Contents

What's New in SAS Model Manager 14.2 .. ix
Accessibility ... xi

PART 1 Getting Started 1

Chapter 1 • Introduction to SAS Model Manager .. 3
- About Managing Models .. 3
- Managing Preferences .. 4
- Viewing Help and Documentation ... 6
- Model Management Process ... 7
- High-Level Support Matrix by Model Score Code Type 9

Chapter 2 • Quick Start Tutorial .. 11
- Overview of the Quick Start Tutorial 11
- Make the Tutorial Files Available 12
- Sign In ... 13
- Define Data Sources .. 14
- Organize the Model Hierarchy ... 16
- Import Models .. 20
- Create Model Comparison Reports 21
- Create a Scoring Test ... 23
- Set the Champion Model ... 25
- Monitor the Performance of a Champion Model 25
- Publish a Champion Model to the SAS Metadata Repository 29
- View and Search Model Inventory 30

Chapter 3 • Managing Data Tables .. 33
- About Managing Data Tables ... 33
- Adding Tables Using SAS Visual Data Builder 34
- Add Tables That Are Registered in Metadata 34
- Register and Add New Tables .. 35
- Edit Table Properties and View Table Metadata 35
- View Table Data ... 36
- Filter Data in the Table View ... 37
- Create a Table Summary .. 38
- Delete a Table Summary ... 39
- Add Attachments to a Table ... 40
- Add Comments to a Table ... 40
- Remove a Table ... 40

Chapter 4 • Managing Folders .. 41
- Overview of Managing Folders ... 41
- Create a New Folder ... 41
- Rename a Folder ... 42
- Delete a Folder ... 42
- Archive and Restore Folders ... 42
Contents

Chapter 5 • Working with Projects
- Overview of Projects ... 47
- Planning a Project .. 48
- Prerequisites for Creating Projects 49
- Create a Project ... 50
- Project Properties ... 51
- Defining Project Input and Output Variables 55
- Managing Project Versions 57
- View Project History 59
- Add Attachments to a Project 59
- Add Comments to a Project 59
- Lock or Unlock Project Variables 60
- Creating and Managing Templates 60
- Searching for Models 63

Chapter 6 • Importing Models
- Overview of Importing Models 67
- Import a Model from the SAS Metadata Repository 67
- Import a Model from a SAS Package File 69
- Import a PMML Model 71
- Import Models from Local Files 72
- Import a Model from a SAS Analytic Store File 74
- Export Models from a Project 75
- Importing Models into a Folder 75

Chapter 7 • Managing Model Content and Versions
- Overview of Managing Model Content and Versions 79
- Set Model Properties 79
- Add Model User-Defined Properties 81
- Add and Edit Model Keywords 81
- Add Model Dependencies and View Lineage 83
- Add Model Files to an Existing Model 84
- Create Input and Output Variables from a SAS Code File . 85
- Map Model Variables to Project Variables 86
- User-Defined Model Templates 87
- Managing Model Versions 88
- Add Attachments .. 89
- Add Comments .. 89

Chapter 8 • Working with Model Inventory
- Overview of Model Inventory 91
- Search and Filter Inventory of Models 91
- Add Model User-Defined Properties to Inventory List 92

Chapter 9 • Working with Portfolios
- Overview of Portfolios 95
- Planning a Portfolio 96
- Prerequisites for Creating Portfolios 97
- Creating a Project Control Table 98
- Create a New Portfolio 99
- Add a New Version 101
- Add an Input Variable 102
- Publishing Models from a Portfolio 103
- Monitor Performance of Project Champion Models 107
Evaluating Models and Monitoring Performance

Chapter 10 • Scoring Models
- Overview of Scoring Tests .. 115
- Create Scoring Output Tables 116
- Create a Scoring Test ... 118
- Execute a Scoring Test .. 119
- Schedule a Scoring Test 119
- Scoring Model Properties 120

Chapter 11 • Using Reports to Evaluate and Validate Models
- Overview of Model Comparison, Validation, and Summary Reports 123
- Model Profile Reports ... 126
- Delta Reports .. 128
- Dynamic Lift Reports ... 129
- Interval Target Variable Report 132
- Loss Given Default Reports 133
- Probability of Default Model Validation Reports 136
- Training Summary Data Set Reports 139
- Monitoring Reports ... 141
- Champion and Challenger Performance Reports 143
- View Reports .. 145

Chapter 12 • Validating Models Using User Reports
- Overview of User Reports 147
- Ad Hoc Reports .. 149
- User-Defined Reports 151

Chapter 13 • Combining Reports
- About Aggregated Reports 161
- Create an Aggregated Report 161
- View an Aggregated Report 162
- Delete an Aggregated Report 163

Chapter 14 • Monitoring Performance of Models
- Overview of Performance Monitoring 165
- Types of Performance Monitoring 167
- Performance Index Warnings and Alerts 173
- Monitoring Champion Models 175
- Creating Reports Using a Performance Definition 176
- Prerequisites for Editing a Performance Definition 179
- Edit and Execute a Performance Definition 181
- Schedule Performance Definitions 184
- View Performance Monitoring Job History 186
- Manage Performance Data Sets 187
- Monitoring Performance of a Model without Score Code 187

Chapter 15 • Using Dashboard Reports
- Overview of Dashboard Reports 191
- Create a Dashboard Report Definition 191
Appendix 1 • Model Templates ... 241

Appendix 2 • Project Tables ... 253
 Descriptions of Project Tables ... 253
 Creating Project Input and Output Tables .. 257
 Creating Scoring Input and Output Tables ... 259
 Creating a Test Table .. 260
 Creating a Performance Table .. 260
 Using Tables from a Local or Network Drive 262

Appendix 3 • PROC PSCORE and PMML Support 265

Appendix 4 • R Model Support .. 267
 Overview of Using R Models with SAS Model Manager 267
 Preparing R Model Files to Use with SAS/IML 268

Appendix 5 • Statistical Measures Used in Basel III Reports 275
 Recommended Reading ... 283
 Glossary ... 285
 Index ... 295
Overview

SAS Model Manager 14.2 has new features and enhancements that enable you to perform these tasks:

- import SAS analytic store models
- publish, score, monitor performance, or run reports for SAS analytic store models
- publish models to Hadoop and Teradata using single sign-on authentication by Kerberos
- run scoring tests in a High-Performance Analytics production environment
- score SAS Factory Miner models within a SAS Model Manager portfolio by using macros
- publish SAS Factory Miner models from within a SAS Model Manager portfolio to a database or Hadoop by using macros

Import SAS Analytic Store Models

You can import SAS analytic store models that are created using SAS Factory Miner or by using the HPFOREST and HPSVM procedures in Base SAS. You can use a SAS analytic store model (SASAST) file to import an analytic store model into SAS Model Manager. However, SAS analytic store models that are created by using SAS Enterprise Miner and that are in SAS package file (SPK) format are not supported in this release. For more information, see “Import a Model from a SAS Analytic Store File” on page 74.

Publish, Score, Monitor Performance, or Run Reports for SAS Analytic Store Models

You can publish, score, monitor performance, or run reports for SAS analytic store models that are located within a project. SAS analytic store models can be published only to Hadoop and Teradata. Retraining of SAS analytic store models is not supported. For more information, see the following:
- publish models to a database or Hadoop
- score models
- monitor performance
- run model comparison reports

Publish Models to Hadoop and Teradata Using Single Sign-On Authentication by Kerberos

Users who are configured to use single sign-on web authentication by Kerberos can publish models to Hadoop and Teradata. For more information, see “Configure Users Authenticated by Kerberos for Publishing Models” in *SAS Model Manager: Administrator’s Guide*.

Run Scoring Tests in a High-Performance Analytics Production Environment

When you are creating a scoring test for a model, you can process the scoring test data in a High-Performance Analytics production environment. For more information, see “Create a Scoring Test” on page 118.

Score SAS Factory Miner Models within a SAS Model Manager Portfolio

SAS Model Manager portfolio macros enable you to score SAS Factory Miner models that are within a SAS Model Manager portfolio. For more information, see “%MM_ScorePortfolioModels Macro” in *SAS Model Manager: Macro Reference*.

Publish SAS Factory Miner Models from within a SAS Model Manager Portfolio to a Database or Hadoop

SAS Model Manager portfolio macros enable you to publish SAS Factory Miner models that are within a SAS Model Manager portfolio to a database or Hadoop. For more information, see “%MM_PublishPortfolioModelsDB” in *SAS Model Manager: Macro Reference* and “%MM_PublishPortfolioModelsHadoop” in *SAS Model Manager: Macro Reference*.
Accessibility

For information about the accessibility of this product, see Accessibility Features of SAS Model Manager 14.2.
Part 1

Getting Started

Chapter 1
Introduction to SAS Model Manager .. 3

Chapter 2
Quick Start Tutorial .. 11

Chapter 3
Managing Data Tables .. 33

Chapter 4
Managing Folders ... 41
Chapter 1
Introduction to SAS Model Manager

About Managing Models

About Managing Models

Managing Preferences

Managing Preferences
About Setting Preferences
Global Preferences
Decision Manager Preferences
SAS Preferences Manager
Change the Delivery Type for Alert Notifications

Viewing Help and Documentation

Viewing Help and Documentation

Model Management Process

Model Management Process

High-Level Support Matrix by Model Score Code Type

High-Level Support Matrix by Model Score Code Type

About Managing Models

Using SAS Model Manager, you can store models, and organize them within projects or folders, validate candidate models, assess candidate models for champion model selection, and publish and monitor champion models in a production environment, and retrain models. All model development and model maintenance personnel, including data modelers, validation testers, scoring officers, and analysts, can use SAS Model Manager.

Here are some of the services SAS Model Manager provides:

- Use a single interface to access all of your business modeling projects. All models are stored in a central, secure model repository. Models can also be accessed in one place using the model inventory list in the Inventory category.
- Track the progress of your project’s version by creating processes, definitions, and tests. You create custom processes, definitions, and tests to meet your business requirements and to match your business processes.
- Use data tables that are registered in the SAS Metadata Repository.
- Import SAS Enterprise Miner models, SAS/STAT linear models, SAS/ETS COUNTREG and SEVERITY models, models that you develop using SAS code, PMML models, and R models. You can also import a generic model and the model’s files in to a folder. You can create custom model templates for SAS code models so that SAS Model Manager knows exactly what files and metadata are associated with a model.
You can schedule and run scoring tests, performance monitoring, and retraining to validate models.

Run several reports to compare and assess candidate models. You can also write your own SAS reporting programs to run and assess candidate models. The aggregated reporting facility enables you to combine multiple reports into a single report. Dashboard reports enable you to monitor the state of projects using performance monitoring reports and can be viewed in a web browser.

Publish models to the SAS Metadata Repository or a SAS channel. You can also publish the champion model and challenger models to a database for scoring. The SAS Scoring Accelerator is used by SAS Model Manager to publish models to a database or Hadoop.

Data tables are an integral part of the modeling process. You can use project input and output prototype tables, as well as scoring input and output prototype tables to define variables. Data tables are used for scoring, testing, and performance monitoring. Performance data can be created from your operational data, provided that it has the required structure (for example, the data contains a target variable).

You can also create multiple projects in a portfolio. Additional versions can then be created for all projects within the portfolio. Champion models for all projects within the portfolio can be monitored for performance, and published to the SAS Metadata Repository. SAS Factory Miner models can also be registered to the SAS Model Manager model repository. The SAS Factory Miner projects are managed as portfolios in SAS Model Manager. The project segments and models are available within a portfolio and can be managed from the Portfolios category within SAS Model Manager.

Any user who is registered in SAS Management Console can be assigned to a SAS Model Manager group, and can then work in SAS Model Manager. For more information, see “Configuring Users, Groups, and Roles” in SAS Model Manager: Administrator’s Guide.

Managing Preferences

About Setting Preferences

Preferences provide a way for you to customize the user interface. Preferences for each user are stored in metadata and are retained if your deployment is migrated or reconfigured.

You can set preferences in two ways:

by using the Preferences window

To open the Preferences window, select File ⇒ Preferences. There are two general categories of preferences: Global and Decision Manager preferences. See “Global Preferences” and “Decision Manager Preferences” on page 5 for more information.

by using SAS Preferences Manager

SAS Preferences Manager is a web application that provides a central facility for users to manage their preferences and settings. See “SAS Preferences Manager” on page 5 for more information.
Global Preferences

Global preferences apply to all SAS web applications that are displayed with the Adobe Flash Player. When you set a global preference, it applies only to the user that you are logged on as.

To set global preferences, select the Global Preferences page. The following global preferences are available:

User locale
specifies the geographic region whose language and conventions are used in the applications. This setting might also apply to some SAS web applications that are not displayed with the Adobe Flash Player. The default is the browser locale. Locale changes take effect after you log off and log back on.

Note: You can also set the User locale setting by using the SAS Preferences Manager. Select the Regional menu option in SAS Preferences Manager. For more information, see “SAS Preferences Manager” on page 5.

Note: If the user locale that you specify in the preferences is different from the user locale for the SAS Workspace Server, you might receive an error when you try to sign in to the application. You might also receive encoding errors when executing tasks in SAS Model Manager. If you receive an error, change the updated locale back to the original locale.

Theme
specifies the collection of colors, graphics, and fonts that appear in the applications. Your site administrator can change the default theme. A theme change might take a few seconds to apply if many items and features are open in the application.

Invert application colors
inverts all of the colors in the application window, including both text and graphical elements. You can also temporarily invert or revert the colors for an individual application session by pressing Ctrl+~.

Override settings for focus indicator
controls the appearance of the highlighting that surrounds the currently selected field in the SAS Model Manager interface.

Decision Manager Preferences

Decision Manager preferences apply to SAS Model Manager only. To set these preferences, select Decision Manager ⇒ General.

Show this number of recent items
controls the number of items that are listed in the Recent Work menu. To display this menu, select File ⇒ Recent Work.

SAS Preferences Manager

SAS Preferences Manager is a web application that provides a common mechanism for managing preferences for SAS web applications. The application enables users to manage their preferences and administrators to set default preferences for locale, theme, alert notification, time, date, and currency.

To launch the SAS Preferences Manager, enter the URL http://host-name:port/SASPreferences in your browser window. Replace the values for host-name and port
Change the Delivery Type for Alert Notifications

The default delivery type for notifications is specified in the properties for the SAS Application Infrastructure by using the Configuration Manager plug-in to SAS Management Console. For SAS 9.4, the default delivery type is My alertsportlet. You can use SAS Preferences Manager to change your default delivery type.

Note: A SAS administrator can modify the default notification type for all users. For information about modifying the default delivery type for all users, see “Configure Alert Notifications for SAS Workflow” in SAS Model Manager: Administrator’s Guide.

To specify the notification delivery preference for an individual user:

1. Enter the URL http://host-name:port/SASPreferences in your browser window to launch the SAS Preferences Manager. Replace the values for host-name and port based on the location of the configured SAS Web Infrastructure Platform.

2. Enter the user ID and password for the user account that you use to access SAS web applications.

4. Select a format type for the e-mail notifications. The options are HTML-formatted e-mail and Plain-text e-mail.

5. Select the notification types from the Available list and click [x] to add the selected notification types.

6. Click Apply to update the notification settings, and click OK to save the changes.

For more information, see “SAS Preferences Manager” in SAS Intelligence Platform: Middle-Tier Administration Guide.

Viewing Help and Documentation

SAS Model Manager provides the following types of Help and documentation:

How-to Help
How-to Help provides quick instructions or tips to help you complete some tasks in the application. To access how-to Help, select Help ⇒ How To.

Embedded Help
Help pop-up menus and tooltips provide brief descriptions of various fields.

To access a Help pop-up menu for a field, click the Help icon (⃣) when it appears next to a field. You can also place the mouse pointer over an element in the SAS Model Manager windows to view the associated tooltip.

SAS Model Manager: User’s Guide
This document provides detailed information about the concepts and tasks that are related to using SAS Model Manager. This document is available at http://support.sas.com/documentation/onlinedoc/modelmgr.
Model Management Process

The following diagram illustrates the model management process:

Figure 1.1 The Model Management Process

Here is a summary of the model management process:

- **Create Model Repository**: create a secure model repository on the SAS Content Server where SAS code, input and output files, and metadata that is associated with a model can be stored.
- **Register Candidate Models**: register input and output files, and then import and configure a model.

- **Compare Models**: perform scoring tests and create comparison reports for the models by using test data sources.

- **Declare Champion or Challenger Model**: declare the model as champion or challenger to use for testing and production phases of the workflow.

- **Validate Model**: perform scoring tests and create validation reports for the champion model and challenger models by using test data sources.

- **Lock Version**: lock a version when the champion model is approved for production.

- **Deliver or Publish Model**: publish a champion or challenger models to a SAS publish channel, to a database, or to the SAS Metadata Repository.

- **Monitor Model Performance**: provide comparative model performance benchmarking.

- **Retrain Models**: select models to retrain in response to data or market changes.

- **Retire Model**: retire a model from production.

Here is an example of the model management process for comparing a challenger model to the champion model to determine the best champion model:

1. Register candidate models in the version that is under development.

2. Create a Dynamic Lift report and compare the model to the champion model. Flag the model as a challenger based on the results of the Dynamic Lift report.

3. Perform scoring tests with the champion and challenger models in real time or in batch. This step can be performed outside SAS Model Manager.

4. Publish the challenger model to a database or to the SAS Metadata Repository.

5. Prepare performance data sources, which include both the actual outcome variable and predicted variable.

6. Create and execute the performance monitoring for the champion and challenger models to create reports to compare and validate the champion model and challenger models. One of the reports that is available for this comparison is the Champion and Challenger Performance report.

7. Set the challenger model as the project champion if the challenger is good enough to be promoted. Go to step 3, or consider building another model as a challenger with existing or a new input training data source.

8. Publish the new project champion model with or without a new challenger model.
High-Level Support Matrix by Model Score Code Type

Here is a high-level summary, arranged by model score code type, of the primary functions that are supported by SAS Model Manager.

<table>
<thead>
<tr>
<th>Product or Tool</th>
<th>Model Score Code Type</th>
<th>Importing</th>
<th>Scoring</th>
<th>Publishing</th>
<th>Performance Monitoring</th>
<th>Reporting</th>
<th>Retraining</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base SAS or other code editor</td>
<td>SAS program</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>SAS Enterprise Miner</td>
<td>DATA step</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>PMML</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Analytic store</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Note: Only for Hadoop and Teradata.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAS Factory Miner</td>
<td>DATA step</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Analytic store</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Note: Only for Hadoop and Teradata.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAS HPFOREST and HPSVM procedures</td>
<td>Analytic store</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Note: Only for Hadoop and Teradata.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAS/STAT linear model procedures</td>
<td>DATA step</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>PMML</td>
<td>DATA step</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>PMML</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>R</td>
<td>DATA step</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Product or Tool</td>
<td>Model Score Code Type</td>
<td>Importing</td>
<td>Scoring</td>
<td>Publishing</td>
<td>Performance Monitoring</td>
<td>Reporting</td>
<td>Retraining</td>
</tr>
<tr>
<td>----------------</td>
<td>-----------------------</td>
<td>-----------</td>
<td>---------</td>
<td>------------</td>
<td>------------------------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>SAS Visual Data Mining and Machine Learning modeling procedures</td>
<td>DATA step</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

Note: For more information, see [Using SAS Viya Models with SAS Model Manager 14.2](#).
Overview of the Quick Start Tutorial

This Quick Start tutorial is an introduction to some of the primary features of SAS Model Manager. The tutorial covers basic tasks that are related to model management within an enterprise computing environment. The tutorial also shows you how to validate the installation and configuration of SAS Model Manager at your site.

In this tutorial, you import models, set and publish a champion model, score models, and monitor model performance.
Note: In order to complete the tasks in this tutorial, your user ID must be a member of the Decision Manager Users group or must be granted equivalent permissions. Also, to complete the steps related to model management, your ID must be a member of either the Model Manager Advanced Users group or the Model Manager Administrator Users group. See “Configuring Users, Groups, and Roles” in SAS Model Manager: Administrator’s Guide for more information.

With the exception of Step 1, the steps in this tutorial are basic steps that are required to add content to the SAS Decision Manager database and model repository. In this tutorial, you complete the following steps:

1. Make the tutorial files available on the SAS Application Server.

 Note: The QuickStartTutorial.zip file contains data and model files for several tutorials, including this one.

2. Sign in to SAS Model Manager.

3. Define the data source needed for the tutorial.

4. Define and create the components of the model hierarchy.

5. Import models.

6. Compare models using reports.

7. Set a champion model.

8. Create a scoring test and run model score code.

9. Monitor the performance of the champion model.

10. Publish the champion model to the SAS Metadata Repository.

Make the Tutorial Files Available

About Making the Tutorial Files Available

The tutorial is designed to use the SAS Metadata Repository. Before you use tables in the SAS Metadata Repository, the tutorial data sets and models must be on the SAS Application Server. An administrator who has Write access to the server and a valid SASApp user ID and password can put the tables there.

Some parts of this tutorial require files other than data sets and models, such as score code and templates. These files do not need to be registered in the SAS Metadata Repository. The drive where you extract the tutorial ZIP file must be accessible to the SAS Metadata Repository and to tutorial users. Tutorial users can also extract tutorial ZIP files to their local computers in order to access the other files.

You can define a data library and register the tables in the SAS Metadata Repository using the Data category view in SAS Model Manager.

Download the Tutorial Files

The ZIP file QuickStartTutorial.zip contains the tutorial's data sets, models, and score code, and is available at http://support.sas.com/documentation/onlinedoc/modelmgr/. Before you begin the tutorial, extract the tutorial files to a computer that is accessible to the SAS Metadata Server and to SAS Model Manager users. If your SAS Metadata
Server is separate from the SAS Application Server, the files must be placed on the SAS Application Server. Use WinZip to extract the files. If you are using a different extraction program, follow that program's instructions for extracting the files.

To download the files:

1. Create a folder on the server machine or a network drive to store the tutorial files. The instructions refer to this folder as `<drive>`.
 Note: Users must have Read, Write, and Execute permissions to this folder and subfolders. You can create a group and add the tutorial users to that group to grant the permissions. For more information, see “Creating Operating System Accounts for Product Administrators and Users” in SAS Model Manager: Administrator’s Guide.

2. Save the QuickStartTutorial.zip to `<drive>`.

3. Open Windows Explorer to `<drive>`. Right-click QuickStartTutorial.zip and select Open. Click Open.

4. Click the arrow on the Unzip button to open the Unzip from WinZip File Folder window.
 Note: If you are using a previous release of Windows, from the WinZip window, click the Extract button. The Extract dialog box appears.

5. Select `<drive>` from the Unzip to WinZip File Folder window.
 Note: If you are using a previous release of Windows, in the Extract to box, select `<drive>` and click Extract.

 You can find the data and models files for each tutorial in the respective tutorial folder (for example, `<drive>\QuickStartTutorial\Data` or `<drive>\QuickStartTutorial\Models`).

6. UNIX only: To complete the tutorial in a UNIX environment, locate the CPORT file. Files that you use to import the data sets into UNIX are located in the QuickStartTutorial.zip file. Instructions and the sample code for performing an import are provided in the Readme.txt file. In order for a transport file to be imported successfully, the encodings of the source and target SAS sessions must be compatible. Use either latin1 or UTF-8 for your SAS sessions. For more information, see “CIMPORT Problems: Importing Transport Files” in Base SAS Procedures Guide.

Sign In

To sign in to SAS Model Manager:

1. In the address bar of your web browser, enter the URL for SAS Model Manager and press Enter. The Sign In page appears.
 Note: Contact your system administrator if you need the URL for SAS Model Manager. The default URL is http://host_name:port/SASDecisionManager.

2. Enter a user ID and password. Your user ID might be case sensitive, depending on the operating system that is used to host the application server. Your password is case sensitive.
 Note: To schedule jobs in a Windows environment, you must include the domain name when entering your user ID (for example, `domain\myuserID`).
3. Click **Sign In**.

Define Data Sources

To register new tables in the SAS Metadata Repository and add them to the list of data sources:

1. Select **Data ⇒ Tables**.
2. Click ‣ and select **Register Tables**. The Register Tables window appears.

![Register Tables dialog box](image)

Note: You cannot use the **Register Tables** option to add a table that has already been registered in the SAS Metadata Repository using the SAS Management Console. You must select **Add Registered Tables** instead. See “Add Tables That Are Registered in Metadata” on page 34.

3. Create a new Base SAS library.
 a. Select **Create a new library**.
b. Specify QSTutorial for the name of the new library. The name cannot exceed 60 characters.

c. (Optional) Specify a description for the library.

d. Specify QSTut for the libref.

e. Specify the location for the new library. This location is the folder in the SAS Metadata Repository where the library is stored.

f. Select the server and the directory where the data tables for the quick start tutorial reside (for example, C:\QuickStartTutorial\Data).

g. Click Next.

 Note: If you click Cancel at this point, a folder for the library is created in the SAS Metadata Repository, but the folder does not appear in the list of data tables.

4. Click to add all of the tables to the Selected tables list.

5. Click Finish. The new library is now available in the list of data tables.
Organize the Model Hierarchy

Create Folders

Create a top-level folder for the quick start tutorials:

1. Select Models → Projects.
2. Click and select New Top-Level Folder. The New Folder window appears.
3. Enter Tutorials for the name of the folder.
4. (Optional) Enter a description for the folder.
5. Click Save.
Because multiple users might want to perform the tasks in the tutorial, it is recommended that each user create their own folder in the Tutorials folder. To create a new folder:

2. Enter a name for the folder, such as myUserID. The examples in this tutorial use the ID sasdemo.

3. (Optional) Enter a description for the folder.

4. Click Save.

See Also
“Overview of Managing Folders” on page 41

Create a Project

To create a project:

1. Select a folder to store the new project (for example, myUserID).

2. Click ☐ and select New Project. The New Project window appears.

3. Enter HMEQ for the name of the project.

 The initial version is displayed and reflects the level for sequential versions.
4. Select **Classification** for the model function.

 Note: The model function (Classification, Prediction, Segmentation, or Analytical) indicates the type of models that should be imported into the project.

5. Click **Save**.

See Also

“Overview of Projects” on page 48

Import Project Variables

To import project variables:

1. Select **Variables ⇒ Input** and click ![variables](image). The Select Data Source window appears.

 ![Select Data Source](image)

 2. Select HMEQ_PROJECT_INPUT as the data source from the **QSTutorial** library. Click **OK**.

 3. Select the **Output** tab and click ![output](image).

 4. Select the HMEQ_PROJECT_OUTPUT as the data source from the **QSTutorial** library and click **OK**.

 5. Click ![ok](image) to make the changes effective for other pages.

 6. Click **Yes** in the warning message since you have not set a champion or challenger model yet.
See Also
“Import Variables” on page 56

Set the Project Properties

To define the properties that SAS Model Manager uses to create reports, score, publish, and monitor models:

1. Select Properties ⇒ Specific.
2. Click Browse to select the default data tables from the QSTutorial library and specify values for the other properties:

 Default test table
 select HMEQ_TEST.

 Default scoring input table
 select HMEQ_SCORE_INPUT.

 Default scoring output table
 select HMEQ_SCORE_OUTPUT.

 Default train table
 select HMEQ_TRAIN.

 Training target variable
 enter BAD.

 Target event value
 enter 1.

 Class target level
 select Binary.

 Output event probability variable
 select score.

3. Click Save.

Here is an example of the HMEQ project-specific properties:
See Also
“Project Properties” on page 51

Import Models

Import a SAS Package File

Note: Before you import a model, verify that the model type matches the Model function property setting on the project’s Properties page.

To import a model from a SAS Package File:
1. Select the Models page.
2. Click \(\text{Import} \) and select from a SAS package file.
3. On the Browse tab, click Select a Model and navigate to the location of the file (for example, use <drive>:\QuickStartTutorial\Models\Reg1). Select the miningResult.spk file to import and click Open.
4. Enter Reg 1 for the name of the model.
5. Click OK.
6. Click Close.
7. Repeat steps 2 through 6 to import the model package file located in <drive>:\QuickStartTutorial\Models\Tree1. Name the model Tree 1.

Here is an example of the Models page, after the models have been imported:
See Also
“Overview of Importing Models” on page 67

Map Model Variables to Project Variables

To map model variables to the project variables:

1. Select and open the Reg 1 model.
3. Select EM_EVENTPROBABILITY from the Value column beside the score variable in the Property column.
4. Click.
5. Repeat steps 1 through 4 for the Tree 1 model.

See Also
“Map Model Variables to Project Variables” on page 86

Create Model Comparison Reports

Create a Model Profile Report

The Model Profile report creates three tables to display the profile data that is associated with the model input variables, output variables, and target variables.

To create a Model Profile report:

1. Select the Reports page.
2. Click and select Model Profile. The New Report window appears.
3. Enter `profile_tree1` for the name of the report.

4. Select PDF for the output type.

5. Select Seaside for the style of the report. When the SAS default option is selected, the default style and themes are used in generating the report. For example, the SAS default style for the HTML output type is HTMLBLUE.

6. Select the model Tree 1 from the list.

7. Click Run. The report is generated and appears in the default viewer based on the selected output type.

Create a Dynamic Lift Report

The Dynamic Lift report provides visual summaries of the performance of one or more models for predicting a binary outcome variable.

To create a Dynamic Lift report:

2. Enter `lift_reg1tree1` for the report name.
3. Select HTML for the output type.
4. Select Seaside for the style of the report.
5. Select the models Reg 1 and Tree 1 from the list.
6. (Optional) Specify the Control group response rate.
7. (Optional) Specify the Prior probability.
8. Accept the default input table of QSTutorial.HMEQ_TEST.
9. Click Run. The report is generated and appears in the default viewer based on the selected output type.

See Also

“Overview of Model Comparison, Validation, and Summary Reports” on page 124

Create a Scoring Test

To create a scoring test:

1. Select the Scoring page.
2. Click . The Add a New Scoring Test window appears.
3. Enter **Tree1** for the name.

4. (Optional) Enter **test1** for the description.

5. Select the **Tree 1** model from the list.

6. Select **Test** for the type of scoring test. Accept the default number of observations (1000 rows) to be read from the scoring input table.

 Note: A best practice is to select **Test** before beginning all scoring tests. Later, when you are satisfied with the results of running the scoring test and you are ready to put the test into production, you can change the type to **Production**.

7. Click **Next**.

8. Verify that the value you previously specified for the **Default score input table** project property appears in the **Input table** box. To select a table, click **Browse** and select the table **QSTutorial.HMEQ_SCORE_INPUT**. Click **OK**.

9. Verify that the value you previously specified for the **Default score output table** project property appears in the **Output table** box. To select a table, click **Browse** and select the table **QSTutorial.HMEQ_SCORE_OUTPUT**. Click **OK**.

10. Click **Next**.

11. Verify that all of the scoring output table variables are mapped to the available variables.

12. Click **Next**.

13. Select the configured SAS Application Server (for example, **SASApp**).

14. Click **Save**.

15. Select the **Tree1** scoring test from the list and click **Save**.
16. Click the Results tab or double-click the scoring test to view the scoring test results. When the job has completed without errors, a ✔️ appears in the Status column.

Note: You can check the status of a job by clicking 🔄 in the Job History tab. A new record appears after the job has completed.

Set the Champion Model

To set the champion model:

1. Select the Models page of the project.
2. Select the Tree 1 model and click ✔️. The value in the Role column changes to Champion.

See Also

“Overview of Scoring Tests” on page 115

Monitor the Performance of a Champion Model

In this tutorial you use the Edit Performance Definition wizard to generate SAS code. You then execute the generated code.

To edit the performance definition:

1. Select the Performance page.
2. Click 🔄, and select the champion model Tree 1. Click Next.
3. Select a SAS Application Server (for example, the default is SASApp).

4. Click All to select all output variables for stability analysis.

5. Click All to select all input variables for characteristic analysis.

Click Next.
6. Select **Standard configuration** as the data processing method and select **Run model score code** to run the score code in the performance monitor job.

7. Specify the data source information.

 a. Select **Static data sources**.

 b. Click †.

 Note: The data table whose collection date is the earliest is set as the baseline performance data table.

 c. Click the empty cell in the **Data Source** column.

 d. Click **Browse** and select the **HMEQ_PERF_Q1** performance data source from the **QSTutorial** library. Click **OK**.

 e. Click the empty cell in the **Collection Date** column and click †. Select the date of **March 31, 2014**. The date can be any date in the time period when the performance data was collected.

 f. Enter the label **Q1** in the **Report Label** column. The report label represents the time point of the performance data source. Because the report label appears in the performance charts, use a label that has not been used for another time period, is short, and is understandable.

 Note: If you duplicate report labels, the results in the previous performance results are overwritten.

 g. (Optional) Select a data source and click † to verify that the selected input variables and target variable are included in the performance data source.

 h. (Optional) Repeat the above steps to add the following performance data sources from the **QSTutorial** library to the performance definition.

<table>
<thead>
<tr>
<th>Data Source</th>
<th>Collection Date</th>
<th>Report Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMEQ_PERF_Q2</td>
<td>June 30, 2014</td>
<td>Q2</td>
</tr>
<tr>
<td>HMEQ_PERF_Q3</td>
<td>September 30, 2014</td>
<td>Q3</td>
</tr>
<tr>
<td>HMEQ_PERF_Q4</td>
<td>December 31, 2014</td>
<td>Q4</td>
</tr>
</tbody>
</table>
i. (Optional) To delete a data source from the performance definition, select the data source and click ✗.

8. Click **Next**.

 Note: When prompted to replace the existing performance data, click **Yes**.

9. (Optional) Either specify values for the alert and warning conditions or accept the defaults. Click **Next**.

10. (Optional) To send the results by email, click ✪. A new row is added to the table.

 a. Enter an email address.

 b. Select either **Yes** or **No** if you want an alert or warning to be sent by email when alert or warning thresholds have been exceeded.

 c. Select either **Yes** or **No** if you want a completion notice with the job status to be sent by email every time the report runs.
11. Click **Save**.

12. Click ✗.

13. After the performance monitoring has been completed, a confirmation message appears. Click **Close**.

14. Click the **Results** tab to view the performance results.

 Note: You can check the status of a job by clicking ✘ in the **Job History** tab. A new record appears after the job has completed.

See Also

“Edit and Execute a Performance Definition” on page 181

Publish a Champion Model to the SAS Metadata Repository

To publish a model to the SAS Metadata Repository:

1. Select the **Models** page.

2. Select the champion model **Tree 1** and click ✗.

 Note: Alternatively, you can select a project from the Projects category view and click ✗.

3. To specify a new publish name, click in the **Publish Name** column for a selected model.
Note: By default, the publish name for the champion model is the project name. You cannot modify the publish name for a champion model when publishing from the Projects category view.

4. Click Browse to select the location to publish the model to. You must have Write permission to this location.

5. Click Publish.

6. Click Close.

7. (Optional) Select History ➔ Published to view a list of the models that have been published.

See Also

“Publishing Models to the SAS Metadata Repository” on page 215

View and Search Model Inventory

In this tutorial, you view the model inventory that you imported in the previous tutorials. You then search the model inventory to filter the results, and open a model.

1. Select Models ➔ Inventory.

2. Click 🔽. The additional search options appear.
3. Expand the **Properties** search option.

4. Select **Regression** from the **Algorithm** property drop-down list. The model inventory list is filtered automatically.

5. Double-click the **Reg 1** model to view its model content.

6. Minimize or close the model object window to return to the list of models.
Chapter 3
Managing Data Tables

About Managing Data Tables

The Data category enables you to manage your list of data tables from within SAS Model Manager. You can create new Base SAS libraries, add and remove tables, view table data and metadata, create and delete table summaries, and associate attachments and comments with tables. The application uses these data tables whenever it needs to access data, such as for testing, scoring, retraining, and performance monitoring of models.

You can view the list of tables by selecting Data \Rightarrow Tables. There are three ways to add tables to the list.

- You can use SAS Visual Data Builder to create new tables and add them to the list. See “Adding Tables Using SAS Visual Data Builder” on page 34 for more information.
- If the table is already registered in the SAS Metadata Repository, you can add the table to the list as described in “Add Tables That Are Registered in Metadata” on page 34.
• If the table is not already registered in the SAS Metadata Repository, you can add a new table as described in “Register and Add New Tables” on page 35.

Note:
• SAS Model Manager cannot access tables in a SAS LASR Analytic Server instance.
• If you do not have the appropriate permissions to access a folder, then the tables and libraries are not listed in the Data category view.
• You can view tables with double-byte characters (DBCS) in the table name or in variable names, and you can use them to create summary tables. You can use them in models, model projects, and model portfolios, as well as their associated tasks. To use these tables, support for DBCS characters must be enabled as described in “Extend Support for Double-Byte Characters in Table and Variable Names” in SAS Model Manager: Administrator’s Guide.
• Special characters and blanks are not supported in table names or in variable names.

Adding Tables Using SAS Visual Data Builder

SAS Visual Data Builder enables analysts and data administrators to perform data preparation for analytics. You can design queries to perform joins, add calculated columns, and subset and sort data. Several productivity features speed the creation of columns based on common aggregation functions.

Once you design your queries, you can reuse them as subqueries for more sophisticated queries, export them as jobs for scheduling, or schedule them directly from the user interface.

The application has data import features that enable you to access data from spreadsheets, delimited files, and SAS data sets. Once you import the data, you can prepare it for analysis or join it with existing data.

The application provides a series of features that you can use to extract and transform data from multiple sources and create new data tables.

Add Tables That Are Registered in Metadata

If a data table has already been registered in the SAS Metadata Repository, you can add it to the list of data sources. To add one or more tables:

1. Select Data ➔ Tables.
2. Click ➔ and select Add Registered Tables. The Choose an Item window appears.
3. Select the tables that you want to add, and click OK.
Register and Add New Tables

You can create new Base SAS libraries and register tables by using SAS Model Manager. To register new tables in the SAS Metadata Repository and add them to the list of data sources:

1. Select Data ⇒ Tables.
2. Click + and select Register Tables. The Register Tables window appears.

 Note: You cannot use the Register Tables option to add a table that is already registered. You must select Add Registered Tables instead. See “Add Tables That Are Registered in Metadata” on page 34.

3. Select an existing library, or create a new Base SAS library.

 To use an existing library:
 a. Select Use an existing library.
 b. Click + and select the library.
 c. Click Next.

 To create a new Base SAS library:
 a. Select Create a new library.
 b. Specify a name for the new library. The name cannot exceed 60 characters.
 c. (Optional) Specify a description for the library.
 d. Specify a libref. A libref is a name that SAS uses to refer to the library. Enter a unique name of eight characters or less.
 e. Select the location for the new library. This location is the folder in the SAS Metadata Repository where the library is stored.
 f. Select the server and the directory where the data tables reside.
 g. Click Next.

 Note: If you click Cancel at this point, a folder for the library is created in the SAS Metadata Repository, but the folder does not appear in the list of data tables.

4. Select the tables that you want to add to the library, and click ➔ to add the tables to the Selected tables list. Click ➔ to add all of the tables to the Selected tables list.
5. Click Finish.

Edit Table Properties and View Table Metadata

The Properties page displays table metadata. On this page, you can edit the data source name and description, and change the table associated with the data source name.

1. Select Data ⇒ Tables.
2. Double-click on the table whose properties you want to edit. The Properties page appears.

The Properties page displays table metadata such as the number of columns, the table location, and information about each column in the table.

3. Edit the data source name and description, or click to select a different table as the data source.

4. Click to save the changes.

View Table Data

To view table data:

1. Select Data \(\Rightarrow\) Tables.

2. Double-click on the table that you want to view.

3. Select the Table View page.
On the **Table View** page, you can control the display by selecting specific columns in the **Columns** section. The **Column Information** section displays information about the currently selected column.

Note: If the name of the selected column begins with a blank space, the table cannot be displayed.

Note: The row count might not be displayed, depending on the database with which the table was created.

To sort the table based on the values in a particular column, click on the column heading. If the column is sorted in ascending order, a ▲ appears beside the column heading. When the column is sorted in descending order, a ▼ appears.

Filter Data in the Table View

You can filter the rows that are shown on the **Table View** page in either of the following ways:

- Click 🕵️‍♂️ above the table. The Filter window appears. Enter a valid SQL expression, and click **Apply**.
- Right-click on a value in the table. SAS Model Manager displays several predefined filter options. You can select any of these options. Depending on which option you select, you might be prompted to enter data values for the query.
The expression that you enter is displayed above the data table, and the table is filtered accordingly.

To clear the filter and display the entire table, click X.

For more information about SQL expressions, see *SAS FedSQL Language Reference*.

Create a Table Summary

Note: To run a summary, you must be a member of the Decision Manager Users group. See “Configuring Users, Groups, and Roles” in *SAS Model Manager: Administrator’s Guide* for more information.

To create a new table summary:

1. Select Data ➔ Tables.
2. Double-click on the table for which you want to add a summary.
3. Select the Summary page.
4. Click +.
5. In the New Summary window, select the Collection period and the specific date or time values for the collection period that is represented by the data in the table.
 Note: The Collection period is not used to filter the data.
6. (Optional) Specify a summary description.
7. Click Run. SAS Model Manager runs a process to summarize the data and adds the new summary to the Summary page.

Double-click on the summary to open it.
The following display shows the Summary page for the HMEQ_PERF_Q1 table. The collection period represented by the data in the table is June 2015.

Delete a Table Summary

Note: To delete a summary, you must be a member of the Decision Manager Users group. See “Configuring Users, Groups, and Roles” in SAS Model Manager: Administrator’s Guide for more information.

To delete a table summary:

1. Select Data ⇒ Tables.
2. Double-click on the table whose summary you want to delete.
3. Select the Summary page.
4. Select the summary that you want to delete.
5. Click Delete.
Add Attachments to a Table

To add an attachment such as a document file or an image file:

1. Select the Attachments page.
2. Click , and select the attachment file.
3. Click .

Note: You can delete an attachment by selecting the attachment and clicking .

Add Comments to a Table

You can add new comments or reply to existing comments. To add a new comment:

1. Select the Comments page.
2. Enter a topic title and enter the comment. The topic title is required, and the field for comments does not appear until you enter the topic title.
3. (Optional) Click to add an attachment such as an image or a document.
4. Click Post.

To reply to an existing comment, enter your reply in the field immediately below the topic title for the existing comment, and click Post.

Click to see comments that have been posted by others.

To search for text in the comments, enter text in the search field at the top of the Comments page.

Remove a Table

Removing a table from the list of data sources does not delete the table from file system.

To remove a table from the list of data sources:

1. Select Data ⇒ Tables.
2. Select the table that you want to remove from the list.
3. Click .
Chapter 4
Managing Folders

Overview of Managing Folders
In the Projects and Portfolios category views, you can add, delete, and archive or restore folders. You must create a folder before you can create a project or portfolio. You can create subfolders within a top-level folder to organize your projects and portfolios. Designing a folder structure enables you to get summary information about the contents of the folder. This information includes the number of models, versions, and scoring tests, as well as reports for the models that contain model variables and target variables. Your folder structure could be similar to your business departmental hierarchy, or it could list individual project, portfolio, or model names.

To view the summary information, select a folder and then select Actions ⇒ View Summary.

Create a New Folder
Before you add new projects or portfolios to manage models, you must add folders to store them in.

1. Click 📁 and select New Folder or New Top-Level Folder. The New Folder window appears.
2. Enter a name for the folder.
3. (Optional) Enter a description for the folder.
4. Click Save.

Note: Alternatively, you can right-click an item and select the menu option for the action that you want to perform.

Rename a Folder

To rename a folder, right-click the folder, and select Rename. Enter the new name, and click OK. Folder names are case sensitive. SAS Model Manager considers `myfolder` and `MYFOLDER` to be two unique folders.

Alternatively, click on the folder and select Rename from the Actions menu.

Delete a Folder

To delete a folder, right-click the folder, and select Delete. Click OK in the warning message.

Alternatively, click on the folder and then click 🗑️.

Archive and Restore Folders

In the Projects and Portfolios category views a folder and its contents can be archived and restored to a different system.

Using the archive and restore facilities, a SAS Model Manager administrator can back up a folder in one repository and restore it to another repository. The folder is archived as a compressed ZIP file.
Note: The attachments and comments at the portfolio level, project level, and model level are managed by separate services and are not stored within the portfolio, project, and model objects. Therefore, the attachments and comments are not included in the archived ZIP file.

Before you restore a folder, you should first create a folder to restore it to, since the restored projects reside at the same level that you specified. A best practice is to give the restored folder the same name as the archived ZIP file. The contents of the archived folder are restored to the new folder.

Note: All tables that are referenced within the projects and portfolios that are restored must be registered in the SAS Metadata Repository and made available to the Data Tables category view. For more information, see Chapter 3, “Managing Data Tables,” on page 33.

Folders cannot be restored in these situations:

• The name of the organizational folder to be restored is the same as a project name in the archived folder.

• The same archived ZIP file has already been restored in a folder on the same WebDAV server.

To archive a folder:

1. Select a folder.
2. Select Actions ⇒ Archive.
3. Select a folder where the contents are to be saved.
4. Enter a name.
5. Click Save.

To restore a folder:

TIP Create a folder first into which to place the restored project.

1. Select a folder.
2. Select Actions ⇒ Restore.
3. Navigate to the folder where the contents are saved.
4. Select the file.
5. Click OK.

Note: After restoring a folder, verify that the following requirements have been met:

• All scheduled jobs for scoring tests, performance, and retraining for the projects within a folder must be deleted and re-created on the system where the folder was restored.

• All user-defined templates for a model, report, and properties must exist on the system where the folders were restored. If they do not exist you must re-create the templates.

For more information, see the following topics:

• “Schedule a Scoring Test” on page 119
• “Schedule a Retrain Definition” on page 202
• “Schedule Performance Definitions” on page 184
• “Creating and Managing Templates” on page 60
Part 2

Working with Models, Projects, and Portfolios

Chapter 5
Working with Projects ... 47

Chapter 6
Importing Models ... 67

Chapter 7
Managing Model Content and Versions 79

Chapter 8
Working with Model Inventory 91

Chapter 9
Working with Portfolios ... 95
Chapter 5
Working with Projects

Overview of Projects .. 48
Planning a Project ... 48
Prerequisites for Creating Projects 49
Create a Project ... 50
Project Properties ... 51
 About Project Properties .. 51
 General Properties ... 51
 Specific Properties ... 52
 System Properties ... 54
 User-Defined Properties .. 54
Defining Project Input and Output Variables 55
 About Defining Project Input and Output Variables 55
 Add a New Variable ... 55
 Delete a Variable ... 56
 Edit a Variable .. 56
 Copy Variables .. 56
 Import Variables ... 56
Managing Project Versions ... 57
 Overview of Project Versions 57
 Create a New Version of a Project 57
 Set the Displayed Version 58
 Lock and Unlock a Project Version 58
 Attach a Portable Formats File 58
 View Life Cycle Status .. 58
View Project History .. 59
Add Attachments to a Project 59
Add Comments to a Project .. 59
Lock or Unlock Project Variables 60
Creating and Managing Templates 60
 About Creating and Managing Templates 60
 Manage Templates ... 61
 Create a New Template .. 61
 User-Defined Properties Template 62
Searching for Models .. 63
Overview of Projects

A model project consists of the models, variables, reports, performance results, and other resources that you use to determine a champion model. For example, a banking project might include models, data, and reports that are used to determine the champion model for a home equity scoring application. The home equity scoring application predicts whether a bank customer is an acceptable risk for granting a home equity loan.

You create projects within folders. The models within a project are associated with a version. A version is used to organize project content and model information for a specific time period.

Note: If you see a folder named FactoryMiner it is being used in the Portfolios category to store portfolios that contain project segments and models from SAS Factory Miner. Do not remove this folder.

Figure 5.1 Model Projects Category

Planning a Project

Before you begin a project, you must plan your project resources. Here is a list of questions to consider and conditions to meet for a modeling project:

- After you know which users are assigned to a project, an administrator must ensure that the user is assigned to the appropriate user group and role. For more information, see “Configuring Users, Groups, and Roles” in SAS Model Manager: Administrator’s Guide.

- How do you want to structure your project? A project is stored in a folder that can contain multiple levels so that you can customize the structure. For example, your project folder could be similar to your business departmental hierarchy or it could list
individual project names. For more information, see “Overview of Managing Folders” on page 41.

- What models do you want to use in the project? If the models were created using SAS Enterprise Miner, SAS/STAT, or the SAS/ETS procedures COUNTREG and SEVERITY, all model components are available when you import the model. If your model is a SAS code model that is not contained in a miningresult.spk file or a model that was created by third-party software such as R, you must ensure that you have imported all of the model component files. For more information, see “Overview of Importing Models” on page 67.

- How do you want to define your project input and output variables? When you create a project, you can import the variables using input and output prototype tables, copy the variables from an existing champion model, or define individual variables. If you use prototype tables to define the project input and output variables, the tables must be registered in the SAS Metadata Repository. For more information, see “Defining Project Input and Output Variables” on page 55.

- How do you want to track the progress of a version? The Workflows view enables you to track the progress of tasks from the version level. An authorized user can create a workflow and associate it with a version. For more information, see “Overview of Using Workflows” on page 229.

- You might have project documents that you would like to access. You can attach documents at the project or model level on the Attachments page. For more information, see “Add Attachments to a Project” on page 59.

- You might have comments that you would like others to see or respond to. You can add comments at the project or model level on the Comments page. For more information, see “Add Comments to a Project” on page 59.

- Several reports are available to help you assess candidate models. You can review the types of reports that are available and plan for which reports you want to use. Your plans might also include a custom report that you can run. For more information, see “Overview of Model Comparison, Validation, and Summary Reports” on page 124.

- After your champion model is in a production environment, you can monitor the performance of the model using your organization's performance data. For more information, see “Overview of Performance Monitoring” on page 165.

- When you define performance monitoring reports, you can set up performance index alert and warning conditions to notify users when conditions exceed the indexes. For more information, see “Performance Index Warnings and Alerts” on page 173.

Prerequisites for Creating Projects

Projects can be created only by administrators and advanced users. Ensure that users who create projects are assigned to the group **Model Manager Administrator Users** or **Model Manager Advanced Users** in SAS Management Console.

All modeling projects require that you know the model function type before you create a project. The following model function types are available:

- Classification
- Prediction
- Segmentation
To determine the model function type for your project, see Table 5.1 on page 52.

If you use prototype tables to define the project input and output variables, you must create the project input and output tables and register them in the SAS Metadata Repository using the Data category view or SAS Management Console. If you use SAS Management Console, you must then add the registered tables in a library by using the Data category view to make the tables available to the application.

For more information, see the following documentation:
• “Defining Project Input and Output Variables” on page 55
• Chapter 3, “Managing Data Tables,” on page 33

Create a Project

To create a project:

1. Select a folder or create a new folder in which to store the new project.
2. Click and select New Project. The New Project window appears.

 Note: Alternatively, you can right-click a folder and select New Project.

3. Enter a name for the project.
 The initial version is displayed and reflects the level for sequential versions.
4. Select a model function (Classification, Prediction, Segmentation, or Analytical) to indicate the type of models that can be imported into the project. The location of the project is displayed.
5. Click Save.

To delete a project, select a project and then click .
Alternatively, you can right-click an item and select the menu option (Publish, Rename, or Delete) for the action that you want to perform.
Project Properties

About Project Properties

Project properties contain the project metadata. Project metadata includes information such as the name of the project, the type of project, the project owner, the project identifier, the name and path of the repository, and of the tables and variables that are used by project processes.

Project properties are organized into the following types:

- General Properties
- Specific Properties
- System Properties
- User-Defined Properties

General Properties

General Properties are system-defined properties that you cannot modify, with the following exceptions: folder description, operation status, and lock status.

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model function</td>
<td>Specifies the type of output that your predictive model project generates. The Model function property that you specify affects the model templates that are provided when you are ready to import models into a project. After it has been declared, the Model function property for a project cannot be changed. Ensure that the types of models that you are going to use in the project fit within the selected model function type. For more information about the types of model functions, see Table 5.1 on page 52.</td>
</tr>
<tr>
<td>Property Name</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
</tr>
<tr>
<td>Operation status</td>
<td>Specifies the current state of the project:</td>
</tr>
<tr>
<td></td>
<td>Under Development indicates that the project has started but a champion model is not yet in production.</td>
</tr>
<tr>
<td></td>
<td>Active indicates that a champion model for this project is in production.</td>
</tr>
<tr>
<td></td>
<td>Inactive indicates that the champion model is temporarily suspended from production.</td>
</tr>
<tr>
<td></td>
<td>Retired indicates that the champion model for this project is no longer in production.</td>
</tr>
<tr>
<td></td>
<td>To set the status, select an option from the Operation status drop-down list.</td>
</tr>
<tr>
<td>Lock project variables</td>
<td>Specifies that the project metadata is locked and the project definition cannot be modified. For more information, see “Lock or Unlock Project Variables” on page 60.</td>
</tr>
</tbody>
</table>

Table 5.1 Types of Model Functions

<table>
<thead>
<tr>
<th>Model Function</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytical</td>
<td>Function for any model that is not Prediction, Classification, or Segmentation.</td>
<td>None</td>
</tr>
<tr>
<td>Classification</td>
<td>Function for models that have target variables that contain binary, categorical, or ordinal values.</td>
<td>DEFAULT_RISK = {Low, Med, High}</td>
</tr>
<tr>
<td>Prediction</td>
<td>Function for models that have interval targets with continuous values.</td>
<td>The score output of a prediction model could estimate the weight of a person. The output of a model would be P_Weight.</td>
</tr>
<tr>
<td>Segmentation</td>
<td>Function for segmentation or clustering models.</td>
<td>Clustering models</td>
</tr>
</tbody>
</table>

Specific Properties

Specific Properties contain information about tables that are used by the project as well as various input and output variables and values that are used in scoring the models in test and production environments. This data can be added or modified after you add
variables. For more information, see “Defining Project Input and Output Variables” on page 55.

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default test table</td>
<td>Specifies a default SAS data set that can be used to create the New Dynamic Lift and Interval Target Variable reports.</td>
</tr>
<tr>
<td>Default scoring input table</td>
<td>Specifies a default SAS data set that is used as the input data table for all scoring tests within the project. If you specify a value for the Default scoring input table property, the value is used as the default input table in the Add a New Scoring Test window.</td>
</tr>
<tr>
<td>Default scoring output table</td>
<td>Specifies a default SAS data set that defines the variables to keep in the scoring results table and the scoring test output table. If you specify a value of the Default scoring output table property, the value is used as the default output table in the Add a New Scoring Test window.</td>
</tr>
<tr>
<td>Default performance table</td>
<td>Specifies the default performance table for all model performance monitoring tests within a project.</td>
</tr>
<tr>
<td>Default train table</td>
<td>Specifies the default train table that is used for retraining models and for the Training Summary Data Set report. The Default train table is also used to validate scoring functions or scoring model files when a user publishes the associated project champion model or challenger models to a database. This property is optional.</td>
</tr>
<tr>
<td>Champion version</td>
<td>Specifies the version that contains the champion model in a production environment.</td>
</tr>
<tr>
<td>Model function</td>
<td>Specifies the type of output that your predictive model project generates. The Model function property that you specify affects the model templates that are provided when you are ready to import models into a project. After it has been declared, the Model function property for a project cannot be changed. Ensure that the types of models that you use in the project fit within the selected model function type.</td>
</tr>
<tr>
<td>Training target variable</td>
<td>Specifies the name of the target variable that was used to train the model.</td>
</tr>
<tr>
<td>Target event value</td>
<td>Specifies the target variable value that defines the desired target variable event.</td>
</tr>
<tr>
<td>Property Name</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Class target values</td>
<td>For class, nominal, ordinal, or interval targets, the set of possible outcome classes, separated by commas. For example, binary class target values might be 1, 0 or Yes, No. Nominal class target values might be Low, Medium, High. These values are for information only.</td>
</tr>
<tr>
<td>Class target level</td>
<td>Specifies the class target level of binary, nominal, ordinal, or interval.</td>
</tr>
<tr>
<td>Output event probability variable</td>
<td>The output event probability variable name, when the Model function property is set to Classification or Analytical.</td>
</tr>
<tr>
<td>Output prediction variable</td>
<td>The output prediction variable name, when the Model function property is set to Prediction or Analytical.</td>
</tr>
<tr>
<td>Output segmentation variable</td>
<td>The output segmentation variable name, when the Model function property is set to Segmentation or Analytical.</td>
</tr>
</tbody>
</table>

System Properties

System Properties are system-defined properties (UUID, Location, and URL) that you cannot modify.

User-Defined Properties

You can add your own project properties under User-Defined Properties. The property-value pair is metadata for the project.

To create a user-defined property:

2. Click . The New User-Defined Property window appears.
3. Enter a name and value for the property. Do not include spaces or double-byte character sets.
4. Click OK.

To delete a user-defined property:

2. Select a property.
3. Click . A confirmation window appears.
4. Click OK to delete the property.
Defining Project Input and Output Variables

About Defining Project Input and Output Variables

Project input and output variables are the variables that are used by the champion model and challenger models. Project input and output variables must be defined before a champion model can be published to a production environment. You can define the project input and output variables when you create a project or during the champion model selection process.

You define the project input and output variables by creating input and output prototype tables and then importing the variables using these tables, or by copying the input and output variables from another project. If you declare a champion model and the project variables have not been defined, you are prompted to add model input variables to the project and to map model output variables to project output variables.

From the Variables page of a project, you can add, delete, edit, copy, and import project variables.

Add a New Variable

To add a new variable:

1. Click +. The Add a New Variable window appears.

2. Enter a name.

3. (Optional) Enter a description.

4. Select a type:
 - Numeric
 - Character

5. (Optional) Enter a measurement.

6. Enter a length.
7. Click **OK**.
8. Click ![icon] to make the changes effective for other pages.

Delete a Variable

To delete a variable:
1. Select a variable.
2. Click ![icon]. A confirmation window appears.
3. Click **OK** to delete the variable.

Edit a Variable

To edit a variable:
1. Select a variable.
2. Click ![icon].
3. Edit the necessary fields and click **OK**.
4. Click ![icon] to make the changes effective for other pages.

Copy Variables

To copy variables from a project:
1. Click ![icon].
2. Select a project.
3. Click **OK**.
4. Click ![icon] to make the changes effective for other pages.

Import Variables

To import variables from a table:
1. Click ![icon].
2. Select a data source.
3. Click **OK**.
4. Click ![icon] to make the changes effective for other pages.
Managing Project Versions

Overview of Project Versions

After a project is created, you can view information about the project on the Versions page. An initial version is created automatically, and it functions as a time-phased container for your projects. The version is a sequential number that increments by plus one each time you add a new version. You can also specify a description for the version when adding a new one, such as a time interval for a project cycle. Your version might represent a calendar year, a retail season, or a fiscal quarter. A project can contain multiple versions. A version contains all of the candidate model resources that you need to determine a champion model as well as all champion model resources. For example, you might develop models for a scoring program that determines whether a customer is eligible for a home equity loan. The version contains all of the models, scoring tests, and reports that are used to determine the champion model. Expand Details to view more information about the project version.

Create a New Version of a Project

To create a new version:
1. Select the Versions page.
2. Click . The Add a New Version window appears.
3. The next sequential number appears as the new version number for the project.
4. (Optional) Enter a description for the version.
5. Click OK.

You can also delete a version if it is not the current version, or if it is locked. Select a version and click .
Set the Displayed Version

To set the displayed version:

1. Select the **Versions** page.
2. Select a version and click 🔗, or double-click a version.
3. The 🔴 icon indicates the version that is being displayed.

Lock and Unlock a Project Version

You can enable or disable modifications of some version models properties and files. Locking a version restricts the activities that you can do with the project. You normally lock a version after you declare a champion model in preparation for deploying the champion model to a production environment.

To lock or unlock a version:

1. Select the **Versions** page.
2. Select a version and click 🔒 to lock or unlock the version. The label **Locked** after the version name indicates the version that is being locked.

Attach a Portable Formats File

The portable formats file contains the user-defined formats that are associated with the train table that was used to create a model. In order for the validation to be successful, the table that is selected at publish time to validate the model must be associated with the same user-defined formats. You must transform the user-defined formats SAS catalog into a portable formats file and attach it to the version. This action enables the user-defined formats to be published to the database with the model.

To attach a portable formats file:

1. Select the **Versions** page.
2. Select a version and click 🔗.
3. Navigate to the appropriate folder and select the portable formats file to attach to the selected version.
4. Click **OK**.

View Life Cycle Status

Note: Only life cycle content for migrated versions can be viewed.

To view the life cycle status:

1. On the **Versions** page of a project, select a version and expand **Details**.
2. Click **View Life Cycle Status**.
3. View the information and click **OK**.
View Project History

On the History page, you can view the history log for changes to the project, the history of models that were published at the project and model level, and the history of scoring, performance, and retrain jobs that were executed.

Add Attachments to a Project

On the Attachments page, you can view and add attachments such as images or documents. All new attachments are associated with the project. Values in the version and location columns appear only for attachments that were migrated from a previous release of SAS Model Manager. The version and location columns also appear for performance and training summary data sets that are associated with the selected version. The value for location is the directory path where the attachment is stored in the model repository. Attachments for versions within a project that were migrated now appear at the project level.

To add an attachment:
1. Click .
2. Select a file to attach and click Open.

Note: Click to remove an attachment.

Add Comments to a Project

On the Comments page, you can add new topics or respond to an existing topic. You can also search the comments.

To add a comment:
1. Enter a topic name and a comment.
2. (Optional) Click to attach a file to the new topic. Repeat this step to attach multiple files.
Lock or Unlock Project Variables

You cannot modify project variables that are locked for a project. Also, you cannot set a new champion or challenger model for the project.

To lock or unlock a project:

1. In the Projects category view, select a project.
2. Select Actions ⇒ Lock Project Variables. Note that the Lock project variables check box is selected on the Properties page of the project.
3. To unlock the project, select Actions ⇒ Lock Project Variables. Note that the Lock project variables check box is deselected on the Properties page of the project.

Note: You can also select or deselect the Lock project variables check box on the Properties page of a project.

Creating and Managing Templates

About Creating and Managing Templates

There are three different types of templates that you can create or edit. The template types are Model, Report, and Properties. Models are associated with a specific model template. A model template contains properties and component files that define a type of model. Report templates can be used to create user-defined reports. A report template contains report requirements such as report name and the number of required models to run the report. The properties template contains user-defined properties and values for the model and project object types. In the Projects category view, you can create a new template or manage existing templates.

Note: Only users who are in the Model Manager Administrator Users or Model Manager Advanced Users groups and who have Write permission to the WebDAV folder where the user-defined model and report templates are stored can save a new template or save changes to an existing template. For more information, see “Verify WebDAV Folder Permissions for User-Defined Templates” in SAS Model Manager: Administrator’s Guide.

For more information about the different types of templates, see the following topics:

- “Model Templates” on page 241
- “Report Templates”
- “User-Defined Properties Template”
Manage Templates

To manage templates:

1. Click \(\text{Manage Templates}\) and select *Manage Templates*.

2. Select an XML template or SAS code file to edit or delete. The Reserved column must be marked as No in order for the template to be editable. Life cycle templates cannot be edited but can be viewed as Read-only.
 - To edit a file, click \(\text{Save}\). Make the appropriate changes and click *Save*.
 - To delete a file, click \(\text{Yes}\). Click *Yes*.

3. Click *Close*.

Create a New Template

To add a new template:

1. Click \(\text{New Template}\) and select *New Template*.

2. Enter a filename.

3. Select a type:
 - *Model*
 - *Report* (XML template or SAS code)
4. Click to select an XML or SAS code file. You can also copy and paste the XML or SAS code in the text box.

 Note: Ensure that the selected template type matches the XML content type before importing the file.

5. Click to validate the XML.

6. Click Save.

User-Defined Properties Template

When you add a user-defined property using the UserDefinedProperties.xml file, you specify the name of the property, the initial value of the property, and the type of object in the model repository to which it applies. The user-defined property is created for the specified object type when the object is added to the model repository. For example, if the XML file specifies a user-defined property *Due date* for an object type of project, the project object has a property of *Due date* each time a project is created in the Projects category. User-supplied properties are not added to existing objects in the model repository.

You can specify these object types in the UserDefinedProperties.xml file:

- AnalyticalModel
- ClassificationModel
- ClusteringModel
- PredictionModel
- Project

To add user-defined properties for an object type:

1. Click and select **Manage Templates**.

2. Select the **UserDefinedProperties.xml** template and click .
3. Add properties using an XML property element for each property. These arguments are required:

name="property-name"
 specifies the name of the property.
initial="initial-value"
 specifies a value for the property when it is added as a property for the specified object type in the model repository. If you do not want to specify an initial value, use two double quotation marks, initial=""

target="object-type"
 specifies the object type in the model repository for which the user-supplied value applies.

Example: <Property name="Due date" initial="" target="Project"/>

4. Click Save.

5. Click Close.

Searching for Models

You can search for models based on certain criteria in the Projects and Portfolios category views. The results appear below the search criteria. You can also search all models in the model repository and filter the results in the Inventory category by using the category search options. For more information, see “Search and Filter Inventory of Models” on page 91.
To search for models:

1. Click The default is to search All folders

2. Select a location:
 - **All folders** searches all folders in the category view.
 - **Current** searches only the selected object (folder, project, or portfolio) and its contents.

3. Enter a name for the model.
4. Enter an algorithm.
5. Enter an input variable. The field is case sensitive.
6. Enter a target variable. The field is case sensitive.
7. Enter a modeler.
8. Enter a user-defined key or value. The user-defined key field is case sensitive.
9. Click Search.
10. Select a model from **Search Results** and click or double-click to open the model. You can view or edit the model. Click **OK**.

11. Click **Close**.

The search results display the following information:

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project</td>
<td>Specifies the name of the project.</td>
</tr>
<tr>
<td>Model</td>
<td>Specifies the name of the model.</td>
</tr>
<tr>
<td>Location</td>
<td>Specifies the location of the model.</td>
</tr>
<tr>
<td>Algorithm</td>
<td>Specifies the name of the algorithm, such as regression or logistic, that is used by the model.</td>
</tr>
<tr>
<td>Type</td>
<td>Specifies one of the model function types:</td>
</tr>
<tr>
<td></td>
<td>• Analytical</td>
</tr>
<tr>
<td></td>
<td>• Classification</td>
</tr>
<tr>
<td></td>
<td>• Prediction</td>
</tr>
<tr>
<td></td>
<td>• Cluster</td>
</tr>
</tbody>
</table>
Chapter 6
Importing Models

Overview of Importing Models
After you create a project, you import models into a project version on the Models page. A project can contain multiple versions. You can see only the models for the selected version on the Models page. After model evaluation, you set one of the candidate models as the champion model.

You can also import generic models into a folder from the SAS Workspace Server. For more information, see “Importing Models into a Folder” on page 75.
There are many methods of importing your SAS models into your project version:

- Import a model from the SAS Metadata Repository
- Import a model from a SAS Model Package File
- Import a model from a SAS analytic store file
- Import a model from local files
- Import a model from a PMML file
- Add model files to an existing model

SAS macros are also provided so that you can use SAS code to import or register SAS models into your project. For more information, see “Overview of Access Macros” in *SAS Model Manager: Macro Reference* and “Using Macros to Register Models Not Created by SAS Enterprise Miner” in *SAS Model Manager: Macro Reference*.

Keep the following details in mind:

- Scorecard models can be imported using the SAS Code Models local files method and the SAS Model Package File import method.
- HPFOREST procedure models can be imported using the SAS Metadata Repository import and the SAS Model Package File import. You cannot import PROC HPFOREST models using local files.
- High-Performance analytics models that are not created with SAS Enterprise Miner can be registered to the SAS Metadata Repository using the %AA_Model_Register. These models can then be imported to SAS Model Manager by importing the models from the SAS Metadata Repository from a SAS model package file.
- Before you can import COUNTREG procedure and SEVERITY procedure models, you must create the model score code using the %MM_Countreg_Create_Scorecode macro and the %MM_Severity_Create_Scorecode macro. After the score code is generated, you can use the %MM_Model_Register macro or the local files method to import these models. For more information about the types of model component tables, see “Generating Score Code for COUNTREG Procedure Models” in *SAS Model Manager: Macro Reference*.
SAS Model Manager can publish to a database or Hadoop the models that are associated with the **DATA step** score code type. Models that have a score code type of **Analytic store** can be published only to Hadoop and Teradata. Models that have a score code type of **SAS Program**, **PMML**, or **DS2** cannot be published to a database.

- Model component table variable names must start with a letter or underscore and can contain letters, an underscore (_), a hyphen (-), and a period (.). Variable names that have special characters can be used only when the SAS administrator has set the VALIDVARNAME system option to ANY. For more information, see “Valid Variable Name Options” in *SAS Model Manager: Administrator’s Guide*.

CAUTION:
Unexpected results might occur if you import a model that was previously exported using SAS Model Manager. A best practice is to import models that were not previously exported by SAS Model Manager.

Import a Model from the SAS Metadata Repository

If your SAS Enterprise Miner 5.1 (or later) model files or your models that were created by the %AA_Model_Register macro are registered in your SAS Metadata Repository, you can import them into SAS Model Manager from the repository.

To import a model from the SAS Metadata Repository:

1. Click ![Folder icon](image) and select **from the SAS Metadata Repository**.

2. Navigate to the location of the file and select the model file to import.

3. Enter a name for the model and click **OK**.
Import a Model from a SAS Package File

Import a SAS Package File

A SAS model package (SPK) file is a SAS Enterprise Miner SPK file or an SPK file that was created by using the %AA_Model_Register macro. SPK files contain complete model information. They enable you to import a complete model that is not registered in a SAS Metadata Repository.

To import a model from a SAS model package file:
1. Click and select from a SAS package file.

2. On the Browse tab, click Select a Model and navigate to the location of the file. Select the file to import and click Open.

3. Enter a name for the model.

4. Click OK.

Create SAS Package Files in SAS Enterprise Miner

To create SAS Package Files in SAS Enterprise Miner:
1. Open the SAS Enterprise Miner diagram that contains the model, and then run the model.

2. After the model run is complete, right-click the node in the SAS Enterprise Miner Diagram Workspace, and select Create Model Package. The new SPK filename appears under the Model Packages folder in your SAS Enterprise Miner Project Navigator.

3. Right-click the filename and select Save As to copy the SPK file from the SAS Enterprise Miner server to your computer.

4. Specify a destination folder on your computer, such as, C:\MMData, and save the file to your workstation folder.
Create SAS Package Files Using the %AA_Model_Register Macro

These models can be created by SAS procedures and are supported by SAS Model Manager:

- SAS/STAT item store models
- High-performance models
- SAS/ETS COUNTREG procedure models
- SAS/ETS SEVERITY procedure models

You can use the %AA_Model_Register macro to create an SPK file to contain these models. For more information, see “Overview of Access Macros” in *SAS Model Manager: Macro Reference*.

Import a PMML Model

Predictive Modeling Markup Language (PMML) is an XML-based standard for representing data mining results. PMML is designed to enable the sharing and deployment of data mining results between vendor applications and across data management systems. You can import PMML models that are produced by using other applications. PMML 4.2 is supported. Models that are created using PMML 4.2 support DATA step score code.

Note: If your PMML model contains variable names with blanks or special characters other than underscores, you must set the system option `VALIDVARNAMEx=ANY` to perform tasks such as scoring tests, performance monitoring, and reporting that use the score.sas file. For information about setting the `VALIDVARNAMEx=ANY`, see “Valid Variable Name Options” in *SAS Model Manager: Administrator’s Guide*.

For more information, see “PROC PSCORE and PMML Support” on page 265. If you have a license for SAS Enterprise Miner, see the topic “SAS Enterprise Miner PMML Support” in the product Help or in *SAS Enterprise Miner: Reference Help* available at http://support.sas.com/documentation/onlinedoc/miner/.

Note: PMML variables must be valid SAS variable names and cannot contain more than 20 characters. In addition, SAS Model Manager does not support the importing of a PMML file that contains multiple models.

To import a PMML model:

1. Click ☐ and select **from a PMML file**.
2. On the **Browse** tab, click **Select a Model** and navigate to the location of the file. Select the file to import and click **Open**.

3. Enter a name for the model.

4. Click **OK**.

Import Models from Local Files

You can import R models, and you can also import models that you created using SAS code, but that were not created in or exported from SAS Enterprise Miner. An example of a model might be a SAS LOGISTIC procedure model, a SEVERITY model, or an R logistic model. You can also add files later that were not available when the model was originally imported.

When you import models using the local file method, keep the following in mind:

- The table names that you specify as model components must start with a letter or underscore.
- Table names can contain a period.
- Table names cannot be more than 32 characters long.
- Spaces or special characters (for example, ~!@#$%^&*()+={}\[\]|\:;'<>?),"/) are not valid in a table name.

For more information, see [Model Template Component Files](#) on page 241.

Note: HPFOREST models cannot be imported using local files.

To use the Local Files method, you must prepare model component files. Model component files provide the metadata that is used to process a model in SAS Model Manager. The model component files that you prepare are dependent upon the project's model function. You can find the model function in the project property **Model function**. The model functions for SAS code models are analytical, classification, prediction, or segmentation. The model functions for R models are analytical, classification, or prediction. For a list of component files by model function, see “Model Templates” on page 241. If you do not have all of the component files when you import the model, you can create them and add them later. For more information, see “Add Model Files to an Existing Model” on page 84.

SAS code models, at a minimum, require a score code component file (score.sas) and other component files to define the model input and output variables in SAS tables.
Prediction and classification models also require a component file to define target variables.

R models, at a minimum, require SAS and R score code component files, a file for the output parameter estimate, and the other component files to define the model input and output variables using either SAS data sets or XML files. Prediction and classification models also require a component file to define target variables. For more information, see “Overview of Using R Models with SAS Model Manager” on page 267.

The score code component file (score.sas) is DATA step score code and is used as input by the SAS Scoring Accelerator when publishing a model to a database. In the scoring function publish method, some SAS language elements and syntax are not supported when you create or modify your score code. Only the SAS language elements and syntax that are required to run critical data transformations and model scoring functions are available. If you use a statement or function that is not supported, your model is not published to the database. For more information, see “Considerations When Creating or Modifying DATA Step Score Code” in *SAS In-Database Products: User’s Guide*.

To import models from local files:

1. Click and select **from local files**.

2. Select a model template from the drop-down list.

 Note: If you specify values for the properties and then select a different template, the values are cleared.

3. Click **Properties** and specify the model properties.

4. Click **Files** and select the local files from the SAS Workspace Server that match the template files. You cannot delete a file once you have added it. To replace the file, select another file or cancel the import and start over.
5. Click **OK**.

Import a Model from a SAS Analytic Store File

The HPFOREST and HPSVM procedures are used by SAS Factory Miner to create the SAS analytic store (SASAST) file that contains the model scoring files and model input and output variables. You can register SAS analytic store models from SAS Factory Miner, or you can register them by importing a model from a SAS analytical store file into SAS Model Manager. SAS analytic store models that are created using SAS Enterprise Miner and that are in SAS package file (SPK) format are not supported in this release.

SAS Model Manager supports publishing SAS analytic store models only to Hadoop and Teradata. The scoring files that are required for analytic store scoring by the SAS Scoring Accelerator are generated by the HPFOREST or HPSVM procedures. The HPFOREST and HPSVM procedures can also be used in Base SAS to create a SAS analytic store model. For more information, see “Introduction to Analytic Store Scoring” in *SAS In-Database Products: User’s Guide* and *SAS Factory Miner: User’s Guide*.

Note: When you are importing a model from a SAS analytic store file, the model function defaults to the value of **Analytical** and the file does not contain a target variable. When you are registering models from SAS Factory Miner to the model repository, the model function value of classification or prediction is accepted.

To import a model from a SAS analytic store file:

1. Click ✂️ and select **Import from a SAS analytic store file**.

2. On the **Browse** tab, click **Select a Model** and navigate to the location of the file. Select the file to import and click **Open**.

3. Enter a name for the model.

4. Click **OK**.
Export Models from a Project

To export an individual model from the Models page of a project to the SAS Workspace Server:

1. Select a model and click ✉.
2. Select a location on the SAS Workspace Server.

 Note: You cannot export a model to a location where a model with the same name already exists.
3. Click OK.
4. Click Close.

Importing Models into a Folder

About Importing Models into a Folder

You can import an individual model or multiple models at one time from the SAS Workspace Server into a folder in the model repository. The model repository folders are located on the SAS Content Server. To access the SAS Workspace Server, map a network drive to a drive on the machine where the SAS Model Manager Middle-Tier Server is running. All of the model files in the selected location are imported. The folder name is used as the model name. If you have subfolders, each subfolder is considered to be a separate model. Each folder’s contents are considered to be model files. A folder should not contain both model files and subfolders at the same level. If the top-level folder contains both, the subfolders are ignored and only one model is added with the files that are within the selected folder.

After you import models into a folder, you can also perform the following tasks:

- export one or more models
- update one or more models
- duplicate or move models

Note: These models cannot be moved or copied from a folder to a project within the user interface. When you export models from the folder level, models within a project are not included. Only models that reside directly within the selected folder are exported.

Import Models into a Folder

To import models:

1. Select a folder, click ✉, and select Import models.

 Note: Alternatively, right-click a folder and select Import Models.
2. Select the location of the model or models on the SAS Workspace Server.

3. Click **OK**.

Export Models from a Folder

You can export an individual model or multiple models at one time from a folder in the model repository to the SAS Workspace Server. The model repository folders are located on the SAS Content Server.

Note: When you export models from the folder level, models within a project are not included. Only models that reside directly within the selected folder are exported.

To export an individual model:

1. Right-click a model and select **Export**.

2. Select a location on the SAS Workspace Server.

 Note: You cannot export a model to a location where a folder with the same name already exists.

3. Click **OK**.

4. Click **Close**.
To export multiple models:
1. Right-click a folder and select **Export Models**.
2. Select a location on the SAS Workspace Server.

 Note: You cannot export a model to a location where a folder with the same name already exists.
3. Click **OK**.
4. Click **Close**.

Update Models in Folders

You can update an individual model or multiple models at one time in the model repository. Only models that have previously been exported to the SAS Workspace Server can be updated. The reason for this is that a properties file is exported with the model files. The properties file contains the UUIDs of the models. Both new and modified model files are included in the updates to the model. A new model version is created each time you update the model.

To update an individual model:
1. Right-click a model and select **Update**.
2. Select the location of the model on the SAS Workspace Server.
3. Click **OK**.
4. Click **Close**.

To update multiple models:
1. Click ![folder symbol] and select **Update models**.
2. Select the location of the model or models on the SAS Workspace Server.
3. Click **OK**.
4. Click **Close**.

Duplicate or Move Models

You can duplicate a model or move a model to another folder. When you duplicate a model that has multiple model versions, only the current model version is duplicated. When you move a model, all of the model versions are kept.

To duplicate a model:
1. Right-click a model and select **Duplicate**.
2. Select a location.
3. Click **Duplicate**.

To move a model:
1. Right-click a model and select **Move**.
2. Select a location.
3. Click **Move**.
Overview of Managing Model Content and Versions

When you open a model, you can modify the model properties, add or view model versions, add attachments, and add comments. You can open a model from the Inventory category and from the Models page of a project.

Set Model Properties

After you import a model, you can specify additional property values for your imported model. On the Model Properties page, you can perform the following tasks:

- View the input and output variables, and create a scoring output table
• Map model output variables to project output variables
• Specify model-specific properties and user-defined properties
• View and edit score code
• View and add model files
• Create input and output variables from the score.sas file
• View the history to see a log that shows changes to the model, and to the published models

To set the model properties:

1. Select and open a model and view the Model Properties page. See the below table for what types of properties can be specified.

<table>
<thead>
<tr>
<th>Model Properties</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>On this page you can view the model name, who created it, and the dates it was created and modified. The only property that you can edit is the description. For more information, see “General Properties” on page 51.</td>
</tr>
<tr>
<td>Specific</td>
<td>On this page you can enter information for various items. Some values are automatically populated and cannot be modified. For editable properties, click Browse, enter, or select a value. For more information, see “Specific Properties” on page 251.</td>
</tr>
<tr>
<td>System</td>
<td>This page is a Read-only and is created after a model has been imported. The system properties for models do not require any configuration after the model is imported. For more information, see “System Properties” on page 54.</td>
</tr>
<tr>
<td>User-Defined</td>
<td>On this page you can view the user-defined properties for a model. You can also create user-defined properties. For more information, see “User-Defined Properties” on page 54.</td>
</tr>
</tbody>
</table>
| Factory Miner | On this page you can view the SAS Factory Miner model properties.
 Note: This tab only appears for SAS Factory Miner models. |

2. Click ☰

To create a scoring output table, see “Create Scoring Output Tables” on page 116
Add Model User-Defined Properties

2. Click +. The Add User-Defined Properties window appears.
3. Click + to insert a new row.

 Note: Alternatively, you can click Advanced to manually specify the name and value pairs for the new properties.
4. Specify a name and data type for the property. A value for the property is optional.
5. Click OK.
6. (Optional) Select a user-defined property and click ⌁ to view the history of changes for that property. Click Close.

Add and Edit Model Keywords

Select Properties ⇒ General to view the model keywords.

To add keywords:
1. Click +. The Select Keywords window appears.
2. (Optional) Click **Edit Keywords** to add or remove keywords from the list. The Edit Keywords window appears.

 a. Click **+** to add a keyword to the list. Enter a value for the keyword and specify a category.

 b. Select a keyword and click **X** to remove it from the list. Click **Remove** in the confirmation message.

 c. Click **OK**.

3. Select one or more keywords from the list.

4. Click **OK**.

5. Click **Save** to save the model properties.
Add Model Dependencies and View Lineage

Select Properties \Rightarrow General to view the model dependencies.

To add model dependencies:

1. Click \Rightarrow. The Select Dependent Models window appears.

2. Select one or more models.

3. Click OK.

4. Click \Rightarrow to save the model properties.

5. Click \Rightarrow to view the lineage of the model. The SAS Lineage application appears.
To remove model dependencies:
1. Select one or more models from the list.
2. Click \times.
3. Click Save to save the model properties.

Add Model Files to an Existing Model

Suppose you want to import a model, but you lack some of the model component files that are needed to complete a model import. The model files utility enables you to add files later that were not available when the model was originally imported.

To add a local file to an existing model:
1. Select and open a model.
2. On the *Model Properties* page, select *Advanced* \rightarrow *Model Files*.
3. Click $+$.
4. Select a row and click *Browse* to select the local files that match the template files.

Note: Not all files must be specified. You can specify one or more.
Create Input and Output Variables from a SAS Code File

You can create model input and output variables from the score.sas file. Creating the variables enables you to generate missing metadata for model variables.

1. On the Model Properties page, select Advanced ⇒ Model Files.
2. Select a SAS code (.sas) file and click Open (for example, score.sas).
3. Click Yes in the confirmation messages to replace the existing input and output variables. The Create Input and Output Variables window appears.

Note: If you are adding files to a model that is locating inside a folder, the Choose Files window appears for you to select a file from the SAS Workspace.

5. When the update is complete, click OK.
6. Click OK. If you do not see your updates immediately, you might need to close the model and reopen it.
Note: If a champion is already set, you might receive another message indicating that the champion and challenger models will be cleared. Also, if you add new variables that are not project variables, you are prompted to add the model variables to the project variables when setting the model as the champion.

4. Select input variables that you want to add as output variables for the model.
5. Click OK. The inputvar.xml and outputvar.xml model files are generated.

Map Model Variables to Project Variables

After a model has been imported and the remaining model properties are set on the Model Properties page, you must map the model output variables to the project output variables. For more information about project input and output tables, see Defining Project Input and Output Variables on page 55.

To map model variables to project variables:

1. Select and open a model.
3. Click the box in the Value column beside the variable in the Property column to display project variables.
4. Select a model output variable.

5. Repeat steps 3 and 4 for each model variable that requires mapping.

6. Click

User-Defined Model Templates

When you import a SAS code model or R model, you must define the component files to be used in the model and specify the properties for the model. SAS Model Manager provides model templates that you can use as an example to create your own model template. You can define model component files and specify system and user properties for your model template. The model templates that are included cannot be modified. For a list of the component files that must be created for the different model types, see “Model Template Component Files” on page 242. For a list of properties, see “Specific Properties” on page 251.

Note: Only users who are in the Model Manager Administrator Users or Model Manager Advanced Users groups and who have Write permission to the WebDAV folder where the user-defined templates are stored can save a new template or save changes to an existing template. For more information, see “Verify WebDAV Folder Permissions for User-Defined Templates” in SAS Model Manager: Administrator’s Guide.

Several sample user template XML files are included with the installation package and are available to be used as a starting point for creating your own model template. For more information, see “Creating and Managing Templates” on page 60.
Managing Model Versions

About Model Versions

The current version of a model is the latest version in which the model properties and file contents are editable. If you add a new model version manually or perform an action that automatically creates a new model version (such as setting it as the champion model or publishing a champion model from the project level), a snapshot of the model’s contents is taken and a version number is assigned. A new version is also created when you update a model that is located within a folder. However, the contents of the new model version that is created can no longer be edited. You can only view the contents of the new model version. Model versions cannot be deleted.

Add a Model Version

1. Select the Versions page.
2. Click +. The Add a New Version window appears. The next sequential number appears as the new version number.
3. (Optional) Enter a description for the version.
4. Click OK.

Set the Model Version

1. Select the Versions page.
2. Select a version and click . The icon indicates the version that is being displayed.
Add Attachments

You can view and add attachments such as images or documents. Attachments can be added at the object-level for portfolios, projects, and models.

To add an attachment:
1. Select the Attachments page.
2. Click \(\text{+} \).
3. Select a file to attach and click Open.

Note: Click \(\times \) to remove an attachment.

See Also

“Add Attachments to a Project” on page 59

Add Comments

You can add new topics or respond to an existing topic. You can also search the comments. Comments can be added at the object-level for portfolios, projects, and models.

To add a comment:
1. Select the Comments page
2. Enter a topic name and a comment.
3. (Optional) Click \(\text{+} \) to attach a file to the new topic. Repeat this step to attach multiple files.

Note: You can also click Remove to remove an attachment.
4. Click Post.

See Also

“Add Comments to a Project” on page 59
Chapter 8
Working with Model Inventory

Overview of Model Inventory

The Inventory category enables you to access all of the models in the model repository in one place, whether they are located in a folder, portfolio, or project. You can also filter the search results by date modified, keywords, model properties, and user-defined properties. You can add user-defined properties as columns in the list in order to display the values for each model.

Search and Filter Inventory of Models

In addition to entering search terms in the search box, you can filter the search results by date modified, keywords, model properties, and user-defined properties.

1. Select Models → Inventory.
2. In the search box, enter the search terms that you want to include in the new search.
3. Click 🔍. The additional search options appear.
4. Expand one or more search options and specify values to filter the search results. The model inventory list is filtered automatically.

For example, select **Regression** from the **Algorithm** property drop-down list.

5. (Optional) Save your search.

 Note: You cannot modify an existing search, but you can create a new one and replace the old one.

 a. Click **Save Search**. The Save Search window appears.

 b. In the Save Search window, enter the name of the new search or enter the same name as the saved search that you want to update.

 c. (Optional) Enter a description.

 d. Click **Save**.

 e. In the confirmation window, click **Yes** to replace the existing search.

Add Model User-Defined Properties to Inventory List

You can add user-defined properties as columns to the list. The values of the properties are displayed for each model.

To add user-defined properties to the list:

1. Click **Add**.
2. Select the properties that you want to appear in the list.

3. Click **OK**. The columns that are added to the list can then be used to sort the list of models.
Overview of Portfolios

SAS Model Manager enables you to create a portfolio in the model repository. You use a portfolio to manage multiple projects and models in one place. From a portfolio level, you can create multiple projects from a control table and then add new versions or new input variables to all projects within the portfolio. After you set the champion model for each project, you can monitor the performance of the champion models for all projects and publish the champion models to the SAS Metadata Repository.

Portfolios are also created when you use SAS Factory Miner to register projects to the model repository. The portfolios contain the project segments and models from the SAS Factory Miner project. For more information about how to register SAS Factory Miner project segments and models, see *SAS Factory Miner: User’s Guide*.

Note: Because of how portfolios and projects are created in the SAS Model Manager model repository, SAS Factory Miner project names, model names, and segment variable values cannot contain special characters. That is, only alphanumeric
characters, the underscore, and the hyphen are allowed. Users are unable to register models when special characters are encountered.

Here are the tasks that can be performed for a portfolio:

• Create a portfolio
• Add a new version
• Add an input variable to all projects
• Publish project champion models
• Monitor performance of project champion models

Planning a Portfolio

Before you begin a portfolio, you must plan your portfolio resources. Here are questions to consider and conditions to meet for modeling projects within a portfolio:

• After you know which users are assigned to the projects within a portfolio, a SAS Model Manager administrator must ensure that the user is assigned to the appropriate user group and role. For more information, see “Configuring Users, Groups, and Roles” in SAS Model Manager: Administrator’s Guide.

• How do you want to structure the projects within the portfolio? A portfolio is an object within a folder. The Portfolios category view enables multiple levels of folders so that you can customize how you structure the portfolios. For more information, see Chapter 4, “Managing Folders,” on page 41.

• What models do you want to use in each project of the portfolio? If the models were created using SAS Enterprise Miner, SAS/STAT, or the SAS/ETS procedures COUNTREG and SEVERITY, all model components are available to SAS Model Manager when you import the model. Only models that are contained in an SPK file can be imported. At least one SPK file must be prepared for each project and the SPK files should be placed in the same location. If your model is a SAS code model or a PMML model that is not contained in an SPK file, you must import it separately into the desired project within the portfolio, after the portfolio is created. You must also ensure that you have imported all of the model component files. For more information, see “Import Models from Local Files” on page 72 and “Import a PMML Model” on page 71.

• What model function do you want to use in each project of the portfolio?
SAS Model Manager has several model function types:

- Classification
- Prediction
- Segmentation
- Analytical

After the model function is specified for the portfolio, the **Model function** property for a project cannot be changed. Ensure that the types of models that you are going to use in each project of the portfolio fit within the selected model function type. For more information, see Table 5.1 on page 52.

- How do you want to define your project input and output variables? When you create a portfolio, you can import the variables using input and output prototype tables. The project variables are set for each project within the portfolio. The prototype tables must be registered in the SAS Metadata Repository. Tables that were registered using the SAS Management Console must also be made available in the Data category view before you create the portfolio. For more information, see “Defining Project Input and Output Variables” on page 55.

- What method do you want to use to track the progress of a version? The Workflows and My Tasks category views enable you to track the progress of tasks from the version level for each individual project within a portfolio. An authorized user can create a workflow and associate it with a version. For more information, see “Overview of Using Workflows” on page 229.

- When you publish project champion models from a portfolio to the SAS Metadata Repository, you must specify a location in which to store the models. You might need to create a folder in the SAS Metadata Repository, if one does not already exist. For more information, see “Publishing Models from a Portfolio” on page 103.

- After your project champion models are in a production environment, you can monitor the performance of the project champion models within a portfolio in SAS Model Manager using your organization's operational data. If you use SAS Model Manager to monitor performance of projects within a portfolio, you must first prepare performance tables using the operational data and then register the tables in the SAS Metadata Repository using the Data category view. Tables that are registered to the SAS Metadata Repository using SAS Management Console must also be made available to the Data category view. For more information, see “Creating a Performance Table” on page 260.

- When you run performance monitoring reports, you can set up performance index alert and warning conditions to notify users if conditions exceed the indexes. For more information, see “Performance Index Warnings and Alerts” on page 173.

Prerequisites for Creating Portfolios

After you have planned the projects and models that you want to have in your portfolio, you must create a project control table that contains the segment identifiers, projects, and models. The project control table can then be used to create a hierarchy of your portfolio.

Portfolios can be created only by authorized users who have the capability to access the Portfolios category. Ensure that users who create portfolios are assigned to the group **Model Manager Administrator Users** or **Model Manager Advanced Users** in SAS Management Console.
The project control table must contain the project names (project_name variable) to create the projects within the portfolio. At least one segment identifier variable (for example, segid) is required, and that segment identifier variable must also be in the performance data set. When you want to monitor the performance of project champion models, you must also associate the model name (model variable) with each project (project_name) and segment identifier (segid, or another name for the segments) in the table.

You must know the model function type before you create a portfolio. SAS Model Manager has several model function types:

- Classification
- Prediction
- Segmentation
- Analytical

To determine the model function type for your project, compare your model to the descriptions in Table 5.1 on page 52.

If you use prototype tables to define the project input and output variables, you must do one of the following two things before you can create a portfolio. Create the project input and output tables and register them in the SAS Metadata Repository using the Data category view. Tables that are registered to the SAS Metadata Repository using the SAS Management Console must then be made available to the Data category view of SAS Model Manager. See the following documents for details:

- For instructions about creating project input and output tables, see “Creating Project Input and Output Tables” on page 257.
- For instructions about registering tables using the Data category view, see Chapter 3, “Managing Data Tables,” on page 33.

Creating a Project Control Table

After you have planned the projects and models that you want to have in your portfolio, you must create a project control table that contains the segment identifiers, projects, and models. The project control table is then used to create the hierarchy of your portfolio when you create a new portfolio. The variable names that are required in the project control table are at least one segment identifier (for example, segid), project_name, and model. All variables other than project_name and model are treated as segment identifier variables. The segment identifier variables do not have a required naming convention.

Here is an example of the code to create a project control table.

data control_Table;
 length segid project_name model $20;
 infile datalines dsd dlm=',' missover;
 input segid project_name model;
 datalines;
 seg01,US,reg1.spk
 seg02,Canada,tree1.spk
 seg03,Germany,hpf_class.spk
;
run;
Create a New Portfolio

To create a new portfolio:

1. Verify that the project control table contains the required variables. For more information, see “Prerequisites for Creating Portfolios” on page 97.

2. Select a folder or create a new folder in which to store the new portfolio.

3. Click and select New Portfolio. The New Portfolio window appears.

 Note: Alternatively, you can right-click a folder and select New Portfolio.

 ![New Portfolio window]

 Note: The value for the initial version is auto-populated and is the version name that is created within each project for the new portfolio.

4. Enter a name for the portfolio.

5. (Optional) Enter a description for the portfolio.

6. Click Browse to select the control table. Click OK.

7. Click Browse to select the location of the model SPK files that are specified in the control table. Click OK.

8. Select a model function to indicate the type of models that should be imported into each project within the portfolio.
9. Click **Next**.

10. Click **Browse** to select the input and output tables. The input and output variables in the tables are applied to all of the projects.

 Click **Next**.

11. Specify the project properties to apply to all projects within the portfolio. The properties are used to perform tasks and generate reports.
12. Click **Next** to view the summary of information that has been specified.

13. Click **Finish**. The new portfolio appears in the list.

Add a New Version

You can add a new version to all projects within a portfolio.

1. Open a portfolio, select the **Projects** page, and click **+**. The Add a New Version window appears.
2. (Optional) Enter a description for each new version.

3. Click **Save**. The version number is incremented by one for each project within the portfolio.

4. Click **OK** for the confirmation message.

Add an Input Variable

You can add input variables to each project within a portfolio.

1. Open a portfolio.

2. Select the **Variables** page and click the **Input** tab.

3. Click **+**.
Publishing Models from a Portfolio

About Publishing Models

To publish the champion models and challenger models for projects within a portfolio, you must have already set the models that you want to publish as project champion models or challengers. SAS Model Manager examines the projects and always publishes the champion models. When the champion model for a project changes and you publish the model again to the same location, the scoring application automatically uses the latest score code. In the Portfolios category view, when you select a portfolio, you only can publish the project champion models to the SAS Metadata Repository. When you open a portfolio, the Projects page offers you the option of publishing a project champion model and its challengers to the SAS Metadata Repository, a SAS Channel, and to a configured database or Hadoop.

Note: SAS Model Manager cannot publish R models. SAS analytic store models within a project segment can be published only to Hadoop and Teradata. Publishing SAS analytic store models to the SAS Metadata Repository is not supported.

To verify that a champion model has been assigned to all of the projects within a portfolio that you want to publish. Open a project and select Properties ➤ Specific. The Champion version property contains the name of the champion version. For more information, see “Champion Models” on page 208.

Publishing Project Champion Models

In the Portfolios category view, you can publish the champion models for projects within a portfolio to the SAS Metadata Repository.
To publish champion models for projects in a portfolio:

1. Select a portfolio and click [image].

2. Select one or more champion models that you want to publish from the models list.

3. Click [image] and select the location to publish the model to.

4. Click [image].

5. Click [image] in the confirmation message.

Note: Alternatively, you can right-click a portfolio and select [image].

See Also

“Publishing Models to the SAS Metadata Repository” on page 215

Publish Champion and Challenger Models

Publish to the SAS Metadata Repository

1. Open a portfolio and select the [image] page.

2. Select a project and click [image].

3. Select [image] from the publish destination list.
4. Specify a **Publish Name** for the challenger models. The publish name for a champion model cannot be modified.

5. Click **Browse** and select the location to publish the model to.

6. Click **Publish**.

Publish to a SAS Channel
1. Open a portfolio and select the **Projects** page.

2. Select a project and click ** Publish Models**.

3. Select **SAS Channel** from the publish destination list.

4. Select the model that you want to publish from the models list.
5. Select a publication channel from the channel drop-down list.

6. (Optional) Click More Options to specify a message subject, notes, and user-defined properties. Click Save.

7. Click Publish.

Publish to a Database

1. Open a portfolio and select the Projects page.

2. Select a project and click.

3. Select a database from the publish destination list.

4. Select a publish method.

5. Select one or more models that you want to publish from the models list.

 Note: SAS analytic store models can be published only to Hadoop and Teradata.

6. Specify a Publish Name for each model.

 Note: The default format of the publish name is configured by the SAS administrator.

7. (Optional) Select whether to Replace scoring files that have the same publish name.

8. Specify an identifier to add to the database target table for each model.

9. (Optional) Select whether to Validate scoring results. If selected, click Browse to navigate to the appropriate train table.

10. Specify the database settings.

11. Click More Options to specify other options for the database.
12. Click **Publish**.

Remove Published Models from a Database

The SAS Embedded Process publish method enables you to replace the model scoring files, but the scoring function publish method publishes the model as a separate entry in the database each time. If you modify the previously published models or change the champion model or challenger models, the Remove Models from a Database feature enables you to remove the previously published models, so that you can clean up the test or production database.

To remove models from a database:

1. Open a portfolio and select the **Projects** page.
2. Select a project, and click **Log On**.
3. Specify the database settings and click **Log On**.
4. Select the models that you want to remove from the database.
5. Click **Remove Models**. A warning message appears.
6. Click **Yes**.

Monitor Performance of Project Champion Models

To create performance monitoring reports for all projects within a portfolio, you create and execute a performance definition for all projects within a portfolio. Execution of the generated code creates the SAS data sets that are used to display the performance monitoring reports on the Performance page of each project.

To monitor the performance of the champion models for all projects:

1. On the Performance page of a portfolio, click **Log On**.
2. Select one or more output variables for stability analysis. To select all output variables, click **All**.
3. Select one or more input variables for characteristic analysis. To select all input variables, click **All**.
Click Next.

4. Specify the performance data options.
 - Click **Browse** to select the performance data source.

 Note: The performance data source must contain the same segment identifier variables as the control table.

 - To run the score code in the performance monitor job, select the **Run model score code** check box. If the check box is not selected, all of the output variables for stability analysis must be in the performance data source.

 - Click ** calendars** and select a date. The date can be any date in the time period when the performance data was collected.

 - Enter a report label to associate with the performance data. The report label represents the time point of the performance data source. Because the report label appears in the performance charts, use a label that has not been used for another time period, is short, and is understandable (for example, Q1).

 Note: If you duplicate report labels, previous performance results are overwritten.

5. Specify the properties that are used to generate the performance monitoring reports. The properties default to the values that were set when you created a portfolio.
Click **Next**.

6. (Optional) Specify values for the alert and warning conditions or accept the defaults.

7. (Optional) To send the results by email, click **+**. A new row is added to the table.

 a. Enter an email address.

 b. Select **Yes** if you want an alert or warning to be sent by email when alert or warning thresholds have been exceeded.

 c. Select **Yes** if you want a completion notice with the job status to be sent by email every time the report runs.

8. Click **Save**.

9. Click **Save**.

10. After the performance monitoring is complete, a confirmation message appears. Click **Close**.
11. To view the performance results, select the Projects page, and open a project. Select the Performance page to view results.

See Also

“Prerequisites for Editing a Performance Definition” on page 179

Add Attachments

You can view and add attachments such as images or documents. Attachments can be added at the object-level for portfolios, projects, and models.

To add an attachment:

1. Select the Attachments page.
2. Click ➕.
3. Select a file to attach and click Open.

Note: Click ✗ to remove an attachment.
Add Comments

You can add new topics or respond to an existing topic. You can also search the comments. Comments can be added at the object-level for portfolios, projects, and models.

To add a comment:

1. Select the Comments page
2. Enter a topic name and a comment.
3. (Optional) Click to attach a file to the new topic. Repeat this step to attach multiple files.

 Note: You can also click Remove to remove an attachment.

4. Click Post.

See Also

“Add Comments to a Project” on page 59
Part 3

Evaluating Models and Monitoring Performance

Chapter 10
Scoring Models .. 115

Chapter 11
Using Reports to Evaluate and Validate Models 123

Chapter 12
Validating Models Using User Reports 147

Chapter 13
Combining Reports ... 161

Chapter 14
Monitoring Performance of Models 165

Chapter 15
Using Dashboard Reports 191

Chapter 16
Retraining Models .. 197
Overview of Scoring Tests

The purpose of a scoring test is to run the score code of a model and produce scoring results that you can use for scoring accuracy and performance analysis. The scoring test uses data from a scoring test input table to generate the scoring test output table. The following types of score code for a model can be imported: analytic store, DATA step fragment, and ready-to-run SAS code.

If your environment has its own means of executing the score code, then your use of the SAS Model Manager scoring tests is mostly limited to testing the score code. Otherwise, you can use the scoring tests both to test your score code and execute it in a production environment. Scoring results for a model in a test environment are stored on the SAS Content Server. Scoring results for a model in a production environment are written to the location that the output table metadata specifies. In Windows, the scoring test output table in a SAS library must have Modify, Read and Execute, Read, and Write security permissions. For more information, see “Configuring Users, Groups, and Roles” in SAS Model Manager: Administrator’s Guide.

CAUTION:

Executing a scoring test in production mode overwrites the scoring test output table, which might result in a loss of data.

You create a new scoring test in the Scoring page of your project.
These are the tests that you perform as part of the scoring test workflow:

- Before creating a scoring test, you must create and register scoring test input and output tables. For more information, see “Create Scoring Output Tables” on page 116.

- When a new scoring test is successfully created, the scoring test is selected on the Scoring page. The scoring test displays the various scoring test information. For more information, see “Create a Scoring Test” on page 118.

- Before you execute the scoring test, it is recommended that you verify the scoring test output variable mappings on the Scoring Output Table view. For more information, “Create Scoring Output Tables” on page 116.

- To execute a scoring test, you can select and run a test. For more information, see “Execute a Scoring Test” on page 119.

- To run a scoring test at a scheduled time, you can specify the date, time and frequency that you want the scoring test to run. For more information, see “Schedule a Scoring Test” on page 119.

- After the successful execution of the scoring test, you can view the results on the Results tab. For more information, see “Execute a Scoring Test” on page 119.

Create Scoring Output Tables

What Is a Scoring Output Table?

A scoring output table is a SAS data set that contains the data from executing a scoring test. The scoring output table cannot be a database table. You can provide a scoring output table or you can create a scoring output table definition using SAS Model Manager. When you create a scoring test, you specify either the scoring output table that you provide or the scoring test output definition as the scoring output table. A SAS data set that you provide as a scoring output table must be registered in the SAS Metadata Repository and made available to SAS Model Manager in the Data category view.

You can create a scoring output table definition by using the Create Scoring Output Table function directly from the model. You select variables from a scoring test input table as well as variables from the model’s output. The variables in the input variables table are variables from the scoring test input table when one is specified for the Default scoring input table property on the Model Properties page for the selected model, or on the Project Properties page for the project that contains the selected model. Otherwise, the input variables table is empty. The output variables that appear are model
output variables. You use the variables from both tables to create the scoring output table. For more information, see “Set Model Properties” on page 79.

If you create a scoring output table on the Model Properties page, it is automatically saved in the SAS Metadata Repository. You then have to add it to the desired library in the Data category view. If you add an existing scoring output table to a library in the Data category view, it must be available in the SAS Metadata Repository.

SAS Model Manager saves the table definition as metadata in the SAS Metadata Repository. The location of the metadata is defined by the SAS library that you specify when you create the output table definition. After the table definition is created, the table can be selected as the output table for subsequent scoring tests.

You can view a scoring output table definition in the Data category view. Scoring test results are stored in the Results tab on the Scoring page.

Create a Scoring Output Table

To create a scoring output table:

1. Select a model on the Models page and click . The Create a Scoring Output Table window appears.

 Note: You can also open a model and then select Model Properties ⇒ Variables ⇒ Output to create a scoring output table.

2. Enter a name for the scoring output table.
3. Select a library.
4. Select the input variables.
5. Select the output variables.
6. Select whether to add the model ID variable to the output table. The model UUID appears in all rows of the output table.
7. Select whether to use project’s output variable names in the output table for model variables that are mapped to project variables.

8. Click **Add Variables**. The new output table variables appear below.

9. Click **OK**.

10. You must then make the new scoring output table available to SAS Model Manager. For more information, see “Add Tables That Are Registered in Metadata” on page 34.

Create a Scoring Test

To create a scoring test:

1. On the **Scoring** page of a model, click **+**. The Add a New Scoring Test window appears.

2. Enter a name for the scoring test.

3. (Optional) Enter a description of the scoring test.

4. Select a model from the list.

5. Select a type of scoring test:
 - **Test**

 Specify the number of observations to be read from the scoring input table (default is 1000 rows).
 - **Production**

 To run the scoring test in a High-Performance Analytics production environment, select **High-performance data processing**.
Note: A best practice is to select Test before beginning all scoring tests. Later, when you are satisfied with the results of running the scoring test and you are ready to put the test into production, you can change the type to Production.

6. Click Next.

7. Specify an Input table. Use the default scoring input table that is set on the Properties page of a project, or select a new input table. To select a table, click Browse and select a table. Click OK.

8. Specify an Output table. To select a table, click Browse and select a table. Click OK.

9. Click Next.

10. For each scoring output variable, select an available variable. The scoring output variables are mapped automatically if their names match those in the Available Variables column.

11. Click Next.

12. Select a SAS Application Server from the list.

13. Click Save.

Execute a Scoring Test

To execute a scoring test:

1. Select a scoring test from the list and click 🚀.

2. Click the Results tab or double-click the scoring test to view the scoring test results.

 Note: You can check the status of a job by clicking ⏳ and then selecting the Tests tab, the Results tab, or the Job History tab.

Schedule a Scoring Test

Instead of executing a scoring test, you can schedule a scoring test to run on a particular date and time. You can also schedule how often you want the scoring test to run. Advanced settings enable you to set the scheduling server, the batch server to run the scoring test, and the location of the scoring results.

Before you can schedule a scoring test, your user ID and password must be made available to the SAS Metadata Repository. You must also sign in to SAS Model Manager using your full user credentials that were specified for your user account in SAS Management Console. For user accounts where a Microsoft Windows user ID is specified, you must enter your user ID in the format of domain\userID. Contact your system administrator to add or update your password, and to determine the correct user credentials for your account.

Note: You must have already created a scoring test before you can schedule a job to run the scoring test.

CAUTION:
Check your configuration settings before scheduling jobs. Users who are configured for single sign-on authentication by Kerberos cannot schedule jobs.

To schedule a scoring test:

1. Select the scoring test that you want to schedule from the list and click.

2. On the Recurrence tab, select the recurrence pattern.

3. Specify the criteria for when and how often the job should be run.

4. (Optional) Click the Advanced tab.
 a. Select the server that schedules the job from the Scheduling server list box.

 Note: The SAS Distributed In-Process Services Scheduling Server is not supported.
 b. Select the batch server that runs the job from the Batch server list box.
 c. Click Browse to select a location for the output and click OK.

5. Click OK.

6. After the job has been scheduled, a confirmation message appears. Click Close.

7. Click the Job History tab to view the job status.

8. Click the Results tab to view the scoring test results.

Note: Scoring test job schedules cannot be edited. To change the schedule, delete the schedule and create a new schedule.

To delete a schedule, select the schedule and then click.

Scoring Model Properties

Scoring Test Properties

Here is a list of the Scoring test properties that provide information that is specific to the scoring test.
<table>
<thead>
<tr>
<th>Property Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scoring test type</td>
<td>Specifies a value of Test or Production for the type of scoring test.</td>
</tr>
<tr>
<td>SAS Application Server</td>
<td>Specifies the name of the SAS Application Server to which SAS Model Manager is connected. This value is taken from the SAS Metadata Repository.</td>
</tr>
<tr>
<td>Model</td>
<td>Specifies the name of the model whose score code is to be executed on the SAS Application Server. This value is set when the scoring test is created and cannot be modified.</td>
</tr>
<tr>
<td>Input table</td>
<td>Specifies the name of the input table (data source) to be used in scoring. This value is set when the scoring test is created and cannot be modified.</td>
</tr>
<tr>
<td>Output table</td>
<td>Specifies the name of the output table to be used in scoring. This value is set when the scoring test is created. If the scoring test type is Test, the output file is stored on the SAS Content Server. If the scoring test type is Production, then this setting identifies the output table where the results of the scoring are written.</td>
</tr>
</tbody>
</table>

Result Set Properties

The following property provides information that is specific to the scoring test.
Property Name: Number of observations

When **Scoring test type** is set to **Test**, this property specifies how many observations are to be read from the scoring test input table. This setting enables you to limit the number of records that are written to the scoring test output table on the SAS Content Server in order to reduce operation costs. If a value is not specified, the default value of 1000 rows is used for the number of observations.

When **Scoring test type** is set to **Production**, this property specifies how many observations are to be read from the scoring test input table and displayed when you select **Result Set** from the **Results** tab. The default value is 0, indicating that there is no limit. This value cannot be changed in SAS Model Manager. The administrator can modify the value by using SAS Management Console. For more information, see *SAS Model Manager: Administrator’s Guide*.

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of observations</td>
<td>When Scoring test type is set to Test, this property specifies how many observations are to be read from the scoring test input table. This setting enables you to limit the number of records that are written to the scoring test output table on the SAS Content Server in order to reduce operation costs. If a value is not specified, the default value of 1000 rows is used for the number of observations. When Scoring test type is set to Production, this property specifies how many observations are to be read from the scoring test input table and displayed when you select Result Set from the Results tab. The default value is 0, indicating that there is no limit. This value cannot be changed in SAS Model Manager. The administrator can modify the value by using SAS Management Console. For more information, see SAS Model Manager: Administrator’s Guide.</td>
</tr>
</tbody>
</table>
Chapter 11
Using Reports to Evaluate and Validate Models

Overview of Model Comparison, Validation, and Summary Reports 124
What Are Model Comparison, Validation, and Summary Reports? 124
Model Comparison, Validation, and Summary Report Input Files 125
The Model Comparison, Validation, and Summary Report Output Files 126

Model Profile Reports ... 126
About Model Profile Reports ... 126
Create a Model Profile Report ... 127

Delta Reports .. 128
About Delta Reports .. 128
Create a Delta Report .. 129

Dynamic Lift Reports .. 129
About Dynamic Lift Reports ... 129
Verify Project and Model Property Settings .. 130
Create a Dynamic Lift Report .. 131

Interval Target Variable Report .. 132
About Interval Target Variable Reports .. 132
Verify Project and Model Properties .. 132
Create an Interval Target Variable Report ... 132

Loss Given Default Reports .. 133
About Loss Given Default Reports .. 133
The Loss Given Default Report Properties ... 134
Prerequisites for Loss Given Default Reports ... 134
Create a Loss Given Default Report ... 135

Probability of Default Model Validation Reports ... 136
About Probability of Default Model Validation Reports ... 136
Default Model Validation Report Properties ... 137
Prerequisites for Probability of Default Model Validation Reports 137
Create a Probability of Default Model Validation Report .. 138

Training Summary Data Set Reports .. 139
About Training Summary Data Set Reports .. 139
Create a Training Summary Data Set Report .. 140

Monitoring Reports .. 141
About Monitoring Reports .. 141
Create a Monitoring Report ... 142

Champion and Challenger Performance Reports .. 143
About the Champion and Challenger Performance Report ... 143
Overview of Model Comparison, Validation, and Summary Reports

What Are Model Comparison, Validation, and Summary Reports?

The SAS Model Manager model comparison, validation, and summary reports are tools that you can use to evaluate and compare the candidate models in a version or across versions to help you select and approve the champion model that moves to production status. The model comparison reports are analytical tools that project managers, statisticians, and analysts can use to assess the structure, performance, and resilience of candidate models. The model validation reports use statistical measures to validate the stability, performance, and calibration of risk models and parameters. The training summary data set report creates frequency and distribution charts that summarize the train table variables.

The reports present information about a number of attributes that can affect model performance. Together, the reports provide qualified information that can serve as the analytical basis for choosing and monitoring a champion model.

Here is a description of the comparison reports:

Model Profile Report
- For a single model, this report displays the profile data that is associated with input, output, and target variables. Profile data includes the variable name, type, length, label, SAS format, measurement level, and role.

Delta Report
- This report compares the profile data for two models and notes the differences.

Dynamic Lift Report
- The Dynamic Lift report provides visual summaries of the performance of one or more models for predicting a binary outcome variable.

Interval Target Variable Report
- The Interval Target Variable report creates two plots for you to view the actual versus predicted values for a model and the actual versus residual values for a model. Interval Target Variable report can be created only for prediction models.

The following are the Basel III model validation reports:

Loss Given Default Report
- The Loss Given Default (LGD) report calculates the amount that might be lost in an investment and calculates the economic or regulatory capital for Basel III compliance.

Probability of Default Model Validation Report
- The Probability of Default (PD) Validation report estimates the probability of defaulting on a debt that is owed. Probability of default is used to calculate economic or regulatory capital for Basel III compliance.

The model validation reports use statistical measures that report on these model validation measures:
• The model stability measures track the change in distribution for the modeling data and scoring data.

• The model performance measures check the model’s ability to distinguish between accounts that have not defaulted and accounts that have defaulted, as well as report on the relationship between actual default probability and predicted default probability.

• The model calibration measures check the accuracy of the selected models for the LGD and PD reports by comparing the correct quantification of the risk components with the available standards.

This is the train table data set summary report:

Training Summary Data Set Report

The Training Summary Data Set report creates frequency and distribution charts for a training data set.

After you execute a performance definition, you can generate performance monitoring results and compare the champion and challenger models:

Monitoring Report

After you execute a performance definition, SAS Model Manager stores the output data sets in the project folder. You can format the performance monitoring results and then view the performance monitoring results report.

Champion and Challenger Report

After you execute a performance definition for the champion model, you can execute a performance definition for the challenger model using the same performance data sets. You can then create a Champion and Challenger Performance report that compares the performance of the two models.

You create the reports using the New Report window that you start from a project’s Reports page.

Model Comparison, Validation, and Summary Report Input Files

SAS Model Manager uses a test table as the input table for the Dynamic Lift report and the Interval Target Variable report.

Before you can create a Dynamic Lift report or the Interval Target Variable report, make sure that a test table has been added to the SAS Metadata Repository and registered in the Data Tables category or SAS Management Console. The test table can be viewed in the Data Tables category view. Then, specify the test table in the project property Default test table.

You specify the input table for validation reports in the New Report window. The input file for the validation reports can contain only input variables or it can contain input and output variables. If the input table contains input and output variables, the report generation does not need to run a scoring test to obtain the output variables.

When you create a train table summary report, the train table or specified input table is used to create the training summary data sets. The train table must be available in the SAS Metadata Repository. The train table must then be specified in the project property for the Default train table.
The Model Comparison, Validation, and Summary Report Output Files

The Reports page stores the model comparison, validation, and summary report output files in the Model Evaluation tab. The name of the report is the value of the Name box that you specified in the New Report window.

Each time you create a report, these files are generated:

- the report in either HTML, PDF, or RTF format

 Note: The Loss Given Default and Probability of Default Model Validation reports can be created only in PDF format.

- taskCode.log
- taskCode.sas

Here is a description of the model comparison output files:

<table>
<thead>
<tr>
<th>Report File</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>report-name.html</td>
<td>This file is the report output in HTML format.</td>
</tr>
<tr>
<td>report-name.pdf</td>
<td>This file is the report output in PDF format.</td>
</tr>
<tr>
<td>report-name.rtf</td>
<td>This file is the report output in RTF format.</td>
</tr>
<tr>
<td>taskCode.log</td>
<td>This file is the log file that contains messages from running the SAS code to create the report.</td>
</tr>
<tr>
<td>taskCode.sas</td>
<td>This file is the SAS code that is used to create the report.</td>
</tr>
</tbody>
</table>

After you create a report, you can view the report from the Reports page.

Note: If you are configured for single sign-on web authentication and you try to view a report, the report is downloaded to your local drive. To view an HTML report, you must unzip the file.

Model Profile Reports

About Model Profile Reports

A Model Profile report displays the profile data that is associated with the model input variables, output variables, and target variables. The report creates three tables, one each for the model input, output, and target variables.

Here is a description of the model profile data:

<table>
<thead>
<tr>
<th>Profile Data</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>The name of the variable.</td>
</tr>
</tbody>
</table>
Profile Data | Description
---|---
Type | The data type of the variable: character (C) or numeric (N).
Length | The length of the variable.
Label | A label that is associated with the variable.
Format | The SAS format that is associated with formatting the variable.
Level | The measurement level: nominal, ordinal, interval, or binary.
Role | The type of variable: input, output, or target.

The reports are created using these auxiliary model files:
- `inputvar.xml`
- `outputvar.xml`
- `targetvar.xml`

Note: The target variable property must be set in order for a model to be able to run the Model Profile report.

Create a Model Profile Report

To create a Model Profile report:

1. Click and select **Model Profile**. The New Report window appears.
2. Enter a name and description if you do not want to use the default values.
3. Select an output type. The default is PDF.
4. Select a style for the report. When the SAS default option is selected, the default style and themes are used in generating the report. For example, the SAS default style for the HTML output type is HTMLBLUE.
5. From the list, select the model that you want to include in the report.
6. Click Run. The report is generated and appears in the default viewer for the selected output type.

See Also
“View Reports” on page 145

Delta Reports

About Delta Reports

A Delta report compares the input, output, and target variable attributes for each of the variables that are used to score two candidate models. Delta reports display the differences in the variables of competing candidate models. The report output is a table that groups the variables by the variable name. For each variable, the reports lists the attribute value for each model and whether the attribute value is the same or different from the other attribute values.

Here is a description of each of the columns in the output of a Delta report:

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Role</td>
<td>Specifies the function that a variable performs in determining a score code.</td>
</tr>
<tr>
<td>Name</td>
<td>Specifies the name of the variable that is being compared.</td>
</tr>
<tr>
<td>Variable Attribute</td>
<td>Specifies the name of the variable attribute that is being compared.</td>
</tr>
<tr>
<td>Model Name-1</td>
<td>Contains the value of the attribute for the first model.</td>
</tr>
<tr>
<td>Model Name-2</td>
<td>Contains the value of the attribute for the second model.</td>
</tr>
<tr>
<td>Difference</td>
<td>Specifies an X if the value of the variable attribute is different from the value of the variable attributes in the other model. If the value of the variable attribute is the same, this column is blank.</td>
</tr>
</tbody>
</table>
Create a Delta Report

To create a Delta report:

2. Enter a name and description if you do not want to use the default values.

3. Select an output type. The default is PDF.

4. Select a style for the report. When the SAS default option is selected, the default style and themes are used in generating the report. For example, the SAS default style for the HTML output type is HTMLBLUE.

5. From the list, select the models that you want to include in the report.

6. Click Run. The report is generated and appears in the default viewer for the selected output type.

See Also
“View Reports” on page 145

Dynamic Lift Reports

About Dynamic Lift Reports

The Dynamic Lift report enables you to view a model's lift at a given point in time or to compare the lift performance of several models on one chart. The Dynamic Lift report creates the following charts:
A Dynamic Lift report can be created only for classification models with a binary target. The charts that are created for a Dynamic Lift report are also created in the Monitoring Report, which creates multiple types of model comparison reports. Before you can create a Dynamic Lift report, certain project and model property settings must be set.

For models that are created with PMML 4.2, the **Valid variable name** option in SAS Management Console must be set to **Yes** by a SAS Model Manager administrator. In addition, the PMML variable names cannot be more than 20 characters. For more information, see *SAS Model Manager: Administrator’s Guide*.

Verify Project and Model Property Settings

Verify Project Properties

Select the project name and verify that the following project properties are set:

Training target variable

Specifies the name of the target variable that was used to train the model. The model must have the same training target variable as the project.

Target event value

Specifies the value for the desired target variable event or state. For example, if a model predicts when RESPONSE=YES, then the target event value is **YES**.

Output event probability variable

Specifies the name of the output event’s probability variable.

Verify Model Properties

For each model in the Dynamic Lift report, open the model and verify the following properties on the **Model Properties** page:

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target variable</td>
<td>Specifies the name of the target variable. For example, if a model predicts when RESPONSE=YES, then the target variable is RESPONSE.</td>
</tr>
<tr>
<td>Score code type</td>
<td>Specifies whether the score code type is Analytic store, DS2, DATA step, PMML, or SAS program.</td>
</tr>
</tbody>
</table>

Note: Dynamic Lift reports are not applicable to models whose **Score code type** property has a value of PMML or DS2. A Dynamic Lift report can be created for a PMML model that was created using PMML 4.2 and whose **Score code type** is DATA step.
Create a Dynamic Lift Report

After ensuring that the appropriate project and model properties have been set, create the report.

To create a Dynamic Lift report:

1. Click \(\text{and select Dynamic Lift.} \) The New Report window appears.

 ![Dynamic Lift ReportScreenshot](image)

2. Enter a name and description if you do not want to use the default values.

3. Select an output type. The default is PDF.

4. Select a style for the report. When the SAS default option is selected, the default style and themes are used in generating the report. For example, the SAS default style for the HTML output type is HTMLBLUE.

5. From the list, select the models that you want to include in the report.

6. Specify the Control group response rate. The control group response rate calculates the adjusted lift values for a model. If the control group response rate is not specified, the default response rate in the test table is used to calculate the adjusted lift values.

7. Specify the Prior probability. The prior probability is the proportion of event observations to the total observations in the whole population. In this case, the whole population is the entire train table. Specify a value for the prior probability to be used as the true event proportion when assessment values are computed for the lift of a model.

8. Accept the default value for Input table or click Browse to navigate to the appropriate folder to select an input table. Click OK.

9. Click Run. The report is generated and appears in the default viewer for the selected output type.
Interval Target Variable Report

About Interval Target Variable Reports

The Interval Target Variable report creates two plots for you to view the actual versus predicted values for a model and the actual versus residual values for a model. The Interval Target Variable report can be created only for prediction models. Before you can create an Interval Target Variable report, certain project and model property settings must be set.

Verify Project and Model Properties

Before you can run an Interval Target Variable report, you must set the following project properties:

Default test table
- Specifies a test table that is registered in the SAS Metadata Repository. You can view the table in the Data category view. The test table must contain the target variable, as well as values for the variables that are defined by the project input variables.

Training target variable
- Specifies the name of the target variable that was used to train the model. The model must have the same training target variable as the project.

Output prediction variable
- Specifies the name of the output prediction variable.

To verify the model mapping, select and open the model from the Models page. Select Model Properties ⇒ Variables to verify that the model variables are mapped to the project variables. If the variable names are the same, you do not need to map the variables. If they are not mapped, for each project variable, select the project variable and select a variable name.

Create an Interval Target Variable Report

You must have a prediction model with an interval target variable in order to create the Interval Target Variable report. After ensuring that the appropriate project properties have been set and the model mapping is set, create the report.

To create an Interval Target Variable report:

2. Enter a name and description if you do not want to use the default values.
3. Select an output type. The default is PDF.
4. Select a style for the report. When the SAS default option is selected, the default style and themes are used in generating the report. For example, the SAS default style for the HTML output type is HTMLBLUE.
5. From the list, select the models that you want to include in the report.
6. Accept the default value for Input table or click Browse to navigate to the appropriate folder to select an input table. Click OK.
7. Click Run. The report is generated and appears in the default viewer for the selected output type.

See Also

“View Reports” on page 145

Loss Given Default Reports

About Loss Given Default Reports

Loss Given Default (LGD) models help validate the stability, performance, and calibration of models with the following statistical measures and tests:

Model stability measures

The model stability measures track the change in distribution of the modeling data and the scoring data.
Model performance measures
The model performance measures report this information:

- The model’s ability to discriminate accounts that have defaulted with those that have not defaulted. The score difference between the accounts that default and those that do not helps determine the cut-off score, which is used to predict whether a credit exposure is a default.
- The relationship between the actual default probability and the predicted probability. This information is used to understand a model’s performance over a period of time.

Model calibration measures
The model calibration measures check the accuracy of the LGD models by comparing the correct quantification of the risk components with the available standards.

For a description of the statistical measures, see “Statistical Measures Used in Basel III Reports” on page 275.

The Loss Given Default Report Properties
In order to create the reports, SAS Model Manager must know the input and output variables for the model. The input table can contain only input variables, or it can contain input and output variables. If the input table contains only input variables, a scoring test must be run to obtain the output variable. If the input table contains the input and output variables, no scoring is necessary. You specify whether a scoring test must be run by setting the Run score code property in the New Report window. If the input table contains the input and output variables, the value of the Run score code can be No. If the input table contains only input variables, the Run score code property must be set to Yes.

The report properties require the names of the variables from the input and output tables in order to map these variables to variables that are used to create the reports. The LGD report properties map these variables:

- **Time period variable** specifies the variable that is used to indicate a time period. The first time period begins with 1 and typically increments by 1. The default is period.
- **Time label variable** (optional) specifies a label for the time period. If this variable exists in the input table, the report output contains a table that maps time periods to time labels.
- **Actual variable** specifies the actual LGD variable. The default is lgd.
- **Predicted variable** specifies the output prediction variable that is used only if scoring for the report is not performed by SAS Model Manager. If the report scoring is done by SAS Model Manager, this variable should be excluded by the input data set. The default is p_lgd.
- **Pool variable** specifies the variable that names pool IDs. The default is pool_id.

Prerequisites for Loss Given Default Reports
Before you run an LGD report, select the project name and verify that the following project properties are set:
Training target variable
Specifies the name of the target variable that was used to train the model. The model must have the same training target variable as the project.

Model function
Specifies the type of model function. For an LGD report, the model function must be Prediction.

Class target level
Specifies an Interval class target level.

Output prediction variable
Specifies the name of the output prediction variable.

Create a Loss Given Default Report
To create a Loss Given Default report:

1. Click \(\text{Create} \) and select Loss Given Default. The New Report window appears.

2. Enter a name and description if you do not want to use the default values.

 Note: The default output type is PDF.

3. From the list, select the model that you want to include in the report.

4. Select an Input table. Click Browse to navigate to the appropriate folder. Select an input table and click OK. The table can contain only input variables or it can contain input and output variables.
5. Select whether to run the score code. If the input table contains only input variables, set **Run score code** to **Yes**. If the input table contains input and output variables, set **Run score code** to **No**.

6. The **Time period variable** specifies the variable from the input table whose value is a number that represents the development period. This value is numeric. The time period for PD reports begin with 1. The default is **period**.

7. (Optional) In the **Time label variable** field, enter the variable from the input table that is used for time period labels. When you specify the time label variable, the report appendix shows the mapping of the time period to the time label.

8. Click **More Options** to set the following:

 Actual variable
 - Specifies the actual LGD variable. The default is **lgd**.

 Predicted variable
 - Specifies the project scoring output variable. If the scoring for the LGD report is performed outside SAS Model Manager, the input data set must include this variable. If the scoring for the LGD report is done by SAS Model Manager, the input data set should not include this variable. The default is **p_lgd**.

 Pool variable
 - Specifies the variable from the input table that is used to identify a two-character pool identifier. The default is **pool_id**.

 Note: The variable names that you specify can be user-defined variables. A variable mapping feature maps the user-defined variables to required variables.

9. Click **Run**. The report is generated and appears in the default viewer for the selected output type.

See Also
"View Reports” on page 145

Probability of Default Model Validation Reports

About Probability of Default Model Validation Reports

Probability of Default (PD) models help validate the stability, performance, and calibration of models with the following statistical measures and tests:

Model stability measures
- The model stability measures track the change in distribution of the modeling data and the scoring data.

Model performance measures
- The model performance measures report this information:
 - The model’s ability to discriminate accounts that have defaulted with those that have not defaulted. The score difference between the accounts that default and those that do not helps determine the cut-off score, which is used to predict whether a credit exposure is a default.
 - The relationship between the actual default probability and the predicted probability. This information is used to understand a model’s performance over a period of time.
Model calibration measures

The model calibration measures check the accuracy of the PD model by comparing the correct quantification of the risk components with the available standards.

For a description of the statistical measures, see “Statistical Measures Used in Basel III Reports” on page 275.

Default Model Validation Report Properties

In order to create the reports, SAS Model Manager must know the input and output variables for the model. To run the reports, the New Report window requires the name of an input table. The input table can contain only input variables, or it can contain input and output variables. If the input table contain only input variables only, a scoring test must be run to obtain the output variable. If the input table contains the input and output variables, no scoring is necessary. You specify whether a scoring test must be run by setting the **Run score code** property in the New Report window. If the input table contains the input and output variables, the value of the **Run score code** can be No. If the input table contains only input variables, the **Run score code** property must be set to Yes.

The report properties require the names of the variables from the input and output tables in order to map these variables to variables that are used to create the reports. The report properties map these variables:

- **Time period variable** specifies the variable that is used to indicate a time period. The first time period begins with 1 and typically increments by 1. The default is **period**.
- **Time label variable** (optional) specifies a label for the time period. If this variable exists in the input table, the report output contains a table that maps time periods to time labels.
- **Scorecard bin variable** specifies the scoring output variable that names the scorecard bins. The input table must include this variable if scoring for the PD report is performed outside SAS Model Manager. If scoring is done by SAS Model Manager, do not include this variable in the input data set. The default is **scorecard_bin**.
- **Scorecard points variable** specifies the scoring output variable that names the scorecard points. The input table must include this variable if scoring for the PD report is performed outside SAS Model Manager. If scoring is done by SAS Model Manager, do not include this variable in the input data set. The default is **scorecard_points**.
- **Cut-off value** specifies the variable that is used to derive whether a credit exposure is a default. The cut-off value is also used to compute accuracy, sensitivity, specificity, precision, and error rate measures. You can use the score difference between accounts that default on loans and those that do not default on loans to determine the cut-off value. The default is **100**.

Prerequisites for Probability of Default Model Validation Reports

Before you can create a Probability of Default Model Validation report, verify that the following project settings are specified and that the output variables have been mapped:
Training target variable
 Specifies the name of the target variable that was used to train the model. The model must have the same training target variable as the project.

Class target level
 Specifies a **Binary** class target level.

Output event probability variable
 Specifies the name of the output event probability variable.

Model function
 Specifies the type of model function. The model function must be **Classification** in order to create a PD report.

Create a Probability of Default Model Validation Report

To create a Probability of Default Model Validation report:

2. Enter a name and description if you do not want to use the default values.

 Note: The default output type is PDF.

3. From the list, select the model that you want to include in the report.

4. Click **Browse** to navigate to the appropriate folder and select an input table and click **OK**. The table can contain only input variables or both input and output variables.
Note: When a scoring input table for a PD report contains data and one or more time periods do not contain default or non-default loan information, these time periods are not used to calculate the PD measurements. In a chart, time periods that are not used to calculate the PD measurements are represented with dashed lines.

5. Select whether to run the score code. If the input table contains only input variables, set Run score code to Yes. If the input table contains input and output variables, set Run score code to No.

6. The Time period variable specifies the variable from the input table whose value is a number that represents the development period. This value is numeric. The time period for PD reports begin with 1. The default is period.

7. (Optional) In the Time label variable field, enter the variable from the input table that is used for time period labels. When you specify the time label variable, the report appendix shows the mapping of the time period to the time label.

8. Click More Options to set the following:

 Scorecard bin variable
 Specifies the variable from the input table that contains the scorecard bins. If the scoring job for the PD report is run outside SAS Model Manager, the scorecard bin variable must be a variable in the input table. If scoring is done within SAS Model Manager, do not include the variable in the input table. The default is scorecard_bin.

 Scorecard points variable
 Specifies the variable that contains the scorecard points. If the scoring job for the PD report is run outside SAS Model Manager, the scorecard points variable must be a variable in the input table. If scoring is done within SAS Model Manager, do not include the variable in the input table. The default is scorecard_points.

 Cut-off value
 Specifies the maximum value that can be used to derive the predicted event and to further compute accuracy, sensitivity, specificity, precision, and error rate. The default is 100.

9. Click Run. The report is generated and appears in the default viewer for the selected output type.

See Also
“View Reports” on page 145

Training Summary Data Set Reports

About Training Summary Data Set Reports

A Training Summary Data Set report creates frequency and distribution charts that summarize the train table variables. Using the default train table, SAS Model Manager generates data sets that contain numeric and character variable summaries, and variable distributions. These data sets are used to create the summary report. Before you can create the report, you must generate the training summary data sets.
Create a Training Summary Data Set Report

To generate a training summary data set report:

1. Click and select Training Summary Data Set. The New Report window appears.

 ![New Report Window]

2. Enter a name and description if you do not want to use the default values.

3. Select an output type. The default is PDF.

4. Select a style for the report. When the SAS default option is selected, the default style and themes are used in generating the report. For example, the SAS default style for the HTML output type is HTMLBLUE.

5. Select an Input table. Click Browse to navigate to the appropriate folder and select an input table. Defaults to the value of the default train table project property.

6. Select the variables to include in the summary data set.

7. Click Run. The report is generated and appears in the default viewer for the selected output type.

See Also

“View Reports” on page 145
Monitoring Reports

About Monitoring Reports

After you execute a performance definition or run the `%MM_RunReports()` macro in production mode, as a batch job, SAS Model Manager stores the output data sets on the SAS Content Server. You can view the performance monitoring results on the **Performance Results** tab or on the **Attachments** page.

When you create monitoring reports using the New Report window, the report creates the following charts:

Assessment charts

Assessment charts summarize the utility that you can expect by using the respective models, as compared to using only baseline information. Assessment charts can present a model's lift at a given point in time or the sequential lift performance of a model's lift over time. A monitoring report creates the following assessment charts:

- Lift
- Cumulative Lift
- Percent Response
- Cumulative Percent Response
- Captured Response
- Cumulative Captured Response
- Actual versus Predicted for prediction models
- Actual versus Residual for prediction models
- Population Stability Trend for prediction models

Assessment charts are created for the Monitoring Report.

Lift Trend chart

A Lift Trend chart displays the cumulative lift of the champion model, over time.

Gini - ROC chart

Sensitivity is the proportion of true positive events, and specificity is the proportion of true negative events. The Gini - ROC chart plots Sensitivity on the Y axis and 1 - Specificity on the X axis.

Gini - Trend Chart

When the Gini - ROC chart is created, the Gini index for each ROC curve is also created. The Gini index represents the area under the ROC curve and is a benchmark statistic that can be used to summarize the predictive accuracy of a model. The Gini - Trend chart plots a model's Gini index scores over time, and these are used to monitor model degradation over time.

KS Chart

The KS chart uses the Kolmogorov-Smirnov statistic to measure the maximum vertical separation, or deviation between the cumulative distributions of events and non-events.
KS Trend Chart
When you create a Kolmogorov-Smirnov report, the underlying KS statistic and the corresponding probability cutoff are read from a summary data set in the Resources folder. The KS Trend chart uses a summary data set that plots the KS Statistic over time. The KS Trend chart is used to monitor model degradation over time.

Actual versus Predicted
You use the Actual versus Predicted plot to see how predicted values match actual values.

Actual versus Residual
You use the Actual versus Residual plot to determine how good the model is at predicting values by examining errors and error trending, and comparing them to the actual values.

Population Stability Trend
The Population Stability Trend chart measures the shift of the scoring output variable distribution over time. Scoring output that is based on a development sample is used as the baseline distribution. The deviation index is used to indicate the shift for a given point in time.

Before you create a Monitoring Report or a Champion and Challenger Performance Report, you must ensure that certain project and model properties are set. For more information, see “Verify Project and Model Property Settings” on page 130.

Create a Monitoring Report
To create a Monitoring report:

2. Enter a name and description if you do not want to use the default values.
3. Select an output type. The default is PDF.
4. Select a style for the report. When the SAS default option is selected, the default style and themes are used in generating the report. For example, the SAS default style for the HTML output type is HTMLBLUE.
5. Click Run. The report is generated and appears in the default viewer for the selected output type.

See Also
“View Reports” on page 145
Champion and Challenger Performance Reports

About the Champion and Challenger Performance Report

After you execute a performance definition for the champion model, you can execute a performance definition for the challenger model using the same performance data sets. SAS Model Manager updates the output data sets with the performance data for the challenger model. You can create a Champion and Challenger Performance report that compares the performance of the two models.

The Champion and Challenger Performance report contains these charts:

1. **Number of Predictors Exceeding Deviation Threshold**
 - This characteristic report creates a chart for each index that exceeds a deviation threshold (either 0.1 or 0.25) as indicated in the define performance definition. The characteristic report detects shifts in the distribution of input variables over time.

2. **Lift Trend Chart**
 - A Lift Trend chart displays the cumulative lift of the champion model over time.

3. **Gini - Trend**
 - When the Gini - ROC Chart is created, the Gini index for each ROC curve is also created. The Gini coefficient represents the area under the ROC curve and is a benchmark statistic that can be used to summarize the predictive accuracy of a model. The Gini - Trend Chart plots a model's Gini index scores over time, and these are used to monitor model degradation over time.

4. **Gini - ROC Chart**
 - Sensitivity is the proportion of true positive events, and specificity is the proportion of true negative events. The Gini - ROC Chart plots Sensitivity on the Y axis and 1 - Specificity on the X axis.

5. **KS Trend Chart**
 - When you create a Kolmogorov-Smirnov report, the KS statistic and the corresponding probability cutoff are computed for each Kolmogorov-Smirnov table. The KS Trend Chart uses a summary data set that plots the KS Statistic and the probability cutoff values over time. The KS Trend Chart is used to monitor model degradation over time.

6. **KS Chart**
 - The KS Chart uses the Kolmogorov-Smirnov statistic to measure the maximum vertical separation, or deviation between the cumulative distributions of events and non-events.

7. **Score Histogram**
 - The Score Histogram compares the scoring result distribution at different time periods using a histogram.

8. **Score Distribution Line Plot**
 - The Score Distribution Line Plot compares the scoring result distribution at different time periods using a line plot.

Before you create a Champion and Challenger Performance report, verify the performance data and model status.
Verify Performance Data and Model Status

Before you can create a Champion and Challenger Performance report:

1. Select the Models page and verify that a champion model has been set. The champion model is designated as Champion in the Role column. If a champion has not been set, select a model from the list, and click to set the model as the project champion model.

2. Ensure that a challenger model is flagged. The challenger model is designated as Challenger in the Role column. If it is not, select a model from the list, and click to flag a model as a challenger to the project champion model.

3. Verify that performance monitoring data is available for the champion model and the challenger model. Performance monitoring results must exist for the same performance data using the same time periods and data labels. Navigate to Performance ⇒ Results ⇒ Data Sets and select the file jobstatus.sas7bdat. The Content tab displays performance monitoring status data.

 a. Verify that the UUIDs for the champion and challenger models are in the Model UUID column.

 b. Using the name column and the time column, verify that matching date labels exist for the champion and challenger models for each type of report. If there are multiple date labels for a model for any given report, SAS Model Manager uses the most recent job.

Create a Champion and Challenger Performance Report

To create a champion and challenger performance report:

2. Enter a name and description if you do not want to use the default values.

3. Select an output type. The default is PDF.

4. Select a style for the report. When the SAS default option is selected, the default style and themes are used in generating the report. For example, the SAS default style for the HTML output type is HTMLBLUE.
5. Click **Run**. The report is generated and appears in the default viewer for the selected output type.

See Also

“View Reports” on page 145

View Reports

To view a report:

1. On the **Reports** page, in the **Model Evaluation** tab, select a type of report from the left navigation menu.

2. You can view a report in several ways:
 - Double-click a report in the list.
 - Select a report from the list and click **Run**.
 - Right-click a report from the list and select **Open**.

Note: You can also view the SAS code and SAS log.

Note: If you are configured for single sign-on web authentication and you try to view a report, the report is downloaded to your local drive. To view an HTML report, you must unzip the file.
Overview of User Reports

Ad Hoc Reports and User-Defined Reports

User reports are SAS programs that you create and import to SAS Model Manager so that you can customize reports to meet your business requirements. The ad hoc report enables you to develop, test, and run your report within SAS Model Manager. The user-defined report can be developed either within or external to SAS Model Manager. It requires a SAS program and the associated auxiliary files to be installed in a directory that is available to SAS Model Manager. Using ad hoc reports, you modify and submit your code from the SAS Editor within the Create an Ad Hoc Report window.

A user-defined report is a report that is available for reporting on all models in SAS Model Manager. The user-defined report requires three files to be installed in your server’s file structure:

- a SAS program to create the report
• a report template XML file that specifies the report requirements, such as report name and the number of required models to run the report
• a SAS program file that lists the SAS Model Manager global macro variables and macros that are used in your report

After you have these three files, you use the Manage Templates function to upload the files to the SAS Content Server.

The ad hoc report can be used to develop, test, and debug user-defined reports. When your ad hoc report is ready for a production environment, you can create the report template XML file and the macro file, and install the three files in the user-defined report file structure.

Comparison of Ad Hoc and User-Defined Reports

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Version</td>
<td>An ad hoc report is defined and can be run only under the version where it was created.</td>
<td>A user-defined report can be run under any project version.</td>
</tr>
<tr>
<td>Report template</td>
<td>An ad hoc report does not require a template.</td>
<td>A user-defined report requires a template to define the report parameters.</td>
</tr>
<tr>
<td>Report results</td>
<td>Each time an ad hoc report is run, the existing report is overwritten.</td>
<td>Each time a user-defined report is run, a new report is created on the Reports page.</td>
</tr>
<tr>
<td>Location of SAS files used to generate the report</td>
<td>The ad hoc report SAS program is stored on the Reports page for the version where it was created.</td>
<td>The user-defined report SAS files are uploaded to the SAS Content Server.</td>
</tr>
</tbody>
</table>

Output Created by User Reports

The first time you create a report, SAS Model Manager creates a report on the Reports page.

Each time you create a new ad hoc report, the following files are created:
• the report in either HTML, PDF, or RTF format
• smm_userCode.sas
• taskCode.log
• taskCode.sas

Each time you create a new user-defined report, the following files are created:
• the report in either HTML, PDF, or RTF format
• taskCode.log
• taskCode.sas

CAUTION:
The wizard overwrites the output files if an output file of the same name already exists.

Here is a description of the ad hoc report output files:

<table>
<thead>
<tr>
<th>Report File</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>report-name.html</td>
<td>This file is the report output in HTML format.</td>
</tr>
<tr>
<td>report-name.pdf</td>
<td>This file is the report output in PDF format.</td>
</tr>
<tr>
<td>report-name.rtf</td>
<td>This file is the report output in RTF format.</td>
</tr>
<tr>
<td>smm_userCode.sas</td>
<td>This file contains the SAS program report code that was submitted in the Create an Ad Hoc Report window.</td>
</tr>
<tr>
<td>taskCode.log</td>
<td>This file is the log file that contains messages from running the SAS code to create the report.</td>
</tr>
<tr>
<td>taskCode.sas</td>
<td>This file is the SAS code that is used to create the report. The file contains the user-defined report code as well as code that was generated by SAS Model Manager to create the report.</td>
</tr>
</tbody>
</table>

You can see the contents of these files by selecting them on the Reports page. You can also see the taskCode.sas file and the taskCode.log files.

Ad Hoc Reports

Overview of Ad Hoc Reports

To create an ad hoc report, you must first write a SAS report program. When the report code is ready, you copy your code to the SAS Editor tab in the Create an Ad Hoc Report window. You then submit your program. Unlike the user-defined report, the ad hoc report does not require auxiliary files to be uploaded to the SAS Content Server.

To create your report output in either HTML, PDF, or RTF, or to specify a style other than the default style for your report, you modify your report with code that is provided by SAS and that enables you to specify the report output format and style. The code that you need to add to your program is included in the steps to create an ad hoc program.

If you find an error in your report code, you must delete the report in the project, fix your code in your source file, and submit the code in the Create an Ad Hoc Report window again.

Create an Ad Hoc Report

To create an ad hoc report, you must first create a SAS program. Test your program in SAS before you run your program as an ad hoc report. After the code runs successfully, you can create the ad hoc report.
To create an ad hoc report:

1. On the **Reports** page, click ☰ and select **Ad Hoc**. The Create an Ad Hoc Report window appears.

2. Enter a name and an optional description for the report.

3. Select one or more models.

4. Add or copy SAS code to the **SAS Editor** tab. Make sure that your report program is enclosed by the SAS code that defines the report output format. Click the **Macro Variables** tab to view a list of the variables that can be accessed by your program.

5. Click **Run**. The report is generated and appears in the default viewer for the selected output type.

6. The report appears in a list on the **Model Evaluation** reports tab.

Example Ad Hoc Report

The following example code lists the score results in an HTML output format:

```sas
Filename mmreport catalog "sashelp.modelmgr.reportexportmacros.source";
%include mmreport;

%MM_ExportReportsBegin(reportFormat=html, reportStyle=Meadow, fileName=PerfDS);
proc print data=myTable.scoretable;
var loan delinq score;
run;
quit;

%MM_ExportReportsEnd(reportFormat=html);
```
After you click **Run**, the report is created and placed on the **Reports** page. The following HTML output displays selected rows of the output.

<table>
<thead>
<tr>
<th>Obs</th>
<th>LOAN</th>
<th>DELINQ</th>
<th>score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1100.00</td>
<td>0</td>
<td>0.08918</td>
</tr>
<tr>
<td>2</td>
<td>162.06</td>
<td>2</td>
<td>0.08918</td>
</tr>
<tr>
<td>3</td>
<td>1292.02</td>
<td>0</td>
<td>0.08918</td>
</tr>
<tr>
<td>4</td>
<td>783.13</td>
<td>.</td>
<td>0.08918</td>
</tr>
<tr>
<td>5</td>
<td>1700.00</td>
<td>0</td>
<td>0.08918</td>
</tr>
</tbody>
</table>

User-Defined Reports

Overview of User-Defined Reports

User-defined reports require the following files to be uploaded to the SAS Content Server:

- the SAS program that creates the report.
- a SAS program file that lists the SAS Model Manager global macro variables that are used in your report.
- a report template XML file that specifies the report requirements, such as report name and the number of required models to run the report.

After these three files have been uploaded to the SAS Content Server, the user-defined report type is included as a report type in the new report drop-down list on the **Reports** page.

The New Report window includes controls to specify the type of output that the report creates, such as HTML or PDF, and a style for the report. You can modify your report to include the SAS code so that the New Report window offers the report output controls for your report.

Create a User-Defined Report

To create a user-defined report:

1. Write and test your SAS program that creates a report.

2. To format the output for a user-defined report, add the SAS code below to your report code in order to select the **Output type** and the **Style** in the New Report window. The **Output type** enables you to select a report output format of HTML, PDF, or RTF. The **Style** enables you to select a report output style for your report.

 Replace `report-name` with the name of your user-defined report. The name can contain letters, the underscore (_), hyphen (-), and the period (.). End your user-defined report with the `%MM_ExportReportsEnd` macro.

   ```sas
   Filename mreport catalog "sashelp.modelmgr.reportexportmacros.source"
   %include mreport;
   %MM_ExportReportsBegin(fileName=report-name);
   ```
Defining Macro Variables for a User-Defined Report

Executing a user-defined report requires a SAS program that lists the report code’s macro variables. If you do not have macro variables in your report, create a SAS program file with a comment in it. This file is required.

Here is an example program to define macro variables:

```sas
%let _MM_User=miller;
%let _MM_Password=Rumpillstillskin3;
```

In the report XML file, add this SAS program name to the FILENAME= argument of the <PreCode> element (for example, `<PreCode filename="myMacroDefs.sas"/>`). For more information, see “Report Templates” on page 153.

For an example of a macro variable program, see “Example User-Defined Report” on page 157.

For a list of macro variables, see “Macro Variables” in SAS Model Manager: Macro Reference.

Upload SAS Programs to the SAS Content Server

After you have the two SAS programs for your user report, follow these steps to upload them to the SAS Content Server:

1. From the Projects category view, click , and select New Template.
2. Enter a filename.
4. Click to select a SAS code file. Click Open. You can also copy and paste the SAS code in the text box.
5. Click Save.
6. Repeat the steps to upload the second file.

Report Templates

You create a report template XML definition file to describe your user-defined report. After you create the report template, upload the template to the SAS Content Server.

SAS Model Manager provides a sample report template that you can use as a model for your XML template. You can use any template as a model or you can create an XML file with the required XML elements. A best practice is to open the model XML template and save the template using another name.

To open a sample report template:
1. From the Projects category, click , and select Manage Templates.
2. Select UserReportTemplate.xml and click \(\text{Save} \). The UserReportTemplate.xml file has arguments in quotation marks that you modify for your report. Replace the text in quotation marks with values that are appropriate for your report. See the argument descriptions below. Make your changes and click \text{Save} to upload the report template to the SAS Content Server.

3. Click \text{Close}.

Here is the report template XML definition:

```xml
<?xml version="1.0" encoding="UTF-8" ?>
<ReportTemplate
    name="report-name"
    type="UserDefinedReport"
    displayName="display-name"
    description="model-description"
>
    <Report>
        <Data datasetName="input-data-set-name"/>
        <Models expectedModelType="model-type"
            requiredNumberOfModels="1"
            level="level">
        </Models>
        <SourceCode>
            <PreCode filename="pre-code-filename.sas"/>
            <Code filename="score-code-filename.sas"/>
        </SourceCode>
        <Output format="output-format" filename="output-name"/>
    </Report>
</Parameters>
```
Parameter name="parameter-name" value="parameter-value" />
</Parameters>

<ReportTemplate>

<ReportTemplate> element arguments

name="report-name"
 specifies the name of the report. The characters @ \ % & $ () ! ? ^ + ~ = { } | ; : ' " cannot be used in the name.
displayName="display-name"
 specifies the name of the report that is displayed in the Report section of the New Report window.
description="model-description"
 specifies a description of the report that is displayed at the bottom of the New Report window when the report is selected in the window.

<Report> element arguments

<Data datasetName="input-data-set-name"/>
 specifies the name of a data source data set that is used for input to the report. The data set must be in the form libref.filename. You can use the following global macro variables as a value for input-data-set-name as long as the value of the macro variable is in the form of libref.filename:
 • &_MM_InputLib
 • &_MM_OutputLib
 • &_MM_PerformanceLib
 • &_MM_TestLib
 • &_MM_TrainLib

<Models
 expectedModelType="model-type"
 requiredNumberOfModels="number-of-models"
 level="level">
</Models>

specifies information about the model.

expectedModelType="model-type"
 specifies the model type.

 Valid values: ANALYTICAL, CLASSIFICATION, PREDICTION, SEGMENTATION, ANY

requiredNumberOfModels="number-of-models"
 specifies the number of models that are processed in this report.

level="folder"
 specifies where the report is to obtain a list of models. If folder is VERSION, the report creates a list of models in the version. If folder is PROJECT, the report creates a list of models from all versions in the project.

 Valid values: VERSION, PROJECT

<SourceCode>
<PreCode filename="pre-code-filename.sas"/>
<Code filename="report-code-filename.sas"/>
</SourceCode>

specifies the files that are used to execute the report.
<PreCode filename="pre-code-filename.sas"/>
 specifies the name of the SAS program that contains macro variable definitions.

<Code filename="report-code-filename.sas"/>
 specifies the name of the SAS program that creates the report.

<Output format="output-format" filename="output-report-name"/>
 specifies the output format arguments:

format="output-format"
 specifies the format of the report output.

 Valid values: HTML, PDF, or RTF

filename="output-report-name"
 specifies the name of the output report.

<Parameters> Element Argument

<Parameter name="parameter-name" value="parameter-value"/>
 This element is not used. It is reserved for future use.

Edit a SAS Program on the SAS Content Server

To edit the program after the file has been uploaded to the SAS Content Server:

1. Click and select **Manage Templates**.

2. Select an XML template, SAS code file, or user-defined properties template to edit.
 - In order for the template to be editable, the **Reserved** column must be marked as **No**.
 - Life cycle templates cannot be edited but can be viewed.

3. Click **Save**. Make your changes and click **Save**.

4. Click **Close**.

Delete a SAS Program from the SAS Content Server

Deleting a User Report SAS Content Server is a two-step process. You must delete the SAS program and the report template.

To delete a user report:

1. Click and select **Manage Templates**.

2. Select an XML template, SAS code file, or user-defined properties template to delete. The **Reserved** column must be marked as **No** to delete a file. The user-defined properties template file cannot be deleted.

3. Click **Yes**. A confirmation window appears.

4. Click **Yes** to delete the file.

5. Click **Close**.

Run a User-Defined Report

To run a user-defined report:

1. Click and select your user-defined report. The New Report window appears.
2. Enter a name and description if you do not want to use the default values.

3. Select an output type. The default is PDF.

4. Select a style for the report. When the SAS default option is selected, the default style and themes are used in generating the report. For example, the SAS default style for the HTML output type is HTMLBLUE.

5. From the list, select the models that you want to include in the report.

6. Click Run. The report is generated and appears in the default viewer for the selected output type.

See Also
“View Reports” on page 145

Example User-Defined Report

Overview of the Example User-Defined Report
The example user-defined report categorizes scoring values into score ranges and then graphs the results. The program name is Score Range Report. The following SAS programs and report template file are required to create this report:

- The SAS report program is the file ScoreRange.sas
- The SAS program file that contains macro variables is ScoreRangeMacro.sas
- The report template XML file is ScoreRangeTemplate.xml

SAS Report Program
Here is the SAS code for a user-defined report to categorize score codes:

```sas
filename mmreport catalog "sashelp.modelmgr.reportexportmacros.source";
%include mmreport;
%MM_ExportReportsBegin(fileName=scoreRange);

options NOMprint NOdate;
%let _MM_PosteriorVar=P_1;

proc format;
  value score
    low - 400 = '400 and Below'
    401 - 450 = '401 - 450'
    451 - 500 = '451 - 500'
    501 - 550 = '501 - 550'
    551 - 600 = '551 - 600'
    601 - 650 = '601 - 650'
    651 - 700 = '651 - 700'
    701 - 750 = '701 - 750'
    751 - 800 = '751 - 800'
    801 - high = '801 and Above';
run;
quit;
```
%Macro scoreRange();

%if &_MM_ScoreCodeType = %str(SAS Program) %then
 %do;
 %let _MM_OutputDS=work.scoreresult;
 %inc & _MM_Score;
 %end;
%else
 %do;
 data work.scoreresult;
 set &_MM_InputDS;
 %inc &_MM_Score;
 run;
 %end;

data work.scoreresult2;
 set work.scoreresult;
 keep score;
 if &_MM_PosteriorVar =. then delete;
 score = int (((1-&_MM_PosteriorVar) * 480) + 350 + 0.5);
run;

proc freq data=work.scoreresult2;
 table score/out=scoresummary;
 format score score.;
 title 'Credit Score Range';
quit;

proc gchart data=work.scoresummary;
 hbar score / sumvar=count discrete;
 title 'Credit Score Range';
run;
quit;
%Mend scoreRange;

/* Reporting section */
ods listing close;
%getModelInfo(0);

/* Define libref and data source for _MM_InputDS */
libname MMLib 'C:\SMM141Tutorials\Data';
%let _MM_InputDS=MMLib.DELINQUENCY_SCORING_INPUT;
%scoreRange();
%closeLibsAndFiles();

%MM_ExportReportsEnd;

SAS Program File for Macro Variables
The file ScoreRangeMacro.sas contains only a comment in it because macro variables are not used in the report code:

/* ScoreRangeMacro.sas empty file */
Report Template XML File

Here is the report template XML file for the user-defined Score Range report:

```xml
<?xml version="1.0" encoding="UTF-8" ?>
<ReportTemplate
   name="Score Range Report"
   type="UserDefinedReport"
   displayName="Score Range Report"
   description="Score Range Report"
>
  <Report>
    <Data datasetName=""/>
    <Models expectedModelType="ANALYTICAL"
       requiredNumberOfModels="1" level="VERSION">
    </Models>
    <SourceCode>
      <PreCode filename="ScoreRangeMacro.sas"/>
      <Code filename="ScoreRange.sas"/>
    </SourceCode>
    <Output format="PDF" filename="ScoreRange"/>
  </Report>
  <Parameters>
  </Parameters>
</ReportTemplate>
```

Score Range Report Output

The Credit Score Range graph is one of the output pages in the PDF report output.
About Aggregated Reports

SAS Model Manager administrators and advanced users can combine multiple reports from the Reports page to create a single, aggregated report. Using reports that reside in the Reports page, you select the reports that you want in your aggregated report. The format of the report can be PDF, HTML, or RTF. Aggregated reports are stored on the Aggregated tab.

Ad hoc reports, Loss Given Default (LGD) reports, and Probability of Default Model Validation (PD) reports cannot be added to an aggregated report.

Create an Aggregated Report

Note: To create an aggregated report, you must have existing reports on the Reports page.

To create an aggregated report:

2. (Optional) Enter a name and a description for the report.

3. Select an output type. The default is PDF.

4. In the Available reports section, expand the organizational, project, or version folders to show all of the available reports.

5. To add reports from the Available reports section, select a report and click \(\rightarrow \) to move one report or click \(\rightarrow \) to move all reports. The report or reports appear in the Selected reports section.

6. To order the reports, select a report and use the up and down arrows.

7. To remove reports from the Selected reports section, select a report and click \(\leftarrow \) to remove one report or click \(\leftarrow \) to remove all reports.

8. When all of the reports are in the Selected reports section and in the correct order, click Run. The report is generated and appears in the default viewer for the selected output type.

9. The report appears in a list on the Aggregated reports tab.

View an Aggregated Report

To view an aggregated report:

1. On the Aggregated tab, select a report from the list.

2. View the report in one of several ways:
 - Double-click a report in the list.
 - Select a report from the list and click \(\rightarrow \).
 - Right-click a report from the list and select Open.

Note: You can also view the SAS code and SAS log if the report is not displayed.
Note: If you are configured for single sign-on web authentication and you try to view a report, the report is downloaded to your local drive. To view an HTML report, you must unzip the file.

Delete an Aggregated Report

To delete an aggregated report:

1. On the Aggregated tab, select a report from the list.

2. You can delete the report in one of several ways:
 - To delete a file, click \(\text{Delete} \). Confirm the deletion.
 - Right-click a report from the list and select Delete. Confirm the deletion.
Chapter 14
Monitoring Performance of Models

Overview of Performance Monitoring

To ensure that a champion model in a production environment is performing efficiently, you can collect performance data that has been created by the model at intervals that are determined by your organization. A performance data set is used to assess model prediction accuracy. It includes all of the required input variables as well as one or more actual target variables. For example, you might want to create performance data sets monthly or quarterly and then use SAS Model Manager to create a performance definition that includes each time interval. After you create and execute the performance
definition on the **Performance** page, you can view the performance data through report charts in SAS Model Manager. These report charts give a graphical representation of the model's performance. SAS Model Manager also enables you to create performance monitoring reports in PDF, HTML, and RTF output formats from the **Reports** page.

Note: Performance monitoring is designed to work only with a project that is associated with a classification model function and has a binary target, or with a prediction model function and has an interval target. Only models that are associated with the classification and prediction model types and that are set as champion and challenger models can be monitored for performance.

The following types of output for performance monitoring are available:

- Summaries of the types of information in project folders such as the number of models, model age distribution, input variables, and target variables.
- Reports that detect and quantify shifts in the distribution of variable values over time that occur in input data and scored output data.
- Performance monitoring reports that evaluate the predicted and actual target values for a champion model at multiple points in time.

You can create the performance monitoring output, except for summaries, using either of the following methods:

- On the **Performance** page, generate the SAS code that creates the performance output and then execute the generated code.
- Write your own SAS program using the report creation macros that are provided with SAS Model Manager and submit your program as a batch job. You can run your
SAS program in any SAS session as long as the SAS session can access the SAS Content Server.

After you create and execute a performance definition, you view the report charts by selecting the **Results** tab on the **Performance** page. The report charts are interactive, and you can modify them to help you assess the champion model performance. For example, you can show markers in the charts and show tables for the different types of reports. You can also select different variables for the x-axis and display them in the chart for the Variable Distribution Report.

If you have flagged a challenger model to compare with the champion model, you can use the performance data that you collected for the champion model to create reports for the challenger model. After all of the performance monitoring definitions have been run, you can create a Champion and Challenger Performance report that compares the champion model to the challenger model.

Types of Performance Monitoring

Overview of the Types of Performance Monitoring

After a champion model is in production, you can monitor the performance of the model by analyzing the performance results. You can create the performance output interactively using the Edit Performance Definition wizard on the **Performance** page of a project or you can submit batch programs within SAS.

You can create the following types of performance output:

- **Summary Results**
 The **Summary** results summarize the number of models, the number of versions, the number of scoring tests, and the number of reports. The summary information enables you to compare the contents of folders, projects, and versions. You view the Summary results by selecting *Actions → View Summary*.

- **Data Composition Reports**
 The Variable Distribution report shows you the distributions for a variable in one or more time periods, which enables you to see the differences and changes over time. The Characteristic and Stability reports detect and quantify shifts in the distribution of variable values that occur in input data and scored output data over time. By analyzing these shifts, you can gain insights on scoring input and output variables.

- **Model Monitoring Reports**
 The model monitoring reports are a collection of performance assessment reports that evaluate the predicted and actual target values. The model monitoring reports create several charts:
 - Lift
 - Gini - ROC (Receiver Operating Characteristic)
 - Gini - Trend
 - KS
 - MSE (Mean Squared Error) for prediction models

When you create Data Composition reports and Model Monitoring reports, you can set performance index warnings and alerts. When certain thresholds are met, SAS Model Manager can send a warning and alert notification to email addresses that you configure either in the Edit Performance Definition wizard or in a SAS program.
You view the Data Composition reports and the Model Monitoring reports on the Results tab on the Performance page.

Summary Results

The Summary results summarizes the contents of different folders and projects.

The contents of the Summary results is dynamic and is updated according to the selected project. The scope of the information that is reported is defined by the collection of folders and objects that exist beneath the folder that is selected.

To view the Summary results, select Actions ⇒ View Summary.

Use the following sections to evaluate and compare the contents of the project:

General

Use the General section to browse the number of models, the number of versions, and the number of scoring tests.

Summary of Reports

Use the Summary of Reports section to browse the number of reports that are available on the Reports page for the selected object.

Model Target Variable Report

Use the Model Target Variable Report to see the frequency with which target variables are used in the models that exist for the selected object. Each unique model target variable is reported, listing the number of models that use that variable as a target variable.

Model Input Variable Report

Use the Model Input Variable Report to see the frequency with which input variables are used in the models for a folder or project. Each unique model input variable is reported, listing the number of models that use that variable as an input variable.

Data Composition Reports

Variable Distribution Report

Select the Results tab on the Performance page to view the Variable Distribution report. The variable distribution chart is a graphical representation of distributions over a period of time for the selected variable. Each line plot represents the data for a specific period of time. The Y-axis is the percentage of observations in a bin that is proportional to the total count.

To change the variable that appears in the chart, select a variable from the drop-down list.

Here is an example of a Variable Distribution report. By placing the cursor over a point in the chart, you can view the data for that point.
Characteristic and Stability Reports

Together, the Characteristic and Stability reports detect and quantify shifts that can occur in the distribution of model performance data, scoring input data, and the scored output data that a model produces.

Note: For each time period that you execute a performance definition, SAS Model Manager creates a new point on the charts. Line segments between points in time do not appear on the charts unless you specify at least three data sources and collection dates as part of the performance definition.

Characteristic Report

The Characteristic report detects and quantifies the shifts in the distribution of variable values in the input data over time. These shifts can point to significant changes in customer behavior that are due to new technology, competition, marketing promotions, new laws, or other influences.

To find shifts, the Characteristic report compares the distributions of the variables in these two data sets:

- the training data set that was used to develop the model
- a current data set

If large enough shifts occur in the distribution of variable values over time, the original model might not be the best predictive or classification tool to use with the current data.

The Characteristic report uses a deviation index to quantify the shifts in a variable's values distribution that can occur between the training data set and the current data set. The deviation index is computed for each predictor variable in the data set, using this equation:

\[
Deviation_Index = \sum (\%Actual - \%Expected) \times \log(\%Actual / \%Expected)
\]
Numeric predictor variable values are placed into bins for frequency analysis. Outlier values are removed to facilitate better placement of values and to avoid scenarios that can aggregate most observations into a single bin.

If the training data set and the current data set have identical distributions for a variable, the variable's deviation index is equal to 0. A variable with a deviation index value that is $P1 > 2$ is classified as having a mild deviation. The Characteristic report uses the performance measure $P1$ to count the number of variables that receive a deviation index value that is greater than 0.1.

A variable that has a deviation index value that is $P1 > 5$ or $P25 > 0$ is classified as having a significant deviation. A performance measure $P25$ is used to count the number of variables that have significant deviations, or the number of input variables that receive a deviation index score value that is greater than or equal to 0.25.

Stability Report

The Stability report evaluates changes in the distribution of scored output variable values as models score data over time, and detects and quantifies shifts in the distribution of output variable values in the data that is produced by the models. If an output variable from the training data set and the output variable from the current data set have identical distributions, then that output variable's deviation index is equal to 0. An output variable with a deviation index value that is greater than 0.10 and less than 0.25 is classified as having a mild deviation. A variable that has a deviation index value that is greater than 0.30 is classified as having a significant deviation. Too much deviation in predictive variable output can indicate that model tuning, retraining, or replacement might be necessary.

Here is an example of Characteristic and Stability reports. By placing the cursor over a point in the chart, you can view the data for that point.
Model Monitoring Reports

Lift Report

The Lift report provides a visual summary of the usefulness of the information that is provided by a model for predicting a binary outcome variable. Specifically, the report summarizes the utility that you can expect by using the champion model as compared to using baseline information only. Baseline information is the prediction accuracy performance of the initial performance monitoring definition or batch program using operational data.

A monitoring Lift report can show a model's cumulative lift at a given point in time or the sequential lift performance of a model's lift over time. To detect model performance degradation, you can set the Lift report performance indexes Lift5Decay, Lift10Decay, Lift15Decay, and Lift20Decay. The data that underlies the Lift report is contained in the report file mm_lift.sas7bdat. This file is available on the Attachments page.

Here is an example of a monitoring Lift report. By placing the cursor over a point in the report, you can view the data for that point.

Gini (ROC and Trend) Report

The Gini (ROC and Trend) reports show you the predictive accuracy of a model that has a binary target. The plot displays sensitivity information about the y-axis and 1-Specificity information about the x-axis. Sensitivity is the proportion of true positive events. Specificity is the proportion of true negative events. The Gini index is calculated for each ROC curve. The Gini coefficient, which represents the area under the ROC curve, is a benchmark statistic that can be used to summarize the predictive accuracy of a model.

Use the monitoring Gini (ROC and Trend) report to detect degradations in the predictive power of a model.

The data that underlies the monitoring Gini (ROC and Trend) report is contained in the report component file mm_roc.sas7bdat.
The following chart is an example of a monitoring Gini (ROC and Trend) report. By placing the cursor over a point in the chart, you can view the data for that point.

KS Report

The KS report contains the Kolmogorov-Smirnov (KS) test plots for models with a binary target. The KS statistic measures the maximum vertical separation, or deviation between the cumulative distributions of events and non-events. This trend report uses a summary data set that plots the KS statistic and the KS probability cutoff values over time.

Use the KS report to detect degradations in the predictive power of a model. To scroll through a successive series of KS performance depictions, select a time interval from the **Time Interval** list box. If model performance is declining, it is indicated by the decreasing distances between the KS plot lines.

To detect model performance degradation, you can set the ksDecay performance index in the KS report.

The data that underlies the KS chart is contained in the report component file mm_ks.sas7bdat.

The following report is an example of a KS report. By placing the cursor over a point in the chart, you can view the data for that point.
Mean Squared Error Report

The Mean Squared Error (MSE) report checks the accuracy of a prediction model with an interval target by comparing the estimation derived from the test data and the actual outcomes that are associated with the test data for different time periods.

The following report is an example of an MSE report.

Performance Index Warnings and Alerts

The production model performance reports use performance measurement thresholds to benchmark and gauge the performance of a predictive model. When one of the
performance measurements exceeds one or more specified indexes or thresholds, warning and alert events occur. When warning or alert events occur, warning and alert notifications are automatically sent by email to recipients whose email address is configured either in the Edit Performance Definition wizard or in the batch program that runs the reports.

Use the following assignment statements to set warning and alert conditions:

```plaintext
alertCondition='alert-condition';
warningCondition='warning-condition';
```

Note: The condition must be enclosed in quotation marks if you use SAS code to create the report. An error occurs if you enclose the condition in quotation marks in the Edit Performance Definition wizard.

The following indexes and thresholds can be configured in either the Edit Performance Definition wizard or in a batch program that creates the report specifications:

Characteristic report
You can configure the thresholds for the performance indexes P1 and P25. The P1 and P25 indexes represent the count of input variables with deviation index scores exceeding 0.1 and 0.25, respectively. Here is an example of alert and warning thresholds:

```plaintext
alertCondition='p1>5 or p25>0';
warningCondition='p1>2';
```

Stability report
You can configure output deviation index scores for a model's output variable. The output deviation index scores represent the deviation levels in the distribution of the model's scored output variables. Here is an example of alert and warning thresholds:

```plaintext
alertCondition='outputDeviation>0.03';
warningCondition='outputDeviation>0.01';
```

Model Assessment reports
For the Lift, Gini (ROC and Trend), and KS reports, you can configure threshold values for the following decay statistics.

- **lift5Decay** is the lift performance decay based on the top 5% of the target population of interest from time A to time B.
- **lift10Decay** is the lift performance decay based on the top 10% of the target population of interest from time A to time B.
- **lift15Decay** is the lift performance decay based on the top 15% of the target population of interest from time A to time B.
- **lift20Decay** is the lift performance decay based on the top 20% of the target population of interest from time A to time B.
- **giniDecay** is the performance decay of the Gini index from time A to time B.
- **ksDecay** is the performance decay of the KS statistic from time A to time B.

For the prediction model MSE report, you can configure the mseDecay statistic threshold values. The mseDecay statistic is the performance decay of the MSE statistic from time A to time B.

Here is an example of alert and warning thresholds:

```plaintext
alertCondition='(lift5Decay>0.15 and lift10Decay>0.12)'
```
Monitoring Champion Models

Your project plan might include a schedule to monitor the champion model performance, or your plan might require that you monitor the performance at any time. For each time period that you monitor the champion model, you take a snapshot of the data for that time period and use that data as the performance data source for creating the monitoring reports.

You can create monitoring reports by creating and executing a performance definition, or you can submit batch programs to create the reports. Both methods require the same information. Both methods can process one or more performance data sources. When you create a performance definition, you can specify one or more data sources to process. When you use a batch program, you use a separate DATA step to process each data source.

If you run batch programs, you can find example programs in the sashelp.modelmgr.source catalog. These reports’ filenames are reportexamplex, where x is a number from 1 to 4.

The following table lists the definitions that are required to create performance reports:

<table>
<thead>
<tr>
<th>Definition</th>
<th>Reports Created by Using the Edit Performance Definition Wizard</th>
<th>Reports Created Using SAS Programs That Run in Batch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create a folder structure for report files</td>
<td>The folder structure is inherent in the Project. No action is necessary.</td>
<td>Create a folder structure on a local drive of the SAS Model Manager server.</td>
</tr>
<tr>
<td>Obtain performance data</td>
<td>The performance data is one or more SAS data sets that are a snapshot of model output. They can be registered in SAS Management Console or they can be accessed by using a libref that has been defined by using the Edit Start-up Code window.</td>
<td>The performance data is used to assess model prediction accuracy. It includes all of the required scoring input variables as well as one or more actual target variables. You can store performance data sets anywhere as long as they can be accessed by the SAS session that runs the batch program. The data sets do not need to be registered with SAS Management Console.</td>
</tr>
<tr>
<td>Ensure access to the champion or challenger model</td>
<td>This process is performed by the Edit Performance Definition wizard. No action is necessary.</td>
<td>Run the %MM_GetModels() macro to extract the champion model in a channel to a local drive of the SAS Model Manager server.</td>
</tr>
</tbody>
</table>
Creating Reports Using a Performance Definition

Overview of Creating Reports Using a Performance Definition

You define and execute a performance definition for a project. The model that you monitor is either the project champion model or a challenger model that is flagged in any version for the project. The process of creating performance reports is a two-step process. First, you run the Edit Performance Definition wizard to generate the code that creates the performance data results. Then, you execute the generated code. You can execute the code immediately, or you can schedule a date and time at which the definition is to run. Information about performance definitions is recorded and can be viewed on the Results tab of the Performance page.
To create performance reports:

- Ensure that one or more performance data sources are registered using SAS Management Console or that a libref has been defined for the location where the performance data sets are stored.
- Ensure that all prerequisites have been completed.
- Run the Edit Performance Definition wizard to generate the SAS code that creates the performance reports.
- Execute the generated code or schedule when the generated code is to be executed.
- To view the reports, select the Results tab on the Performance page.

Determine How to Use the Performance Data Sets

Before you run the Edit Performance Definition wizard, the performance data sets must be registered in the SAS Metadata Repository. You can register the data sets in the Data category view or you can add tables to an existing library that have already been registered using SAS Management Console. For each project, you can set up your environment to use the performance data source that is most appropriate for your business process. Here are two methods of collecting performance data:

- **Method 1**: You periodically take a snapshot of an operational data set to create a performance data set. Each time you take a snapshot, you give the performance data set a new name. Each performance data set must be registered in the SAS Metadata Repository and it must be available in the Data category view. You can create and execute a performance monitoring definition each time you take a snapshot, or you can create a performance monitoring definition to execute multiple performance data sets in the same definition. The best practice is to use the dynamic data sources in the performance definition.

- **Method 2**: You take a snapshot of the operational data set to create a performance data set over time, and you reuse the same name for each performance data set every time you take a snapshot. You register the performance data set in the SAS Metadata Repository only once. The performance data set must be available in the Data category view. Each time you take a snapshot, you replace the performance data set at the location where the performance data set is registered.

When you run the Edit Performance Definition wizard, the name of the performance data source does not change. The Default performance table project property is not populated in the Edit Performance Definition wizard. You modify only the Collection Date and Report Label columns in the table.

The following table summarizes the definitions that are performed if performance reports are run after six months or for reports that are run every month. Use this definition and example table to help you determine how you want to name your performance data sets and your performance data sources.
<table>
<thead>
<tr>
<th>Definition</th>
<th>Method 1: The Performance Data Set Name Changes</th>
<th>Method 2: The Performance Data Set Name Remains Static</th>
</tr>
</thead>
</table>
| Create a performance data set from model output data | Each month, take a snapshot of the operational data and create a performance data set with a different name:
 - Jul13
 - Aug13
 - Sep13
 - Oct13
 - Nov13
 - Dec13 | Every month, take a snapshot of the operational data and name the performance data set using the same name:
 2013perf |
| If you are registering the performance data sets in the SAS Metadata Repository, register the performance data sets using SAS Management Console | Register the data sets monthly or register them all at once before you run the reports. | Register the data sets the first month only. |
| If the performance data set is accessed by using a libref, store the data set in the SAS library. | Save the performance data set in the SAS library that is defined by a libref in SAS Model Manager. | Save the performance data set in the SAS library that is defined by a libref in SAS Model Manager. |
| Modifications to make in the Edit Performance Definition wizard | In Step 3, select one or more performance data sources. For each data source, select a data collection date and enter a date label.
 The **Performance data source** field contains the static name of the performance data source name because it was specified for the previous execution of the definition for this project. | In Step 3, select a data collection date and enter a date label.
 To ensure that you do not write over important performance data, run the performance definition before a new snapshot of the operational data is taken. |
| Create the reports | Run the Edit Performance Definition wizard and execute the reports from the **Performance** page or schedule when the definition is to execute.
 Because each performance data source has a different name, you can run the performance definition as desired; the definition does not need to be run monthly. | Monthly, run the Edit Performance Definition wizard and execute the reports from the **Performance** page or schedule when the definition is to execute.
 To ensure that you do not write over important performance data, run the performance definition before a new snapshot of the operational data is taken. |
Prerequisites for Editing a Performance Definition

Overview of Prerequisites

Before you edit a Performance Definition, the environment must be set appropriately as follows:

• Ensure that the champion model is set or the challenger model is flagged.

• Ensure that the champion or challenger model is within a project that is associated with a classification model function and has a binary target, or that is associated with a prediction model function and has an interval target.

• Ensure that the champion or challenger model contains a score.sas file. If the performance data set contains the predicted values, the score.sas file can be empty. For more information, “Monitoring Performance of a Model without Score Code” on page 187.

• Ensure that the performance data sets for the time period that you want to monitor are registered in SAS Management Console or that a libref has been defined for the SAS library where the performance data sets are saved.

• Ensure that the appropriate project and model properties are set.

After the environment is set, you can run the Edit Performance Definition wizard.

Ensure That Champion and Challenger Models Are Set

The Edit Performance Definition wizard generates report code for the champion model in the champion version.

You can determine the champion version and the champion model by looking for the ⚡ icon next to the champion version name and the champion model name on the Versions page. The status is also indicated in the Role column on the Models page.

If the champion model is not set, select a model and click ⚡ or right-click the champion model name and select Set as Champion. The ⚡ icon appears next to the champion model name and the version for the champion model.

You can determine the challenger model by looking at the Role column on the Models page. View the number of challengers on the Details view of the Versions page.

If the challenger model is not set, click ⚠ or right-click the challenger model name and select Flag as Challenger.

Ensure That the Champion Model Function and Class Target Level Are Valid

Performance monitoring is valid only for a project that is associated with a classification model function and has a binary target, or for a prediction model function that has an interval target. You should define only performance definitions for classification and prediction models. The champion model must either have a function type of classification and must contain a binary target, or have a function type of prediction and must contain an interval target.
From the Projects category view, select the champion model name and verify that the **Model function** property in the specific properties section is set to **Classification** or **Prediction**. For models that are created using SAS Enterprise Miner, verify that **Class target level** is set to **BINARY** for a classification model or to **INTERVAL** for a prediction model.

Ensure That the Performance Data Source Is Available

The Edit Performance Definition wizard requires that the performance data be registered in the SAS Metadata Repository. You can register the data sets in the Data category view or you can add tables to an existing library that have already been registered using SAS Management Console.

If your performance table is not available for selection, contact your administrator to add the table to the Data Library Manager using SAS Management Console. For more information, see the *SAS Model Manager: Administrator's Guide*.

Ensure That Project and Model Properties Are Set

Several properties must be defined in order to generate the model performance reports. Verify that the appropriate project and model properties are set. Here is a list of properties.

Classification Project Properties
- Training target variable
- Target event value
- Class target level
- Output event probability variable

Prediction Project Properties
- Training target variable
- Class target level
- Output prediction variable

Model Properties
- Score code type

Map Model and Project Output Variables

In order to create the model performance reports, you must map the model output variable to the project output variable if the corresponding project variable and the model variable have different names.

To map the model variables to the project variables:

1. Select and open a model.
2. Select **Model Properties** → **Output Mapping**.
3. Click the box in the **Value** column beside the variable in the **Property** column to display a list of project variables.
4. Select a model output variable.
5. Repeat steps 3 and 4 for each model variable that requires mapping.
6. Click .

Edit and Execute a Performance Definition

To create the monitoring reports, you specify a performance definition to generate SAS code. You then execute the generated code or create a schedule to execute the generated code on a specific day and time. Execution of the generated code creates the SAS data sets that are used to display reports: either the monitoring reports from the version Performance page, or the Monitoring report or Champion and Challenger Performance report that you create from the New Report window.

To edit the performance definition:

1. Click , and select a champion or challenger model. Click Next.

2. Select a SAS Application Server.

3. Select one or more output variables for stability analysis. To select all output variables, click All.

4. Select one or more input variables for characteristic analysis. To select all input variables, click All. Click Next.
5. Choose the data processing method:

 • To run a standard environment, select **Standard configuration**.
 To run the score code in the performance monitor job, select the \textit{Run model score code} check box.

 • To run the performance monitoring definition in a High-Performance Analytics environment, select **High-performance configuration**.
 \textit{Note:} The score code is not run when **High-performance configuration** is selected.

6. Decide to use either the static or dynamic data sources, and then specify the data source information.

 \textit{Note:} Ensure that the data source information is complete before saving the definition. If you start adding information for static data sources and then decide to use dynamic data sources instead, be sure to delete the information added for static data sources before adding the dynamic data source information, and vice versa.

To use static data sources:

a. Click \texttt{+}.

 \textit{Note:} If you are adding multiple tables in the first performance definition, the data table whose collection date is the earliest is set as the baseline performance data table.

b. Click the empty cell in the \textbf{Data Source} column.

c. Click \texttt{Browse} and select a performance data source. Click \texttt{OK}.

d. Click the empty cell in the \textbf{Collection Date} column and click \texttt{Calendar}. Select a date. The date can be any date in the time period when the performance data was collected.
e. To add a label for the date, enter the label name in the **Report Label** column. The report label represents the time point of the performance data source. Because the report label appears in the performance charts, use a label that has not been used for another time period, is short, and is understandable (for example, Q1).

Note: Duplicate report labels result in previous performance results being overwritten.

f. (Optional) Select a data source and click ✅ to verify that the selected input variables and target variable are included in the performance data source, and that the data source is not empty.

g. (Optional) Repeat the above steps to add multiple performance data sources to the performance definition.

h. (Optional) To delete a data source from the performance definition, select the data source and click 🗑️.

To use dynamic data sources:

a. Click 🗂️ to select a data source library.

b. (Optional) Specify the prefix to remove from the data source names in the selected library. The data source name is used for the report label. You can remove the prefix so that it does not show as part of a report label on the charts.

7. (Optional) Select **Generate dashboard reports after the performance monitoring has completed**. The dashboard definition must already exist for this option to work.

8. Click **Next**.

9. (Optional) Either specify values for the alert and warning conditions or accept the defaults.

10. (Optional) To send the results by email, click ✉️. A new row is added to the table.
a. Enter an email address.

b. Select either Yes or No if you want an alert or warning to be sent by email when alert or warning thresholds have been exceeded.

c. Select either Yes or No if you want a completion notice with the job status to be sent by email every time the report runs.

11. Click Save.

To execute a performance definition:

1. Select the Performance page for the project.

2. Click .

3. After the performance monitoring has been completed, a confirmation message appears. Click Close.

4. Click the Results tab to view the performance results.

 Note: You can check the status of a job by clicking and then selecting the Results tab or the Job History tab.

 Note: You can overwrite or delete previously created performance data sets.

Schedule Performance Definitions

After you create a performance definition, you can create a schedule to execute the definition to run on a specific day and at a specific time. You can schedule the definition to run hourly, daily, weekly, monthly, or yearly.
Before you can schedule a performance definition, your user ID and password must be made available to the SAS Metadata Repository. You must also sign in to SAS Model Manager using your full user credentials that were specified for your user account in SAS Management Console. For user accounts where a Microsoft Windows user ID is specified, you must enter your user ID in the format of domain\userID. Contact your system administrator to add or update your password, and to determine the correct user credentials for your user account.

CAUTION:

Check your configuration settings before scheduling jobs. Users who are configured for single sign-on authentication by Kerberos cannot schedule jobs.

You cannot edit a schedule for a performance definition. To modify a schedule, delete the schedule and create a new schedule.

After performance monitoring jobs execute, you can view the job history using the **Job History** tab on the **Performance** page.

To schedule a performance monitoring definition:

1. Click ![Image](image.png).
2. On the **Recurrence** tab, select the recurrence pattern.
3. Specify the criteria for when and how often the job should be run.
4. (Optional) Select the **Advanced** tab.
 a. Select the server that schedules the job from the **Scheduling server** list box.

 Note: The SAS Distributed In-Process Services Scheduling Server is not supported.
 b. Select the batch server that runs the job from the **Batch server** list box.
 c. Click **Browse** to select a location for the performance monitoring output. Click **OK**.
5. Click **OK**.
6. After the job has been scheduled, a confirmation message appears. Click **Close**.
7. Click the **Results** tab to view the performance results.

Note: Performance schedules cannot be edited. To change the schedule, delete the schedule and create a new schedule.

Here is a list of the **Schedule** properties for **Performance**:

![Image](image.png)
<table>
<thead>
<tr>
<th>Property Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Job Name</td>
<td>Specifies the name of the performance monitoring definition. This name cannot be changed.</td>
</tr>
<tr>
<td>Location</td>
<td>Specifies the location of the performance monitoring definition in the SAS Metadata Repository.</td>
</tr>
<tr>
<td>Scheduling Server</td>
<td>Specifies the name of the server that schedules the job for the performance monitoring definition.</td>
</tr>
<tr>
<td>Batch Server</td>
<td>Specifies the name of the server that executes the job for the performance monitoring definition.</td>
</tr>
<tr>
<td>Recurrence</td>
<td>Specifies how often the scheduled job for the performance monitoring definition is to be executed.</td>
</tr>
<tr>
<td>SAS Application Server</td>
<td>Specifies the name of the SAS Application Server where the performance monitoring definition is to be executed.</td>
</tr>
</tbody>
</table>

To delete a schedule, select the schedule and then click

View Performance Monitoring Job History

Use the **Job History** tab on the **Performance** page to verify whether a performance monitoring task was run. The performance monitoring job appears on the **Job History** tab only after the job has begun.

To view the job history of a performance monitoring task:

1. Select a project and click the **Performance** page.
2. Click the **Job History** tab. A table appears that lists the performance monitoring jobs that have been executed.

Here is a description of the columns in the job history table:

Job Name
- is the name of the performance monitoring task.

Job Status
- specifies whether the job status is **Running** or **Completed**.

Execution Status
- shows a green indicator for a successful job execution. A yellow indicator shows that the performance monitoring task ran with warnings. A red indicator shows that the performance monitoring task ran with errors.
Date Started
is the date and time that the performance monitoring task started.

Date Completed
is the date and time that the performance monitoring task ended.

Log
is the revision number for the SAS log.

Output
is the revision number for the job output.

SAS Code
is the revision number for the performance monitoring task program.

Manage Performance Data Sets

After a performance monitoring task has run, the summary data sets reside on the Results tab on the Performance page.

To add a performance data set:
1. Click the Results tab.
2. Click +.
3. Navigate to the location of the data set and select the file to add.
4. Click Open.

Note: Fifteen tables are shown for the classification model function and thirteen are shown for the prediction model function. The table name must be the same as one of the shown tables; otherwise the uploaded table cannot be displayed. Tables with the same name are overwritten.

To delete the performance data sets:
1. Click the Results tab.
2. Click . Confirm the deletion.

Monitoring Performance of a Model without Score Code

If you want to monitor the performance of a model for which you no longer have the score code, you can import a model without SAS score code. If the performance data set contains the predicted values, the score.sas file can be empty.

To monitor the performance of a model without score code:
1. Prepare the following model files:
 • XML file that defines the model input variables (inputvar.xml)
 • XML file that defines the model output variables (outputvar.xml)
 • XML file that defines the model target variables (targetvar.xml)
1. empty SAS score code file (score.sas)

2. Select **Models** ⇒ **Projects**

3. Create a project that has a model function type of **Classification** or **Prediction**. You can skip this step if you have already created a project.

4. Open a project and verify that the project properties are set.
 a. If it is a project that has a model function property value of **Classification**, verify that the following project properties are set:
 - Training target variable (for example, *bad*)
 - Target event value (for example, *1*)
 - Class target level as **Binary**
 - Output event probability variable (for example, *score*)
 b. If it is a project that has a model function property value of **Prediction**, verify that the following project properties are set:
 - Training target variable (for example, *lgd*)
 - Class target level as **Interval**
 - Output prediction variable (for example, *p_lgd*)

5. Select the **Models** page.

6. Click ⏪ and select from local files.

 Note: If the model already exists, you can open a model to add model files to an existing model. For more information, see “Add Model Files to an Existing Model” on page 84.

7. Navigate to the folder on your computer that contains the component files for your model.

8. Select a classification or prediction template from the **Choose a model template** list.

9. Enter a text value in the model **Name** field.

10. Click **Properties** and specify the model properties.

11. Click **Files** and select the local files from the SAS Workspace Server that match the template files. You cannot delete a file after you have added it. To replace the file, select another file or cancel the import and start over. The following files are required:
 - inputvar.xml
 - outputvar.xml
 - targetvar.xml
 - score.sas

 Note: The filenames that you created for the model do not have to match the template filenames. However, the file contents must meet the file property requirements. For more information, see “Model Template Component Files” on page 242 or “Model Template Component Files” on page 242.

12. Click **OK**.

13. Open the model and set the model-specific properties. The value for the **Score code type** property must be set to **DATA step** or **Analytic store**.
14. Expand Variables and select Output Mapping in order to set the output variable mappings for the model. Select a value for each variable and click.

15. Click to close the model.

16. Select the model and click to set as the champion model. For more information, see “Ensure That Champion and Challenger Models Are Set” on page 179.

17. Before defining performance, verify that the performance data set is registered in the SAS Metadata Repository and is available in the Data category view. Make sure that the data set contains the following variables:

 • model input variables

 Note: You must have the variable columns in the table, but the values can be missing.
 • target variable
 • prediction variables
 • variables for characteristic analysis

18. Edit a project’s performance definition on the Performance page. Specify the performance data set that contains the predicted values. Also, be sure to clear the Run model score code option for the Data Processing Method section of the Edit Performance Definition wizard. For more information, see “Edit and Execute a Performance Definition” on page 181.
Overview of Dashboard Reports

The SAS Model Manager dashboard can provide reports that show the overall state of projects that are being monitored. The dashboard reports are produced from existing performance monitoring reports. For each project, you can define dashboard report indicators by creating a dashboard report definition. The dashboard report definition is used to create the dashboard reports. You view the dashboard reports through the Dashboard menu. These reports are generated in HTML.

Note: The dashboard reports can be defined and generated only by SAS Model Manager administrators and advanced users.

Create a Dashboard Report Definition

To create a new dashboard definition:

1. Click and select **New Definition.** The New Dashboard Definition window appears.
2. (Optional) Click to copy indicators from another project. The Copy Indicators from a Project window appears. Select the indicators that you want to copy and click OK.

3. Select the indicators for the new dashboard definition.

4. Enter normal, warning, and alert values for the range definitions for each indicator that you have selected.

 Note: The Mean Squared Error (MSE) indicator does not have default values, since the values are based on the data source. The MSE measures the differences between the actual values and estimated values of the variable. For an ideal model, MSE should be 0. A model with a lower MSE has a smaller difference between the estimated value and the actual value.

5. Click Next.

6. Select one Category Indicator for each category, and one indicator as the Project Indicator.

 Note: The indicator that you select as a project indicator must also be a category indicator.

7. Click Next.

8. (Optional) Specify an email address for each recipient who should receive an email notification about the project status. Click , select a project status, and enter an email address. Click Save.

 Note: If you send email notifications as part of the dashboard definition, the email notification contains a ZIP file (DashboardReports.zip) with the Dashboard reports in HTML format with the contents of the reports when they were generated. It also contains a link to the latest dashboard reports and status on the SAS Content Server.

9. Click Next.

10. Use the default selections, or select one or more reports to include in the dashboard reports.

11. Click Finish.
Note: You must define dashboard report indicators for all projects that you want to be included in your dashboard reports.

12. Click Close.

Generate Dashboard Reports

Note: Before you execute the dashboard report, ensure that at least one project contains performance data. At least one dashboard report indicator must also be defined in that project.

To generate dashboard reports:

1. Click and select Generate Reports. The Generate Dashboard Reports window appears.

2. Select a style.

3. Select a report option:
 - Create reports and data tables for projects that have new performance monitoring data.
 - Update the style for all reports, using the existing data tables.
 - Update all reports and data tables for projects whose performance monitoring data or report indicator definitions have changed.

 Note: This option regenerates the dashboard reports, even if the performance monitoring data or report indicator definitions have not changed.

4. (Optional) Select an option if you want to exclude one or more project types from the report.

5. Click OK. A confirmation window appears, stating that the dashboard report was created.

6. Click Close.
View Dashboard Reports

To view the dashboard reports:

1. Click and select View Reports. A web page displays all of the dashboard reports for each project that has a dashboard definition.

2. Select a project name or status link to view the associated dashboard report.

3. Select a link from the report column to view the report details.

Note: If you are configured for single sign-on web authentication and you try to view a report, the report is downloaded to your local drive. To view an HTML report, you must unzip the file.

Manage Dashboard Definitions

1. Click and select Manage Definitions. The Manage Dashboard Definitions window appears.

2. Select a definition to edit or delete.

 To edit a definition, click. The Edit Dashboard Definition window appears. Make your changes. Click Finish.

 To delete a definition, click. A confirmation message appears. Click OK to confirm the definition.

3. Click Close.
Edit a Dashboard Report Definition

To edit a dashboard definition for a specific project:

1. Select a project, click Edit, and select Edit Definition. The Edit Dashboard Definition window appears.

2. Make your changes. Click Finish.

3. Click Close.
Chapter 16
Retraining Models

Overview of Retraining Models

You can retrain models to respond to data and market changes. Retraining models enables you to update out-of-date models and improve model performance. When you edit a model retrain definition, you can select multiple models to be retrained at the same time. The retrain definition for a model includes the destination version and training data source. The destination version is an existing version or new version that is associated with the selected project and stores the retrained model information.

The training data source contains new data for retraining the selected models. You can also specify a location to store the comparison reports and retrain results. When you select the models to include in the comparison report, you can use the training data source or select a different data source to compare the performance of the new models. You can also specify the report options, including the name, format, and style of the comparison report. Email notifications can also be specified as part of a model retrain definition and are sent after you execute a model retrain definition.

By default, the champion model for the selected project is selected for retrain. If the Register new trained model option was selected after you execute a model retrain definition, the new models are registered to the destination version. The comparison report is available on the Results tab of the Retrain page. The definition is executed on the SAS Application Server that is specified. The report folder is stored on the SAS Content Server.
Note: Only R models and those that were created with SAS Enterprise Miner, SAS/STAT, and SAS/ETS can be retrained. SAS Factory Miner models and SAS Viya models that were created with SAS Visual Data Mining and Machine Learning modeling procedures cannot be retrained in SAS Model Manager. Also note this: if a SAS model package (SPK) file was created with the Model Comparison node in SAS Enterprise Miner, the SPK file contains the score code for the best model and the training code for all of the models that were part of the model comparison. Therefore, when you are retraining the model in SAS Model Manager, be aware that the algorithm that is used for the retrained model could be different.

To retrain a model:

- Ensure that all prerequisites have been completed
- Edit the model retrain definition for a project to generate the SAS code that retracts models
- Execute the generated SAS code
- View the new models and comparison report

Prerequisites for Retraining a Model

Before you can retrain a model, complete the following prerequisites:

- If you want to retrain the project champion model, ensure that the champion model is set. For more information, see “Champion Models” on page 208.
- Verify that the training data set that you want to use as the training data source has been registered in the SAS Metadata Repository, and is available in the Data category view.
- Verify that the appropriate project and model properties are set:
Classification Model Project Properties
• Training target variable
• Target event value
• Class target level
• Output event probability variable

Prediction Model Project Properties
• Training target variable
• Class target level
• Output prediction variable

Model Properties
• Score code type

For more information, see “Project Properties” on page 51 and “Scoring Model Properties” on page 120.

• Verify that all of the project output variables are mapped to the corresponding model output variables. For more information, see “Map Model Variables to Project Variables” on page 86.

• Verify that the retrain file that is specified in the model template exists in the list of model files. The retrain file must appear on the Model Properties page for the model that you want to retrain. Ensure that the content is correct.

• In order to retrain SAS/STAT linear models, you must modify the training code in the train code file (for example, batch.sas).

To edit the model train code file:

1. Select and open a model.
2. On the Model Properties page, select Advanced ➔ Model Files.
3. Double-click the train code file (batch.sas) to open it.
4. Select the Edit check box and make the following modifications to the code.
 • Replace the name of the training data set with the macro variable &_MM_InputDS.
 • Replace the name of the outmodel with smmmodel.outmodel.
 • Make sure that the name of the itemstore is work.itemstore.

Example Code 16.1 SAS/STAT Logistic Model Training Code

```sas
proc logistic data=&_MM_InputDS outmodel=smmmodel.outmodel;
class mstr_cstmr_age_grp days_claim_grp odm_last_veh_prchsd_grp highest_edu_grp;
model bcr_ind=mstr_cstmr_age_grp days_claim_grp odm_last_veh_prchsd_grp highest_edu_grp;
store work.itemstore;
quit;
```

5. Click .

For more information, see “Using Macros to Register Models Not Created by SAS Enterprise Miner” in SAS Model Manager: Macro Reference.
To define a model retrain definition:

1. On the **Definition** tab on the **Retrain** page, click [] and select one or more models to retrain. By default, the champion model is selected if it can be retrained.

2. Select a data processing method.
 - To run a standard environment, select **Standard configuration**.
 - To run the performance monitoring definition in a High-Performance Analytics environment, select **High-performance configuration**.

3. (Optional) Select **Register new trained model** to register the new models in the destination version on the SAS Content Server.

4. (Optional) If **Register new trained model** is checked, select a destination version for new models. Select **New version** from the drop-down menu to create a new version for the models.

5. Click **Browse** to select a training data source from a library. Click **OK**.

6. Click the **SAS Application Server** list and select a server.

7. (Optional) Click **Browse** to select a report folder in which to store the comparison report.

8. (Optional) Click **Browse** to select a retrain results folder to store the model training results.

9. (Optional) Select **Trace on** to print trace information to the SAS log file.

10. (Optional) Select **Retrain when the dashboard project status is Alert or Warning**. If the dashboard project status is Alert, the model is automatically
retrained. If the dashboard project status is Warning, select whether to retrain the model or ignore the task. If the dashboard project status is Normal, the model will not be retrained.

11. Click Next.

12. Select the models to compare.

 Note: If you do not select a model, the champion model is used to perform the comparison.

13. Specify the data source options:

 * Select **Use training data source** to use the whole training data source to compare or partition it into two parts, based on partition percent and random seed. The percent that is specified is the percentage of data that is used for model comparison; the other part of the data is used for training. The random seed value is used to generate the training data based on the random sampling method.

 * Click **Browse** to select a performance data set as the comparison data source.

14. Specify the report options:

 * Enter a report name.

 * Select a format for the report output. The standard formats that are available are **RTF**, **PDF**, and **HTML**. The default is **RTF**.

 * Select a style for the report. The available styles are **SAS default**, **Seaside**, **Meadow**, and **Harvest**. The default is **SAS default**.

15. Click Next.

16. (Optional) To send the retrain results by email, click + and enter an email address.

17. Click Save.
Execute a Model Retrain Definition

The prerequisites for retraining a model must be completed and a model retrain definition must exist before you can execute a model retrain definition.

To execute a model retrain definition:

1. Click
2. After the models are retrained, a confirmation message appears. Click Close.
3. Click the Results tab to view the results.

Note: You can check the status of a job by clicking and then selecting the Results tab or the Job History tab.

Schedule a Retrain Definition

After you create a retrain definition, you can create a schedule to execute the definition to run on a specific day and at a specific time. You can schedule the definition to run hourly, daily, weekly, monthly, or yearly.

Before you can schedule a retrain definition, your user ID and password must be made available to the SAS Metadata Repository. You must also sign in to SAS Model Manager using your full user credentials that were specified for your user account in SAS Management Console. For user accounts where a Microsoft Windows user ID is specified, you must enter your user ID in the format of domain\userID. Contact your system administrator to add or update your password, and to determine the correct user credentials for your account.

CAUTION: Check your configuration settings before scheduling jobs. Users who are configured for single sign-on authentication by Kerberos cannot schedule jobs.

You cannot edit a schedule for a retrain definition. To modify a schedule, delete the schedule and create a new schedule.

After retrain jobs execute, you can view the job history using the Job History tab on the Retrain page.

To schedule a retrain definition:

1. On the Retrain page, click

2. On the **Recurrence** tab, select the recurrence pattern.

3. Specify the criteria for when and how often the job should be run.

4. (Optional) Click the **Advanced** tab.
 a. Select the server that schedules the job from the **Scheduling server** list box.

 Note: The SAS Distributed In-Process Services Scheduling Server is not supported.
 b. Select the batch server that runs the job from the **Batch server** list box.
 c. Click **Browse** to select a location for the output and click **OK**.

5. Click **OK**.

6. After the job has been scheduled, a confirmation message appears. Click **Close**.

7. Click the **Job History** tab to view the job status.

8. After the job has completed, click the **Results** tab to view the retrain results.

 Note: Schedules cannot be edited. To change the schedule, delete the schedule and create a new schedule.

 To delete a schedule, select the schedule and then click **️**.

Viewing Retrained Models and Model Comparison Reports

After a model retrain definition is executed and if you chose to register the retrained models in the model retrain definition, the new retrained models are available in the destination version. In addition, the model retrain job creates a model comparison report, which is available in the **Results** tab on the **Retrain** page.

To view the retrain results:

1. Select the **Results** tab on the **Retrain** page.

2. You can view the model comparison reports in several ways:
 - Double-click a result in the list.
 - Select a result from the list and click **️**.
Note: You can also view the SAS code and SAS log.

Note: If you are configured for single sign-on web authentication and you try to view a report, the report is downloaded to your local drive. To view an HTML report, you must unzipped the file.
Overview of Deploying Models

The goal of a modeling project is to identify a champion model that a scoring application uses to predict an outcome. SAS Model Manager provides tools to evaluate candidate models, declare champion models, and inform your scoring officer that a predictive model is ready for validation or production.

To deploy a model, you might use the following scenario:

1. Identify the model that outperforms other candidate models and declare this model to be the project champion model. You can also flag challenger models for the champion model.
2. Test and validate the model before you declare the model ready for production.
3. Lock the champion version for the project to prevent changes to the champion model.
4. Publish the champion model and challenger models (optional) so that you can deploy them to a production environment.
Champion Models

About Champion Models

The champion model is the best predictive model that is chosen from a pool of candidate models. Before you identify the champion model, you can evaluate the structure, performance, and resilience of candidate models. When a champion model is ready for production scoring, you set the model as the champion model. The project version that contains the champion model becomes the champion version for the project. A check mark ✔️ appears next to the version on the Versions page. You can publish the champion model to a database, the SAS Metadata Repository, and a SAS channel.

Requirements for a Champion Model

Before you identify a model as the champion, perform the following tasks:

• Register at least one model.
• Verify that the model is active. If the model expiration date has passed, you cannot set the model as a champion model.

Note: However, an authorized user can reset the expiration date to a later date in order to set the champion model. To reset the expiration date, select the Model Properties page for the model.

You might use the following criteria to identify a champion model:

• model comparison reports that validate and assess the candidate models.
• business decision rules. For example, you might use a decision tree model because of difficulty interpreting results from a neural network model even when the neural network model outperforms the decision tree model.
• regulatory requirements, such as when the champion model should exclude certain specific attributes (age or race).

You can flag and publish a challenger model specifically for the purpose of comparison with the champion model. For example, your champion model for a production environment might omit restricted attributes during operational scoring because of regulatory requirements. You can use a challenger model that includes the restricted attributes in the development environment to evaluate its prediction power against the prediction of the champion model. Then you can determine the amount of predictive power that is lost because of the regulatory requirements.

Set a Champion Model

To set a champion model:

• On the Models page of a project, select a model and click ✔️ to set the model as the project champion model. The value in the Role column changes to Champion.

Note: Alternatively, you can right-click a model and select Set as champion.
Clear a Champion Model

To clear a champion model:

- On the **Models** page of a project, select a model that is marked as Champion, and click ✗ to clear a flagged champion model.

Note: Alternatively, you can right-click a model that is marked as Champion and select **Clear**.

Challenger Models

About Challenger Models

You use challenger models to test the strength of champion models. The champion model for a project can have one or more challenger models. A model can be flagged as a challenger model only after a champion model for the project has been selected. A challenger model can be flagged in any version of a project.

Verify that the model is active. If the model expiration date has passed, you cannot set the model as a challenger model.

Note: An authorized user can reset the expiration date to a later date so that it is possible to set the challenger model.

To compare a challenger model to a champion model, you can create and run performance monitoring tasks for the champion model and any challenger models. Then, using the performance data, you can create a Champion and Challenger Performance report. You can also compare challenger models to the champion model using other reports such as the Delta report and Dynamic Lift report that are available through the **Reports** page. For more information, see “Champion and Challenger Performance Reports” on page 143.

Note: The batch programs for performance monitoring do not support creating challenger model performance reports.

Challenger models can be published to a database, the SAS Metadata Repository, or to a SAS channel that contains the champion model. They can also be published by themselves. If testing determines that the challenger model is the better model, you can replace the champion model by setting the challenger model as the champion model.

Flag a Challenger Model

To flag a challenger model:

- On the **Models** page of a project, select a model and click ☑ to flag a model as a challenger to the project champion model. The value in the **Role** column changes to **Challenger**.

Note: Alternatively, you can right-click a model and select **Flag as challenger**.
Clear a Challenger Model

To clear a challenger model:

- On the Models page of a project, select a model that is marked as Challenger, and click \(\times \) to clear a flagged challenger model.

Note: Alternatively, you can right-click a model that is marked as Challenger and select Clear. Challenger models can also be cleared when the champion model is cleared or replaced.

Locking Versions

About Locking Versions

You must be a SAS Model Manager administrator to lock and unlock a version. Administrators can lock a project version to prevent users from modifying some properties and files for the version’s models. The champion version can be locked when the project champion model is approved for production or is pending approval. After a project version is locked, users cannot perform the following tasks:

- import, delete, or copy and paste a model
- rename a model
- change the champion model
- flag a model as a challenger

SAS Model Manager administrators remain authorized to perform these activities. If the champion model is not deployed to an operational environment, then an administrator can unlock a version so that users can change the models. Advanced users can still modify the Attachments, Reports, and Scoring pages after a version is locked.

When the champion model has been used in production scoring, you must unlock the model if you want to change the contents of the champion version. However, use caution in modifying the version content. If the model UUID and revision number for the score code in production scoring environments are always recorded, then you can modify a version even after the version is deployed to production environment.

If you attempt to delete a project that contains a locked version, SAS Model Manager displays a message indicating that you cannot delete a project that contains locked versions. An administrator must unlock the versions before the project can be deleted.

Lock a Version

Locking a version restricts the activities that you can do with the project. You normally lock a version after you declare a champion model in preparation for deploying the champion model to a production environment.

To lock a version:

1. Open a project and select the Versions page.
2. Select a version and click \(\bullet \) to lock the version. The label Locked appears after the version name.
Unlock a Version

If changes to a model are required after the version is locked, a SAS Model Manager administrator can unlock the version.

To unlock a version:

1. Open a project and select the Versions page.
2. Select a version and click 🗝 to unlock the version.

For more information about versions, see “Lock and Unlock a Project Version” on page 58.
Overview of Publishing Models

SAS Model Manager provides a comprehensive publishing environment for model delivery that supports sharing performance and scoring data. SAS Model Manager publishes models to different channels, and to the SAS Metadata Repository. SAS Model Manager can also publish classification, prediction, and segmentation (cluster) models that have the score code type of DATA step to a database or Hadoop. Models that have a score code type of analytic store can be published only to Hadoop and Teradata. Application software, such as SAS Data Integration Studio or SAS Enterprise Guide, enables you to access models through the SAS Metadata Server and to submit on-demand and batch scoring jobs.

SAS Model Manager publishes models to defined publication channels. Authorized users who subscribe to a channel can choose to receive email notifications when updated models are ready to deploy to testing or production scoring servers, and are published to a publication channel. From a publication channel, you can extract and validate the scoring logic, deploy champion models to a production environment, and monitor the performance of your models.
Models can also be published from the Models page. You can publish champion and challenger models from a model project to the SAS Metadata Repository. The publish history of models can be viewed on the Models page and on the Published tab on the History page. You can also remove models that have been published to a database.

Publishing Models to a SAS Channel

SAS Model Manager uses the SAS Publishing Framework to publish models to defined channels. The SAS Publishing Framework notifies subscribers of the publication channel when the models are delivered. You can publish models in the Projects category view. SAS Model Manager creates a SAS package (SPK) file for the model in a publication channel. A user who subscribes to the publication channel can choose to receive email that includes the SAS package as an attachment.

Note: Before you can deploy a model to a publications channel, a SAS administrator must configure the publication channel in SAS Management Console to publish models as archive (binary .SPK) files to a persistent store location. The archive persistent store location is specified as a physical file location, an FTP server, an HTTP server, or a path in WebDAV.

The **Report** attribute for a file element in a model template indicates whether SAS Model Manager includes a file in the SAS package. You use the SAS Package Reader or a file archiver and compression utility, such as WinZip, to view the contents of the SPK file. SAS Model Manager provides SAS macro programs to extract published models and deploy the models on testing and production scoring servers. The SAS package might contain additional files, depending on the number of file elements in the model template that have a Report attribute.

Note: The REF file contains the URL for a folder location in the project, such as

```
http://MMServer:7980/SASContentServer/repository/default/
ModelManager/MMRoot/organizational_folder/project/version/Models/
model_name/score.sas
```

To publish a model to a channel:

1. Select a project and click ![Publish](image).
2. Select SAS Channel from the publish destination list.
3. Select the model that you want to publish from the models list.
4. Select a publication channel from the channel drop-down list.
5. (Optional) Click **More Options** to specify a message subject, notes, and user-defined properties. Click **Save**.

6. Click **Publish**.

Publishing Models to the SAS Metadata Repository

About Publishing Models to the SAS Metadata Repository

SAS Model Manager publishes a model by creating a MiningResults object in the SAS Metadata Repository. You can use the model information in the MiningResults object to set up a scoring environment. A scoring application can use SAS Data Integration Studio or SAS Enterprise Guide to access the metadata and run a batch job or stored process that executes the score code. SAS Real-Time Decision Manager can also read the metadata and use it in that process environment. Therefore, when you publish a project champion model, challenger model, or other models (with proper configuration), the scoring application always uses the most current champion model. The project champion and challenger models can be published from the project level and only the project champion models can be published from the portfolio level.

Note: SAS Model Manager cannot publish R models.
A user can publish a model to any accessible folder with Write permission, including all folders in the SAS Foundation repository and folders in custom repositories that are created in SAS Management Console to reflect the structure of your business organization.

Publish Project Champion and Challenger Models to the SAS Metadata Repository

To publish champion and challenger models from a model project to the SAS Metadata Repository:

1. From the Projects category, select a project and click .
2. Select **SAS Metadata Repository** from the publish destination list.
3. Select one or more models to publish from the models list.
4. Specify a **Publish Name** for each model.

 Note: You cannot modify the publish name for a champion model.
5. Click **Browse** and select the location to publish the model to.
6. Click **Publish**.

Publish a Model to the SAS Metadata Repository

To publish a model to the SAS Metadata Repository:

1. On the **Models** page, select a model and click .

 Note: Alternatively, you can right-click a model and select **Publish**.
2. Specify a publish name for each model.
3. Select the location to publish the models to.
4. Click Publish.

Publishing Models to a Database or Hadoop

About Publishing Models to a Database or Hadoop

SAS Model Manager enables you to publish the project champion model and challenger models that are associated with the **DATA Step** score code type to a configured database. SAS Model Manager uses the SAS Scoring Accelerator and SAS/ACCESS interface to the database to publish models to the database or Hadoop Distributed File System (HDFS). The Scoring Accelerator takes the models from SAS Model Manager and translates them into scoring files or functions that can be deployed inside the database. After the scoring functions are published using the SAS/ACCESS interface to the database, the functions extend the database’s SQL language and can be used in SQL statements such as other database functions. After the scoring files are published, they are used by the SAS Embedded Process to run the scoring model.

If the scoring function publish method is chosen, the scoring metadata tables in the database are populated with information about the project and pointers to the scoring function. This feature enables users to review descriptions and definitions of the published model. The audit logs track the history of the model's usage and any changes that are made to the scoring project.

For more information about the SAS Scoring Accelerator, see the [SAS In-Database Technology](http://support.sas.com) page available at http://support.sas.com.

Prerequisites for Publishing to a Database or Hadoop

The following prerequisites must be completed before users can publish a model scoring function using the scoring function publish method, or publish a model’s scoring files using the SAS Embedded Process publish method:
The user must have the proper authorization to publish approved models from SAS Model Manager to the database or HDFS for SAS In-Database scoring.

Note: When using the SAS Embedded Process publish method to publish models from SAS Model Manager to a Teradata database, you must have a user database with the appropriate user permissions in order to validate the scoring results. For more information, see “Teradata Permissions for Publishing Formats and Scoring Models” in SAS In-Database Products: Administrator’s Guide.

Note: If your system is configured for Kerberos authentication, each user must have a valid Kerberos ticket. Also, you must complete post-installation configuration steps to enable users to publish models from the SAS Model Manager application. For more information, see “Configure Users Authenticated by Kerberos for Publishing Models” in SAS Model Manager: Administrator’s Guide.

The champion model for the project must be set.

A predictive (classification or prediction), analytical, or segmentation model must have been selected for production scoring deployment via SAS Model Manager. SAS Model Manager can publish models to a database or Hadoop when they are associated with the DATA step score code type. Models that have a score code type of Analytic store can be published only to Hadoop and Teradata. Models that have a score code type of SAS Program, PMML, or DS2 cannot be published to a database.

The score code component file (score.sas) is DATA step score code and is used as input by the SAS Scoring Accelerator when publishing a model to a database. When you use the scoring function publish method, some SAS language elements and syntax are not supported when you create or modify your score code. Only the SAS language elements and syntax that are required to run critical data transformations and model scoring functions are available. If you use a statement or function that is not supported, an error occurs and your model is not published to the database. For more information, see “Considerations When Creating or Modifying DATA Step Score Code” in SAS In-Database Products: User’s Guide.

The SAS Scoring Accelerator requires three files when you are publishing a SAS analytic store model. The files are score.sas, score.sasast, and score.xml. The score.xml file is generated at publish time by SAS Model Manager. For more information, see “Introduction to Analytic Store Scoring” in SAS In-Database Products: User’s Guide.

A database must have been configured to install scoring functions or model scoring files.

If the model contains user-defined formats, a file that contains the user-defined formats must be attached to the version and stored in a format catalog.

The following prerequisites are only for the scoring function publish method.

• (Optional) A project user-defined property DbmsTable is defined for the champion version of the project from which to publish the scoring function.

 Note: The DbmsTable property must be defined if you plan to use a scoring application or SQL code to score your model.

• The JDBC driver must be accessible from the middle-tier server when using the scoring function publish method.

• The scoring function metadata tables are required in the target database if the Metadata usage option is enabled in SAS Management Console.
Make User-Defined Formats Available When Publishing Models to a Database

In order to publish models with user-defined formats to a database, you must make the user-defined formats available to SAS Model Manager.

To make the user-defined formats available for publishing:

1. Translate the user-defined formats SAS catalog (formats.sas7bcat) that was created with the model into a formats.cport file.

 Here is an example:

   ```
   filename tranfile "C:\formats.cport";
   libname source "C:\myformats";
   
   proc cport library=source file=tranfile memtype=catalog;
   run;
   quit;
   ```

2. Attach the formats.cport file to the version that contains the project champion model or challenger models. For more information, see “Attach a Portable Formats File” on page 58.

3. Send a request to the SAS administrator and ask them to either put the user-defined formats catalog (formats.sas7bcat) in the `\SASConfigDirectory\Lev1\SASApp\SASEnvironment\SASFormats` directory or add the LIBNAME definition for the formats library to the `\SASConfigDirectory\Lev1\SASApp\appserver_autoexec_usermods` file.

 Here is an example of a LIBNAME definition:

   ```
   libname mylib "C:\myformats";
   options fmtsearch = (mylib.formats);
   ```

How to Publish Models to a Database or Hadoop

To publish a model to a database:

1. Select a project and click.

   ```
   ```
2. Select a publish destination from the list. The publish destination can be either a database or a Hadoop Distributed File System.

3. Select a publish method. Specifies the method to use when publishing the scoring function or model files to the database.

4. Select one or more models to publish from the models list.

5. To specify a new publish name, click in the **Publish Name** column for a selected model. Specifies the name to use when publishing a scoring function or model files to the database. The publish name is a user-defined value that can be modified. The SAS Embedded Process publish method uses the **Publish Name** as the model name to publish the model files to the database. The scoring function publish method has a system-generated **Prefix** and the **Publish Name** that makes up the scoring function name. These are used to publish the model scoring function. The prefix portion of the scoring function name is 11 characters long and is in the format of *Yymmddnnn_*:
 - **Y** is a literal character and is fixed for all prefixes.
 - **yy** is the two-digit year.
 - **mm** is the month and ranges from 01 to 12.
 - **dd** is the day and ranges from 01 to 31.
 - **nnn** is a counter that increments by 1 each time that a scoring function completes successfully. The value can range from 001 to 999.
 - **_** is the underscore that ends the prefix.

The *Yymmdd* value in the prefix is the GMT timestamp that identifies the date on which you published the model. An example of a function name is *Y081107001_user_defined_value*. Here are the naming convention requirements:
Here are the naming convention requirements for the publish name:

- The user-defined value is case insensitive. The maximum length of alphanumeric characters is determined by the database type and publish method that is selected. No spaces are allowed. An underscore is the only special character that can be included in the publish name.

- The recommended maximum lengths of the publish name for the scoring function publish method are the following:
 - 19 alphanumeric characters for Teradata
 - 32 alphanumeric characters for Netezza, Greenplum, and DB2

UNIX Specifics

The publish name (user-defined) portion of the function name in an AIX environment has a maximum length of 16 alphanumeric characters for Teradata.

- The recommended maximum length of the publish name for the SAS Embedded Process publish method is 32 alphanumeric characters for all database types. The database types that are currently supported by SAS Model Manager are Teradata, Oracle, Greenplum, and DB2.

The value of the publish name is validated against the target database, when the option **Replace scoring files that have the same publish name** is not selected for the SAS Embedded Process publish method. If the publish name is not unique, an error message is displayed.

Note: The default format of the publish name is configured by the SAS administrator.

6. (Optional) Select whether to **Replace scoring files that have the same publish name.** Specifies to replace the model scoring files that have the same publish name when you are using the SAS Embedded Process publish method. The value of the publish name is validated against the target database when this option is not selected. If the publish name is not unique, an error message is displayed.

7. Specify an identifier to add to the database target table for each model. Specifies the value of the identifier that is added to each model in the database so that the Database administrator or other users can query the database. The default value is the project name. This option is available only for the SAS Embedded Process publish method.

8. (Optional) Select whether to **Validate scoring results.** Specifies to validate the scoring results when publishing a model scoring function or model scoring files. This option creates a benchmark scoring result on the SAS Workspace Server using the DATA Step score code. The scoring input data set is used to create an equivalent database table. Scoring is performed using the new scoring function or model scoring files and database table. The scoring results are then compared. If selected, click **Browse** to navigate to the appropriate training table. The default train table that is specified in the properties of the published model is used by default.

Note: When using the SAS Embedded Process publish method to publish models from SAS Model Manager to a Teradata database, your user database must have the appropriate user permissions to validate the scoring results. For more information, see “Teradata Permissions for Publishing Formats and Scoring Models” in SAS In-Database Products: Administrator’s Guide.

9. Specify the database settings.

Note: For Hadoop and Teradata, when you are using the SAS Embedded Process publish method, the User ID and Password settings are hidden if your system is configured for Kerberos authentication. For Netezza, when you are publishing
using the Scoring function publish method, the name of the database is case
sensitive.

Here are the available database settings according to the publish method and
database type:

<table>
<thead>
<tr>
<th>Database Settings</th>
<th>SAS Embedded Process</th>
<th>Scoring Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server</td>
<td>• Teradata</td>
<td>• Teradata</td>
</tr>
<tr>
<td></td>
<td>• Oracle</td>
<td>• Netezza</td>
</tr>
<tr>
<td></td>
<td>• Netezza</td>
<td>• Greenplum</td>
</tr>
<tr>
<td></td>
<td>• Greenplum</td>
<td>• DB2</td>
</tr>
<tr>
<td></td>
<td>• Hadoop</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• DB2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• SAP HANA</td>
<td></td>
</tr>
</tbody>
</table>

Database	• Teradata	• Teradata
	• Oracle	• Netezza
	• Netezza	• Greenplum
	• Greenplum	• DB2
	• DB2	

Instance number	SAP HANA	Not applicable
User ID	• Teradata	• Teradata
	• Oracle	• Netezza
	• Netezza	• Greenplum
	• Greenplum	• DB2
	• DB2	
	• Hadoop	
	• SAP HANA	

Password	• Teradata	• Teradata
	• Oracle	• Netezza
	• Netezza	• Greenplum
	• Greenplum	• DB2
	• DB2	
	• Hadoop	
	• SAP HANA	

Server user ID	Not applicable	DB2
Compile database	Not applicable	Netezza
Jazlib database	Not applicable	Netezza
For a description of each database setting, see “Descriptions of Database Settings” on page 224.

10. Click More Options to specify other options for the database.

Keep scoring function if validation fails (scoring function) or Keep scoring files if validation fails (SAS Embedded Process)
specifies to save the scoring function or model scoring files if the validation of the scoring results fails. Saving the scoring function or model scoring files is useful for debugging if validation fails.

Sample size
specifies the size of the sample to use for validating the scoring function or model files. The default value is 100. The maximum number of digits that are allowed is 8.

Display detailed log messages
provides detailed information, which includes warnings and error messages that occur when you publish a scoring function or scoring model files.

Use model input
specifies to use the selected model input when publishing the scoring function or model files instead of using the project input, which is the default. This is useful when the project input variables exceed the limitations for a database.

Here are the limitations for the number of model input variables when publishing a champion model or challenger model to a database:

<table>
<thead>
<tr>
<th>Database Type</th>
<th>SAS Embedded Process</th>
<th>Scoring Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>DB2</td>
<td>The maximum depends on the page size of the database tablespace. For a 4K page size database, the limit is 500. If you have it configured for any of the larger page sizes (8K, 16K, 32K), then the limit is 1012.</td>
<td>90</td>
</tr>
<tr>
<td>Greenplum</td>
<td>1660</td>
<td>100</td>
</tr>
<tr>
<td>Database Type</td>
<td>SAS Embedded Process</td>
<td>Scoring Function</td>
</tr>
<tr>
<td>---------------</td>
<td>----------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Hadoop</td>
<td>No limit</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Netezza</td>
<td>1600</td>
<td>64</td>
</tr>
<tr>
<td>Oracle</td>
<td>1000</td>
<td>Not applicable</td>
</tr>
<tr>
<td>SAP HANA</td>
<td>1000</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Teradata</td>
<td>If you use Teradata version 13.1 or 14.0, the maximum is 1024. If you use the SAS Embedded Process and Teradata version 14.10, the maximum is 2048.</td>
<td>128</td>
</tr>
</tbody>
</table>

Protected mode (Teradata only)
specifies the mode of operation to use when publishing a model using the scoring function publish method. There are two modes of operation, protected and unprotected. You specify the mode by selecting or deselecting the **Protected mode** option. The default mode of operation is protected. Protected mode means that the macro code is isolated in a separate process from the Teradata database, and an error does not cause database processing to fail. You should run the Publish Scoring Function in protected mode during validation. When the model is ready for production, you can run the Publish Scoring Function in unprotected mode. You might see a significant performance advantage when you run the Publish Scoring Function in unprotected mode.

Fenced mode (DB2 and Netezza only)
specifies the mode of operation to use when publishing a model using the scoring function publish method. There are two modes of operation, fenced and unfenced. You specify the mode by selecting or deselecting the **Fenced mode** option. The default mode of operation is fenced. Fenced mode means that the macro code is isolated in a separate process from the DB2 database, and an error does not cause database processing to fail. You should run the Publish Scoring Function in fenced mode during validation. When the model is ready for production, you can run the Publish Scoring Function in unfenced mode. You might see a significant performance advantage when you run the Publish Scoring Function in unfenced mode.

11. Click **Publish**.

Descriptions of Database Settings

The following are descriptions of the database settings that are used for publishing models.

Server
specifies the name of the server where the database resides. The port can be included as part of the server name (for example, `server-name:port`). When you are using the scoring function publish method, the default port is used if you do not specify the port as part of the server name.
Note: The port must be included as part of the server name for SAP HANA SPS09 or higher. For SAP HANA SPS08, you must use the instance number setting instead of adding the port to the server name.

Database

specifies the name of the database.

Note: For Netezza, the name of the database is case sensitive if you are publishing models using the Scoring function publish method.

User ID

specifies the user identification that is required to access the database.

Note: For Hadoop or Teradata, this setting is hidden if your system is configured for Kerberos authentication.

Password

specifies the password that is associated with the User ID.

Note: For Hadoop or Teradata, this setting is hidden if your system is configured for Kerberos authentication.

Server user ID (DB2 only)

specifies the user ID for SAS SFTP. This value enables you to access the machine on which you have installed the DB2 database. If you do not specify a value for Server user ID, the value of User ID is used as the user ID for SAS SFTP.

Schema (Greenplum, Oracle, and DB2)

specifies the schema name for the database. The schema name is owned by the user that is specified in the User ID field. The schema must be created by your database administrator.

Initial wait time (DB2 only)

specifies the initial wait time in seconds for SAS SFTP to parse the responses and complete the SFTP –batch file process.

Default: 15 seconds

FTP time out (DB2 only)

specifies the time-out value in seconds if SAS SFTP fails to transfer the files.

Default: 120 seconds

Compile database (Netezza only)

specifies the name of the database where the SAS_COMPILEUDF function is published.

Default: SASLIB

See Also: For more information about publishing the SAS_COMPILEUDF function, see the *SAS In-Database Products: Administrator’s Guide*.

Jazlib database (Netezza only)

specifies the name of the database where the SAS 9.3 Formats Library for Netezza is published.

Default: SASLIB

Instance number (SAP HANA only)

specifies the instance number.

Note: The instance number must be used for SAP HANA SPS08, instead of adding the port to the server name. For SAP HANA SPS09 or higher the port must be included as part of the server name and the instance number is ignored.
Directory path (Hadoop only)
 specifies the directory path for the server.

Remove Published Models

The SAS Embedded Process publish method enables you to replace the model scoring
files, but the scoring function publish method publishes the model as a separate entry in
the database each time. The Remove Published Models feature enables you to remove
previously published models, so that you can clean up the test or production database. If
you modify the previously published models or change the champion model or
challenger models after you have published models to a database or Hadoop, you can
remove them to clean up the database for future publishing of models.

To remove published models:
1. Select **Actions** ⇒ **Remove Published Models**.
2. Select the publish destination and then specify the database or Hadoop settings. Click
 Log On.
3. Select the models that you want to remove from the database.
4. Click **Remove Models**. A warning message appears.
5. Click **Yes**.

View Publish History

To view the publish history of a model, select the **Models** page. To view the publish
history of all models, select the **Published** tab on the **History** page. All models that have
been published to a SAS Channel, to the SAS Metadata Repository, and to a database are
displayed. Select a model from the list to view the full publish details.

To view the full publish details for a model:
1. Open a model and select the **Model Properties** tab.
2. Select **History** ⇒ **Published** to view the publish history.

To view the full publish details for all models:
1. Open a project and select the **History** page.
2. Select the **Published** tab to view the publish history.
Part 5

Using SAS Workflow with SAS Model Manager

Chapter 19
Starting a Workflow and Working with Tasks 229

Chapter 20
Managing Workflows ... 233
Chapter 19
Starting a Workflow and Working with Tasks

Overview of Using Workflows

SAS Model Manager uses the Workflows and My Tasks category views to use SAS Workflow. A workflow is a copy of a workflow template. A workflow can be used to track the progress of objects, such as model projects at the version level. An authorized user can use SAS Workflow Studio to define workflow templates and to make them available to SAS Model Manager for use. Workflow templates contain the set of tasks, participants, policies, statuses, and data objects that comprise a business task. The status that you select when completing a task determines the next task in the workflow.

All users can access the My Tasks category view. By default, only users that are in the Decision Manager Common Administrators group can access the Workflows category view.

For more information about user permissions, see SAS Model Manager: Administrator’s Guide.

Start a New Workflow

When you start a new workflow, it is associated with the selected version of a project. For a specific version, only one workflow can be in progress at a time. To start another workflow for the same version, you must first complete the in-progress workflow, or terminate the in-progress workflow process.

1. Open a project.
2. Click on the right-side of the object toolbar.
Start a new workflow for "HMEQ, 1.0".

Name: HMEQ July 5, 2015
Description:
Template: MM Workflow Mini Demo

3. Enter a name for the new workflow.
4. (Optional) Enter a description for the workflow.
5. Select a template from which to create the workflow.
6. Click Start.

For more information, see Chapter 20, “Managing Workflows,” on page 233.

Working with Workflow Tasks

The My Tasks category view displays the tasks for In Progress workflows that you have been assigned to as a potential owner or that have been claimed by you.

From the My Tasks category view, you can perform the following:
- open a task that pertains to the associated object
- claim and open a task that pertains to the associated project
- claim a task
- release a task
• view the task details and workflow diagram

To complete a task:

1. Select a task and click 📝 in order to open the associated project and perform the task.

2. Navigate through the project’s pages to perform the steps for the current task.

3. Click 📁.

4. Select an action to take for the selected task. The actions that are available are the status values for the task in the workflow.

5. Click Done. The workflow process continues to the next task.

Note: Only a business administrator who has access to the Workflows category can release a task that has been claimed by another participant. For more information, see “Release a Task” on page 237.
Chapter 20
Managing Workflows

Overview of Managing Workflows

SAS Model Manager can be used to manage workflows. You can create new workflows, view workflows, and interact with tasks that are associated with a workflow. If a user is assigned to the workflow role of business administrator, they can influence the progress of a task by actions such as assigning a task, or releasing the task that is claimed by another user, as well as specify values for properties to share information with other users. After the workflow templates are made available, an application administrator can set the object mappings using the Workflows category view. Each workflow consists of tasks.

Note: By default, only users that are in the Decision Manager Common Administrators group can access the Workflows category view.

Select Workflows to view a list of available workflows.
Viewing Workflows

Only a user who is able to access the Workflows category view can manage workflows. Other users can view the list of tasks from the workflow task drop-down list that is accessible from the project toolbar. If a user is the actual owner of a task, or assigned as a potential owner of a task, they can view the workflow diagram and tasks that in the My Tasks category view. Workflows are associated with a project at the version-level.

From the Workflows category view, you can perform the following actions:

- set mappings
- terminate a workflow process
Note: You need to migrate workflows only if you have migrated content from SAS Model Manager 12.3. For more information, see “Migrate Workflows” in SAS Model Manager: Administrator’s Guide.

To view detailed information for a workflow, double-click a workflow name. The list of tasks, the task status, and who the task is claimed by are displayed. You can then view the properties and participants that are associated with a task by selecting a task. The workflow diagram is also displayed with the current status of the workflow and its tasks.

For more information, see “Working with Workflow Participants” on page 236.

Set Mappings

There are two different types of workflow templates that can be configured for use with SAS Model Manager. Workflow templates that contain tasks that are configured with an approval status are considered an approval workflow. Workflow templates that do not contain tasks with an approval status are considered a standard workflow. After you define your workflow template, save, and activate it using SAS Workflow Studio. You must specify the templates to map to each type of object. This enables you to start a new workflow using one of the templates that are associated with the specific object.

1. Select Actions ⇒ Set Mappings. The Set Mappings window appears.

![Set Mappings window](image)

2. Select an object and then select one or more templates to map to the object.

3. Select a type for each template. The types of templates that are available are Approval and Standard.

4. Select the default template for the object.
From the Workflow details view you can access the properties and participants that are associated with a task by selecting a task. If you are a user that is associated with the workflow role of business administrator, you can assign or remove participants, and release tasks that have been claimed by another user.

Assign Participants to Tasks

Default participants might have been assigned already to tasks when a workflow definition was created.

To assign an additional participant to a task:

1. From the Workflows category view, double-click a workflow. The Workflow details view is displayed.
2. Select a task, and then click in the Participants pane. The Assign a Participant window appears.
3. Select an identity type.
4. Enter part of the user, group, or role name, and click .
Note: If you do not enter part of the name, all of the names for the selected identity type are displayed.

Select a name and click OK.

5. Select a workflow role for the participant.

Here are the workflow roles that you can assign to participants for a workflow task:

- **Business administrator**: a participant who can influence the progress of a task by actions such as assigning a task, or releasing the task claimed by another user.
- **Potential owner**: a participant who can claim a task in a workflow process and who becomes the actual owner of a task.

6. Click OK. The new participant is added to the list in the Participants pane.

Remove Participants from a Task

To remove a participant from a task:

1. From the Workflows category view, double-click a workflow name.
2. Select a task, and then select a participant from the Participants pane.

 Note: You cannot remove a participant who is associated with the workflow roles of business administrator or actual owner.

3. Click ![Remove](remove.png). A message is displayed asking if you are sure that you want to remove the participant from the task.

4. Click Yes. The user is removed from the list in the Participants pane.

Release a Task

An authorized user with the capability to access the Workflows category view can release a task that has been claimed by a workflow participant. The name of the actual owner is displayed in the Participants pane.

To release a task:

1. In the Workflows category view, double-click a workflow name. The Workflow details view is displayed.
2. Select a task name, and click \(\Rightarrow \). The **Claimed By** value for the selected task is cleared.

Edit Task Properties

A task can contain properties. Properties that are editable display a triangular icon in the bottom right corner of the property value in the data grid.

To edit the properties for a task:

1. From the Workflows category view, open a workflow, and select a task. The properties that are associated with the task are displayed to the right in the Properties pane.

2. Click on the property value, and then enter a value or change the existing value.

3. To save the changes to the properties, click \(\Rightarrow \).

 If you do not want to save the changes to the properties, click \(\times \).

Terminate a Workflow

When you terminate a workflow process, all tasks that have not yet been completed are changed to a state of Terminated. After you terminate a workflow process, it cannot be restarted. However, you can start a new workflow for the same version.

To terminate a workflow:

1. From the Workflows category view, select a workflow name and click \(\Rightarrow \).

2. Click **Yes** to terminate the selected workflow.
Appendixes

Appendix 1
Model Templates .. 241

Appendix 2
Project Tables .. 253

Appendix 3
PROC PSCORE and PMML Support 265

Appendix 4
R Model Support .. 267

Appendix 5
Statistical Measures Used in Basel III Reports 275
What Is a Model Template?

Models that you import into SAS Model Manager are associated with a specific model template. A model template has properties and component files that define a type of model. SAS Model Manager processes four types of models: analytical, classification, prediction, and segmentation. You can create your own model template if your model requires files other than those named in the SAS Model Manager templates.

A model template is an XML file that has three sections. The General section names and describes the model template. The Properties section provides properties to name the model algorithm, the modeler, and a model label. The Files section contains the component files that can be used in the template for that model function type. You associate your component file with the appropriate model template component file. Your component file filenames do not need to be the same name as the filenames in the model template.

Model templates provide you with a way to define metadata about your own model. Most users do not need to write model templates because SAS Model Manager delivers a list of model templates that handle SAS Enterprise Miner models as well as analytical, prediction, classification, and segmentation models. However, you can write your own model templates if the model templates that are provided do not satisfy your requirements. For more information, see “Creating and Managing Templates” on page 60.

Model Types

SAS Model Manager provides model templates for analytical, classification, prediction, and segmentation models.

<table>
<thead>
<tr>
<th>Model Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytical</td>
<td>The Analytical model template is the most generic template that is designed for models whose model function does not fall in the prediction, classification, and segmentation category.</td>
</tr>
<tr>
<td>Model Type</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Classification</td>
<td>You use the Classification model template if your model is a prediction model that has a categorical, ordinal, or binary target, or if your model is a LOGISTIC procedure regression model. Examples of classification models are models that might classify a loan applicant as Approved or Not Approved, or models that might assess a potential customer's risk of default as Low, Medium, or High.</td>
</tr>
<tr>
<td>Prediction</td>
<td>The Prediction model template is used for predictive models. Predictive models declare in advance the outcome of an interval target. A model that assigns a numeric credit score to an applicant is an example of a prediction model.</td>
</tr>
<tr>
<td>Segmentation</td>
<td>The Segmentation model template is used for segmentation or cluster models that are written in SAS code. Segmentation models are unsupervised models that have no target variable. A segmentation or cluster model is designed to identify and form segments, or clusters, of individuals or observations that share some affinity for an attribute of interest. The output from a segmentation model is a set of cluster IDs. R models cannot have segmentation model function.</td>
</tr>
</tbody>
</table>

Model Template Component Files

Here is a list of the component files that are associated with the model templates:

<table>
<thead>
<tr>
<th>Filename</th>
<th>Analytical</th>
<th>Classification</th>
<th>Prediction</th>
<th>Segmentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGN_STATS.csv on page 244</td>
<td>—</td>
<td>✔️</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>EMPublishScore.sas on page 244</td>
<td>—</td>
<td>✔️</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Scorecard_GainsTable.csv on page 244</td>
<td>—</td>
<td>✔️</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>score.sas on page 244</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>modelinput.sas7bdat on page 244</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>modeloutput.sas7bdat on page 244</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>target.sas7bdat on page 245</td>
<td>—</td>
<td>✔️</td>
<td>✔️</td>
<td>—</td>
</tr>
<tr>
<td>inputvar.xml on page 245</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>outputvar.xml on page 246</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Filename</td>
<td>Analytical</td>
<td>Classification</td>
<td>Prediction</td>
<td>Segmentation</td>
</tr>
<tr>
<td>---</td>
<td>------------</td>
<td>----------------</td>
<td>------------</td>
<td>--------------</td>
</tr>
<tr>
<td>targetvar.xml on page 246</td>
<td>—</td>
<td>✔️</td>
<td>✔️</td>
<td>—</td>
</tr>
<tr>
<td>smmpostcode.sas on page 247</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>trainingvariables.csv on page 247</td>
<td>—</td>
<td>✔️</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>training.sas on page 247</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>training.log on page 247</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>training.lst on page 247</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>outest.sas7bdat on page 248</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>—</td>
</tr>
<tr>
<td>outmodel.sas7bdat on page 248</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>—</td>
</tr>
<tr>
<td>output.spk on page 248</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>miningResult.spk on page 248</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>—</td>
</tr>
<tr>
<td>layout.xml on page 248</td>
<td>—</td>
<td>✔️</td>
<td>✔️</td>
<td>—</td>
</tr>
<tr>
<td>format.sas7bcat on page 248</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>dataprep.sas on page 248</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>batch.sas on page 248</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>pmml.xml on page 248</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>—</td>
</tr>
<tr>
<td>training.r on page 248</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>—</td>
</tr>
<tr>
<td>outmodel.rda on page 248</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>—</td>
</tr>
<tr>
<td>score.r on page 248</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>—</td>
</tr>
<tr>
<td>fitstats.xml on page 248</td>
<td>—</td>
<td>✔️</td>
<td>✔️</td>
<td>—</td>
</tr>
<tr>
<td>HPDMForest_VARIMPOR T.csv on page 248</td>
<td>—</td>
<td>✔️</td>
<td>✔️</td>
<td>—</td>
</tr>
</tbody>
</table>
IGN_STATS.csv
The value of IGN_STAT.csv is the name of a file whose values are separated by commas, and whose values are bin definitions for input variables. This is a component file that is generated by SAS Enterprise Miner for a scorecard model and is not needed for SAS code models.

EMPublishScore.sas
The value of EMPublishScore.sas is the name of a SAS code file that is used to change input variables into bins and is a component of a SAS Enterprise Miner scorecard model. This file is needed to define a performance task. This file is not needed for SAS code models.

Scorecard_GainsTable.csv
This file includes the bin score definitions and is not used in reporting by SAS Model Manager. The file's content can be viewed by users.

score.sas
The value of score.sas is the name of a filename for the SAS score code for the model.

For R models, this file transforms a scoring data set to an R data frame.

The score.sas file is DATA step score code and is used as input by the SAS Scoring Accelerator when publishing a model to a database. When you are using the scoring function publish method, some SAS language elements and syntax are not supported when you create or modify your score code. Only the SAS language elements and syntax that are required to run critical data transformations and model scoring functions are available. If you use a statement or function that is not supported, an error occurs and your model is not published to the database. For more information, see “Considerations When Creating or Modifying DATA Step Score Code” in SAS In-Database Products: User’s Guide.

modelinput.sas7bdat
The value of modelinput.sas7bdat is the name of a sample data set that is used to create an inputvar.xml file for the model if one does not exist. When no inputvar.xml file exists for the model, SAS Model Manager creates the inputvar.xml file using the variable name and attributes in the modelinput.sas7bdat file. Observation values are not used. Therefore, the sample data set can have no observations or it can have any number of observations. If an inputvar.xml is specified in the model template, modelinput.sas7bdat is ignored.

When you import a SAS code model, the data set that you used to test your score code can be used as the value for the modelinput.sas7bdat file.

Note: If the same variables appear in your modelinput.sas7bdat file and your modeloutput.sas7bdat file, when you import the model, SAS Model Manager removes the duplicate variables in the outputvar.xml file.

modeloutput.sas7bdat
The value of modeloutput.sas7bdat is the name of a sample data set that is used to create an outputvar.xml file for the model if one does not exist. When no outputvar.xml file exists for the model, SAS Model Manager creates the
outputvar.xml file using the variable name and attributes in the modeloutput.sas7bdat file. Observation values are not used. Therefore, the sample data set can have no observations or it can have any number of observations. If an outputvar.xml is specified in the model template, modeloutput.sas7bdat is ignored.

You can create a modeloutput.sas7bdat file by running the score.sas file against the modelinput.sas7bdat file.

target.sas7bdat
The value of target.sas7bdat is the name of a sample data set that is used to create a targetvar.xml file for the model if one does not exist. When no targetvar.xml file exists for the model, SAS Model Manager creates the targetvar.xml file using the variable name and attributes in the target.sas7bdat file. Data set values are not used. Therefore, the sample data set can have no observations or it can have any number of observations. If a targetvar.xml file is specified in the model template, target.sas7bdat is ignored.

You can create a target.sas7bdat file by creating a data set that keeps only the target variables that are taken from the training data set, as in this example:

```sas
data mydir.target;
  set mydir.myModelTraining (obs-1);
  keep P_BAD;
run;
```

inputvar.xml
The value of inputvar.xml is the name of an XML file that defines the model input variables. When your model template includes a file for modelinput.sas7bdat, SAS Model Manager creates the model inputvar.xml file. Otherwise, you must create the XML file.

The following XML file is a sample inputvar.xml file that has one variable, CLAGE. You can use this model to create an inputvar.xml file that contains a VARIABLE element for each model input variable.

```xml
<?xml version="1.0" encoding="utf-8"?>
<TABLE>
  <VARIABLE>
    <NAME>CLAGE</NAME>
    <TYPE>N</TYPE>
    <LENGTH>8</LENGTH>
    <LABEL Missing=""/>
    <FORMAT Missing=""/>
    <LEVEL>INTERVAL</LEVEL>
    <ROLE>INPUT</ROLE>
  </VARIABLE>
</TABLE>
```

NAME
specifies the variable name.

TYPE
specifies the variable type. Valid values are N for numeric variables and C for character variables.

LENGTH
specifies the length of the variable.

LABEL Missing=""
specifies the character to use for missing values. The default character is a blank space.
FORMAT Missing="" specifies a SAS format to format the variable.

LEVEL specifies either NOMINAL, ORDINAL, INTERVAL, or BINARY.

ROLE specifies INPUT for input variables.

outputvar.xml

The value of outputvar.xml is the name of an XML file that defines the model output variables. When your model template includes a file for modeloutput.sas7bdat, SAS Model Manager creates the model outputvar.xml file. Otherwise, you must create the XML file.

The following XML file is a sample outputvar.xml file that has one variable, I_BAD. You can use this model to create an outputvar.xml file that contains a VARIABLE element for each model output variable.

```xml
<?xml version="1.0" encoding="utf-8"?>
<TABLE>
  <VARIABLE>
    <NAME>I_BAD</NAME>
    <TYPE>C</TYPE>
    <LENGTH>12</LENGTH>
    <LABEL>Into: BAD</LABEL>
    <FORMAT Missing=""/>
    <LEVEL>NOMINAL</LEVEL>
    <ROLE>CLASSIFICATION</ROLE>
  </VARIABLE>
</TABLE>
```

NAME specifies the variable name.

TYPE specifies the variable type. Valid values are N for numeric variables and C for character variables.

LENGTH specifies the length of the variable.

LABEL Missing="" specifies a label for the output variable.

FORMAT Missing="" specifies a SAS format to format the variable.

LEVEL specifies either NOMINAL, ORDINAL, INTERVAL, or BINARY.

ROLE specifies the type of model output. Valid values are CLASSIFICATION, PREDICT, SEGMENT, and ASSESS.

targetvar.xml

The value of targetvar.xml is the name of an XML file that defines the model target variables. When your model template includes a file for target.sas7bdat, SAS Model Manager creates the targetvar.xml file. Otherwise, you must create the XML file.

The following XML file is a sample targetvar.xml file that has one variable, I_BAD. You can use this model to create an outputvar.xml file that contains a VARIABLE element for each model output variable.
<TABLE>
 <VARIABLE>
 <NAME>BAD</NAME>
 <TYPE>N</TYPE>
 <LENGTH>8</LENGTH>
 <LABEL>Missing="" /></LABEL>
 <FORMAT Missing="" /></FORMAT>
 <LEVEL>BINARY</LEVEL>
 <ROLE>TARGET</ROLE>
 </VARIABLE>
</TABLE>

NAME
 specifies the variable name.

TYPE
 specifies the variable type. Valid values are N for numeric variables and C for character variables.

LENGTH
 specifies the length of the variable.

LABEL Missing=""
 specifies a label for the target variable.

FORMAT Missing=""
 specifies a SAS format to format the variable.

LEVEL
 specifies either NOMINAL, ORDINAL, INTERVAL, or BINARY.

ROLE
 specifies TARGET for the role of the variable.

smmpostcode.sas
 SAS Model Manager creates this file to document the mapping that the user specified between the model variables and the project variables.

trainingvariables.csv
 This optional file contains a list of the training variables.

training.sas
 This file is the optional SAS code that was used to train the model that you are importing. If at some time, SAS Model Manager reporting utilities detect a shift in the distribution of model input data values or a drift in the model's predictive capabilities, the training.sas code can be used to retrain the model on the newer data. If it is not available at import time, the training.sas code can be added at a later point using the Add Local Files feature.

training.log
 This file is the optional log file that was produced when the model that you are importing was trained. The information in the optional SAS training log can be helpful if the model must be retrained in the future.

training.lst
 This file is the optional text output that is produced when the training.sas code is run. The information in the optional SAS training.lst table can be helpful if the model must be retrained in the future.
outest.sas7bdat
This data set contains output estimate parameters that are produced by a few SAS
procedures, including the LOGISTIC procedure.

outmodel.sas7bdat
This data set contains output data that is produced by a few SAS procedures,
including the LOGISTIC procedure and the ARBORETUM procedure. It contains
complete information for later scoring by the same SAS procedure using the SCORE
statement.

output.spk
This file is the SAS package file that contains the SPK collection of model
component files.

miningresult.spk
This is a SAS package file that stores detailed information about SAS Enterprise
Miner nodes in the flow from which the model is created and the detailed
information for SAS/STAT item store models.

layout.xml
This optional file contains information about the SAS Enterprise Miner diagram
topology.

format.sas7bcat
This file is the optional SAS formats catalog file that contains the user-defined
formats for their training data. If the model that you are importing does not use a
user-defined format, then you do not need to import a format.sas7bcat catalog file.

dataprep.sas
This file contains optional SAS code that is intended to be executed before each run
of score code.

batch.sas
This file is created by SAS Enterprise Miner and is used for model retraining by SAS
Model Manager.

pmml.xml
This file contains score code in PMML format.

training.r
This is an optional R script file that is used to retrain R models in SAS Model
Manager.

outmodel.rda
SAS Model Manager requires this file to save the output parameter estimate for R
models.

score.r
This file is an R script that is used to predict new data.

fitstats.xml
This file is created by SAS Enterprise Miner and contains the basic Fit Statistics for
the model.

HPDMForest_VARIMPORT.csv
This CSV file contains the variable importance data for a PROC HPFOREST model.

HPDMForest ITERATION.csv
This CSV file contains statistics across each iteration of a PROC HPFOREST model.

OUTMDLFILE.bin
This is a binary file that contains the PROC HPFOREST model information to be
used for scoring.
For information about preparing R model component files, see Appendix 4, “R Model Support,” on page 267.

Model Template Properties

Template Properties

Here is a list of the general properties that define the model template.

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Identifies the name of the template. This property is required. The characters <code>@ \ /* % # & () ! ? < > ^ + ~ </code> = { } [] ; : ' "` cannot be used in the name.</td>
</tr>
<tr>
<td>Description</td>
<td>Specifies user-defined information about the template.</td>
</tr>
<tr>
<td>Type</td>
<td>Specifies the type of the model. SAS Model Manager supports the following model types:</td>
</tr>
<tr>
<td>Analytical Model</td>
<td>specifies the type of model that is associated with the Analytical model function.</td>
</tr>
<tr>
<td>Classification Model</td>
<td>specifies the type of model that is associated with the Classification model function.</td>
</tr>
<tr>
<td>Prediction Model</td>
<td>specifies the type of model that is associated with the Prediction model function.</td>
</tr>
<tr>
<td>Clustering Model</td>
<td>specifies the type of model that is associated with the Segmentation model function.</td>
</tr>
<tr>
<td>Tool</td>
<td>Specifies a text value that describes which tool is used to produce this type of model.</td>
</tr>
<tr>
<td>Validate</td>
<td>Indicates that SAS Model Manager verifies that all of the required files are present when users try to import a model. If validation fails, the model will not be successfully imported.</td>
</tr>
<tr>
<td>Display name</td>
<td>Specifies a text value that is displayed as the name of the model template.</td>
</tr>
<tr>
<td>Score code type</td>
<td>Specifies whether the imported model score code runs by using a DATA Step fragment, SAS Program code, PMML, Analytic store, or DS2.</td>
</tr>
</tbody>
</table>

File List Properties

Here is a list of the File List properties that specify the files that are contained in a model.
<table>
<thead>
<tr>
<th>Property Name</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Identifies the name of the file. This property is required.</td>
</tr>
<tr>
<td>Description</td>
<td>Specifies user-defined information about the file.</td>
</tr>
<tr>
<td>Required</td>
<td>When it is selected, indicates that the file is a required component file of the model that must be imported before using the model.</td>
</tr>
<tr>
<td>Report</td>
<td>When it is selected, indicates that the file is to be included in a SAS package file when a model is published to a channel.</td>
</tr>
<tr>
<td>Type</td>
<td>Specifies a file whose type is text or binary.</td>
</tr>
<tr>
<td>Fileref</td>
<td>Specifies an eight-character (or fewer) SAS file reference to refer to this file in score.sas code. The fileref is assigned by SAS Model Manager when a SAS job is submitted.</td>
</tr>
</tbody>
</table>

Note: All user-defined models must have three files.

- score.sas is the model's score code.
- modelinput.sas7bdat is a SAS data set whose variables are used by the model score code. The contents of the data set is not used by SAS Model Manager.
- modeloutput is a resulting data set when a user runs score.sas against modelinput.sas7bdat. The data set provides output variables that the model creates after a scoring test is executed. The contents of the data set is not used by SAS Model Manager.

System and User Properties

Here is a list of the system-defined and user-defined properties for a model template. Users can set these properties when they import a model.

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Identifies the name of the property. This is a required field.</td>
</tr>
<tr>
<td>Description</td>
<td>Specifies user-defined information about the property.</td>
</tr>
<tr>
<td>Type</td>
<td>Specifies a property whose type is String or Date.</td>
</tr>
<tr>
<td>Edit</td>
<td>Indicates that the property can be modified when importing a model or after the model is imported.</td>
</tr>
<tr>
<td>Required</td>
<td>Indicates that the property is required.</td>
</tr>
<tr>
<td>Initial value</td>
<td>Specifies a text string for the initial value for the property.</td>
</tr>
<tr>
<td>Display name</td>
<td>Specifies a text value that is displayed as the name of the property.</td>
</tr>
</tbody>
</table>
Specific Properties

Here is a list of specific properties for a model that identify the fundamental model data structures and some of the critical model life cycle dates. Where applicable, project-based or version-based data structures automatically populate properties for model-based data structures.

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default scoring input table</td>
<td>Specifies a default SAS data set that is used as the input data table for all of scoring tests within the project. The model's Default scoring input table property inherits the property value from the associated version or project, if one is specified.</td>
</tr>
<tr>
<td>Default scoring output table</td>
<td>Specifies a default SAS data set that defines the variables to keep in the scoring results table and the scoring test output table. The model's Default scoring output table property inherits the property value from the associated version or project, if one is specified.</td>
</tr>
<tr>
<td>Default performance table</td>
<td>Specifies the default performance table for all model performance monitoring tasks within a project. A model's Default performance table property inherits the property value from the associated version or project, if one is specified. If you do not specify a performance table, some of the monitoring reports might not be enabled.</td>
</tr>
<tr>
<td>Default train table</td>
<td>The train table is optional and is used only as information. However, when a value is specified for a model's Default train table property.</td>
</tr>
<tr>
<td>Expiration date</td>
<td>Specifies a date property by which the selected model is obsolete or needs to be updated or replaced. This property is for informational purposes and is not associated with any computational action. This property is optional.</td>
</tr>
<tr>
<td>Model label</td>
<td>Specifies a text string that is used as a label for the selected model in model assessment charts. If no value is provided for the Model Label property, the text string that is specified for the Model Name property is used. The Model Label property can be useful if the Model Name property that is specified is too long for use in plots. This property is optional.</td>
</tr>
<tr>
<td>Subject</td>
<td>Specifies a text string that is used to provide an additional description for a model, such as a promotional or campaign code. This property is for informational purposes and is not associated with any computational action. This property is optional.</td>
</tr>
<tr>
<td>Algorithm</td>
<td>Specifies the computational algorithm that is used for the selected model. This property cannot be modified.</td>
</tr>
<tr>
<td>Property Name</td>
<td>Description</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Function</td>
<td>Specifies the function class that was chosen when the associated project was created. The Function property specifies the type of output that models in the predictive model project generate.</td>
</tr>
<tr>
<td>Modeler</td>
<td>Specifies the Modeler ID or, when Modeler ID is missing, specifies the user ID of the individual who created the model that is stored in the SPK file for SAS Enterprise Miner models. Otherwise, the modeler can be specified during model import for local files.</td>
</tr>
<tr>
<td>Tool</td>
<td>Specifies whether the imported model came from SAS Enterprise Miner or from other modeling tools.</td>
</tr>
<tr>
<td>Tool version</td>
<td>Specifies the version number of the tool that is specified in the Tool property.</td>
</tr>
</tbody>
</table>
| **Score code type** | Specifies whether the imported model score code is a DATA step fragment, ready-to-run SAS code, or a PMML file. Valid values are DATA step, SAS Program, PMML, Analytic store, and DS2.
Note: If the model is created using PMML 4.2, the Score Code Type is DATA step and not PMML. For more information, see “PROC PSCORE and PMML Support” on page 265.
Note: SAS Model Manager cannot publish models to a database whose Score Code Type model property is set either to SAS Program, PMML, or DS2. Models that have a score code type of Analytic store can be published only to Hadoop and Teradata. |
| **Template** | Specifies the model template that was used to import the model and to create pointers to its component files and metadata. |
| **Copied from** | Specifies where the original model is if this model is copied from another model repository. |
| **Target variable** | Specifies the name of the target variable for a classification or prediction model. This property can be ignored for segmentation, cluster, and other models that do not use target variables. For example, if a model predicts when GENDER=M, then the target variable is GENDER. |
| **Target event value** | Specifies a value for the target event that the model attempts to predict. This property is used only when a value is specified for the Target Variable property. For example, if a model predicts when GENDER=M, then the target event value is M. |
Appendix 2
Project Tables

Descriptions of Project Tables .. 253
Project Control Tables ... 253
Project Input Tables ... 254
Project Output Tables ... 254
Scoring Input Tables ... 255
Scoring Output Tables ... 255
Train Tables ... 256
Test Tables ... 256
Performance Tables ... 256

Creating Project Input and Output Tables .. 257
Create a Project Input Table ... 257
Create a Project Output Table .. 258

Creating Scoring Input and Output Tables .. 259
About Scoring Input and Output Tables 259
Create a Scoring Input Table ... 259
Create a Scoring Output Table .. 260

Creating a Test Table ... 260
Creating a Performance Table .. 260
About Performance Tables .. 260
Naming a Performance Table for Use with the Edit
Performance Definition Wizard ... 261
Create a Performance Table .. 261

Using Tables from a Local or Network Drive 262
About Using Tables from a Local or Network Drive 262
Edit Start-Up Code ... 263
Delete a Libref ... 263

Descriptions of Project Tables

Project Control Tables

A project control table is a data set that contains the projects, models, and segments that are used to create the structure of the projects within a portfolio. The project control table must at least contain a project variable with the name of project_name. If you want to monitor the performance of the champion models within a portfolio, then the project
control table must also contain a segment ID variable. The segment ID variable must also be in the performance tables that are used to monitor performance. If you want to include the models for each project when creating a portfolio, then the control table must also contain the model variable.

Project Input Tables

A project input table is an optional SAS data set that contains the champion model input variables and their attributes. It is a prototype table that can be used to define the project input variables and the variable attributes such as data type and length. A project can have numerous candidate models that use different predictor variables as input. Because the project input table must contain all champion model input variables, the variables in the project input table are a super set of all input variables that any candidate model in the project might use.

A project input table can have one or more observations. Data that is in a project input table is not used by SAS Model Manager.

If you use a prototype table to define the project input variables, either create the table and register the table to the SAS Metadata Repository in the Data category view or by using SAS Management Console. Tables that are registered using the SAS Management Console must be made available to SAS Model Manager using the Data category view.

The project input variables must be available to SAS Model Manager either by specifying a project input table or by defining individual variables before you set a champion model. You can view input variables for a project on the Input tab of the project’s Variables page, or in the Data category view.

Note: An alternative to using prototype tables to define the project input and output variables is to copy the variables from the champion or challenger model, or to modify the project variables. For more information, see “Defining Project Input and Output Variables” on page 55.

See Also

- “Defining Project Input and Output Variables” on page 55
- “Creating Project Input and Output Tables” on page 257

Project Output Tables

A project output table is an optional SAS data set or database table that defines project output variables and variable attributes such as data type and length. It is a prototype table that contains a subset of the output variables that any model in the project might create.

A project output table can have one or more observations. Data that is in a project output table is not used by SAS Model Manager.

If you use a prototype table to define the project output variables, either create the table and register the table to the SAS Metadata Repository in the Data category view or by using SAS Management Console. Tables that are registered using the SAS Management Console must be made available to SAS Model Manager using the Data category view. For more information, see Chapter 3, “Managing Data Tables,” on page 33.

The project output variables must be available to SAS Model Manager either by specifying a project output table or by defining individual variables before you set a
champion model. You can view output variables for a project on the **Output** tab of the project’s **Variables** page or in the Data category view.

Note: An alternative to using prototype tables to define the project input and output variables is to copy the variables from the champion or challenger model, or to modify the project variables. For more information, see “Defining Project Input and Output Variables” on page 55.

See Also
- “Defining Project Input and Output Variables” on page 55
- “Creating Project Input and Output Tables” on page 257

Scoring Input Tables

A scoring input table is a SAS data set that contains the input data that is used in a scoring test.

Before you can create a scoring test, you must create a scoring input table and register it in the SAS Metadata Repository in the Data category view or by using SAS Management Console. Tables that are registered using the SAS Management Console must be made available to SAS Model Manager using the Data category view. In SAS Model Manager, you can view scoring input tables in the Data category view.

See Also
“Creating Scoring Input and Output Tables” on page 259

Scoring Output Tables

A scoring output table is used by a scoring test to define the variables for the scoring results table.

Depending on the mode in which a scoring test is run, the scoring output table can be a prototype table or a physical data table. A scoring test can run in test mode, which is the default mode, or it can run in production mode. In both test mode and production mode, a scoring test output table is used by the scoring test to define the structure of the scoring results table. When the scoring test runs, it creates a scoring results table. In test mode, the scoring results table is stored in the SAS Model Manager model repository or on a local or network drive. You can view the scoring results table on the **Results** tab of the **Scoring** page for a project. The scoring output table in the SAS Metadata Repository or on a local or network drive is not updated in test mode. In production mode, the contents of the scoring output table in the SAS Metadata Repository or the local or network drive are replaced by the contents of the scoring results table. The scoring results table is not stored in the SAS Model Manager model repository or on a local or network drive.

Before you can create a scoring test, the scoring output table must be added and accessible from the Data category view. To add the scoring output table to SAS Model Manager, perform one the following actions:
- Add the table manually by creating the table. Then, register the table in the SAS Metadata Repository in the Data category view or by using SAS Management Console.
- Use the Create a Scoring Output Table feature that is available from the toolbar on the project’s **Models** page. When you use the Create a Scoring Output Table window, SAS Model Manager creates the table in the library that is specified in the **Library**
A train table is used to build predictive models. Whether your predictive models are created using SAS Enterprise Miner or you created SAS code models, you used a train table to build your predictive model. SAS Model Manager uses this same train table. The train table must be registered in the SAS Metadata Repository and accessible to SAS Model Manager in the Data category view.

You specify a train table as a version-level property. When you define the train table at the version level, the table can be used to build all predictive models that are defined on the Models page for a project.

In SAS Model Manager, train tables are used for information purposes only with one exception. SAS Model Manager uses train tables to validate scoring results immediately after you publish a scoring function or model scoring files, and if the Validate scoring results box is selected when you publish scoring functions or model scoring files to a database.

Note: A train table cannot contain an input variable name that starts with an underscore.

For information about registering a train table using the Data category view, see Chapter 3, “Managing Data Tables,” on page 33.

A test table is used to create the Dynamic Lift report and the Interval Target Variable report that can be used to identify the champion model. Test tables are typically a subset of a train table, and they are identical in table structure to the corresponding train table. Update test tables by creating a new subset of the corresponding train table.

To view test tables in SAS Model Manager, the tables must be registered in the SAS Metadata Repository. In SAS Model Manager, you can view test tables in the Data category view.

After a test table is added to SAS Model Manager, you can specify the table in the Default test table field in the project properties.

For information about registering test tables using the Data category view, see Chapter 3, “Managing Data Tables,” on page 33.

See Also
“Creating a Test Table” on page 260

A performance table is a SAS data set that is used as the input table for each SAS Model Manager performance definition. A performance definition is used to monitor a champion model's performance by comparing the observed target variable values with the predicted target variable values. A performance table is a sampling of operational
data that is taken at a single point in time. Each time you run a performance definition, you use a new performance table to take a new sampling of the operational data. For example, a champion model is deployed to a production environment for the first time in March 2013. You might want to take a new sampling of the operational data in June 2013, September 2013, and January 2014. These new tables are performance tables in the context of SAS Model Manager.

To view a performance table in SAS Model Manager, you must register the tables in the SAS Metadata Repository using the Data category view or by using SAS Management Console. You can view performance tables in the Data category view. After a performance table is registered, you can specify the table in the Default performance table field in the project properties. The default performance table value at the project level is the default value for the Performance data source field in the Edit Performance Definition wizard.

Note: If you run SAS Model Manager report macros outside of SAS Model Manager to monitor a champion model's performance, the macros cannot access the performance tables in SAS Model Manager to create model performance monitoring reports.

See Also
“Creating a Performance Table” on page 260

See Also
“Remove a Table” on page 40

Creating Project Input and Output Tables

Create a Project Input Table

You can create a project input table either from the train table that you used to develop your model, or you can define the project variables in a DATA step. The project input table must include the input variables that are used by the champion model. Therefore, if you have several candidate models for your project, make sure that all candidate model input variables are included in the project input table. If you create the project input table from the train table, be sure to exclude the target variable from the project input table.

Here is one method that you can use to create the project input table from the train table. Use the SET statement to specify the train table and the DROP or KEEP statements to specify the variables from the train table that you want in the project input table. You can drop the target variable or keep all variables except the target variable.

This DATA step creates the project input table from the train table and drops the target variable Bad:

```plaintext
data hmeqtabl.invars;
    set hmeqtabl.training (obs=1);
    drop bad;
run;
```

This DATA step creates the project input table from the train table and keeps all variables except for the target variable Bad:

```plaintext
data hmeqtabl.invars;
    set hmeqtabl.training (obs=1);
```
keep mortdue reason delinq debinc yoj value ninq job clno derog clag loan;
run;

You can also create the project input table using the LENGTH statement to specify the variables and their type and length. You could also specify the LABEL, FORMAT, or INFORMAT statements, or the ATTRIB statement to specify additional variable attributes. The following DATA step uses the LENGTH statement to specify the project input variables in the table:

data hmeqtabl.invars;
 length mortdue 8 reason $7 delinq 8
debinc 8 yoj 8 value 8
 ninq 8 job $7 clno 8 derog 8
clag 8 loan 8;
run;

If you find that you need to modify the project input variables after you have created a project input table, you can use the project’s Variables page to modify the project variables. For more information, see “Defining Project Input and Output Variables” on page 55.

See Also
• SAS 9.4 Statements: Reference
• SAS 9.4 Language Reference: Concepts

Create a Project Output Table

You can create a project output table either from the train table that you used to develop your model, or you can define the project variables in a DATA step. The project output table includes only output variables that are created or modified by the champion model. Therefore, if you have several candidate models for your project, you must make sure that all project output variables are mapped to the champion model output variables.

To create the project output table using the training table, use the SET statement to specify the training table, and use the KEEP statement to specify the variables from the training table that you want in the project output table. The following DATA step creates the project output table Hmeqtabl.Outvars:

data hmeqtabl.outvars;
set hmeqtabl.training (obs=1);
%include "c:\temp\score.sas";
 keep score;
run;

The following DATA step creates the same project output table using the LENGTH statement to specify the output variable and its type and variable length:

data hmeqtabl.outvars;
 length score 8;
run;

If you find that you need to modify the project output variables after you have created a project output table, you can use the project’s Variables page to modify the project variables. For more information, see “Defining Project Input and Output Variables” on page 55.
Creating Scoring Input and Output Tables

About Scoring Input and Output Tables

The scoring input table is a data table whose input is used by the scoring test to score a single model. The scoring input table must contain the variables and input data for the variables that the model requires. Typically, a scoring table is identical to its corresponding train table except that the target variables in the train table are not included in the scoring table.

A scoring output table contains the data that is produced when you execute a scoring test. You can provide a scoring output table or you can create a scoring output table definition in SAS Model Manager. When a scoring test is executed, SAS Model Manager uses the scoring output table definition to create the scoring output table. The name of the scoring output table definition is used as the name of the scoring output table.

You can create a scoring output table definition by using the Create a Scoring Output Table function on the Models page. In the Create a Scoring Output Table window, you select variables from a scoring input table as well as variables from the model’s output. The variables in the Input Variables table are variables from the scoring input table if one is specified for the Default scoring input table property for a project or model property. Otherwise, the Input Variables table is empty. The Output Variables that appear in the window are model output variables. You use the variables from both tables to create the scoring output table.

SAS Model Manager saves the table definition as metadata in the SAS Metadata Repository. The location of the metadata is defined by the SAS library that you specify when you create the output table definition. After SAS Model Manager creates the table definition, the table can be selected as the output table for subsequent scoring tests.

A SAS Model Manager scoring test can run in test mode, which is the default mode, or it can run in production mode. When the test runs, it populates a scoring output table. In test mode, the scoring output table is stored in the SAS Model Manager model repository. You view the table under the scoring test on the project’s Scoring page. In production mode, if the scoring output table is a table that you provided, that table is updated. If you created a scoring test output definition, the scoring output table is located in the designated SAS library that you specified when you created the table definition in the Create a Scoring Output Table window. The production scoring output table is not stored in the SAS Model Manager repository.

Create a Scoring Input Table

This DATA step creates a scoring test input table from customer data, keeping 500 rows from the train table:

data hmeqtabl.scorein;
 set hmeqtabl.customer (obs=500);
 keep mortdue reason delinq debinc yoj value ninq job clno derog clage loan;
run;
Create a Scoring Output Table

You can create a scoring output table using the Create a Scoring Output Table window that you open from the project’s Models page. The Create a Scoring Output Table window enables you to select the variables that you want to include in your scoring output table. If the library that you select in the Create a Scoring Output Table window is a folder in the SAS Metadata Repository, SAS Model Manager registers the table in the repository. You can view the table in the Data category view of SAS Model Manager. For information, see “Create Scoring Output Tables” on page 116.

You can also create a scoring output table using a DATA step to keep or drop variables from the train table.

The input variables that you might want to keep in the output data set are key variables for the table. Key variables contain unique information that distinguishes one row from another. An example would be a customer ID number.

This DATA step keeps the input variable CLNO, the client number, which is the key variable, and the output variable SCORE:

```sas
data hmeqtabl.scoreout;
  length clno 8 score 8;
run;
```

Creating a Test Table

The test table is used during model validation by the Dynamic Lift report. You can create a test table by taking a sampling of rows from the original train table, updated train table, or any model validation table that is set aside at model training time. This DATA step randomly selects approximately 25% of the train table to create the test table:

```sas
data hmeqtabl.test;
  set hmeqtabl.train;
  if ranuni(1234) < 0.25;
run;
```

See Also

“Create a Dynamic Lift Report” on page 131

Creating a Performance Table

About Performance Tables

Here are the requirements for a performance table:

- the input variables that you want reported in a Characteristic report
- if you have score code:
 - all input variables that are used by the champion model or challenger models
 - all output variables that are used by the champion model or challenger models
if you have no score code:

- the actual value of the dependent variable and the predicted score variable
- all output variables that you want reported in a Stability Report

You create a performance table by taking a sampling of data from an operational data mart. Make sure that your sampling of data includes the target or response variables. The data that you sample must be prepared by using your extract, transform, and load business processes. When this step is complete, you can then use that data to create your performance table.

As part of the planning phase, you can determine how often you want to sample operational data to monitor the champion model performance. Ensure that the operational data that you sample and prepare represents the period that you want to monitor. For example, to monitor a model that determines whether a home equity loan could be bad, you might want to monitor the model every six months. To do this, you would have two performance tables a year. The first table might represent the data from January through June, and the second table might represent the data from July through December.

Here is another example. You might want to monitor the performance of a champion model that predicts the delinquency of credit card holders. In this case, you might want to monitor the champion model more frequently, possibly monthly. You would need to prepare a performance table for each month in order to monitor this champion model.

In addition to planning how often you sample the operational data, you can also plan how much data to sample and how to sample the data. Examples in this section show you two methods of sampling data and naming the performance tables. You can examine the sampling methods to determine which might be best for your organization.

Naming a Performance Table for Use with the Edit Performance Definition Wizard

The Edit Performance Definition wizard is a graphical interface to assist you in creating a performance definition to monitor the champion model performance. When you run the Edit Performance Definition wizard, you specify a performance table that has been registered to the SAS Metadata Repository. When you create a performance table, you can collect and name the performance table using a method that is most suitable for your business process.

See Also

“Overview of Performance Monitoring” on page 165

Create a Performance Table

You can use the following DATA steps as examples to create your performance tables.

This DATA step creates a performance table using 5,000 sequential observations from the operational data:

```plaintext
data hmeqtabl.perform;
  set hmeqop.JulDec (firstobs=12001 obs=17000);
run;
```

This DATA step creates a performance table from operational data for the past six months of the year. The IF statement creates a random sampling of approximately 10% of the operational data:
Using Tables from a Local or Network Drive

About Using Tables from a Local or Network Drive

If you have migrated or upgraded from a previous release of SAS Model Manager, the start-up code that enabled you to use tables from the local SAS Workspace Server or network drive is still available. In SAS Model Manager 14.2, you can no longer define a libref to use tables on a local or network drive. Also, in SAS Model Manager 14.2, tables must be registered in the SAS Metadata Repository and accessible in the Data category view. If the libref was defined before you migrated or upgraded, you can use the local or network tables to complete these SAS Model Manager tasks:

- Create a project
- Create projects from a control table
- Specify project input and output variables
- Create a scoring test
- Create a model retrain definition
- Create reports
- Create a performance definition

The start-up code that was migrated can be viewed using the Edit Start-up Code window. You can access this window from the Actions menu on the toolbar in the Projects and Portfolios category views.

Here is an example LIBNAME statement:

libname SalesLib 'c:\sales\2013\october';
Edit Start-Up Code

To edit the start-up code:

1. Select **Actions ⇒ Edit Start-up Code**. The Edit Start-up Code window appears.

 ![Edit Start-up Code Window]

2. Enter the SAS code.
3. Click **Run Now**.
4. Click the **Log** tab to see the SAS log.
5. Click **OK**. The SAS code is saved in the Edit Start-up Code window.

 Note: If you save the code without running it by clicking **OK**, the code automatically runs the next time the middle-tier server starts.

Delete a Libref

To delete a libref:

1. Select **Actions ⇒ Edit Start-up Code**
2. Type `libname libref clear`.
3. Click **Run Now**.
Appendix 3
PROC PSCORE and PMML Support

Overview

PMML is an XML markup language that was developed to exchange predictive and statistical models between modeling systems and scoring platforms. Users can import the majority of standard-compliant PMML models and score them within a SAS environment via the SAS PSCORE procedure.

PROC PSCORE Functionality

The SAS PSCORE procedure generates SAS DATA step score code that is functionally equivalent to the PMML model. The generated score code can be executed on all platforms that are supported by SAS to score the data sets. You can submit the score code in SAS Enterprise Miner via the Program Editor, SAS Enterprise Miner Project code, or within a SAS Enterprise Miner Process Flow Diagram, via the SAS Code node. However, the SAS Enterprise Miner UI environment is not necessary to run the score code.

Supported Versions

PROC PSCORE currently supports the use of PMML 4.2. Earlier versions of PMML are not supported for use with PROC PSCORE.

Supported PMML Models

PROC PSCORE supports the following types of PMML models:

- Regression
- Trees
- Neural Networks
- Clustering models
- Scorecard
- Vector Machine
- Naïve Bayes
- Baseline models

The following models are supported on an experimental basis:

- Time Series
Requirements for PROC PSCORE

In order to use PROC PSCORE, you must have SAS 9 or later, a well formed PMML modeling file, and Write access to the output directory for the DATA step score file. A SAS Enterprise Miner license is not necessary to run PROC PSCORE.

PROC PSCORE Usage

PROC PSCORE PMML FILE = "<full-pathname-of-PMML-file>"
 DS FILE = "<full-pathname-of-output-DS-file>"

PROC PSCORE Example

/*Run the PSCORE procedure on a generated PMML file*/
PROC PSCORE PMML FILE = "C:\temp\heart_pmml1.xml"
 DS FILE = "C:\temp\ds_heart_score.sas";
run;

Overview of Using R Models with SAS Model Manager 267
Preparing R Model Files to Use with SAS/IML 268
 Build an R Model ... 268
 Prepare an R Model Template File .. 269
 Prepare R Model Component Files ... 270

Overview of Using R Models with SAS Model Manager

R is a freely available language and environment for statistical computing and graphics. Using the open architecture of SAS Model Manager, you can register and import R models. SAS Model Manager requires a model template file and model component files that are created specifically for R models.

The following SAS components are required to use R models in SAS Model Manager:
 • Ensure that the installed R language version is 2.13.0 or later.
 • SAS/IML. You must license SAS/IML because the IML procedure is required to export SAS data sets to R and to submit R code.
 • The RLANG system option. You must set this system option.
 • The R language and SAS/IML must be installed on the same machine where the SAS Model Manager server is installed.

SAS Model Manager supplies three R model templates that you can use, or you can create your own template as well. The R model templates that are provided by SAS Model Manager support the analytic, classification, and prediction model functions. The segmentation model function is not supported for R models.

After the model component files are registered, you can perform all SAS Model Manager functions except for exporting an R model to the SAS Metadata Repository.

To use R models in SAS Model Manager, do the following tasks:
1. Ensure that the RLANG system option is set. To have the RLANG system option set when SAS starts, have your site administrator add the RLANG system option to the SAS configuration file.
2. Build an R model. For more information, see “Build an R Model” on page 268.
SAS/IML must be installed before you build an R model.

3. Ensure that you have a model template file. For more information, see “Prepare an R Model Template File” on page 269.

4. Ensure that you have the required model component files. For more information, see “Prepare R Model Component Files” on page 270.

5. Import the R model. For more information, see “Import Models from Local Files” on page 72.

Preparing R Model Files to Use with SAS/IML

Build an R Model

Use the following SAS code to create an R model and save it in the outmodel.rda model component file:

```sas
/* Define the libref to the SAS input data set. */
libname libref "path-to-input-data-set";

/* Use PROC IML to export the SAS input data set to the R input data set. */
proc iml;
    run ExportDatasetToR("input-data-set", "R-matrix-input");

/* Submit the model-fitting R code. */
submit /R;
    attach("R-matrix-input")
    # -------------------------------
    # FIT THE MODEL
    # -------------------------------
    model-name<- model-fitting-function
    # -------------------------------
    # SAVE THE PARAMETER ESTIMATE TO LOCAL FILE OUTMODEL.RDA
    # -------------------------------
    save(model-name, file="path/outmodel.rda")
endsubmit;
run;
quit;
```

Supply the following values:

- **path-to-input-data-set** is the path to the library where the input data set is stored.
- **input-data-set** is the name of the input data set.
- **R-matrix-input** is the R input data.
model-name

is the name of the model.

model-fitting-function

is the R formula that is used to fit the model.

path

is the path to where outmodel.rda is to be stored.

Here is an example of creating an R model using the HMEQ train data set as the SAS input data set:

libname mmsamp "!sasroot\mmcommon\sample";
proc iml;
run ExportDatasetToR("mmsamp.hmeq_train", "mm_inds");
submit /R;
attach(mm inds)

FIT THE LOGISTIC MODEL

logiten< glm(BAD ~ VALUE + factor(REASON) + factor(JOB) + DEROG + CLAGE + NINQ + CLNO , family=binomial)

SAVE THE PARAMETER ESTIMATE TO LOCAL FILE OUTMODEL.RDA

save(logiten, file="c:/RtoMMfiles/outmodel.rda")
endsubmit;
run;
quit;

Prepare an R Model Template File

SAS Model Manager provides three R model templates that you can use as a model template for your R model:

• RClassification
• RPrediction
• RAnalyticalmodel

To view these model templates:

1. From the Projects category view, Click and select Manage Templates. The Manage Templates appears.

2. Select an R model template and click .

3. Review the model template to make sure that it contains all of the model component files and properties for your model. If it does, you can use this template to import your R model. To customize the model template, you can copy the XML content from one of the supplied template files and make modifications using a text editor. You can then create a new model template using the modified XML content and the model template to the SAS Content Server.

To create a custom R model template, see “Model Template Component Files” on page 242 and “User-Defined Model Templates” on page 87.
Prepare R Model Component Files

R Model Component Files for Executing R Models Using SAS/IML
To submit R models from SAS Model Manager using SAS/IML, you need several model component files:

- `modelinput.sas7bdat`
- `modeloutput.sas7bdat`
- `target.sas7bdat`
- `inputvar.xml`
- `outputvar.xml`
- `targetvar.xml`
- `outmodel.rda`
- `score.r`
- `score.sas`
- `training.r` (not required if you do not retrain your R model)
- `training.sas` (not required if you do not retrain your R model)

You create the `modelinput.sas7bdat`, `modeloutput.sas7bdat`, `target.sas7bdat`, `inputvar.xml`, `outputvar.xml`, and `targetvar.xml` files as you would for importing a SAS code file. For more information, see “Model Template Component Files” on page 242.

The remaining files, `outmodel.rda`, `score.r`, `score.sas`, `training.r`, and `training.sas` require additional file preparation.

Create `outmodel.rda`
The `outmodel.rda` file contains the output parameter estimate. This file is used by SAS Model Manager to register and score the model. You create `outmodel.rda` when you build an R model. See “Build an R Model” on page 268. The `outmodel.rda` file uses the R function `save()` to save the scoring results.

Here is the syntax of an `outmodel.rda` file:
```
save(model-name, file="path/outmodel.rda")
```

Supply the following values:

- `model-name` is the name of the R model.
- `path` is the system path to the location where `outmodel.rda` is stored.

Here is an example `outmodel.rda` file:
```
save(logiten, file="c:/temp/outmodel.rda")
```

Create `score.r`
The `score.r` script is an R script that is used to score data. You can use the following R script to create `score.r`:
```
attach(R-matrix-input)
```
Preferable:

LOAD THE OUTPUT PARAMETER ESTIMATE FROM FILE OUTMODEL.RDA

load('&_mm_scorefilesfolder/outmodel.rda')

SCORE THE MODEL

score<- predict(model-name, type="response", newdata=R-matrix-input)

MERGING PREDICTED VALUE WITH MODEL INPUT VARIABLES

mm_outds <- cbind(R-matrix-input, score)

Supply the following values:

R-matrix-input

is the name of the input R matrix file that you specified in the ExportDatasetToR function in the IML procedure. See “Build an R Model” on page 268.

score

is the output variable. The value for score must match the output variable that is defined in modeloutput.sas7bdat and outputvar.xml.

model-name

is the name of the R model. The value of model-name must match the R save function model-name argument that is specified in the outmodel.rda file.

Here is an example score.r file:

```
attach(mm_inds)

# -----------------------------------------------
# LOAD THE OUTPUT PARAMETER ESTIMATE FROM FILE OUTMODEL.RDA
# -----------------------------------------------
load('&_mm_scorefilesfolder/outmodel.rda')

# -----------------------------------------------
# PREDICT
# -----------------------------------------------
score<- predict(logiten, type="response", newdata=mm_inds)

# -----------------------------------------------
# MERGE THE PREDICTED VALUE WITH MODEL INPUT VARIABLES
# -----------------------------------------------
mm_outds <- cbind(mm_inds, score)
```

Create score.sas

The score.sas program defines the score test information in a data set and calls the %mmbatch macro. When you submit the %mmbatch macro, the task mm_r_model_train_main completes the following tasks:

- transforms a scoring data set to an R data frame
- generates and submits R code for scoring
- transforms the scored output to a SAS data set for reporting in SAS Model Manager

Here is the score.sas program:
filename tmp catalog "sashelp.modelmgr.mm_include.source";
%include tmp;
filename tmp;

data work.mm_score_task_information;
 length role $ 8;
 length name $ 80;
 length value $ 200;
 role = "input";
 name = "importedData";
 value = "&_mm_inputds";
 output;
 role = "input";
 name = "modelID";
 value = "&_mm_modelID";
 output;
 role = "output";
 name = "exportedData";
 value = "&_mm_outputds";
 output;
 role = "input";
 name = "dataRole";
 value = "output-variable-name";
 output;
 role = "input";
 name = "p_Target";
 value = "output-variable-name";
 output;
run;

/* mm_r_model_score_main is a SAS Model Manager process flow that is used to run */
/* R model scripts using PROC IML. */
%mmbatch(task=mm_r_model_score_main, taskprops= mm_score_task_information);

Supply the following value:

output-variable-name

is the output variable that is defined in modeloutput.sas7bdat or modeloutput.xml.

To print verbose SAS logs, add the following lines before the RUN statement in the previous DATA step:

role = "input";
 name = "&_mm_trace";
 value = "ON";
 output;

Create training.r

The training.r script is an R script that is used to build a train model. Use the following script for the training.r file. In the R save function, the path in the file= argument must be &_MM_TrainResultFolder.
You can use the following script to create training.r:

```r
attach(R-matrix-input)

# -----------------------------------------------
# FIT THE LOGISTIC MODEL
# -----------------------------------------------
model-name <- model-fitting-function

# -----------------------------------------------
# SAVE THE OUTPUT PARAMETER ESTIMATE TO LOCAL FILE OUTMODEL.RDA
# -----------------------------------------------
save(model-name, file="&_MM_TrainResultFolder/outmodel.rda")
```

Supply the following values:

R-matrix-input

is the name of the R matrix that is specified in the ExportMatrixToR function that is used to build a model using the IML procedure.

model-name

is the name of the R model.

model-fitting-function

is an R model fitting function, such as `lm()` or `glm()`.

Here is an example training.r R script to build the HMEQ R train model:

```r
attach(mm_inds)

# -----------------------------------------------
# FIT THE LOGISTIC MODEL
# -----------------------------------------------
logiten <- glm(BAD ~ VALUE + factor(REASON) + factor(JOB) + DEROG + CLAGE + NINQ + CLNO, family=binomial)

# -----------------------------------------------
# SAVE THE OUTPUT PARAMETER ESTIMATE TO LOCAL FILE OUTMODEL.RDA
# -----------------------------------------------
save(logiten, file="&_MM_TrainResultFolder/outmodel.rda")
```

Create training.sas

If you do not need to retrain your R model in SAS Model Manager, you do not need this file.

The training.sas program defines the train task information in a data set and calls the %mmbatch macro. When you submit the %mmbatch macro, the task `mm_r_model_train_main` completes the following tasks:

- transforms a training data set to an R data frame
- generates and submits R code for training
- registers the training output parameter estimate file in SAS Model Manager

Here is the training.sas file:

```sas
filename tmp catalog "sashelp.modelmgr.mm_include.source";
%include tmp;
filename tmp;

data work.mm_train_task_information;
```
length role $ 8;
length name $ 80;
length value $ 200;

role = "input";
name = "trainData";
value = "&_mm_inputds";
output;

role = "input";
name = "modelID";
value = "&_mm_modelID";
output;
run;

/* mm_r_model_train_main is a SAS Model Manager process flow that is used to run */
/* R model scripts using PROC IML. */
%mmbatch(task=mm_r_model_train_main, taskprops= mm_train_task_information);

To print verbose SAS logs, add the following lines before the RUN statement in the previous DATA step:

role = "input";
name = "_mm_trace";
value = "ON";
output;
Appendix 5
Statistical Measures Used in Basel III Reports

Overview of Statistical Measures Used for Basel III Reports

SAS Model Manager Basel III reports use several statistical measures to validate the stability, performance, and calibration for the two key types of Basel III risk models: the Probability of Default (PD) model and the Loss Given Default (LGD) model.

The statistical measures for model validation are grouped into three categories:

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model Stability</td>
<td>Tracks the change in distribution of the modeling data and scoring data.</td>
</tr>
<tr>
<td>Model Performance</td>
<td>• Measures the ability of a model to discriminate between customers with accounts that have defaulted, and customers with accounts that have not defaulted. The score difference between non-default and default accounts helps determine the required cutoff score. The cutoff score helps predict whether a credit exposure is a default account.</td>
</tr>
<tr>
<td></td>
<td>• Measures the relationship between the actual default probability and the predicted default probability. This helps you understand the performance of a model over a time period.</td>
</tr>
<tr>
<td>Model Calibration</td>
<td>Checks the accuracy of the PD and LGD models by comparing the correct quantification of the risk components with the available standards.</td>
</tr>
</tbody>
</table>

The sections that follow describe the measures, statistics, and tests that are used to create the PD and LGD reports.

Model Stability Measure

The following table describes the model stability measure that is used to create the PD report and the LGD reports.
Model Performance Measures and Statistics

The following table describes the model performance measures that are used to create the PD and LGD reports.

<table>
<thead>
<tr>
<th>Measure</th>
<th>Description</th>
<th>PD Report</th>
<th>LGD Report</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Stability Index (SSI)</td>
<td>SSI monitors the score distribution over a time period.</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Accuracy

Accuracy is the proportion of the total number of predictions that were correct.

<table>
<thead>
<tr>
<th>Measure</th>
<th>Description</th>
<th>PD Report</th>
<th>LGD Report</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td>Accuracy is the proportion of the total number of predictions that were correct.</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

Accuracy Ratio (AR)

AR is the summary index of Cumulative Accuracy Profile (CAP) and is also known as Gini coefficient. It shows the performance of the model that is being evaluated by depicting the percentage of defaulted accounts that are captured by the model across different scores.

<table>
<thead>
<tr>
<th>Measure</th>
<th>Description</th>
<th>PD Report</th>
<th>LGD Report</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy Ratio (AR)</td>
<td>AR is the summary index of Cumulative Accuracy Profile (CAP) and is also known as Gini coefficient. It shows the performance of the model that is being evaluated by depicting the percentage of defaulted accounts that are captured by the model across different scores.</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Area Under Curve (AUC)

AUC can be interpreted as the average ability of the rating model to accurately classify non-default accounts and default accounts. It represents the discrimination between the two populations. A higher area denotes higher discrimination. When AUC is 0.5, it means that non-default accounts and default accounts are randomly classified, and when AUC is 1, it means that the scoring model accurately classifies non-default accounts and default accounts. Thus, the AUC ranges between 0.5 and 1.

<table>
<thead>
<tr>
<th>Measure</th>
<th>Description</th>
<th>PD Report</th>
<th>LGD Report</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area Under Curve (AUC)</td>
<td>AUC can be interpreted as the average ability of the rating model to accurately classify non-default accounts and default accounts. It represents the discrimination between the two populations. A higher area denotes higher discrimination. When AUC is 0.5, it means that non-default accounts and default accounts are randomly classified, and when AUC is 1, it means that the scoring model accurately classifies non-default accounts and default accounts. Thus, the AUC ranges between 0.5 and 1.</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

Bayesian Error Rate (BER)

BER is the proportion of the whole sample that is misclassified when the rating system is in optimal use. For a perfect rating model, the BER has a value of zero. A model's BER depends on the probability of default. The lower the BER, and the lower the classification error, the better the model.

<table>
<thead>
<tr>
<th>Measure</th>
<th>Description</th>
<th>PD Report</th>
<th>LGD Report</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bayesian Error Rate (BER)</td>
<td>BER is the proportion of the whole sample that is misclassified when the rating system is in optimal use. For a perfect rating model, the BER has a value of zero. A model's BER depends on the probability of default. The lower the BER, and the lower the classification error, the better the model.</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

D Statistic

The D Statistic is the mean difference of scores between default accounts and non-default accounts, weighted by the relative distribution of those scores.

<table>
<thead>
<tr>
<th>Measure</th>
<th>Description</th>
<th>PD Report</th>
<th>LGD Report</th>
</tr>
</thead>
<tbody>
<tr>
<td>D Statistic</td>
<td>The D Statistic is the mean difference of scores between default accounts and non-default accounts, weighted by the relative distribution of those scores.</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

Error Rate

The Error Rate is the proportion of the total number of incorrect predictions.

<table>
<thead>
<tr>
<th>Measure</th>
<th>Description</th>
<th>PD Report</th>
<th>LGD Report</th>
</tr>
</thead>
<tbody>
<tr>
<td>Error Rate</td>
<td>The Error Rate is the proportion of the total number of incorrect predictions.</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Measure</td>
<td>Description</td>
<td>PD Report</td>
<td>LGD Report</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>Information Statistic (I)</td>
<td>The Information Statistic value is a weighted sum of the difference between conditional default and conditional non-default rates. The higher the value, the more likely a model can predict a default account.</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Kendall’s Tau-b</td>
<td>Kendall's tau-b is a nonparametric measure of association based on the number of concordances and discordances in paired observations. Kendall's tau values range between -1 and +1, with a positive correlation indicating that the ranks of both variables increase together. A negative association indicates that as the rank of one variable increases, the rank of the other variable decreases.</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Kullback-Leibler Statistic (KL)</td>
<td>KL is a non-symmetric measure of the difference between the distributions of default accounts and non-default accounts. This score has similar properties to the information value.</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Kolmogorov-Smirnov Statistic (KS)</td>
<td>KS is the maximum distance between two population distributions. This statistic helps discriminate default accounts from non-default accounts. It is also used to determine the best cutoff in application scoring. The best cutoff maximizes KS, which becomes the best differentiator between the two populations. The KS value can range between 0 and 1, where 1 implies that the model is perfectly accurate in predicting default accounts or separating the two populations. A higher KS denotes a better model.</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>1–PH Statistic (1–PH)</td>
<td>1-PH is the percentage of cumulative non-default accounts for the cumulative 50% of the default accounts.</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Mean Square Error (MSE), Mean Absolute Deviation (MAD), and Mean Absolute Percent Error (MAPE)</td>
<td>MSE, MAD, and MAPE are generated for LGD reports. These statistics measure the differences between the actual LGD and predicted LGD.</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Measure</td>
<td>Description</td>
<td>PD Report</td>
<td>LGD Report</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>Pietra Index</td>
<td>The Pietra Index is a summary index of Receiver Operating Characteristic (ROC) statistics because the Pietra Index is defined as the maximum area of a triangle that can be inscribed between the ROC curve and the diagonal of the unit square. The Pietra Index can take values between 0 and 0.353. As a rating model's performance improves, the value is closer to 0.353. This expression is interpreted as the maximum difference between the cumulative frequency distributions of default accounts and non-default accounts.</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Precision</td>
<td>Precision is the proportion of the actual default accounts among the predicted default accounts.</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>Sensitivity is the ability to correctly classify default accounts that have actually defaulted.</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Somers’ D (p-value)</td>
<td>Somers’ D is a nonparametric measure of association that is based on the number of concordances and discordances in paired observations. It is an asymmetric modification of Kendall's tau. Somers' D differs from Kendall’s tau in that it uses a correction only for pairs that are tied on the independent variable. Values range between -1 and +1. A positive association indicates that the ranks for both variables increase together. A negative association indicates that as the rank of one variable increases, the rank of the other variable decreases.</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Specificity</td>
<td>Specificity is the ability to correctly classify non-default accounts that have not defaulted.</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Validation Score</td>
<td>The Validation Score is the average scaled value of seven distance measures, anchored to a scale of 1 to 13, lowest to highest. The seven measures are the mean difference (D), the percentage of cumulative non-default accounts for the cumulative 50% of the default accounts (1-PH), the maximum deviation (KS), the Gini coefficient (G), the Information Statistic (I), the Area Under the Curve (AUC), or Receiver Operating Characteristic (ROC) statistic, and the Kullback-Leibler statistic (KL).</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>
Model Calibration Measures and Tests

The following table describes the model calibration measures and tests that are used to create the PD and LGD reports:

<table>
<thead>
<tr>
<th>Measure</th>
<th>Description</th>
<th>PD Report</th>
<th>LGD Report</th>
</tr>
</thead>
</table>
| Binomial Test | The Binomial Test evaluates whether the PD of a pool is correctly estimated. It does not take into account correlated defaults, and it generally yields an overestimate of the significance of deviations in the realized default rate from the forecast rate. The Modified Binomial Test now addresses the overestimate. This test takes into account the correlated defaults. The default correlation coefficient in SAS Model Manager is 0.04. By using past banking evaluations, you can use these rho values:

rho=0.04 Qualifying revolving retail
rho=0.15 Residential mortgage
rho=0.16 Other retail
rho=0.24 Corporations, sovereign, and banks

If the number of default accounts per pool exceeds either the low limit (binomial test at 0.95 confidence) or high limit (binomial test at 0.99 confidence), the test suggests that the model is poorly calibrated.

To change the default rho value, contact your application administrator. The value is a report option in SAS Management Console. | Yes | No |
| Brier Skill Score (BSS) | BSS measures the accuracy of probability assessments at the account level. It measures the average squared deviation between predicted probabilities for a set of events and their outcomes. Therefore, a lower score represents a higher accuracy. | Yes | No |

1 Rauhmeier, Robert, and Englemann, Bernd. "PD Validation - Experience from Banking Practice." Available at http://d.yimg.com/kq/groups/12093474/1121755262/name/The+Basel+III+Risk+Parameters.pdf
2 Rauhmeier, Robert, and Englemann, Bernd. "PD Validation - Experience from Banking Practice." Available at http://d.yimg.com/kq/groups/12093474/1121755262/name/The+Basel+III+Risk+Parameters.pdf
<table>
<thead>
<tr>
<th>Measure</th>
<th>Description</th>
<th>PD Report</th>
<th>LGD Report</th>
</tr>
</thead>
<tbody>
<tr>
<td>Confidence Interval</td>
<td>The Confidence Interval indicates the confidence interval band of the PD or LGD for a pool. The Probability of Default report compares the actual and estimated PD rates with the CI limit of the estimate. If the estimated PD lies in the CI limits of the actual PD model, the PD performs better in estimating actual outcomes. For the Loss Given Default (LGD) report, confidence intervals are based on the pool-level average of the estimated LGD, plus or minus the pool-level standard deviation, and multiplied by the 1-(alpha/2) quantile of the standard normal distribution.</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Correlation Analysis</td>
<td>The model validation report for LGD provides a correlation analysis of the estimated LGD with the actual LGD. This correlation analysis is an important measure for a model’s usefulness. The Pearson correlation coefficients are provided at the pool and overall levels for each time period are examined.</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Hosmer-Lemeshow Test (p-value)</td>
<td>The Hosmer-Lemeshow test is a statistical test for goodness-of-fit for classification models. The test assesses whether the observed event rates match the expected event rates in pools. Models for which expected and observed event rates in pools are similar are well calibrated. The p-value of this test is a measure of the accuracy of the estimated default probabilities. The closer the p-value is to zero, the poorer the calibration of the model.</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Mean Absolute Deviation (MAD)</td>
<td>MAD is the distance between the account level estimated and the actual loss LGD, averaged at the pool level.</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Mean Absolute Percent Error</td>
<td>MAPE is the absolute value of the account-level difference between the estimated and actual LGD, divided by the estimated LGD, and averaged at the pool level.</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>(MAPE)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean Squared Error (MSE)</td>
<td>MSE is the squared distance between the account level estimated and actual LGD, averaged at the pool level.</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Measure</td>
<td>Description</td>
<td>PD Report</td>
<td>LGD Report</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>Normal Test</td>
<td>The Normal Test compares the normalized difference of predicted and actual default rates per pool with two limits estimated over multiple observation periods. This test measures the pool stability over time. If a majority of the pools lie in the rejection region, to the right of the limits, then the pooling strategy should be revisited.</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Observed versus Estimated Index Test</td>
<td>The observed versus estimated index is a measure of closeness of the observed and estimated default rates. It measures the model's ability to predict default rates. The closer the index is to zero, the better the model performs in predicting default rates.</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Traffic Lights Test</td>
<td>The Traffic Lights Test evaluates whether the PD of a pool is underestimated, but unlike the binomial test, it does not assume that cross-pool performance is statistically independent. If the number of default accounts per pool exceeds either the low limit (Traffic Lights Test at 0.95 confidence) or high limit (Traffic Lights Test at 0.99 confidence), the test suggests the model is poorly calibrated.</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>
Here is the recommended reading list for this title:

- *SAS Model Manager: Administrator’s Guide*
- *SAS In-Database Products: User’s Guide*
- *SAS Factory Miner: User’s Guide*

For a complete list of SAS publications, go to sas.com/store/books. If you have questions about which titles you need, please contact a SAS Representative:

SAS Books
SAS Campus Drive
Cary, NC 27513-2414
Phone: 1-800-727-0025
Fax: 1-919-677-4444
Email: sasbook@sas.com
Web address: sas.com/store/books
Glossary

analytical model
a statistical model that is designed to perform a specific task or to predict the probability of a specific event.

attribute
See variable attribute.

backtesting
a procedure for monitoring the quality of behavioral and application scoring models. Backtesting validates the accuracy of the model's predictions.

baseline
the initial performance prediction against which the output data from later tasks is compared.

bin
a grouping of predictor variable values that is used for frequency analysis.

candidate model
a predictive model that evaluates a model's predictive power as compared with the champion model's predictive power.

challenger model
a model that is compared and assessed against a champion model for the purpose of replacing the champion model in a production scoring environment.

champion model
the best predictive model that is chosen from a pool of candidate models in a data mining environment.

characteristic report
a report that detects and quantifies shifts in the distribution of input variables over time in data that is used to create predictive models.

classification model
a predictive model that has a categorical, ordinal, or binary target.
clustering model
a model in which data sets are divided into mutually exclusive groups in such a way that the observations for each group are as close as possible to one another, and different groups are as far as possible from one another.

component file
a file that defines a predictive model. Component files can be SAS programs or data sets, XML files, log files, SPK files, or CSV files.

data model training
the process of building a predictive model from data.

data object
an object that holds the business data that is required to execute workflow tasks.

data set
See SAS data set.

data source (source)
a table, view, or file from which you will extract information. Sources can be in any format that SAS can access, on any supported hardware platform. The metadata for a source is typically an input to a job.

DATA step
in a SAS program, a group of statements that begins with a DATA statement and that ends with either a RUN statement, another DATA statement, a PROC statement, or the end of the job. The DATA step enables you to read raw data or other SAS data sets and to create SAS data sets.

DATA step fragment
a block of SAS code that does not begin with a DATA statement. In SAS Model Manager, all SAS Enterprise Miner models use DATA step fragments in their score code.

delta report
a report that compares the input and output variable attributes for each of the variables that are used to score two candidate models.

dynamic lift report
a graphical report that plots the sequential lift performance of one or more models over time, against test data.

file reference
See fileref.

fileref (file reference)
a name that is temporarily assigned to an external file or to an aggregate storage location such as a directory or a folder. The fileref identifies the file or the storage location to SAS. See also libref.

format
See SAS format.

Gini coefficient
a benchmark statistic that is a measure of the inequality of distribution, and that can be used to summarize the predictive accuracy of a model.
holdout data
a portion of the historical data that is set aside during model development. Holdout data can be used as test data to benchmark the fit and accuracy of the emerging predictive model.

identity
See metadata identity.

index
See SAS index.

informat
See SAS informat.

inner join
a join between two tables that returns all of the rows in one table that have one or more matching rows in the other table.

input variable
a variable that is used in a data mining process to predict the value of one or more target variables.

Kolmogorov-Smirnov chart
a chart that shows the measurement of the maximum vertical separation, or deviation between the cumulative distributions of events and non-events.

library reference
See libref.

libref (library reference)
a SAS name that is associated with the location of a SAS library. For example, in the name MYLIB.MYFILE, MYLIB is the libref, and MYFILE is a file in the SAS library.

life cycle phase
a collection of milestones that complete a major step in the process of selecting and monitoring a champion model. Typical life cycle phases include development, test, production, and retire.

logistic regression
a form of regression analysis in which the target variable (response variable) represents a binary-level, categorical, or ordinal-level response.

macro variable (symbolic variable)
a variable that is part of the SAS macro programming language. The value of a macro variable is a string that remains constant until you change it.

metadata
descriptive data about data that is stored and managed in a database, in order to facilitate access to captured and archived data for further use.

metadata identity (identity)
a metadata object that represents an individual user or a group of users in a SAS metadata environment. Each individual and group that accesses secured resources on a SAS Metadata Server should have a unique metadata identity within that server.
milestone
a collection of tasks that complete a significant event. The significant event can occur either in the process of selecting a champion model, or in the process of monitoring a champion model that is in a production environment.

model assessment
the process of determining how well a model predicts an outcome.

model function
the type of statistical model, such as classification, prediction, or segmentation.

model input variable report
reports the frequencies that input variables are used in the models for an organizational folder, a project, or a version.

model profile report
reports the profile data that is associated with the model input variables, output variables, and target variables.

model scoring (scoring)
the process of applying a model to new data in order to compute outputs.

model target variable report
a report that indicates the frequency in which target variables are used in the models that exist in the selected folder.

monitoring report
a report that consists of assessment charts, a ROC chart, a Gini Trend chart, a KS (Kolmogorov-Smirnov) chart, and a KS trend chart that can be used to compare the model performance curves of several candidate models.

neural network
any of a class of models that usually consist of a large number of neurons, interconnected in complex ways and organized into layers. Examples are flexible nonlinear regression models, discriminant models, data reduction models, and nonlinear dynamic systems.

observation
a row in a SAS data set. All of the data values in an observation are associated with a single entity such as a customer or a state. Each observation contains either one data value or a missing-value indicator for each variable.

package
See SAS package.

participant
a user, group, or role that is assigned to a task. These users, groups, and roles are defined in SAS metadata and are mapped to standard roles for the workflow.

performance table
a table that contains response data that is collected over a period of time. Performance tables are used to monitor the performance of a champion model that is in production.

PFD
See process flow diagram.
PMML
See Predictive Modeling Markup Language.

policy
a workflow element that associates event-driven logic with a task or subflow. Policies are usually triggered automatically by an event such as a status change or a timer event.

prediction model
a model that predicts the outcome of an interval target.

Predictive Modeling Markup Language (PMML)
an XML based standard for representing data mining results for scoring purposes. It enables the sharing and deployment of data mining results between applications and across data management systems.

process flow diagram (PFD)
a graphical sequence of interconnected symbols that represent an ordered set of steps or tasks that, when combined, form a workflow designed to yield an analytical result.

production models aging report
reports the number and the aging distribution of champion models.

profile data
information that consists of the model name, type, length, label, format, level, and role.

project
a collection of models, SAS programs, data tables, scoring tests, performance data, and reporting documents.

project tree
a hierarchical structure made up of folders and nodes that are related to a single folder or node one level above it and to zero, one, or more folders or nodes one level below it.

property
any of the characteristics of a component that collectively determine the component's appearance and behavior. Examples of types of properties are attributes and methods.

publication channel (SAS publication channel)
an information repository that has been established using the SAS Publishing Framework and that can be used to publish information to users and applications. See also publish.

publish
to deliver electronic information to one or more destinations. These destinations can include message queues, publication channels, and so on.

Publishing Framework
a component of SAS Integration Technologies that enables both users and applications to publish SAS files (including data sets, catalogs, and database views), and other digital content to a variety of destinations. The Publishing Framework also provides tools that enable both users and applications to receive and process published information.
receiver operating characteristic (ROC)
the name given to a chart used in signal detection theory to plot the sensitivity, or true positive rate, against the false positive rate (1 − specificity, or 1 − true negative rate) of binary data values. An ROC chart is used to assess a model's predictive performance.

ROC
See receiver operating characteristic.

SAS code model
a SAS program or a DATA step fragment that computes output values from input values. An example of a SAS code model is the LOGISTIC procedure.

SAS Content Server
a server that stores digital content (such as documents, reports, and images) that is created and used by SAS client applications. To interact with the server, clients use WebDAV-based protocols for access, versioning, collaboration, security, and searching.

SAS data set (data set)
a file whose contents are in one of the native SAS file formats. There are two types of SAS data sets: SAS data files and SAS data views.

SAS format (format)
a type of SAS language element that is used to write or display data values according to the data type: numeric, character, date, time, or timestamp.

SAS index (index)
a component of a SAS data set that enables SAS to access observations in the SAS data set quickly and efficiently. The purpose of SAS indexes is to optimize WHERE-clause processing and to facilitate BY-group processing.

SAS informat (informat)
a type of SAS language element that is used to read data values according to the data's type: numeric, character, date, time, or timestamp.

SAS Metadata Repository
a container for metadata that is managed by the SAS Metadata Server. See also SAS Metadata Server.

SAS Metadata Server
a multi-user server that enables users to read metadata from or write metadata to one or more SAS Metadata Repositories.

SAS Model Manager repository
a location in the SAS Content Server where SAS Model Manager data is stored, organized, and maintained.

SAS package (package)
a container for data that has been generated or collected for delivery to consumers by the SAS Publishing Framework. Packages can contain SAS files, binary files, HTML files, URLs, text files, viewer files, and metadata.

SAS publication channel
See publication channel.
SAS variable (variable)
a column in a SAS data set or in a SAS data view. The data values for each variable
describe a single characteristic for all observations (rows). See also macro variable.

scoring
See model scoring.

scoring function
a user-defined function that is created by the SAS Scoring Accelerator from a
scoring model and that is deployed inside the database.

scoring input table
a table that contains the variables and data that are used as input in a scoring test.

scoring output table
a table that contains the output variables and data that result from performing a
scoring test. Before executing a scoring test, the scoring output table defines the
variables to keep as the scoring results.

scoring test
a workflow that executes a model's score code.

segmentation model
a model that identifies and forms segments, or clusters, of individual observations
that are associated with an attribute of interest.

source
See data source.

stability report
a graphical report that detects and quantifies shifts in the distribution of output
variables over time in data that is produced by a model.

subscriber
a recipient of information that is published to a SAS publication channel.

swimlane
a workflow diagram element that enables you to group tasks that are assigned to the
same participant.

symbolic variable
See macro variable.

target event value
for binary models, the value of a target variable that a model attempts to predict. In SAS Model Manager, the target event value is a property of a model.

target variable
a variable whose values are known in one or more data sets that are available (in training data, for example) but whose values are unknown in one or more future data sets (in a score data set, for example). Data mining models use data from known variables to predict the values of target variables.

task
See workflow task.
task status
the outcome of a task in a workflow. The status of a task (for example, Started, Canceled, Approved) is typically used to trigger the next task.

test table
a SAS data set that is used as input to a model that tests the accuracy of a model's output.

training data
data that contains input values and target values that are used to train and build predictive models.

universally unique identifier (UUID)
a number that is used to uniquely identify information in distributed systems without significant central coordination. There are 32 hexadecimal characters in a UUID, and these are divided into five groups with hyphens between them as follows: 8-4-4-4-12. Altogether the 16-byte (128-bit) canonical UUID has 36 characters (32 alphanumeric characters and 4 hyphens). For example: 123e4567-e89b-12d3-a456-426655440000

user-defined report
a customized report. The customized report is a SAS program and its auxiliary files and is stored on the workspace server that is used by SAS Model manager. User-defined reports are accessible from the New Reports wizard.

UUID
See universally unique identifier.

variable
See SAS variable.

variable attribute (attribute)
any of the following characteristics that are associated with a particular variable: name, label, format, informat, data type, and length.

WebDAV server
an HTTP server that supports the collaborative authoring of documents that are located on the server. The server supports the locking of documents, so that multiple authors cannot make changes to a document at the same time. It also associates metadata with documents in order to facilitate searching. The SAS business intelligence applications use this type of server primarily as a report repository. Common WebDAV servers include the Apache HTTP Server (with its WebDAV modules enabled), Xythos Software's WebFile Server, and Microsoft Corporation's Internet Information Server (IIS).

workflow
a series of tasks, together with the participants and the logic that is required to execute the tasks. A workflow includes policies, status values, and data objects.

workflow definition
a workflow template that has been uploaded to the server and activated. Workflow definitions are used by the SAS Workflow Engine to create new workflow instances.

workflow instance
a workflow that is running in the SAS Workflow Engine. After a workflow template is uploaded to the server and activated, client applications can use the template to
create and run a new copy of the workflow definition. Each new copy is a workflow instance.

workflow task (task)
a workflow element that associates executable logic with an event such as a status change or timer event.

workflow template
a model of a workflow that has been saved to an XML file.
Index

A
- ad hoc reports 147, 149
 - compared with user-defined reports 148
 - creating 149
 - example 150
- aggregated reports 161
 - create 161
 - delete 163
 - view 162
- alert notifications
 - configuring for workflows 6
- analytical model
 - specifying for model import 249
- archive 42
- Assessment Charts 141
- attachments 59, 89, 110

B
- backup folders
 - See archive

C
- challenger model 209
- Champion and Challenger Performance report 143
- champion model 208
- champion models
 - deploying 208
 - requirements for 208
 - setting 208
- Characteristic reports
 - performance index warnings and alerts 174
- classification model
 - specifying for model import 249
- clustering model
 - specifying for model import 249
- colors, application window preference 5
- comments 59, 89, 111
- component files
 - model templates 242

D
- Dashboard report
 - create 191
 - edit 195
 - generate 193
 - manage 194
 - overview 191
 - view 194
- Data Composition reports 167, 168
 - Stability report 167, 168
- data sets
 - performance data sets 177
 - performance tables 256
 - project control tables 253
 - project input tables 254
 - project output tables 254
 - scoring input tables 255
- data source tables
 - local or network drive 262
- data sources
 - performance table 260
 - project input table 257
 - project output table 257
 - scoring test input tables 259
 - scoring test output tables 259
 - test table 260
- database
 - prerequisites for publishing 217
 - database settings
 - descriptions 224
 - Delta report 128
 - deploying models 207
 - champion models 208
 - duplicating or moving models 77
- Dynamic Lift report 129
- Dynamic Lift reports
 - creating test tables 260
 - verifying model properties 130
 - verifying project properties 130

E
- Edit Performance Definition wizard
naming performance tables for use with exporting models from a folder from a project

F
focus indicator, preference folders
archive create deleting duplicate or move models export models import models manage rename restore update models

G
Gini plots Gini Trend Chart

I
importing models into a folder local files mapping variables model properties overview PMML models SAS code models SAS Metadata Repository SAS Model Package file Interval Target Variable report

K
Kolmogorov-Smirnov (KS) plots KS Chart KS reports KS Trend Chart

L
libref librefs R model user-defined report life cycle status Lift Trend chart locale, preference lock or unlock version lock/unlock project lock/unlock version locking versions Loss Given Default report

M
macro variables defining for user-defined reports global manage project versions workflows model add dependencies add files add keywords add user-defined properties add version attachments comments create variables from SAS code file manage versions set properties set version user-defined templates view lineage Model Assessment reports performance index warnings and alerts

model component files R model SAS package file specifying for model import model deploy challenger champion lock version overview Model Input Variable Report model inventory add model user-defined properties overview Model Monitoring reports monitoring Gini (ROC and Trend) reports monitoring Lift reports Model Profile report model retrain edit execute overview prerequisites
schedule 202
view 203
Model Target Variable Report 168
model templates
component files 242
File List properties 249
properties 249
system and user properties 250
template properties 249
models
search 63
search and filter results 91
models publish
database 217
history 226
overview 213
remove 226
SAS channel 214
SAS metadata repository 215
monitoring Lift reports 171
monitoring performance 107
Monitoring report 141
Monitoring reports 141
creating 107, 142, 144
monitoring ROC & Gini reports 171

N
naming performance tables 261

P
package files
creating 70
performance data sets 187
creating performance reports 177
performance definition 179
edit 181
execute 181
performance monitoring
alerts 173
champion model 175
Data Composition reports 168
job history 186
overview 165
performance data sets 187
performance index 173
prerequisites 179
process 175
reports 176
schedule 184
Summary results 168
types 167
warnings 173
performance monitoring reports
Data Composition reports 167
Model Monitoring reports 167, 171
Monitoring reports 141
Summary reports 141
performance reports
creating 107
performance data sets and 177
performance tables 256, 260
creating 260
naming for use with Edit Performance
 Definition wizard 261
PMML models 71
support 265
portable format files 58
portfolio
add a new version 101
add an input variable 102
attachments 89, 110
comments 89, 111
create 99
publishing champion models 103
publishing models 104
publishing models to a database 106
publishing models to a SAS Channel 105
remove published models from database 107
portfolios 95
See also monitoring performance
creating a control table 98
planning 96
prerequisites for creating 97
search for models 63
prediction model
specifying for model import 249
preferences
global 5
SAS Model Manager preferences 5
SAS Preferences Manager 5
setting 4
Probability of Default report 136
project
comments 89, 111
project control tables 253
project history 59
project input tables 254
creating 257
project output tables 254
creating 258
project tables 253
performance tables 256
project control tables 253
project input tables 254
project output tables 254
scoring input tables 255
scoring output tables 255
test tables 256
train tables 256
project variables 55
project versions
projects
 attachments 59
 comments 59
 create 50
 history 59
lock/unlock 60
overview 48
planning 48
prerequisites 49
properties 51
search for models 63
templates 60
variables 55
properties
 Basel II 134, 137
 Dynamic Lift reports 130
 Loss Given Default (LGD) 134, 137
model template properties 249
 Probability of Default (PD) 134, 137
prototype tables
 project input tables 254
 project output tables 254
 scoring output tables 255
 scoring test output tables 259
PSCORE procedure 265
publishing
 project champion models 103
publishing models 213
 database settings 224
publishing models to a database 217
publishing models to a SAS channel 214
publishing models to a SAS metadata repository 215

R
R models
 building 268
 model component files 270
 model template file 269
 using in SAS Model Manager 267
report templates
 for user-defined reports 153
reports 167, 168
 ad hoc reports 147
 aggregated reports 161
 Champion and Challenger Performance report 143
 Dashboard report 191
 Data Composition reports 167, 168
 Delta report 128
 Dynamic Lift report 129
Interval Target Variable report 132
KS reports 172
Loss Given Default prerequisites 134
Loss Given Default report 133
Model Assessment reports 174
Model Input Variable Report 168
Model Monitoring reports 167, 171
Model Profile report 126
Model Target Variable Report 168
monitoring Lift reports 171
Monitoring report 141
Monitoring reports 141
monitoring ROC & Gini reports 171
overview 124
Probability of Default prerequisites 137
Probability of Default report 136
Stability reports 167, 168
Summary of Reports 168
Summary reports 167
monitoring ROC & Gini reports 171
view 145
restore 42
retrain models 197
ROC Chart 141, 143
ROC plots 171

S
SAS code models
 importing 72
SAS Model Package (spk) File 70
SAS Preferences Manager 5
SAS programs
 delete from SAS Content Server 156
 edit on SAS Content Server 156
 upload to SAS Content Server 152
 user-defined report 151, 152
scoring input tables 255
 creating 259
scoring models
 execute scoring test 119
 output table 116
 overview 115
 properties 120
 schedule scoring test 119
 scoring test 118
scoring output table 116
scoring output tables 255
 adding to SAS Model Manager 255
 creating 259
 scoring test 118, 119
 scoring test input tables 259
 scoring test output tables 259
Stability reports 167, 168
 overview 169
performance index warnings and alerts 174
start-up code
 delete libref 263
 edit 263
Summary of Reports 168
Summary reports 167
Summary results 168

T
tables
 local or network drive 262
templates 60
 report templates 153
test tables 256
 creating 260
theme, preference 5
train tables 256
Training Summary Data Set report 139
tutorial
 make files available 12
 organize model hierarchy 16
tutorials
 define data sources 14
 sign in 13

U
unlock or lock version 58
unlock/lock project 60
unlocking
 versions 211
user reports
 ad hoc 147
 output created by 148
 user-defined 147
user-defined model templates 87
user-defined reports 147, 151
 compared with ad hoc reports 148
 creating 151

example 157
macro variables 152
report template for 153
running 156

V
versions
 creating 101
 displayed 58
 life cycle status 58
 lock or unlock 58
 locking 210
 manage 57
 new 57
 overview 57
 portable format files 58
 unlocking 211

W
workflow
 assign participant 236
 participants 236
 release task 237
 remove participant 237
 start 229
 tasks 230
 terminate 238
Workflow 229
workflow participant
 assign 236
 remove 237
workflow task
 edit properties 238
 release 237
workflows
 alert notifications 6
 manage 233
 view 234
Gain Greater Insight into Your SAS® Software with SAS Books.

Discover all that you need on your journey to knowledge and empowerment.