performance Monitoring 257

summary data set that plots the KS statistic and the KS probability cutoff values over
time.

Use the KS report to detect degradations in the predictive power of a model. To scroll
through a successive series of KS performance depictions, select a time interval from the
Time Interval list box. If model performance is declining, it is indicated by the
decreasing distances between the KS plot lines.

To detect model performance degradation, you can set the ksDecay performance index
in the KS report.

The data that underlies the KS chart is contained in the report component file
mm_ks.sas7bdat.

The following report is an example of a KS report. By placing the cursor over a point in
the chart, you can view the data for that point.

Mean Squared Error Report
The Mean Squared Error (MSE) report checks the accuracy of a prediction model with
an interval target by comparing the estimation derived from the test data and the actual
outcomes that are associated with the test data for different time periods.

The following report is an example of an MSE report.

258 Chapter 15 • What is Performance Monitoring?

Performance Index Warnings and Alerts
The production model performance reports use performance measurement thresholds to
benchmark and gauge the performance of a predictive model. When one of the
performance measurements exceeds one or more specified indexes or thresholds,
warning and alert events occur. When warning or alert events occur, warning and alert
notifications are automatically sent by e-mail to recipients whose e-mail address is
configured either in the Define Performance Task wizard or in the batch program that
runs the reports.

Use the following assignment statements to set warning and alert conditions:

alertConditon='alert-condition';
warningCondition='warning-conditon';

The condition must be enclosed in quotation marks if you use SAS code to create the
report. An error occurs if you enclose the condition in quotation marks in the Define
Performance Task wizard.

The following indexes and thresholds can be configured in either the Define
Performance Task wizard or in a batch program that creates the report specifications:

Characteristic report
You can configure the thresholds for the performance indexes P1 and P25. The P1
and P25 indexes represent the count of input variables with deviation index scores
exceeding 0.1 and 0.25, respectively. Here is an example of alert and warning
thresholds:

alertCondition='p1>5 or p25>0';
warningCondition='p1>2';

Stability report
You can configure output deviation index scores for a model's output variable. The
output deviation index scores represent the deviation levels in the distribution of the
model's scored output variables. Here is an example of alert and warning thresholds:

alertCondition='outputDeviation>0.03';
warningCondition='outputDeviation>0.01';

Model Assessment reports
For the Lift, Gini (ROC and Trend), and KS reports, you can configure threshold
values for the following decay statistics.

lift5Decay is the lift performance decay based on the top 5% of the target
population of interest from time A to time B.

lift10Decay is the lift performance decay based on the top 10% of the target
population of interest from time A to time B.

lift15Decay is the lift performance decay based on the top 15% of the target
population of interest from time A to time B.

lift20Decay is the lift performance decay based on the top 20% of the target
population of interest from time A to time B.

giniDecay is the performance decay of the Gini index from time A to time
B.

Performance Index Warnings and Alerts 259

ksDecay is the performance decay of the KS statistic from time A to time
B.

For the prediction model MSE report, you can configure the mseDecay statistic
threshold values. The mseDecay statistic is the performance decay of the MSE
statistic from time A to time B.

Here is an example of alert and warning thresholds:

alertCondition='(lift5Decay>0.15 and lift10Decay>0.12)
 or giniDecay>0.1 or ksDecay>0.1';
warningCondition='lift5Decay>0.05';

The following table is an example of a warnings and alerts notification table:

The warnings and alerts notification table displays the computed performance indexes
and performance decay statistics that were calculated for the model, as well as
summaries of the alert and warning threshold settings that were specified for the model.
The calculated statistics are compared with the alert and warning threshold settings.

When an alertEvaluation or warningEvaluation column displays a True value, the
warnings and alerts table is e-mailed to the configured recipients. When the value is
False, no e-mail notification is sent.

See Also
“Types of Performance Monitoring” on page 252

The Process of Monitoring Champion Models
Your project plan might include a schedule to monitor the champion model performance,
or your plan might require that you monitor the performance at any time. For each time
period that you monitor the champion model, you take a snapshot of the data for that
time period and use that data as the performance data source for creating the monitoring
reports.

You can create the monitoring reports from the Project Tree in the SAS Model Manager
window by creating and executing a performance task, or you can submit batch
programs to create the reports. Both methods require the same information. Both
methods can process one or more performance data sources. When you create a

260 Chapter 15 • What is Performance Monitoring?

performance task, you can specify one or more data sources to process. When you use a
batch program, you use a separate DATA step to process each data source.

If you run batch programs, you can find example programs in the
sashelp.modelmgr.source catalog. These reports’ filenames are reportexamplex, where
x is a number from 1 to 4.

The following table lists the tasks that are required to create performance reports:

Task

Reports Created by Using
the Define Performance
Task Wizard

Reports Created Using
SAS Programs That Run in
Batch

Create a folder structure for
report files

The folder structure is
inherent in the Project Tree.
No action is necessary.

Create a folder structure on a
local computer.

Obtain performance data The performance data is one
or more SAS data sets that are
a snapshot of model output.
They can be registered in
SAS Management Console or
they can be accessed by using
a libref that has been defined
by using the Edit Start-up
Code window.

The performance data is used
to assess model prediction
accuracy. It includes all of the
required scoring input
variables as well as one or
more actual target variables.
You can store performance
data sets anywhere as long as
they can be accessed by the
SAS session that runs the
batch program. The data sets
do not need to be registered
with SAS Management
Console.

Ensure access to the
champion or challenger
model

This process is performed by
the Define Performance Task
wizard. No action is
necessary.

Run the %MM_GetModels()
macro to extract the
champion model in a channel
to the local computer.

Map model and project output
variables.

Map the model and project
output variables using the
Project Tree.

Map the model and project
output variables using the
Project Tree.

Define report specifications The report specification are
derived from project data and
input that you specify in the
Define Performance Task
wizard. The wizard generates
the SAS code to create the
performance reports.

Write the following DATA
steps:

• mm_jobs.project

• mm_jobs.emailaddr

• mm_jobs.reportdef

• mm_jobs.jobtime

Specify the report execution
operational environment

The operational environment
is known to SAS Model
Manager. No action is
necessary.

Define the required macro
variables that are used by the
%MM_RunReports() macro.

The Process of Monitoring Champion Models 261

Task

Reports Created by Using
the Define Performance
Task Wizard

Reports Created Using
SAS Programs That Run in
Batch

Run the reports Execute the code from the
Performance Monitor node
that was generated by the
Define Performance Task
wizard or schedule the
performance task from the
Performance Monitor pop-
up menu. The data sets that
underlie the monitoring
reports are stored in the
Resources folder.

Create a DATA step that
points to the performance
data sets and execute the
%MM_RunReports() macro.
The data sets that underlie the
monitoring reports are stored
in the Resources folder when
the reports are created in
production mode. In Test
mode, the monitoring reports
data sets reside in the location
specified in the
mm_jobs.project data set.

View the reports Select the Performance
folder for the champion
model’s version to view the
reports.

Select the Performance
folder for the champion
model’s version to view the
reports.

262 Chapter 15 • What is Performance Monitoring?

Chapter 16

Create Reports by Defining a
Performance Task

Overview of Creating Reports Using a Performance Task 263
Creating Reports Using a Performance Task . 263
Determine How to Use the Performance Data Sets . 264

Prerequisites for Running the Define Performance Task Wizard 266
Overview of Prerequisites . 266
Ensure That the Champion Model Is Set or That the

Challenger Model Is Flagged . 266
Ensure That the Champion Model Function and Class Target Level Are Valid . . 266
Ensure That the Performance Data Source Is Available . 267
Ensure That Project and Model Properties Are Set . 267
Map Model and Project Output Variables . 268

Run the Define Performance Task Wizard . 268

Schedule Performance Monitoring Tasks . 273
Overview of Scheduling Performance Monitoring Tasks 273
Create the Schedule . 274
Delete a Performance Task Schedule . 274
Schedule Properties for the Performance Monitor . 275

View Performance Monitoring Job History . 275

Delete Performance Summary Data Sets . 276

Overview of Creating Reports Using a
Performance Task

Creating Reports Using a Performance Task
You define and execute a performance task for a SAS Model Manager project. The
model that you monitor is either the project champion model or a challenger model that
is flagged in any version for the project. The process of creating performance reports is a
two-step process. First, you run the Define Performance Task wizard to generate the
code that creates the performance data results. Then, you execute the generated code.
You can execute the code immediately, or you can schedule a date and time at which the
task is to run. Information about performance tasks is recorded and can be viewed in the
Performance Monitor Job History tab. SAS Model Manager stores the output data in
the Resources folder of the default version. To view the performance data results, you
select the Performance node in the champion model’s version.

263

To create performance reports in SAS Model Manager, follow this process:

• Ensure that one or more performance data sources are registered using SAS
Management Console or that a libref has been defined for the location where the
performance data sets are stored.

• Ensure that all prerequisites have been completed.

• Run the Define Performance Task wizard to generate the SAS code that creates the
performance reports.

• Execute the generated code or schedule when the generated code is to be executed.

• To view the reports, select the Performance node in the champion model’s version.

Determine How to Use the Performance Data Sets
Before you run the Define Performance Task wizard, the performance data sets must be
registered in the SAS Metadata Repository by using SAS Management Console or a
libref must be defined in SAS Model Manager for the library that contains the
performance data sets. For each SAS Model Manager project, you can set up your
environment to use the performance data source that is most appropriate for your
business process. Here are two methods of collecting performance data:

• Method 1: You periodically take a snapshot of an operational data set to create a
performance data set. Each time you take a snapshot, you give the performance data
set a new name. Each performance data set must be registered in SAS Management
Console or stored in a library that has a libref that has been defined in SAS Model
Manager. You can create and execute a performance monitoring task each time you
take a snapshot, or you can create a performance monitoring task to execute multiple
performance data sets in the same task.

• Method 2: You take a snapshot of the operational data set to create a performance
data set over time, and you reuse the same name for each performance data set every
time you take a snapshot. You register the performance data set with SAS
Management Console only once. Each time you take a snapshot, you replace the
performance data set at the location where the performance data set is registered in
SAS Management Console or in the SAS library that you defined for performance
data sets.

When you run the Define Performance Task wizard, the name of the performance
data source does not change. Because you used the performance data source static
name as the Default Performance Table in the project properties, the Data Source
column of the Performance Data Options table in the wizard is completed by SAS
Model Manager. You modify only the Collection Date and Report Label columns
in the table.

The following table summarizes the tasks that are performed if performance reports are
run after six months or for reports that are run every month. Use this task and example
table to help you determine how you want to name your performance data sets and your
SAS Model Manager performance data sources.

264 Chapter 16 • Create Reports by Defining a Performance Task

Task

Method 1: The
Performance Data Set
Name Changes

Method 2: The
Performance Data Set
Name Remains Static

Create a performance data set
from model output data

Each month, take a snapshot
of the operational data and
create a performance data set
with a different name:

• Jul13

• Aug13

• Sep13

• Oct13

• Nov13

Dec13

Every month, take a snapshot
of the operational data and
name the performance data
set using the same name:

2013perf

If you are registering the
performance data sets in the
SAS Metadata Repository,
register the performance data
sets using the SAS
Management Console

Register the data sets monthly
or register them all at once
before you run the reports.

Register the data sets the first
month only.

If the performance data set is
accessed by using a libref,
store the data set in the SAS
library.

Save the performance data set
in the SAS library that is
defined by a libref in SAS
Model Manager.

Save the performance data set
in the SAS library that is
defined by a libref in SAS
Model Manager.

Modifications to make in the
Define Performance Task
wizard

In Step 3, select one or more
performance data sources. For
each data source, select a data
collection date and enter a
date label.

In Step 3, select a data
collection date and enter a
date label.

The Performance data
source field contains the
static name of the
performance data source
name because it was specified
for the previous execution of
the task for this project.

Create the reports Run the Define Performance
Task wizard and execute the
reports from the
Performance Monitor
project node or schedule
when the task is to execute.

Because each performance
data source has a different
name, you can run the
performance task as desired;
the task does not need to be
run monthly.

Monthly, run the Define
Performance Task wizard and
execute the reports from the
Performance Monitor
project node or schedule
when the task is to execute.

To ensure that you do not
write over important
performance data, run the
performance task before a
new snapshot of the
operational data is taken.

Overview of Creating Reports Using a Performance Task 265

Prerequisites for Running the Define Performance
Task Wizard

Overview of Prerequisites
Before you run the Define Performance Task wizard, the environment must be set
appropriately as follows:

• Ensure that the champion model is set or the challenger model is flagged.

• Ensure that the champion or challenger model is within a project that is associated
with a classification model function and has a binary target, or a prediction model
function and has an interval target.

• Ensure that the champion or challenger model contains a score.sas file. If the
performance data set contains the predicted values, the score.sas file can be empty.
For more information, see “Monitoring Performance of a Model without Score
Code” on page 551.

• Ensure that the performance data sets for the time period that you want to monitor
are registered in SAS Management Console or that a libref has been defined for the
SAS library where the performance data sets are saved.

• Ensure that the appropriate project and model properties are set.

• Ensure that the model output variables are mapped to the project output variables.

After the environment is set, you can run the Define Performance Task wizard.

Ensure That the Champion Model Is Set or That the Challenger
Model Is Flagged

The Define Performance Task wizard generates report code for the champion model in
the default version.

You can determine the default version and the champion model by looking for the
icon next to the default version name and the champion model name.

If the champion model is not set, right-click the champion model name and select Set as

Champion. The icon appears next to the champion model name and the version for
the champion model.

You can determine the challenger model by looking for the icon next to the
challenger model name.

If the challenger model is not set, right-click the challenger model name and select Flag

as Challenger. The icon appears next to the challenger model.

Ensure That the Champion Model Function and Class Target Level
Are Valid

Performance monitoring is valid only for a project that is associated with a classification
model function and has a binary target, or for a prediction model function that has an

266 Chapter 16 • Create Reports by Defining a Performance Task

interval target. You should define only performance tasks for classification and
prediction models. The champion model must have a function type of classification and
must contain a binary target, or a function type of prediction and must contain an
interval target.

From the Projects category view, select the champion model name and verify that the
Function property in the specific properties section is set to Classification or
Prediction. For models that are created using SAS Enterprise Miner, select the
targetvar.xml file in the model folder and verify that the LEVEL attribute is set to
BINARY for a classification model or to INTERVAL for a prediction model.

Ensure That the Performance Data Source Is Available
The Define Performance Task wizard requires that the performance data either be
registered in the SAS Metadata Repository using SAS Management Console, or that a
libref is defined from the Edit Start-up Code window to access the performance data
from a SAS library.

If your performance table is not available for selection, do one of the following actions:

• Contact your administrator to add the table to the Data Library Manager using SAS
Management Console. For more information, see the SAS Model Manager
Administrator's Guide.

• Define a libref to access the performance data in a SAS library. For more
information about defining a libref for the performance data, see “Using Tables from
a Local or Network Drive” on page 42.

See Also
“Project Tables” on page 33

Ensure That Project and Model Properties Are Set
Several properties must be defined in order to generate the model performance reports.
Verify that the appropriate project and model properties are set. Here is a list of
properties.

Classification Project Properties

• Training Target Variable

• Target Event Value

• Class Target Level

• Output Event Probability Variable

Prediction Project Properties

• Training Target Variable

• Class Target Level

• Output Prediction Variable

Model Properties

• Score Code Type

Prerequisites for Running the Define Performance Task Wizard 267

Map Model and Project Output Variables
In order to create the model performance reports, the model output variable must be
mapped to the project output variable if the corresponding project variable and the model
variable have different names. To map these output variables, follow these steps:

1. Select the model from the Models node.

2. In the right pane, click the Model Mapping tab and click Edit.

3. For each project output variable, select a variable from the Model Variables list box.

Run the Define Performance Task Wizard
To create the monitoring reports, you run the Define Performance Task wizard to
generate SAS code. You then execute the generated code or create a schedule to execute
the generated code on a specific day and time. Execution of the generated code creates
the SAS data sets that are used to display reports: either the monitoring reports from the
version Performance node, or the Monitoring report or Champion and Challenger
Performance report that you create from the New Report wizard.

To create the reports:

1. Right-click the project name and select Define Performance Task. The Define
Performance Task wizard appears.

Note: The Define Performance Task pop-up menu item is available to only SAS
Model Manager administrators and advanced users.

268 Chapter 16 • Create Reports by Defining a Performance Task

2. In the Output Variables for Stability Analysis table, select the output variable or
variables. To select all output variables, click Select All.

3. In the Input Variables for Characteristic Analysis table, select the input variables.
To select all input variables, click Select All. Click Next.

4. For each general property in the table, verify the values for the warning and alert
conditions. Modify the values as necessary. Make sure that the values are not
enclosed in quotation marks. Click Next.

Run the Define Performance Task Wizard 269

5. Choose the data processing methods.

• To run a standard environment, select Standard configuration.

• To run the performance monitoring task in a High-Performance Analytic
environment, select High-performance configuration.

• To run the scoring task code in the performance monitor job, select Run model
score code. If High-performance configuration is selected, the Run model
score code check box is not available. If you do not select Run model score
code, make sure that all output variables for stability analysis exist in the
performance data source.

Note: The scoring task is not run when High-performance configuration is
selected. To use the high-performance configuration, the High-Performance
Analytics server product must be licensed.

270 Chapter 16 • Create Reports by Defining a Performance Task

6. Select a model from the Models table. If a challenger model has been flagged, the
challenger model is listed in the Models table.

7. Click , click the empty cell in the Data Source column, and click Browse. Select

a performance data table and click OK.

Note: When you add multiple tables, the baseline performance table is the table with
the earliest collection date.

8. Click the empty cell in the Collection Date column and click . Select a date for

the collection date. The date can be any date in the time period when the
performance data was collected.

Note: The date that you select is used by SAS Model Manager for sequencing data
and does not appear in any charts. If the performance data is for the first quarter
of 2013, the date could be any date between January 1 and March 31, 2013.

9. To add a label for the date, enter the label in the Report Label column. The report
label represents the time point of the performance data source. Because the report
label appears in the performance charts, use a label that has not been used in another
report, is short, and is understandable (for example, 2013Q1 or 2013).

Run the Define Performance Task Wizard 271

Note: Duplicate report labels result in previous performance results being
overwritten.

When the performance monitoring report is for a challenger model and when the data
will be used in a Champion and Challenger Performance report, some requirements
apply. Namely, the value of the Report Label field must be the same report label
that was used for the same time period when the performance monitoring report was
run for the champion model. For example, if the report label for the champion
model’s data from the first quarter of 2013 is 2013Q1, the date label for the
challenger model’s data from the first quarter of 2013 must be 2013Q1.

10. (Optional) Repeat Steps 7–9 to add multiple performance data tables to the
performance monitoring task.

11. (Optional) To delete a table from the performance monitoring task, select the table
and click .

12. (Optional) Click Validate to verify that the selected input variables and target
variables are included in the performance data source.

13. Click the Default server list and select a SAS Application Server where the
performance task is to execute.

14. Click Next.

15. (Optional) To send the scoring results by e-mail, click the Add button in the E-mail
Notifications table. The Add Contact window appears.

a. Enter an e-mail address.

b. Select either Yes or No if you want an alert warning to be sent by e-mail when
alert or warning thresholds have been exceeded.

c. Select either Yes or No if you want a completion notice with the job status to be
sent by e-mail every time the report runs.

16. Click Finish. The Working status box appears while the code is generated.

17. To execute the generated code at a particular time, see “Schedule Performance
Monitoring Tasks” on page 273. To execute the generated code from the Project
Tree immediately, right-click the Performance Monitor folder and select Execute.
The performance task is executed as a background process. SAS Model Manager
saves the data sets that create the monitoring reports in the Resources folder of the
default version.

Note: If the report creation fails, you can view the SAS log to look for error
messages by selecting the PerformanceMonitor.log file in the Performance
Monitor node.

272 Chapter 16 • Create Reports by Defining a Performance Task

18. To view the reports, click the Performance node in the champion model’s version.
On the right, click the tab for the report that you want to view.

Schedule Performance Monitoring Tasks

Overview of Scheduling Performance Monitoring Tasks
After you create a performance monitoring task, you can create a schedule to execute the
task to run on a specific day and at a specific time. You can schedule the task to run
hourly, daily, weekly, monthly, or yearly.

Before you can schedule a performance task, the password for your user ID must be
made available to the SAS Metadata Repository. Passwords can be added using SAS
Management Console. To add or update your password, contact your SAS Model
Manager Administrator.

You cannot edit performance monitoring schedules. To modify a schedule, delete the
schedule and create a new schedule.

After performance monitoring jobs execute, you can view the job history using the Job
History tab of the Performance Monitor node.

Schedule Performance Monitoring Tasks 273

Create the Schedule
To schedule a performance monitoring task:

1. Right-click the Performance Monitor node and select New Schedule. The New
Schedule window appears.

2. To set how often to run the performance monitoring task, click the Recurrence list
box and select a time interval and the interval options in the Interval box.

3. To set the time to run the job, select an hour from the Hour list box and select a
minute from the Minute list box.

4. To set the start date, click the calendar and select a start date. Instead of using

the calendar, you can select a month from the Month list box, select a day from the
Day list box, and select a year from the Year list box.

5. (Optional) Click Advanced. Select the server that schedules the job from the
Scheduling server list box. Select the batch server that runs the job from the Batch
server list box. Select a location for the performance monitoring job from the
Location list box. Click OK.

6. Click OK. A message box confirms that the schedule was created. Click Close.

Note: Performance monitoring task schedules cannot be edited. To change the schedule,
delete the schedule and create a new schedule.

Delete a Performance Task Schedule
To delete the schedule for a performance monitoring task:

274 Chapter 16 • Create Reports by Defining a Performance Task

1. Expand the project folder, right-click Performance Monitor, and select Delete
Schedule.

2. A message box confirms that the schedule was deleted. Click Close.

Schedule Properties for the Performance Monitor
Here is a list of the Schedule properties for the Performance Monitor:

Property Name Description

Job Name Specifies the name of the performance
monitoring task. This name cannot be
changed.

Location Specifies the location of the performance
monitoring task job definition in the SAS
Metadata Repository.

Scheduling Server Specifies the name of the server that schedules
the job for the performance monitoring task.

Batch Server Specifies the name of the server that executes
the job for the performance monitoring task.

Recurrence Specifies how often the scheduled job for the
performance monitoring task is to be
executed.

SAS Application Server Specifies the name of the SAS Application
Server where the performance monitoring task
is to be executed.

View Performance Monitoring Job History
Use the Performance Monitor Job History tab to verify whether a performance
monitoring task was run. The performance monitoring job appears on the Job History
tab only after the job has begun.

To view the job history of a performance monitoring task:

1. Expand the project folder and select Performance Monitor.

2. In the details section, click the Job History tab. A table appears that lists the
performance monitoring jobs that have been executed.

Here is a description of the columns in the job history table:

Job Name
is the name of the performance monitoring task.

Job Status
specifies whether the job status is Running or Completed.

View Performance Monitoring Job History 275

Execution Status
shows a green indicator for a successful job execution. A yellow indicator shows that
the performance monitoring task ran with warnings. A red indicator shows that the
performance monitoring task ran with errors.

Date Started
is the date and time that the performance monitoring task started.

Date Completed
is the date and time that the performance monitoring task ended.

Log
is the revision number for the SAS log.

Output
is the revision number for the job output.

SAS Code
is the revision number for the performance monitoring task program.

Delete Performance Summary Data Sets
After a performance monitoring task has run, the summary data sets reside in the
Resources folder.

To delete the performance summary data sets:

1. Expand the version folder.

2. Right-click the Resources folder and select Delete Performance Data Sets.

3. Click Yes to confirm the deletion, and click Close after the files have been deleted.

276 Chapter 16 • Create Reports by Defining a Performance Task

Chapter 17

Create Reports Using Batch
Programs

Overview of SAS Programs to Monitor Model Performance 278

Prerequisites for Running Batch Performance Reports . 279
Overview of Prerequisites for Running Batch Performance Reports 279
Publish the Champion Model from the Project Folder . 279
Create a Folder Structure . 279
Obtain Performance Data . 281
Determine the Publish Channel . 281
Copy Example Batch Programs . 281
Determine SAS Model Manager User ID and Password . 282

Report Output in Test and Production Modes . 282
Report Output in Test Mode . 282
Report Output in Production Mode . 283

Define the Report Specifications . 283
Overview of Code to Define Report Specifications . 283
Required Libref . 283
Project Specifications . 284
E-mail Recipient Specifications . 286
Report Specifications . 287
Job Scheduling Specifications . 290
Example Code to Create the Report Specifications . 291

Extracting the Champion Model from a Channel . 294
Using the %MM_GetModels() Macro . 294
Accessing SAS Model Manager Report Macros . 295
%MM_GetModels() Macro Syntax . 295
Example Program to Extract a Model from a Channel . 295
The current.sas7bdat Data Set . 296

SAS Code to Run Performance Reports . 297
Overview of the SAS Code to Run the Performance Reports 297
Accessing SAS Model Manager Report Macros . 298
Required Librefs . 298
Macro Variables to Define Report Local Folders and Data Sets 298
Macro Variables That Are Used by the %MM_RunReports() Macro 299
The DATA Step to Access the Performance Data Set . 300
The %MM_RunReports() Macro . 300
Example Code to Run the Reports . 302

277

Overview of SAS Programs to Monitor Model
Performance

A SAS program that creates performance monitoring reports consists of three conceptual
sections:

• The first section defines the report specifications that identify the project, the types
of reports that you want to create, alert and warning conditions, and the date and time
to run the batch jobs.

• The second section extracts the champion model from a publishing channel. Any
batch job that creates performance monitoring reports must extract models from a
publishing channel. The champion model must have been published to the channel
from the project folder.

• The third section defines the operating environment and the performance data set.
This section calls a SAS macro that creates the reports.

Note: SAS programs for performance monitoring reports can be run only for champion
models. Performance monitoring reports for challenger models can be run only by
creating a performance task using the SAS Model Manager client.

You define the report specifications by writing four DATA steps:

• mm_jobs.project defines the project specifications.

• mm_jobs.emailaddr defines the e-mail address where you send job, alert, and
warning notifications.

• mm_jobs.reportdef defines which type of reports you want to create, and the alert
and warning conditions for those reports.

• mm_jobs.jobtime defines the date and time to run the batch jobs.

After the report specification data sets have been created, you extract the champion
model from the publishing channel to the local computer using the %MM_GetModels()
macro. You set macro variables to define the operating environment, specify the
performance data set, and run the %MM_RunReports() macro to create the reports.

You view the reports by selecting the version Performance node in the SAS Model
Manager window.

SAS Model Manager provides the following performance monitoring macros:

• %MM_GetModels() extracts models from a publishing channel.

• %MM_UpdateCharacteristicTable creates a Characteristic report.

• %MM_UpdateStabilityTable creates a Stability report.

• %MM_UpdateAssessmentTable creates model monitoring reports.

• %MM_RunReports() sets the operating environment and runs the macros to create
the reports.

Note: The macros are in the modelmgr catalog. The location of this catalog for
Windows is \sasintalldir\SASFoundation\9.4\mmcommon\sashelp.
The default value for sasinstalldir in Windows is C:\Program Files
\SASHome. The location of this file for UNIX is /sasinstalldir/
SASFoundation/9.4/sashelp. The default value for sasinstalldir in
UNIX is /usr/local/SASHome.

278 Chapter 17 • Create Reports Using Batch Programs

SAS provides example SAS programs in the sashelp.modelmgr catalog that you can
modify for your environment.

Prerequisites for Running Batch Performance
Reports

Overview of Prerequisites for Running Batch Performance Reports
Batch performance reporting requires you to complete several tasks before you can
modify the example programs. After the following tasks have been completed, you are
ready to modify the example programs:

• Ensure that the champion model has been published from the project folder.

• Create a folder structure on the local computer.

Note: The local computer and the folder that are used in the process of creating
batch performance reports must be accessible to the batch performance program.

• Store performance data sets on the local computer.

• If you are using SAS example programs, copy the example programs to the local
computer.

• Determine the channel that is used to publish the project or model.

• Determine a SAS Model Manager user ID and password to authorize the batch
processing.

Publish the Champion Model from the Project Folder
In order to run performance reports in batch, you must publish the champion model from
the project folder. The SAS Model Manager performance macros use project metadata
when running performance reports.

Whenever you have a new champion model, you must publish the new champion model
again.

Create a Folder Structure
Create a folder structure on your local computer to contain the report monitoring files.
First, create a root folder to contain performance reporting files for one or more SAS
Model Manager projects. You might further organize your file structure by project. The
examples in the following table use a classification of HMEQ for the files that are used
to create home equity performance monitoring reports. Create folders to contain the
following types of files:

Folder Contents Description Example

job local path Specifies the folder that
contains the reporting
specification data sets that are
used by the
%MM_RunReports() macro.

c:\mmReports\HMEQ
\reportJobs

Prerequisites for Running Batch Performance Reports 279

Folder Contents Description Example

report output Specifies the folder that
contains data sets and
auxiliary files that are created
during the creation of the
performance reports when the
%MM_RunReports() macro
is run in test mode.

c:\mmReports\HMEQ
\testReportOutput

performance data Specifies the folder that
contains the performance data
sets for each time period.

Performance data sets can be
stored in a DBMS as well. If
your performance data set is
in a DBMS, then this folder is
not necessary.

c:\mmReports\HMEQ\scoreIn

channel Specifies the folder on the
local computer to save the
SPK file that is created during
the processing of the
%MM_GetModels() macro.
The SPK file contains the
model.

When you publish a model to
a channel, the published
package is placed in this
folder.

A channel can be shared by
multiple SAS Model Manager
projects. You can define the
channel to any location as
long as it can be accessed by
the %MM_GetModels()
macro.

c:\mmReports\HMEQ
\channel2

model Specifies the folder to where
the SPK model is extracted to
by the %MM_GetModels()
macro. The macro creates a
\scorecode folder that
contains the model score code
and saves the data set
current.sas7bdat,
logs.sas7bdat, and
processingspk.sas7bdat in the
model folder. The
current.sas7bdat data set
contains project and model
information that is used to
create the performance
monitoring reports.

c:\mmReports\HMEQ\model

c:\mmReports\HMEQ\model
\scorecode

To ensure that your report data is not lost, regularly back up these report folders.

280 Chapter 17 • Create Reports Using Batch Programs

See Also
“Report Output in Test and Production Modes” on page 282

Obtain Performance Data
The performance data set is a snapshot of a data set that includes scoring input variables
and one or more target variables. After the snapshot is available, store the data set in a
performance data folder on the local computer.

See Also
“Creating a Performance Table” on page 40

Determine the Publish Channel
You can determine the channel that was used to publish the model by using one of these
methods:

• Select the model and click the History tab. Look for a publish model entry. In this
example, the channel name is MMChannel: May 29, 2013 4:55:11
PM[mdlmgradmin] "Tree1" was published to "MMChannel(sas-
oma://RDCESX09147.race.sas.com:8561/reposid=A5DB5KPY/
ITChannel;id=A5DB5KPY.BC000001)" successfully.

• Select the MMRoot, project, or version folder, and then select the Publish History
tab. Look for the publish model entry and then select the entry to view the publish
details. In this example, the channel name MMChannel that can be found from the
value of SAS destination location. Here is an example: /Channels/Model
Manager Channels/MMChannel.

• In SAS Management Console, click the Plug-ins tab and expand the following nodes
under SAS Management Console to find the publishing channels that are used by
SAS Model Manager: Environment Management ð Publishing Framework ð
Foundation ð Channels ð Model Manager Channels. You can attempt to extract
the model using each of the SAS Model Manager publishing channels. Right-click
the channel and select Properties. The channel path is located on the Persistent
Store tab.

Note: If the Plug-ins tab does not appear in your view of SAS Management
Console, contact your SAS administrator.

Note: A publish channel can be shared by multiple SAS Model Manager projects.

Copy Example Batch Programs
SAS provides several example programs that you can use to create a batch program that
monitors the performance of the champion model. You can find the example programs
in the sashelp.modelmgr catalog. The catalog includes these example programs:

reportExample1 contains example SAS code to extract a project or model from
the channel using the %MM_GetModels() macro.

reportExample2 contains DATA steps to create performance data that can be used
to test the batch programs that create performance monitoring
reports.

reportExample3 contains example DATA steps to create the SAS data sets that
contain report specifications, such as the project UUID and path,

Prerequisites for Running Batch Performance Reports 281

various input variables, the location of the performance data
source, alert and warning conditions, and e-mail addresses for
report notifications.

reportExample4 contains an example program that are used to define the
operating environment using macro variables. This program also
contains the DATA steps that are used to create the reports.

You can copy these example programs to the job local path folder and you can modify
them for your operating environment.

Determine SAS Model Manager User ID and Password
The performance monitoring reports must specify a valid SAS Model Manager user ID
and password. The user ID can have any of the following roles:

• Model Manager User

• Model Manager Advanced User

• Model Manager Administrator

See Also
“SAS Model Manager User Groups, Roles, and Tasks” on page 20

Report Output in Test and Production Modes

Report Output in Test Mode
When you run the %MM_RunReports() macro, you can either run the report in Test
mode or Production mode, by using the _MM_ReportMode macro variable.

To run in Test mode, ensure that you make the following assignments:

• In the DATA step mm_jobs.project, set the variable
testDestination=reportOutputPath, where reportOutputPath is the report output
folder on the local computer or network. This is the location that you defined when
you completed the prerequisites for running batch performance jobs.

• In the %MM_RunReports() macro, set the macro variable
_MM_ReportMode=TEST.

Test report output is then written to the local computer or network location. You can test
your %MM_RunReports() macro any number of times without corrupting the integrity
of your model repository. You can delete the contents of the report output folder and
resubmit your macro as necessary.

To view the report output, you can copy the files from the report output folder to any
version folder whose Resources folder is empty. A best practice would be to create a
test version and copy the files to the test version Resources folder. After the files are in
the Resources folder, you can select the Performance folder in the version to view the
test output. If you do not create a test version, ensure that you delete the files from the
Resources folder when you no longer need these files.

See Also
• “Prerequisites for Running Batch Performance Reports” on page 279

282 Chapter 17 • Create Reports Using Batch Programs

• “Delete Performance Summary Data Sets” on page 276

Report Output in Production Mode
When you run the %MM_RunReports() macro in Production mode, ensure that you
complete the following code changes:

• In the DATA step mm_jobs.project, remove the assignment of the variable
testDestination=reportOutputPath.

• In the %MM_RunReports() macro, set the macro variable
_MM_ReportMode=Production.

Production report output is written to the Resources folder in the default version of the
project. To view the report output, you select the Performance folder in the default
version.

Define the Report Specifications

Overview of Code to Define Report Specifications
Before you can create a monitoring report for a project, you must create several data sets
that define the report specifications:

mm_jobs.project defines the project information, such as the project UUID,
project variables, and the model repository URL for the
project. It is recommended that you create only one
observation in this data set.

mm_jobs.emailaddr defines the e-mail addresses for the recipients of job status
and the notification flags for alert and warning notifications.

mm_jobs.reportdef defines the types of reports to create and the warning and
alert conditions that are associated with those reports.

mm_jobs.jobtime defines the date and time to run the reports and a label that
describes the time performance data set period.

The code that you write to create the report specifications might need to be run only after
it is created and only whenever it is modified. These data sets might not need to be
created every time you want to create reports.

Required Libref
To create the report specifications, you need to define the following libref:

mm_jobs
defines the local path to the folder that contains the report job files.

Example: libname mm_jobs "c:\mmReports\HMEQ";

Define the Report Specifications 283

Project Specifications

DATA Step mm_jobs.project
This DATA step defines the project specifications.

/**/
/* DATA step mm_jobs.project */
/* */
/* Create a data set to initialize the */
/* performance monitoring batch program */
/* project specifications */
/**/

DATA mm_jobs.project;
 length testDestination %150
 projectuuid $36
 projectpath $2000
 projectAlias $50
 precode $32000
 isActive $1
 notes $500;

 isActive='Y';

/**/
/* Specify the destination for the report */
/* output when the report is run in TEST mode */
/**/

testDestination='reportOutputPath';

/***/
/* Specify the project UUID */
/***/

projectuuid='projectuuid';

/**/
/* Map project specification variables to */
/* macro variables */
/**/

precode='
 %let _MM_EventProbVar=eventProbabilityVariable;
 %let _MM_TargetVar=targetVariable;
 %let _MM_TargetEvent=targeEventValue;
 %let _MM_ReportDatasrc=scoreIn.dataSetName;
 %let _MM_KeepVars=variablesToKeep;
 %let _MM_DropVars=variableToDrop;';

/***/
/* Specify the URL to the project in the model */
/* repository and a description of the project */

284 Chapter 17 • Create Reports Using Batch Programs

/***/

projectPath='projectURL';
projectAlias='alternateProjectName';

run;

Variable Descriptions for mm_jobs.project
The following variables are used in the mm_jobs.project DATA step:

isActive='Y | N'
specifies whether to enable the project definitions. Valid values are Y (yes) and N
(no). Specifying N means that project files do not need to be removed from the local
computer to deactivate a project entry. Enclose the value of isActive in quotation
marks.

Interaction: Always set isActive='Y' when the data set mm_jobs.project has only one
observation.

testDestination='reportOutputPath';
specifies the local path that contains the output files that are created when the
%MM_RunReports() macro report mode macro variable _MM_ReportMode is set to
TEST. Enclose the value of testDestination in quotation marks.

Example: testDestination='c:\mmReports\HMEQ\testOutput';

See: “Report Output in Test and Production Modes” on page 282

projectuuid
specifies the universally unique identifier for a SAS Model Manager project. To
obtain the project UUID, in the SAS Model Manager window, select the project.
Expand System Properties. You can copy the UUID from the UUID property.
projectuuid is used to redirect reporting job output data sets to the appropriate project
folders in the model repository when the %MM_RunReports() macro is run in
Production mode.

Note: If you copy the UUID from the SAS Model Manager window, you might need
to remove leading text and spaces that are copied with the UUID.

precode='macroVariableDefinitions'
specifies the macro variables that are used by the %MM_RunReports() macro.
Enclose the value of the precode variable in quotation marks.

%let _MM_EventProbVar=outputEventProbabilityVariable;
specifies the output event probability variable name. To obtain the name, select
the project in the Project Tree and expand Specific Properties. Use one of the
values for the Output Event Probability Variable property list box.

%let _MM_TargetVar=targetVariable;
specifies the target variable name. To obtain the name, select the project in the
Project Tree and expand Specific Properties. The target event variable is found
in the property Training Target Variable. If a target variable is not specified,
see your performance data set or the model for the name of the target variable.

%let _MM_TargetEvent=targetEventValue;
specifies the target event value. To obtain the name, select the project in the
Project Tree and expand Specific Properties. The value is found in the property
Target Event Value. If a target event value is not specified, see your
performance data set or the model to determine the value.

Define the Report Specifications 285

Requirement: The value of _MM_TargetEvent must be an unformatted, raw
value even if the original target variable has a SAS format applied to it.

%let _MM_ReportDatasrc=scoreIn.dataSetName;
specifies the libref and the data set name for the performance data set that is
being analyzed.

If you process multiple data sets at one time, you can specify a generic data set
name in this macro definition. The generic data set name is used to process all
performance data sets. Before you run the %MM_RunReports() macro, you
should create a DATA step with the name scoreIn.genericDataSetName, where
the only statement in the DATA step is the SET statement that specifies the
performance data set to process.

%let _MM_KeepVars=variablesToKeep;
specifies one or more output variables, separated by a space, that are kept in the
performance data source to create the Stability report data set.

%let _MM_DropVars=variablesToDrop;
specifies one or more input variables, separated by a space, that are dropped from
the performance data source to create the Characteristic report data set.

projectPath='projectURL'
specifies the project URL. To obtain the project URL, select the project in the
Project Tree and expand System Properties. You can copy the URL from the URL
property. The project URL is used for information purposes only; it is not used to
access project resources. projectURL is dynamically retrieved when the
%MM_RunReports() macro runs. Enclose the value of projectPath in quotation
marks.

Note: If you copy the URL from the SAS Model Manager window, you might need
to remove leading text and spaces that are copied with the URL.

projectAlias='alternateProjectName'
specifies an alternate project name. The alternate project name can be used to help
identify the project when the projectPath is long. If you do not have an alternate
project name, you can leave this variable blank. Enclose the value of projectAlias in
quotation marks.

notes='userNotes'
specifies any notes that the user might want to add to the project specifications.
Enclose the value of notes in quotation marks.

E-mail Recipient Specifications

DATA Step mm_jobs.emailaddr
This DATA step defines the e-mail recipient specifications:

/**/
/* DATA mm_jobs.emailaddr */
/* */
/* Create a data set that specifies the e-mail */
/* addresses of the users who will receive job */
/* status notification as well as warnings and */
/* alerts. */
/**/

DATA mm_jobs.emailaddr;

286 Chapter 17 • Create Reports Using Batch Programs

 length address $50 sendAlertWarning sendJobStatus $1;
 address='e-mailAddress';
 sendAlertWarning='Y';
 sendJobStatus='N';
 output;
 address='e-mailAddress';
 sendAlertWarning='Y';
 sendJobStatus='Y';
 output;
run;

Variable Descriptions for mm_jobs.emailaddr
The following variables are used in the mm_jobs.emailaddr DATA step:

address='e-mailAddress'
specifies the e-mail address of the user to receive job, alert, and warning notices.
Enclose the value of address in quotation marks.

sendAlertWarning='Y | N'
specifies whether alert warning notifications are sent to the e-mail address specified
in address. Valid values are Y (yes) and N (no). Enclose the value of
sendAlertWarning in quotation marks.

sendJobStatus='Y | N'
specifies whether the job status report is sent to the e-mail address specified in
address. Valid values are Y (yes) and N (no). Enclose Y or N in quotation marks.

Report Specifications

DATA Step mm_jobs.reportdef
This DATA step defines the type of reports to create, provides the macro syntax for the
report type, and defines alert and warning specifications. You can specify one, two, or
three report types in the DATA step. The %MM_RunReports() macro runs the reports
that are defined in the mm_jobs.reportdef data set. For each type of report, assign the
reportName, the macro, and alert and warning conditions.

/***/
/* DATA set mm_jobs.reportdef */
/* */
/* Create a data set that defines the report */
/* metadata and alarm thresholds for the */
/* Characteristic, Stability, and Model Assessment */
/* reporting jobs. */
/***/

DATA mm_jobs.reportdef;
 length reportName $20
 macro $1000
 alertCondition $200
 warningCondition $200
 isActive $1
 notes $500;

 isActive='Y';

Define the Report Specifications 287

 /*************************/
 /* Characteristic Report */
 /*************************/

 reportName='Characteristic';
 macro='
 %MM_UpdateCharacteristicTable(
 datasrc=&_MM_ReportDatasrc,
 dropVars=&_MM_DropVars;';

 alertCondition='alertConditions';
 warningCondition='warningConditions';
 output;

 /********************/
 /* Stability Report */
 /********************/

 reportName='Stability';
 macro='
 %MM_UpdateStabilityTable(
 datasrc=&_MM_ReportDatasrc,
 keepVars=&_MM_KeepVars;';

 alertCondition='alertConditions';
 warningCondition='warningConditions';
 output;

 /***************************/
 /* Model Assessment Report */
 /***************************/

 reportName='Model Assessment';
 macro='
 %MM_UpdateAssessmentTable(
 datasrc=&_MM_ReportDatasrc);';

 alertCondition='alertConditions';
 warningCondition='warningConditions';
 output;
run;

Variable Descriptions for mm_job.reportdef
The following variable definitions are used in the mm_jobs.reportdef DATA step:

isActive
specifies whether to enable the report definitions. Valid values are Y (yes) and N
(no). Specifying N means that a report definition file does not need to be removed
from the local computer to deactivate a report definition entry.

Interaction: Always set isActive='Y' when the data set mm_jobs.project has only one
observation.

reportName='reportName'
specifies the name of the report. The following are valid report types:

288 Chapter 17 • Create Reports Using Batch Programs

• Characteristic

• Stability

• Model Assessment

Enclose reportName in quotation marks. This argument is required.

macro='macroDefinition';
specifies the report macro that is executed when the %MM_RunReports() macro is
executed. This argument is required.

alertConditions='alertConditions';
specifies an alert condition for the type of report. Enclose alertConditions in
quotation marks. Here are example alert conditions for each type of report:

Report Type Example Alert Condition

Characteristic alertCondition='p1>5 or p25>0';

Stability alertCondition='outputDeviation > 0.03';

Model Assessment alertCondition='lift5Decay>0.15 and
lift10Decay>0.12) or giniDecay>0.1 or
ksDecay>0.1';

alertConditiion=’msedecay > 20’;

See also: see “Performance Index Warnings and Alerts” on page 259.

warningConditions='warningConditions';
specifies a warning condition for the type of report. Enclose warningConditions in
quotation marks.

Report Type Example Warning Condition

Characteristic warningCondition='p1>2';

Stability alertCondition='outputDeviation > 0.01';

Model Assessment warningCondition='lift5Decay>0.05';

warningCondition==’msedecay >10’;

See also: see “Performance Index Warnings and Alerts” on page 259.

notes='userNotes';
specifies a note to add to the report definition data set. Enclose userNotes in
quotation marks.

%MM_UpdateCharacteristicTable() Macro
Here is the syntax for the %MM_UpdateCharacteristicTable() macro:

%MM_UpdateCharacteristicTable(datasrc=&_MM_ReportDatasrc,
<dropvars=&_MM_DropVars>);

Define the Report Specifications 289

datasrc=&_MM_ReportDatasrc
specifies the macro variable that defines the performance data set that is used to
create the Characteristic report.

dropvars=&_MM_DropVars
specifies the macro variable that defines the input variables to drop from the
performance data set. Consider dropping variables from the performance data set
whose values do not need to be monitored.

%MM_UpdateStabilityTable() Macro
Here is the syntax for the %MM_UpdateStabilityTable() macro:

%MM_UpdateStabilityTable(datasrc=&_MM_ReportDatasrc,
<keepvars=&_MM_KeepVars>);

datasrc=&_MM_ReportDatasrc
specifies the macro variable that defines the performance data set that is used to
create the Stability report.

keepvars=&_MM_KeepVars
specifies the macro variable that defines the output variables to keep in the
performance data set. Consider keeping only the variables in the performance data
set whose values are to be monitored.

%MM_UpdateAssessmentTable() Macro
Here is the syntax for the %MM_UpdateAssessmentTable() macro:

%MM_UpdateAssessmentTable(datasrc=&_MM_ReportDatasrc);

datasrc=&_MM_ReportDatasrc
specifies the macro variable that defines the performance data set that is used to
create the Model Assessment reports.

Job Scheduling Specifications

DATA Step mm_jobs.jobtime
This DATA step defines the dates and times that the data sets that underlie the
performance monitoring reports are to be created or updated.

/**/
/* DATA step mm_jobs.jobtime */
/* */
/* Define the report schedule by specifying the */
/* dates and times for each incremental reporting */
/* interval. You can schedule as many jobs as you */
/* would like. The following jobs are scheduled to*/
/* run one second before midnight on the dates */
/* listed below. */
/**/

DATA mm_jobs.jobtime;
 length scheduledTime $18 time $10;
 scheduledTime='dateTime';time='timePeriodLabel';output;
run;

290 Chapter 17 • Create Reports Using Batch Programs

Variable Descriptions for mm_jobs.jobtime
Here are the variables that are used in the DATA step mm_jobs.jobtime:

scheduledTime='dateTime'
specifies the date and time to run the report. The value of scheduledTime must be in
the form ddmmmyyyy:hh:mm:ss where dd is a two-digit year, mmm is the first three
letters of the month, yyyy is a four-digit year, hh is a two-digit hour, mm is a two-
digit minute, and ss is a two-digit second. Enclose dateTime in quotation marks.

The values of scheduledTime are used by the %MM_RunReports() macro, rather
than by your job scheduler. Each time that the %MM_RunReports() macro runs, it
checks the values of the scheduleTime variable. If the scheduled time has passed, the
report runs. If it has not passed, the performance data sets are not created.

Example: scheduledTime='03Jun2012:23:59:00';

time='ttimePeriodLabel'
specifies a label that represents the time period for which the performance data was
collected. Enclose timePerodLabel in quotation marks. Use short and clear labels to
create charts that can be easily read.

Example: time='2012Q4';

Example Code to Create the Report Specifications
This example creates a single SAS program to create the report specification data sets.
After you copy the example code from the sashelp.modelmgr library, you providing
values for the required variables and macros. The variable and macro names are
highlighted in the example code to identify the values that you would modify to create
the report specifications.

/* Source file name: sashelp.modelmgr.reportExample3.source */

LIBNAME mm_jobs 'c:\mm.test\report.auto';

/***/
/* DATA step mm_jobs.project */
/* */
/* Create a data set to initialize the */
/* performance monitoring report batch */
/* job project specification metadata and */
/* report precode metadata. */
/***/

DATA mm_jobs.project;
 length testDestination $50
 projectuuid $36
 projectpath $200
 projectAlias $50
 precode $32000
 isActive $1
 notes $500;

 isActive='Y';

/***/
/* Specify the destination path for the report */
/* and the universal unique ID for the project */

Define the Report Specifications 291

/***/

testDestination=
 'c:\mm.test\report.test.output\project_123';
 projectuuid=
 '8817ea06-0a28-0c10-0034-68f4ba396538';

/**/
/* The precode section uses macro variables to */
/* map individual model metadata components */
/* to their respective variables, target event */
/* values, and data used to create the report. */
/**/

precode='
 %let _MM_EventProbVar=p_bad1;
 %let _MM_TargetVar=bad;
 %let _MM_TargetEvent=1;
 %let _MM_ReportDatasrc=scoreIn.hmeq0;
 %let _MM_KeepVars=p_bad1;
 %let _MM_DropVars=bad job;
 ';

/**/
/* Specify the path to the project and provide */
/* an Alias name for the project reports. */
/**/

 projectPath=
 'http://myserver:8080/ModelManager/MMRoot/demo/Creditcardpromotion';
 projectAlias=
 'credit risk for younger customers';
run;

/***/
/* DATA set mm_jobs.emailaddr */
/* */
/* Create a data set that specifies the e-mail */
/* recipient notification list, and whether to */
/* send the alert, warning, and job status */
/* notifications. */
/***/

DATA mm_jobs.emailaddr;
 length address $50 sendAlertWarning sendJobStatus $1;
 address='recipient1@mail.com';
 sendAlertWarning='Y';
 sendJobStatus='N';
 output;
 address='recipient2@mail.com';
 sendAlertWarning='Y';
 sendJobStatus='Y';
 output;
run;

/***/

292 Chapter 17 • Create Reports Using Batch Programs

/* DATA set mm_jobs.reportdef */
/* */
/* Create a data set that defines the report */
/* metadata and alarm thresholds for the */
/* Characteristic, Stability, and Model Assessment */
/* reporting jobs. */
/***/

DATA mm_jobs.reportdef;
 length reportName $20
 macro $1000
 alertCondition $200
 warningCondition $200
 isActive $1
 notes $500;

 isActive='Y';

 /*************************/
 /* Characteristic Report */
 /*************************/

 reportName='Characteristic';
 macro='
 %MM_UpdateCharacteristicTable(
 datasrc=&_MM_ReportDatasrc,
 dropVars=&_MM_DropVars;';

 alertCondition='p1>5 or p25>0';
 warningCondition='p1>2';
 output;

 /********************/
 /* Stability Report */
 /********************/

 reportName='Stability';
 macro='
 %MM_UpdateStabilityTable(
 datasrc=&_MM_ReportDatasrc,
 keepVars=&_MM_KeepVars;';

 alertCondition='outputDeviation > 0.03';
 warningCondition='outputDeviation > 0.01';
 output;

 /***************************/
 /* Model Assessment Report */
 /***************************/

 reportName='Model Assessment';
 macro='
 %MM_UpdateAssessmentTable(
 datasrc=&_MM_ReportDatasrc);';

 alertCondition='

Define the Report Specifications 293

 (lift5Decay>0.15 and lift10Decay>0.12)
 or giniDecay>0.1
 or ksDecay>0.1';
 warningCondition='lift5Decay>0.05';
 output;
run;

/**/
/* DATA step mm_jobs.jobtime */
/* */
/* Define the report schedule by specifying the */
/* dates and times for each incremental reporting */
/* interval. The jobs below are scheduled to run */
/* one second before midnight on the dates listed */
/* below. */
/* */
/* For each scheduledTime variable you need a */
/* separate DATA step to execute whose SET */
/* statement names the appropriate performance */
/* data source. */
/**/

DATA mm_jobs.jobtime;
 length scheduledTime $18 Time $10;
 scheduledTime='01OCT2012:23:59:59';time='2012Q3';output;
 scheduledTime='01JAN2013:23:59:59';time='2012Q4';output;
 scheduledTime='01APR2013:23:59:59';time='2013Q1';output;
 scheduledTime='01JUL2013:23:59:59';time='2013Q2';output;
 scheduledTime='01OCT2013:23:59:59';time='2013Q3';output;

run;

See Also
• “Extracting the Champion Model from a Channel” on page 294

• “SAS Code to Run Performance Reports” on page 297

Extracting the Champion Model from a Channel

Using the %MM_GetModels() Macro
Before you run the %MM_RunReports() macro, you must extract the model from the
publishing channel to a local computer. The model must have been published to the
channel from the project folder. The %MM_GetModels() macro extracts models and
auxiliary files from a SAS Publishing Framework SPK file to the local computer. All
models that were published to the specified channel are included in the SPK file for a
given SAS Model Manager project. If a model has been published multiple times over
the channel, the latest model is used in the extraction. The macro then extracts the files
from the SPK file to their respective folders on the local computer. The auxiliary files
are extracted to the model folder and the model score code is extracted to a folder named
\scorecode, which the macro creates as a subfolder of the model folder.

294 Chapter 17 • Create Reports Using Batch Programs

Note: You can run the %MM_GetModels() macro when no new model has been
published to the channel for a SAS Model Manager project.

The auxiliary files include three SAS data sets:

• current.sas7bdat contains project and model metadata

• logs.sas7bdat contains the SAS logs that were created during the model extraction
process

• processingspk.sas7bdat contains information that is necessary to process the SPK file

The models in the \scorecode folder are named using the project UUID as the model
folder name. The %MM_RunReports() macro uses the mm_jobs.project data set to
determine the project UUID. The project UUID is then used as the name of the model on
the local computer for scoring when the performance monitoring reports are created.

The current data set contains project and model information and is used by the
%MM_RunReports() macro. To ensure that the %MM_RunReports() macro is using the
most current project and model metadata, always run the %MM_GetModels() macro
before you run the %MM_RunReports() macro. For a list of the information that is
contained in the current data set, see “The current.sas7bdat Data Set” on page 296.

Accessing SAS Model Manager Report Macros
The %MM_RunReports() macro, the %MM_GetModel() macro, and all other SAS
Model Manager macros are available in the catalog
sashelp.modelmgr.reportmacros.source. Use the following FILENAME statement to
make these macros available to your program:

filename repmacro catalog 'sashelp.modelmgr.reportmacros.source';
%inc repmacro;

%MM_GetModels() Macro Syntax
Here is the syntax for the %MM_GetMacros() macro:

%MM_GetModels(channel=channelPathlocalPath=localModelPath);

channel=channelPath
specifies the path of the channel to extract the models from. To obtain the channel
path, see “Determine the Publish Channel” on page 281. Do not enclose the value of
channel in quotation marks.

Note: The %MM_GetModels() macro supports only publishing channels that have a
persistent store type of Archive.

localPath=localModelPath
specifies a folder on the local computer to where the model and auxiliary files are
extracted from the SPK file. Do not enclose localModelPath in quotation marks.

Example Program to Extract a Model from a Channel
The following SAS code uses the %MM_GetModel macro to extract a champion model
from a channel.

%let _MM_Service_Registry_URL=
 %nrstr(http://myServer:80/SASWIPClientAccess/remote/Ser

Extracting the Champion Model from a Channel 295

viceRegistry);

/* Source file name: sashelp.modelmgr.reportExample1.source */

FILENAME mmmac
 catalog 'sashelp.modelmgr.reportmacros.source';
%inc mmmac;

%MM_GetModels(
 channel=\\network1\MMChampion\channel1,
 localPath=c:\mm.test\model.extraction);

The current.sas7bdat Data Set
When models are extracted from a publishing channel, the current.sas7bdat data set
contains the following information for each model:

Variable Name for the Project or
Model Information Description

algorithm The algorithm that was used to create the model

fileName Not used

isChampionModel True or False to indicate whether the model is the
champion model

keyWords Keywords

miningFunction The type of mining function, such as classification,
prediction, segmentation

model Not used

modeler The name of the person who created the model

modelName The name of the model

modelProductionTimestamp The time at which the model was declared as a
production model

modelTool The name of the tool that was used to train the model

modelUUID The UUID for the model

nodeDescription Not used

projectPath The project URL

project UUID The UUID for the project

repository The repository URL

296 Chapter 17 • Create Reports Using Batch Programs

Variable Name for the Project or
Model Information Description

scoreCodeType DATA Step or SAS Program

subject The subject name

targetName The Training Target Variable name

userAttr User-defined attributes, such as "MODELER='sasguest'
MODELPROJECTVARMAP='predictedProbability eq
P_BAD1; predictedClass eq I_BAD;' "

versionName The name of the version that contains the model

whenPublished The date and time at which the project or model was
published to the channel

whoPublished The SAS Model Manager user who published the
model

See Also
• “Define the Report Specifications” on page 283

• “SAS Code to Run Performance Reports” on page 297

SAS Code to Run Performance Reports

Overview of the SAS Code to Run the Performance Reports
After you have created the data sets that define the report specifications and have
extracted the model from the publishing channel, you then run the %MM_RunReports()
macro to create the reports for one or more time periods. Using the data sets that were
created to define the report specifications, the %MM_RunReports() macro uses the
report specifications to create the reports. The report specifications include the type of
report to create, such as characteristic, stability, or model assessment. Other report
specifications include the target variable, the libref, and the data set name that is used as
the performance data source, variables to keep and drop from reports, e-mail addresses
to send report notifications, and performance index warnings and alerts.

To run the %MM_RunReports() macro, your code must accomplish the following tasks:

• access the reporting macros

• define the librefs and the macro variables that are required by the
%MM_RunReports() macro

• specify the performance data set to process. To do this, execute a DATA step before
each %MM_RunReports() macro

SAS Code to Run Performance Reports 297

To ensure that you have the latest model, extract the model from the channel each time
you create the performance reports. For this reason, you could combine into one SAS
program the extraction process and the code to run the reports.

If you run a set of batch jobs every night, you could include this batch job with that set
of batch jobs. The reports would be created only after the scheduled date and time that is
specified in the mm_jobs.jobtime data set.

The following sections describe each of these components of your SAS program. The
last section is an example of a program that is used to test the %MM_RunReports()
macro.

Accessing SAS Model Manager Report Macros
The %MM_RunReports() macro, the %MM_GetModel() macro, and all other SAS
Model Manager macros are available in the catalog
sashelp.modelmgr.reportmacros.source. Use the following FILENAME statement to
make these macros available to your program:

filename repmacro catalog 'sashelp.modelmgr.reportmacros.source';
%inc repmacro;

Required Librefs
The following librefs are required in your report monitoring program:

mm_jobs
defines the local path to the folder that contains the report job files.

Example: libname mm_jobs "c:\mmReports\HMEQ";

mm_meta
defines the local path to the folder that stores the data sets that are created from
running the %MM_GetModels() macro. The value of this libref must have the same
value as the localPath argument for the %MM_GetModels() macro.

Example: libname mm_meta "c:\mmReports\HMEQ\model";

scoreIn
specifies a user-defined libref that points to the local path that contains the
performance data sources.

Interaction: You can use this libref when you set the value of SAS Model Manager
macro variables, such as _MM_ReportDatasrc, in the precode variable of the
mm_jobs.project data set. Here is an example: %let
_MM_ReportDatasrc=scoreIn.foo.

Example: libname scoreIn "c:\mmReports
\project1\perfdatasets";

Macro Variables to Define Report Local Folders and Data Sets
Define the following macro variables in your report monitoring program. Then define
the location of the job and model on the local computer:

_MM_JobLocalPath
specifies the path on the local computer that contains the root folder for the reporting
files of a given SAS Model Manager project.

298 Chapter 17 • Create Reports Using Batch Programs

Example: %let _MM_JobLocalPath=c:\mmReports\HMEQ1;

_MM_ModelLocalPath
specifies the path on the local computer that contains the model after it has been
extracted from the SAS Metadata Repository.

Example: %let _MM_ModelLocalPath=c:\mmReports\HMEQ\model;

mapTable
specifies a libref and data set in the form libref.dataSet that contains the mapping of
the project output variables to the model output variables. When the model is
extracted from the channel, the data set current.sas7bdat is extracted to the folder that
contains the model. Use this data set as the value of mapTable.

Example: mapTable=mm_meta.current. The data set name current is
arbitrary. It is recommended that you use the name current.

For a description of the macro variables, see Appendix 3, “SAS Model Manager Macro
Variables,” on page 441.

Macro Variables That Are Used by the %MM_RunReports() Macro

Required Macro Variables
The following macro variables are required to run the %MM_RunReports() macro:

_MM_ServiceRegistry_URL
specifies the service registry to set the environment.

Example: %let _MM_Service_Registry_URL=%nrstr(http://
myServer:80/SASWIPClientAccess/remote/ServiceRegistry);

_MM_User
specifies a valid SAS Model Manager user.

_MM_Password
specifies the password for the SAS Model Manager user who is identified in the
_MM_User macro variable.

See: “Encoding SAS Model Manager User Passwords” on page 300

For a description of the macro variables, see Appendix 3, “SAS Model Manager Macro
Variables,” on page 441.

Optional Macro Variable
The example programs use the following global macro variable, which you might find
useful in your report monitoring program:

_MM_ReportMode
specifies the mode to run the %MM_RunReports() macro. Valid values are TEST
and PRODUCTION. The default value is PRODUCTION. You might want to use a
value of TEST while you are testing your program. When the value is TEST, the
report output files are written to the local computer. When the value is
PRODUCTION, the report output files are written to the appropriate project folders
in the SAS Model Manager model repository.

Interaction: If _MM_ReportMode is set to TEST, you must supply a value for the
testDestination variable in the mm_jobs.project data set.

Example: %let _MM_ReportMode=TEST;

SAS Code to Run Performance Reports 299

For a description of the macro variables, see Appendix 3, “SAS Model Manager Macro
Variables,” on page 441.

Encoding SAS Model Manager User Passwords
Each time that your run a SAS program to be processed by SAS Model Manager, you
specify a SAS Model Manager user ID and assign the user's password to the global
macro variable _MM_Password. In order to not store passwords in clear text, you can
use the PWENCODE procedure to encode a password and store it in a file, in a network-
accessible directory. Then, in your SAS program, you create a fileref to the network file
that contains the encoded password and you use a DATA step to assign the encoded
password to the _MM_Password global macro variable.

In a separate SAS program, encode your password:

filename pwfile "my-network-path\pwfile";

 proc pwencode in="12345" out=pwfile;
 run;

In your SAS Model Manager program, use a DATA step to access the encoded password
file:

filename pwfile "my-network-path\pwfile";
%let _MM_User=mmuser1;
data _null_;
 infile pwfile obs=1 length=l;
 input @;
 input @1 line $varying1024. l;
 call symput('_MM_Password',substr(line,1,l));
run;

The DATA Step to Access the Performance Data Set
You use a DATA step to access the performance data set before you run the
%MM_RunReports() macro:

DATA libref.dataStepName;
 set libref.performanceDataSetName;
run;

Here is an example of a DATA step to access the performance data set:

DATA scoreIn.hmeq;
 set scoreIn.hmeq_2013q1;
run;

The %MM_RunReports() Macro

Description of the %MM_RunReports() Macro
You use the %MM_RunReports() macro to create or update the data sets that underlie
the performance monitoring reports. Before each %MM_RunReports() macro that you
specify in your program, you might want to update the performance data set by including
a DATA step that accesses the performance data set input file.

The %MM_RunReports() macro uses the data sets that are stored in the library that is
specified by the mm_jobs libref. These data sets define the report specifications and are

300 Chapter 17 • Create Reports Using Batch Programs

the data sets that are created in the report specification program. For more information
about the report specification program, see “Define the Report Specifications” on page
283.

Syntax
Use the following syntax for the %MM_RunReports() macro:

%MM_RunReportss(localPath=&_MM_JobLocalPath, mapTable=&mapTable,
user=&_MM_User, password=&_MM_Password, <currentTime=¤tTime>);

Syntax Description
localPath=&_MM_ModelLocalPath

specifies the path on the local computer to the location where the
%MM_GetModels() macro stores the files extracted from the channel. The
%MM_RunReports() macro retrieves the score code from the score code folder,
which is a subfolder of &_MM_ModelLocalPath.

Example: localPath=&_MM_ModelLocalPath

mapTable=&mapTable
specifies the name of the data set that contains metadata about the extracted model.
mapTable is the data set named current.sas7bdat that is created when the model is
extracted using the %MM_GetModels() macro. No modification of this argument is
necessary.

Example: mapTable=&mapTable

user=&_MM_User
specifies a valid SAS Model Manager user. Use the macro variable that defines the
valid SAS Model Manager user.

Example: user=&_MM_User

password=&_MM_Password
specifies the password for _MM_User. Use the _MM_Password global macro
variable that defines the password for the SAS Model Manager user. The value of
_MM_Password is a text string.

Example: password=&_MM_Password

See: “Encoding SAS Model Manager User Passwords” on page 300

currentTime=currentTime
specifies a time to use for the current time. Use this argument for testing the
%MM_RunReports() macro. You do not need to specify an argument for
currentTime when you run the macro in a production environment, where the system
timestamp is used as a value for currentTime.

The value of currentTime must be in the form ddmmmyyyy:hh:mm:ss where dd is a
two-digit year, mmm is the first three letters of the month, yyyy is a four-digit year,
hh is a two-digit hour, mm is a two-digit minute, and ss is a two-digit second.

Example: currentTime=03Jul2013:12:15:30

Example %MM_RunReports() Macro
The following code is an example of using the %MM_RunReports() macro:

%MM_RunReports(
 localPath=&_MM_ModelLocalPath,
 mapTable=&mapTable,
 user=&_MM_User,

SAS Code to Run Performance Reports 301

 password=&_MM_Password);

Example Code to Run the Reports
The following example program defines the librefs and macro variables to test the
%MM_RunReports() macro's ability to assess home equity performance data for
multiple time periods. Before this section of code can be run, the report specifications
must be defined in SAS data sets and the model must be extracted from the publishing
channel. For more information, see “Define the Report Specifications” on page 283 and
“Extracting the Champion Model from a Channel” on page 294.

The example program sets the current time to a time that would trigger the creation of
data sets or the updating of data sets that underlie the model monitoring reports. When
you run your batch program in a production environment, you do not need a variable to
set the current time. When no value is set for the current time, the %MM_RunReports()
macro uses the system timestamp as the value of the current time variable.

The highlighted values are user-supplied values.

/* Source file name: sashelp.modelmgr.reportExample4.source */

FILENAME repmacro catalog 'sashelp.modelmgr.reportmacros.source';
%inc repmacro;

/* Fileref to the encoded password */

FILENAME pwfile "my-network-path\pwfile";

/**/
/* Specify the report execution metadata and */
/* configure the _MM_ macro variables to run the */
/* report job in TEST mode. */
/**/

%let _MM_ReportMode=TEST;
%let _MM_User=mmuser1;
data _null_;
 infile pwfile obs=1 length=l;
 input @;
 input @1 line $varying1024. l;
 call symput('_MM_Password',substr(line,1,l));
run;
;

%let _mm_Service_Registry_URL=
 %nrstr(http://myServer:80/SASWIBClientAccess/remote/ServiceRegistry);
%let _MM_PathMayChange=Y;

%let _MM_JobLocalPath=c:\mm.test\report.auto;
%let _MM_ModelLocalPath=c:\mm.test\model.extraction;

LIBNAME mm_jobs "&_MM_JobLocalPath";
LIBNAME mm_meta "&_MM_ModelLocalPath";
LIBNAME scoreIn 'c:\mm.test\score.in';

%let mapTable=mm_meta.current;

302 Chapter 17 • Create Reports Using Batch Programs

/***/
/* DATA step scoreIn.hmeq0 */
/* */
/* First, run the 2012Q4 report.It is necessary to */
/* artificially declare a "currentTime" argument */
/* of 01Jan2013 in order to trigger the report */
/* execution scheduled for the 2012Q4 interval. */
/***/

DATA scoreIn.hmeq0;
 set scoreIn.hmeq_2012Q4;
run;

%let currentTime=01Jan2013:12:30:15;
%MM_RunReports(
 localpath=&_MM_JobLocalPath,
 currentTime=¤tTime,
 mapTable=&mapTable,
 user=&_MM_User,
 password=&_MM_Password);

/***/
/* Now, run the 2012Q1 report. It is necessary to */
/* artificially declare a "currentTime" argument */
/* of 03Apr2012 in order to trigger the report */
/* execution scheduled for the 2012Q1 interval. */
/***/

DATA scoreIn.hmeq0;
 set scoreIn.hmeq_2012q1;
run;

%let currentTime=03Apr2012:12:30:15;
%MM_RunReports(
 localpath=&_MM_JobLocalPath,
 currentTime=¤tTime,
 mapTable=&mapTable,
 user=&_MM_User,
 password=&_MM_Password);

/***/
/* Now, run the 2012Q2 report. It is necessary to */
/* artificially declare a "currentTime" argument */
/* of 03Jul2012 in order to trigger the report */
/* execution scheduled for the 2012Q2 interval. */
/***/

DATA scoreIn.hmeq0;
 set scoreIn.hmeq_2012q2;
run;

%let currentTime=03Jul2012:12:30:15;
%MM_RunReports(
 localpath=&_MM_JobLocalPath,
 currentTime=¤tTime,

SAS Code to Run Performance Reports 303

 mapTable=&mapTable,
 user=&_MM_User,
 password=&_MM_Password);

/***/
/* Now, run the 2012Q3 report. It is necessary to */
/* artificially declare a "currentTime" argument */
/* of 03Oct2012 in order to trigger the report */
/* execution scheduled for the 2012Q3 interval. */
/***/

DATA scoreIn.hmeq0;
 set scoreIn.hmeq_2012q3;
run;

%let currentTime=03Oct2012:12:30:15;
%MM_RunReports(
 localpath=&_MM_JobLocalPath,
 currentTime=¤tTime,
 mapTable=&mapTable,
 user=&_MM_User,
 password=&_MM_Password);

/***/
/* Now, run the 2012Q4 report. It is necessary to */
/* artificially declare a "currentTime" argument */
/* of 03Jan2013 in order to trigger the report */
/* execution scheduled for the 2012Q4 interval. */
/***/

DATA scoreIn.hmeq0;
 set scoreIn.hmeq_2012q4;
run;

%let currentTime=03Jan2013:12:30:15;
%MM_RunReports(
 localpath=&_MM_JobLocalPath,
 currentTime=¤tTime,
 mapTable=&mapTable,
 user=&_MM_User,
 password=&_MM_Password);

See Also
• “Define the Report Specifications” on page 283

• “Extracting the Champion Model from a Channel” on page 294

304 Chapter 17 • Create Reports Using Batch Programs

Chapter 18

Formatting Performance Reports

Format a Monitoring Report . 305
About Monitoring Reports . 305
Create a Monitoring Report . 307

Format a Champion and Challenger Performance Report 308
About the Champion and Challenger Performance Report 308
Verify Performance Data and Model Status . 309
Create a Champion and Challenger Performance Report . 309

Performance Report Output Files . 310

View Reports . 311
View Reports in SAS Model Manager . 311
View Formatted Monitoring Reports . 311

Format a Monitoring Report

About Monitoring Reports
After you execute a performance task from the SAS Model Manager window or run the
%MM_RunReports() macro in production mode, as a batch job, SAS Model Manager
stores the output data sets in the default version Resources folder. You can use the New
Reports window to format the performance monitoring results in PDF, HTML, RTF, or
Excel output formats, or you can view the performance monitoring results by selecting
the default version Performance node.

When you create monitoring reports using the New Reports window, the report creates
the following charts:

Assessment charts
Assessment charts summarize the utility that one can expect by using the respective
models, as compared to using only baseline information. Assessment charts can
present a model's lift at a given point in time or the sequential lift performance of a
model's lift over time. A monitoring report creates the following assessment charts:

• Lift

• Cumulative Lift

• Percent Response

• Cumulative Percent Response

305

• Captured Response

• Cumulative Captured Response

• Actual vs. Predicted for prediction models

• Actual vs. Residual for prediction models

• Population Stability Trend for prediction models

Assessment charts are created for the Monitoring Report.

Lift Trend chart
A Lift Trend chart displays the cumulative lift of the champion model, over time.

Gini - ROC chart
Sensitivity is the proportion of true positive events and specificity is the proportion
of true negative events. The Gini - ROC chart plots Sensitivity on the Y axis and 1 -
Specificity on the X axis.

Gini - Trend Chart
When the Gini - ROC chart is created, the Gini index for each ROC curve is also
created. The Gini index represents the area under the ROC curve and is a benchmark
statistic that can be used to summarize the predictive accuracy of a model. The Gini -
Trend chart plots a model's Gini index scores over time, and these are used to
monitor model degradation over time.

KS Chart
The KS chart uses the Kolmogorov-Smirnov statistic to measure the maximum
vertical separation, or deviation between the cumulative distributions of events and
non-events.

KS Trend Chart
When you create a Kolmogorov-Smirnov report, the underlying KS statistic and the
corresponding probability cutoff are read from a summary data set in the Resources
folder. The KS Trend chart uses a summary data set that plots the KS Statistic over
time. The KS Trend chart is used to monitor model degradation over time.

Actual vs. Predicted
You use the Actual vs. Predicted plot to see how predicted values match actual
values.

Actual vs. Residual
You use the Actual vs. Residual plot to determine how good the model is at
predicting values by examining errors and error trending, and comparing them to the
actual values.

Population Stability Trend
The Population Stability Trend chart measures the shift of the scoring output variable
distribution over time. Scoring output that is based on a development sample is used
as the baseline distribution. The deviation index is used to indicate the shift for a
given point in time.

Before you create a Monitoring Report or a Champion and Challenger Performance
Report, you must ensure that certain project and model properties are set. For more
information, see “Verify Project and Model Property Settings” on page 187.

These are the tasks that you perform for monitoring reports:

• “Create a Monitoring Report” on page 307

• “View Reports” on page 198

306 Chapter 18 • Formatting Performance Reports

See Also
• Chapter 16, “Create Reports by Defining a Performance Task,” on page 263

• Chapter 17, “Create Reports Using Batch Programs,” on page 277

Create a Monitoring Report
To create a monitoring report:

1. Expand the version folder .

2. Right-click the Reports node and select Reports ð New Report. The New Report
window appears.

3. Select Monitoring Report from the Type list box.

4. In the Format list box, select the type of output that you want to create. The default
is PDF. Other options are HTML, EXCEL, and RTF.

5. In the Style list box, select a style for the output. The default is SAS default. Other
options are Seaside, Meadow, and Harvest.

6. In the Report Properties table, complete the Name and Description properties if
you do not want to use the default values. The default value for the Name property
uses the form Monitoring_DdateTtimeThe name can contain letters, spaces, the
underscore (_), the hyphen (-), and the period (.).

7. Click OK. A message box confirms that the report was created successfully.

See Also
• “View Reports” on page 198

• “Performance Report Output Files” on page 310

Format a Monitoring Report 307

Format a Champion and Challenger Performance
Report

About the Champion and Challenger Performance Report
After you execute a performance task for the champion model, you can execute a
performance task for the challenger model using the same performance data sets. SAS
Model Manager updates the output data sets in the Resources folder with the
performance data for the challenger model. You can create a Champion and Challenger
Performance report that compares the performance of the two models.

The Champion and Challenger Performance report contains these charts:

Number of Predictors Exceeding Deviation Threshold
This characteristic report creates a chart for each index exceeding a deviation
threshold (either 0.1 or 0.25) as indicated in the define performance task. The
characteristic report detects shifts in the distribution of input variables over time.

Lift Trend Chart
A Lift Trend chart displays the cumulative lift of the champion model over time.

Gini - Trend
When the Gini - ROC Chart is created, the Gini index for each ROC curve is also
created. The Gini coefficient represents the area under the ROC curve and is a
benchmark statistic that can be used to summarize the predictive accuracy of a
model. The Gini - Trend Chart plots a model's Gini index scores over time, and these
are used to monitor model degradation over time.

Gini - ROC Chart
Sensitivity is the proportion of true positive events and specificity is the proportion
of true negative events. The Gini - ROC Chart plots Sensitivity on the Y axis and 1 -
Specificity on the X axis.

KS Trend Chart
When you create a Kolmogorov-Smirnov report, the KS statistic and the
corresponding probability cutoff are computed for each Kolmogorov-Smirnov table.
The KS Trend Chart uses a summary data set that plots the KS Statistic and the
probability cutoff values over time. The KS Trend Chart is used to monitor model
degradation over time.

KS Chart
The KS Chart uses the Kolmogorov-Smirnov statistic to measure the maximum
vertical separation, or deviation between the cumulative distributions of events and
non-events.

Score Histogram
The Score Histogram compares the scoring result distribution at different time
periods using a histogram.

Score Distribution Line Plot
The Score Distribution Line Plot compares the scoring result distribution at different
time periods using a line plot

Before you create a Champion and Challenger Performance report, verify the
performance data and model status.

308 Chapter 18 • Formatting Performance Reports

Verify Performance Data and Model Status
Before you can create a Champion and Challenger Performance report:

1. Click the version folder and verify that the champion model has been set. The

champion model has the check mark . If it does not, right-click the model and

select Set as Champion.

2. Ensure that the challenger model is flagged . If it is not, right-click the model and

select Flag as Challenger.

3. Verify that performance monitoring data is available for the champion model and the
challenger model. Performance monitoring results must exist for the same
performance data using the same time periods and data labels. Click the Resources
node and select the file jobstatus.sas7bdat. The Content tab displays performance
monitoring status data.

a. Verify that the UUIDs for the champion and challenger models are in the Model
UUID column.

b. Using the name column and the time column, verify that matching date labels
exist for the champion and challenger models for each type of report. If there are
multiple date labels for a model for any given report, SAS Model Manager uses
the most recent job.

Create a Champion and Challenger Performance Report
To create a monitoring report:

1. Expand the version folder .

2. Right-click the Reports node and select Reports ð New Report. The New Report
window appears.

Format a Champion and Challenger Performance Report 309

3. In the Format list box, select the type of output that you want to create. The default
is PDF. Other options are HTML, EXCEL, and RTF.

4. In the Style list box, select a style for the output. The default is SAS default. Other
options are Seaside, Meadow, and Harvest.

5. In the Report Properties table, complete the Name and Description properties if
you do not want to use the default values. The default value for the Name property
uses the form ChampionChallenger_DdateTtime. The name can contain letters,
spaces, the underscore (_), the hyphen (-), and the period (.).

6. Click OK. A message box confirms that the report was created successfully.

See Also
• “View Reports” on page 198

• “Performance Report Output Files” on page 310

Performance Report Output Files
The Monitoring report and Champion and Challenger report output files are stored in a
report node under the Reports folder. The name of the report node is the value of the
Name field that you specified in the New Report window Report Properties table.

Here are the files that are created each time you create a report:

• the report in either HTML, PDF, RTF, or Excel format

• taskCode.log

310 Chapter 18 • Formatting Performance Reports

• taskCode.sas

Here is a description of the model comparison output files:

Report File Description

report-name.html This file is the report output in HTML format.

report-name.pdf This file is the report output in PDF format.

report-name.rtf This file is the report output in RTF format.

report-name.xls This file is the report output in Excel format.

taskCode.log This file is the log file that contains messages from running the SAS
code to create the report.

taskCode.sas This file is the SAS code that is used to create the report.

After you create a report, you view the report from the Reports folder.

View Reports

View Reports in SAS Model Manager
To view performance monitoring reports in the SAS Model Manager window, select the
Performance node. The right pane displays a view in which each tab is one of the
reports. Click a tab to see a report.

View Formatted Monitoring Reports
To view the report:

1. Expand the Reports folder.

2. Right-click the report name and select Open.

3. If you are prompted to do so, enter a user ID and a password. Click OK.

View Reports 311

312 Chapter 18 • Formatting Performance Reports

Chapter 19

Using Dashboard Reports

Overview of Project Dashboard Reports . 313

Create a Dashboard Report Definition . 314

Generate Dashboard Reports . 319

View Dashboard Reports . 320

Edit a Dashboard Report Definition . 324

Manage All Project Dashboard Definitions . 325

Delete a Project Dashboard Report Definition . 325

Overview of Project Dashboard Reports
The SAS Model Manager Dashboard can provide reports that show the overall state of
projects that are being monitored. The dashboard reports are produced from existing
performance monitoring reports. For each project, a user can define dashboard report
indicators by creating a dashboard report definition. The dashboard report definition is
used to create the dashboard reports. You view the dashboard reports through the SAS
Model Manager Tools menu. These reports are generated in HTML by SAS Model
Manager.

Note: The dashboard reports can be defined and generated only by SAS Model Manager
administrators and advanced users.

You must complete the following tasks:

• “Run the Define Performance Task Wizard” on page 268

• “Create a Dashboard Report Definition” on page 314

• “Generate Dashboard Reports” on page 319

• “View Dashboard Reports” on page 320

To manage all dashboard reports or to delete a project’s dashboard report, complete
these tasks:

• Edit a Dashboard Report Definition on page 324

• Manage All Dashboard Report Definitions on page 325

• Delete a Project Dashboard Report Definition on page 325

For more information, see the SAS Model Manager: Administrator's Guide.

313

Create a Dashboard Report Definition
To define dashboard report indicators:

1. You must have at least one project that contains performance data before you
continue to the next step. For more information, see “Run the Define Performance
Task Wizard” on page 268.

2. Right-click the project folder in the Project Tree, and select Dashboard Report
Definition ð New from the pop-up menu. The New Dashboard Report Definition
window appears.

3. To copy dashboard report indicators from another project, click Copy Indicators.
Otherwise, continue to step 4 to add indicators.

a. Select the project name from which to copy the indicators.

b. Click OK.

4. Click Add. The Add Indicator window appears.

314 Chapter 19 • Using Dashboard Reports

a. Select a template from the Template drop-down list.

Note: Click Detail to view information about the selected indicator template.

b. The Name and Description values are populated from the selected template. If
the selected indicator template requires a condition, the name and description can
be modified.

c. Enter a condition for the indicator if the Condition field has been configured for
use.

d. Enter values for the Normal, Warning, and Alert range definitions.

e. Click OK. The New Dashboard Report Definition window appears with
information about the new indicator.

Create a Dashboard Report Definition 315

5. Repeat step 4 for each indicator that you want to add. To edit an existing indicator,
select the indicator, and click Edit. To delete an existing indicator, select the
indicator and click Delete.

6. Select one Category Indicator for each category, and select one indicator as the
Project Indicator.

Note: The indicator that you select as a project indicator must also be a category
indicator.

7. Click Next. The New Dashboard Report Definition window appears with
information about setting up E-mail notifications.

316 Chapter 19 • Using Dashboard Reports

8. Select a value from the Project status drop-down list, enter a value for E-mail
address, and click Add. Repeat this step as needed. Each recipient will receive an e-
mail notification about the status. To delete an e-mail notification, select an item
from the list, and click Delete.

9. Click Next. The New Dashboard Report Definition window appears with
information about setting report types.

Create a Dashboard Report Definition 317

10. By default, all of the report types are selected. To change report types:

a. To add a report type, select a value from the Report type drop-down list, and
click Add.

b. To delete a report type, select a value from the Report Description list, and click
Delete.

Note: If all report types are deleted, this project is not included in the generated
dashboard reports. SAS Model Manager displays a confirmation message.

11. Click Finish. An informational message is displayed indicating that the dashboard
report definition and indicators were created successfully.

Note: You must define dashboard report indicators for all projects that you want to be
included in your dashboard reports.

318 Chapter 19 • Using Dashboard Reports

See Also
• “Overview of Project Dashboard Reports” on page 313

• “Generate Dashboard Reports” on page 319

• “View Dashboard Reports” on page 320

Generate Dashboard Reports
To generate the dashboard reports:

Note: Before you execute the dashboard report, you must have at least one project that
contains performance data. That project must also have at least one dashboard report
indicator defined.

1. Select Tools ð Generate Dashboard Reports from the menu. The Generate
Dashboard Reports window appears.

2. Select a style for the report from the drop-down list.

Note: SAS Model Manager administrators can configure the report styles that are
available using SAS Management Console.

3. Select one of the following report options:

• Create reports and data tables for projects that have new performance monitoring
data.

• Update the style for all reports, using the existing data tables.

• Update all reports and data tables for projects whose performance monitoring
data or report indicator definitions have changed.

Generate Dashboard Reports 319

4. (Optional) Select one or more project types that you want to exclude from the
dashboard reports.

5. Click OK. A message appears that indicates whether the report was created
successfully. The message also displays the location of the dashboard reports on the
SAS Workspace Server. Here is an example: C:\SAS\Config\Lev1\AppData
\SASModelManager12.3\Dashboard.

Note: The location of the dashboard report was configured in the SAS Metadata
Repository during the installation and configuration process. You must have
access to the location in order to create the report.

6. To view the dashboard reports, select Tools ð View Dashboard Reports. For more
information, see “View Dashboard Reports” on page 320.

For more information, see the SAS Model Manager: Administrator's Guide.

See Also
• “Overview of Project Dashboard Reports” on page 313

• “Create a Dashboard Report Definition” on page 314

View Dashboard Reports
To view the dashboard reports:

1. Select Tools ð View Dashboard Reports

A web page displays a table with dashboard reports for each project that has a
dashboard definition.

320 Chapter 19 • Using Dashboard Reports

2. Select a Project Name or status link to view the associated dashboard reports.

Note: You can also view the report by opening the index.html file directly on the
SAS Workspace Server dashboard reports location (for example, c:\SAS
\Config\Lev1\AppData\SASModelManager12.3\Dashboard
\report).

View Dashboard Reports 321

3. Select a link from the Report column to view the report details.

322 Chapter 19 • Using Dashboard Reports

For more report examples, see “Dashboard Report Examples” on page 535.

View Dashboard Reports 323

See Also
• “Overview of Project Dashboard Reports” on page 313

• “Create a Dashboard Report Definition” on page 314

• “Generate Dashboard Reports” on page 319

Edit a Dashboard Report Definition
To edit a dashboard report definition:

1. Right-click the project folder in the Project Tree and select Dashboard Report
Definition ð Edit. The Edit Dashboard Report Definition window appears.

2. (Optional) To copy indicators from another project, click Copy Indicators. The
Copy Indicators from Another Project window appears.

a. Select the project name to copy the indicators from another project.

b. Click OK.

3. Click Add. The Add Indicator window appears.

a. From the Template list box, select a template. For information about the selected
template, click Details.

b. The Name and Description values are populated from the selected template. If
the selected indicator template requires a condition, the name and description can
be modified.

c. Enter a condition for the indicator, if the field is available.

d. Enter values for the Normal, Warning, and Alert range definitions.

e. Click OK.

4. Repeat Step 3 for each indicator that you want to add. To edit an existing indicator,
select the indicator, and then click Edit. To delete an existing indicator, select the
indicator and click Delete.

Note: At least one indicator is required to continue.

5. Select one Category Indicator for each category, select one indicator as the Project
Indicator, and then click Next.

Note: The indicator that you select as a project indicator must also be a category
indicator.

6. Select a value from the Project status list box, enter a value for E-mail address, and
then click Add. Repeat this step as needed. Each recipient will receive an e-mail
notification about the status. To delete an e-mail notification, select an item from the
list, and click Delete. Click Next.

7. By default, all of the report types are selected. To change the types of reports, follow
these steps:

a. To add a report type, select a value from the Report type list box and click Add.

b. To delete a report type, select a value from the Report description list and click
Delete.

8. Click Finish.

324 Chapter 19 • Using Dashboard Reports

Manage All Project Dashboard Definitions
The Manage Project Dashboard Definition window lists all dashboard report definitions
in SAS Model Manager. To delete one or more dashboard report definitions:

1. Select Tools ð Manage Project Dashboard Definitions. The Manage Project
Dashboard Definitions window appears.

2. For each dashboard report definition that you want to delete, select the project and
click .

3. Click Close.

See Also
“Edit a Dashboard Report Definition” on page 324

Delete a Project Dashboard Report Definition
To delete a dashboard report definition for a project:

1. Right-click the project folder and select Dashboard Report Definition ð Delete.

2. In the Delete Dashboard Report Definition window, select Yes.

3. Click Close.

See Also
“Edit a Dashboard Report Definition” on page 324

Delete a Project Dashboard Report Definition 325

326 Chapter 19 • Using Dashboard Reports

Chapter 20

Retraining Models

Overview of Retraining Models . 327

Prerequisites for Retraining a Model . 328

Define a Model Retrain Task . 328

Execute a Model Retrain Task . 333

Viewing Retrained Models and Model Comparison Reports 334
View Retrained Models . 334
View Model Comparison Reports for Retrained Models . 335

Overview of Retraining Models
Using SAS Model Manager, you can retrain models to respond to data and market
changes. Retraining models enables you to update out-of-date models and improve
model performance. When you define a model retrain task, you can select multiple
models to be retrained at the same time. The definition of the model retrain task includes
the destination version and training data source. The destination version is an existing
version or new version that is associated with the selected project and stores the
retrained model information.

The training data source contains new data for retraining the selected models. You can
also specify a location to store the comparison reports and retrain results. When you
select the models to include in the comparison report, you can use the training data
source or select a different data source to compare the performance of the new models.
You can also specify the report options, including the name, format and style of the
comparison report. E-mail notifications can also be defined for a model retrain task and
are sent after you execute a model retrain task.

By default, the champion model for the selected project is selected for retrain. After you
execute a model retrain task, if the Register new trained model option was selected,
SAS Model Manager registers the new models to the destination version. The
comparison report is stored in the Model Retrain folder. The task is executed on the
SAS Application Server that is specified. The report folder is stored on the SAS Content
Server.

Note: Only models that are created by using SAS Enterprise Miner, SAS/STAT,
SAS/ETS, and R models can be retrained.

To retrain models in SAS Model Manager:

• Ensure that all prerequisites have been completed.

327

• Define a model retrain task to generate the SAS code that retrains models.

• Execute the generated SAS code.

• View the new models and comparison report.

Prerequisites for Retraining a Model
Before you define and execute a model retrain task, complete the following
prerequisites:

• If you want to retrain the project champion model, ensure that the champion model is
set. For more information, see “Champion Models” on page 216.

• Verify that the training data set that you want to use as the training data source has
been registered in the SAS Metadata Repository, either by using SAS Management
Console or by defining a libref using the Edit Start-up Code window. For more
information, see “Train Tables” on page 36.

• Verify that the appropriate project and model properties are set. Here is a list of
properties.

Classification Model Project Properties
• Training Target Variable

• Target Event Value

• Class Target Level

• Output Event Probability Variable

Prediction Model Project Properties
• Training Target Variable

• Class Target Level

• Output Prediction Variable

Model Properties
• Score Code Type

For more information, see “Specific Properties for a Project” on page 505 and
“Specific Properties for a Model” on page 514.

• Verify that all of the project output variables are mapped to the corresponding model
output variables. For more information, see “Map Model Variables to Project
Variables” on page 146.

• Verify that the retrain file that is specified in the model template exists in the model
folder that you want to retrain and that the content is correct.

Define a Model Retrain Task
To define a model retrain task:

1. Right-click the project name and select Define Model Retrain Task. The Define
Model Retrain Task wizard appears.

328 Chapter 20 • Retraining Models

2. (Optional) Select one or more models to be retrained. To select all models, select the
Select All check box.

3. Select a destination version for new models.

Note: If you do not select a destination version, the default location is used for the
destination of the new retrained models.

(Optional) To create a new version to store the new retrained models:

a. From the Select Models for Retrain page of the wizard, click New. The New
Version window appears.

Define a Model Retrain Task 329

b. Enter a name of the new version and select a life cycle template. Entering a
description of the new version is optional.

c. Click OK. You are then returned to the Define Model Retrain Task wizard.

4. Click Browse to select a training data source from the SAS Metadata Repository
tab or the SAS Libraries tab.

Click OK. You are then returned to the Define Model Retrain Task wizard.

5. Select a SAS Application Server.

330 Chapter 20 • Retraining Models

6. (Optional) Specify a location to store the report. By default, the report is stored in the
SAS session’s working folder on the SAS Workspace Server. To change the
location, click Browse. The Select Folder on Workspace Server window appears.

Select a folder and click OK.

7. (Optional) Specify where to store the retraining results. Click Browse. The Select
Folder on Workspace Server appears. Select a folder and click OK

Note: This setting is for informational purposes only. The data sets and files that are
created during model retraining are stored in this location. By default, the
training results are stored in the SAS session’s working folder on the SAS
Workspace Server.

8. (Optional) Select Register new trained model to specify whether to register the new
models. If this option is not selected, the new models are not registered in the
destination version in the Project Tree, and they are not saved to the SAS Content
Server.

9. (Optional) Select Trace On to print trace information to the SAS log file.

10. Select a data processing method of either Standard configuration or High-
performance configuration.

Note: To use the high-performance configuration, you must license the SAS High-
Performance Analytics server.

11. Click Next. The Select Models for Comparison page appears.

Define a Model Retrain Task 331

12. Select the models to be compared to the retrained model. To select all models, click
Select All.

Note: If you do not select a model, the champion model in the default version for the
project is used to perform the comparison.

13. Select a comparison data source. Take one of the following steps:

• Select Use training data source if you want to use the training data as the
comparison data source. You can either use the whole training data source to
compare or partition it into two parts, based on partition percent and random
seed. The percent that is specified is the percentage of data that is used for model
comparison; the other part of the data is used for training. The random seed value
is used to generate the training data based on the random sampling method.

• Click the Browse to select a performance data set as the comparison data source.

14. Specify the report options.

a. Enter a report name.

b. Select a format for the report output. The standard formats that are available are
RTF, PDF, HTML, and EXCEL. The default is RTF.

Note: SAS Model Manager administrators can configure the report formats that
are available using SAS Management Console.

c. Select a style for the report. The available styles are SAS default, Seaside,
Meadow, and Harvest. The default is SAS default.

Note: SAS Model Manager administrators can configure the report styles that
are available using SAS Management Console.

15. Click Next. In the Set E-Mail Notifications page, you can specify e-mail recipients
to receive notification the retrained model.

332 Chapter 20 • Retraining Models

(Optional) To send the training results by e-mail, enter an e-mail address or multiple
e-mail addresses that are separated by a comma or blank, and then click Add. To
delete a recipient, select the recipient’s e-mail address and click Delete.

16. Click Finish. The SAS code is generated and placed in the Model Retrain folder of
the associated project.

See Also
“Execute a Model Retrain Task” on page 333

Execute a Model Retrain Task
The prerequisites for retraining a model must be completed and a model retrain task
must be defined before you can execute a model retrain task.

To execute a model retrain task:

1. Expand the project folder.

2. Right-click the Model Retrain folder, and then select Execute from the pop-up
menu.

Note: The model retrain task is executed as a background process. You can view the
progress of the model retrain task in a status bar at the bottom of the SAS Model
Manager application window.

3. When the model retrain has finished executing, a success message is displayed. Click
Close.

Execute a Model Retrain Task 333

Note: If you chose to register the retrained model, it is now available in the Models
folder of the selected destination version. If this option was not selected, the new
models are not registered in the destination version in the Project Tree and they
are not saved to the SAS Content Server. If the model retrain task does not
execute successfully, click Details, or look for error messages in the SAS log
(ModelRetrain.log) that is located in the report folder. The report folder for the
retrained model comparison report has been created in the Model Retrain folder.

See Also
“Viewing Retrained Models and Model Comparison Reports” on page 334

Viewing Retrained Models and Model Comparison
Reports

After a model retrain task is executed and you chose to register the retrained models
when defining the model retrain task, the new retrained models are available in the
Models folder. In addition, if you specified that the model retrain task should create a
model comparison report, the report is available in the Model Retrain folder for the
associated project.

View Retrained Models
To view retrained models:

1. Expand the destination version node to see the new models in the Models folder.

334 Chapter 20 • Retraining Models

2. Expand the new retrained model folder to view its contents.

View Model Comparison Reports for Retrained Models
To view a model comparison report:

1. Expand the report folder that is located in the Model Retrain folder for the
associated project.

2. Right-click the report output file, and select Open from the pop-up menu. Specify
user credentials if you are prompted to.

Note:

You can also view the model retrain report in the following ways:

• Navigate to the report folder location that you specified when defining the model
retrain task.

Viewing Retrained Models and Model Comparison Reports 335

• Open the RTF file that was sent as an attachment in the e-mail notification. This
action is available only if you set a notification when defining the model retrain
task.

For report examples, see “Model Retrain Comparison Report Example” on page 544.

336 Chapter 20 • Retraining Models

Part 6

Combining Multiple Reports

Chapter 21
Aggregated Reports . 339

337

338

Chapter 21

Aggregated Reports

About Aggregated Reports. 339

Create an Aggregated Report . 340

View an Aggregated Report . 341

Edit an Aggregated Report Definition . 341

Delete an Aggregated Report . 342

About Aggregated Reports.
You can combine multiple reports from the Reports node to create a single, aggregated
report. SAS Model Manager administrators and advanced users can create an aggregated
report in two steps. First, you open the Define Aggregated Reports window from an
organizational folder, a project, or a version. Using reports that reside in the Reports
folder, you select the reports that you want in your aggregated report to create an
aggregated report definition. Next, you generate the aggregated report using the
aggregated report definition. The format of the report can be PDF, HTML, or RTF.
Aggregated reports are stored in the Documents folder.

Ad hoc reports, LGD reports, and PD reports cannot be added to an aggregated report.

If a report contains an error, the report is not listed in the Reports folder.

Here is the Define Aggregated Report window.

339

These are the tasks that you perform for aggregated reports:

• “Create an Aggregated Report” on page 340

• “View an Aggregated Report” on page 341

• “Edit an Aggregated Report Definition” on page 341

• “Delete an Aggregated Report” on page 342

Create an Aggregated Report
To create an aggregated report, you must have exiting reports in the Reports node. You
first create an aggregated report definition, and then generate the report.

To create an aggregated report:

1. Right-click an organizational folder, a project, or a version, and select Define
Aggregated Report.

Note: The Define Aggregated Report pop-up menu item is available to only SAS
Model Manager administrators and advanced users.

2. In the Name field, enter a name for the report.

3. (Optional) In the Description field, enter a description for the report.

4. Click the Format list box and select an output format. The default is PDF.

5. In the Available items box, expand the organizational folder, the project, or version
to show the Reports node.

6. To select all reports in the Report node, click the double right arrow. If you do not
want all reports, skip this step.

340 Chapter 21 • Aggregated Reports

7. For each individual report that you want to include in the aggregated report, expand
Reports and select the report in the Available items box. Click the single right
arrow. The report appears in the Selected items box.

8. To remove reports from the Selected items box, click the single left arrow to remove
one report or click the double right arrow to remove all reports.

9. To order the reports, select a report and use the up and down arrows.

10. When all of the reports are in the Selected items box and in the correct order, click
OK. An object for the aggregated report definition and an Output node appear in the
Documents folder.

11. Expand the Documents folder.

12. Right-click the aggregated report definition name and select Generate Aggregated
Report. A message appears to indicate whether the report was generated. If it was
successful, click Close. If it was not successful, click Details to view the SAS log.

13. To view the report, expand the Output folder for the aggregated report, right-click
the report, and select Open.

View an Aggregated Report
To view an aggregated report, follow these steps:

1. Expand the Documents folder.

2. For the report that you want to view, expand the report definition folder and the
Output folder.

3. Right-click the report and select Open.

Edit an Aggregated Report Definition
To edit an aggregated report, follow these steps:

1. Expand the Documents folder. Right-click the aggregated report and select Edit
Aggregated Report. The Edit Aggregated Report window appears.

2. Modify the report definition:

a. In the Name field, modify the name.

b. (Optional) In the Description field, enter a description for the report.

c. Click the Format list box and select an output format. The default is PDF.

d. To add reports to the report definition, select the report in the Available items
box and click the single right arrow.

e. To delete reports from the report definition, select the report from the Selected
items box and click the single left arrow. To remove all reports, click the double
left arrow.

f. To order the reports, select a report and use the up and down arrows.

g. Click OK.

Edit an Aggregated Report Definition 341

h. Right-click the aggregated report name and select Generate Aggregated
Report. A message appears to indicate whether the report was generated. If it
was successful, click Close. If it was not successful, click Details to view the
SAS log.

Delete an Aggregated Report
To delete an aggregated report, follow these steps:

1. Right-click the report name in the Documents folder and select Delete.

2. Click Yes for the confirmation message. The aggregated report definition and
Output folder are deleted.

342 Chapter 21 • Aggregated Reports

Part 7

SAS Model Manager Workflow
Console

Chapter 22
Using Workflow Console . 345

Chapter 23
Managing Workflows . 367

Chapter 24
SAS Workflow Model Management Components 379

343

344

Chapter 22

Using Workflow Console

Overview of Workflow Console . 346

User Interface Layout . 346
About the User Interface Layout . 346
Navigation Pane . 348

Customizing Category Views . 349
Overview of Customizing Category Views . 349
Manage Columns in a List . 349
Sort Lists by Column Content . 350
Searching List Content . 352

Setting Preferences . 355
About Setting Preferences . 355
Global Preferences . 355
General Preferences . 356
Alert Notifications . 356

Working with Objects . 357
About the Tile Pane . 357
Open Objects . 357
Open Multiple Objects . 358
Rearrange Open Objects . 359
Save Layouts . 359
Close Objects . 359

Viewing Workflow Activities . 359

Working with Workflow Activities . 360

Editing Activity Properties . 361

Working with Comments . 362
About Comments . 362
Adding Comments . 363
Respond to a Topic . 364
Attach a File . 364
Search for Comments and Replies . 365

Viewing Workflow Milestones . 365

345

Overview of Workflow Console
The SAS Model Manager Workflow Console is an interface to SAS Workflow that you
can use to track the progress of models at the version level of a project. A SAS Model
Manager administrator or a SAS administrator uses SAS Workflow Studio to define
workflow definitions and to make them available to SAS Model Manager for use.
Workflow definitions contain the set of activities (or tasks), participants, policies,
statuses, and data objects that comprise a business task. Activities can be associated with
a milestone and model management components. After the workflow definitions are
made available, the SAS Model Manager administrator uses the Workflow Console to
create a workflow to be used with SAS Model Manager. A workflow is a copy of a
workflow definition. Each workflow consists of activities. Activities can contain
properties and comments so that you can share information with other users, or make
notes. The status that you select when completing an activity determines the next activity
in the workflow.

From the SAS Model Manager client application, you can launch the Workflow Console
to create a new workflow or view the workflow for a version, manage all workflows, and
view your workflow inbox to work with activities, depending on the user permissions.
The option that is selected and the user permissions determine the category view and
content that are displayed when the Workflow Console is launched. SAS Model
Manager administrators can view the Workflow Definitions, Workflows, and Activities
category views of the Workflow Console. Other SAS Model Manager users can view
only the Activities category view. For more information about user permissions, see SAS
Model Manager: Administrator's Guide.

User Interface Layout

About the User Interface Layout
Workflow Console is a workspace that includes a navigation pane with category buttons,
a menu bar, a toolbar, a list area, a search bar, details panes, and a tile pane.

346 Chapter 22 • Using Workflow Console

1 Category pane: Click a category button to switch to a different category. Your user
privileges determine which categories and which category-specific features are
available to you. Each category view displays a list of items and has a toolbar for
working with the view and the displayed items. At the top of each view, you can
filter the list by specifying the type of items that you want to display or group by.
You can also search for specific types of items.

2 Menu bar: A menu bar is available at the top, left-hand side of the window. The
actions and features that are available from the menu bar are available regardless of
which part of Workflow Console you are working with. If an action or feature is
available only for a particular part of Workflow Console, then that action or feature
is instead available via menus and toolbars that are located with that part of
Workflow Console.

3 Toolbar: Use the toolbar to create, delete, and copy category-related items; sort
items; manage columns; open and display selected objects; and select different types
of viewing formats. The toolbar options change depending on the category view.

4 List area: Use lists to select an item with which to work. The list area displays items
that relate to the current category. Depending on user permissions, the list area
displays the workflow definitions, workflows or activities with which to work. Select
an item in the list to work with it. To customize the display, you can sort the items by
column content, and add, remove, and reposition columns as desired.

5 Details panes: View information or modify details about selected items. The panes
that are displayed change depending on the current category. For example, the
Comments pane is available only in the Activities and Workflows category views.

6 Search bar: Use the search bar to specify the types of items that you want to display
in the list area.

User Interface Layout 347

7 Tile pane: Use the tile pane to switch between category and details views, display
thumbnail images of open objects, and manage the layout within a workspace. For
more information, see “Working with Objects” on page 357.

Although window controls change depending on the workspace category, some controls
are common to all categories. Table 22.1 describes the common window controls.

Table 22.1 Window Controls

Control Name Description

Collapse Hides the object with which it is associated.

Expand Shows the object with which it is associated.

Resize
Horizontal

Horizontally resizes a pane when you drag the pointer () to the
left and right.

Resize
Vertical

Vertically resizes a pane when you drag the pointer () to the left
and right.

Navigation Pane
The following table shows the category views that are available in the navigation pane of
Workflow Console.

Category View
Button Description

The Workflow Definitions category view contains a list of the process
definitions that are available to SAS Model Manager. To view the
process definition details, double-click a process definition in the list.

The Workflows category view contains a list of the workflows. To view
detailed information for a workflow, double-click a workflow in the list.
You can view the properties and participants that are associated with an
activity by selecting an activity.

The Activities category view contains the activities that you can
participate in and that have a state of Started. To view all of the
properties for an activity or start model management tasks, double-click
an activity in the list.

348 Chapter 22 • Using Workflow Console

Customizing Category Views

Overview of Customizing Category Views
You can customize the category views in the following ways:

• manage which columns are displayed, and determine the order of the columns in a
list

• set the sort order and direction of the attributes

• create, save, and manage searches

Manage Columns in a List

To add, remove, or reposition columns in a list, click the Manage Columns button
on the toolbar.

The Manage Columns button displays the Manage Columns window, which reflects the
current settings of the list. Here is an example of the Manage Columns window.

Figure 22.1 Manage Columns Window

To add, remove, and reposition columns, use the control buttons that are described
below.

Note: Changes that you make affect only the category views on your computer.

T I P You can select a set of noncontiguous columns in the list and then add, remove,
or reposition the selected set as a single entity.

Customizing Category Views 349

Table 22.2 Manage Columns Window Buttons

Button Description

Adds one or more selected columns to the list.

Adds all available columns to the list.

Removes one or more selected columns from the list.

Removes all columns from the list.

Moves one or more selected columns to the left in the list.

Moves one or more selected columns to the right in the list.

Note: The workspace search is applied to all columns in the view, even to columns that
you remove from the Displayed columns list as long as they are still in the
Available columns list. For example, if you remove the Name column from a list,
the search still searches for name values and returns results based on the contents of
that column. For more information about using searches, see “Searching List
Content” on page 352.

Sort Lists by Column Content

Sort Single Columns in a List
When you display a list of items in a category view, click a column label to sort rows in
ascending order, based on the values in the selected column. Clicking the column
heading toggles between ascending and descending order.

To indicate that a column is sorted, a sort icon appears next to the column label and

shows whether the sort is in ascending () or descending () order. The sort icon
does not appear next to the label until that column is sorted.

Sort Multiple Columns in a List
You can also sort a list by more than one column and, if desired, in ascending order by
some columns and in descending order by other columns.

To sort a list by more than one column, click the Sort button on the toolbar.

The Sort button displays the Sort window, which reflects the current sort order of the
list. Here is an example of the Sort window.

350 Chapter 22 • Using Workflow Console

Figure 22.2 Sort Window

To add, remove, or reposition columns in the sort order, use the control buttons that are
described below.

Table 22.3 Sort Window Control Buttons

Control Description

Adds selected columns to the sort order.

Adds all columns to the sort order.

Removes selected columns from the sort order.

Removes all columns from the sort order.

Moves one or more selected columns higher in the sort
order.

Note: The first column that is listed in the sort order
becomes the primary sort column.

Moves one or more selected columns lower in the sort
order.

T I P You can select a set of noncontiguous columns in the list and then add or remove
the set as a single entity.

To specify the direction in which to sort a particular column, click in the Sort Direction
cell, and then select Ascending or Descending.

Customizing Category Views 351

Searching List Content

About Searching List Content
You can search the list in a category view to view only particular workflow definitions,
workflows, or activities. For example, suppose you want to see the entry for a version
and you use the UUID to identify the version.

To limit the number of items that appear in a list, you can use search to perform the
following tasks:

• Create and save search criteria for reuse

• Modify a saved search

• Apply a saved search

• Manage saved searches

Here are the different parts of the search bar.

Figure 22.3 Search Bar

1 Additional search options: Use the additional search options menu to filter the
results by dates that are available in the list.

2 Search criteria: Use the search text box to specify search criteria.

3 Search menu: Use the search menu to save and manage searches. The menu
expands to display the last ten saved searches by default. The order can be different
based on the order that is specified in the Manage Saved Searches window.

Create and Save Search Criteria for Reuse
You can save search criteria for reuse. Saved searches are available only for the category
view in which the search was saved.

To save search criteria:

1. On the search bar, specify search criteria in the search area. You can specify the
criteria in any of the following formats:

• alphanumeric combinations

• alphabetic characters only

• numbers only

• special characters

• compound words

• mixed case

352 Chapter 22 • Using Workflow Console

Note: Search criteria are not case-sensitive.

2. Click Save Search. The Save Search window appears.

3. In the Save Search window, specify a name for the search and an optional
description. Click Save.

Note: The search name can be modified in the Manage Saved Searches window. The
rule and description cannot be modified for an existing search. If you want to
change the rule or description, you must create a search that has the same name
to replace the existing search.

4. In the confirmation window, click OK to replace the existing search.

Search Information Area
When you search items in a list, the search information appears in the area beneath the
toolbar. The information shows the search criteria that are in effect and provides a tally
of how many items are searched from the total number of items.

Here is a sample of the search information area. In this sample, six activities out of ten
contain the text “test”.

Figure 22.4 Search Information Area

Modify a Saved Search
Although you cannot modify an existing search, you can create a new search and replace
the existing search with the new one.

To create a new search and replace the existing one:

Customizing Category Views 353

1. In the search area on the search bar, enter the search text that you want to include in
the new search.

2. Click Save Search.

3. In the Save Search window, enter the same name as the search that you want to
replace.

4. (Optional) Enter a description.

5. Click OK.

6. In the confirmation window, click OK to replace the existing search.

Apply a Saved Search
To apply a saved search, click the search menu down arrow, and select the search from
the list. If there are more than ten saved searches:

1. Click More on the search menu to display the list of all saved searches.

2. Select the search that you want to use, and click OK to apply the search criteria to
the current list.

Manage Saved Searches
You can rename, reorder, and remove saved searches as necessary by using the Manage
Saved Searches window.

1. Click the down arrow in the save search menu and select Manage Saved Searches.
The Manage Saved Searches window appears.

354 Chapter 22 • Using Workflow Console

2. To rename a saved search, click in the Name column and enter a new name. The
change is saved when you navigate away from the column or press ENTER.

3. The Order column indicates the order in which saved searches appear in the search
menu. To reorder the list, use the move down (and) and move up (and)
buttons.

4. To remove a search, select the search and click .

5. Click OK.

Setting Preferences

About Setting Preferences
Preferences provide a way for you to customize the user interface of Workflow Console.
To set preferences, select File ð Preferences from the menu bar. The following topics
describe the available preferences and explain how to use the Preferences window.
Additional information is also provided for how to use the SAS Preferences Manager to
specify individual preferences to override the default notification type and user locale.

Global Preferences
Global preferences are applied to all SAS Web applications that are displayed with the
Adobe Flash player. When you set a global preference, it applies to the user who you are
logged on as and to no other users.

Note: If the user locale that you specify in the preferences is different from the user
locale for the SAS Workspace Server, you might receive an error when you try to log
on to the SAS Model Manager client application. You might also receive encoding
errors when executing tasks in SAS Model Manager. If you receive an error change
the updated locale back to the original locale for the user.

To set global preferences, select the Global Preferences page. These global preferences
are available:

• User locale specifies the geographic region whose language and conventions are
used in the applications. This setting might also apply to some SAS Web
applications that are not displayed with the Adobe Flash player. The default is the
browser locale.

• Theme specifies the collection of colors, graphics, fonts, and effects that appear in
the applications. Theme changes take effect after you log off and log back on.

Note: You can also set the User locale setting by using the SAS Preferences Manager.
Enter in your browser window the URL http://host-name:port/
SASPreferences to launch the SAS Preferences Manager, and select the Regional
menu option. For more information, see “SAS Preferences Manager” in Chapter 7 of
SAS Intelligence Platform: Middle-Tier Administration Guide.

Setting Preferences 355

General Preferences
General preferences are settings that are applied across Workflow Console only. To set
general preferences, select the General page. These general settings are available:

• Show this number of recent items specifies how many objects to display in the
Recent Objects tile.

Alert Notifications
Use SAS Preferences Manager to override the default notification delivery type for an
individual user. The SAS Preferences Manager is a Web application that provides a
central facility for users to manage their preferences and settings. The SAS default
delivery type for notifications is specified in the properties for the SAS Application
Infrastructure using the Configuration Manager plug-in to SAS Management Console.
The default type after the deployment of SAS 9.3 is My alerts portlet. However,
a SAS administrator can modify the default notification type. For more information
about modifying the SAS default notification type for all users, see “Configuring Alert
Notifications for SAS Workflow” in Chapter 4 of SAS Model Manager: Administrator's
Guide.

To specify the notification delivery preference for an individual user, follow these steps:

1. Enter the URL http://host-name:port/SASPreferences in your browser
window to launch the SAS Preferences Manager. Replace the values for host-name
and port based on the location of the configured SAS Web Infrastructure Platform.

2. Enter the user ID and password for the user account that you use to access SAS Web
applications.

3. Select General ð Notifications.

4. Select a format type for the e-mail notifications. The options are HTML-formatted
e-mail and Plain-text e-mail.

5. Select the notification types from the Available list and click to add the selected
notification types. The available options are the following:

• Via e-mail

• My alerts portlet

• Via SMS text message

• Via digested e-mail

T I P To remove a notification type, select the type from the list and click to
remove the selected item.

6. Click Apply to update the notification settings and click OK to save the changes.

For more information, see “SAS Preferences Manager” in Chapter 7 of SAS Intelligence
Platform: Middle-Tier Administration Guide.

356 Chapter 22 • Using Workflow Console

Working with Objects
When you open objects, you can add them to the tile pane as minimized items or open
them and work with them in the layout. A layout is simply a collection of one or more
open objects in a specific order or arrangement in the object view.

About the Tile Pane
The tile pane provides quick access to open objects and to tools that control how objects
are displayed. By using the tile pane, you can perform the following activities:

• switch between the category view and one or more open objects

• view thumbnail images of open objects

• tile open object views

• open, minimize, and close objects and object groups

Note: The tile pane is workspace-specific. When you switch to a different workspace,
the tile pane changes to reflect the open objects in that workspace.

Here is a description of the buttons in the tile pane.

Table 22.4 Tile Pane Buttons

Button Name Description

View object list Returns to the category view and displays the list of
objects.

View layout Tiles the display of open objects.

From the drop-down list, select the objects to tile and
select Show Details to display object details in the
thumbnail images.

View actions
button

View actions Displays the View actions menu that contains the
following options:

• Save Layout

• Open Layout

• Show All Items

• Close All

Open Objects

To open an object in a category view:

1. Double-click the object, or select Open on the toolbar and then select one of the
following options:

Working with Objects 357

• Open: Opens the object in the object view and adds the object’s thumbnail image
to the tile pane. This option enables you to work with the object immediately.

• Add: Adds a selected object to the tile pane (when one or more objects are
open).

• Sent to Tile Pane: Opens the object’s thumbnail image in the tile pane. This
enables you to continue selecting other objects in the object view.

T I P You can drag an object from a list to the tile pane.

2. (Optional) To switch to the object view, click the View object list button in the tile
pane.

T I P To obtain a list of open objects, click View. In this list, a check mark
indicates that the object is open. You can select an object to open that object in
the object view, or clear the check mark to return the object to a minimized
(thumbnail) state on the tile pane.

Open Multiple Objects
To open multiple objects, use either of the following methods:

• Use the SHIFT key to select multiple adjacent objects or use the CTRL key to select
noncontiguous objects. The objects are tiled within the view and object thumbnail
images appear on the tile pane.

• Select an object and click Open, click the View object list button, select another
object, and then click Open. The second object opens in the workspace, replacing
the first item, and thumbnail images for both objects appear on the tile pane. Repeat
this process to continue opening objects.

T I P To display all open objects, rather than the most recently opened object, click the
View actions button on the tile pane, and select Show All Items.

Here is an example of how three open objects appear when they are tiled within
Workflow Console and how the relevant thumbnail images appear on the tile pane.

Figure 22.5 Tiled Open Items

358 Chapter 22 • Using Workflow Console

Rearrange Open Objects
To change the way open objects are displayed, you can do any of the following:

• Minimize, maximize, or close each object by using the window controls.

• Minimize objects by using View actions on the tile pane.

To minimize an object, select the object in the list. This action clears the check mark
and removes the object from the object view. The thumbnail image is retained in the
tile pane for quick access when necessary.

• Add objects to the object view by dragging their icons from the tile pane to the
object view.

• Resize windows by using the dividers between the item windows.

• Rearrange objects by clicking their title bars and dragging them to a new position in
the object view.

Save Layouts

To save the current object view layout for reuse, click the View actions button in the tile
pane, select Save Layout, and provide a name for the saved layout.

To open a saved layout, click the View actions button on the tile pane, select Open
Layout, and select the layout that you want to apply to the object view.

Close Objects
You can close objects in the following ways:

• If the object is open in the object view, click in the upper right corner of the
thumbnail image. This closes the object in both the object view and in the tile pane.

Note: To minimize an open object, click the minimize button in the upper right
corner of the thumbnail image. This removes the object from the object view.
The object thumbnail is visible in the tile pane.

• If the object thumbnail image is visible in the tile, click in the upper right corner
of the thumbnail image. This action removes the object thumbnail from the tile pane.

After you close the object, you can open it again from the category view or open a
previously saved layout that contains the object.

Viewing Workflow Activities
To view the activities in your workflow inbox from the SAS Model Manager window,

select Tools ð My Workflow Inbox or click .

SAS Model Manager Workflow Console is launched in a web browser, and displays the
Activities category view. The list displays only the activities for which you are the actual
owner or are assigned as a potential owner, and that have the state of started. If you are
assigned as a participant with the workflow role of business administrator, you can see

Viewing Workflow Activities 359

all of the activities that contain that workflow role assignment and that have the state of
started. After you claim an activity, you become the actual owner of the activity.

Note: If another users claims an activity, it no longer appears in your activities list. A
SAS Model Manager administrator that has the workflow role of business
administrator can view the activity and modify the activity properties from the
Workflow details view.

Working with Workflow Activities
The Activities category view of Workflow Console displays the activities that you have
been assigned as potential owner or business administrator, and that have a state of
started. From the Activities category view, you can perform the following tasks:

• claim an activity

• add comments to an activity

• change values of properties

• release an activity

• mark an activity completed

• view the history log for an activity

• view dashboard reports

To complete an activity:

1. From the Activities category view, select an activity name, and click to claim an
activity.

Note: You can select an activity name and click to release an activity that you
had previously claimed. Only a SAS administrator or SAS Model Manager
administrator can release an activity that has been claimed by another participant.
For more information, see “Releasing an Activity” on page 377.

360 Chapter 22 • Using Workflow Console

2. (Optional) Enter a property value or change an existing property value in the
Properties pane. For more information, see “Editing Activity Properties” on page
361.

3. (Optional) Double-click an activity to view the activity details. From the activity
details view you can modify activity properties or perform the model management
tasks that are associated with the activity.

Note: If you did not claim the activity from the Activities category view, you can
select the Claim check box in the activity status bar.

The following actions can be performed from the activity status bar.

• Select the information button to view the description of the activity. The
description window can contain a brief description of the activity or special
instructions. The information button is displayed only if a description was
provided for the activity when the workflow definition was created.

• If you have no other actions to perform for the activity, you can select a status to
complete the activity, and click Update and Close. The workflow continues to
the next activity.

• Click Close if you want to return to the Activities category view without
updating the status of the activity.

For more information about the model management tasks that might be available, see
Chapter 24, “SAS Workflow Model Management Components,” on page 379.

4. (Optional) Add a comment to the activity using the Comments pane. For more
information, see “Working with Comments” on page 362.

5. Select a status value to complete the activity. The workflow continues to the next
activity.

6. Repeat steps 1 through 4 until the workflow has been completed.

From the Activities category view, you can also view the dashboard reports for all

projects. Click to view the dashboard reports in a browser window.

Editing Activity Properties
An activity can contain properties. Properties that are editable display a triangular icon
in the bottom right corner of the property value in the data grid.

To edit the properties for an activity:

1. From the Activities category view, select an activity. The properties that are
associated with the activity are displayed to the right in the Properties pane.

Editing Activity Properties 361

2. Click on the property value, and then enter a value or change the existing value.

3. To save the changes to the properties, click .

If you do not want to save the changes to the properties, click .

The activity properties can also be modified from the activity details view. Double-click
an activity name to display the activity details view. Here is an example of a details
view.

Working with Comments

About Comments
Use the Comments pane in the Workflows and Activities category views to share
information about a workflow or activity with other users, or to make notes.

The Comments pane enables you to add new topics or reply to an existing topic that is
associated with a workflow or an activity. You can also search, sort, or filter the
comments.

362 Chapter 22 • Using Workflow Console

You can add multiple comments to an activity or workflow. Each comment becomes its
own topic, to which other users can reply. The original comment and its replies are a
topic thread. Each entry in the topic thread includes the user ID of the person who
created it, and the date and time when the comment or reply was last modified. Topic
threads are separated by lines in the Comments pane.

The following table describes the items in the Comments pane. Before you add a
comment, only the New Topic button is available.

Table 22.5 Plan Comments Pane Items

Item Description

Search box Enables you to display all topics that contain a specific text string.

Topic thread Displays a comment and its replies, if any.

Topic threads are separated by lines in the Comments pane.

Actions menu Provides options for sorting and filtering the entries in a topic
thread.

Reply button Displays a topic window in which you can enter a response to a
comment or add a comment to the History Log topic.

New Topic button Displays the New Topic window in which you can create a new
comment.

Adding Comments
To add comments to a workflow or an activity:

1. Select the workflow or activity.

2. In the Comments pane, enter a topic name and a comment.

Working with Comments 363

3. (Optional) Click to add a file with the new topic. For more information, see
“Attach a File” on page 364.

4. Click Post. The new comment now appears in the Comments pane.

Respond to a Topic
To respond to a topic:

1. In the Comments pane, expand the topic thread to which you want to respond.

2. Enter a comment in the box.

3. (Optional) Click to add a file to the new topic. For more information, see “Attach
a File” on page 364.

4. Click Post. The response is added below the original comment.

Attach a File
When you add a comment or reply, you can include attachments. There are no
restrictions on the types of files that you can attach, or on their size. However, including
large attachments in a comment or reply can affect Workflow Console performance.

To add an attachment:

1. Click the button in the Comments pane.

The Select file(s) to upload window appears.

2. Using the Look in field, navigate to the location of the file.

3. In the list, click the file that you want to attach. Its name appears in the File name
box.

4. Click Open.

364 Chapter 22 • Using Workflow Console

The filename appears below the comment box.

Note: Before you post a comment or response, you can click Remove to the right of
the attachment name to remove the attachment.

5. Repeat steps 1 through 4 to attach more files.

Search for Comments and Replies
For a selected workflow or activity, use the search box at the top of the Comments pane
to find all the comments and responses that contain a specific text string.

To initiate a search, enter the text that you want to find in the search box and press
Enter. The application applies the search to all the topic threads and highlights the
search text in yellow.

As shown in the following example, the search returns all of the topics that contain the
string “workflow” and underlines the relevant area of text in the display:

To clear the search and display all topics, click .

Viewing Workflow Milestones
SAS Model Manager enables you to associate milestones with workflow activities as
part of the workflow process definition. Activities that are associated with a milestone
appear on the Workflow Milestones tab in the version details section of the SAS Model
Manager client. You can also create a Workflow Milestones report using the Workflow
Console, if an activity is associated with the Create and View Reports component, or by
using the New Report wizard that is available within a version from the Reports context
menu in the SAS Model Manager client application. For more information, see “How to
Associate a Milestone with a Workflow Activity” in Chapter 3 of SAS Model Manager:
Administrator's Guide.

Viewing Workflow Milestones 365

Here is an example of the Workflow Milestones tab in the version details view of the
SAS Model Manager client

Here is an example of the Workflow Milestones report:

366 Chapter 22 • Using Workflow Console

Chapter 23

Managing Workflows

Overview of Managing Workflows . 367

Viewing Workflow Definitions . 368

Creating a New Workflow . 369

Viewing Workflows . 370

Editing a Workflow . 372

Editing Workflow Properties . 374

Working with Workflow Participants . 374
Assigning Participants to Activities . 375
Removing Participants from Activities . 376
Releasing an Activity . 377

Terminating a Workflow . 378

Overview of Managing Workflows
SAS Model Manager Workflow Console can be used to manage workflows. A SAS
Model Manager administrator can create new workflows, view workflow definitions,
and interact with activities that are associated with a workflow. If the SAS Model
Manager administrator is assigned to the workflow role of business administrator, the
administrator can influence the progress of an activity by actions such as assigning an
activity, or releasing the activity that is claimed by another user.

To manage the workflow process, from the SAS Model Manager window select Tools ð
Manage Workflow. Workflow Console is launched in a web browser and displays the
Workflow Definitions category view, as shown.

367

See Also
• “Creating a New Workflow” on page 369

• “Viewing Workflows” on page 370

• SAS Model Manager: Administrator's Guide

Viewing Workflow Definitions
Only a SAS Model Manager administrator can view workflow definitions. Workflow
definitions are created and made available to SAS Model Manager using SAS Workflow
Studio. A SAS Model Manager administrator can use Workflow Console to create a
workflow from a workflow definition. You use workflows to manage the process of
model development and implementation in SAS Model Manager.

To view the available workflow definitions, from the SAS Model Manager window
select Tools ð Manage Workflow. Workflow Console is launched in a web browser
and displays the Workflow Definitions category view.

To view detailed information for a workflow process definition, double-click the
workflow definition. A workflow definition contains the activities that define a
workflow. The activities contain the available status values, and participants that are
associated with the activity.

368 Chapter 23 • Managing Workflows

For more information about workflow definitions, see “Overview of Managing
Workflows” on page 367 and SAS Model Manager: Administrator's Guide.

Creating a New Workflow
A workflow is a copy of a workflow definition. Only a SAS Model Manager
administrator can create a new workflow.

To create a new workflow:

1. From the SAS Model Manager window, right-click a version and select New
Workflow. Workflow Console is launched in a Web browser and displays the New
Workflow window.

Note: If you are already logged on to Workflow Console, from the Workflow
Definitions category view, select a workflow definition and click .

2. Enter a name for the workflow.

3. The UUID of the selected version is already populated.

Creating a New Workflow 369

Note: If the UUID is not already populated, you can copy the UUID property value
for a version from the Properties view in the SAS Model Manager window. The
UUID must be unique, if you enter a value that is already associated with another
workflow, a confirmation window appears for you to terminate the existing
workflow and replace it with the new workflow. For more information about the
UUID property, see “System Properties” on page 504.

4. (Optional) Enter a description for the workflow.

5. Click OK. A message appears, indicating that the workflow has been successfully
created.

6. Click Close. The new workflow is now available in the Workflows category view.

7. To view the new workflow, click Workflows . Select the workflow to view
information that is associated with the new workflow.

For more information about managing workflow definitions, see the SAS Model
Manager: Administrator's Guide.

Viewing Workflows
Only a SAS Model Manager administrator can view workflows that are associated with a
version. To view the workflows that are associated with a version, from the SAS Model

Manager window right-click a version and select View Workflow or click .

SAS Model Manager Workflow Console is launched in a web browser, and displays the
Workflows category view with the value for the UUID as the applied filter. Only the
workflows that are associated with the selected version are displayed in the list. You can
select a workflow from the list to view the properties and comments that are associated
with the workflow.

370 Chapter 23 • Managing Workflows

Note: If a workflow is not associated with the selected version, the following message
appears and the Workflow Console is not launched.

From the workflows category view, you can perform the following tasks:

• edit a workflow

• edit workflow properties

• add comments

• terminate a workflow process

To view detailed information for a workflow, double-click a workflow name. The list of
activities, the activity state, and who the activity is claimed by are displayed. You can
then view the properties and participants that are associated with an activity by selecting
an activity name. The workflow diagram is also displayed with the current status of the
workflow and its activities..

Viewing Workflows 371

For more information, see “Working with Workflow Participants” on page 374.

Editing a Workflow
To edit a workflow:

1. From the SAS Model Manager window, right-click on a version and select View
Workflow. Workflow Console appears.

2. From the Workflows category view, select a workflow and click . The Edit
Workflow window appears.

372 Chapter 23 • Managing Workflows

3. Make changes to the workflow name or description.

Note: The UUID only can be modified if the workflow is not associated with an
existing version. If the UUID field is empty or is not a valid version UUID, to
associate the workflow with a version, enter the UUID for a specific version. The
UUID cannot be modified after the first workflow activity has been claimed. The
UUID must be unique, if you enter a value that is already associated with another
workflow, a confirmation window appears for you to terminate the existing
workflow and replace it with the new workflow. For more information about the
UUID property, see “System Properties” on page 504.

4. Click OK.

A record of the changes is added to the History Log in the Comments pane.

Editing a Workflow 373

Editing Workflow Properties
A workflow process definition can contain properties that a user can modify for
workflows and for activities. The properties that are editable display a triangular icon in
the bottom right corner of the property value field in the data grid.

To edit the properties for a workflow:

1. From the Workflows category view, select a workflow. The properties that are
associated with the workflow are displayed in the Properties pane.

2. Click on the property value, and enter a value or change the existing value.

3. To save the changes to the properties, click .

If you do not want to save the changes to the properties, click .

For more information about editing activity properties, see “Editing Activity Properties”
on page 361.

Working with Workflow Participants
From the Workflow details view you can view the properties and participants that are
associated with an activity by selecting an activity. If you are a SAS Model Manager
administrator and you are associated with the workflow role of business administrator,
you can assign or remove participants, and release activities that have been claimed by
another user.

374 Chapter 23 • Managing Workflows

Assigning Participants to Activities
Default participants might have been assigned already to activities when a workflow
definition was created.

To assign an additional participant to an activity, follow these steps:

1. From the Workflows category view, double-click a workflow. The Workflow details
view appears.

2. Select an activity, and then click in the Participants pane. The Assign a
Participant window appears.

3. Select one of the identity types: user, group, or role.

4. Enter part of the user, group, or role name, and click .

Note: If you do not enter part of the name, all of the names for the selected identity
type are displayed.

Working with Workflow Participants 375

Select a name and click OK.

5. Select a workflow role for the participant.

Here are the workflow roles that you can assign to participants for a workflow
activity:

• Business administrator: a participant who can influence the progress of an
activity by actions such as adding comments, assigning an activity, or releasing
the activity claimed by another user.

• Potential owner: a participant who can claim an activity in a workflow process
and who becomes the actual owner of an activity.

Click OK. The new participant is added to the Participants list.

6. Click Close.

Removing Participants from Activities
To remove a participant from an activity:

1. From the Workflows category view, double-click a workflow name.

2. Select an activity, and then select a participant from the Participants pane.

Note: You cannot remove a participant who is associated with the workflow roles of
business administrator or actual owner.

376 Chapter 23 • Managing Workflows

3. Click . A message is displayed asking if you are sure that you want to remove the
participant from the activity.

4. Click Yes. The participant is no longer displayed in the Participants list.

Releasing an Activity
A SAS Model Manager administrator can release an activity that has been claimed by a
workflow participant. The name of the actual owner is displayed in the Participants pane.

To release an activity, follow these steps:

1. From the Workflows category view, double-click a workflow name. The Workflow
details view is displayed.

Working with Workflow Participants 377

2. Select an activity name, and click . The Claimed By value for the selected
activity is cleared. If you click on the Activities category view, you should now see
the released activity in your activities list.

Terminating a Workflow
When you terminate a workflow, all activities that have not yet been completed in the
workflow are changed to a state of Terminated and are no longer displayed in the
Workflows category view list. After you terminate a workflow , it cannot be restarted.

To terminate a workflow:

1. From the Workflows category view, select a workflow name and click .

2. Click Yes to terminate the selected workflow.

3. Click Close to return to the Workflows category view.

378 Chapter 23 • Managing Workflows

Chapter 24

SAS Workflow Model
Management Components

Overview of SAS Workflow Model Management Components 379

Importing Models . 380

Viewing Models . 381

Setting Champion and Challenger Models . 383

Publishing Models . 384

Add, View, or Delete Attachments . 386

Creating and Viewing Reports . 386

Viewing Performance Results . 388

Viewing All Model Management Components . 389

Overview of SAS Workflow Model Management
Components

SAS Model Manager enables you to integrate SAS Workflow with some of the model
management tasks that are normally performed in the SAS Model Manager client.
Workflow definitions can be configured to use model management components with the
workflow activities. When the workflow definition is activated for use, the model
management components are available through the object view for the associated
activity in the SAS Model Manager Workflow Console.

If a model management component is associated with an activity, you can perform one
or more of the following tasks:

• import models

• view models

• set champion and challenger models

• publish models

• add, view, or delete attachments

• create and view reports

• view performance results

379

Importing Models
If the Import Models component is associated with an activity, you can import models.
You can import models from the SAS Metadata Repository, a SAS package file (.spk),
or a PMML file (.xml) into the version that is associated with the workflow.

To import a model:

1. Select an import method from the Import drop-down list.

Display 24.1 Example of Importing a Model from a SAS Package File

2. Navigate to the location of the file and select the model file to import.

• When importing a model from a SAS package file or from a PMML File, select
Open.

380 Chapter 24 • SAS Workflow Model Management Components

• When importing a model from SAS Metadata Repository, you select the file and
specify a name in the same window.

3. Enter a name for the model and click OK.

4. Click Close for the success message.

5. Repeat steps 1 through 4 for each model.

Display 24.2 Import Models Object Window After Models Are Imported

For more information about importing models using SAS Model Manager, see Chapter
8, “Importing Models,” on page 125.

Viewing Models
If the View Models component is associated with an activity, you can view a list of the
models. You can also view model information such as properties, model variables, score

Viewing Models 381

code, model files, notes, and history. By default, the Model Viewer component is
available from both the Import Models and also the Set Champion and Challenger
components. The Model Viewer enables you to modify properties, map model output
variables, edit score code, and add notes for the selected model. You can also view the
input variables, output variables, model files, and history of actions for the selected
model.

To view the information for a model, select a model from the list, and click .

The generic model viewer component can also be configured for an activity. This
component displays a list of the models in the model repository that are associated with
the version for which workflow process was created.

382 Chapter 24 • SAS Workflow Model Management Components

Setting Champion and Challenger Models
If the Set Champion and Challenger component is associated with an activity, you can
set a project champion model and challenger models.

Perform one or more of the following actions:

• Select a model from the list, and click to set the model as the project champion

model.

Note: The Set Model Output Mapping window appears if you have not mapped
the model output variables to the project output variables. If there are model
input variables that are not defined as project input variables, you are prompted
to add the input variables. Click Yes to confirm. The model input variables are
copied to the project input variables. If project output variables are not defined,
the Select Project Output Variables window appears for you to select the
output variables. After you select the output variables, click OK.

• Select a model from the list, and click to flag a model as a challenger to the

project champion model.

Note: The Set Model Output Mapping window appears if you have not mapped
the model output variables to the project output variables. If there are model
input variables that are not defined as project input variables, you are prompted
to add the input variables. Click Yes to confirm. The model input variables are
copied to the project input variables.

• Select a model from the list, and click to clear a flagged challenger or champion
model.

• Select a model from the list and click to view the model information.

For more information about champion and challenger models, see Chapter 12,
“Deploying Models,” on page 215.

Setting Champion and Challenger Models 383

Publishing Models
You can publish champion and challenger models from the model repository to the SAS
Metadata Repository or to a database.

To publish models to the SAS Metadata Repository:

1. Select SAS Metadata Repository for the publish destination.

2. Select the models that you want to publish from the Models list.

3. Specify a publish name for each model.

Note: The default format of the publish name is configured by the SAS
administrator. You cannot modify the publish name for a champion model.

4. Select the location in the SAS Metadata Repository to publish the models.

5. Click Publish.

To publish models to a database:

1. Select the type of database for the publish destination.

384 Chapter 24 • SAS Workflow Model Management Components

2. Select a publish method.

3. Select the models that you want to publish from the Models list.

4. Specify a publish name for each model.

Note: The default format of the publish name is configured by the SAS
administrator.

5. (Optional) Select the replace scoring files that have the same publish name check
box. This option is available only for the SAS Embedded Process publish method.

6. Specify an identifier to add to the database target table for each model. The default
value is the project name. This option is available only for the SAS Embedded
Process publish method.

7. Specify the settings to connect to the database, and click More Options to specify
the processing options that should be used when publishing the models.

8. Click Publish.

Publishing Models 385

For more information about publishing models using SAS Model Manager, see Chapter
13, “Publishing Models,” on page 223.

Add, View, or Delete Attachments
If the Add Documents component is associated with an activity, you can add, view, or
delete attachments. The attachments are stored in the Documents folder that is located
within a project or version in the model repository.

Perform one of the following actions:

• Click to attach a file to the specified attach location.

• Click or double click the selected file to view the contents of the file.

• Click to delete an attachment.

Creating and Viewing Reports
If the Create and View Reports component is associated with an activity, you can create
reports and also view reports. The reports can be created by using the Workflow Console
as well as by using the New Report wizard in the SAS Model Manager client
application.

386 Chapter 24 • SAS Workflow Model Management Components

Here is an example of the Validate Models activity that uses this component.

To create a report:

1. Click and select a type of report. The New Report window appears.

2. Select an output type. The default is PDF.

3. Select a style for the report. When the SAS default option is selected, the default
style and themes are used when generating the report. For example, the SAS default
style for the HTML output type is HTMLBLUE.

4. From the list, select the models that you want to include in the report.

Creating and Viewing Reports 387

5. Specify a name and description if you do not want to use the default values.

6. Specify the report options for the selected report type. Some reports have additional
options that can be set. Click More options to view the additional report options.

Here is an example of the More Options window for the Probability of Default
Model Validation Report

7. Click Run Report. The new report is generated and appears in the default viewer for
the selected output type.

To view a report:

1. Select a type of report from the left navigation menu.

2. Right-click a report from the list and select Open to view the report.

Note: You can also view the SAS code and SAS log if the report is not displayed.

To view the SAS code or SAS log for a report, select a report from the list and click on
the icon in the Code or Log column.

For more information, see Chapter 10, “Validating Models Using Reports,” on page 179.

Viewing Performance Results
If the Model Performance Viewer component is associated with an activity, you can
view the performance of the project champion model through a series of charts. The
performance charts are generated using performance tasks in the SAS Model Manager
client application. Select a type of report from the left navigation menu to view the
performance charts.

388 Chapter 24 • SAS Workflow Model Management Components

For more information, see Chapter 15, “What is Performance Monitoring?,” on page
251.

Viewing All Model Management Components
The Utility component consists of all the model management components. You can
associate the Utility component with an activity so that you can perform administrative
tasks or review all of the content that is available for a workflow without having to step
through multiple activities. To switch between the model management tasks select a link
from the object window navigation bar.

Viewing All Model Management Components 389

390 Chapter 24 • SAS Workflow Model Management Components

Part 8

Appendixes

Appendix 1
Query Utility . 393

Appendix 2
SAS Model Manager Access Macros . 401

Appendix 3
SAS Model Manager Macro Variables . 441

Appendix 4
Macros for Registering Models to the SAS Metadata Repository . 449

Appendix 5
Macros for Adding Folders, Projects, Versions,
and Setting Properties . 459

Appendix 6
Macros for Generating Score Code . 473

Appendix 7
Properties . 503

Appendix 8
SAS Model Manager R Model Support . 519

Appendix 9
Statistical Measures Used in Basel II Reports 527

Appendix 10
Report and Performance Monitoring Examples 535

391

392

Appendix 1

Query Utility

Overview of the Query Utility . 393

Search for Models . 394

Search By Using a UUID . 396

Search Life Cycles for Tasks Assigned to Users . 398

Overview of the Query Utility
Using the Query utility, you can search for models based on certain criteria, SAS Model
Manager project, version or model components, and tasks that are assigned to users. You
can perform a query from an organizational folder, a project folder, or a version folder.

The Query utility has three tabs that you can use to enter search criteria, depending on
the type of search that you want to perform:

• Use the Model tab to search for models based on criteria such as name, model
algorithm, or variable name.

• Use the Component tab to search for project folders, version folders, or models
when you know the UUID of the component. This is helpful when a model is
published to a channel outside Model Manager. You can then use the UUID to
search for the model in SAS Model Manager.

• Use the Life Cycle tab to search for tasks that are assigned to users or tasks that
users are assigned to approve.

You begin a query in the Project Tree by selecting the MMRoot folder, an
organizational folder, a project, or a version. The Query utility searches the selected
folder and all subfolders and subcomponents. If you are searching for a model using the
Model tab, the values in the search criteria list boxes depend on what folder you select to
begin your search. A list box contains values for models in the selected folder and all
subfolders and subcomponents.

SAS Model Manager returns the search results in a table that is shown below the search
criteria. The Path column in the search Component and Life Cycle results table contains
a URL that you can use to determine the path to the component in the Project Tree. Here
is an example URL:

http://SMMserver:8808/SASContentServer/repository/default/ModelManager
/MMRoot/HomeEquity/2013Q1/Models/Model%201

393

MMRoot is the top node in the Project Tree. From the Project Tree, expand the project
folder HomeEquity, expand the version folder 2013Q1, and expand the Models folder.
Model 1 is in the Models folder.

If no results are found, SAS Model Manager issues a message that informs you that there
are no entries in the Project Tree for the search criteria.

The Path column for the Model results contains the model repository path (the SMM
Path system property) that you can use to determine the path to the model. Here is an
example model repository path:

//ModelManagerDefaultRepo/MMRoot/HomeEquity/2013Q1/Model/Model%201

You can find the model that is called Model 1 in the project HomeEquity, the version
2013Q1, and the Models folder.

To search the Project Tree, use the following instructions:

• “Search for Models” on page 394

• “Search By Using a UUID” on page 396

• “Search Life Cycles for Tasks Assigned to Users” on page 398

Search for Models
To search for models:

1. From the Project Tree, right-click MMRoot, an organizational folder, a project, or a
version, and select Query. The Query utility opens.

2. Enter the search criteria that are listed here along with their explanations.

Name Enter the name of a model.

Algorithm Select an algorithm from the list box. The list box lists all
algorithms for models that have been imported to SAS
Model Manager.

Input variables Select an input variable from the list box.

Target variables Select a target variable from the list box.

Modeler Enter the name of the person who imported the model.

User-defined
key

Enter a user-defined property name. If you specify a value in
this field, you must specify a value in the User-defined key
field.

User-defined
value

Enter a user-defined property value. If you specify a value in
this field, you must specify a value in the User-defined
value field.

T I P To deselect a value from a list box, select the blank line at the bottom of the
list.

394 Appendix 1 • Query Utility

3. Click Find.

The search results display the following information:

Column Description

Name Specifies the name of the model.

Path Specifies the SMM Path system property of the model in the
Project Tree. Use the path to locate the model in the Project Tree,
following the path from MMRoot. For example, using the path //
ModelManagerDefaultRepo/MMRoot/HomeEquity/2013Q1/
Model/Model%201, you can find the model Model 1 in the project
HomeEquity, the version 2013Q1, and the Models folder.

Algorithm Specifies the name of the algorithm, such as regression or logistic,
that is used by the model.

Search for Models 395

Column Description

Type Specifies one of the model function types:

• Analytical

• Classification

• Prediction

• Cluster

Modeler Specifies the user who created or imported the model, depending on
the model import method.

See Also
• “Search Life Cycles for Tasks Assigned to Users” on page 398

• “Search By Using a UUID” on page 396

Search By Using a UUID
To search for organizational folders, projects, versions, or models by using a UUID,
follow these steps:

1. From the Project Tree, right-click MMRoot, an organizational folder, a project
folder, or a version folder, and select Query. The Query utility opens.

2. Click the Component tab.

3. Enter the UUID. You can copy and paste the UUID into the UUID field.

396 Appendix 1 • Query Utility

4. Click Find. The Search Results appear below the UUID field.

The search results displays the following information :

Column Description

Name Specifies the name of the project, version, or model.

Component Type Specifies one of following component types:

Analytical Model
the component is an analytical model

Classification Model
the component is a classification model

Cluster Model
the component is a clustering or segmentation model

Model Group
the component is an organizational folder

Prediction Model
the component is a prediction model

Project
the component is a project

Version
the component is a version

Search By Using a UUID 397

Column Description

Path Specifies the URL of the component in the Project Tree. Use the
URL to locate the task in the Project Tree, following the path from
MMRoot. For example, using the URL http://SMMserver:8080/
SASContentServer/repository/default/ModelManager/MMRoot/
HomeEquity/2013Q1 you can find the version in the project
HomeEquity.

See Also
• “Search for Models” on page 394

• “Search Life Cycles for Tasks Assigned to Users” on page 398

Search Life Cycles for Tasks Assigned to Users
To search for tasks that are assigned to a user:

1. From the Project Tree, right-click MMRoot, an organizational folder, a project, or a
version, and select Query. The Query utility opens.

2. Click the Life Cycle tab.

3. Click the User field and select a user from the list box.

398 Appendix 1 • Query Utility

4. Click Find.

The search results display tasks in the Assignee results that are assigned to the user and
tasks in the Approver results that the user is assigned to approve. The Assignee query
results return only the tasks that have a status of Started or Not Started. Results that
have a status of Complete or Approved are not returned. The Approver query results
return tasks that have a status of Started, Not Started, and Completed.

The search results display the following information for tasks where the user is
designated as an Assignee and an Approver:

Column Description

Name Specifies the name of the task.

Project Specifies the project name for which the task must be completed.

Version Specifies the version name for which the task must be completed.

Milestone Specifies the milestone for which the task must be completed.

Status Specifies the state of the task at the time of the query. Values for
Status can be Not Started or Started.

Path Specifies the URL of the task in the Project Tree. Use the URL to
locate the task in the Project Tree, following the path from
MMRoot. For example, using the URL http://SMMserver:8080/
SASContentServer/repository/default/ModelManager/MMRoot/
HomeEQ/2013Q1/Mortgages/Testing/Signoff, you can find the
user in the project HomeEQ, the version 2013Q1, and the life
cycle Mortgages.

See Also
• “Search for Models” on page 394

• “Search By Using a UUID” on page 396

Search Life Cycles for Tasks Assigned to Users 399

400 Appendix 1 • Query Utility

Appendix 2

SAS Model Manager Access
Macros

Overview of Access Macros . 401

Using the SAS Model Manager Access Macros . 402
Global Macro Variables . 402
Accessing the Macros . 404
Identifying SAS Model Manager Model Repository Objects 404
Identifying Files Used by Access Macros . 405
Required Tables . 405

Dictionary . 407
%MM_AddModelFile Macro . 407
%MM_GetModelFile Macro . 410
%MM_GetURL Macro . 414
%MM_Register Macro . 415
%MM_RegisterByFolder Macro . 432
%MM_CreateModelDataset Macro . 437

Overview of Access Macros
The SAS Model Manager access macros provide a way to use SAS code to perform
basic operations on a SAS Model Manager repository. The SAS Model Manager access
macros are a combination of SAS macros and Java libraries. The SAS Model Manager
access macros and Java libraries are delivered with the SAS Model Manager software.

Here is a list of the SAS Model Manager access macros:

• %MM_AddModelFile adds a model component file to a model that is already
registered with SAS Model Manager.

• %MM_GetModelFile retrieves a model from the model repository and saves it to a
specified destination.

• %MM_GetURL retrieves the SAS Model Manager path to an object in the model
repository and saves it in the global macro variable _MM_URL.

• %MM_Register registers a model in the SAS Model Manager model repository. You
can use the %MM_Register macro in the same SAS program that you create models
using SAS Enterprise Miner to register the model for use with SAS Model Manager.

• %MM_RegisterByFolder registers multiple models simultaneously to the SAS
Model Manager model repository. Model files for a single model are contained in a
subdirectory, and all subdirectories have the same parent directory.

401

• %MM_CreateModelDataset creates a data set that contains information for all
models in a specified folder. Model information can be retrieved in a data set for all
models in MMRoot, an organizational folder, a project, a version, and a single
model.

Note: The macros are in the modelmgr.sas7bcat file. The location of this file for
Windows is \sasintalldir\SASFoundation\9.4\mmcommon\sashelp.
The default value for sasinstalldir in Windows is C:\Program Files\SAS.
The location of this file for UNIX is /sasinstalldir/SASFoundation/9.4/
sashelp. The default value for sasinstalldir in UNIX is /usr/local/SASHome.

To use the SAS Model Manager access macros, you can structure your SAS program as
follows:

• Use the SAS Model Manager global macro variables to define the SAS Model
Manager Service Registry URL and to define a valid SAS Model Manager user and
password.

• Create a fileref to the SAS Model Manager access macro catalog and include that
fileref, using the %INCLUDE statement.

• Set up librefs to access the necessary directories and filerefs to access the necessary
files.

• Set up macro variables as necessary.

• Execute the macro.

• Check for successful completion.

Using the SAS Model Manager Access Macros

Global Macro Variables
Your SAS program and SAS Model Manager use global macro variables to pass
information about the SAS environment and the SAS Model Manager model repository
to the access macros. Some macros set these global macro variables. You can set any of
these global macro variables in your SAS program. At the end of each macro execution,
the global macro variable _MM_RC is set to a number that indicates either that the
macro executed successfully or that there was an error.

Here is a description of the SAS Model Manager global macro variables:

_MM_CId
contains the name of the current SAS Model Manager object identifier. _MM_CId is
either the URL or the SAS Model Manager path to the object in the model
repository. You can use the %MM_GetURL to obtain a URL for any object in the
SAS Model Manager repository.

The %MM_Register macro sets _MM_CId to contain the SAS Model Manager
identifier for the registered model. The %MM_AddModelFile macros sets
_MM_CId to the SAS Model Manager identifier for the model to which the file was
added.

_MM_Password
contains a password for the SAS Model Manager user. If you do not encode the
password using the PWENCODE procedure, the password is printed in the SAS log.

See: “Encoding SAS Model Manager User Passwords” on page 300

402 Appendix 2 • SAS Model Manager Access Macros

_MM_RC
contains one of the following return codes after processing a SAS Model Manager
macro:

_MM_RC

Return Value

Access Macro

Status

0 All OK

1 Macro parameter error

2 Macro parameter processing error

3 Repository login failed

4 Repository operation failed

5 Generic critical Java error

6 Generic DATA step error

_MM_ResourceURL
contains the URL of the Resources folder. the _MM_Resource URL is set by the
%MM_GetURL macro when the macro returns a version URL in the _MM_URL
global macro variable.

_MM_Service_Registry_URL
contains the URL for a SAS environment file that defines the SAS environment.

_MM_URL
contains a URL for a SAS Model Manager object. The %MM_GetURL macro
returns a URL in the _MM_URL global macro variable.

_MM_User
contains the name of a SAS Model Manager user on the server that is specified by
the _MM_MulticastAddress global macro variable.

Default: the value of SAS automatic macro variable &SYSUSERID.

When you use the access macros, the macros need to know the following information:

• • how to access the SAS environment XML file and environment name

• a user and password for processing requests to SAS Model Manager

• the URL or path to the SAS Model Manager repository

Make sure that your SAS program defines values for these macro variables when you
use the access macros:

• _MM_Service_Registry_URL

• _MM_User

• _MM_Password

To secure the Model Manager user password, encode the password using the
PWENCODE procedure and save it in a file on the network. You can then use a fileref
to access the password file and a DATA step to assign the password to the

Using the SAS Model Manager Access Macros 403

_MM_Password global macro variable. For more information, see “Encoding SAS
Model Manager User Passwords” on page 300.

For a description of these macro variables as well as their default values, see “Global
Macro Variables” on page 402.

Here is a code example that uses the four macro variables to describe how to the access
to the server for the Web Infrastructure Platform.

Filename pwfile “my-network-drive\pwfile”;

%let _MM_Service_Registry_URL=
 %STR(http://abcdef.sas.com:7980/SASWIPClientAccess/remote/ServiceRegistry);
%let _MM_User = miller;
data _null_;
 infile pwfile obs=1 length=l;
 input @;
 input @1 line $varying1024. l;
 call symput('_MM_Password',substr(line,1,l));
run;

See Also
Appendix 3, “SAS Model Manager Macro Variables,” on page 441

Accessing the Macros
Before you can use the access macros, your SAS program must access the catalog where
the macros are located, and load the macros into memory. Here is example code to do
this:

/***/
/* Specify the macro code location */
/***/

Filename MMAccess catalog "sashelp.modelmgr.accessmacros.source";

/***/
/* Load the Access macros */
/***/

%include MMAccess;

Identifying SAS Model Manager Model Repository Objects
The access macros use a SAS Model Manager identifier to specify a unique object such
as the version or a model, in the SAS Model Manager model repository. The identifier
can be in the form of a Universal Unique Identifier (UUID) or a SAS Model Manager
path.

• A UUID is a case sensitive, 36-character string that uniquely identifies the repository
object. An example UUID is cca1ab08-0a28-0e97-0051-0e3991080867.

If you need to find the UUID or the exact SAS Model Manager path for an object,
you can look it up in the SAS Model Manager Project Tree. Select the object and
then expand System Properties in the Properties view. The UUID and path values
are listed there.

404 Appendix 2 • SAS Model Manager Access Macros

• The format for a SAS Model Manager path is //repositoryID/MMRoot/folder/
project/version/Models/model.

The name of repositoryID is defined during installation. The names of the folder,
project, version, and model that follow in the path are user-defined. SAS Model
Manager path specifications always use the forward slash character (/) as a separator.

For example, a version path might look like //MMModelRepository/MMRoot/
HomeEquity/HMEQ/2013.

You use the _MM_CId global macro variable to pass a model repository identifier to an
access macro. For more information, see “_MM_CId” on page 402.

Identifying Files Used by Access Macros
All SAS Model Manager access macros that accept SAS file references require the file
references to point to a single physical file. File references in the form libref.filename
must resolve to a single physical file. Specific logical library references in the form
libref must resolve to a directory or a folder.

Concatenated library references cannot be used.

Here is a list of libraries to which you must assign a libref in your SAS programs:

• the directory that contains your model files

• the directory that contains the training data

• the directory that contains your input, output, and target data sets

SAS Model Manager macros use the libref SMMMODEL to access model component
files, as in this example:

libname smmmodel "c:\myModel\HMEQ\scorecode";

You can define the libref SMMMODEL at the beginning of your SAS program and use
it to access model component files in any of the SAS Model Manager access macros that
your program executes.

Here is a list of files that you can identify with a fileref in your SAS programs:

• a catalog fileref to the SAS Model Manager access macro code

• the source path and filename for a single file to be registered by the
%MM_AddModelFile macro

• the source path and filename for a SAS Enterprise Miner package file to be
registered by the %MM_Register macro

• the destination path and filename for the %MM_GetModelFile macro

Required Tables
Whether you use the SAS Model Manager window or the access macros, SAS Model
Manager must know the model input variables, the output variables, and the target
variables to register a model. SAS Model Manager uses an XML file to describe each of
these types of files. Before you can register a SAS code model, you must create a SAS
data set that represents the input, output, and target variables:

• The model input table contains the variables that are used as input by the model.
During model registration, SAS Model Manager uses this table to create the
inputvar.xml file.

Using the SAS Model Manager Access Macros 405

• The model output table is a table whose variables contain the model output values.
During model registration, SAS Model Manager uses this table to create the
outputvar.xml file.

• The model target variable table is a table whose one variable is the target variable
that is used in the training data. During model registration, SAS Model Manager uses
this file to create the targetvar.xml file.

Each of these tables can be a one-row table. The tables' purpose is to define and describe
the variables that are used by the model.

You can create each of these tables using the training data that you used to train your
model. The following example SAS program uses the training data to create all three
tables:

/**/
/* Set the location for the model tables */
/**/

libname hmeqtabl "c:\myModel\hmeq\tables";

/***/
/* DATA step to create the target variable table. */
/* Because there is only one target variable, keep only */
/* that variable. */
/***/

data hmeqtabl.target;
 set hmeqtabl.training(obs=1);
 keep bad;
run;

/***/
/* DATA step to create the input variable table. */
/* Keep only the variables used for input by the model. */
/***/

data hmeqtabl.invars;
 set hmeqtabl.training (obs=1);
 keep debtinc delinq derog job loan mortdue ninq reason value yoj;
run;

/***/
/* DATA step to create the output variable table. */
/* Keep only the variables used for output by the model.*/
/* Include the score code to get the output variables. */
/***/

data hmeqtabl.outvars;
 set hmeqtabl.training;
 %include "c:\myModel]hmeq]score.sas"
 keep f_bad i_bad p_0 p_1;
run;

406 Appendix 2 • SAS Model Manager Access Macros

Dictionary

%MM_AddModelFile Macro
Add model component files to an existing SAS Model Manager model.

Syntax
%MM_AddModelFile (

ModelId=path-to-model,
SASDataFile=path-to-SAS-file | SASCatalog=path-to-SAS-catalog | TextFile=path-to-text-file |

BinaryFile=path-to-binary-file
<, Name=alternateFileName><>
, Trace=OFF | ON

);

Arguments
ModelId=path-to-model

specifies a SAS Model Manager identifier of the model in the SAS Model Manager
repository. The identifier specifies the location in the SAS Model Manager
repository where the file is to be added. path-to-model can be either a SAS Model
Manager UUID or a SAS Model Manager path. ModelId is a required argument. The
default value is the value of the _MM_CId macro variable.

Examples ModelId=8904daa1-0a29-0c76-011a-f7bb587be79f

ModelId=//ModelManagerDefaultRepo/MMRoot/DDHMEQ/
HomeEquity/2013/Models/HMEQ%20Loan%20Project

SASDataFile=path-to-SAS-file
specifies the path to a SAS data set to add to a model in the SAS Model Manager
repository. path-to-SAS-file must be a two-level path in the form libref.filename.

Example SASDataFile=mysascode.hmeqloan

SASCatalog=path-to-SAS-catalog
specifies the path to one or more SAS code model component files to add to a model
in the SAS Model Manager repository. path-to-SAS-catalog must be a two-level path
in the form libref.catalog. Use the SASCatalog argument to add the catalog to a
model.

Example SASCatalog=mylib.modelinput

TextFile=path-to-text-file
specifies the path to a SAS code model component file that is an ASCII text file.
path-to-text-file is a one-level SAS name to a model component file.

Example TextFile=inputxml

%MM_AddModelFile Macro 407

BinaryFile=path-to-binary-file
specifies the path to a SAS code model component file that is a binary file. path-to-
binary-file is a one-level SAS name to a model component file that is not a text file.

Example BinaryFile=gainscsv

Name=alternateFileName
specifies a name for the file that you are adding. Use the Name argument when your
model component filename does not follow the SAS Model Manager model
component file naming convention that is specified in the model's template file or
your model requires a file to have a particular filename. If Name is not specified, the
filename that is registered is the name of the file.

Example Name=score.sas

Trace=ON | OFF
specifies whether to supply verbose trace messages to the SAS log.

Default OFF

Example Trace=on

Details
For models that require model component files other than the score code, you can use
the %MM_AddModelFile macro to add model component files to a registered model,
one file at a time. All files that are added using the %MM_AddModelFile macro are
placed in the SAS Model Manager repository. After files have been added, you can view
the files in the model folder in the Project Tree.

The %MM_AddModelFile macro supports two types of files, text and binary. Text files
are ASCII files that contain character data. Binary files are files created by an
application in a format specific to that application. If you are adding a text file, you must
use the TextFile argument to specify the file. To avoid any unintentional character
translations, all non-text files should be added using the BinaryFile argument.

SAS data sets and SAS catalogs are both binary files. Instead of using the BinaryFile
argument to add SAS files, you can use the SASDataFile and SASCatalog arguments
respectively to add files using the SAS two-level references libref.filename or
libref.catalog. The TextFile and BinaryFile arguments require a single SAS filename
that can be a fileref.

The ModelId argument defaults to the value of the global variable _MM_CId. For
example, after a call to the %MM_Register macro, the _MM_CId variable is set to the
identifier for the registered model. In this case, you can use the %MM_AddModelFile
macro to add additional component files to your model without having to explicitly
specify the ModelId argument.

When you use the %MM_AddModelFile macro to add a component file to your SAS
Model Manager model, the name of the added component file remains unchanged by
default. If you need to change the name of the component file when you save it to a SAS
Model Manager model, you can use the Name argument to specify the new component
filename. Whenever possible, you should try to follow the component file naming
conventions that are specified in the model's template file. When you use the model
template file naming conventions, you are less likely to be confused about filenames.

408 Appendix 2 • SAS Model Manager Access Macros

Example
/**/
/* Adding a file to a registered model. */
/***/

Options NOmlogic NOmprint NOspool;

/***/
/* Get the SAS Model Manager macro code. */
/***/

Filename MMAccess catalog 'SASHELP.modelmgr.AccessMacros.source';
%include MMAccess;

/* Fileref to the encoded password */

FILENAME pwfile 'my-network-path\pwfile';
/***/
/* Set the SAS WIP Server variables. */
/***/

%let _MM_Service_Registry_URL=
 %STR(http://abcdef.sas.com:7980/SASWIPClientAccess/remote/ServiceRegistry);
%let _MM_User=sasdemo;
data _null_;
 infile pwfile obs=1 length=l;
 input @;
 input @1 line $varying1024. l;
 call symput('_MM_Password',substr(line,1,l));
run;

/***/
/* A LIBNAME for a table. */
/***/

LIBNAME mtbls 'c:\mysascode';

/***/
/* Set to detect failure in case macro load fails */
/* and add the input data source. */
/***/

%let _MM_RC= -1;

%MM_AddModelFile(
 ModelId=
 //ModelManagerRepo/MMRoot/HomeEquity/HMEQ/2013/hmeqDecTree1,
 Name=modelinput.sas7bdat,
 SASDataFile=mtbls.myInputVariables,
 Trace=Off
);

/***/
/* A FILENAME for a text file. */
/***/

%MM_AddModelFile Macro 409

FILENAME tcode 'c:\myModel\inputvar.xml';

/***/
/* Set to detect failure in case macro load fails */
/* and add the xml file for the input data source */
/***/

%let _MM_RC= -1;

%MM_AddModelFile(
 ModelId=
 //ModelManagerRepo/MMRoot/HomeEquity/HMEQ/2013/hmeqDecTree1,
 TextFile=tcode,
 Trace=on);

%MM_GetModelFile Macro
Access files in the SAS Model Manager repository. This macro copies the specified model file to the
specified location on a local or network computer.

Syntax
%MM_GetModelFile (

ModelId=path-to-model | VersionId=path-to-version | ProjectId=path-to-project,
SASDataFile=path-to-SAS-data-file | SASCatalog=path-to-SAS-catalog |

TextFile=path-to-text-file | BinaryFile=path-to-binary-file
<, Name=alternateFileName>
<, Trace=ON | OFF>

);

Arguments
ModelId=path-to-model

specifies a SAS Model Manager identifier to the model in the SAS Model Manager
repository. path-to-model can be either a SAS Model Manager UUID or a SAS
Model Manager path that describes the location of the specific model. ModelId is a
required argument. The default value is the value of the _MM_CId macro variable.

Examples ModelId=b2341a42-0a29-0c76-011a-f7bb7bc4f1e9

ModelId=//ModelManagerDefaultRepo/MMRoot/DDHMEQ/
HomeEquity/2013/Models/HMEQ%20Loan%20Project

VersionId
specifies a SAS Model Manager identifier of the version folder to where a champion
model resides in the SAS Model Manager repository. path-to-version can be either a
SAS Model Manager UUID or a SAS Model Manager path that describes the
location of the version.

Examples VersionId=b23327cb-0a29-0c76-011a-f7bb3d790340

410 Appendix 2 • SAS Model Manager Access Macros

VersionId=//ModelManagerDefaultRepo/MMRoot/DDHMEQ/
HomeEquity/2013

ProjectId
specifies a SAS Model Manager identifier of the project folder. The identifier
specifies the location where the champion model under the default version resides in
the SAS Model Manager repository. path-to-project can be either a SAS Model
Manager UUID or a SAS Model Manager path that describes the location of the
project.

Examples VersionId=b232d766-0a29-0c76-011a-f7bb50921b42

VersionId=//ModelManagerDefaultRepo/MMRoot/DDHMEQ/
HomeEquity

SASDataFile=path-to-SAS-file
specifies the destination path for a SAS data set. path-to-SAS-file must be a two-level
path in the form libref.filename.

Example SASDataFile=mylib.modelinput

SASCatalog=path-to-SAS-catalog
specifies the SAS catalog to store a SAS catalog file. path-to-SAS-catalog must be a
two-level path in the form libref.catalog.

Example SASCatalog=mylib.format

TextFile=path-to-text-file
specifies the destination path for a component file that is an ASCII text file. path-to-
text-file is a one-level path to a model component file. The path can be a fileref.

Example TextFile=myfileref

BinaryFile=path-to-binary-file
specifies the destination path for a model component file that is a binary file. path-to-
binary-file is a one-level pathname to a model component file that is not a text file.
The pathname can be a fileref.

Example BinaryFile=myfileref

Name=alternateFileName
specifies a name for the model component file that you are retrieving. Use the Name
argument when the name of the destination file does not match the name of the file
in the SAS Model Manager repository. The Name argument is the filename within
the SAS Model Manager repository. If Name is not specified, the filename that is
registered in the SAS Model Manager repository is the name of the file.

Example Name=score.sas

Trace=ON | OFF
specifies whether to supply verbose trace messages to the SAS log.

Default OFF

Example Trace=on

%MM_GetModelFile Macro 411

Details
Use the %MM_GetModelFile macro to retrieve a component file for a model that has
been registered in the SAS Model Manager repository. You can retrieve a component
file for any model by specifying the repository location of the model, or you can retrieve
a component file for a champion model by specifying the version or project location in
the SAS Model Manager repository.

The %MM_GetModelFile macro supports two types of files, text and binary files. Text
files are ASCII files that contain character data. Binary files are files that are created by
an application in a format that is specific to that application. If you are retrieving a text
file, you must use the TextFile argument to specify the file. To avoid any unintentional
character translations, all non-text files should be retrieved by using the BinaryFile
argument.

SAS data files and SAS catalogs are binary files. Instead of using the BinaryFile
argument to retrieve model component files to store as a SAS file or in a SAS catalog,
you can use the SASDataFile and SASCatalog arguments respectively to specify the
SAS location to store the file. The TextFile and BinaryFile arguments require a single
SAS filename.

You can use the optional Name argument if you want to save the model component file
with a different name from the name within the SAS Model Manager repository.

After you use the %MM_GetModelFile macro to copy a model component file to its
new location, you can use the model component file for any purpose. For example, a
simple application might use the %MM_GetModelFile macro to copy a registered
model's score code file to the SAS WORK library. After the score code is copied to
WORK, you can write SAS code that includes the score code in a SAS DATA step and
is executed for experimental purposes.

If the destination file argument or the two-level SAS library reference name that is
invoked in the macro uses the original filename, you do not need to specify the Name
argument. In other words, the macro can use the SAS logical names to determine the
name of the file in the model hierarchy. If the name of the destination file needs to be
different from the name of the original file that was copied, use the Name argument to
specify the new name for the model component file.

Example

/**/
/* Get the score code from a registered model and run */
/* it. */
/**/

 Options NOmlogic NOmprint NOspool;

/***/
/* Get the SAS Model Manager macro code. */
/***/

 FILENAME MMAccess catalog 'sashelp.modelmgr.accessmacros.source';
 %include MMAccess;

/* Fileref to the encoded password */

FILENAME pwfile 'my-network-path\pwfile';

412 Appendix 2 • SAS Model Manager Access Macros

/***/
/* Set the SAS WIP Server variables. */
/***/

 %let _MM_Service_Registry_URL=
 %STR(http://abcdef.sas.com:7980/SASWIPClientAccess/remote/ServiceRegistry);
 %let _MM_User = miller;
 data _null_;
 infile pwfile obs=1 length=l;
 input @;
 input @1 line $varying1024. l;
 call symput('_MM_Password',substr(line,1,l));
run;

/***/
/* Specify the model component file name and */
/* destination. */
/***/

%let WorkPath = c:\myProject\2013;
 FILENAME dest '&WorkPath.\score.sas';

/***/
/* Set to detect failure in case macro load fails. */
/***/

%let _MM_RC = -1;

/***/
/* Get score code. */
/***/

%MM_GetModelFile(ModelId=//ModelManagerRepo/MMRoot/HomeEquity/HMEQ/2013/
DecisionTree, TextFile=dest);

/***/
/* Display SAS Model Manager set macro variables. */
/***/

Options nosource;
%PUT _MM_RC = &_MM_RC;
%PUT _MM_CId = &_MM_CId;
Options source;

/***/
/* Run score code. Sepcify the LIBNAME input path. */
/***/

LIBNAME input 'c:\mysascode\2013\DTree';
DATA score;
 set input.dTreeInp;
 %include dest;
run;

%MM_GetModelFile Macro 413

%MM_GetURL Macro
Translates a specified SAS Model Manager UUID to a URL-style path address and sets the URL as the
value of the _MM_URL and _MM_ResourcesURL macro variables.

Syntax
%MM_GetURL(UUID=UUID, <Trace=ON | OFF>);

Arguments
UUID=UUID

specifies the UUID of the object for which an URL is desired. A SAS Model
Manager UUID is a 36-character string that identifies a single object in the SAS
Model Manager model repository. The UUID argument is required.

Example UUID=cca1ab08-0a28-0e97-0051-0e3991080867

Trace=ON | OFF
specifies whether to supply verbose trace messages to the SAS log.

Default OFF

Example Trace=on

Details
The %MM_GetURL macro sets the value of the global macro variable _MM_URL to
the URL of the specified SAS Model UUID.

If the UUId argument specifies a SAS Model Manager version or model, then the macro
sets the global macro variable _MM_ResourcesURL to the URL of that object's
associated Resources folder.

The %MM_GetURL macro does not set a value for the global macro variable,
_MM_CID.

Example
/***/
/* Get the URL for the location of a model. */
/**/

Options nomlogic nomprint nospool;

/**/
/* Get the SAS Model Manager macro code. */
/**
/
FILENAME MMAccess catalog 'sashelp.modelmgr.accessmacros.source';
%include MMAccess;

/* Fileref to the encoded password */

414 Appendix 2 • SAS Model Manager Access Macros

FILENAME pwfile 'my-network-path\pwfile';

/***/
/* Set the SAS WIP Server variables. */
/***/

%let _MM_Service_Registry_URL=
 %STR(http://abcdef.sas.com:7980/SASWIPClientAccess/remote/ServiceRegistry);
%let _MM_User=miller;
data _null_;
 infile pwfile obs=1 length=l;
 input @;
 input @1 line $varying1024. l;
 call symput('_MM_Password',substr(line,1,l));
run;

/***/
/* Set to detect failure in case macro load fails */
/* and get the URL. */
/***/

%let _MM_RC= -1;

%let target=aef7a78e-0a28-0e97-01c0-b8a0e5ba15c7;
%MM_GetURL(UUid=&target,Trace=on);
%put _MM_URL=&_MM_URL;
%put _MM_ResourcesURL=&_MM_ResourcesURL;

%MM_Register Macro
Registers a model to an existing version in the SAS Model Manager model hierarchy.

%MM_Register Macro 415

Syntax
%MM_Register(

VersionId=destination-version-UUID,
ModelTemplate=model-template-name,
EMModelPackage=SAS-fileref-for-EM-package-file,
ScoreDataStepCode=fileref-to-data-step-fragment-score-code,
ScoreProgram=fileref-to-SAS-program-score-code,
InDataSamp=SAS-data-set-reference-to-input-data-sample-table,
InDataInfo=SAS-data-set-reference-tor-input-variable-metadata-table,
OutDataSamp=SAS-data-set-reference-for-output-data-sample-table,
OutDataInfo=SAS-data-set-reference-for-output-variable-metadata-table,
TargetDataSamp=SAS-data-set-reference-for-target-data-sample-table,
TargetDataInfo=SAS-data-set-reference-for-target-variable-metadata-table,
TrainingDataSamp=SAS-data-set-reference-for-training-data-sample-table,
LogisticOutModelTable=SAS-data-set-reference-for-PROC-LOGISTIC-outmodel-table,
ReportDir=path-to-EMREPORT-directory,
KeepInVars=keep-variable-list-for-InDataSamp,
KeepOutVars=keep-variable-list-for-OutDataSamp,
KeepTargetVars=keep-variable-list-for-TargetDataSamp,
ModelName=model-name,
Description=model-description,
Label=model-label,
Subject=model-subject,
Algorithm=model-algorithm,
Function=model-function,
Modeler=modeler-property,
Tool=model-tool-property,
ToolVersion=model-tool-version,
Trace=ON | OFF

);

Arguments
Note: If a %MM_Register macro parameter contains a semicolon, comma, apostrophe,

or quotation mark (; , ' ") character, you must add %bquote to the macro parameter.
For example, you could specify %MM_Register(..., Description=%bquote(My
Division's Model), ...);

VersionId=destination-version-UUID
specifies the SAS Model Manager UUID for an existing version in the SAS Model
Manager model repository.

Default the value of the _MM_CId macro variable

Note This argument is required.

ModelTemplate=model-template-name
specifies the SAS Model Manager model template that was used to register and
validate this model.

416 Appendix 2 • SAS Model Manager Access Macros

Defaults For models that were registered using the EMModelPackage parameter,
the template is set according to the information that is contained within
the named SAS Enterprise Miner model package file.

Models that were registered using the LogisticOutModelTable parameter
are registered with the Classification template.

All other registrations default to the AnalyticalModel template.

EMModelPackage=SAS-fileref-for-EM-package-file
specifies a SAS file reference that points to the Enterprise Miner model package file
(SPK) that contains the model to be registered.

Note The EMModelPackage argument is required unless you use the ReportDir
argument, the ScoreDataStepCode argument, or the ScoreProgram argument
to specify the model code filename.

ScoreDataStepCode=fileref-to-data-step-fragment-score-code
specifies a SAS file reference for the model score code that is a fragment of SAS
code that can be included in a DATA step. A DATA step fragment contains no
DATA, PROC, or RUN statements.

Note The ScoreDataStepCode argument is required unless you use the
EMModelPackage argument, the ReportDir argument, or the ScoreProgram
argument to specify the model code filename.

ScoreProgram=fileref-to-SAS-program-score-code
specifies a SAS file reference for a text file containing the SAS program, including
all step code that is required for successful execution of the model score code.

Note The ScoreProgram argument is required unless you use the EMModelPackage
argument, the ReportDir argument, or the ScoreDataStepCode argument to
specify the model code filename.

InDataSamp=SAS-data-set-reference-to-input-data-sample-table
specifies a two-level SAS data set reference in the form libref.filename that points to
a model input data sample table. The input data sample table is a table that contains
all model input variables and is used to create the inputvar.xml file that is required
for model registration. The input data sample table is not required for models that
were imported as SAS Enterprise Miner package files.

Note The InDataSamp argument is required unless you use the InDataInfo
argument.

Tip When you use the %MM_Register macro to register a model, the
inputvar.xml file should contain only input variables for the model that you
are registering. If the input data sample table includes variables that are not
used by the model, use the KeepInVars argument to remove these variables.
If no variables are specified by the KeepInVars argument, SAS filters the
target variables from the table specified by the InDataSamp argument.

See KeepInVars argument on page 419

InDataInfo=SAS-data-set-reference-for-input-variable-metadata-table
specifies a two-level SAS data set reference in the form libref.filename that points to
a model input variable metadata table. The input variable metadata table should be in
the form of a CONTENTS procedure output file, which has the columns NAME,

%MM_Register Macro 417

TYPE, LENGTH, LABEL, FORMAT, LEVEL, and ROLE. Each row of the table is
a variable. The model input variable metadata table is used to create the inputvar.xml
file that is required for model registration.

Note The InDataInfo argument must be specified unless you use the InDataSamp
argument.

Tip When you use the %MM_Register macro to register a model, the
inputvar.xml file should contain only variables for the model that you are
registering. If no variables are specified in the KeepInVars argument, SAS
filters the target variables from the table specified by the InDataInfo
argument.

See The CONTENTS Procedure in the Base SAS Procedures Guide

OutDataSamp=SAS-data-set-reference-for-output-data-sample-table
specifies a two-level SAS data set reference in the form libref.filename that points to
a model output data sample table. The output data sample table should contain all
variables that are created or modified by the model and is used to create the
outputvar.xml file that is required for model registration. The output data sample
table is not required for models that were imported as SAS Enterprise Miner package
files.

Interaction If the output data sample table includes variables that are created or
modified by the model, use the KeepOutVars argument to remove these
variables. If no variables are specified in the KeepOutVars argument,
SAS filters the input variables and the target variables from the table
that is specified by the OutDataSamp argument.

Note The OutDataSamp argument must be specified unless you use the
OutDataInfo argument.

See KeepOutVars argument on page 419

OutDataInfo=SAS-data-set-reference-for-output-variable-metadata-table
specifies a two-level SAS data set reference in the form libref.filename that points to
a model output variable metadata table. The output variable metadata table should
contain all of the variables that are created or modified by the model. The SAS file
should be in the form of the CONTENTS procedure output file, which has the
columns NAME, TYPE, LENGTH, LABEL, FORMAT, LEVEL, and ROLE. Each
row of the table contains a variable. The output variable metadata table is used to
create the outputvar.xml file that is required for model registration.

Interaction If no variables are specified by the KeepOutVars argument, SAS filters
the input variables and target variables from the table that is specified
by the OutDataInfo argument.

Note The OutDataInfo argument must be specified unless you use the
OutDataSamp argument.

TargetDataSamp=SAS-data-set-reference-for-target-data-sample-table
specifies a two-level SAS data set reference in the form libref.filename. The data set
reference points to a SAS table that contains the model target variable. The SAS file
should contain the variable that was used as the model target during training. The
SAS file is used to create the target variable information in the targetvar.xml file that
is used for SAS Model Manager model registration.

418 Appendix 2 • SAS Model Manager Access Macros

Tip If the target data sample table includes other variables that are not model target
variables, use the KeepTargetVars argument to remove these variables.

See KeepTargetVars argument on page 418

TargetDataInfo=SAS-data-set-reference-for-target-variable-metadata-table
specifies a two-level SAS data set reference in the form libref.filename. The data set
reference points to a SAS table that contains the model's target variable and its
metadata. The SAS file should be in the form of the CONTENTS procedure output
file, which has the columns NAME, TYPE, LENGTH, LABEL, FORMAT, LEVEL,
and ROLE. Each row of the table contains a variable. The metadata in the SAS file is
used to create the target variable information in the target.xml file that is used for
SAS Model Manager model registration.

TrainingDataSamp=SAS-data-set-reference-for-training-data-sample-table
specifies a two-level SAS data set reference in the form libref.filename. The data set
reference points to a SAS file that contains the training data that is used for a model
created by the LOGISTIC procedure. The training data sample must be an exact
sample of the training data that is submitted to the LOGISTIC procedure. When the
TrainingDataSamp argument and the LogisticOutModelTable argument are
specified, the %MM_Register macro can derive the input, output, and target
variables to create the inputvar.xml file, the ouputvar.xml file, and the targetvar.xml
file.

LogisticOutModelTable==SAS-data-set-reference-for-PROC-LOGISTIC-outmodel-
table

specifies a two-level SAS data set reference in the form libref.filename that points to
a LOGISTIC procedure fit table that was created by using the PROC LOGISTIC
OUTMODEL= statement, and is suitable for use with the PROC LOGISTIC
INMODEL statement. If the TrainingDataSamp argument is specified, then SAS
generates the input, output, and target variable metadata from this table. In this case,
the InDataSamp and the OutDataSamp arguments do not need to be specified.

Note This argument is required only if the model is created by the LOGISTIC
procedure using the OUTMODEL statement.

ReportDir=path-to-EMREPORT-directory
specifies an absolute file path to the EMREPORT directory that was created by the
SAS Enterprise Miner batch code. All SAS Enterprise Miner model packages that
are named miningResult.spk and that reside in a subdirectory of the EMREPORT
directory are registered to the target version. The ReportDir argument is valid only
for use with SAS Enterprise Miner model package files.

KeepInVars=keep-variable-list-for-InDataSamp
specifies a list of input variables or columns that are retained in the model's
inputvar.xml file. Only variables from the table that is specified by the InDataSamp
argument can be specified in this list.

See InDataSamp argument on page 417

KeepOutVars==keep-variable-list-for-OutDataSamp
specifies a list of variables or columns that are retained in the model's outputvar.xml
file. Only variables from the table that is specified by the OutDataSamp argument
can be specified in this list.

See OutDataSamp argument on page 418

%MM_Register Macro 419

KeepTargetVars=keep-variable-list-for-TargetDataSamp
specifies a list of variables or columns that are retained in the model's targetvar.xml
file. Only variables from the tables that are specified by the TargetDataSamp
argument can be specified in this list.

See TargetDataSamp argument on page 418

ModelName=model-name
specifies the name of the model, which will be used as the value of the model Model
Name property in the Project Tree.

Note This argument is required.

Description=model-description
specifies a description of the model, which will be used as the value of the model
Description property in the Project Tree.

Label=model-label
specifies a model's label, which will be used as the value for the model Model Label
property in the Project Tree. model-label is a text string that is used as the label for
the selected model in the model assessment charts that SAS Model Manager creates.
If model-label is not specified, SAS Model Manager uses the text string that is
specified for the ModelName argument.

Subject=model-subject
specifies the model's subject, which will be used as the value for the model Subject
property in the Project Tree. model-subject provide an additional description for a
model, such as a promotional or campaign code. This property is not tied to any
computational action by SAS Model Manager.

Algorithm=model-algorithm
specifies the model's computation algorithm, which will be used as the value of the
model Algorithm property in the Project Tree.

Example Algorithm=Decision Tree

Function=model-function
specifies the model's function class, which will be used as the value for the model
Function in the Project Tree. Valid values are Classification, Prediction,
Association, Clustering, Sequence, Forecasting, TextMining, Transformation, and
EMCreditScoring

Modeler=model-creator
specifies the SAS Model Manager user ID for the person who created the model,
which will be used as the value of the model Modeler property in the Project Tree.

Tool=model-tool
specifies the modeling tool that was used to create the model, and that will be used as
the value of the model Tool property in the Project Tree.

ToolVersion=model-tool-version
specifies the version of the tool that was used to create the model, and that will be
used as the value of the model Tool Version property in the Project Tree.

Trace=ON | OFF
specifies whether to supply verbose trace messages to the SAS log.

Default OFF

Example trace=on

420 Appendix 2 • SAS Model Manager Access Macros

Details
Overview of Using the %MM_Register Macro

The %MM_Register macro registers the following types of models to an existing version
in the SAS Model Managers repository:

• a model as a SAS Enterprise Miner package

• a SAS DATA step fragment

• a SAS program

In order to register a model using the %MM_Register macro, the macro must know the
model name, the version in which the model is registered, the model source code, the
model template, and the model input and output variables. If you register a SAS
Enterprise Miner model, this information is included in a SAS Enterprise Miner package
file (SPK file). When you register SAS code models, you must specify the model name,
version, and model score code, as well as the model input and output variables in the
respective macro arguments. Several %MM_Register macro arguments enable you to
provide values for model property values that appear in the Project Tree.

Registering SAS Enterprise Miner Models

Models that were created in SAS Enterprise Miner and saved as a SAS Enterprise Miner
SPK file contain all of the information that is needed to register a model in SAS Model
Manager. Registering SAS Enterprise Miner SPK files requires you to specify the
following arguments:

• ModelName

• VersionId

• EMModelPackage or ReportDir arguments

To register one SAS Enterprise Miner model, you can specify the EMMModelPackage
argument. To register multiple SAS Enterprise Miner models, you use the ReportDir
argument to name a directory whose subdirectories each contain a miningResult.spk file.
You can register multiple models simultaneously in SAS Model Manager.

SAS Enterprise Miner generates a program, EMBatch, to create multiple models in a
batch program. You can modify the EMBatch program to include the %MM_Register
macro, using the macro variable &EMREPORT as the value of the ReportDir argument.
By making this change to the EMBatch program, you can create and register SAS
Enterprise Miner models in a batch program for use in SAS Model Manager.

Registering SAS Code Models

When you register SAS code models, the information that is required is not contained in
an SPK file and you must specify the required information using the %MM_Register
arguments. Each model that you register must specify the model name, the model
version, the model template, the model code, and the SAS data sets that describe the
input, output, and target variables.

Use the following table for usage information about using the %MM_Register
arguments:

%MM_Register Macro 421

Required Information Argument Usage

model name ModelName Specify the name of the
model, which is used to
identify the model in the SAS
Model Manager model
repository.

version VersionId Specify the name of the
version in which the model is
registered.

model score code

Specify one of the following
arguments:

• ScoreDataStepCode

• ScoreProgram

• LogisticOutModelTable

ScoreDataStepCode Specify a fileref that points to
a file that contains score code
that is a DATA step fragment.
A DATA step fragment
contains no DATA, PROC, or
RUN statements.

When you specify the
ScoreDataStepCode
argument, your model input
and output variables can be
defined using one of the
following pairs of arguments:

• InDataSamp and
OutDataSamp

• InDataInfo and
OutDataInfo

• InDataSamp and
OutDataInfo

ScoreProgram Specify a LOGISTIC
procedure FIT table in the
form libref.filename that was
created by the PROC
LOGISTIC OUTMODEL=
statement. The FIT table can
be used as the value in a
PROC LOGISTIC
INMODEL= statement.

When you specify the
ScoreProgram argument, your
model input and output
variables can be defined using
one of the following pairs of
arguments:

• InDataSamp and
OutDataSamp

• InDataInfo and
OutDataInfo

422 Appendix 2 • SAS Model Manager Access Macros

Required Information Argument Usage

LogisticOutModelTable Specify a libref.filename that
points to a LOGISTIC
procedure FIT table that was
created by the PROC
LOGISTIC OUTMODEL=
statement, which can be used
as the value to a PROC
LOGISTIC INMODEL=
statement.

If the model does not contain
data transmission and you
specify a value for the
TrainingDataSamp argument,
SAS Model Manager uses the
training sample data set and
the FIT table to create the
model inputvar.xml file, the
outputvar.xml file, and the
targetvar.xml file.

If you do not specify a value
for the TrainingDataSamp
argument or if your program
transforms the model input
before running the
LOGISTICS procedure, you
must provide the model input
and output variables using the
InDataSamp or InDataInfo
argument, and the
OutDataSamp or OutDataInfo
argument.

%MM_Register Macro 423

Required Information Argument Usage

input variables InDataSamp Specify a fileref to a SAS data
set whose variables contain
the input variables that are
used by the SAS code model.
An example would be a data
set that was used for training
the model.

SAS Model Manager reads
one observation in the data set
that is specified by the
InDataSamp argument to
create the inputvar.xml file for
the model. The inputvar.xml
file defines the model input
variables and their metadata.

Based on the arguments that
were specified, the
%MM_Register macro uses
arguments to filter variables
from the data set to create the
inputvar.xml file.

• You can use the
KeepInVars argument to
specify the variables in the
InDataSamp data set that
are used to create the
inputvar.xml file.

• If you do not specify the
KeepInVars argument, you
can specify a value for the
TargetDataSamp argument
or the TargetDataInfo
argument to filter variables
based on this target data
sample data set.

For more information, see
KeepInVars argument on page
419.

424 Appendix 2 • SAS Model Manager Access Macros

Required Information Argument Usage

InDataInfo Specify a fileref that points to
a SAS data set whose
variables are NAME, TYPE,
LENGTH, LABEL,
FORMAT, LEVEL, and
ROLE. These variables define
metadata for the model input
variables. Each row in this
data set contains the metadata
for model input variables.
Such a table can be created by
the CONTENTS procedure.

SAS Model Manager reads
the data set that is specified by
the InDataInfo argument to
create the inputvar.xml file for
the model. The inputvar.xml
file defines the model input
variables and their metadata.

The variables in the data set
that are specified by the
TargetDataSamp argument or
the TargetDataInfo argument
are used as a filter to create
the inputvar.xml file.

%MM_Register Macro 425

Required Information Argument Usage

output variables OutDataSamp Specify a fileref that points to
a SAS data set whose
variables contain the output
variables that are created or
modified by the SAS code
model. An example is a data
set that was the scored output
of the model.

SAS Model Manager reads
the data set that is specified by
the OutDataSamp argument to
create the outputvar.xml file
for the model. The
outputvar.xml file defines the
model output variables and
their metadata.

Based on the arguments that
were specified, the
%MM_Register macro uses
arguments to filter variables
from the data set to create the
outputvar.xml file.

• You can use the
KeepOutVars argument to
specify the variables in the
OutDataSamp data set that
are used to create the
outputvar.xml file.

• If you do not specify the
KeepOutVars argument,
input variables and target
variables are filtered from
the output table.

For more information, see
KeepOutVars argument on
page 419.

426 Appendix 2 • SAS Model Manager Access Macros

Required Information Argument Usage

OutDataInfo Specify a fileref that points to
a SAS data set whose
variables are NAME, TYPE,
LENGTH, LABEL,
FORMAT, LEVEL, and
ROLE. These variables define
metadata for the model output
variables. Each row in this
data set contains the metadata
for model output variables.
Such a table can be created by
the CONTENTS procedure.

SAS Model Manager reads
the data set that is specified by
the OutDataInfo argument to
create the outputvar.xml file
for the model. The
outputvar.xml file defines the
model output variables and
their metadata. If you do not
specify the KeepOutVars
argument, input variables and
target variables are filtered
from the output table.

target variable TargetDataSamp Specify a fileref that points to
a SAS data set whose
variables contain the target
variable that is created or
modified by the SAS code
model. An example is a data
set that was the scored output
of the model.

SAS Model Manager reads
the data set that is specified by
the TargetDataSamp argument
to create the targetvar.xml file
for the model. The
targetvar.xml file defines the
target output variable and its
metadata.

You can use the
KeepTargetVars argument to
specify the variable in the
TargetDataSamp data set that
is used to create the
targetvar.xml file.

%MM_Register Macro 427

Required Information Argument Usage

TargetDataInfo Specify a fileref that points to
a SAS data set whose
variables are NAME, TYPE,
LENGTH, LABEL,
FORMAT, LEVEL, and
ROLE. These variables define
metadata for the model target
variable. A row in this data set
contains the metadata for the
model target variable. Such a
table can be created by the
CONTENTS procedure.

SAS Model Manager reads
the data set that is specified by
the TargetDataInfo argument
to create the targetvar.xml file
for the model. The
targetvar.xml file defines the
model target variable and its
metadata.

Use the %MM_AddModelMfile macro to register other model component files that are
not registered by the %MM_Register macro. For more information, see “Model
Templates” on page 131 and “%MM_AddModelFile Macro” on page 407.

Examples

Example 1: Registering a SAS Enterprise Miner Model Package
/***/
/* Registering a SAS Enterprise Miner Model Package. */
**/

Options NOmlogic NOmprint NOspool;

/***/
/* Access and load the SAS Model Manager macro code.*/
/***/

Filename MMAccess catalog 'SASHELP.modelmgr.AccessMacros.source';
%include MMAccess;

/* Fileref to the encoded password */

FILENAME pwfile 'my-network-path\pwfile';

/***/
/* Set SAS WIP Server variables. *********************/
/***/

%let _MM_Service_Registry_URL=
 %STR(http://abcdef.sas.com:7980/SASWIPClientAccess/remote/ServiceRegistry);
%let _MM_User = miller;

428 Appendix 2 • SAS Model Manager Access Macros

data _null_;
 infile pwfile obs=1 length=l;
 input @;
 input @1 line $varying1024. l;
 call symput('_MM_Password',substr(line,1,l));
run;

/***/
/* Specify the path for a SAS Enterprise */
/* Miner Model Package file miningResult.spk. */
/***/

FILENAME EMPak 'c:\myscorecode\EM\miningResult.spk';

/***/
/* Set to detect failure in case macro load fails */
/* and register the Enterprise Miner model. */
/***/

%let _MM_RC= -1;

%MM_Register(
 VersionId=
 //ModelManagerModelRepos/MMRoot/HomeEquity/HMEQ/2013,
 EMModelPackage=EMPak,
 ModelName=HMEQ,
 Description=Home Equity Score Code,
 Modeler=Titus Groan,
 Function=Reg,
 Tool=SAS Enterprise Miner,
 ToolVersion=v12.1,
 Subject= Loan,
 Trace=ON);

/***/
/* Display MM_Register defined variables. */
/***/

Options nosource;
%PUT _MM_RC = &_MM_RC;
%PUT _MM_CId = &_MM_CId;
Options source;

Example 2: Registering a Generic Model
/**/
/* Registering a generic model. */
/***/

Options nomlogic nomprint nospool;

/***/
/* Load and access the SAS Model Manager macro code. */
/***/

%MM_Register Macro 429

Filename MMAccess catalog 'SASHELP.modelmgr.AccessMacros.source';
%include MMAccess;

/* Fileref to the encoded password */

FILENAME pwfile 'my-network-path\pwfile';

/***/
/* Set the SAS WIP Server variables. */
/***/

%let _MM_Service_Registry_URL=
 %STR(http://abcdef.sas.com:7980/SASWIPClientAccess/remote/ServiceRegistry);
%let _MM_User = miller;
data _null_;
 infile pwfile obs=1 length=l;
 input @;
 input @1 line $varying1024. l;
 call symput('_MM_Password',substr(line,1,l));
run;

/**/
/* Specify the location of the files. */
/**/

LIBNAME modelTbl 'c:\myModel\tables';
FILENAME Code 'c:\myModel\scoreCode';

/**/
/* Set to detect failure in case macro load fails */
/* and register the model in SAS Model Manager */
/**/

%let _MM_RC= -1;

%MM_Register(
 VersionId=
 //ModelManagerModelRepos/MMRoot/HomeEquity/HMEQ/2013,
 ScoreDataStepCode=CODE,
 InDataSamp=modelTbl.HMEQInput,
 OutDataSamp=modelTbl.HMEQOutput,
 TargetDataSamp=modelTbl.HMEQTarget,
 ModelName=HMEQDTree,
 Description= Home Equity model Added with a SMM Macro,
 Trace=ON);

/**/
/* Display the SAS Model Manager defined variables. */
/**/

Options nosource;
%PUT _MM_RC = &_MM_RC;
%PUT _MM_CId = &_MM_CId;
Options source;

430 Appendix 2 • SAS Model Manager Access Macros

Example 3: Registering a PROC LOGISTIC OUTMODEL-Style Model
/***/
/* Registering a PROC LOGISTIC OUTMODEL-style model. */
/***/

Options nomlogic nomprint nospool;

/***/
/* Load and access the SAS Model Manager macro code. */
/***/

Filename MMAccess catalog 'SASHELP.modelmgr.AccessMacros.source';
%include MMAccess;

/* Fileref to the encoded password */

FILENAME pwfile 'my-network-path\pwfile';

/***/
/* Set the SAS WIP Server variables. */
/***/

%let _MM_Service_Registry_URL=
 %STR(http://abcdef.sas.com:7980/SASWIPClientAccess/remote/ServiceRegistry);
%let _MM_User = miller;
data _null_;
 infile pwfile obs=1 length=l;
 input @;
 input @1 line $varying1024. l;
 call symput('_MM_Password',substr(line,1,l));
run;

/***/
/* Specify the location of the files. */
/***/

LIBNAME modelTbl 'c:\myModel\Tables';
LIBNAME trainTbl 'c:\HomeEquity\Tables';
FILENAME ProgCode 'c:\myModel\scoreCode';

/***/
/* Set to detect failure in case macro load fails */
/* and register the model */
/***/

%let _MM_RC= -1;

%MM_Register(
 VersionId=
 //ModelManagerModelRepos/MMRoot/HomeEquity/HMEQ/2013,
 ScoreProgram=ProgCODE,
 LogisticOutModelTable=modelTbl.HMEQProcLogisticOutput,
 TrainingDataSamp=trainTbl.HMEQTraining,
 ModelName=HMEQLogisticOutmodel,
 Description=HMEQ Logistic OUTMODEL model added by macro,
 Trace=off);

%MM_Register Macro 431

/**/
/* Display the SAS Model Manager-defined variables. */
/**/

Options nosource;
%PUT _MM_RC = &_MM_RC;
%PUT _MM_CId = &_MM_CId;
Options source;

%MM_RegisterByFolder Macro
Register one model or multiple models simultaneously to the SAS Model Manager model repository from a
single directory. Each model is located in a subdirectory under the specified directory.

Syntax
%MM_RegisterByFolder (VersionId=path-to-version, ReportDir=path-to-folder,

<Trace=ON | OFF>);

Arguments
VersionId=path-to-version

specifies the SAS Model Manager UUID for an existing version in the SAS Model
Manager model repository where the models are registered. path-to-version can be
either a SAS Model Manager UUID or a SAS Model Manager version path.

Default the value of the _MM_CId macro variable

Note This argument is required.

Examples VersionId=b23327cb-0a29–0c76–011a-f7bb3d790340

VersionId=//ModelManagerDefaultRepo/MMRoot/DDHMEQ/
HomeEquity/2013

ReportDir=path-to-folder
specifies the directory that contains the models to be registered.

Note This argument is required.

Trace=ON | OFF
specifies whether to supply verbose trace messages to the SAS log.

Default OFF

Example Trace=on

Details
You can register SAS Enterprise Miner models and SAS code models using the
%MM_RegisterByFolder macro. The directory that you specify in the ReportDir
argument is the parent folder. Each model has its own subfolder under the parent folder.

432 Appendix 2 • SAS Model Manager Access Macros

Each type of model has requirements for the subfolder name and the contents of the
subfolder:

Table A2.1 Requirements for Registering Models in a Directory

Requirement Type Enterprise Miner Models SAS Code Models

Value of ReportDir a valid directory name a valid directory name

Model subdirectory name the subdirectory name must
be the name of the model

the subdirectory name must
be the name of the model

Contents of the subdirectory one file named
miningResult.spk

Required files:

• Modelmeta.xml

• ModelInput.sas7bdat

• Score.sas

Optional files:

• ModelOutput.sas7bdat

• ModelTarget.sas7bdat

Here is a description of the files that reside in the model subfolders:

miningResult.spk
The miningResult.spk file contains the model component files for a model that was
created in SAS Enterprise Miner.

Modelmeta.xml
The Modelmeta.xml file uses XML to define the model component files and values
for model properties.

ModelInput.sas7bdat
ModelInput.sas7bdat is a table that contains the model input variables. This file is
used to create the model inputvar.xml file.

Score.sas
Score.sas contains the SAS score code, which can be a DATA step fragment or a
SAS program.

ModelOutput.sas7bdat
ModelOutput.sas7bdat is a SAS data set that contains one or more model output
variables.

ModelTarget.sas7bdat
ModelTarget.sas7bdat is a SAS data set that contains only the target variable.

The Modelmeta.xml file is an XML file that is a mapping of SAS Model Manager
component filenames to user-defined component filenames. The <Model> element has
two main sections:

• <ModelMetadata> to define model properties

See: “Specific Properties for a Model” on page 514

• <FileList> to list the model component files. This list is comparable to the Files
section of the Local Files window, which you use to import SAS code models in the
SAS Model Manager window:

%MM_RegisterByFolder Macro 433

For a list of files for each model type, see: “Model Template Component Files” on
page 133.

Within the <File> element, put the name of the file that is defined in the model
template, in the <name> element. The contents of the <value> element is the
filename under the model directory.

Here is an example Modelmeta.xml file for a classification model named HMEQ:

<?xml version="1.0" encoding="utf-8" ?>
<Model>
 <ModelMetadata>
 <name>hmeq</name>
 <description>Home Equity Model</description>
 <label>HMEQ</label>
 <algorithm></algorithm>
 <function>classification</function>
 <modeler></modeler>
 <tool>SASProc</tool>
 <toolversion></toolversion>
 <subject></subject>
 <modelTemplate>Classification</ModelTemplate>
 <scoreCodeType>SAS Program</scoreCodeType>
 </ModelMetadata>
 <FileList>
 <File>

434 Appendix 2 • SAS Model Manager Access Macros

 <name>score.sas</name>
 <value>myScoreFile.sas</value>
 </File>
 <File>
 <name>modelinput.sas7bdat</name>
 <value>hmeqIn</value>
 </File>
 <File>
 <name>modeloutput.sas7bdat</name>
 <value>hmeqOut</value>
 </File>
 <File>
 <name>target.sas7bdat</name>
 <value>hmeqTar</value>
 </File>
 <File>
 <name>inputvar.xml</name>
 <value></value>
 </File>
 <File>
 <name>outputvar.xml</name>
 <value></value>
 </File>
 <File>
 <name>targetvar.xml</name>
 <value></value>
 </File>
 <File>
 <name>train.sas7bdat</name>
 <value></value>
 </File>
 <File>
 <name>Training.sas</name>
 <value></value>
 </File>
 <File>
 <name>Training.log</name>
 <value></value>
 </File>
 <File>
 <name>Training.lst</name>
 <value></value>
 </File>
 <File>
 <name>outest.sas7bdat</name>
 <value></value>
 </File>
 <File>
 <name>outmodel.sas7bdat</name>
 <value>om</value>
 </File>
 <File>
 <name>Output.spk</name>
 <value></value>
 </File>
 <File>

%MM_RegisterByFolder Macro 435

 <name>Format.sas7bcat</name>
 <value></value>
 </File>
 <File>
 <name>Dataprep.sas</name>
 <value></value>
 </File>
 <File>
 <name>Notes.txt</name>
 <value></value>
 </File>
 </FileList>
</Model>

Example
Example Code A2.1 Registering a Generic Model

/**/
/* Register a SAS Code Model By Folder */
/***/

Options nomlogic nomprint nospool;

/***/
/* Load and access the SAS Model Manager macro code. */
/***/

Filename MMAccess catalog 'SASHELP.modelmgr.AccessMacros.source';
%include MMAccess;

/* Fileref to the encoded password */

FILENAME pwfile 'my-network-path\pwfile';

/***/
/* Set the SAS WIP Server variables. */
/***/

%let _MM_Service_Registry_URL=
 %STR(http://abcdef.sas.com:7980/SASWIPClientAccess/remote/ServiceRegistry);
%let _MM_User = miller;
data _null_;
 infile pwfile obs=1 length=l;
 input @;
 input @1 line $varying1024. l;
 call symput('_MM_Password',substr(line,1,l));
run;

/**/
/* Specify the location of the folder. */
/**/

%let modelFolder = c:\myModel;
%let hmeq2013 = //ModelManagerModelRepos/MMRoot/HomeEquity/HMEQ/2013;

436 Appendix 2 • SAS Model Manager Access Macros

/**/
/* Set to detect failure in case macro load fails */
/* and register the models in SAS Model Manager. */
/**/

%let _MM_RC= -1;

%MM_RegisterByFolder(VersionId=&hmeq2013, ReportDir=&modelFolder, Trace=ON);

/**/
/* Display the SAS Model Manager-defined variables. */
/**/

Options nosource;
%PUT _MM_RC = &_MM_RC;
Options source;

%MM_CreateModelDataset Macro
Creates a data set that contains information about models. SAS Model Manager can provide information
for the champion mode or for all models that are in the specified model repository path. The repository path
that you specify can be MMRoot, an organizational folder, a project, a version, or a model. The data set
contains the information for models that exist under the specified path.

Syntax
%MM_CreateModelDataset (mDatasetName = name-of-data-set,

smmPath=folder-project-verion-or-model-path <isChampion=Y | N><, Trace=ON | OFF>);

Arguments
mDatasetName = name-of-data-set

specifies the name of the data set that the macro creates. The macro can be created in
a data set that you specify by using a two-level name in the form libref.filename.

Default mDatasetName=work.models

smmPath=folder-project-version-or-model-path
specifies the path from which to obtain the model data. If the path is a folder, the
data set contains model information for all models under that folder unless
isChampion=Y. If isChampion=Y, the information that is returned is for only the
champion model. If the path is a project, the data set contains model information for
models under that project. If the path is a version, the data set contains model
information for models under that version. If the path is a model, the data set
contains model information for only that model.

Default MMRoot

isChampion=Y | N
specifies whether the information that is returned contains information for only the
champion model or for all models.

Y specifies that the information that is returned is for only the champion
model.

%MM_CreateModelDataset Macro 437

N specifies that the information that is returned is for all models.

Default Y

Trace=ON | OFF
specifies whether to supply verbose trace messages to the SAS log.

Default OFF

Example Trace=on

Details
By default, the %MM_CreateModelDataset returns data only about the champion model.
If you want information about models other than the champion model, specify
isChampion=N. The data set that is created contains these variables:

Algorithm Name ScoreCodeType
CreationDate Owner Template
Description ProductionDate TemplateFileName
ExpirationDate ProjectName Tool
FolderName ProjectPath UserProperties
Function ProjectState VersionName
ModelLabel ProjectURL VersionState
ModelUUID ProjectUUID isChampion
Modeler PublishedDate isDefaultVersion
ModificationDate RetiredDate isPublished

Example
Example Code A2.2 Extracting Model Information

/***/
/* Create a data set to contain model information */
/***/

Options nomlogic nomprint nospool;

/***/
/* Load and access the SAS Model Manager macro code. */
/***/

Filename MMAccess catalog 'SASHELP.modelmgr.AccessMacros.source';
%include MMAccess;

/* Fileref to the encoded password */

FILENAME pwfile 'my-network-path\pwfile';

/***/
/* Set the SAS WIP Server variables. */
/***/

%let _MM_Service_Registry_URL=

438 Appendix 2 • SAS Model Manager Access Macros

 %STR(http://abcdef.sas.com:7980/SASWIPClientAccess/remote/ServiceRegistry);
%let _MM_User = miller;
data _null_;
 infile pwfile obs=1 length=l;
 input @;
 input @1 line $varying1024. l;
 call symput('_MM_Password',substr(line,1,l));
run;
/**/
/* Specify the location of the data set and model */
/* path. */
/**/

libname modelDS 'c:\myModel\ModelInfo';
%let hmeq2013 = //ModelManagerModelRepos/MMRoot/HomeEquity/HMEQ/2013;

/**/
/* Set to detect failure in case macro load fails */
/* and create the model data set. */
/**/

%let _MM_RC= -1;

%MM_CreateModelDataset(mDatasetName=modelDS.models,
 smmpath=//ModelManagerDefaultRepo/MMRoot/DDHMEQ/HMEQ/2013/Models/
 Regression,
 Trace=ON);

/**/
/* Display the SAS Model Manager-defined variables. */
/**/

Options nosource;
%PUT _MM_RC = &_MM_RC;
Options source;

%MM_CreateModelDataset Macro 439

440 Appendix 2 • SAS Model Manager Access Macros

Appendix 3

SAS Model Manager Macro
Variables

SAS Environment Macro Variables
The following table lists the macro variables that are used to set the SAS environment:

Macro Variable Name Description Example Value

_MM_Service_Registry_URL the URL for a SAS
environment that is
defined in a SAS
environment file.

%let
_MM_Service_Registry_URL=
%STR(http://abcdef.sas.com:
7980/SASWIPClientAccess/
remote/ServiceRegistry);

_MM_Password the password of the user
ID that is running the
macro

mdlmgrpw2

_MM_User the user ID of the user
that is running the
macro

mdlmgradmin

Scoring Task Macro Variables
The following table lists the macro variables that are used to run a scoring task:

Macro Variable Name Description Example Value

_MM_InputDS the location of the input
data source file

http://abc123.sas.com:8080/
SASContentServer/repository/
default/sasfolders/Shared Data/
Model Manager/MMLib/
HMEQ_SCORE_INPUT.sas7bda
t

_MM_InputLib the libref that is
associated with the
location of the input data
source file

inlib

441

Macro Variable Name Description Example Value

_MM_ModelID the UUID of the model 4622bdda-
ac1b-12d5-0196-021edec54347

_MM_OutputDS the location of the output
data source file

http://abc123.sas.com:8080/
SASContentServer/repository/
default/sasfolders/Shared Data/
Model Manager/MMLib/
HMEQ_SCORE_OUTPUT.sas7b
dat

_MM_OutputLib the libref that is
associated with the
location of the output data
source file

outdslib

_MM_Password the password of the user
ID that is running the
report

mdlmgrpw2

_MM_PerformanceDS the location of the
performance data source
file

http://abc123.sas.com:8080/
SASContentServer/repository/
default/sasfolders/Shared Data/
Model Manager/MMLib/
HMEQ_perf2013Q2.sas7bdat

_MM_PerformanceLib the libref that is
associated with the
location of the
performance data source
file

perflib

_MM_TaskDir the URL of the stored
scoring task

http://myserver.mycompany:
8080/SASContentServer/
repository/default/
ModelManager/MMRoot/
DDHMEQ/HMEQ/2013/Scoring

_MM_TestDS the location of the test
data source file

http://abc123.sas.com:8080/
SASContentServer/repository/
default/sasfolders/Shared Data/
Model Manager/MMLib/
HMEQ_TEST.sas7bdat

_MM_TestLib the libref that is
associated with the
location of the test source
file

testlib

_MM_TrainDS the location of the train
data source file

http://abc123.sas.com:8080/
SASContentServer/repository/
default/sasfolders/Shared Data/
Model Manager/MMLib/
HMEQ_train.sas7bdat

442 Appendix 3 • SAS Model Manager Macro Variables

Macro Variable Name Description Example Value

_MM_TrainLib the libref that is
associated with the
location of the train
source file

trainline

_MM_User the user ID of the user
that is running the report

mdlmgradmin

Validating Model Report Macro Variables
The following tables lists the macro variables that are used to create model comparison
reports, model profile reports, delta reports, dynamic lift reports, and user reports:

Macro Variable Name Description Example Value

_MM_LocationInfo the location information
for a model

/MMRoot/Mortgages/HMEQ/
2013

_MM_ModelFlag the value of the champion
model flag

0 - champion model

1 - challenger model

0

_MM_ModelLabel a label for a model reg

_MM_ModelName the name of the model Tree

_MM_Password the password of the user ID
that is running the report

mdlmgrpw2

_MM_PosteriorVa the model’s posterior
variable name

EM_EVENTPROBABILITY

_MM_ProjectName the name of the project HMEQ

_MM_ReportFormat the output format of the
generated report

html

_MM_ReportLib the libref for the Report
node

report

_MM_ResourcesLib the libref for the
Resources node

resources

_MM_SampleSize the size of a sample 1000

_MM_SampleSeed the sample seed 12345

_MM_SourceCodeType the type of score code SAS Program

SAS Model Manager Macro Variables 443

Macro Variable Name Description Example Value

_MM_TargetEvent the target event value 1

_MM_TargetVar the target variable name bad

_MM_TaskDir the URL of the stored
report

http://myserver.mycompany:
8080/SASContentServer/
repository/default/
ModelManager/MMRoot/
DDHMEQ/HMEQ/2013/
Reports

_MM_User the user ID of the user that
is running the report

mdlmgradmin

Performance Monitoring Report Macro Variables
The following table lists the macro variables that are used to create performance
monitoring reports:

Macro Variable Name Description Example Value

_MM_Agg_Mail specifies whether to
send aggregated mail
for performance
monitoring with
multiple data sources

Y or N

_MM_DateTime the time that the
performance task is to
run

1Sep2013:05:00:00

_MM_Hpds2_Flg enables high-
performance monitoring
if set it to 1, is used
with the
_MM_Hpdm_Performa
nce macro variable

1

_MM_Hpdm_Performance the configuration
settings for high-
performance monitoring

%nrstr(performance commit=10000
cpucount=ACTUAL
dataserver='tera2650' timeout=120
host='tms2650' install='/opt/v940/
laxno/TKGrid';)

_MM_ModelName the name of the
champion model

reg1

_MM_ModelID the UUID of the
champion model

7514d6e-
ac1b-12d5-01e4-878abeb04505

444 Appendix 3 • SAS Model Manager Macro Variables

Macro Variable Name Description Example Value

_MM_ModelLocalPath the location of the SAS
Work library in the SAS
Model Manager server

C:
\DOCUME~1\ADMINI~1\LOCAL
S~1\Temp\1\SAS Temporary Files
_TD2032_BRDVM0199_

_MM_Password the password of the user
ID that is running the
report

mdlmgrpw2

_MM_ProjectPath the network path to the
SAS Model Manager
project.

//ModelManagerDefaultRepo/
MMRoot/DDHMEQ/HMEQ

_MM_ProjectURLPath the URL to the SAS
Model Manager project

http://myserver.mycompany.com:
8080/SASContentServer/
repository/default/ModelManager/
MMRoot/HMEQ

_MM_ProjectUUID the project UUID 27514d6e-
ac1b-12d5-01e4-878abeb04505

_MM_Seg_Filter filters the performance
data for each sub-
project from the top
level performance
datasource by using this
macro variable.

%nrstr(Location='USA')

_MM_ScoreCodeType the type of score code SAS Program

_MM_VersionName the name of the default
version

2013

_MM_ReportDatasrc the project’s
performance data set

jun13perf.sas7bdat

_MM_PreCode one or more macro
variables that set values
to performance
variables

%let _MM_EventProbVar=score;
%let _MM_TargetVar=bad;

_MM_ResultURLPath the URL to the
version’s Resources
node

http://myserver.mycompany.com:
8080/SASContentServer/
repository/default/ModelManager/
MMRoot/HMEQ/2013/Resources

_MM_TimeLabel the label that is used in
reports to represent the
time period of the data
in the performance data
set

2013Q2

_MM_Trace indicates whether to
write a trace log

ON or OFF

SAS Model Manager Macro Variables 445

Macro Variable Name Description Example Value

_MM_User the user ID of the user
that is running the
report

mdlmgradmin

Dashboard Report Macro Variables
The following table lists the macro variables that are used to create dashboard reports:

Macro Variable Name Description Example Value

_MM_Dashboard_Dir the path to the directory
where the dashboard
report is stored

C:\SAS\Config\Lev1\AppData
\SASModelManager12.3\Dash
board

_MM_Force_Run_Dash_Reports whether to force running
the report and updating
all tables

Y or N

_MM_Password the password of the user
whose user ID is
running the report

mdlmgrpw2

_MM_ReportFormat the output format of the
generated report

html

_MM_Report_Style the style used in the
generated report

Seaside

_MM_SAS_Locale the SAS session locale en_US

_MM_User the user ID of the user
who is running the
report

mdlmgradmin

Model Retrain Report Macro Variables
The following table lists the macro variables that are used to retrain models:

Macro Variable Description Example Value

_MM_Hpds2_Flg enables high-
performance monitoring
if set it to 1, is used with
the
_MM_Hpdm_Performan
ce macro variable

1

446 Appendix 3 • SAS Model Manager Macro Variables

Macro Variable Description Example Value

_MM_Hpdm_Performance the configuration settings
for high-performance
monitoring

%nrstr(performance
commit=10000
cpucount=ACTUAL
dataserver='tera2650'
timeout=120 host='tms2650'
install='/opt/v940/laxno/
TKGrid';)

_MM_Password the password of the user
ID that is running the
report

mdlmgrpw2

_MM_Service_Registry_URL the URL for a SAS
environment that is
defined in a SAS
environment file.

%let
_MM_Service_Registry_URL=
%STR(http://abcdef.sas.com:
7980/SASWIPClientAccess/
remote/ServiceRegistry);

_MM_User the user ID of the user
who is running the report

mdlmgradmin

SAS Model Manager Macro Variables 447

448 Appendix 3 • SAS Model Manager Macro Variables

Appendix 4

Macros for Registering Models to
the SAS Metadata Repository

Using Macros to Register Models Not Created by SAS Enterprise Miner 449
About the %AA_Model_Register Macro . 449
Register a Model in the SAS Metadata Repository Using a

SAS/STAT Item Store . 451
Create a SAS Package File Using a SAS/STAT Item Store 451
Register a Model in the SAS Metadata Repository Using

Model Component Files . 452

Dictionary . 453
%AAModel Autocall Macro . 453
%AA_Model_Register Autocall Macro . 454

Using Macros to Register Models Not Created by
SAS Enterprise Miner

About the %AA_Model_Register Macro
You can use the %AAModel macro and the %AA_Model_Register macro to register the
SAS Metadata Repository models that are not created by SAS Enterprise Miner. These
models are created by SAS procedures and are supported by SAS Model Manager:

• SAS/STAT item store models

• High-performance models

• PROC COUNTREG models

• PROC SEVERITY models

If you do not want to register the model, you can create SAS package files (SPK)
without registering the model. After the model is registered to the SAS Metadata
Repository, you can import the model to SAS Model Manager using the import from
SAS Metadata Repository method. If you create an SPK file, you would import the
model using the import from SAS Model Package File method.

The %AAModel macro is an autocall macro that loads the %AA_Model_Register
macro. This macro must be submitted before you submit the %AA_Model_Register
macro.

You specify these types of arguments in the %AA_Model_Register macro:

449

• The model identification argument’s name. You must also describe a model and
identify a SAS/STAT item store.

• Action arguments specify whether to create an SPK file and whether to register the
model in the SAS Metadata Repository.

• You specify model component arguments when a SAS/STAT procedure does not
create an item store, if a model is created using high performance analytic
procedures, or if you are registering PROC COUNTREG or PROC SEVERITY
models. The model component arguments identify the train data set, the model level,
and the score code file. The arguments also identify whether the score code is only
DATA step code or a SAS program that includes DATA step code, macros,
procedures.

• The Lookup=Select option if a SAS/STAT model’s input variable includes non-
latin1 characters. This option ensures the generation of correct score code.

• Other options are available to add information to the model or to specify whether to
keep or delete the data sets that the macro produces.

For more information, see “%AA_Model_Register Autocall Macro” on page 454.

When you are registering the model to the SAS Metadata Repository, you can specify
the metadata server connection system options before you run the %AAModel and
%AAModel_Register macros. If these options are not specified, dialog boxes appear to
prompt you for the information. Here is a sample OPTIONS statement that specifies
these options:

options metaPort=8561
 metaServer=server-address
 metaRepository=Foundation
 metaUser=user-ID
 metaPass=password;

These SAS/STAT procedures can create an item store using the STORE statement:

Procedure Item Store Restrictions

GENMOD Training code is not included

GLIMMIX Training code is not included

GLM Training code is not included

GLMSELECT Fit statistics are not included

LOGISTIC None

MIXED Training code is not included

REG Training code or fit statistics are not included

If you want to retrain models using SAS Model Manager and if the procedure item store
does not include training code, you must create the SAS training code before you run the
%AA_Model_Register macro.

450 Appendix 4 • Macros for Registering Models to the SAS Metadata Repository

Note: Item store restrictions have not been evaluated for other SAS/STAT procedures
that have a STORE statement. Using the %AA_Model_Register macro might cause
undesirable results.

Register a Model in the SAS Metadata Repository Using a
SAS/STAT Item Store

After you run a SAS/STAT procedure using the STORE statement, you use the
%AA_Model_Register macro to register the model to the SAS Metadata Repository.

In the following example program, the PROC LOGISTICS STORE statement creates an
item store in work.logisticStore. The %AA_Model_Register macro uses the item store in
work.logisticStore to create the register file.

/* PROC LOGISTIC specifies the STORE statement to create an item store. *
/
proc logistic data=sampsio.hmeq;
 class job;
 model bad = loan value job;
 store work.logisticStore;
run;

/* Set up the meta data connection system options. */

options metaPort=8561
 metaServer=server-address
 metaRepository=Foundation
 metaUser=user-ID
 metaPass=password;

/* Load the macros. */

%aamodel;

/* Register the model in the SAS Metadata Repository. */

%aa_model_register(modelname=LogisticTest,
 modeldesc=%nrbquote(Logistic Test),
 itemstore=work.logisticstore,
 register=Y,
 mrPath=%NRBQUOTE(/User Folders/user-ID/My Folder/),
 spk=N,
 spkfolder=c:\temp\,
 data=sampsio.hmeq)
 ;

The model can now be imported to SAS Model Manager using the import from SAS
Metadata Repository method.

Create a SAS Package File Using a SAS/STAT Item Store
To create a SAS package (SPK) file without registering it to the SAS Metadata
Repository, you specify the Register=Y, SPK=Y, and the SPKFolder= arguments. This
example shows these modifications using the previous example:

/* PROC LOGISTIC specifies the STORE statement to create an item store. *

Using Macros to Register Models Not Created by SAS Enterprise Miner 451

proc logistic data=sampsio.hmeq;
 class job;
 model bad = loan value job;
 store work.logisticStore;
run;

/* Set up the meta data connection system options. */

options metaPort=8561
 metaServer=server-address
 metaRepository=Foundation
 metaUser=user-ID
 metaPass=password;

/* Load the macros. */

%aamodel;

/* Create an SPK file; do not register the model in the SAS Metadata Repository. */

%aa_model_register(modelname=LogisticTest,
 modeldesc=%nrbquote(Logistic Test),
 itemstore=work.logisticstore,
 register=N,
 spk=Y,
 spkfolder=c:\temp\,
 data=sampsio.hmeq)
 ;

The macro creates a folder for the model in the c:\temp folder. The folder name is the
UUID of the model. The name of the SPK file is miningResults.spk. The SPK file can be
imported to SAS Model Manager using the import from SAS Model Package File
method.

Register a Model in the SAS Metadata Repository Using Model
Component Files

If you do not have an item store, or if you have the information and files that you need
for a model, you can use the %AA_Model_Register macro to register the model in the
SAS Metadata Repository. In addition to the macro’s model identification arguments
and the action arguments, you can use these arguments to register the model:

• Data=training-data-set-name

• Level=Binary | Ordinal | Nominal | Interval

• ScoreCodeFile=filename

• ScoreCodeFormat=Datastep | Program

• Target=target-variable

The following SAS program uses model component arguments to register the model to
the SAS Metadata Repository. Other arguments identify the mining function and mining
algorithm.

/* Train high performance model */

452 Appendix 4 • Macros for Registering Models to the SAS Metadata Repository

proc hplogistic data=gplib.hmeqid; class job reason;
 id value;
 class bad ;
 model bad = clage clno debtinc delinq derog mortdue job reason;
 output out=gplib.hpregid_score pred;
 code file='c:\temp\score.sas' ;
run;

/* Set up metadata connections */

options metaPort=8561
 metaServer=server-address
 metaRepository=Foundation
 metaUser=user-ID
 metaPass=password;

/* Load the macros. */

%aamodel;

/* Register the model in the SAS Metadata Repository */

%aa_model_register
 (modelname=Model1,
 modeldesc=%nrbquote(First Model for registration),
 register=Y,
 mrPath=%NRBQUOTE(/User Folders/user-ID/My Folder/),
 spk=N,
 spkfolder=c:\temp\,
 data=sampsio.hmeq,
 target=bad,
 level=BINARY,
 miningfunction=Classification,
 miningalgorithm=Regression,
 scorecodefile=c:\temp\score.sas)
;

The model can now be imported to SAS Model Manager using the import from SAS
Metadata Repository method.

Dictionary

%AAModel Autocall Macro
Loads the %AA_Model_Register macro.

Syntax
%AAModel

%AAModel Autocall Macro 453

Details
The %AAModel macro loads the %AA_Model_Register macro. You must specify
%aamodel; before you use the %AA_Model_Register macro. The %AAModel macro
produces these messages in the SAS log:

NOTE: Loading the aa_model_eval macro
NOTE: Loading the aa_model_register macro

Note: The %AA_Model_Eval macro is used internally by SAS Model Manager.

%AA_Model_Register Autocall Macro
Creates an SPK package file and registers models to the SAS Metadata Repository.

Syntax
%AA_Model_Register(

ModelName model-name,
ModelDesc=description,
Register=Y | N,
MRPath=SAS-Metadata-Repository- folder,
SPK=Y | N,
SPKFolder=SPK-folder-path,
ItemStore=item-store-name,
Data=training-data-set-name,
Target=target-variable,
Level=Binary | Ordinal | Nominal | Interval,
ScoreCodeFile=filename,
ScoreCodeFormat=Datastsep | Program,
<Score=scored-data-set-name>,
<PMMLFile=filename>,
<TrainFile=train-program-filename>,
<MiningAlgorithm=algorithm>,
<MiningFunction=mining-function>,
<Segment=segment-variable-name>,
<Lookup=lookup-method>,
<Debug=Y | N>)

Model Identification Arguments
ModelName=model-name

specifies the name of the model.

Default aa_model_&sysuserid, where &sysuserid contains the user ID or login of
the current SAS process.

ModelDescr=description
is a description of the model.

454 Appendix 4 • Macros for Registering Models to the SAS Metadata Repository

ItemStore=item-store-name
specifies the name of the item store that is created by some SAS/STAT procedures.
The item store is used to retrieve input and target variable metadata, data set names,
score code, training code, the mining algorithm, and the mining function.

Note Item store data is not available from these SAS/STAT procedures: REG,
GLM, GENMOD, GLIMMIX, PHREG, and SURVEYPHREG.

Tip If you do not specify the ITEMSTORE= option, you must specify these
options: DATA=, TARGET=, SCORECODEFILE=,
SCORECODEFORMAT=. If you specify the ITEMSTORE= option, you do
not need to specify these options.

Action Arguments
Register=Y | N

specifies whether to register the model in the SAS Metadata Repository.

Y indicates to register the model in the SAS Metadata Repository.

N indicates not to register the model in the SAS Metadata Repository.

Default Y

MRPath=SAS-Metadata-Repository-Folder
specifies a folder, using SAS Folders as the root node in the SAS Metadata
Repository, where the model is registered.

Default /Shared Data/

Note The forward slash (/) after the last folder in the path is not required.

Example /Shared Data/Model Manager/Models/

SPK=Y | N
specifies whether to create a SAS package file:

Y indicates to create a SAS package file.

N indicates not to create a SAS package file.

Requirement If SPK=Y, you must use the SPKFOLDER= option to specify a
location to store the SPK file.

SPKFolder=SPK-folder-path
specifies the location to store the SPK file.

Requirement The option is required when you specify SPK=Y.

Model Component Arguments
These arguments must be specified if you do not specify the ITEMSTORE= option:

Data=training-data-set-name
specifies the name of the training data set for the model.

Level=Binary | Ordinal | Nominal | Interval
specifies the class target level of the model.

%AA_Model_Register Autocall Macro 455

Binary the variable can contain two discrete values (for example, Yes and
No).

Ordinal the variable can contain discrete values that have a logical order (for
example, 1, 2, 3, 4).

Nominal the variable contains discrete values that do not have a logical order
(for example, car, truck, bus, and train).

Interval the variable contains values across a range. For example,
temperature ranges could be between 0–100.

ScoreCodeFile=filename
specifies the name of the file that contains the score code.

Tip If you specify the ITEMSTORE= option, you do not need to specify this
option.

ScoreCodeFormat=Datastep | Program
specifies the format of the score code.

DATASTEP the score code contains only DATA step statements

PROGRAM the score code contains DATA step statements, procedures, or
macros.

Target=target-variable
specifies the name of the target variable for model.

Optional Arguments
Debug=Y | N

specifies whether to prevent deletion of the generated data sets:

Y indicates to keep the generated data sets.

N indicates not to keep the generated data sets.

Lookup=lookup-method
specifies the algorithm for looking up CLASS levels in SAS/STAT models. Here are
the valid lookup methods:

Auto
selects the LINEAR algorithm if a CLASS variable has fewer than five
categories. Otherwise, the Binary algorithm is used. This is the default.

Binary
specifies to use a binary search. This method is fast, but it might produce
incorrect results. The normalized category values might contain characters that
collate in different orders in ASCII and EBCDIC, if you generate the code on an
ASCII machine and execute the code on an EBCDIC machine, or vice versa.

Linear
uses a linear search with IF statements that have categories in the order of the
class levels. This method is slow if there are many categories.

Select
uses a SELECT statement.

Requirement Use Lookup=Select when a SAS/STAT model contains non-
latin1 characters to ensure the generation of the correct score
code. If a model with non-latin1 characters is published to a

456 Appendix 4 • Macros for Registering Models to the SAS Metadata Repository

database and Lookup=Select is not specified, the scoring results
might be incorrect.

MiningAlgorithm=algorithm
specifies the type of algorithm that is used to create the mode (for example,
DecisionTree or logistic).

MiningFunction=mining-function
specifies one of the following mining functions:

• classification

• prediction

• segmentation

PMMLFile=filename
specifies the name of the file that contains the PMML score code. This option is
optional.

Score=scored-data-set-name
specifies the name of the scored training data set. This data set is used when there is
no score code available to determine the output variables.

Segment=variable
specifies the name of the segment variable.

TrainFile=train-program-filename
specifies the name of the training program file.

%AA_Model_Register Autocall Macro 457

458 Appendix 4 • Macros for Registering Models to the SAS Metadata Repository

Appendix 5

Macros for Adding Folders,
Projects, Versions, and Setting
Properties

Adding Folders, Projects, Versions, and Properties Using Macros 459
Overview of Using a SAS Program to Add Folders, Projects,

Versions, and Properties . 459
Writing Your SAS Program . 460
Creating the Properties Table . 461

Dictionary . 464
%mdlmgr_AddFolder Macro . 464
%mdlmgr_AddProject Macro . 465
%mdlmgr_AddVersion Macro . 467
%mdlmgr_SetProperty Macro Function . 468

Example: Add a Folder, Project, and Version, Set Properties 470

Adding Folders, Projects, Versions, and
Properties Using Macros

Overview of Using a SAS Program to Add Folders, Projects,
Versions, and Properties

SAS Model Manager provides four macros that you can use in a SAS program to add
folders, project, and versions, and to set properties:

%mdlmgr_AddFolder()
Adds a folder under MMRoot or adds a subfolder.

%mdlmgr_AddProject()
Adds a project under a folder or a subfolder.

%mdlmgr_AddVersion()
Adds a version to a project.

%mdlmgr_SetProperty()
Sets project and version properties that appear in the Specific Properties section of
the project or version Properties tab in the SAS Model Manager client.

After you have added the Project Tree nodes or set properties, you refresh the MMRoot
node to see the new nodes and property settings in the SAS Model Manager client. You
can then use these nodes in the client to further define your projects and versions.

To delete a folder, project, or version, you use the SAS Model Manager client.

459

Writing Your SAS Program
Include these language elements in your SAS program:

Global macro variable to set the environment
%let _MM_Service_Registry_URL=
 %str(http://your-server.com:7980/SASWIPClientAccess/remote/ServiceRegistry);

Global macro variable to define the user and a DATA step to provide the password
%let _MM_User = user_ID;
data _null_;
 infile pwfile obs=1 length=l;
 input @;
 input @1 line $varying1024. l;
 call symput('_MM_Password',substr(line,1,l));
run;

If you are setting properties, use a DATA step to create a table that contains property and
value pairs.

One of the %mdlmgr_SetProperty() arguments is the name of a table that contains
property-value pairs. “Creating the Properties Table” on page 461 lists the properties
that you can include in the table. When you create the table, the first column must be
Name and the second column must be Value. Both columns must be character. See
“Example: Creating a Properties Table” on page 464.

Access the macros by using the FILENAME and %INCLUDE statements.
filename file1 catalog 'sashelp.modelmgr.accessmacros.source';
%include file1;
filename file1;

filename file2 catalog 'sashelp.modelmgr.mdlmgr_addfolder.source';
%include file2;
filename file2;

filename file3 catalog 'sashelp.modelmgr.mdlmgr_addproject.source';
%include file3;
filename file3;

filename file4 catalog 'sashelp.modelmgr.logtrace.source';
%include file4;
filename file4;

filename file5 catalog 'sashelp.modelmgr.mdlmgr_addversion.source';
%include file5;
filename file5;

filename file6 catalog 'sashelp.modelmgr.mdlmgr_setproperty.source';
%include file6;
filename file6;

You can change the fileref name.

Call the macros:
%mdlmgr_AddFolder(ParentId=, Name=, Desc=, NewFolderId=, Trace=);

%mdlmgr_AddProject(ParentId=, Name=, Desc=, ModelFunction=,
 InputVarTable=, OutputVarTable=, NewProjectId=, Trace=);

460 Appendix 5 • Macros for Adding Folders, Projects, Versions, and Setting Properties

%mdlmgr_AddVersion(ParentId=, Name=, Desc=, NewVersionId=, Trace=);

%mdlmgr_SetProperty(FolderId=, Table=, PropertyType=, FolderType=, Trace=);

There is no requirement to call all of the macros in the same SAS program.

When SAS returns from a macro call that adds a node, the value of NewFolderId=,
NewProjectId=, and NewVersionId= is used to create a global macro variable that
can be referenced by other macros in the same SAS session. The value of the macro
variable is the UUID or the SAS Model Manager repository path for the node that is
added. You can then use that macro reference as a value for the ParentId= argument
of another macro or for the %mdlmgr_SetProperty() macro FolderId= argument. For
example, in the %mdlmgr_AddProject() macro, if you set
NewProject=projectId, the variable name projectId is used to create the global
macro variable %projectId. The &projectId macro reference can now be used as the
value of the ParentId= argument in the %mdlmgr_AddVersion() macro,
ParentId=&projectId. The same macro reference can be used as a value for the
FolderId= argument in the %mdlmgr_SetProperty() macro,
FolderId=&projectId.

Creating the Properties Table

Property Table Requirements
To set project properties, you use a DATA step to create a data set that contains
property-value pairs. The data set variables must be Name and Value, and they must be
character variables.

In the data set, property names can be mixed case. The required appended text, :sas-
libraries, must be lower case. For more information, see “Specifying Data Sets” on
page 461.

Specifying Data Sets
Some property values specify the name of a default table, such as the default train table
or the default performance table. You specify tables using the form SMRLibrary.table
for libraries in the SAS Metadata Repository and libref.table for SAS libraries. See the
Data Sources category view for valid library and table names. In the SAS Metadata
Repository tab, SMRLibrary is the folder-name where the data set in stored. In the SAS
Libraries tab, libref can be one of the librefs under the SAS Libraries node.

When your DATA step specifies a library in the SAS Libraries tab, the text :sas-
library must be appended to libref.table in lower case (for example,
MySASLib.Property:sas-library and Work.ProjProp:sas-library).
Libraries that are defined in the SAS Metadata Repository do not require the appended
text.

Properties That You Can Set
Use a property in the following Property Name column as a value for the Name variable
in the property table.

Adding Folders, Projects, Versions, and Properties Using Macros 461

Table A5.1 Project and Version Properties That Can Be Set by %mdlmgr_SetProperty()
Macro

Property Name

Property Name As It
Appears in the SAS
Model Manager Client Valid Values

ClassificationRole Output Event Probability
Variable

A text string that specifies the output
event probability variable.

Set for a project with a model function
of classification.

ClassTargetEvent Class Event Value A number that represents the target
event value.

Set for a project.

ClassTargetEventValues Class Target Values A text string that represents the class
target values.

Set for a project.

ClassTargetLevel Class Target Level One of the following text
strings:"BINARY", "NOMINAL",
"ORDINAL", or "INTERVAL"

Set for a project.

ClassTargetVar Training Target Variable A text string that indicates the training
target variable

Set for a project.

EventProbabilityRole Output Event Probability
Variable

A text string that specifies the output
event probability variable.

Specify this property only if you
specify the outputVarTable=
argument in the
%mdlmgr_AddProject() macro. The
value of EventProbabilityRole must
be a variable in the project output
table.

Set for a project.

Function Model Function A text string that specifies the model
function. Valid values are
"CLASSIFICATION",
"PREDICTION",
"SEGMENTATION", and
"ANALYTICAL".

Set for project.

InterestedParty Interested Party A text string that specifies a person or
group that has an interest in the
project.

Set for a project.

462 Appendix 5 • Macros for Adding Folders, Projects, Versions, and Setting Properties

Property Name

Property Name As It
Appears in the SAS
Model Manager Client Valid Values

MetadataLock Lock Project Metadata Specify "YES" or "NO" to indicate
whether the project metadata is
locked.

Set for a project.

PredictionRole Output Prediction
Variable

A text string that specifies the output
prediction variable.

Set for a project with a model function
of prediction.

ProjectInputDS None, it is used to create
inputvar.xml.

The project input table in the form
libref.table.

Set for a project.

ProjectOutputDS None, it is used to create
outputvar.xml.

The project output table in the form
libref.table.

Set for a project.

ResponseDS Default Performance
Table

The default performance table in the
form libref.table.

Set for projects and versions.

ScoreInputDS Default Scoring Task
Input Table

The default scoring task input table in
the form libref.table.

Set for projects and versions.

ScoreOutputDS Default Scoring Task
Output Table

The default scoring task output tablet
in the form libref.table.

Set for projects and versions.

SegmentRole Output Segmentation
Variable

A test string that specifies the output
segmentation variable.

Set for a project with a model function
type of segmentation.

State State Select one:

0 Under Development

1 Active

2 Inactive

3 Retired

Set for a project.

TestDS Default Test Table The default test table in the form
libref.table.

Set for projects and versions.

Adding Folders, Projects, Versions, and Properties Using Macros 463

Property Name

Property Name As It
Appears in the SAS
Model Manager Client Valid Values

TrainDS Default Train Table The default train table in the form
libref.table.

Set for projects and versions.

Example: Creating a Properties Table
Here is a sample DATA step to create a properties table:

data HMEQProp;
 length name $20.;
 length value $40.;
 input name $ value$;
 datalines;
TestDS MMLIB.HMEQ_TEST
ScoreInputDS MMLIB.HMEQ_SCORE_INPUT
ScoreOutputDS MMLIB.OUTPUT
TrainDS MMlib.HMEQ_TRAIN
ResponseDS PERFDS.2013Q1:sas-library
ClassTargetEvent 1
ClassTargetLevel BINARY
EventProbabilityRole SCORE
ClassTargetVar BAD
;
run;

Note the difference in values for the ResponseDS property and the other table properties.
In the Data Sources category view, the library MMLIB is defined in the SAS Metadata
Repository tab and the library PERFDS is defined in the SAS Libraries tab. Because
PERFDS is defined in the SAS Libraries tab, the value requires :sas-library to be
appended to the libref.table value. Libraries that are defined in the SAS Metadata
Repository do not require the appended text.

Dictionary

%mdlmgr_AddFolder Macro
Adds a folder to the Project Tree.

464 Appendix 5 • Macros for Adding Folders, Projects, Versions, and Setting Properties

Syntax
%mdlmgr_AddFolder(

ParentId=parent-UUID-or-path
Name=folder-name
<Desc=description>
NewFolderId=folder-Id-variable
<Trace=On | Off>

);

Required Arguments
ParentId=parent-UUID-or-path

specifies the UUID or the SAS Model Manager repository path of the parent folder.

If the folder that you are creating is a subfolder, you can use the value of
NewFolderId= that was specified during the macro call of parent folder as the value
for parent-UUID-or-path. For example, if a parent folder exists and
NewFolderId=&folderId was set in the macro call for the parent folder, then
you can specify ParentId=&folderId in the subfolder macro call.

If you specify the repository path, use one of these forms:

//ModelManagerDefaultRepo/MMRoot/
//ModelManagerDefaultRepo/MMRoot/folder-name/

Restriction A folder can be added only to the MMRoot node or a folder in the
Project Tree.

Name=folder-name
specified the name of the folder. The name can contain letters, spaces, the underscore
(_), the hyphen (-), and the period (.).

NewFolderId=folder-Id-variable
specifies a variable that is used to identify the new folder.

SAS Model Manager creates a global macro variable, %folder-Id-variable whose
value is the folder UUID or the path in the SAS Metadata Repository. You can use
&folder-Id-variable as the value of a ParentId= argument in the
%mdlmgr_AddFolder() or %mdlmgr_AddProject() macros. For example, if
NewFolderId=folderId, then you can use ParentId=&folderId in the
%mdlmgr_AddProject() macro.

Optional Arguments
Desc=description

specifies a description of the folder.

Trace=On | Off
specifies whether to supply verbose trace messages to the SAS log.

Default Off

%mdlmgr_AddProject Macro
Adds a project to a folder.

%mdlmgr_AddProject Macro 465

Syntax
%mdlmgr_AddProject(

ParentId=parent-UUID
Name=folder-name
<Desc=description>
ModelFunction=model-function
<InputVarTable=project-input-variable-table>
<OutputVarTable=project-output-variable-table>
NewProjectId=project-Id-variable
<Trace=On | Off>

);

Required Arguments
ParentId=parent-UUID-or-path

specifies the UUID of the parent folder or the SAS Model Manager path for the
parent folder.

You can use &folder-Id-variable that is set for the NewFolderId= argument in the
%mdlmgr_AddFolder() macro as the value of parent-UUID-or-path.

The SAS Model Manager path is in this form:

//ModelManagerDefaultRepo/MMRoot/folder-name/

Name=project-name
specified the name of the project. The name can contain letters, spaces, the
underscore (_), the hyphen (-), and the period (.).

ModelFunction=model-function
specifies the project model function type. These are the valid values:

• classification

• prediction

• segmentation

• analytical

Default classification

NewProjectId=project-Id-variable
specifies a variable or a macro variable that is used to identify the new project.

SAS Model Manager creates a global macro variable, %project-Id-variable whose
value is the project UUID or the path in the SAS Metadata Repository. You can use
&project-Id-variable as the value of a ParentID= argument in the
%mdlmgr_AddVersion() macro or the FolderId= argument in the
%mdlmgr_SetProperty() macro. For example, if you set
NewProjectId=projectId, you can use ParentId=&projectId in the
%mdlmgr_AddVersion() macro.

The SAS Model Manager path is in this form:

 //ModelManagerDefaultRepo/MMRoot/folder-name/project-name

466 Appendix 5 • Macros for Adding Folders, Projects, Versions, and Setting Properties

Optional Arguments
Desc=description

specifies a description of the project.

InputVarTable=project-input-variable-table
specifies a data set that must include the input variables that are used by the
champion model. If you have several candidate models for your project, make sure
that all candidate model input variables are included in the project input table. The
data set does not need to contain data. If you use the train table as a project input
table, be sure to exclude the target variable.

The input variable table is used to create the inputvar.xml file, which describes all of
the model input variables.

Requirement The data set must be a local or network file. This macro does not
support project input tables in the SAS Metadata Repository.

Tip The project input table can be defined after the project is created. It
must be defined before the project champion model is set.

See “Create a Project Input Table” on page 37

OutputVarTable=project-output-variable-table
specifies a data set that includes only output variables that are created or modified by
the champion model. If you have several candidate models for your project, you
must make sure that all project output variables are mapped to the champion model
output variables. If you use the train table as the project output table, use the SET
statement to specify the training table, and use the KEEP statement to specify the
variables from the training table that you want in the project output table.

The output variable table is used to create the outputvar.xml file, which describes all
of the model output variables.

Requirement The data set must be a local or network file. This macro does not
support project output tables in the SAS Metadata Repository.

Tip The project output table can be defined after the project is created. It
must be defined before the project champion model is set.

See “Create a Project Output Table” on page 38

Trace=On | Off
specifies whether to supply verbose trace messages to the SAS log.

Default Off

%mdlmgr_AddVersion Macro
Adds a version to a project.

%mdlmgr_AddVersion Macro 467

Syntax
%mdlmgr_AddVersion(

ParentId=parent-UUID-or-path
Name=version-name
<Desc=description>
NewVersionId=version-Id-variable
<Trace=On | Off>

);

Required Arguments
ParentId=parent-UUID-or-path

specifies the UUID of the project for which the version is to be created.

You can use &project-Id-variable that is set for the NewProjectId= argument in the
%mdlmgr_AddProject() macro as the value of parent-UUID-or-path. For example,
if NewProjectId=projectId, you can specify ParentId=&projectId.

The SAS Model Manager path is in the form

//ModelManagerDefaultRepo/MMRoot/folder-name/project-name

Name=version-name
specifies the name of the version. The name can contain letters, spaces, the
underscore (_), the hyphen (-), and the period (.).

NewVersionId=version-Id-variable
specifies a variable name that is used to identify the new version.

SAS Model Manager creates a global macro variable, %version-Id-variable whose
value is the version UUID or the path in the SAS Metadata Repository. You can use
&version-Id-variable as the value of the FolderId= argument in the
%mdlmgr_SetProperty() macro. For example, if you set
NewVersionId=versionId, then you can specify FolderId=&versionId in
the %mdlmgr_SetProperty() macro.

The version path is in this form:

//ModelManagerDefaultRepo/MMRoot/folder-name/project-name/version-name

Optional Arguments
Desc=description

specifies a description of the version.

Trace=Of | Off
specifies whether to supply verbose trace messages to the SAS log.

Default Off

%mdlmgr_SetProperty Macro Function
Sets project properties in the Project Tree.

468 Appendix 5 • Macros for Adding Folders, Projects, Versions, and Setting Properties

Syntax
%mdlmgr_SetProperty(

FolderId=folder-UUID-or-path
Table=property-value-table-name
PropertyType=System | User
FolderType=UUID-or-folder-type
<Trace=On | Off>

Required Arguments
FolderId=folder-UUID-or-path

specifies the project folder UUID or path.

To add a project property, you can use &project-Id-variable that is set for the
NewProjectId= argument in the %mdlmgr_AddProject() macro as the value of
project-folder-UUID-or-path. For example, if NewProjectId=projectId, then
you can specify FolderId=&projectId.

To add a version property, you can use &version-Id-variable that is set for the
NewVersionId= argument in the %mdlmgr_AddVersion() macro as the value of
project-folder-UUID-or-path. For example, if NewVersionId=versionId, then
you can specify FolderId=&versionId.

Table=property-value-data-set
specifies the data set that contain the properties to set. property-value-table-name
must be in the form libref.data-set.

See “Creating the Properties Table” on page 461

PropertyType=System | User
specifies whether the property is a SAS Model Manager property or if the property is
user-defined. Specify system for all SAS Model Manager properties.

Default System

FolderType=folder-type
specifies the folder type for the properties that are being set. If FolderId is a UUID,
this argument is optional. Here are the valid values for Folder type:

• Project

• Version

Optional Argument
Trace=On | Off

specifies whether to supply verbose trace messages to the SAS log.

Default Off

%mdlmgr_SetProperty Macro Function 469

Example: Add a Folder, Project, and Version, Set
Properties

%let _MM_User=your-userID;
%let _MM_Password=your-password;
%let _MM_Service_Registry_URL=%STR(http://your-web-service.com:7980/
SASWIPClientAccess/remote/ServiceRegistry);
libname temp 'your-path';
data temp.property;
 length name $ 30 value $ 40;
 input name $ value $;
 infile datalines;
datalines;
ProjectInputDS MMLIB.HMEQ_PROJECT_INPUT
ProjectOutputDS MMLIB.HMEQ_PROJECT_OUTPUT
ScoreInputDS MMLIB.HMEQ_SCORE_INPUT
ScoreOutputDS MMLIB.HMEQ_SCORE_OUTPUT
TrainDS MMLIB.HMEQ_TRAIN
TestDS MMLIB.HMEQ_TEST
ClassTargetEvent 1
ClassTargetLevel BINARY
ClassTargetVar BAD
EventProbabilityRole SCORE
;
run;

/* Access the macros */

filename file1 catalog 'sashelp.modelmgr.accessmacros.source';
%include file1;
filename file1;

filename file2 catalog 'sashelp.modelmgr.mdlmgr_addfolder.source';
%include file2;
filename file2;

filename file3 catalog 'sashelp.modelmgr.mdlmgr_addproject.source';
%include file3;
filename file3;

filename file4 catalog 'sashelp.modelmgr.logtrace.source';
%include file4;
filename file4;

filename file5 catalog 'sashelp.modelmgr.mdlmgr_addversion.source';
%include file5;
filename file5;

filename file6 catalog 'sashelp.modelmgr.mdlmgr_setproperty.source';
%include file6;
filename file6

470 Appendix 5 • Macros for Adding Folders, Projects, Versions, and Setting Properties

/*add folder*/
%mdlmgr_AddFolder(parentId=//ModelManagerDefaultRepo/MMRoot,
 name=Bank3,
 desc=,
 newFolderId=newFolderIdVar,
 Trace=on);
/*add project*/
%mdlmgr_AddProject(parentId=&newFolderIdVar,
 name=HMEQ,
 desc=Home Equity,
 modelFunction=classification,
 inputVarTable=,
 outputVarTable=,
 newProjectId=newProjectIdVar1,
 Trace=on);

/*set properties*/
%mdlmgr_SetProperty(folderId=&newProjectIdVar1,
 table=temp.property,
 propertyType=system,
 folderType=project,
 Trace=on);

/*add version*/
%mdlmgr_AddVersion(parentId=&newProjectIdVar1,
 name=2013,
 desc=,
 newVersionId=newVersionIdVar1,
 Trace=off);

Example: Add a Folder, Project, and Version, Set Properties 471

472 Appendix 5 • Macros for Adding Folders, Projects, Versions, and Setting Properties

Appendix 6

Macros for Generating Score
Code

Generating Score Code for COUNTREG Procedure Models 473

Generating Score Code for PROC SEVERITY Models . 474

Dictionary . 474
%MM_Countreg_Create_Scorecode Autocall Macro . 474
%MM_Severity_Create_Scorecode Autocall Macro . 488

Generating Score Code for COUNTREG
Procedure Models

The %MM_Countreg_Create_Scorecode macro creates DATA step statements to
compute the predicted values of a model that you create using the COUNTREG
procedure. Input to the macro is the ODS output data set ParameterEstimates that is
created by the COUNTREG procedure. You can also specify the location to save the
score code and other macro output files, and prefix values for the dependent variable and
the variable for the probably of having a zero-generating process.

Note: SAS Model Manager does not support PROC COUNTREG models when
VALIDVARNAME="ANY".

The score code generation supports the following COUNTREG procedure features:

PROC COUNTREG Feature Supported Functionality

Categorical predictor Character and numeric class variables

Continuous predictor Variable values are used as is.

MODEL specification Effect specifications that are allowed by the MODEL
statement, including main effects, interactions, and powers of
continuous predictors. Only one MODEL statement can be
specified.

ZEROMODEL specification Effect specifications that are allowed in the MODEL
statement, including the intercept, main effects, interactions,
and powers of continuous predictors.

473

PROC COUNTREG Feature Supported Functionality

OFFSET variables The offset variables in the MODEL and ZEROMODEL
statements are retrieved from the FitSummary table.

ZEROMODEL statement
LINK function

The LOGISTIC and the NORMAL link distribution functions
that are allowed in the ZEROMODEL statement.

BY-group processing is not supported.

After you have created the score code, you can register the score code and other
COUNTREG procedure model component files by using the $AA_Model_Register
macro or you can import the model using the local files method. For more information,
see “Using Macros to Register Models Not Created by SAS Enterprise Miner” on page
449 and “Import SAS Code Models and R Models Using Local Files” on page 130.

Generating Score Code for PROC SEVERITY
Models

The %MM_Severity_Create_Scorecode macro generates score code for PROC
SEVERITY models. Inputs to the macro are the ODS output data sets
ParameterEstimates and ModelInformation that are created by the SEVERITY
procedure. You can also specify the location to save the score code and other macro
output files, and the prefix value for the dependent variable.

Custom distributions and BY-group processing are not supported by the macro.

After you have created the score code, you can register the score code and other
SEVERITY procedure model component files by using the $AA_Model_Register macro
or you can import the model using the local files method. For more information, see
“Using Macros to Register Models Not Created by SAS Enterprise Miner” on page 449
and “Import SAS Code Models and R Models Using Local Files” on page 130.

Dictionary

%MM_Countreg_Create_Scorecode Autocall Macro
Generates score code for a model that is created by the COUNTREG procedure.

Syntax
%MM_Countreg_Create_Scorecode (

ParmEst=countreg-parameter-estimate-data-set
<FileRef=output-fileref>
<PredPrefix=dependent-variable-prefix>
<PZPrefix=probability-zero-variable-prefix>

);

474 Appendix 6 • Macros for Generating Score Code

Arguments
ParmEst=countreg-parameter-estimate-dataset

specifies the name of the parameter estimations ODS output data. This
ParameterEstimates data set is created when PROC COUNTREG executes. To
capture this data set, use the ODS OUTPUT statement before PROC COUNTREG
executes.

Tip In the PROC COUNTREG code, include the PREDICTION= and the
PREOBZERO= options in the OUTPUT statement.

FileRef=output-fileref
specifies the fileref that defines the location of the macro output files.

Default The SAS log

PredPrefix=dependent-variable-prefix
specifies a prefix for the predicted dependent variable. The variable is named in the
PRED= option of the PROC COUNTREG OUTPUT= statement. When is prefix is
applied to the dependent variable, this new name becomes the prediction variable.

Default P_

PZPrefix=probability-zero-variable-prefix
specifies a prefix for the variable that indicates the probability that the response
variable will take on the value of zero as a result of the zero-generating process. The
variable is named in the PROBZERO= option of the PROC COUNTREG
OUTPUT= statement. When the prefix is applied to the probability zero variable,
this new name becomes the probability zero variable.

Default PHI_

Details
To create score code for a model that you create with PROC COUNTREG, include the
following SAS code:

1. Use a LIBNAME statement to identify the location of the output that you create
using PROC COUNTREG.

2. Before PROC COUNTREG, use the ODS OUTPUT statement to capture the
ParameterEstimates output data set. Here is an example:

ods output ParameterEstimates=CntReg.ParameterEstimates;

3. Build your model using PROC COUNTREG and close the ODS OUTPUT
destination.

4. Use the FILENAME statement to define a fileref for the macro output location.

5. Invoke the %mm_countreg_create_scorecode macro.

6. Execute the score code within a DATA step.

%MM_Countreg_Create_Scorecode Autocall Macro 475

Example: Generate the PROC COUNTREG Score
Code for Insurance Risk

Create the Sample Insurance Data

The following SAS program creates sample data that resembles an automobile policy
history file for a property and casualty insurance program:

%let MyProj = C:\Users\myID;
%let MyProj = C:\Users\minlam\Documents\Projects;
libname CntReg "&MyProj.\CountReg\Test";
options fmtsearch = (CntReg.formats);
proc format library = CntReg cntlout = phf_fmt;
 value $ Gender_fmt
 'Male' = 'Man'
 'Female' = 'Woman';
 value HO_fmt
 0 = 'No'
 1 = 'Yes';
run;

data CntReg.phf;
 length CarType $ 5;
 label CarType = 'Type of Car';
 length Gender $ 6;
 format Gender $ Gender_fmt.;
 label Gender = 'Gender Identification';

 /* This variable name will test how the macro will resolve name conflicts */
 length Estimate $ 6;
 label Estimate = 'Gender Identification (Copy)';
 label AgeDriver = 'Driver Age';
 format HomeOwner HO_fmt.;
 call streaminit(27513);

 do PolicyId = 00001 to 99999;
 StartYr = 2000 +
 rand('table', 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1);
 do ExpYr = StartYr to 2011;
 EExp = rand('uniform');
 MyOffset = 0;
 select (rand('table', 0.499, 0.299, 0.199, 0.003));
 when (1)
 do;
 CarType = 'SEDAN';
 fCarType = 0;
 end;
 when (2)
 do;
 CarType = 'TRUCK';
 fCarType = 0.5;
 end;

476 Appendix 6 • Macros for Generating Score Code

 when (3)
 do;
 CarType = 'SPORT';
 fCarType = 1.0;
 end;
 otherwise CarType = ' ';
 end;

 AgeDriver = 18 + rand('binomial',0.375, 72);
 fAgeDriver = 0.0123 * (AgeDriver - 17);

 HomeOwner = rand('bernoulli', 0.25);
 if (HomeOwner eq 0) then fHomeOwner = 0.7;
 else if (HomeOwner eq 1) then fHomeOwner = 0;
 if (HomeOwner eq 1) then
 do;
 IS = round(rand('uniform') * 5) - 2.5;
 fIS = -0.0456 * IS * IS;
 end;
 if (EExp lt 0.5) then
 do;
 Gender = 'Male';
 fGender = 0;
 end;
 else if (EExp lt 0.9) then
 do;
 Gender = 'Female';
 fGender = -1.5;
 end;
 else Gender = ' ';
 Estimate = Gender;
 if (missing(HomeOwner) eq 0 and missing(IS) eq 0)
 then mu_zero = 0.987 + fHomeOwner + fIS;
 else mu_zero = 0.987;
 phi = cdf('normal', mu_zero, 0, 1);
 if (rand('bernoulli', phi) eq 0) then
 do;
 if (missing(CarType) eq 0 and missing(AgeDriver) eq 0 and
 missing(Gender) eq 0)
 then mu = 2 + fCarType + fAgeDriver + fGender;
 else mu = 2;
 nClaim = rand('poisson', exp(mu));
 end;
 else nClaim = 0;
 output;
 end;
 end;
 drop fCarType fAgeDriver fHomeOwner fGender;
 drop mu_zero mu;
run;

Run the Sample Program

Here is the sample program:

%let MyProj = C:\Users\emdev;

Example: Generate the PROC COUNTREG Score Code for Insurance Risk 477

libname CntReg "&MyProj.\CountReg\Test";
options fmtsearch = (CntReg.formats);

/* Original Model */
%let model = 1;

/* Build the model and deliver the required ODS datasets */
ods output ParameterEstimates = CntReg.ParameterEstimates_&model.;

proc countreg data = CntReg.phf;
 class CarType Gender HomeOwner;
 model nClaim = CarType AgeDriver Gender / dist = poisson;
 zeromodel nClaim ~ HomeOwner IS * IS / link = normal;
 output out = CntReg.phf_pred_&model.
 predicted = Pred_nClaim probzero = Phi_nClaim;
run;

ods output close;

/* Define the fileref for the output syntax */
filename ThisFile "&MyProj.\CountReg\Test\ScoreCode_&Model..sas";

/* Invoke the macro */
%mm_countreg_create_scorecode(
 ParamEst = CntReg.ParameterEstimates_&Model.,
 FileRef = ThisFile,
 PredPrefix = MyPred_,
 PZPrefix = MyPhi_,
);

/* Execute the score codes within a DATA STEP */
data CntReg.phf_pred_compare;
 set CntReg.phf_pred_&Model.;
 %include ThisFile;
 IsMiss_Pred_nClaim = missing(Pred_nClaim);
 IsMiss_Phi_nClaim = missing(Phi_nClaim);
 IsMiss_MyPred_nClaim = missing(MyPred_nClaim);
 IsMiss_MyPhi_nClaim = missing(MyPhi_nClaim);
 if (IsMiss_Pred_nClaim eq 0 and IsMiss_MyPred_nClaim eq 0)
 then MyDiffPred = MyPred_nClaim - Pred_nClaim;
 if (IsMiss_Phi_nClaim eq 0 and IsMiss_MyPhi_nClaim eq 0)
 then MyDiffPhi = MyPhi_nClaim - Phi_nClaim;
run;

proc contents data = CntReg.phf_pred_compare;
run;

/* If the score codes work correctly, then the MyDifference variable should be
 a constant variable of all zero values */
proc freq data = CntReg.phf_pred_compare;
 tables _WARN_;
run;

proc tabulate data = CntReg.phf_pred_compare;
 class IsMiss_Pred_nClaim IsMiss_MyPred_nClaim

478 Appendix 6 • Macros for Generating Score Code

 IsMiss_Phi_nClaim IsMiss_MyPhi_nClaim;
 var Pred_nClaim MyPred_nClaim MyDiffPred Phi_nClaim
 MyPhi_nClaim MyDiffPhi;
 table IsMiss_Pred_nClaim * IsMiss_MyPred_nClaim *
 (n nmiss mean*f=e22. stddev*f=e22. min*f=e22. max*f=e22.),
 (Pred_nClaim MyPred_nClaim MyDiffPred);
 table IsMiss_Phi_nClaim * IsMiss_MyPhi_nClaim *
 (n nmiss mean*f=e22. stddev*f=e22. min*f=e22. max*f=e22.),
 (Phi_nClaim MyPhi_nClaim MyDiffPhi);
run;
quit;

Example: Generate the PROC COUNTREG Score Code for Insurance Risk 479

The Generated Score Code and Output Tables

Output A6.1 The Score Code That Is Generated by SAS Model Manager

/**/
/* Begin scoring code for COUNTREG */
/* Model: ZIP */
/* Created By: emdev */
/* Date: April 26, 2013 */
/* Time: 09:27:39 */
/**/

LENGTH _WARN_ $ 4;
WARN = ' ';
LABEL _WARN_ = "Warnings" ;

_nInputMiss = 0;

/**/
/* Check the continuous predictors */
/**/

IF (MISSING(AgeDriver) EQ 1) THEN _nInputMiss = _nInputMiss + 1;

IF (MISSING(IS) EQ 1) THEN _nInputMiss = _nInputMiss + 1;

_nInputOutRange = 0;

/**/
/* Check the CLASS predictors */
/**/

LENGTH _UFormat_1 $ 5 ;
LABEL _UFormat_1 = "Formatted Value of CarType" ;
IF (MISSING(CarType) EQ 0) THEN DO;
 _UFormat_1 = STRIP(PUT(CarType , $5.));
 IF (_UFormat_1
 NOTIN ("SEDAN"
 , "SPORT"
 , "TRUCK"
)
) THEN _nInputOutRange = _nInputOutRange + 1;
END;
ELSE _nInputMiss = _nInputMiss + 1;

LENGTH _UFormat_2 $ 5 ;
LABEL _UFormat_2 = "Formatted Value of Gender" ;
IF (MISSING(Gender) EQ 0) THEN DO;
 _UFormat_2 = STRIP(PUT(Gender , $GENDER_FMT5.));
 IF (_UFormat_2
 NOTIN ("Man"
 , "Woman"
)
) THEN _nInputOutRange = _nInputOutRange + 1;
END;
ELSE _nInputMiss = _nInputMiss + 1;

480 Appendix 6 • Macros for Generating Score Code

LENGTH _UFormat_3 $ 3 ;
LABEL _UFormat_3 = "Formatted Value of HomeOwner" ;
IF (MISSING(HomeOwner) EQ 0) THEN DO;
 _UFormat_3 = STRIP(PUT(HomeOwner , HO_FMT3.));
 IF (_UFormat_3
 NOTIN ("No"
 , "Yes"
)
) THEN _nInputOutRange = _nInputOutRange + 1;
END;
ELSE _nInputMiss = _nInputMiss + 1;

/**/
/* Set _WARN_ value */
/**/

_VALID2SCORE = 1;
LABEL _VALID2SCORE = "Is this record valid to be scored? 1=Yes, 0=No" ;

IF (_nInputMiss GT 0) THEN DO;
 SUBSTR(_WARN_,1,1) = 'M';
 _VALID2SCORE = 0;
END;
IF (_nInputOutRange GT 0) THEN DO;
 SUBSTR(_WARN_,2,1) = 'U';
 _VALID2SCORE = 0;
END;

/**/
/* Calculate scores only if current record contains valid values */
/**/

IF (_VALID2SCORE EQ 1) THEN DO;

 _NU_MODEL = 0 ;
 _NU_ZEROMODEL = 0 ;

 _NU_MODEL = _NU_MODEL + 7.889048183464800E-01
 ;

 IF (_UFormat_1 EQ "SEDAN"
) THEN DO;
 _NU_MODEL = _NU_MODEL - 4.983426513164500E-01
 ;
 END;

 IF (_UFormat_1 EQ "SPORT"
) THEN DO;
 _NU_MODEL = _NU_MODEL + 4.985885591940500E-01
 ;
 END;

 _NU_MODEL = _NU_MODEL + 1.227923016048900E-02
 * AgeDriver
 ;

 IF (_UFormat_2 EQ "Man"
) THEN DO;
 _NU_MODEL = _NU_MODEL + 1.503894036936300E+00
 ;
 END;

 _NU_ZEROMODEL = _NU_ZEROMODEL + 9.925866013120000E-01
 ;

Example: Generate the PROC COUNTREG Score Code for Insurance Risk 481

 IF (_UFormat_3 EQ "No"
) THEN DO;
 _NU_ZEROMODEL = _NU_ZEROMODEL + 6.905739218180000E-01
 ;
 END;

 _NU_ZEROMODEL = _NU_ZEROMODEL - 4.346588113784800E-02
 * IS
 * IS
 ;

 _LOG_TAIL_P_ = LOGSDF('NORMAL' , _NU_ZEROMODEL);

 IF ((_NU_MODEL + _LOG_TAIL_P_) LE 709.780)
 THEN MyPred_nClaim = EXP(_NU_MODEL + _LOG_TAIL_P_);
 ELSE MyPred_nClaim = .;

 MyPhi_nClaim = 1 - EXP(_LOG_TAIL_P_);

END; /* END (_VALID2SCORE EQ 1) IF BLOCK */

LABEL MyPred_nClaim = "Predicted value of nClaim" ;
LABEL MyPhi_nClaim = "Probability of nClaim being zero as a result
of the zero-generating process" ;

DROP _nInputMiss _VALID2SCORE _NU_MODEL;
DROP _NU_ZEROMODEL _LOG_TAIL_P_;
DROP _nInputOutRange
 _UFormat_1
 _UFormat_2
 _UFormat_3
 ;

/**/
/* End scoring code for COUNTREG */
/**/

Output A6.2 The Tables Created by the Sample Program

482 Appendix 6 • Macros for Generating Score Code

Example: Generate the PROC COUNTREG Score Code for Insurance Risk 483

484 Appendix 6 • Macros for Generating Score Code

Example: Generate the PROC COUNTREG Score Code for Insurance Risk 485

486 Appendix 6 • Macros for Generating Score Code

Example: Generate the PROC COUNTREG Score Code for Insurance Risk 487

%MM_Severity_Create_Scorecode Autocall Macro
Creates DATA step statements to compute the predicted values of a model that you create using the
SEVERITY procedure.

Syntax
%MM_Severity_Create_Scorecode (

ParmEst=severity-parameter-estimate-data-set
ModelInfo=model-info-data-set<FileRef=output-fileref>
<PredPrefix=dependent-variable-prefix>

) / store secure;

Arguments
ParmEst=severity-parmeter-estimate-dataset

specifies the name of the parameter estimations output data. This data set is created
when you specify the OUTEST= option in the PROC SEVERITY statement.

ModelInfo=model-info-data-set
specifies the name of the model information output data set. This data set is created
when you specify the OUTMODELINGINFO= option in the PROC SEVERITY
statement.

FileRef=output-fileref
specifies the fileref that defines the location of the macro output files.

Default The SAS log

PredPrefix=dependent-variable-prefix
specifies a prefix for the predicted dependent variable. The variable is named in the
PROC SEVERITY LOSS= statement. When is prefix is applied to the dependent
variable, this new name becomes the prediction variable.

Default P_

Details
To create score code for a model that you create with PROC SEVERITY, include the
following SAS code:

1. Use a LIBNAME statement to identify the location of the output that you create
using PROC SEVERITY.

2. Build your model using PROC SEVERITY. Specify the OUTEST= option to create
the ParameterEstimates data. Specify OUTMODELINFO= option to create the
ModelInformation data set. Close the ODS OUTPUT destination.

3. Use the FILENAME statement to define a fileref for the macro output location.

4. Invoke the %MM_Severity_Create_Scorecode Macro.

488 Appendix 6 • Macros for Generating Score Code

Example: Generate the PROC SEVERITY Score
Code for Insurance Risk

Create the Sample Insurance Data

%let MyProj = C:\Users\myID;
%let MyProj = C:\MyJob\Projects;
libname Severity "&MyProj.\Severity\Test";

data Severity.phf;

 /* Regression Coefficient for the Intercept Term */
 retain fIntercept 6.8024;

 /* Regression Coefficient for continuous AgeDriver */
 retain fAgeDriver 0.01234;

 /* Regression Coefficient for the three dummy indicators for nominal CarType */
 retain fCarType_SEDAN 0;
 retain fCarType_SPORT 1.0;
 retain fCarType_TRUCK 0.5;

 /* Regression Coefficient for the two dummy indicators for nominal Gender */
 retain fGender_Female -1.5;
 retain fGender_Male 0;

 /* Regression Coefficient for the two dummy indicators for nominal HomeOwner */
 retain fHomeOwner_NO 0;
 retain fHomeOwner_YES 0.7;

 /* Regression Coefficient for continuous IS */
 retain fIS -0.00456;

 /* Regression Coefficient for continuous MileageDriven */
 retain fMileageDriven 0.013579;

 /* Variable Labels */
 label AgeDriver = 'Age of Driver';

 label AmountLoss = 'Amount of Loss in Dollars';
 format AmountLoss dollar.;

 label CarType_SEDAN = 'Indicator of Car Type is Sedan';
 label CarType_SPORT = 'Indicator of Car Type is Sport';
 label CarType_TRUCK = 'Indicator of Car Type is Truck';

 label EExp = 'Earned Exposure in Units of One Year';

 label ExpYr = 'Exposure Year';

 label Gender_Female = 'Indicator of Gender is Female';
 label Gender_Male = 'Indicator of Gender is Male';

Example: Generate the PROC SEVERITY Score Code for Insurance Risk 489

 label HomeOwner_NO = 'Indicator of Home Ownership is No';
 label HomeOwner_YES = 'Indicator of Home Ownership is Yes';

 label IS = 'Insurance Score of Driver';

 label MileageDriven = 'Mileage Driven in Units of 1,000 Miles';

 label PolicyId = 'Policy Identifier';

 call streaminit(27513);
 do PolicyId = 00001 to 99999;
 StartYr = 2000 +
 rand('table', 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1);
 do ExpYr = StartYr to 2011;
 EExp = rand('uniform');

 AgeDriver = 18 + rand('binomial',0.375, 72);

 CarType_SEDAN = 0;
 CarType_SPORT = 0;
 CarType_TRUCK = 0;
 select (rand('table', 0.4999, 0.2999, 0.1999, 0.0003));
 when (1) CarType_SEDAN = 1;
 when (2) CarType_SPORT = 1;
 when (3) CarType_TRUCK = 1;
 otherwise
 do;
 CarType_SEDAN = .;
 CarType_SPORT = .;
 CarType_TRUCK = .;
 end;
 end;

 Gender_Female = 0;
 Gender_Male = 0;
 if (EExp lt 0.4999) then Gender_Female = 1;
 else if (EExp lt 0.9999) then Gender_Male = 1;
 else
 do;
 Gender_Female = .;
 Gender_Male = .;
 end;

 HomeOwner_NO = 0;
 HomeOwner_YES = 0;
 if (rand('bernoulli', 0.25) eq 1) then HomeOwner_YES = 1;
 else HomeOwner_NO = 1;

 IS = round(rand('gamma', 600));
 if (IS gt 800) then IS = 800;
 else if (IS lt 1) then IS = 1;

 MileageDriven = rand('gamma', 12);
 /* Annual Mileage Driven in unit of 1000 miles */

490 Appendix 6 • Macros for Generating Score Code

 if (nmiss(MileageDriven,AgeDriver,CarType_SEDAN,CarType_TRUCK,
 CarType_SPORT,
 Gender_Male,Gender_Female,
 HomeOwner_YES,HomeOwner_NO,IS) eq 0)
 then
 do;
 mu = fIntercept
 + fAgeDriver * (28 - AgeDriver)
 + fCarType_SEDAN * CarType_SEDAN + fCarType_SPORT
 * CarType_SPORT
 + fCarType_TRUCK * CarType_TRUCK
 + fGender_Female * Gender_Female + fGender_Male
 * Gender_Male
 + fHomeOwner_NO * HomeOwner_NO + fHomeOwner_YES
 * HomeOwner_YES
 + fIS * IS
 + fMileageDriven * (MileageDriven - 12);
 AmountLoss = exp(mu) * rand('gamma', 25);
 end;
 else AmountLoss = .;
 output;
 end;
 end;
 drop fAgeDriver fCarType_SEDAN fCarType_TRUCK fCarType_SPORT fGender_Male
 fGender_Female fHomeOwner_YES fHomeOwner_NO fIntercept fIS fMileageDriven;
 drop mu StartYr;
run;

Run the Sample Program

%let MyProj = C:\Users\emdev;
%let MyProj = C:\Users\minlam\Documents\Projects;
libname Severity "&MyProj.\Severity\Test";

title "SCALEMODEL and all applicable distributions";

%let model = 1;
%let predlist = AgeDriver CarType_SEDAN CarType_TRUCK CarType_SPORT
 Gender_Male Gender_Female HomeOwner_YES HomeOwner_NO IS MileageDriven;

/* Build the model and obtain the required datasets */
proc severity data = Severity.phf
 outest = Severity.ParamEst_&Model.
 outmodelinfo = Severity.ModelInfo_&model.;
 loss AmountLoss;
 dist _predefined_ stweedie;
 scalemodel &predlist.;
 nloptions maxiter = 1000;
run;

/* Define the fileref for the output syntax */
filename ThisFile "&MyProj.\Severity\Test\ScoreCode_&Model..sas";

/* Invoke the macro */
%mm_severity_create_scorecode
 (

Example: Generate the PROC SEVERITY Score Code for Insurance Risk 491

 ParamEst = Severity.ParamEst_&Model.,
 ModelInfo = Severity.ModelInfo_&model.,
 FileRef = ThisFile,
 PredPrefix = MyPred_,
);

/* Execute the score codes within a DATA STEP */
data Severity.phf_wPrediction;
 set Severity.phf;
 %include ThisFile;
run;

proc contents data = Severity.phf_wPrediction;
run;

The Generated Score Code and Output Tables

Output A6.3 The Score Code That Is Generated by SAS Model Manager

/**/
/* Begin scoring code for SEVERITY */
/* Created By: emdev */
/* Date: May 15, 2013 */
/* Time: 12:06:28 */
/**/

LENGTH _WARN_ $ 4;
WARN = ' ';
LABEL _WARN_ = "Warnings" ;

_nInputMiss = 0;

/**/
/* Check the SCALEMODEL regression variables */
/**/

IF (MISSING(MileageDriven) EQ 1) THEN _nInputMiss = _nInputMiss + 1;

IF (MISSING(IS) EQ 1) THEN _nInputMiss = _nInputMiss + 1;

/* NOTE: HomeOwner_NO is not checked for missing values because it is a redundant
regressor. */

IF (MISSING(HomeOwner_YES) EQ 1) THEN _nInputMiss = _nInputMiss + 1;

IF (MISSING(Gender_Female) EQ 1) THEN _nInputMiss = _nInputMiss + 1;

/* NOTE: Gender_Male is not checked for missing values because it is a redundant
regressor. */

IF (MISSING(CarType_SPORT) EQ 1) THEN _nInputMiss = _nInputMiss + 1;

IF (MISSING(CarType_TRUCK) EQ 1) THEN _nInputMiss = _nInputMiss + 1;

/* NOTE: CarType_SEDAN is not checked for missing values because it is a
redundant regressor. */

492 Appendix 6 • Macros for Generating Score Code

IF (MISSING(AgeDriver) EQ 1) THEN _nInputMiss = _nInputMiss + 1;

/**/
/* Calculate scores only if current record contains valid values */
/**/

IF (_nInputMiss EQ 0) THEN DO;

 /**/
 /* Distribution: BURR */
 /**/

 XBETA = 0;
 XBETA = _XBETA_ + 1.344413338897300E-02 * MileageDriven ;
 XBETA = _XBETA_ - 4.570022585401000E-03 * IS ;
 /* NOTE: HomeOwner_NO is skipped because it is a redundant regressor. */
 XBETA = _XBETA_ + 7.004995716974000E-01 * HomeOwner_YES ;
 XBETA = _XBETA_ - 1.499608973328200E+00 * Gender_Female ;
 /* NOTE: Gender_Male is skipped because it is a redundant regressor. */
 XBETA = _XBETA_ + 9.997068084571000E-01 * CarType_SPORT ;
 XBETA = _XBETA_ + 4.992376225576000E-01 * CarType_TRUCK ;
 /* NOTE: CarType_SEDAN is skipped because it is a redundant regressor. */
 XBETA = _XBETA_ - 1.240862927421100E-02 * AgeDriver ;

 /* NOTE: MyPred_AmountLoss_BURR = GAMMA(1 + 1/Gamma) * GAMMA(Alpha - 1/
Gamma) / GAMMA(Alpha) * Theta * EXP(_XBETA_) */
 MyPred_AmountLoss_BURR = 2.729080537097400E+04 * EXP(_XBETA_);

 /**/
 /* Distribution: EXP */
 /**/

 XBETA = 0;
 XBETA = _XBETA_ + 1.344997925413300E-02 * MileageDriven ;
 XBETA = _XBETA_ - 4.570912461736200E-03 * IS ;
 /* NOTE: HomeOwner_NO is skipped because it is a redundant regressor. */
 XBETA = _XBETA_ + 7.006247728147500E-01 * HomeOwner_YES ;
 XBETA = _XBETA_ - 1.499520049919700E+00 * Gender_Female ;
 /* NOTE: Gender_Male is skipped because it is a redundant regressor. */
 XBETA = _XBETA_ + 9.998154659889200E-01 * CarType_SPORT ;
 XBETA = _XBETA_ + 4.991760040523900E-01 * CarType_TRUCK ;
 /* NOTE: CarType_SEDAN is skipped because it is a redundant regressor. */
 XBETA = _XBETA_ - 1.240552808055000E-02 * AgeDriver ;

 /* NOTE: MyPred_AmountLoss_EXP = 1 * Theta * EXP(_XBETA_) */
 MyPred_AmountLoss_EXP = 2.730403090782800E+04 * EXP(_XBETA_);

 /**/
 /* Distribution: GAMMA */
 /**/

 XBETA = 0;
 XBETA = _XBETA_ + 1.344997933121800E-02 * MileageDriven ;
 XBETA = _XBETA_ - 4.570912459089100E-03 * IS ;
 /* NOTE: HomeOwner_NO is skipped because it is a redundant regressor. */
 XBETA = _XBETA_ + 7.006247729158700E-01 * HomeOwner_YES ;
 XBETA = _XBETA_ - 1.499520049929900E+00 * Gender_Female ;
 /* NOTE: Gender_Male is skipped because it is a redundant regressor. */
 XBETA = _XBETA_ + 9.998154662540800E-01 * CarType_SPORT ;
 XBETA = _XBETA_ + 4.991760039384900E-01 * CarType_TRUCK ;
 /* NOTE: CarType_SEDAN is skipped because it is a redundant regressor. */
 XBETA = _XBETA_ - 1.240552804902500E-02 * AgeDriver ;

 /* NOTE: MyPred_AmountLoss_GAMMA = Alpha * Theta * EXP(_XBETA_) */
 MyPred_AmountLoss_GAMMA = 2.730405549354900E+04 * EXP(_XBETA_);

Example: Generate the PROC SEVERITY Score Code for Insurance Risk 493

 /**/
 /* Distribution: GPD */
 /**/

 XBETA = 0;
 XBETA = _XBETA_ + 1.345090198095600E-02 * MileageDriven ;
 XBETA = _XBETA_ - 4.569987445112400E-03 * IS ;
 /* NOTE: HomeOwner_NO is skipped because it is a redundant regressor. */
 XBETA = _XBETA_ + 7.006260117108500E-01 * HomeOwner_YES ;
 XBETA = _XBETA_ - 1.499518185889600E+00 * Gender_Female ;
 /* NOTE: Gender_Male is skipped because it is a redundant regressor. */
 XBETA = _XBETA_ + 9.998173115643000E-01 * CarType_SPORT ;
 XBETA = _XBETA_ + 4.991779592407300E-01 * CarType_TRUCK ;
 /* NOTE: CarType_SEDAN is skipped because it is a redundant regressor. */
 XBETA = _XBETA_ - 1.240306956097400E-02 * AgeDriver ;

 /* NOTE: MyPred_AmountLoss_GPD = 1 / (1 - Xi) * Theta * EXP(_XBETA_) */
 MyPred_AmountLoss_GPD = 2.728530960810300E+04 * EXP(_XBETA_);

 /**/
 /* Distribution: IGAUSS */
 /**/

 XBETA = 0;
 XBETA = _XBETA_ + 1.344333259472700E-02 * MileageDriven ;
 XBETA = _XBETA_ - 4.572143035437300E-03 * IS ;
 /* NOTE: HomeOwner_NO is skipped because it is a redundant regressor. */
 XBETA = _XBETA_ + 7.006130278360900E-01 * HomeOwner_YES ;
 XBETA = _XBETA_ - 1.499413162869200E+00 * Gender_Female ;
 /* NOTE: Gender_Male is skipped because it is a redundant regressor. */
 XBETA = _XBETA_ + 9.997768449055400E-01 * CarType_SPORT ;
 XBETA = _XBETA_ + 4.991467916958200E-01 * CarType_TRUCK ;
 /* NOTE: CarType_SEDAN is skipped because it is a redundant regressor. */
 XBETA = _XBETA_ - 1.241894446056000E-02 * AgeDriver ;

 /* NOTE: MyPred_AmountLoss_IGAUSS = 1 * Theta * EXP(_XBETA_) */
 MyPred_AmountLoss_IGAUSS = 2.734200065401500E+04 * EXP(_XBETA_);

 /**/
 /* Distribution: LOGN */
 /**/

 XBETA = 0;
 XBETA = _XBETA_ + 1.344165732039300E-02 * MileageDriven ;
 XBETA = _XBETA_ - 4.571943993968500E-03 * IS ;
 /* NOTE: HomeOwner_NO is skipped because it is a redundant regressor. */
 XBETA = _XBETA_ + 7.006057373962000E-01 * HomeOwner_YES ;
 XBETA = _XBETA_ - 1.499427525786600E+00 * Gender_Female ;
 /* NOTE: Gender_Male is skipped because it is a redundant regressor. */
 XBETA = _XBETA_ + 9.997737501240600E-01 * CarType_SPORT ;
 XBETA = _XBETA_ + 4.991635085860000E-01 * CarType_TRUCK ;
 /* NOTE: CarType_SEDAN is skipped because it is a redundant regressor. */
 XBETA = _XBETA_ - 1.241995587270100E-02 * AgeDriver ;

 /* NOTE: MyPred_AmountLoss_LOGN = EXP(Sigma*Sigma/2) * EXP(Mu) * EXP(_XBETA_)
*/
 MyPred_AmountLoss_LOGN = 2.734808258530300E+04 * EXP(_XBETA_);

494 Appendix 6 • Macros for Generating Score Code

 /**/
 /* Distribution: PARETO */
 /**/

 XBETA = 0;
 XBETA = _XBETA_ + 1.344702841631400E-02 * MileageDriven ;
 XBETA = _XBETA_ - 4.573870525107900E-03 * IS ;
 /* NOTE: HomeOwner_NO is skipped because it is a redundant regressor. */
 XBETA = _XBETA_ + 7.006208104018000E-01 * HomeOwner_YES ;
 XBETA = _XBETA_ - 1.499526007562500E+00 * Gender_Female ;
 /* NOTE: Gender_Male is skipped because it is a redundant regressor. */
 XBETA = _XBETA_ + 9.998095632861300E-01 * CarType_SPORT ;
 XBETA = _XBETA_ + 4.991697518801100E-01 * CarType_TRUCK ;
 /* NOTE: CarType_SEDAN is skipped because it is a redundant regressor. */
 XBETA = _XBETA_ - 1.241339040886400E-02 * AgeDriver ;

 /* NOTE: MyPred_AmountLoss_PARETO = 1 / (Alpha - 1) * Theta * EXP(_XBETA_) */
 MyPred_AmountLoss_PARETO = 2.736400276713000E+04 * EXP(_XBETA_);

 /**/
 /* Distribution: STWEEDIE */
 /**/

 XBETA = 0;
 XBETA = _XBETA_ + 1.345898239828500E-02 * MileageDriven ;
 XBETA = _XBETA_ - 4.570041179676800E-03 * IS ;
 /* NOTE: HomeOwner_NO is skipped because it is a redundant regressor. */
 XBETA = _XBETA_ + 7.006207334939600E-01 * HomeOwner_YES ;
 XBETA = _XBETA_ - 1.499496885374900E+00 * Gender_Female ;
 /* NOTE: Gender_Male is skipped because it is a redundant regressor. */
 XBETA = _XBETA_ + 9.998043617045600E-01 * CarType_SPORT ;
 XBETA = _XBETA_ + 4.991607418998200E-01 * CarType_TRUCK ;
 /* NOTE: CarType_SEDAN is skipped because it is a redundant regressor. */
 XBETA = _XBETA_ - 1.239129336545400E-02 * AgeDriver ;

 /* NOTE: MyPred_AmountLoss_STWEEDIE = Lambda * (2 - P) / (P - 1) * Theta *
EXP(_XBETA_) */
 MyPred_AmountLoss_STWEEDIE = 2.726265339822600E+04 * EXP(_XBETA_);

 /**/
 /* Distribution: WEIBULL */
 /**/

 XBETA = 0;
 XBETA = _XBETA_ + 1.350103959448200E-02 * MileageDriven ;
 XBETA = _XBETA_ - 4.569462924201300E-03 * IS ;
 /* NOTE: HomeOwner_NO is skipped because it is a redundant regressor. */
 XBETA = _XBETA_ + 7.007182928623600E-01 * HomeOwner_YES ;
 XBETA = _XBETA_ - 1.499697786981000E+00 * Gender_Female ;
 /* NOTE: Gender_Male is skipped because it is a redundant regressor. */
 XBETA = _XBETA_ + 1.000109511872200E+00 * CarType_SPORT ;
 XBETA = _XBETA_ + 4.989436512356800E-01 * CarType_TRUCK ;
 /* NOTE: CarType_SEDAN is skipped because it is a redundant regressor. */
 XBETA = _XBETA_ - 1.233857684563600E-02 * AgeDriver ;

 /* NOTE: MyPred_AmountLoss_WEIBULL = GAMMA(1 + 1/Tau) * Theta * EXP(_XBETA_) */
 MyPred_AmountLoss_WEIBULL = 2.707248194039600E+04 * EXP(_XBETA_);

END;

Example: Generate the PROC SEVERITY Score Code for Insurance Risk 495

ELSE DO;

 /**/
 /* Set _WARN_ value */
 /**/

 SUBSTR(_WARN_,1,1) = 'M';
END;

LABEL MyPred_AmountLoss_BURR = "Predicted Mean for the Burr Distribution" ;

LABEL MyPred_AmountLoss_EXP = "Predicted Mean for the Exponential Distribution" ;

LABEL MyPred_AmountLoss_GAMMA = "Predicted Mean for the Gamma Distribution" ;

LABEL MyPred_AmountLoss_GPD = "Predicted Mean for the Generalized Pareto
Distribution" ;

LABEL MyPred_AmountLoss_IGAUSS = "Predicted Mean for the Inverse Gaussian
Distribution" ;

LABEL MyPred_AmountLoss_LOGN = "Predicted Mean for the Lognormal Distribution" ;

LABEL MyPred_AmountLoss_PARETO = "Predicted Mean for the Pareto Distribution" ;

LABEL MyPred_AmountLoss_STWEEDIE = "Predicted Mean for the Tweedie Distribution
with Scale Parameter" ;

LABEL MyPred_AmountLoss_WEIBULL = "Predicted Mean for the Weibull Distribution" ;

DROP _nInputMiss _XBETA_;

/**/
/* End scoring code for SEVERITY */
/**/

The following tables are a sampling of the output tables that are created by the example.
For each distribution type, PROC SEVERITY creates these tables: Distribution

496 Appendix 6 • Macros for Generating Score Code

Information, Convergence Status, Optimization Summary, Fit Statistics, and
Parameterization Estimation. The output displays the tables for the stweedie distribution.

Example: Generate the PROC SEVERITY Score Code for Insurance Risk 497

498 Appendix 6 • Macros for Generating Score Code

Example: Generate the PROC SEVERITY Score Code for Insurance Risk 499

500 Appendix 6 • Macros for Generating Score Code

Example: Generate the PROC SEVERITY Score Code for Insurance Risk 501

502 Appendix 6 • Macros for Generating Score Code

Appendix 7

Properties

General Properties . 503

System Properties . 504

Specific Properties for a Project . 505

User-Defined Properties . 508
Organization-Specific User-Defined Properties . 508
SAS User-Defined Properties . 510

Specific Properties for a Version . 511

Specific Properties for Milestones and Tasks . 512

Specific Properties for a Model . 514

Scoring Task Properties . 516

Result Set Properties . 517

Schedule Properties . 518

General Properties
Here is a list of general properties that describe how the repository component is named,
created, and updated.

Property Name Description

Name Identifies the name of the component. This property is Read-only.
You can assign the name when the component is created, a model
is imported, or a report is generated.

Description Specifies user-defined information about the component. You can
modify this property.

Owner Specifies the name of the user who created the component. This
property is Read-only. SAS Model Manager assigns the value
when the component is created.

Date Created Specifies the date on which the component was created. This
property is Read-only.

503

Property Name Description

Date Modified Specifies the date on which the component was last modified. This
property is Read-only. SAS Model Manager assigns the current
date when a change occurs.

System Properties
Here is a list of the system properties that describe the physical storage attributes of a
repository component. To view system properties, click the + icon beside the System
Properties heading to expand the section.

Property Name Description

UUID Specifies the universal unique identifier (UUID),
which is a case-sensitive, 36-character string that
uniquely identifies the repository component. If the
component is renamed, an application that uses the
UUID always maintains the relationship between
components. You can also use the UUID to query
the repository. An example UUID is
cca1ab08-0a28-0e97-0051-0e3991080
867.

SMM Path Specifies the SAS Model Manager path (SMM
Path) that is a network path to the directory that
contains the model folders and files. The format for
an SMM version path is //<RepositoryID>/
MMRoot/<Folder>/<Project>/
<Version>/<ComponentType>. A SAS
Model Manager DATA step client uses this
information. For example, the DSC uses the
SMMPath to identify the location to import a model.

URL Specifies the Uniform Resource Locator (URL) that
is the external web address for the SAS Content
Server location that stores model folders and files.
You can paste the address in a web browser to view
the storage location.

Entity Key Specifies a key that provides access data and
metadata in the SAS Model Manager repository.
The key consists of a component type, repository
name, and a path to the component.

Repository Name Specifies the name of the repository that contains
the component.

504 Appendix 7 • Properties

Specific Properties for a Project

Property Name Description

Lock Project Metadata Specifies that the project metadata is locked and
the project definition cannot be modified.

Default Test Table Specifies a default SAS data set that can be used
to create model assessment reports such as
dynamic lift charts.

Default Scoring Task Input Table Specifies a default SAS data set that is used as the
input data table for all scoring tasks within the
SAS Model Manager project. If you specify a
value for the Default Scoring Task Input Table
property, the value is used as the default input
table in the New Scoring Task window.

Default Scoring Task Output Table Specifies a default SAS data set that defines the
variables to keep in the scoring results table and
the scoring task output table. If you specify a
value of the Default Scoring Task Output Table
property, the value is used as the default output
table in the New Scoring Task window.

Default Performance Table Specifies the default performance table for all
model performance monitoring tasks within a
SAS Model Manager project.

The value of the Default Performance Table
property is used as the default value for the Data
Source column in the Define Performance Task
wizard if a default performance table is not
specified for a version or for the model.

Default Train Table The train table is optional and is used only as
information. However, when a value is specified
for a model's Default Train Table property, SAS
Model Manager does the following:

• uses default train table to validate scoring
functions or scoring model files when a user
publishes the associated project champion
model or challenger models to a database.

• checks the Validate scoring results box in the
Publish Scoring Function window.

The value of the Default Train Table property is
used to validate scoring functions or scoring
model files only if a default train table is not
specified for a version or for the model.

Specific Properties for a Project 505

Property Name Description

State Specifies the current state of the project:

Under Development
specifies the time period from the project start
to the time where the champion model is in a
production environment.

Active
specifies the time period where the champion
model is in a production environment.

Inactive
specifies the time period when a project is
temporarily suspended from the production
environment.

Retired
specifies that the champion model for this
project is no longer in production.

Default Version Specifies the version that contains the champion
model in a production environment.

Model Function Specifies the type of output that your predictive
model project generates. The Model Function
property that you specify affects the model
templates that SAS Model Manager provides
when you are ready to import models into one of
your project's version folders. Once declared, the
Model Function property for a project cannot be
changed. Ensure that the types of models that you
are going to use in the project fit within the
selected model function type. For more
information about the types of model functions,
see Types of Model Functions on page 507.

Interested Party Specifies any person or group that has an interest
in the project. For example, an interested party
would be the business department or the business
analyst whose request led to the creation of a SAS
Model Manager project.

Training Target Variable Specifies the name of the target variable that was
used to train the model.

Target Event Value The target variable value that defines the desired
target variable event.

Class Target Values For class, nominal, ordinal, or interval targets, the
set of possible outcome classes, separated by
commas. For example, binary class target values
might be 1, 0 or Yes, No. Nominal class target
values might be Low, Medium, High. These
values are for information only.

Class Target Level Specifies the class target level of binary, nominal,
ordinal, or interval.

506 Appendix 7 • Properties

Property Name Description

Output Event Probability Variable The output event probability variable name, when
the Model Function property is set to
Classification.

Output Prediction Variable The output prediction variable name, when the
Model Function property is set to Prediction.

Output Classification Variable The output classification variable name, when the
Model Function property is set to Classification.

Output Segmentation Variable The output segmentation variable name, when the
Model Function property is set to Segmentation.

Table A7.1 Types of Model Functions

Model Function Description Example

Analytical Function for any model that is
not Prediction, Classification,
or Segmentation.

None

Prediction Function for models that have
interval targets with
continuous values.

The score output of a
prediction model could
estimate the weight of a
person. The output of a model
would be P_Weight.

Classification Function for models that have
target variables that contain
binary, categorical, or ordinal
values.

DEFAULT_RISK = {Low,
Med, High}

Segmentation Function for segmentation or
clustering models.

Clustering models

Any Specify Any when you
import a SAS code model and
you want a choice of the
model template to use in the
Local Files window. When
you specify Any, SAS Model
Manager lists the available
model templates in the
Choose a model template
list in the Local Files
window.

None

Specific Properties for a Project 507

User-Defined Properties

Organization-Specific User-Defined Properties

Overview of User-Defined Properties
You can create user-defined properties to keep information that is specific to your
organization or business in the appropriate folders in the Project Tree. User-defined
properties can be added by using the Details section of the Project category view or by
using the SAS Model Manager Template Editor. When you use the Template Editor, you
can add a user-defined property to a user-defined model template or you can upload a
UserDefinedProperties.xml file. For information about adding user-defined properties to
a user-defined model template, see “User-Defined Model Templates” on page 148.

User-defined properties that are added using the Details section of the Project category
view are added as a property only for the selected node. You name the property and can
assign it a value.

When you add a user-defined property using the UserDefinedProperties.xml file, you
specify the name of the property, the initial value of the property, and the type of node in
the project tree for which it applies. The user-supplied property is created for the
specified node type when the node is added to the project tree. For example, if the XML
file specifies a user-defined property Version Date for a node type of Document, each
time a Documents folder is added to the project tree, the folder has a property of Version
Date. User-supplied properties are not added to existing nodes in the project tree.

You can specify these node types in the UserDefinedPropertyies.xml file:

• AdHocReport

• AggregatedReport

• AnalyticalModel

• ClassificationModel

• ClusteringModel

• Document

• Milestone

• MilestoneAction

• ModelGroup

• ModelRetrain

• ModelRetrainReport

• PerformanceMonitor

• PredictionModel

• Project

• ReportingTask

• ScoringTask

• Version

508 Appendix 7 • Properties

Create User-Defined Properties Using the Properties Tab
To create a user-defined property:

1. In the Properties tab, right-click and select Add User-Defined Property. The Add
User-Defined Property window appears.

2. In the Name field, add a name. The name can contain letters, the underscore
character (_), and hyphens (-). The name cannot begin with a hyphen. Spaces
cannot be used in the name.

3. In the Value field, enter a value for the user-defined property. Click OK. The user-
defined property is added to the Properties section under User-Defined Properties.

Create User-Defined Properties Using the
UserDefinedProperties.xml File
CAUTION:

Deleting the BusinessContext and DbmsTable properties might result in
unexpected results. SAS Model Manager provides user-supplied properties for use
with SAS Real-Time Decision Manager and SAS In-Database scoring. Unexpected
results might occur in these environments if you delete the BusinessContext property
or the DbmsTable property. For more information, see “SAS User-Defined
Properties” on page 510.

To create a user-defined property:

1. Open the Template Editor by selecting Tools ð Manage Templates

2. Select Browse ð Browse Templates ð UserDefinedProperties.xml ð Open.

3. Add properties using a <Property/> element for each property. These arguments are
required:

name="property-name"
specifies the name of the property.

initial="initial-value "
specifies a value for the property when it is added as a property for the specified
project tree node. If you do not want to specify an initial value, use two double
quotation marks, initial=""

target="node-type"
specifies the project tree node for which the user-supplied value applies. For a
list of node types, see “Overview of User-Defined Properties” on page 508.

Example: <Property name="Version Date" initial=" "
target="Documents"/>

4. To upload the file to the SAS Content Server, select File ð Upload File ð OK.

Here is an example of a UserDefinedProperties.xml file:

<?xml version="1.0" encoding="UTF-8" ?>
<FolderTemplate
 name="User_Defined_Properties">
<!--
 Target defines to apply the property to which folder type . Basically,
 it is referred as the argument type in MMRepositoryImpl.createNamedObject()
 -->
<Properties>
 <Property name="BusinessContext" initial="" target="Project"/>
 <Property name="DbmsTable" initial="" target="Project"/>

User-Defined Properties 509

 <Property name="Division" initial="" target="Version"/>
 <Property name="Consultant" initial="" target="ClassificationModel"/>
 <Property name="Tester" initial="" target="ClassificationModel"/>
 <Property name="Version Date" initial="" target="Documents"/>

</Properties>
</FolderTemplate>

SAS User-Defined Properties
SAS creates some user-defined properties that are used by the SAS Real-Time Decision
Manager and for scoring that is performed using SAS In-Database processing, such as
scoring within a database.

Here are the user-defined properties that are used by the SAS Real-Time Decision
Manager. These fields must be completed by the user:

Property Name Description

BusinessContext Specifies the business context for which the
project is used.

DbmsTable Specifies the name of the input table that is
used in scoring functions. This field should be
specified for the project properties before you
publish a scoring function if you plan to
reference it with a scoring application or in
SAS code.

When you publish a model to a database for the first time, SAS creates some project
user-defined properties. Some of these property values are assigned by SAS after you
complete the Publish Name field in the Publish Models to a Database window.

Here are the publish models to a database user-defined properties.

Property Name Description

ModelNameForEP Specifies the publish name of the model that
has been published to the database using the
SAS Embedded Process.

ScoringFunctionName For a model that has been published to the
database using the scoring function, specifies
the user-defined portion of the scoring
function name. The name can contain letters,
the underscore character (_), and hyphens
(-). The name cannot begin with a hyphen.
Spaces cannot be used in the name.

510 Appendix 7 • Properties

Property Name Description

ScoringFunctionPrefix Specifies a prefix for the scoring function
name. The prefix has a length of 10 characters
and in the format of Yyymmddnnn. You
cannot modify this value. The naming
convention for the prefix is the following:

• Y is a literal character and is fixed for all
prefixes.

• yymmdd is the Greenwich Mean time
(GMT) timestamp of when you select the
Publish Models ð to a database menu
option.

• nnn is a counter that increments by one
each time the scoring function is
successfully completed.

Specific Properties for a Version
Here is a list of the specific properties for a version.

Property Name Description

Default Scoring Task Input Table Specifies a default SAS data set that is used as
the input data table for all scoring tasks within
the SAS Model Manager version. If you
specify a value for the Default Scoring Task
Input Table property, the value is used as the
default input table in the New Scoring Task
window if a default scoring task input table is
not specified for the model.

Default Scoring Task Output Table Specifies a default SAS data set that defines
the variables to keep in the scoring results
table of the scoring task. If you specify a value
for the Default Scoring Task Output Table
property, the value is used as the default
output table in the New Scoring Task window
if a default scoring task output table is not
specified for the model.

Default Performance Table Specifies the default performance table for all
model performance monitoring tasks within a
SAS Model Manager version.

The value of the Default Performance Table
property is used as the default value for the
Performance data source field in the Define
Performance Task wizard if a default
performance table is not specified for the
model.

Specific Properties for a Version 511

Property Name Description

Default Train Table The train table is optional and is used for
information as well as the Training Data Set
Summary report. When a value is specified for
a model's Default Train Table property, SAS
Model Manager does the following:

• uses default train table to validate scoring
functions or scoring model files when a
user publishes the associated project
champion model or challenger models to a
database.

• checks the Validate scoring results box in
the Publish Scoring Function window.

The value of the Default Train Table
property is used to validate scoring functions
or scoring model files only if a default train
table is not specified for the model.

State Specifies the current status of the version.

Champion Model Name If a champion model has been set for a
project, specifies one of the following:

• the name of the present champion model
for the project

• the name of the model that was last set as
the champion model for the project, when
the champion model has been retired or
cleared

Date Frozen Specifies the date on which the version was
frozen.

Production Date Specifies the date on which the status of the
Production milestone task in the version's life
cycle was changed from Started to
Complete.

Date Retired Specifies the date on which the status of the
Retire milestone task in the version's life
cycle was changed from Started to
Complete.

Specific Properties for Milestones and Tasks
Here is a list of the milestone properties.

512 Appendix 7 • Properties

Property Name Description

Actual Start Date Specifies the actual date that the first task for
the milestone is started. This property is Read-
only.

Actual End Date Specifies the actual date when all tasks for the
milestone are finished. This property is Read-
only. SAS Model Manager assigns the value
when the status of every milestone task is set
to Completed.

Planned Start Date Specifies the expected date to start the first
task for milestone.

Planned End Date Specifies the expected date to complete all
tasks for the milestone.

Here is a list of task properties:

Property Name Description

Status Specifies the status of task. Possible values are
Not Started, Started, Completed, or
Approved.

Date Completed Specifies the date on which the task is
finished. This property is Read-only. SAS
Model Manager assigns the value when the
status of the milestone task was changed to
Completed.

Completed By Specifies the name of the user who completed
the task. This property is Read-only.

Date Approved Specifies the date on which completion of the
task is approved. This property is Read-only.

Approved By Specifies the name of the user who approved
completion of the task. This property is Read-
only.

Planned Completion Date Specifies the expected date to complete the
task.

To Be Completed By Specifies the user who is responsible for
completing the task.

To Be Approved By Specifies the user who can approve that the
task is completed.

Specific Properties for Milestones and Tasks 513

Specific Properties for a Model
Here is a list of specific properties for a model that identify the fundamental model data
structures and some of the critical model life cycle dates. Where applicable, project-
based or version-based data structures automatically populate properties for model-based
data structures.

Property Name Description

Default Scoring Task Input Table Specifies a default SAS data set that is used as the
input data table for all of scoring tasks within the
SAS Model Manager project. The model's Default
Scoring Task Input Table property inherits the
property value from the associated version or
project, if one is specified.

Default Scoring Task Output Table Specifies a default SAS data set that defines the
variables to keep in the scoring results table and the
scoring task output table. The model's Default
Scoring Task Output Table property inherits the
property value from the associated version or
project, if one is specified.

Default Performance Table Specifies the default performance table for all model
performance monitoring tasks within a SAS Model
Manager project.

A model's Default Performance Table property
inherits the property value from the associated
version or project, if one is specified. If you do not
specify a performance table, some of the SAS Model
Manager Model Monitoring reports might not be
enabled.

Default Train Table The train table is optional and is used only as
information. However, when a value is specified for
a model's Default Train Table property, SAS
Model Manager does the following:

• uses default train table to validate scoring
functions or scoring model files when a user
publishes the associated project champion model
or challenger models to a database.

• checks the Validate scoring results box in the
Publish Scoring Function window.

Expiration Date Specifies a date property by which the selected
model is obsolete or needs to be updated or replaced.
This property is for informational purposes and is
not associated with any computational action by
SAS Model Manager. This property is optional.

514 Appendix 7 • Properties

Property Name Description

Model Label Specifies a text string that is used as a label for the
selected model in the model assessment charts that
SAS Model Manager creates. If no value is provided
for the Model Label property, SAS Model Manager
uses the text string that is specified for the Model
Name property. The Model Label property can be
useful if the Model Name property that is specified
is too long for use in plots. This property is optional.

Subject Specifies a text string that is used to provide an
additional description for a model, such as a
promotional or campaign code. This property is for
informational purposes and is not associated with
any computational action by SAS Model Manager.
This property is optional.

Algorithm Specifies the computational algorithm that is used
for the selected model. This property cannot be
modified.

Function Specifies the SAS Model Manager function class
that was chosen when the SAS Model Manager
associated project was created. The Function
property specifies the type of output that models in
the predictive model project generate. For more
information, see “Overview of Importing Models”
on page 125.

Modeler Specifies the Modeler ID or, when Modeler ID is
missing, specifies the user ID of the individual who
created the model that is stored in the SPK file for
SAS Enterprise Miner models. Otherwise, the
modeler can be specified during model import for
local files into SAS Model Manager.

Tool Specifies whether the imported model came from
SAS Enterprise Miner or from other modeling tools.

Tool Version Specifies the version number of the tool that is
specified in the Tool property.

Score Code Type Specifies whether the imported model score code is
a DATA step fragment, ready-to-run SAS code, or a
PMML file. Valid values are DATA step, SAS
Program, and PMML.

Note: If the model is created using PMML 4.0, the
Score Code Type is DATA step and not PMML.

Note: SAS Model Manager cannot publish models
to a database whose Score Code Type model
property is set to SAS Program and PMML.

Template Specifies the SAS Model Manager model template
that was used to import the model and to create
pointers to its component files and metadata.

Specific Properties for a Model 515

Property Name Description

Copied From Specifies where the original model is if this model is
copied from another model in the SAS Model
Manager repository.

Target Variable Specifies the name of the target variable for a
classification or prediction model. This property can
be ignored for segmentation, cluster, and other
models that do not use target variables. For example,
if a model predicts when GENDER=M, then the
target variable is GENDER.

Target Event Value Specifies a value for the target event that the model
attempts to predict. This property is used only when
a value is specified for the Target Variable
property. For example, if a model predicts when
GENDER=M, then the target event value is M.

Scoring Task Properties
Here is a list of the Scoring Task properties that provide information that is specific to
the scoring task.

Property Name Description

Scoring Task Type Specifies a value of Test or Production for
the type of scoring task.

SAS Application Server Specifies the name of the SAS Application
Server to which SAS Model Manager is
connected. This value is taken from the SAS
Metadata Repository.

Model Specifies the name of the model whose score
code is to be executed on the SAS Application
Server. This value is set when the scoring task
is created and cannot be modified.

Input Table Specifies the name of the input table (data
source) to be used in scoring. This value is set
when the scoring task is created and cannot be
modified.

516 Appendix 7 • Properties

Property Name Description

Output Table Specifies the name of the output table to be
used in scoring. This value is set when the
scoring task is created. If the scoring task type
is Test, this property identifies the name of
the output file (output_filename.sas7bdat) that
is created by the SAS Application Server
when the score code is executed. Upon
creation, the output file is placed in the
scoring task's folder. If the scoring task type is
Production, then this setting identifies the
output table where the results of the scoring
are written.

See Also
• “Create a Scoring Task” on page 164

• “Modify a Scoring Task” on page 167

• “Execute a Scoring Task” on page 168

• “Schedule Scoring Tasks” on page 170

Result Set Properties
The following property provides information that is specific to the scoring task.

Property Name Description

Number of Observations When Scoring Task Type is set to Test, this
property specifies how many observations are
to be read from the scoring task input table.
This setting enables you to limit the number of
records that are written to the scoring task
output table on the SAS Content Server in
order to reduce operation costs. If a value is
not specified, the default value of 1000 rows
is used for the number of observations.

When Scoring Task Type is set to
Production, this property specifies how many
observations are to be read from the scoring
task input table and displayed when you select
Result Set from the Results tab. The default
value is 0, indicating that there is no limit.
This value cannot be changed in the SAS
Model Manager client. The SAS Model
Manager administrator can modify the value
by using SAS Management Console For more
information, see SAS Model Manager:
Administrator's Guide.

Result Set Properties 517

See Also
• “Create a Scoring Task” on page 164

• “Modify a Scoring Task” on page 167

Schedule Properties
Here are Schedule scoring task properties:

Property Name Description

Job Name Specifies the name of the scheduled job for a
scoring task. The name of the scoring task is
used by default as the job name.

Location Specifies the location of the scoring job
definition in the SAS Metadata Repository.
You set this property using the Advanced
Settings window.

Scheduling Server Specifies the name of the server that schedules
the job for the scoring task. You set this
property using the Advanced Settings
window.

Batch Server Specifies the name of the server that executes
the job for the scoring task. You set this
property using the Advanced Settings
window.

Recurrence Specifies how often the scheduled job for the
scoring task is to be executed: None, Hourly,
Daily, Weekly, Monthly, and Yearly.

SAS Application Server Specifies the name of the SAS Application
Server where the scoring task is to be
executed.

See Also
• “Execute a Scoring Task” on page 168

• “Schedule Scoring Tasks” on page 170

518 Appendix 7 • Properties

Appendix 8

SAS Model Manager R Model
Support

Overview of Using R Models with SAS Model Manager . 519

Preparing R Model Files to Use with SAS/IML . 520
Build an R Model . 520
Prepare an R Model Template File . 521
Prepare R Model Component Files . 522

Overview of Using R Models with SAS Model
Manager

R is a freely available language and environment for statistical computing and graphics.
Using the open architecture of SAS Model Manager, you can register and import R
models. SAS Model Manager requires a model template file and model component files
that are created specifically for R models.

The following SAS components are required to use R models in SAS Model Manager:

• Ensure that the installed R language version is 2.13.0 or later.

• SAS/IML. You must license SAS/IML because the IML procedure is required to
export SAS data sets to R and to submit R code.

• the RLANG system option. You must set this system option.

SAS Model Manager supplies three R model templates that you can use, or you can
create your own using the SAS Model Manager Template Editor. The R model templates
that are provided by SAS Model Manager support the analytic, classification, and
prediction model functions. The segmentation model function is not supported for R
models.

After the model component files are registered, you can perform all SAS Model
Manager functions except for exporting an R model to the SAS Metadata Repository.

To use R models in SAS Model Manager, do the following tasks:

1. Ensure that the RLANG system option is set. To have the RLANG system option set
when SAS starts, have your site administrator add the RLANG system option to the
SAS configuration file.

2. Build an R model. For more information, see “Build an R Model” on page 520.

SAS/IML must be installed before you build an R model.

519

3. Ensure that you have a model template file. For more information, see “Prepare an R
Model Template File” on page 521.

4. Ensure that you have the required model component files. For more information, see
“Prepare R Model Component Files” on page 522.

5. Import the R model. For more information, see “Importing an R Model” on page
142.

Preparing R Model Files to Use with SAS/IML

Build an R Model
Use the following SAS code to create an R model and save it in the outmodel.rda model
component file:

/* Define the libref to the SAS input data set. */

libname libref "path-to-input-data-set";

/* Use PROC IML to export the SAS input data set to the R input data set. */

proc iml;
 run ExportDatasetToR("input-data-set" , "R-matrix-input");

/* Submit the model-fitting R code. */

submit /R;
 attach(R-matrix-input)

 # ---
 # FIT THE MODEL
 # ---
 model-name<- model-fitting-function

 # ---
 # SAVE THE PARAMETER ESTIMATE TO LOCAL FILE OUTMODEL.RDA
 # ---
 save(model-name, file="path/outmodel.rda")
 endsubmit;
run;
quit;

Supply the following values:

path-to-input-data-set
is the path to the library where the input data set is stored.

input-data-set
is the name of the input data set.

R-matrix-input
is the R input data.

model-name
is the name of the model.

520 Appendix 8 • SAS Model Manager R Model Support

model-fitting-function
is the R formula that is used to fit the model.

path
is the path to where outmodel.rda is to be stored.

Here is an example of creating an R model using the HMEQ train data set as the SAS
input data set:

libname mmsamp "!sasroot\mmcommon\sample";
proc iml;
 run ExportDatasetToR("mmsamp.hmeq_train" , "mm_inds");
 submit /R;
 attach(mm_inds)

 # ---
 # FIT THE LOGISTIC MODEL
 # ---
 logiten<- glm(BAD ~ VALUE + factor(REASON) + factor(JOB) + DEROG +
 CLAGE + NINQ + CLNO , family=binomial)

 # ---
 # SAVE THE PARAMETER ESTIMATE TO LOCAL FILE OUTMODEL.RDA
 # ---
 save(logiten, file="c:/RtoMMfiles/outmodel.rda")
 endsubmit;
run;
quit;

Prepare an R Model Template File
SAS Model Manager provides three R model templates that you can use as a model
template for your R model:

• RClassification

• RPrediction

• RAnalyticalmodel

To view these model templates, use the SAS Model Manager Template Editor:

1. Select Tools ð Manage Templates. The SAS Model Manager Template Editor
appears.

2. Select File ð Browse ð Browse Templates. The Browse Templates window
appears.

3. Select an R model template and click Open.

4. Review the model template to make sure that it contains all of the model component
files and properties for your model. If it does, you can use this template to import
your R model. To customize the model template, you can save one of the supplied
template files using a different name and make modifications. You then upload the
model template to the SAS Content Server.

To create a custom R model template, see “Model Template Component Files” on
page 133 and “User-Defined Model Templates” on page 148.

Preparing R Model Files to Use with SAS/IML 521

Prepare R Model Component Files

R Model Component Files for Executing R Models Using SAS/IML
To submit R models from SAS Model Manager using SAS/IML, you need several model
component files:

• modelinput.sas7bdat

• modeloutput.sas7bdat

• target.sas7bdat

• inputvar.xml

• outputvar.xml

• targetvar.xml

• outmodel.rda

• score.r

• score.sas

• training.r (not required if you do not retrain your R model)

• training.sas (not required if you do not retrain your R model)

You create the modelinput.sas7bdat, modeloutput.sas7bdat, target.sas7bdat,
inputvar.xml, outputvar.xml, and targetvar.xml files as you would for importing a SAS
code file. For more information, see “Model Template Component Files” on page 133.

The remaining files, outmodel.rda, score.r, score.sas training.r, and training.sas require
additional file preparation.

Create outmodel.rda
The outmodel.rda file contains the output parameter estimate. This file is used by SAS
Model Manager to register and score the model. You create outmodel.rda when you
build an R model. See “Build an R Model” on page 520. The outmodel.rda file uses the
R function save() to save the scoring results.

Here is the syntax of an outmodel.rda file:

save(model-name, file="path/outmodel.rda")

Supply the following values:

model-name
is the name of the R model.

path
is the system path to the location where outmodel.rda is stored.

Here is an example outmodel.rda file:

save(logiten, file=”c:/temp/outmodel.rda")

Create score.r
The score.r script is an R script that is used to score data. You can use the following R
script to create score.r:

attach(R-matrix-input)

522 Appendix 8 • SAS Model Manager R Model Support

LOAD THE OUTPUT PARAMETER ESTIMATE FROM FILE OUTMODEL.RDA

load('&_mm_scorefilesfolder/outmodel.rda')

SCORE THE MODEL

score<- predict(model-name, type="response", newdata=R-matrix-input)

MERGING PREDICTED VALUE WITH MODEL INPUT VARIABLES

mm_outds <- cbind(R-matrix-input, score)

Supply the following values:

R-matrix-input
is the name of the input R matrix file that you specified in the ExportDatasetToR
function in the IML procedure. See “Build an R Model” on page 520.

score
is the output variable. The value for score must match the output variable that is
defined in modeloutput.sas7bdat and outputvar.xml.

model-name
is the name of the R model. The value of model-name must match the R save
function model-name argument that is specified in the outmodel.rda file.

Here is an example score.r file:

attach(mm_inds)

LOAD THE OUTPUT PARAMETER ESTIMATE FROM FILE OUTMODEL.RDA

load('&_mm_scorefilesfolder/outmodel.rda')

PREDICT

score<- predict(logiten, type="response", newdata=mm_inds)

MERGE THE PREDICTED VALUE WITH MODEL INPUT VARIABLES

mm_outds <- cbind(mm_inds, score)

Create score.sas
The score.sas program defines the score task information in a data set and calls the
%mmbatch macro. When you submit the %mmbatch macro, the task
mm_r_model_train_main completes the following tasks:

• transforms a scoring data set to an R data frame

• generates and submits R code for scoring

• transforms the scored output to a SAS data set for reporting in SAS Model Manager

Here is the score.sas program:

Preparing R Model Files to Use with SAS/IML 523

filename tmp catalog "sashelp.modelmgr.mm_include.source";
%include tmp;
filename tmp;

data work.mm_score_task_information;
 length role $ 8;
 length name $ 80;
 length value $ 200;

 role = "input";
 name = "importedData";
 value = "&_mm_inputds";
 output;

 role = "input";
 name = "modelID";
 value = "&_mm_modelID";
 output;

 role = "output";
 name = "exportedData";
 value = "&_mm_outputds";
 output;

 role = "input";
 name = "dataRole";
 value = "output-variable-name";
 output;

 role = "input";
 name = "p_Target";
 value = "output-variable-name";
 output;
run;

/* mm_r_model_score_main is a SAS Model Manager process flow that is used to run */
/* R model scripts using PROC IML. */

%mmbatch(task=mm_r_model_score_main, taskprops= mm_score_task_information);

Supply the following value:

output-variable-name
is the output variable that is defined in modeloutput.sas7bdat or modeloutput.xml.

To print verbose SAS logs, add the following lines before the RUN statement in the
previous DATA step:

role = "input";
 name = "_mm_trace";
 value = "ON";
 output;

Create training.r
The training.r script is an R script that is used to build a train model. Use the following
script for the training.r file. In the R save function, the path in the file= argument must
be &_MM_TrainResultFolder.

524 Appendix 8 • SAS Model Manager R Model Support

You can use the following script to create training.r:

attach(R-matrix-input)

FIT THE LOGISTIC MODEL

model-name<- model-fitting-function

SAVE THE OUTPUT PARAMETER ESTIMATE TO LOCAL FILE OUTMODEL.RDA

save(model-name, file="&_MM_TrainResultFolder/outmodel.rda")

Supply the following values:

R-matrix-input
is the name of the R matrix that is specified in the ExportMatrixToR function that is
used to build a model using the IML procedure.

model-name
is the name of the R model.

model-fitting-function
is an R model fitting function, such as lm() or glm().

Here is an example training.r R script to build the HMEQ R train model:

attach(mm_inds)

FIT THE LOGISTIC MODEL

logiten<- glm(BAD ~ VALUE + factor(REASON) + factor(JOB) + DEROG + CLAGE +
 NINQ + CLNO , family=binomial)

SAVE THE OUTPUT PARAMETER ESTIMATE TO LOCAL FILE OUTMODEL.RDA

save(logiten, file="&_MM_TrainResultFolder/outmodel.rda")

Create training.sas
If you do not need to retrain your R model in SAS Model Manager, you do not need this
file.

The training.sas program defines the train task information in a data set and calls the
%mmbatch macro. When you submit the %mmbatch macro, the task
mm_r_model_train_main completes the following tasks:

• transforms a training data set to an R data frame

• generates and submits R code for training

• registers the training output parameter estimate file in SAS Model Manage

Here is the training.sas file:

filename tmp catalog "sashelp.modelmgr.mm_include.source";
%include tmp;
filename tmp;

data work.mm_train_task_information;

Preparing R Model Files to Use with SAS/IML 525

 length role $ 8;
 length name $ 80;
 length value $ 200;

 role = "input";
 name = "trainData";
 value = "&_mm_inputds";
 output;

 role = "input";
 name = "modelID";
 value = "&_mm_modelID";
 output;
run;

/* mm_r_model_train_main is a SAS Model Manager process flow that is used to run */
/* R model scripts using PROC IML. */

%mmbatch(task=mm_r_model_train_main, taskprops= mm_train_task_information);

To print verbose SAS logs, add the following lines before the RUN statement in the
previous DATA step:

role = "input";
 name = "_mm_trace";
 value = "ON";
 output;

526 Appendix 8 • SAS Model Manager R Model Support

Appendix 9

Statistical Measures Used in
Basel II Reports

Overview of Statistical Measures Used for Basel II Reports
SAS Model Manager Basel II reports use several statistical measures to validate the
stability, performance, and calibration for the two key types of Basel II risk models: the
Probability of Default (PD) model and the Loss Given Default (LGD) model.

The statistical measures for model validation are grouped into three categories:

Category Description

Model Stability Tracks the change in distribution of the modeling data and
scoring data.

Model Performance • Measures the ability of a model to discriminate between
customers with accounts that have defaulted, and
customers with accounts that have not defaulted. The
score difference between non-default and default accounts
helps determine the required cutoff score. The cutoff
score helps predict whether a credit exposure is a default
account.

• Measures the relationship between the actual default
probability and the predicted default probability. This
helps you understand the performance of a model over a
time period.

Model Calibration Checks the accuracy of the PD and LGD models by
comparing the correct quantification of the risk components
with the available standards.

The sections that follow describe the measures, statistics, and tests that are used to create
the PD and LGD reports. For more information about these measures, statistics, and
tests, see the SAS Model Manager product documentation page on
support.sas.com.

Model Stability Measure
The following table describes the model stability measure that is used to create the PD
report and the LGD reports.

527

http://support.sas.com/documentation/onlinedoc/modelmgr

Measure Description
PD
Report

LGD
Report

System Stability
Index (SSI)

SSI monitors the score distribution over a time
period.

Yes Yes

Model Performance Measures and Statistics
The following table describes the model performance measures that are used to create
the PD and LGD reports.

Measure Description
PD
Report

LGD
Report

Accuracy Accuracy is the proportion of the total number
of predictions that were correct.

Yes No

Accuracy Ratio (AR) AR is the summary index of Cumulative
Accuracy Profile (CAP) and is also known as
Gini coefficient. It shows the performance of
the model that is being evaluated by depicting
the percentage of defaulted accounts that are
captured by the model across different scores.

Yes Yes

Area Under Curve
(AUC)

AUC can be interpreted as the average ability
of the rating model to accurately classify non-
default accounts and default accounts. It
represents the discrimination between the two
populations. A higher area denotes higher
discrimination. When AUC is 0.5, it means
that non-default accounts and default accounts
are randomly classified, and when AUC is 1, it
means that the scoring model accurately
classifies non-default accounts and default
accounts. Thus, the AUC ranges between 0.5
and 1.

Yes No

Bayesian Error Rate
(BER)

BER is the proportion of the whole sample that
is misclassified when the rating system is in
optimal use. For a perfect rating model, the
BER has a value of zero. A model's BER
depends on the probability of default. The
lower the BER, and the lower the classification
error, the better the model.

Yes No

D Statistic The D Statistic is the mean difference of scores
between default accounts and non-default
accounts, weighted by the relative distribution
of those scores.

Yes No

Error Rate The Error Rate is the proportion of the total
number of incorrect predictions.

Yes No

528 Appendix 9 • Statistical Measures Used in Basel II Reports

Measure Description
PD
Report

LGD
Report

Information Statistic
(I)

The Information Statistic value is a weighted
sum of the difference between conditional
default and conditional non-default rates. The
higher the value, the more likely a model can
predict a default account.

Yes No

Kendall’s Tau-b Kendall's tau-b is a nonparametric measure of
association based on the number of
concordances and discordances in paired
observations. Kendall's tau values range
between -1 and +1, with a positive correlation
indicating that the ranks of both variables
increase together. A negative association
indicates that as the rank of one variable
increases, the rank of the other variable
decreases.

Yes No

Kullback-Leibler
Statistic (KL)

KL is a non-symmetric measure of the
difference between the distributions of default
accounts and non-default accounts. This score
has similar properties to the information value.

Yes No

Kolmogorov-
Smirnov Statistic
(KS)

KS is the maximum distance between two
population distributions. This statistic helps
discriminate default accounts from non-default
accounts. It is also used to determine the best
cutoff in application scoring. The best cutoff
maximizes KS, which becomes the best
differentiator between the two populations.
The KS value can range between 0 and 1,
where 1 implies that the model is perfectly
accurate in predicting default accounts or
separating the two populations. A higher KS
denotes a better model.

Yes No

1–PH Statistic (1–
PH)

1-PH is the percentage of cumulative non-
default accounts for the cumulative 50% of the
default accounts.

Yes No

Mean Square Error
(MSE), Mean
Absolute Deviation
(MAD), and Mean
Absolute Percent
Error (MAPE)

MSE, MAD, and MAPE are generated for
LGD reports. These statistics measure the
differences between the actual LGD and
predicted LGD.

No Yes

Statistical Measures Used in Basel II Reports 529

Measure Description
PD
Report

LGD
Report

Pietra Index The Pietra Index is a summary index of
Receiver Operating Characteristic (ROC)
statistics because the Pietra Index is defined as
the maximum area of a triangle that can be
inscribed between the ROC curve and the
diagonal of the unit square.

The Pietra Index can take values between 0
and 0.353. As a rating model's performance
improves, the value is closer to 0.353. This
expression is interpreted as the maximum
difference between the cumulative frequency
distributions of default accounts and non-
default accounts.

Yes No

Precision Precision is the proportion of the actual default
accounts among the predicted default accounts.

Yes No

Sensitivity Sensitivity is the ability to correctly classify
default accounts that have actually defaulted.

Yes No

Somers’ D (p-value) Somers' D is a nonparametric measure of
association that is based on the number of
concordances and discordances in paired
observations. It is an asymmetric modification
of Kendall's tau. Somers' D differs from
Kendall’s tau in that it uses a correction only
for pairs that are tied on the independent
variable. Values range between -1 and +1. A
positive association indicates that the ranks for
both variables increase together. A negative
association indicates that as the rank of one
variable increases, the rank of the other
variable decreases.

Yes No

Specificity Specificity is the ability to correctly classify
non-default accounts that have not defaulted.

Yes No

Validation Score The Validation Score is the average scaled
value of seven distance measures, anchored to
a scale of 1 to 13, lowest to highest. The seven
measures are the mean difference (D), the
percentage of cumulative non-default accounts
for the cumulative 50% of the default accounts
(1-PH), the maximum deviation (KS), the Gini
coefficient (G), the Information Statistic (I),
the Area Under the Curve (AUC), or Receiver
Operating Characteristic (ROC) statistic, and
the Kullback-Leibler statistic (KL).

Yes No

530 Appendix 9 • Statistical Measures Used in Basel II Reports

Model Calibration Measures and Tests
The following table describes the model calibration measures and tests that are used to
create the PD and LGD reports:

Measure Description
PD
Report

LGD
Report

Binomial Test The Binomial Test evaluates whether the PD
of a pool is correctly estimated. It does not
take into account correlated defaults, and it
generally yields an overestimate of the
significance of deviations in the realized
default rate from the forecast rate. The
Modified Binomial Test now addresses the
overestimate. This test takes into account the
correlated defaults1. The default correlation
coefficient in SAS Model Manager is 0.04. By
using past banking evaluations, you can use
these rho values2:

rho=0.04 Qualifying revolving retail

rho=0.15 Residential mortgage

rho=0.16 Other retail

rho=0.24 Corporations, sovereign, and
banks

If the number of default accounts per pool
exceeds either the low limit (binomial test at
0.95 confidence) or high limit (binomial test at
0.99 confidence), the test suggests that the
model is poorly calibrated.

To change the default rho value, contact your
SAS Model Manager administrator. The value
is a SAS Model Manager report option in SAS
Management Console.

Yes No

Brier Skill Score
(BSS)

BSS measures the accuracy of probability
assessments at the account level. It measures
the average squared deviation between
predicted probabilities for a set of events and
their outcomes. Therefore, a lower score
represents a higher accuracy.

Yes No

1 Rauhmeier, Robert, and Englemann, Bernd. "PD Validation - Experience from Banking Practice." Available at http://
d.yimg.com/kq/groups/12093474/1121755262/name/The+Basel+II+Risk+Parameters.pdf

2 Rauhmeier, Robert, and Englemann, Bernd. "PD Validation - Experience from Banking Practice." Available at http://
d.yimg.com/kq/groups/12093474/1121755262/name/The+Basel+II+Risk+Parameters.pdf

Statistical Measures Used in Basel II Reports 531

Measure Description
PD
Report

LGD
Report

Confidence Interval The Confidence Interval indicates the
confidence interval band of the PD or LGD for
a pool. The Probability of Default report
compares the actual and estimated PD rates
with the CI limit of the estimate. If the
estimated PD lies in the CI limits of the actual
PD model, the PD performs better in
estimating actual outcomes.

For the Loss Given Default (LGD) report,
confidence intervals are based on the pool-
level average of the estimated LGD, plus or
minus the pool-level standard deviation, and
multiplied by the 1-(alpha/2) quantile of the
standard normal distribution.

Yes Yes

Correlation Analysis The model validation report for LGD provides
a correlation analysis of the estimated LGD
with the actual LGD. This correlation analysis
is an important measure for a model’s
usefulness. The Pearson correlation
coefficients are provided at the pool and
overall levels for each time period are
examined.

No Yes

Hosmer-Lemeshow
Test (p-value)

The Hosmer-Lemeshow test is a statistical test
for goodness-of-fit for classification models.
The test assesses whether the observed event
rates match the expected event rates in pools.
Models for which expected and observed event
rates in pools are similar are well calibrated.
The p-value of this test is a measure of the
accuracy of the estimated default probabilities.
The closer the p-value is to zero, the poorer the
calibration of the model.

Yes No

Mean Absolute
Deviation (MAD)

MAD is the distance between the account level
estimated and the actual loss LGD, averaged at
the pool level.

No Yes

Mean Absolute
Percent Error
(MAPE)

MAPE is the absolute value of the account-
level difference between the estimated and the
actual LGD, divided by the estimated LGD,
and averaged at the pool level.

No Yes

Mean Squared Error
(MSE)

MSE is the squared distance between the
account level estimated and actual LGD,
averaged at the pool level.

No Yes

532 Appendix 9 • Statistical Measures Used in Basel II Reports

Measure Description
PD
Report

LGD
Report

Normal Test The Normal Test compares the normalized
difference of predicted and actual default rates
per pool with two limits estimated over
multiple observation periods. This test
measures the pool stability over time. If a
majority of the pools lie in the rejection region,
to the right of the limits, then the pooling
strategy should be revisited.

Yes No

Observed versus
Estimated Index

The observed versus estimated index is a
measure of closeness of the observed and
estimated default rates. It measures the model's
ability to predict default rates. The closer the
index is to zero, the better the model performs
in predicting default rates.

Yes No

Traffic Lights Test The Traffic Lights Test evaluates whether the
PD of a pool is underestimated, but unlike the
binomial test, it does not assume that cross-
pool performance is statistically independent.
If the number of default accounts per pool
exceeds either the low limit (Traffic Lights
Test at 0.95 confidence) or high limit (Traffic
Lights Test at 0.99 confidence), the test
suggests the model is poorly calibrated.

Yes No

Statistical Measures Used in Basel II Reports 533

534 Appendix 9 • Statistical Measures Used in Basel II Reports

Appendix 10

Report and Performance
Monitoring Examples

Dashboard Report Examples . 535
KPI Dashboard Report . 535
KPI Detail Report . 537
KPI Trend Report . 538
Monitoring Report . 540

Model Retrain Comparison Report Example . 544
Lift Charts . 544
ROC Charts . 548
KS Charts . 549

Monitoring Performance of a Model without Score Code 551

Dashboard Report Examples

KPI Dashboard Report
Here is an example of the KPI Dashboard Report for the HMEQ project:

535

536 Appendix 10 • Report and Performance Monitoring Examples

KPI Detail Report
Here is an example of the KPI Detail Report for the HMEQ project:

Dashboard Report Examples 537

KPI Trend Report
Here is an example of the KPI Trend Report for the HMEQ project.

538 Appendix 10 • Report and Performance Monitoring Examples

Dashboard Report Examples 539

Monitoring Report
Here are several examples of the graphs that are displayed in the Monitoring Report for
the HMEQ project.

540 Appendix 10 • Report and Performance Monitoring Examples

Dashboard Report Examples 541

A KS Chart for each time frame is displayed on the Monitoring Report. Here are
examples for the second and third quarters of 2012.

542 Appendix 10 • Report and Performance Monitoring Examples

The following is a partial output of a Characteristic Deviation Index Table:

Dashboard Report Examples 543

Model Retrain Comparison Report Example
Here is an example of the model retrain comparison report for the retrained model
Tree1_20130607T152714 and the HMEQ_STAT_item model.

Lift Charts

544 Appendix 10 • Report and Performance Monitoring Examples

Model Retrain Comparison Report Example 545

546 Appendix 10 • Report and Performance Monitoring Examples

Model Retrain Comparison Report Example 547

ROC Charts

548 Appendix 10 • Report and Performance Monitoring Examples

KS Charts

Model Retrain Comparison Report Example 549

550 Appendix 10 • Report and Performance Monitoring Examples

Monitoring Performance of a Model without Score
Code

If you want to monitor the performance of a model for which you no longer have the
score code, you can import a model without SAS score code. If the performance data set
contains the predicted values, the score.sas file can be empty.

To monitor the performance of a model without score code:

1. Prepare the following model files:

• XML file that defines the model input variables (inputvar.xml)

• XML file that defines the model output variables (outputvar.xml)

• XML file that defines the model target variables (targetvar.xml)

• empty SAS score code file (score.sas)

2. Create a project that has a model function type of Classification or Prediction, and
create a version. You can skip this step if you have already created a project and
version.

3. If it is a project that has a model function property value of Classification, verify
that the following project properties are set:

• Training Target Variable (for example, bad)

• Target Event Value (for example, 1)

• Class Target Level as Binary

• Output Event Probability Variable (for example, score)

If it is a project that has a model function property value of Prediction, verify that
the following project properties are set:

• Training Target Variable (for example, lgd)

• Class Target Level as Interval

• Output Prediction Variable (for example, p_lgd)

4. In the Project Tree, navigate to the project’s version.

MMRoot ð organizational folder ð project folder ð version folder

5. Right-click Models and select Import from ð Local Files.

Note: If the model already exists, you can right-click the model name and select
Partial Import to import an empty score.sas file, and then skip to step 11. For
more information, see “Import Partial Models” on page 144.

6. Navigate to the folder on your computer that contains the component files for your
model.

7. Select a classification or prediction template from the Choose a model template list.

8. Enter a text value in the model Name field.

9. Complete the template fields. Drag the files from the left of the window to the
corresponding file property on the right. The following files are required:

• inputvar.xml

Monitoring Performance of a Model without Score Code 551

• outputvar.xml

• targetvar.xml

• score.sas

Note: The filenames that you created for the model do not have to match the
template filenames. However, the file contents must meet the file property
requirements. For more information, see “Model Template Component Files” on
page 133 or “Model Template Properties” on page 152.

10. Click OK. After SAS Model Manager processes the model import request, the new
model appears in the Models folder of your project's version.

11. Select the model in the Project Tree, and set the model-specific properties. The value
for the Score Code Type property must be set to DATA step.

12. Right-click the model, and select Set Model Output Mapping in order to set the
output variable mappings for the model. Click the list in the Models Variables
column and select the model output variable. Click OK.

13. Right-click the champion model and select Set as Champion. For more information,
see “Ensure That the Champion Model Is Set or That the Challenger Model Is
Flagged” on page 266.

14. Before defining a performance task, verify that the performance data set is registered
in SAS Management Console or that a libref has been defined for the performance
data set library using the Edit Start-up Code window. Make sure that the data set
contains the following variables:

• model input variables

Note: You must have the variable columns in the table, but the values can be
missing.

• target variable

• prediction variables

• variables for characteristic analysis

15. Define a performance task using the performance data set that contains the predicted
values. Also, be sure to clear the Run model score code option for the Data
Processing Method section of the Define Performance Task wizard. For more
information, see “Run the Define Performance Task Wizard” on page 268.

552 Appendix 10 • Report and Performance Monitoring Examples

Glossary

activity
See task

activity status
See task status

analytical model
a statistical model that is designed to perform a specific task or to predict the
probability of a specific event.

attribute
See variable attribute

baseline
the initial performance prediction against which the output data from later tasks is
compared.

bin
a grouping of predictor variable values that is used for frequency analysis.

candidate model
a predictive model that evaluates a model's predictive power as compared with the
champion model's predictive power.

challenger model
a model that is compared and assessed against a champion model for the purpose of
replacing the champion model in a production scoring environment.

champion model
the best predictive model that is chosen from a pool of candidate models in a data
mining environment.

characteristic report
a report that detects and quantifies shifts in the distribution of input variables over
time in data that is used to create predictive models.

classification model
a predictive model that has a categorical, ordinal, or binary target.

553

clustering model
a model in which data sets are divided into mutually exclusive groups in such a way
that the observations for each group are as close as possible to one another, and
different groups are as far as possible from one another.

component file
a file that defines a predictive model. Component files can be SAS programs or data
sets, XML files, log files, SPK files, or CSV files.

data model training
the process of building a predictive model from data.

data object
an object that holds the business data that is required to execute workflow tasks.

data set
See SAS data set

data source
a table, view, or file from which you will extract information. Sources can be in any
format that SAS can access, on any supported hardware platform. The metadata for a
source is typically an input to a job.

DATA step
in a SAS program, a group of statements that begins with a DATA statement and that
ends with either a RUN statement, another DATA statement, a PROC statement, or
the end of the job. The DATA step enables you to read raw data or other SAS data
sets and to create SAS data sets.

DATA step fragment
a block of SAS code that does not begin with a DATA statement. In SAS Model
Manager, all SAS Enterprise Miner models use DATA step fragments in their score
code.

delta report
a report that compares the input and output variable attributes for each of the
variables that are used to score two candidate models.

dynamic lift report
a graphical report that plots the sequential lift performance of one or more models
over time, against test data.

file reference
See fileref

fileref
a name that is temporarily assigned to an external file or to an aggregate storage
location such as a directory or a folder. The fileref identifies the file or the storage
location to SAS.

format
See SAS format

Gini coefficient
a benchmark statistic that is a measure of the inequality of distribution, and that can
be used to summarize the predictive accuracy of a model.

554 Glossary

holdout data
a portion of the historical data that is set aside during model development. Holdout
data can be used as test data to benchmark the fit and accuracy of the emerging
predictive model.

informat
See SAS informat

input variable
a variable that is used in a data mining process to predict the value of one or more
target variables.

instance
See workflow instance

Kolmogorov-Smirnov chart
a chart that shows the measurement of the maximum vertical separation, or deviation
between the cumulative distributions of events and non-events.

library reference
See libref

libref
a SAS name that is associated with the location of a SAS library. For example, in the
name MYLIB.MYFILE, MYLIB is the libref, and MYFILE is a file in the SAS
library.

life cycle phase
a collection of milestones that complete a major step in the process of selecting and
monitoring a champion model. Typical life cycle phases include development, test,
production, and retire.

logistic regression
a form of regression analysis in which the target variable (response variable)
represents a binary-level, categorical, or ordinal-level response.

macro variable
a variable that is part of the SAS macro programming language. The value of a
macro variable is a string that remains constant until you change it. Macro variables
are sometimes referred to as symbolic variables.

metadata
descriptive data about data that is stored and managed in a database, in order to
facilitate access to captured and archived data for further use.

milestone
a collection of tasks that complete a significant event. The significant event can
occur either in the process of selecting a champion model, or in the process of
monitoring a champion model that is in a production environment.

model assessment
the process of determining how well a model predicts an outcome.

model function
the type of statistical model, such as classification, prediction, or segmentation.

Glossary 555

model input variable report
reports the frequencies that input variables are used in the models for an
organizational folder, a project, or a version.

model profile report
reports the profile data that is associated with the model input variables, output
variables, and target variables.

model scoring
the process of applying a model to new data in order to compute outputs.

model target variable report
a report that indicates the frequency in which target variables are used in the models
that exist in the selected folder.

neural network
any of a class of models that usually consist of a large number of neurons,
interconnected in complex ways and organized into layers. Examples are flexible
nonlinear regression models, discriminant models, data reduction models, and
nonlinear dynamic systems.

observation
a row in a SAS data set. All of the data values in an observation are associated with a
single entity such as a customer or a state. Each observation contains either one data
value or a missing-value indicator for each variable.

organizational folder
a folder in the SAS Model Manager Project Tree that is used to organize project and
document resources. An organizational folder can contain zero or more
organizational folders in addition to other objects.

output variable
in a data mining process, a variable that is computed from the input variables as a
prediction of the value of a target variable.

package
See SAS package file

package file
See SAS package file

participant
a user, group, or role that is assigned to a task. These users, groups, and roles are
defined in SAS metadata and are mapped to standard roles for the workflow.

performance table
a table that contains response data that is collected over a period of time.
Performance tables are used to monitor the performance of a champion model that is
in production.

PFD
See process flow diagram

PMML
See Predictive Modeling Markup Language

556 Glossary

prediction model
a model that predicts the outcome of an interval target.

Predictive Modeling Markup Language
an XML based standard for representing data mining results for scoring purposes. It
enables the sharing and deployment of data mining results between applications and
across data management systems. Short form: PMML.

process flow diagram
a graphical sequence of interconnected symbols that represent an ordered set of steps
or tasks that, when combined, form a workflow designed to yield an analytical result.

production models aging report
reports the number and the aging distribution of champion models.

profile data
information that consists of the model name, type, length, label, format, level, and
role.

project
a collection of models, SAS programs, data tables, scoring tasks, life cycle data, and
reporting documents.

project tree
a hierarchical structure made up of folders and nodes that are related to a single
folder or node one level above it and to zero, one, or more folders or nodes one level
below it.

property
any of the characteristics of a component that collectively determine the component's
appearance and behavior. Examples of types of properties are attributes and methods.

publication channel
an information repository that has been established using the SAS Publishing
Framework and that can be used to publish information to users and applications.

Receiver Operating Characteristic chart
a chart used in signal detection theory to plot the sensitivity, or true positive rate,
against the false positive rate (1 − specificity, or 1 − true negative rate) of binary data
values. An ROC chart is used to assess a model's predictive performance. Short
form: ROC

ROC
See Receiver Operating Characteristic chart

SAS code model
a SAS program or a DATA step fragment that computes output values from input
values. An example of a SAS code model is the LOGISTIC procedure.

SAS data set
a file whose contents are in one of the native SAS file formats. There are two types
of SAS data sets: SAS data files and SAS data views.

SAS format
a type of SAS language element that is used to write or display data values according
to the data type: numeric, character, date, time, or timestamp. Short form: format.

Glossary 557

SAS informat
a type of SAS language element that is used to read data values according to the
data's type: numeric, character, date, time, or timestamp. Short form: informat.

SAS Metadata Repository
a container for metadata that is managed by the SAS Metadata Server.

SAS Model Manager repository
a location in the SAS Content Server where SAS Model Manager data is stored,
organized, and maintained.

SAS package file
a container for data that has been generated or collected for delivery to consumers by
the SAS Publishing Framework. Packages can contain SAS files, binary files, HTML
files, URLs, text files, viewer files, and metadata.

SAS publication channel
See publication channel

SAS variable
a column in a SAS data set or in a SAS data view. The data values for each variable
describe a single characteristic for all observations (rows).

scoring
See model scoring

scoring function
a user-defined function that is created by the SAS Scoring Accelerator from a
scoring model and that is deployed inside the database.

scoring task
a workflow that executes a model's score code.

scoring task input table
a table that contains the variables and data that are used as input in a SAS Model
Manager scoring task.

scoring task output table
a table that contains the output variables and data that result from performing a SAS
Model Manager scoring task. Before executing a scoring task, the scoring task output
table defines the variables to keep as the scoring results.

segmentation model
a model that identifies and forms segments, or clusters, of individual observations
that are associated with an attribute of interest.

source
See data source

SPK
See SAS package file

stability report
a graphical report that detects and quantifies shifts in the distribution of output
variables over time in data that is produced by a model.

558 Glossary

swimlane
a workflow diagram element that enables you to group tasks that are assigned to the
same participant.

target event value
for binary models, the value of a target variable that a model attempts to predict. In
SAS Model Manager, the target event value is a property of a model.

target variable
a variable whose values are known in one or more data sets that are available (in
training data, for example) but whose values are unknown in one or more future data
sets (in a score data set, for example). Data mining models use data from known
variables to predict the values of target variables.

task
a workflow element that associates executable logic with an event such as a status
change or timer event.

task status
the outcome of a task in a workflow. The status of a task (for example, Started,
Canceled, Accepted) is typically used to trigger the next task.

test table
a SAS data set that is used as input to a model that tests the accuracy of a model's
output.

training data
data that contains input values and target values that are used to train and build
predictive models.

universal unique identifier
a number that is used to uniquely identify information in distributed systems without
significant central coordination. There are 32 hexadecimal digits in a UUID, and
these are divided into five groups with hyphens between them as follows:
8-4-4-4-12. Altogether the 16-byte (128 bit) canonical UUID has 32 digits and 4
hyphens, or 36 characters.

user-defined report
a customized report. The customized report is a SAS program and its auxiliary files
and is stored on the workspace server that is used by SAS Model manager. You
access a user defined report by using the New Reports wizard.

UUID
See universal unique identifier

variable
See SAS variable

variable attribute
any of the following characteristics that are associated with a particular variable:
name, label, format, informat, data type, and length.

version folder
a folder in the Project Tree that typically represents a time phase and that contains
models, scoring tasks, life cycle data, reports, documents, resources, and model
performance output.

Glossary 559

view
a particular representation of a model’s data.

workflow
a series of tasks, together with the participants and the logic that is required to
execute the tasks. A workflow includes policies, status values, and data objects.

workflow definition
a workflow template that has been uploaded to the server and activated. Workflow
definitions are used by the SAS Workflow Engine to create new workflow instances.

workflow instance
a workflow that is running in the SAS Workflow Engine. After a workflow template
is uploaded to the server and activated, client applications can use the template to
create and run a new copy of the workflow definition. Each new copy is a workflow
instance.

workflow template
a model of a workflow that has been saved to an XML file.

560 Glossary

Index

Special Characters
%AA_Model_Register macro 454
%mdlmgr_AddFolder macro 464
%mdlmgr_AddProject macro 465
%mdlmgr_AddVersion macro 467
%mdlmgr_SetProperty macro 468
%MM_AddModelFile macro 407
%MM_CreateModelDataset macro 437
%MM_GetModel macro 295
%MM_GetModelFile macro 410
%MM_GetModels macro 294, 295
%MM_GetURL macro 414
%MM_RegisterByFolder macro 432
%MM_RunReports macro 300

macro variables used by 299

A
access macros

%MM_AddModelFile 407
%MM_CreateModelDataset 437
%MM_GetModelFile 410
%MM_GetURL 414
%MM_RegisterByFolder 432
accessing 404
global macro variables and 402
identifying files used by 405
identifying model repository objects

404
required global macro variables 402
required tables 405

ad hoc reports 199, 201
compared with user-defined reports 200
creating 202
example 202

add a Project Tree node
folder 464
project 465
version 467

aggregate report
create 340

delete 342
edit 341

aggregate reports 339
view 341

alert notifications 259
analytical model

query 397
specifying for model import 152
template 132

Approvers
groups as, for life cycle templates 79
life cycle template participants 79
Model Manager Example Life Cycle

Approvers 20
assessing models

tasks by user groups 23
Assessment Charts 305
Assignees

groups as, for life cycle templates 79
life cycle template participants 79
Model Manager Example Life Cycle

Assignees 20
associating documents 49
attaching documents 51

B
Basel II reports 191
batch performance reports 279

accessing performance data set 300
copying example batch programs 281
creating folder structure for 279
defining report folders and data sets

298
defining specifications 283
e-mail recipient specifications 286
encoding passwords 300
example code 302
export channel for 281
extracting champion model from a

channel 294

561

job scheduling specifications 290
librefs for running 298
performance data for 281
prerequisites for running 279
project specifications 284
publishing champion model from

project folder 279
report output in production mode 283
report output in test mode 282
report specifications 287, 291
SAS code for running 297
user ID and password for 282

browse templates 140
Browse Templates window 80, 133

C
category views 10

Data Sources 13
Life Cycle 12
Projects 10

challenger models 219
Champion and Challenger report

output files 310
champion models 216

clearing 218
deploying 216
extracting from a channel 294
monitoring performance tasks by user

groups 25
monitoring process 260
performance monitoring 251
publishing 229
publishing for batch performance

reports 279
replacing/retiring 247
requirements for 217
setting 217
setting status 66

channels
export channel for batch performance

reports 281
extracting champion model from 294
publishing models to 224

Characteristic reports 252, 254, 255
example 256
overview 254
performance index warnings and alerts

259
classification model

query 397
specifying for model import 152
template 132

clustering model
query 397
specifying for model import 152

columns
managing 349

comparison reports
See model comparison reports

component files
model templates 133

content files, scoring task 175
create aggregate report 340
current.sas7bdat data set 296

D
dashboard reports 313

define 314
delete report definition 325
edit indicators 324
generate 319
manage 325
viewing 320

Data Composition reports 252, 254
Characteristic report 252, 254, 255
Stability report 252, 254, 255

data sets 6
containing model information 437
current.sas7bdat 296
performance data sets 264, 300
performance tables 36
project control tables 33
project input tables 34
project output tables 34
scoring task input tables 35

data source tables
local or network drive 42

data sources 31
performance table 40
project input table 37
project output table 37
registering 32
scoring task input tables 39
scoring task output tables 39
tables 4, 32
test table 40

Data Sources category view 10, 13
DATA step

accessing performance data set 300
database

prerequisites for publishing 234
Define Performance Task wizard

naming performance tables for use with
41

prerequisites for running 266
running 268

degradation of models 253
delete aggregate report 342
delete dashboard report definition 325
delete schedule 172

562 Index

delivering models
tasks by user groups 24

Delta reports 184
deploying models 215

champion models 216
freezing models 220
tasks by user groups 24

documents
associating with folders 49
attaching to folders 51
saving 51
showing versions 51
subfolder 49
viewing 51

Documents folder
associating documents with 49

Dynamic Lift reports 186
creating 188
creating test tables 40
verifying model properties 187
verifying project properties 187

E
edit aggregate report 341
Edit menu 18
edit schedule 170
encoding passwords 300
environment, operational 5
export channel

for batch performance reports 281
extracting

champion model from a channel 294
published models 228

F
File menu 18
folders

associating documents with 49
attaching documents to 51
creating organizational folders 48
creating project control group 103
project folder organization 56
project folder tasks 57
structure for batch performance reports

279
version folder organization 72
version folder tasks 73

freezing
models 220
versions 221

G
general properties 503

general tasks 26
Gini plots 257
Gini Trend Chart 306, 308
global macro variables 402
graphing scoring task results 172
groups 4, 20

H
Help menu 19

I
importing models 125

from metadata repository 127
mapping model variables to project

variables 146
model templates 131
package files from SAS Enterprise

Miner 128
partial models 144
PMML models 143
R model 142
SAS code models 130, 140
setting model properties 145
tasks by user groups 23
user-defined model templates 148

In-Database Scoring 231
indexes

warnings and alerts 259
input data variable distribution shifts 255
input variables 61, 64
Interval Target Variable report 189

J
job scheduling specifications

batch performance reports 290

K
Kolmogorov-Smirnov (KS) plots 257
KS Chart 306, 308
KS reports 257
KS Trend Chart 306, 308

L
libref 42
librefs

%MM_RunReports macro 300
access batch performance data sets 300
batch performance reports 283
R model 520
running batch performance reports 298

Index 563

SAS Model Manager access macros
405

user-defined report 207
Life Cycle category view 10
life cycle templates 75

accessing 80
adding milestones 83
creating 75, 82
creating from a sample 81
deleting 80
groups as Assignees and Approvers 79
milestone properties 86
modifying 84
participants 78
properties 86
SAS Model Manager Template Editor

window 76
saving 80
selecting participants 79
task properties 87
template properties 86
viewing 94

life cycles 92
definition 92
milestone organization 92
properties 96
searching for tasks assigned to users

398
tasks 93
updating milestone status 95

Life Cycles category view 12
life style templates

adding tasks 84
Lift Trend chart 306, 308
Local Files method

importing R models 142
importing SAS code models 130

logs
publishing scoring functions 244
publishing scoring model files 244

Loss Given Default (LGD) report 193

M
macro variables

%MM_RunReports macro 299
ad hoc report 202
defining for user-defined reports 205
description of 0
global 207, 402
optional for report monitoring 299
required for access macros 402
to define report folders and data sets

298
macros

accessing report macros 295, 298

accesssing Project Tree and property
macros 460

adding Project Tree nodes 464
create property table 461

manage
workflow 367

manage dashboard reports 325
managing

columns 349
mapping variables

model variables to project variables 146
scoring task output variables 167

menus 10, 18
metadata

project metadata 67
metadata repository

importing models from 127
viewing MiningResult objects in 230

metadata tables
publishing scoring functions 244

milestones
adding to life cycle template 82
organization of life cycle milestones 92
specific properties for 512
updating status 95

MiningResult objects 228
viewing in metadata repository 230

Model Assessment reports
performance index warnings and alerts

259
model comparison reports 180

Delta 184
Dynamic Lift 186
input files 181
Model Profile 183
output files 182
viewing 198

model component files 130, 407
create SAS Package file 449
import partial models 144
importing R model 142
model templates 131
naming for model template 148
project planning 59, 100
R model 522
SAS package file 139
specifying for model import 140
used by access macros 405

model delivery
publishing models 228
publishing to a database 231

model function types 70, 507
Model Input Variable Report 254
model management process 6
Model Manager Example Life Cycle

Approvers 20

564 Index

Model Manager Example Life Cycle
Assignees 20

Model Monitoring reports 252, 256
KS reports 257
monitoring Gini (ROC and Trend)

reports 257
monitoring Lift reports 256

Model Profile reports 183
creating 183

model repository objects 404
model scoring files

steps for publishing 239
Model Target Variable Report 253
model templates 131, 148

component files 133
creating 148
File List properties 153
modifying 150
properties 152
system and user properties 153
template properties 152
user model templates 133
user-defined 148

model variables
mapping to project variables 146

models
See also champion models
assessing tasks by user group 23
data sets containing model information

437
degradation of 253
deploying 215
deploying and delivering tasks by user

groups 24
extracting published models 228
freezing 220
function types 60
importing 125
importing tasks by user groups 23
managing 3
mapping model variables to project

variables 146
process of managing 6
publishing 223, 228
publishing to a channel 224
registering 432
searching for 394
specific properties for 154, 514
unfreezing 220
validating with model comparison

reports 180
validating with user reports 199
verifying publish 230

monitoring champion model performance
251

tasks by user groups 25

monitoring Lift reports 256
monitoring performance 117
Monitoring reports 305

creating 117, 307, 309
output files 310

monitoring ROC & Gini reports 257

N
naming performance tables 41

O
objects

deleting in Project Tree 52
opening

objects 357
operational environment 5
organization-specific user-defined

properties 508
organizational folders 48
output data variable distribution shifts

255
output variables 61, 64

P
package files 128

creating 128
importing from SAS Enterprise Miner

128
publishing models 224

Partial Model Import utility 144
partial models

importing 144
participants

selecting for life cycle templates 79
passwords

encoding 300
for batch performance reports 282

performance
data for batch performance reports 281
monitoring champion model

performance by user groups 25
performance data sets

creating performance reports 264
DATA step for accessing 300

performance indexes
warnings and alerts 259

performance indicator
See dashboard reports

Performance Monitor
schedule properties 275

performance monitoring 251
Data Composition reports 254
delete data sets 276

Index 565

performance index warnings and alerts
259

prerequisites for running Define
Performance Task wizard 266

Summary results 253
performance monitoring reports

See also batch performance reports
Data Composition reports 252
formatting 305
Model Monitoring reports 252, 256
Monitoring reports 305
SAS programs for creating 278
Summary reports 252
types of 252
viewing 311

performance reports 263
See also batch performance reports
creating 117
creating with performance tasks 263
performance data sets and 264
running Define Performance Task

wizard 268
performance tables 32, 36, 40

creating 40
naming for use with Define

Performance Task wizard 41
performance tasks

creating reports with 263
prerequisites for running Define

Performance Task wizard 266
running Define Performance Task

wizard 268
scheduling 273

planning projects 58
PMML models

importing 143
prediction model

query 397
specifying for model import 152
template 132

preferences
Workflow Console 355

Probability of Default report 195
production mode

batch performance reports 283
Production Models Aging Report 253
profile data 183
project control group 99, 103

add a new version 113
add an input variable 114
create projects 104
prerequisites for creating 101
publishing champion models 115

project control tables 32, 33
project folders

organization of 56

publishing champion model from 279
tasks 57

project input tables 32, 34
creating 37

project metadata 67
project output tables 32, 34

creating 38
project properties 67

setting programatically 468
project tables 33

performance tables 36
project control tables 33
project input tables 34
project output tables 34
scoring task input tables 35
scoring task output tables 35
test tables 36
train tables 36

Project Tree 10
associating documents with folders 49
creating organizational folders 48
deleting objects in 52
organizing 47
project control group 103

project variables
mapping to model variables 146
planning 59, 100

projects 55
controlling access to versions 220
creating 61
input variables 61, 64
lock metadata 66
model function types 60
modify 64
output variables 61, 64
planning 58
prerequisites for creating 60
properties 60
publishing champion models 229
publishing models to a database 231
retiring 248
setting champion model status 66
setup tasks by user groups 22
specific properties for 505
unlock metadata 66

Projects category view 10
properties

Basel II 191
Dynamic Lift reports 187
general 503
life cycle properties 96
life cycle templates 86
Loss Given Default (LGD) 191
model function types 70, 507
model template properties 152
organization-specific user-defined 508

566 Index

Probability of Default (PD) 191
project properties 67
result set properties 177, 517
scoring task properties 176, 516
scoring task schedule 518
setting for imported models 145
specific for a model 154, 514
specific for a project 505
specific for a version 511
specific for milestones and tasks 512
system properties 504
user-defined 508
version properties 90

prototype tables 32
project input tables 34
project output tables 34
scoring task output tables 35, 39

publish model to a database
process flow 233

Publish Models to a Database window
235

publishing
champion model, for batch performance

reports 279
extracting published models 228
models 223, 228
models to a channel 224
models to a database 231
project champion models 115, 229
remove models from a database 244
verifying model publish 230
view history 246

Q
Query utility 393

searching for models 394
searching life cycles for tasks assigned

to users 398
searching with UUID 396

R
R model 142
R models

building 520
model component files 522
model template file 521
using in SAS Model Manager 519

registering
data sources 32
models 432

relational databases 6
report macros

accessing 295, 298
report templates

for user-defined reports 205
reports

See also performance reports
ad hoc reports 199, 201
aggregate 339, 340
Basel II 191
batch performance reports 279
Characteristic reports 252, 254, 255
creating with performance tasks 263
dashboard 313
Data Composition reports 252, 254
delete aggregate report 342
Delta reports 184
Dynamic Lift reports 186
Interval Target Variable 189
KS reports 257
LGD 193
Loss Given Default (LGD) 191
Loss Given Default prerequistes 192
Model Assessment reports 259
model comparison reports 180
Model Input Variable Report 254
Model Monitoring reports 252, 256
Model Profile reports 183
Model Target Variable Report 253
monitoring Lift reports 256
Monitoring reports 305
monitoring ROC & Gini reports 257
performance monitoring 251
Probability of Default 195
Probability of Default (PD) 191
Probability of Default prerequisites 194
Production Models Aging Report 253
Stability reports 252, 254, 255
Summary of Reports 253
Summary reports 252
train table summary 196
user reports 199
user-defined reports 199, 204

repository
accessing files in 410
model repository objects 404

Resources folder
associating documents with 49

result set properties 177, 517
retiring

champion models 247
projects 248

retrain model 327
define task 328
execute 333
prerequisites 328
view comparison report 334
view models 334

ROC Chart 306, 308
ROC plots 257

Index 567

roles 20
life cycle template participant roles 78

S
SAS code models

importing 130, 140
SAS Content Server 6
SAS Enterprise Miner

importing package files from 128
SAS Foundation 6
SAS Management Console 5
SAS Metadata Repository

register SAS/STAT models 454
SAS Metadata Server 6
SAS Model Manager

interface 9
managing models 3
model management process 6
operational environment 5
services provided by 3
setup tasks by user groups 21
user groups 4

SAS Model Manager Client 5
SAS Model Manager Macros 6
SAS Model Manager Middle Tier Server

6
SAS Model Manager Template Editor

user-defined properties 509
SAS Model Manager Template Editor

window 76
SAS Model Manager window 9

category views 10
layout 9
toolbar and menus 10

SAS programs
creating performance monitoring reports

278
delete from SAS Content Server 208
edit on SAS Content Server 208
upload to SAS Content Server 205
user-defined report 204, 205

SAS user-defined properties 510
SAS Web Infrastructure Platform 6
SAS Workspace Server 6
SAS/STAT model

register using model components 449
saving documents 51
schedule

performance task 273
scoring task 170

schedule properties 518
scoring functions

log messages for publishing 244
metadata tables 244
steps for publishing 239

scoring model files
log messages for publishing 244

scoring models
publishing 231

scoring output tables 162
creating 162

scoring task content files 175
scoring task input tables 32, 35, 39

creating 39
scoring task output tables 32, 35, 39

adding to SAS Model Manager 35
creating 39

scoring tasks 157
creating 164
creating scoring output tables 162
delete schedule 172
executing 168
generated content files 175
graphing results 172
mapping output variables 167
modifying 167
properties 176, 516
result set properties 177, 517
schedule 170
schedule properties 518
tabbed views 159

searches
for life cycle tasks assigned to users

398
for models 394
with UUID 396

searching
managing searchs 354
retrieving and applying 354
save search criteria 352

segmentation model
template 132

setup
of projects and versions by user groups

22
setup tasks by user groups

SAS Model Manager 21
sorting

multiple columns 350
single columns 350

SPK files
See package files

Stability reports 252, 254, 255
example 256
overview 254
performance index warnings and alerts

259
subfolders

associating documents with 49
attaching documents to 51
creating 50

568 Index

Summary of Reports 253
Summary reports 252
Summary results 253
system properties 504

T
tabbed views

scoring tasks 159
tables

local or network drive 42
tasks

adding to life cycle template 82
creating reports using performance tasks

263
general, by user groups 26
life cycle tasks 93
project folder tasks 57
scoring task properties 176, 516
scoring tasks 157
searching for life cycle tasks assigned to

users 398
specific properties for 512
version folder tasks 73

templates
See also model templates
analytical model 132
classification model 132
creating from a sample 81
life cycle 75
prediction model 132
report templates 205
segmentation model 132
user model templates 133
user-defined model templates 148
viewing 140

test mode
for batch performance reports 282

test tables 32, 36
creating 40

thresholds
warnings and alerts 259

toolbar 10, 15
train table data sets 196
train table summary report 196
train tables 32, 36

U
unfreezing

models 220
versions 221

URL 414
user groups 4, 20
user ID

for batch performance reports 282

user model templates 133
user reports 199

ad hoc 199, 201
output created by 200
user-defined 199, 204
validating models with 199

user-defined model templates 148
user-defined properties 508

organization-specific 508
SAS 510

user-defined reports 199, 204
compared with ad hoc reports 200
creating 204
example 209
macro variables 205
report template for 205
running 208

users
searching for life cycle tasks assigned to

398
UUIDs

searching with 396
translating to URL 414

V
validating models

with model comparison reports 180
with user reports 199

VALIDVARNAME= system option 186
verifying model publish 230
version folders

organization of 72
tasks 73

version properties
setting programatically 468

versions 71
controlling access to project versions

220
creating 89, 113
creating life cycle templates 75
freezing 221
properties 90
SAS Model Manager functionality for

72
setup tasks by user groups 22
showing document versions 51
specific properties for 511
unfreezing 221

view aggregate report 341
View menu 19
viewing

documents 51
life cycle templates 94
model comparison reports 198
performance monitoring reports 311

Index 569

W
warning notifications 259
workflow

add attachments 386
adding comments 363
assign participant 375
create 369
creating reports 386
edit 372
edit properties 374
importing models 380
model management components 379
publishing models 384
release activity 377
remove participant 376
replying to comments 364
searching comments 365
set champion and challenger models

383
terminate 378
viewing models 381
viewing performance 388
viewing reports 386

workflow activity
adding comments 363
edit properties 361
release 377
replying to comments 364

searching comments 365
workflow console

customizing category views 349
searching 352

Workflow Console 346
activities 360
alert notifications 356
comments 362
create workflow 369
edit workflow 372
manage 367
navigation pane 348
opening objects 358
participants 374
rearranging objects 359
setting preferences 355
tile pane 357
user interface layout 346
view activities 359
view instances 370
view workflow definitions 368
window controls 348

workflow participant
assign 375
remove 376

workspaces
saving 359

570 Index

	Contents
	About This Book
	Audience
	Prerequisites
	Conventions Used in This Document

	What's New in SAS Model Manager 12.3
	Overview
	Create and Manage Multiple Projects in a Control Group
	Enhanced Performance Monitoring and Reporting
	Support for SAS Enterprise Miner Random Forest and SAS/ETS
Models
	Manage Models Published to a Database
	Support for Multiple SAS Application Servers
	Add Folders, Projects, Versions, and Set Properties By Using
Macros
	Create and View Reports within a Workflow Activity
	View the Process Flow Diagram for a Workflow

	Accessibility Features of SAS Model Manager
	Overview
	Documentation Format
	Landmarks
	User Interface Layout
	SAS Model Manager Client
	SAS Model Manager Workflow Console

	Themes
	Keyboard Shortcuts
	SAS Model Manager Client
	SAS Model Manager Workflow Console

	Exceptions to Accessibility Standards
	SAS Model Manager Client
	SAS Model Manager Workflow Console

	Recommended Reading
	What Is SAS Model Manager?
	Overview of SAS Model Manager
	Managing Models Using SAS Model Manager
	The SAS Model Manager Operational Environment
	Model Management Process

	Introduction to SAS Model Manager
	Layout of the SAS Model Manager Window
	Overview of the SAS Model Manager Window
	SAS Model Manager Category Views
	SAS Model Manager Toolbar and Menus

	SAS Model Manager User Groups, Roles, and Tasks
	SAS Model Manager Groups
	SAS Model Manager Roles
	Setting Up SAS Model Manager
	Setting Up Projects and Versions
	Importing and Assessing Models
	Deploying and Delivering Models
	Monitor Champion Model Performance and Retrain Models
	General Tasks

	Working with Projects and Versions
	Working with Data Sources
	Overview of Data Sources
	Project Tables
	Project Control Tables
	Project Input Tables
	Project Output Tables
	Scoring Task Input Tables
	Scoring Task Output Tables
	Train Tables
	Test Tables
	Performance Tables

	Creating Project Input and Output Tables
	Create a Project Input Table
	Create a Project Output Table

	Creating Scoring Task Input and Output Tables
	About Scoring Task Input and Output Tables
	Create a Scoring Task Input Table
	Create a Scoring Task Output Table

	Creating a Test Table
	Creating a Performance Table
	About Performance Tables
	Naming a Performance Table for Use with the Define Performance
Task Wizard
	Create a Performance Table

	Using Tables from a Local or Network Drive
	About Using Tables from a Local or Network Drive
	Create a Libref for a Local or Network Drive
	Modify the Path for a Libref
	Delete a Libref

	Organizing the Project Tree
	Overview of the Project Tree
	Create an Organizational Folder
	Associate Documents with a Folder
	About Associating Documents
	Create a Documents Folder
	Create a User-Defined Documents Subfolder
	Attach a Document to a Folder or a Subfolder
	Show Document Versions and Open or Save Documents

	Deleting an Object in the Project Tree
	Archive and Restore Organizational Folders
	About Archiving and Restoring Organizational Folders
	Archive an Organizational Folder
	Restore an Organizational Folder

	Working with Projects
	Overview of Projects
	What Is a SAS Model Manager Project?
	How a Project Folder Is Organized
	Project Folder Tasks
	Project Metadata

	Planning a Project
	Prerequisites for Creating Projects
	About Defining Project Input and Output Variables
	Create a Project
	Modify Project Definition
	Lock or Unlock Project Metadata
	Setting the Project Champion Model Status
	About the Champion Model Status
	Setting the Champion Model Status

	Project Properties
	About Project Properties
	Project-Specific Properties

	Working with Versions
	Overview of Versions
	What Is a SAS Model Manager Version?
	How a Version Folder Is Organized
	Version Folder Tasks
	Version Metadata

	Creating Life Cycle Templates
	Overview of Creating Life Cycle Templates
	The SAS Model Manager Template Editor Window
	Life Cycle Template Participants
	The Browse Templates Window
	Create a Life Cycle Template from a Sample Template
	Create a New Life Cycle Template
	Modify a Life Cycle Template
	Delete a Life Cycle Template
	Life Cycle Template Properties

	Create a Version
	Version Properties
	About Version Properties
	Version-Specific Properties

	Working with Life Cycles
	Overview of a Life Cycle
	Life Cycle Tasks
	Life Cycle Properties

	Working with Project Control Groups
	Overview of Project Control Groups
	Planning a Project Control Group
	Prerequisites for Creating Project Control Groups
	Creating a Project Control Table
	Create a Project Control Group
	Create Projects from a Control Table
	Add a New Version
	Add an Input Variable
	Publish Project Champion Models from a Project Control Group
	Monitor Performance of Project Champion Models

	Importing, Scoring, and Validating Models
	Importing Models
	Overview of Importing Models
	Import Models from the SAS Metadata Repository
	Import SAS Model Package Files
	What Is a SAS Model Package File?
	Create SAS Package Files in SAS Enterprise Miner
	About Creating SAS Package Files Using the %AA_Model_Register
Macro
	Import Package Files

	Import SAS Code Models and R Models Using Local Files
	Overview of Importing SAS Code Models
	Model Templates
	Model Template Component Files
	Viewing Model Template Files
	Importing a SAS Code Model
	Importing an R Model

	Import PMML Models
	Import Partial Models
	Set Model Properties
	Map Model Variables to Project Variables
	User-Defined Model Templates
	Creating a New Model Template
	Model Template Properties

	Specific Properties for a Model

	Scoring Models
	Overview of Scoring Tasks
	Scoring Task Tabbed Views
	Create Scoring Output Tables
	What Is a Scoring Output Table?
	How to Create a Scoring Output Table Definition

	Create a Scoring Task
	Modify a Scoring Task
	Map Scoring Task Output Variables
	Execute a Scoring Task
	Schedule Scoring Tasks
	About Scoring Task Schedules
	Schedule a Scoring Task
	Delete a Scoring Task Schedule

	Graph Scoring Task Results
	Generated Scoring Task Content Files
	Scoring Task Properties
	Result Set Properties

	Validating Models Using Reports
	Overview of Model Comparison, Validation, and Summary Reports
	What Are Model Comparison, Validation, and Summary Reports?
	The Model Comparison, Validation, and Summary Report Input
Files
	The Model Comparison, Validation, and Summary Report Output
Files

	Model Profile Reports
	About Model Profile Reports
	Create a Model Profile Report

	Delta Reports
	About Delta Reports
	Create a Delta Report

	Dynamic Lift Reports
	About Dynamic Lift Reports
	Verify Project and Model Property Settings
	Create a Dynamic Lift Report

	Interval Target Variable Report
	About Interval Target Variable Reports
	Verify Project and Model Properties
	Create an Interval Target Variable Report

	Basel II Reports
	About Basel II Reports
	The Loss Given Default and Probability of Default Model Validation
Report Properties
	Prerequisites for Loss Given Default Reports
	Create a Loss Given Default Report
	Prerequisites for Probability of Default Model Validation Reports
	Create a Probability of Default Model Validation Report

	Training Summary Data Set Reports
	About Training Summary Data Set Reports
	Generate the Training Summary Data Sets
	Create a Training Summary Data Set Report

	View Reports

	Validating Models Using User Reports
	Overview of User Reports
	Ad Hoc Reports and User-Defined Reports
	Comparison of Ad Hoc and User-Defined Reports
	Output Created by User Reports

	Ad Hoc Reports
	Overview of Ad Hoc Reports
	Create an Ad Hoc Report
	Example Ad Hoc Report

	User-Defined Reports
	Overview of User-Defined Reports
	Create a User-Defined Report
	Defining SAS Model Manager Macro Variables for a User-Defined
Report
	Upload SAS Programs to the SAS Content Server
	The Report Template
	Edit a SAS Program on the SAS Content Server
	Delete a SAS Program from the SAS Content Server
	Run a User-Defined Report
	View a User-Defined Report
	Example User-Defined Report

	Deploying and Publishing Models
	Deploying Models
	Overview of Deploying Models
	Champion Models
	About Champion Models
	Requirements for a Champion Model
	Set a Champion Model
	Clear a Champion Model

	Challenger Models
	About Challenger Models
	Flag a Challenger Model
	Clear a Challenger Model

	Freezing Models
	About Freezing Models
	Freeze a Version
	Unfreeze a Version

	Publishing Models
	Overview of Publishing Models
	Publishing Models to a SAS Channel
	About Publishing Models to a SAS Channel
	Publish a Model to a Channel
	Extract a Published Model

	Publish Models to the SAS Metadata Repository
	About Publishing Models to the SAS Metadata Repository
	Publish a Model
	Publish a Project Champion Model
	Verify the Model Publish

	Publishing Models to a Database
	About Publishing Models to a Database
	Process Flow
	Prerequisites for Publishing to a Database
	Make User-Defined Formats Available When Publishing Models
to a Database
	Publish Models to a Database Field Descriptions
	How to Publish Models to a Database
	Log Messages
	Scoring Function Metadata Tables

	Remove Models from a Database
	View Publish History

	Replacing a Champion Model
	Overview of Replacing a Champion Model
	Retire a Project

	Performance Monitoring and Retraining Models
	What is Performance Monitoring?
	Overview of Performance Monitoring
	Types of Performance Monitoring
	Overview of the Types of Performance Monitoring
	Summary Results
	Data Composition Reports
	Model Monitoring Reports

	Performance Index Warnings and Alerts
	The Process of Monitoring Champion Models

	Create Reports by Defining a Performance Task
	Overview of Creating Reports Using a Performance Task
	Creating Reports Using a Performance Task
	Determine How to Use the Performance Data Sets

	Prerequisites for Running the Define Performance Task Wizard
	Overview of Prerequisites
	Ensure That the Champion Model Is Set or That the Challenger
Model Is Flagged
	Ensure That the Champion Model Function and Class Target Level
Are Valid
	Ensure That the Performance Data Source Is Available
	Ensure That Project and Model Properties Are Set
	Map Model and Project Output Variables

	Run the Define Performance Task Wizard
	Schedule Performance Monitoring Tasks
	Overview of Scheduling Performance Monitoring Tasks
	Create the Schedule
	Delete a Performance Task Schedule
	Schedule Properties for the Performance Monitor

	View Performance Monitoring Job History
	Delete Performance Summary Data Sets

	Create Reports Using Batch Programs
	Overview of SAS Programs to Monitor Model Performance
	Prerequisites for Running Batch Performance Reports
	Overview of Prerequisites for Running Batch Performance Reports
	Publish the Champion Model from the Project Folder
	Create a Folder Structure
	Obtain Performance Data
	Determine the Publish Channel
	Copy Example Batch Programs
	Determine SAS Model Manager User ID and Password

	Report Output in Test and Production Modes
	Report Output in Test Mode
	Report Output in Production Mode

	Define the Report Specifications
	Overview of Code to Define Report Specifications
	Required Libref
	Project Specifications
	E-mail Recipient Specifications
	Report Specifications
	Job Scheduling Specifications
	Example Code to Create the Report Specifications

	Extracting the Champion Model from a Channel
	Using the %MM_GetModels() Macro
	Accessing SAS Model Manager Report Macros
	%MM_GetModels() Macro Syntax
	Example Program to Extract a Model from a Channel
	The current.sas7bdat Data Set

	SAS Code to Run Performance Reports
	Overview of the SAS Code to Run the Performance Reports
	Accessing SAS Model Manager Report Macros
	Required Librefs
	Macro Variables to Define Report Local Folders and Data Sets
	Macro Variables That Are Used by the %MM_RunReports() Macro
	The DATA Step to Access the Performance Data Set
	The %MM_RunReports() Macro
	Example Code to Run the Reports

	Formatting Performance Reports
	Format a Monitoring Report
	About Monitoring Reports
	Create a Monitoring Report

	Format a Champion and Challenger Performance Report
	About the Champion and Challenger Performance Report
	Verify Performance Data and Model Status
	Create a Champion and Challenger Performance Report

	Performance Report Output Files
	View Reports
	View Reports in SAS Model Manager
	View Formatted Monitoring Reports

	Using Dashboard Reports
	Overview of Project Dashboard Reports
	Create a Dashboard Report Definition
	Generate Dashboard Reports
	View Dashboard Reports
	Edit a Dashboard Report Definition
	Manage All Project Dashboard Definitions
	Delete a Project Dashboard Report Definition

	Retraining Models
	Overview of Retraining Models
	Prerequisites for Retraining a Model
	Define a Model Retrain Task
	Execute a Model Retrain Task
	Viewing Retrained Models and Model Comparison Reports
	View Retrained Models
	View Model Comparison Reports for Retrained Models

	Combining Multiple Reports
	Aggregated Reports
	About Aggregated Reports.
	Create an Aggregated Report
	View an Aggregated Report
	Edit an Aggregated Report Definition
	Delete an Aggregated Report

	SAS Model Manager Workflow Console
	Using Workflow Console
	Overview of Workflow Console
	User Interface Layout
	About the User Interface Layout
	Navigation Pane

	Customizing Category Views
	Overview of Customizing Category Views
	Manage Columns in a List
	Sort Lists by Column Content
	Searching List Content

	Setting Preferences
	About Setting Preferences
	Global Preferences
	General Preferences
	Alert Notifications

	Working with Objects
	About the Tile Pane
	Open Objects
	Open Multiple Objects
	Rearrange Open Objects
	Save Layouts
	Close Objects

	Viewing Workflow Activities
	Working with Workflow Activities
	Editing Activity Properties
	Working with Comments
	About Comments
	Adding Comments
	Respond to a Topic
	Attach a File
	Search for Comments and Replies

	Viewing Workflow Milestones

	Managing Workflows
	Overview of Managing Workflows
	Viewing Workflow Definitions
	Creating a New Workflow
	Viewing Workflows
	Editing a Workflow
	Editing Workflow Properties
	Working with Workflow Participants
	Assigning Participants to Activities
	Removing Participants from Activities
	Releasing an Activity

	Terminating a Workflow

	SAS Workflow Model Management Components
	Overview of SAS Workflow Model Management Components
	Importing Models
	Viewing Models
	Setting Champion and Challenger Models
	Publishing Models
	Add, View, or Delete Attachments
	Creating and Viewing Reports
	Viewing Performance Results
	Viewing All Model Management Components

	Appendixes
	Query Utility
	Overview of the Query Utility
	Search for Models
	Search By Using a UUID
	Search Life Cycles for Tasks Assigned to Users

	SAS Model Manager Access Macros
	Overview of Access Macros
	Using the SAS Model Manager Access Macros
	Global Macro Variables
	Accessing the Macros
	Identifying SAS Model Manager Model Repository Objects
	Identifying Files Used by Access Macros
	Required Tables

	Dictionary
	%MM_AddModelFile Macro
	%MM_GetModelFile Macro
	%MM_GetURL Macro
	%MM_Register Macro
	%MM_RegisterByFolder Macro
	%MM_CreateModelDataset Macro

	SAS Model Manager Macro Variables
	Macros for Registering Models to the SAS Metadata Repository
	Using Macros to Register Models Not Created by SAS Enterprise
Miner
	About the %AA_Model_Register Macro
	Register a Model in the SAS Metadata Repository Using a SAS/STAT
Item Store
	Create a SAS Package File Using a SAS/STAT Item Store
	Register a Model in the SAS Metadata Repository Using Model
Component Files

	Dictionary
	%AAModel Autocall Macro
	%AA_Model_Register Autocall Macro

	Macros for Adding Folders, Projects, Versions, and Setting
Properties
	Adding Folders, Projects, Versions, and Properties Using Macros
	Overview of Using a SAS Program to Add Folders, Projects, Versions,
and Properties
	Writing Your SAS Program
	Creating the Properties Table

	Dictionary
	%mdlmgr_AddFolder Macro
	%mdlmgr_AddProject Macro
	%mdlmgr_AddVersion Macro
	%mdlmgr_SetProperty Macro Function

	Example: Add a Folder, Project, and Version, Set Properties

	Macros for Generating Score Code
	Generating Score Code for COUNTREG Procedure Models
	Generating Score Code for PROC SEVERITY Models
	Dictionary
	%MM_Countreg_Create_Scorecode Autocall Macro
	%MM_Severity_Create_Scorecode Autocall Macro

	Properties
	General Properties
	System Properties
	Specific Properties for a Project
	User-Defined Properties
	Organization-Specific User-Defined Properties
	SAS User-Defined Properties

	Specific Properties for a Version
	Specific Properties for Milestones and Tasks
	Specific Properties for a Model
	Scoring Task Properties
	Result Set Properties
	Schedule Properties

	SAS Model Manager R Model Support
	Overview of Using R Models with SAS Model Manager
	Preparing R Model Files to Use with SAS/IML
	Build an R Model
	Prepare an R Model Template File
	Prepare R Model Component Files

	Statistical Measures Used in Basel II Reports
	Report and Performance Monitoring Examples
	Dashboard Report Examples
	KPI Dashboard Report
	KPI Detail Report
	KPI Trend Report
	Monitoring Report

	Model Retrain Comparison Report Example
	Lift Charts
	ROC Charts
	KS Charts

	Monitoring Performance of a Model without Score Code

	Glossary
	Index

