Statistical Measures Used in Basel II Reports

Overview of Statistical Measures Used for Basel II Reports

SAS Model Manager Basel II reports use several statistical measures to validate the stability, performance, and calibration for the two key types of Basel II risk models: the Probability of Default (PD) model and the Loss Given Default (LGD) model.
The statistical measures for model validation are grouped into three categories:
Category
Description
Model Stability
Tracks the change in distribution of the modeling data and scoring data.
Model Performance
  • Measures the ability of a model to discriminate between customers with accounts that have defaulted, and customers with accounts that have not defaulted. The score difference between non-default and default accounts helps determine the required cutoff score. The cutoff score helps predict whether a credit exposure is a default account.
  • Measures the relationship between the actual default probability and the predicted default probability. This helps you understand the performance of a model over a time period.
Model Calibration
Checks the accuracy of the PD and LGD models by comparing the correct quantification of the risk components with the available standards.
The sections that follow describe the measures, statistics, and tests that are used to create the PD and LGD reports.

Model Stability Measure

The following table describes the model stability measure that is used to create the PD report and the LGD reports.
Measure
Description
PD Report
LGD Report
System Stability Index (SSI)
SSI monitors the score distribution over a time period.
Yes
Yes

Model Performance Measures and Statistics

The following table describes the model performance measures that are used to create the PD and LGD reports.
Measure
Description
PD Report
LGD Report
Accuracy
Accuracy is the proportion of the total number of predictions that were correct.
Yes
No
Accuracy Ratio (AR)
AR is the summary index of Cumulative Accuracy Profile (CAP) and is also known as Gini coefficient. It shows the performance of the model that is being evaluated by depicting the percentage of defaulted accounts that are captured by the model across different scores.
Yes
Yes
Area Under Curve (AUC)
AUC can be interpreted as the average ability of the rating model to accurately classify non-default accounts and default accounts. It represents the discrimination between the two populations. A higher area denotes higher discrimination. When AUC is 0.5, it means that non-default accounts and default accounts are randomly classified, and when AUC is 1, it means that the scoring model accurately classifies non-default accounts and default accounts. Thus, the AUC ranges between 0.5 and 1.
Yes
No
Bayesian Error Rate (BER)
BER is the proportion of the whole sample that is misclassified when the rating system is in optimal use. For a perfect rating model, the BER has a value of zero. A model's BER depends on the probability of default. The lower the BER, and the lower the classification error, the better the model.
Yes
No
D Statistic
The D Statistic is the mean difference of scores between default accounts and non-default accounts, weighted by the relative distribution of those scores.
Yes
No
Error Rate
The Error Rate is the proportion of the total number of incorrect predictions.
Yes
No
Information Statistic (I)
The Information Statistic value is a weighted sum of the difference between conditional default and conditional non-default rates. The higher the value, the more likely a model can predict a default account.
Yes
No
Kendall’s Tau-b
Kendall's tau-b is a nonparametric measure of association based on the number of concordances and discordances in paired observations. Kendall's tau values range between -1 and +1, with a positive correlation indicating that the ranks of both variables increase together. A negative association indicates that as the rank of one variable increases, the rank of the other variable decreases.
Yes
No
Kullback-Leibler Statistic (KL)
KL is a non-symmetric measure of the difference between the distributions of default accounts and non-default accounts. This score has similar properties to the information value.
Yes
No
Kolmogorov-Smirnov Statistic (KS)
KS is the maximum distance between two population distributions. This statistic helps discriminate default accounts from non-default accounts. It is also used to determine the best cutoff in application scoring. The best cutoff maximizes KS, which becomes the best differentiator between the two populations. The KS value can range between 0 and 1, where 1 implies that the model is perfectly accurate in predicting default accounts or separating the two populations. A higher KS denotes a better model.
Yes
No
1–PH Statistic (1–PH)
1-PH is the percentage of cumulative non-default accounts for the cumulative 50% of the default accounts.
Yes
No
Mean Square Error (MSE), Mean Absolute Deviation (MAD), and Mean Absolute Percent Error (MAPE)
MSE, MAD, and MAPE are generated for LGD reports. These statistics measure the differences between the actual LGD and predicted LGD.
No
Yes
Pietra Index
The Pietra Index is a summary index of Receiver Operating Characteristic (ROC) statistics because the Pietra Index is defined as the maximum area of a triangle that can be inscribed between the ROC curve and the diagonal of the unit square.
The Pietra Index can take values between 0 and 0.353. As a rating model's performance improves, the value is closer to 0.353. This expression is interpreted as the maximum difference between the cumulative frequency distributions of default accounts and non-default accounts.
Yes
No
Precision
Precision is the proportion of the actual default accounts among the predicted default accounts.
Yes
No
Sensitivity
Sensitivity is the ability to correctly classify default accounts that have actually defaulted.
Yes
No
Somers’ D (p-value)
Somers' D is a nonparametric measure of association that is based on the number of concordances and discordances in paired observations. It is an asymmetric modification of Kendall's tau. Somers' D differs from Kendall’s tau in that it uses a correction only for pairs that are tied on the independent variable. Values range between -1 and +1. A positive association indicates that the ranks for both variables increase together. A negative association indicates that as the rank of one variable increases, the rank of the other variable decreases.
Yes
No
Specificity
Specificity is the ability to correctly classify non-default accounts that have not defaulted.
Yes
No
Validation Score
The Validation Score is the average scaled value of seven distance measures, anchored to a scale of 1 to 13, lowest to highest. The seven measures are the mean difference (D), the percentage of cumulative non-default accounts for the cumulative 50% of the default accounts (1-PH), the maximum deviation (KS), the Gini coefficient (G), the Information Statistic (I), the Area Under the Curve (AUC), or Receiver Operating Characteristic (ROC) statistic, and the Kullback-Leibler statistic (KL).
Yes
No

Model Calibration Measures and Tests

The following table describes the model calibration measures and tests that are used to create the PD and LGD reports:
Measure
Description
PD Report
LGD Report
Binomial Test
The Binomial Test evaluates whether the PD of a pool is correctly estimated. It does not take into account correlated defaults, and it generally yields an overestimate of the significance of deviations in the realized default rate from the forecast rate. The Modified Binomial Test now addresses the overestimate. This test takes into account the correlated defaults (footnote 1) . The default correlation coefficient in SAS Model Manager is 0.04. By using past banking evaluations, you can use these rho values (footnote 2) :
rho=0.04 Qualifying revolving retail
rho=0.15 Residential mortgage
rho=0.16 Other retail
rho=0.24 Corporations, sovereign, and banks
If the number of default accounts per pool exceeds either the low limit (binomial test at 0.95 confidence) or high limit (binomial test at 0.99 confidence), the test suggests that the model is poorly calibrated.
To change the default rho value, contact your application administrator. The value is a report option in SAS Management Console.
Yes
No
Brier Skill Score (BSS)
BSS measures the accuracy of probability assessments at the account level. It measures the average squared deviation between predicted probabilities for a set of events and their outcomes. Therefore, a lower score represents a higher accuracy.
Yes
No
Confidence Interval
The Confidence Interval indicates the confidence interval band of the PD or LGD for a pool. The Probability of Default report compares the actual and estimated PD rates with the CI limit of the estimate. If the estimated PD lies in the CI limits of the actual PD model, the PD performs better in estimating actual outcomes.
For the Loss Given Default (LGD) report, confidence intervals are based on the pool-level average of the estimated LGD, plus or minus the pool-level standard deviation, and multiplied by the 1-(alpha/2) quantile of the standard normal distribution.
Yes
Yes
Correlation Analysis
The model validation report for LGD provides a correlation analysis of the estimated LGD with the actual LGD. This correlation analysis is an important measure for a model’s usefulness. The Pearson correlation coefficients are provided at the pool and overall levels for each time period are examined.
No
Yes
Hosmer-Lemeshow Test (p-value)
The Hosmer-Lemeshow test is a statistical test for goodness-of-fit for classification models. The test assesses whether the observed event rates match the expected event rates in pools. Models for which expected and observed event rates in pools are similar are well calibrated. The p-value of this test is a measure of the accuracy of the estimated default probabilities. The closer the p-value is to zero, the poorer the calibration of the model.
Yes
No
Mean Absolute Deviation (MAD)
MAD is the distance between the account level estimated and the actual loss LGD, averaged at the pool level.
No
Yes
Mean Absolute Percent Error (MAPE)
MAPE is the absolute value of the account-level difference between the estimated and the actual LGD, divided by the estimated LGD, and averaged at the pool level.
No
Yes
Mean Squared Error (MSE)
MSE is the squared distance between the account level estimated and actual LGD, averaged at the pool level.
No
Yes
Normal Test
The Normal Test compares the normalized difference of predicted and actual default rates per pool with two limits estimated over multiple observation periods. This test measures the pool stability over time. If a majority of the pools lie in the rejection region, to the right of the limits, then the pooling strategy should be revisited.
Yes
No
Observed versus Estimated Index
The observed versus estimated index is a measure of closeness of the observed and estimated default rates. It measures the model's ability to predict default rates. The closer the index is to zero, the better the model performs in predicting default rates.
Yes
No
Traffic Lights Test
The Traffic Lights Test evaluates whether the PD of a pool is underestimated, but unlike the binomial test, it does not assume that cross-pool performance is statistically independent. If the number of default accounts per pool exceeds either the low limit (Traffic Lights Test at 0.95 confidence) or high limit (Traffic Lights Test at 0.99 confidence), the test suggests the model is poorly calibrated.
Yes
No
FOOTNOTE 1:Rauhmeier, Robert, and Englemann, Bernd. "PD Validation - Experience from Banking Practice." Available at http://d.yimg.com/kq/groups/12093474/1121755262/name/The+Basel+II+Risk+Parameters.pdf[return]
FOOTNOTE 2:Rauhmeier, Robert, and Englemann, Bernd. "PD Validation - Experience from Banking Practice." Available at http://d.yimg.com/kq/groups/12093474/1121755262/name/The+Basel+II+Risk+Parameters.pdf[return]