
SAS® Micro Analytic Service
2.3: Programming and
Administration Guide

SAS® Documentation

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2017. SAS® Micro Analytic Service 2.3: Programming and
Administration Guide. Cary, NC: SAS Institute Inc.

SAS® Micro Analytic Service 2.3: Programming and Administration Guide

Copyright © 2017, SAS Institute Inc., Cary, NC, USA

All Rights Reserved. Produced in the United States of America.

For a hard copy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS Institute Inc.

For a web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at the time you acquire this
publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the publisher is illegal and
punishable by law. Please purchase only authorized electronic editions and do not participate in or encourage electronic piracy of copyrighted
materials. Your support of others' rights is appreciated.

U.S. Government License Rights; Restricted Rights: The Software and its documentation is commercial computer software developed at private
expense and is provided with RESTRICTED RIGHTS to the United States Government. Use, duplication, or disclosure of the Software by the
United States Government is subject to the license terms of this Agreement pursuant to, as applicable, FAR 12.212, DFAR 227.7202-1(a), DFAR
227.7202-3(a), and DFAR 227.7202-4, and, to the extent required under U.S. federal law, the minimum restricted rights as set out in FAR
52.227-19 (DEC 2007). If FAR 52.227-19 is applicable, this provision serves as notice under clause (c) thereof and no other notice is required to be
affixed to the Software or documentation. The Government’s rights in Software and documentation shall be only those set forth in this Agreement.

SAS Institute Inc., SAS Campus Drive, Cary, NC 27513-2414

March 2017

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other
countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

2.3-P1:masag

Contents

Accessibility . v

Chapter 1 • Introduction to SAS Micro Analytic Service . 1
What Is SAS Micro Analytic Service? . 1
What Is SAS Event Stream Processing? . 2

Chapter 2 • Concepts . 3
Overview . 3
Module Context . 4
Revision . 4

Chapter 3 • Publishing to SAS Micro Analytic Service in SAS Event Stream Processing 7
Overview . 7
Object Hierarchy . 8
C++ Methods . 8
C++ Example . 11
XML Example . 11
Data Type Mappings . 14
Generating Multiple Derived Events from a Single Source Event 15

Chapter 4 • Processing Event Opcodes and Flags . 19
Operation Codes and Flags . 19
DS2 Opcodes Example . 21

Chapter 5 • DS2 Programming for Event Stream Processing with SAS
Micro Analytic Service . 23

Overview . 23
DS2 Source Code Prerequisites . 23
SAS Micro Analytic Service and SAS Foundation . 24
Programming Blocks . 24
Public and Private Methods and Packages . 25
Argument Types Supported in Public Methods . 28

Chapter 6 • Best Practices for DS2 Programming . 29
Overview . 29
Global Packages Versus Local Packages . 29
Replacing SCAN (and TRANWRD) with DS2 Code . 30
Hash Package . 33
Character-to-Numeric Conversions . 33
Passing Character Values to Methods . 33
Performing the Computation Once . 34
Moving Invariant Computations Out of Loops . 34

Chapter 7 • Python Programming for SAS Event Stream Processing with
SAS Micro Analytic Service . 35

Introduction . 35
Public and Private Methods . 35
Example . 36

Chapter 8 • Administration and Deployment . 39
SAS Micro Analytic Service Logging . 39
Deployment . 40
Configuring Python . 40
Configuration Helper Scripts . 42

Recommended Reading . 45
Index . 47

iv Contents

Accessibility

For information about the accessibility of any of the products mentioned in this
document, see the usage documentation for that product.

v

vi

Chapter 1

Introduction to SAS Micro
Analytic Service

What Is SAS Micro Analytic Service? . 1

What Is SAS Event Stream Processing? . 2

What Is SAS Micro Analytic Service?
SAS Micro Analytic Service 2.3 is a memory-resident, high-performance program
execution service that is designed to run inside SAS Event Stream Processing. As a SAS
platform service, SAS Micro Analytic Service is not available for individual license but
is included in selected SAS solutions. SAS Micro Analytic Service 2.3 is customized for
SAS Event Stream Processing. Unlike SAS Micro Analytic Service 1.3, it omits the
REST and Java components that support SAS Enterprise Decision Manager. SAS Micro
Analytic Service 2.3 includes a core engine that is written in C for high performance and
C++ classes that integrate with SAS Event Stream Processing. These capabilities allow
both to execute within the same process space for maximum performance. The
combination of SAS Event Stream Processing and SAS Micro Analytic Service enables
SAS analytics, business logic, and user-written programs to operate on streams of data in
motion.

Users of SAS Event Stream Processing can publish SAS analytics, such as predictive
models that were created with SAS Enterprise Miner, and they can also author custom
programs using the SAS DS2 or Python programming languages. The custom programs
execute inside SAS Event Stream Processing applications. SAS Micro Analytic Service
can host multiple programs inside SAS Event Stream Processing simultaneously.

SAS Micro Analytic Service supports a subset of the DS2 programming language, which
includes language features that are suitable for the high-performance execution of
transactions. Specific rules and restrictions are detailed in Chapter 5, “DS2 Programming
for Event Stream Processing with SAS Micro Analytic Service,” on page 23.

SAS Micro Analytic Service supports Anaconda’s distribution of Python 3.4 and 2.7.
Python programs that are written for SAS Micro Analytic Service might include custom
functions, and they can use any third-party Python packages that have been deployed to
a local Anaconda Python environment. Specific rules for using Python are detailed in
Chapter 7, “Python Programming for SAS Event Stream Processing with SAS Micro
Analytic Service,” on page 35.

1

What Is SAS Event Stream Processing?
Event stream processing is a form of complex event processing technology that is often
used in data and decision applications. It analyzes and processes large volumes of
streaming data quickly, helping you analyze events in motion—even as they are
generated. Instead of storing data and running queries against it, the SAS Event Stream
Processing Engine stores the queries and streams data through them. In this way,
continuous analysis of data occurs as it is received, updating the intelligence as new
events occur. Incoming data is read through adapters that are part of a publish-and-
subscribe architecture used to read data feeds. Objects written in XML, DS2, Python,
and C++ are used to model business logic within the engine. Data that passes through the
engine is examined for patterns and can be filtered to more permanent storage. Prebuilt
high-performance adapters publish filtered data to other downstream applications. The
SAS Event Stream Processing Engine is designed for top performance with a flexible
threaded processing model for submillisecond response and high-volume throughput.

The SAS Event Stream Processing Engine uses data flow models to define an ordering
of source and derived event windows; the former defines the schema of event streams
flowing into the system while the latter determines how these incoming event streams
are processed. These data flow models are directed graphs that are frequently referred to
as continuous queries, and they are the defining characteristic of event stream processing
systems. The reason these models are referred to as continuous queries is that event
stream processing systems use a set of known (or modeled) queries of interest. Also,
they continuously update the resultant set of those queries (also known as derived
windows) as new events are published to the system. Applications or end users can
subscribe to any set of windows (for which they are authorized). Window events can also
be queried through SQL in either an ad hoc or on-demand manner.

The SAS Event Stream Processing Engine is event driven- and data flow-centric in that
event streams are continuously published to the system and processed through a set of
data flow models (or continuous queries). As events are absorbed into the platform and
processed though the continuous queries, windows (or nodes in the data flow model) can
be queried or subscribed to. Each derived window in the graph is defined by relational
operators (for example, join, aggregate, or filter), pattern matching, or procedural
processing (for example, an extension to relational processing and pattern matching).
However, this is not standard for all event stream processes.

SAS Micro Analytic Service executes inside the event stream processing procedural
window, enabling continuous queries to process events with SAS analytics and custom
logic that is written in DS2 or Python.

2 Chapter 1 • Introduction to SAS Micro Analytic Service

Chapter 2

Concepts

Overview . 3

Module Context . 4

Revision . 4

Overview
DS2 and Python programs that are published to SAS Micro Analytic Service, whether
user-written or generated by SAS analytical solutions, are known as modules. This term
reflects the language-neutral nature of SAS Micro Analytic Service interfaces.

A module is a collection of methods. For DS2, a module represents one DS2 package
and its methods. For Python, a module is a collection of Python functions.

Module methods can be used to process events in a SAS Event Stream Processing
continuous query. The results of such processing create derived events that flow to
downstream components in the continuous query. In addition to generating derived
events, module methods can influence SAS Event Stream Processing by interrogating
and setting event opcodes and flags. Event opcodes and flags are covered in more detail
in the DS2 and Python programming chapters that follow. Also, for more information
about SAS Event Stream Processing, see the Documentation in the Knowledge Base, at
http://support.sas.com.

SAS Micro Analytic Service uses two internal component types to manage the modules
that are published to it. These are the module context and the revision. A third
component, the user context, provides execution environments containing sets of module
contexts. SAS Micro Analytic Service automatically manages user contexts for SAS
Event Stream Processing by maintaining one user context per dfESPproject object.
Therefore, unlike previous versions of SAS Micro Analytic Service, user contexts do not
appear in the user interfaces.

Note: If you plan to write DS2 modules to deploy to SAS Micro Analytic Service,
follow the programming guidelines described in Chapter 5, “DS2 Programming for
Event Stream Processing with SAS Micro Analytic Service,” on page 23. If you
plan to write Python modules to deploy to SAS Micro Analytic Service, follow the
programming guidelines described in Chapter 7, “Python Programming for SAS
Event Stream Processing with SAS Micro Analytic Service,” on page 35.

3

http://support.sas.com

Module Context
A module represents program code. In the case of DS2, each module represents exactly
one DS2 package. If you are unfamiliar with DS2 packages, see “Understanding DS2
Methods and Packages” in SAS 9.4 DS2 Language Reference. Every module is owned by
exactly one user context.

In the case of Python, each module represents a Python program, and each module
method represents a function in the Python program.

SAS Micro Analytic Service supports module revisions and is capable of hosting and
executing multiple revisions of a module concurrently. When SAS Micro Analytic
Service compiles a DS2 package or Python program, it creates a revision of that module.
Therefore, a module is a container of revisions. It also houses any compiler warning or
error messages that were generated from the latest revision compilation or compilation
attempt.

Note: SAS Micro Analytic Service 2.3 runs the latest revision of a module by default.

Revision
A revision is a version of a module. Each revision contains source code, an executable
code stream (optimized binary executable), and metadata. The metadata describes the
methods and method signatures of the module.

SAS Micro Analytic Service assigns a revision number to each revision, which is a
monotonically increasing integer value beginning with 1. A revision is uniquely
identified by module name and revision number. When you reference a revision,
specifying revision number 0 selects the latest revision.

Note: When modules are published to SAS Micro Analytic Service by SAS Event
Stream Processing, only the latest revision is retained.

4 Chapter 2 • Concepts

Figure 2.1 Component Hierarchy

User
context

Revision 2

Module
DS2

packages

User
context

User
context

Module
Python

functions
ModuleModule Module

Revision 3

Revision 1

Revision 1 Revision 1

Revision 7

Revision 8

Revision 1

Revision 2

Revision 1

Revision 5

6 Chapter 2 • Concepts

Chapter 3

Publishing to SAS Micro Analytic
Service in SAS Event Stream
Processing

Overview . 7

Object Hierarchy . 8

C++ Methods . 8

C++ Example . 11

XML Example . 11

Data Type Mappings . 14

Generating Multiple Derived Events from a Single Source Event 15
Overview . 15
Unique Keys . 16
Setting Opcodes and Flags on Multiple Derived Events . 17

Overview
SAS Event Stream Processing uses data flow models to define an ordering of source
windows and derived event windows. The former defines the schema of event streams
flowing into the system, and the latter determines how these incoming event streams are
processed. For more information about SAS Event Stream Processing, see SAS Event
Stream Processing: Overview.

The derived event window in which SAS Micro Analytic Service operates is the
procedural window. Within a continuous query application, procedural windows might
be configured to receive events from one or more source windows. These source events
can be processed by SAS Micro Analytic Service, which might generate zero or more
derived events. These events, in turn, can be subscribed to by downstream windows.

There are two ways to define a SAS Event Stream Processing continuous query: either
by creating a continuous query XML definition or by coding a continuous query in C++.
Both enable you to publish DS2 and Python modules to SAS Micro Analytic Service.
They also specify which of a module’s methods are used to process each input source
window’s events.

7

Object Hierarchy
SAS Event Stream Processing provides an assortment of elements for use in building
continuous query applications, enabling a wide variety of business needs to be met.
Some of the elements that incorporate SAS Micro Analytic Service functionality are
described briefly below. For more information, see Documentation in the Knowledge
Base, at http://support.sas.com.

At a minimum, each event stream processing application consists of a SAS Event Stream
Processing engine (a container of projects), at least one project (a container of
continuous queries), and at least one continuous query that contains windows and the
edges that connect them.

Each project maintains a SAS Micro Analytic Service environment that is shared among
the continuous queries within the project. In the C++ case, DS2 and Python modules are
published to SAS Micro Analytic Service by calling methods on the project. In the XML
case, they are published by including the <mas-modules> tag (a sub-element of
<project>).

SAS Micro Analytic Service operates on the data that is contained in events received by
procedural windows. The procedural window provides a C++ method and an XML
element for mapping source window events to module methods. The XML tag is named
<mas-map>, which is a sub-element of <window-procedural>.

C++ Methods
C++ continuous query authors can use the following methods for publishing, replacing,
or removing DS2 and Python modules and for mapping source window events to module
methods.

dfESPproject::publishToMAS(const char *name,
language_t lang,
const char *sourceCode,
const char *description)

dfESPproject::publishToMAS() publishes a DS2 or Python module to SAS Micro
Analytic Service in SAS Event Stream Processing, where the source code to publish is in
a string.

Parameter Description

name The name of the module. It is used to refer to the module in any
subsequent method calls.

language Specify either DS2 or Python.

sourceCode A string containing the DS2 or Python source code of the module. See
Chapter 5, “DS2 Programming for Event Stream Processing with SAS
Micro Analytic Service,” and Chapter 7, “Python Programming for SAS
Event Stream Processing with SAS Micro Analytic Service,” for
information about programming modules for Micro Analytic Service in
SAS Event Stream Processing.

8 Chapter 3 • Publishing to SAS Micro Analytic Service in SAS Event Stream Processing

http://support.sas.com

Parameter Description

description An optional string that contains a description of the module’s purpose.
Pass in NULL to omit a description.

dfESPproject::publishFileToMAS(const char *name,
language_t lang,
const char *filePath,
const char *description)

dfESPproject::publishFileToMAS() publishes a DS2 or Python module to SAS Micro
Analytic Service, where the source code is to be read from a text file.

Parameter Description

name The name of the module. It is used to refer to the module in any
subsequent method calls.

language Specify either DS2 or Python.

filePath The path to the file containing the DS2 or Python source code of the
module, including filename and extension. See Chapter 5, “DS2
Programming for Event Stream Processing with SAS Micro Analytic
Service,” and Chapter 7, “Python Programming for SAS Event Stream
Processing with SAS Micro Analytic Service,” for Micro Analytic
Service in SAS Event Stream Processing.

description An optional string that contains a description of the module’s purpose.
Pass in NULL to omit a description.

dfESPproject::replaceMASmodule(const char *name,
language_t lang,
const char *sourceCode,
const char *description)

dfESPproject::replaceMASmodule() replaces an existing DS2 or Python module in SAS
Micro Analytic Service, where the replacement source code to publish is in a string. If
the module to replace, indicated by the name parameter, does not exist, then
replaceMASmodule() does not publish the source code.

Parameter Description

name The name of the module. It is used to refer to the module in any
subsequent method calls.

language Specify either DS2 or Python.

sourceCode A string containing the DS2 or Python source code with which to replace
the existing code. See Chapter 5, “DS2 Programming for Event Stream
Processing with SAS Micro Analytic Service,” and Chapter 7, “Python
Programming for SAS Event Stream Processing with SAS Micro
Analytic Service,” for information about programming modules for
Micro Analytic Service in SAS Event Stream Processing.

C++ Methods 9

Parameter Description

description An optional string that contains a description of the module’s purpose.
Pass in NULL to omit a description.

dfESPproject::replaceMASmoduleFromFile(const char *name,
language_t lang,
const char *filePath,
const char *description)

dfESPproject:: replaceMASmoduleFromFile () replaces an existing DS2 or Python
module in SAS Micro Analytic Service, where the source code is to be read from a text
file. If the module to replace, indicated by the name parameter, does not exist, then
replaceMASmoduleFromFile() does not publish the source code.

Parameter Description

name The name of the module. It is used to refer to the module in any
subsequent method calls.

language Specify either DS2 or Python.

filePath The path to the file containing the DS2 or Python source code with
which to replace the existing code, including filename and extension. See
Chapter 5, “DS2 Programming for Event Stream Processing with SAS
Micro Analytic Service,” and Chapter 7, “Python Programming for SAS
Event Stream Processing with SAS Micro Analytic Service,” for Micro
Analytic Service in SAS Event Stream Processing.

description An optional string that contains a description of the module’s purpose.
Pass in NULL to omit a description.

dfESPproject::deleteMASmodule(const char *name,)

dfESPproject:: deleteMASmodule() removes the specified module from SAS Micro
Analytic Service. The *name parameter is the name of the module to delete.

dfESPpcontext::registerMethod_MAS(dfESPwindow *w,
const char *moduleName,
const char *methodName)

dfESPpcontext:: registerMethod_MAS () causes the specified source window’s events to
be processed by the specified module method. The module containing the method must
have been published to SAS Micro Analytic Service before calling
registerMethod_MAS().

Parameter Description

w The source window whose events are to be processed by the specified
module method.

moduleName The name of the module containing the specified method.

methodName The name of the method to use to process the specified source window’s
events.

10 Chapter 3 • Publishing to SAS Micro Analytic Service in SAS Event Stream Processing

C++ Example
Here is an example C++ continuous query. SAS Micro Analytic Service related method
calls are highlighted. Error checking code has been removed to emphasize the main
elements of the program, but should always be included in production.

// Initialize the SAS Event Stream Processing
// Engine and create a project.
dfESPengine *myEngine = dfESPengine::initialize(argc,
 argv, "engine", pubsub_DISABLE);
dfESPproject *project_01 = myEngine->newProject("project_01");

// Publish a DS2 module to SAS Micro Analytic Service,
// in this case a credit risk scoring model.
project_01->publishFileToMAS("credit_risk", DS2,
 "./credit_risk.ds2", "Credit Risk Model");

// Create a continuous query containing source and procedural windows.
dfESPcontquery *cq_01 = project_01->newContquery("contquery_01");
sw_01 = cq_01->newWindow_source("sourceWindow_01",
dfESPindextypes::pi_HASH,dfESPstring("ID*:int32,custid:int32,
 loanid:int32,amount:money"));
dfESPwindow_procedural *pw_01;
pw_01 = cq_01->newWindow_procedural("proceduralWindow_01",
dfESPindextypes::pi_RBTREE, dfESPstring("ID*:int32,risk_score:double,
 derog_remarks:string"));
dfESPpcontext *ctxt = new dfESPpcontext();

// Register the score() method of the credit_risk module to process
// the source window’s events.
ctxt->registerMethod_MAS(sw_01, "credit_risk", "score");

// Add an edge (directed arrow) between the two windows and start the project.
pw_01->registerMethodContext(ctxt);
cq_01->addEdge(sw_01, pw_01);
project_01->setNumThreads(2);
myEngine->startProjects();

XML Example
Here is an example of an XML continuous query definition. SAS Micro Analytic
Service related elements are highlighted.

<engine port='55555'>
 <description>
 This example has one source window and one procedural
 window. The procedural window uses DS2 code to calculate
 a value from the source window.

 The engine element creates the single engine top level container which

XML Example 11

 sets up dfESP fundamental services such as licensing and logging.
 This single engine instance wraps one or more projects that wrap
 one or more continuous queries and different types of windows.
 </description>
 <projects>
 <project name='trades_proj' pubsub='auto' threads='4'>
 <description>
 This is to create a project. A project specifies a container
 that holds one or more continuous queries and are backed by a
 thread pool of user defined size. You can specify the pubsub
 port and type, number of threads for the project, index type,
 and a tag token data flow model.
 </description>
 <mas-modules>
 <mas-module language="ds2" module="module_1" func-names='compute_volume'>
 <description>
 <![CDATA[This is a SAS Micro Analytic Service module in DS2]]>
 </description>
 <code>
 <![CDATA[
 ds2_options sas; /* SAS-style missing value handling */
 package module_1/overwrite=yes;
 method compute_volume(int quantity, double price, in_out int volume);
 volume = quantity * price;
 end;
 endpackage;
]]>
 </code>
 </mas-module>
 </mas-modules>
 <contqueries>
 <contquery name='trades_traders_cq' trace='pw1'>
 <description>
 This specifies the continuous query container that holds
 a collection of windows and enables you to specify the
 connectivity between windows. You can turn on tracing
 for a list of windows, and specify the index type for
 windows in the query.
 </description>
 <windows>
 <window-source name='Trades' index='pi_RBTREE'>
 <description>
 This defines a source window. All event streams must
 enter continuous queries by being published or
 injected into a source window.
 </description>
 <schema>
 <fields>
 <field name='tradeID' type='string' key='true'/>
 <field name='security' type='string'/>
 <field name='quantity' type='int32'/>
 <field name='price' type='double'/>
 <field name='traderID' type='int64'/>
 <field name='time' type='string'/>
 </fields>
 </schema>

12 Chapter 3 • Publishing to SAS Micro Analytic Service in SAS Event Stream Processing

 <connectors>
 <connector class='fs' name='pub'>
 <properties>
 <property name='type'>pub</property>
 <property name='fstype'>csv</property>
 <property name='fsname'>input.csv</property>
 <property name='transactional'>true</property>
 </properties>
 </connector>
 </connectors>
 </window-source>
 <window-procedural name='pw1'>
 <description>
 This defines a procedural window. The window passes
 all fields of the event as variables to the DS2 program.
 </description>
 <schema>
 <fields>
 <field name='tradeID' type='string' key='true'/>
 <field name='security' type='string'/>
 <field name='quantity' type='int32'/>
 <field name='price' type='double'/>
 <field name='traderID' type='int64'/>
 <field name='time' type='string'/>
 <field name='volume' type='int32' key='true'/>
 </fields>
 </schema>
 <mas-map>
 <window-map module="module_1" revision="0" source="Trades"
 function="compute_volume"/>
 </mas-map>
 <connectors>
 <connector class='fs' name='sub'>
 <properties>
 <property name='type'>sub</property>
 <property name='fstype'>csv</property>
 <property name='fsname'>output.csv</property>
 <property name='snapshot'>true</property>
 </properties>
 </connector>
 </connectors>
 </window-procedural>
 </windows>
 <edges>
 <description>
 This fully specifies the continuous query with window
 connectivity, which is a directed graph.
 </description>
 <edge source='Trades' target='pw1'/>
 </edges>
 </contquery>
 </contqueries>
 <project-connectors>
 <connector-groups>
 <connector-group name='sub_group'>
 <connector-entry connector='trades_traders_cq/pw1/sub'

XML Example 13

 state='running'/>
 </connector-group>
 <connector-group name='pub_group'>
 <connector-entry connector='trades_traders_cq/Trades/pub'
 state='finished'/>
 </connector-group>
 </connector-groups>
 <edges>
 <edge source='sub_group' target='pub_group'/>
 </edges>
 </project-connectors>
 </project>
 </projects>
</engine>

Data Type Mappings
SAS Micro Analytic Service 2.3 executes within the procedural windows of continuous
query applications. A continuous query can specify that events from one or more
upstream windows be processed by SAS Micro Analytic Service when those events are
received by a given procedural window. This specification maps each such input
window’s events to one of the methods that have been published to SAS Micro Analytic
Service.

During continuous query initialization, when a window’s events are registered with a
method, SAS Micro Analytic Service inspects the window’s event schema and
automatically maps the event’s fields to method input parameters by matching event
field names with parameter names. It is legal for some, none, or all of the names to
match. It is also legal for methods to have no input parameters. In that case, no input
mapping is done. SAS Micro Analytic Service performs similar matching of the
specified method’s output parameter names with the procedural window’s event field
names. Therefore, at run time, when an event is received from the specified window,
method input values are taken from that event, the method is executed, and the results
are used to create a derived event. The event flows downstream from the procedural
window to any subscribers.

The following table describes the data type mappings between event field types and DS2
method parameter types, and between event field types and Python function argument
types. SAS Micro Analytic Service automatically translates the data types as needed
according to the table below. The Event Stream Processing Event Field Type column
lists the schema tag of each data type.

Event
Stream
Processing
Event Field
Type

Event
Stream
Processing
Type
Description

DS2
Method
Parameter
Type

DS2 Type
Description

Python
Function
Argument
Type

Python
Type
Description

int32 32-bit signed
integer

int 32-bit signed
integer

int Signed
integer

int64 64-bit signed
integer

BIGINT 64-bit signed
integer

long Long integer

14 Chapter 3 • Publishing to SAS Micro Analytic Service in SAS Event Stream Processing

Event
Stream
Processing
Event Field
Type

Event
Stream
Processing
Type
Description

DS2
Method
Parameter
Type

DS2 Type
Description

Python
Function
Argument
Type

Python
Type
Description

double IEEE double double IEEE double float Floating-
point real

string UTF-8 string CHAR,
NCHAR,
VARCHAR,
NVARCHA
R

UTF-8 string string Unicode
string

money 192-bit fixed
decimal

double IEEE double float Floating-
point real

date Date and
time, as
seconds
since January
1, 1970

BIGINT Seconds
since January
1, 1960

long Seconds
since January
1, 1960

stamp Date and
time, as
microsecond
s since
January 1,
1970

BIGINT Microsecond
s since
January 1,
1960

long Microsecond
s since
January 1,
1960

Note: String translates to either a single character type or to a variable length string
type in DS2, depending on how the DS2 method parameter is declared. Be careful
not to pass a multi-character string to a single CHAR argument in DS2, as run-time
errors might occur.

Note: The money type is presented to DS2 or Python as double or float, respectively.

The SAS Event Stream Processing engine uses the UNIX epoch for date and time values
(January, 1, 1970). The values are presented to DS2 or Python as BIGINT or long,
respectively, using the SAS epoch (January 1, 1960). Native DS2 and Python date and
time types are not supported for public arguments. Seconds since 1960 is the SAS
datetime value, which makes calling SAS date and time functions convenient in DS2.
Stamp translates similarly, but with microsecond resolution rather than second
resolution.

Generating Multiple Derived Events from a Single
Source Event

Overview
The methods that are published to SAS Micro Analytic Service can be used to generate
multiple derived events when a single source event is received. This is accomplished by
coding an array output argument for each derived event field. The values in the arrays
are then used to populate the fields of multiple derived events.

Generating Multiple Derived Events from a Single Source Event 15

A SAS Micro Analytic Service module method can produce one or more arrays. When
such a method is mapped to a SAS Event Stream Processing source window, and when
at least one of the output array names matches a derived event field name, multiple
derived events can be generated. The number of elements in the matching array or arrays
at run time determines the number of events that are generated. As is the case with scalar
outputs, any array output that does not match a derived event field name is ignored.

When you are authoring a method that is capable of generating more than one event, the
best practice is to produce parallel arrays of the same size. When you follow this
practice, each array element contributes one value to each of the derived events, in order.
The arrays can contain different numbers of elements across method calls (for example,
they might generate one derived event for one call, three derived events for another, and
so on). However, for a single method call, the best practice is to produce the same
number of elements in each array.

If you ignore these best practices, you can still generate multiple events, but keep the
following rules in mind:

• The longest array that maps to a derived event field determines the number of events
that are generated.

• When the longest array is being determined, trailing missing values are not counted.

• If an array is shorter than the number of events to be generated, missing values are
set in the corresponding field of the derived events for which the array has no data.

Scalar output values, if any, are repeated in the corresponding fields of every derived
event.

Unique Keys
SAS Event Stream Processing requires every event to have a unique key composed of
one or more event fields. Therefore, the source event's key cannot be duplicated in
multiple generated derived events. In that case, SAS Event Stream Processing halts
processing and returns a duplicate key error. Because of this, the method author must
ensure that each derived event has a unique key value. To do that, produce an array
containing unique key values and mark the matching event field as a key in the derived
event schema. This technique is useful whenever you author your own module.

SAS Micro Analytic Service can execute modules that are generated by SAS analytics
products, where the analytic functions do not produce arrays of unique key values. To
accommodate such functions, SAS Micro Analytic Service provides a key generation
feature. To use this feature, add a key field named _masRowNum of type int32 to the
derived event schema, making it part of a composite key. When _masRowNum is
present, SAS Micro Analytic Service populates the field with the row number of each
derived event, in order, starting with 1. This feature ensures that the composite key value
is unique across multiple generated derived events.

Here is an example of a derived event schema:

ID*:int32,_masRowNum*:int32,symbol:int32,
 quantity:int32,price:double,total:double

Note: The module method does not need to produce a SAS Event Stream Processing
key value when the meta field _masRowNum is present.

16 Chapter 3 • Publishing to SAS Micro Analytic Service in SAS Event Stream Processing

Setting Opcodes and Flags on Multiple Derived Events
When a set of derived events is generated from a single source event, you can explicitly
set opcodes or flags in the derived events either individually or as a group. To set
individual opcodes, use the _outOpcodeArray meta argument. Similar to _outOpcode,
_outOpcodeArray can also be used to suppress the generation of any of the individual
derived events.

To set flags in the derived events individually, use the _outFlagsArray meta argument.

To set the same opcode in all the derived events that are generated from a single source
event, use the _outOpcode meta argument and omit the _outOpcodeArray meta
argument. Similarly, to set the same flags in all the derived events that are generated
from a single source event, use the _outFlags meta argument and omit the
_outFlagsArray meta argument.

For information about the meta arguments _outOpcodeArray, _outFlagsArray,
_outOpcode, and _outFlags, see “Operation Codes and Flags” on page 19.

Generating Multiple Derived Events from a Single Source Event 17

18 Chapter 3 • Publishing to SAS Micro Analytic Service in SAS Event Stream Processing

Chapter 4

Processing Event Opcodes and
Flags

Operation Codes and Flags . 19

DS2 Opcodes Example . 21

Operation Codes and Flags
Each event contains an operation code, or opcode, and a set of flags. For a detailed
explanation of these constructs, see SAS Event Stream Processing: Overview. SAS Micro
Analytic Service module methods offer you the option of examining a source window
event's opcode and flags and setting the opcode and flags of a derived event.

Note: This practice is recommended only for advanced SAS Event Stream Processing
users.

These are the opcodes:

• insert

• update

• delete

• upsert

• safedelete

One or more flags can be set in a given event, depending on the event opcode and
circumstances. Here are the possible flags:

• N — normal

• P — partial update

• R — retention

DS2 and Python module authors can add zero or more of the following special
arguments to their DS2 method or Python function signatures:

_inOpcode
populated with the source window event opcode when the module method is called.
_inOpcode is an input argument and, if included, must appear before any output
arguments in the method signature. _inOpcode is a string type, and its value must be
insert, update, delete, upsert, or safedelete when the method is called.

19

_outOpcode
used to either set the opcode of the derived event to be omitted, or to cause no
derived event to be omitted. If _outOpcode is omitted from the method signature,
SAS Micro Analytic Service transfers the opcode of the source window event to the
derived event. This is the standard behavior under normal circumstances. If
_outOpcode is included in the method signature and is set to missing, emission of the
derived event is skipped. If _outOpcode is included and is not set to missing, the
value of _outOpcode is used to set the opcode of the derived event. The value that is
set must be either insert, update, delete, upsert, or safedelete. To
achieve normal processing when _outOpcode is included, the method author must
also include _inOpcode and set _outOpcode=inOpcode. _outOpcode is an output
argument. Therefore, it must appear after all input arguments in the method
signature.

_outOpcodeArray
If this argument is present, its elements are used to set the opcode of the
corresponding derived events. If _outOpcodeArray is not present, but the scalar meta
argument _outOpcode is present in the method signature, then the value of
_outOpcode is used to set every derived event’s opcode field. If no meta arguments
are present, the derived event’s opcodes are inherited from the source event. If both
_outOpcode and _outOpcodeArray are present in the method signature,
_outOpcodeArray takes precedence.

Similar to _outOpcode, _outOpcodeArray can be used to suppress the generation of
one or more derived events. To suppress the generation of a derived event, set the
corresponding _outOpcodeArray entry to a missing value. If _outOpcodeArray is
present in the method signature and the entire array is set to missing, then the
generation of all derived events is skipped for that method invocation.

_inFlags
populated with the source window flags when the module method is called. _inFlags
is a string type containing one character per source window event flag that is set. For
example, N and NR are possible values. Reserve space for at least three characters for
the _inFlags argument. _inFlags is an input argument. Therefore, if included, it must
appear before any output arguments in the method signature.

_outFlagsArray
If this argument is present in the method signature, the elements of _outFlagsArray
are used to set the flags of each corresponding derived event. If the scalar meta
argument _outFlags is present in the method signature, its value is used to set every
derived event’s flags. If no meta arguments are present, the derived event’s flags are
inherited from the source event. If both _outFlags and _outFlagsArray are present,
_outFlagsArray takes precedence.

_outFlags
used to set the flags of the derived event to be omitted. If _outFlags is omitted from
the method signature, SAS Micro Analytic Service transfers the flags of the source
window event to the derived event. This is the standard behavior under normal
circumstances. If _outFlags is included and is set to missing, SAS Micro Analytic
Service defaults to standard behavior and copies the source window event flags to
the derived event.

20 Chapter 4 • Processing Event Opcodes and Flags

DS2 Opcodes Example
The following simple example illustrates how to conditionally set the derived event
opcode.

In this example, if the source window event's opcode is delete, and its quantity is
greater than 2000, set the derived event's opcode to update, and set the price to 8.50.
Otherwise, preserve normal processing by assigning _inOpcode to _outOpcode, and set
the price to 10.00.

ds2_options sas;
package module_1/overwrite=yes;
method test_function(varchar(16) _inOpcode, int quantity,
 in_out double price, in_out varchar _outOpcode);
 if (_inOpcode = 'delete') and (quantity > 2000) then
 do;
 _outOpcode = 'update';
 price = 8.50;
 end;
 else
 do;
 _outOpcode = _inOpcode;
 price = 10.00;
 end;
end;
endpackage;

DS2 Opcodes Example 21

22 Chapter 4 • Processing Event Opcodes and Flags

Chapter 5

DS2 Programming for Event
Stream Processing with SAS
Micro Analytic Service

Overview . 23

DS2 Source Code Prerequisites . 23

SAS Micro Analytic Service and SAS Foundation . 24

Programming Blocks . 24

Public and Private Methods and Packages . 25
Overview . 25
Public Method Rules . 25
Public Method Example . 26
Private Method Example . 27
Method Overloading . 27

Argument Types Supported in Public Methods . 28
Overview . 28
Supported DS2 Data Types . 28
Unsupported DS2 Data Types . 28

Overview
SAS Micro Analytic Service 2.3 supports a subset of the DS2 programming language
that is suitable for high-performance transaction processing in real time. This chapter
covers only that subset. Note that DS2 batch processing is not supported.

For more information about the DS2 programming language, see SAS DS2 Language
Reference.

DS2 Source Code Prerequisites
The DS2 source code submitted to SAS Micro Analytic Service should begin with the
following statement, just above the PACKAGE statement:

"ds2_options sas"

. This option instructs DS2 to use SAS missing value handling and helps ensure that
your DS2 program behaves the same as if it were run in SAS Foundation. It should end
with this statement:

23

"endpackage"

The code cannot contain DATA statements, PROC statements, or THREAD statements.
The source code should contain one and only one DS2 package, and this package can
contain as many methods as desired.

It is a best practice to include a line feed character at the end of each source code line.
This line feed character makes it easier to use compiler warning and error messages that
include line numbers.

SAS Micro Analytic Service and SAS Foundation
Although DS2 is supported by both SAS Foundation and SAS Micro Analytic Service,
SAS Micro Analytic Service has a lightweight, high-performance engine that does not
support either the full SAS language or PROC statements. Therefore, PROC statements
cannot be used. However, here is an effective DS2 authoring and testing mechanism:
develop your DS2 packages in SAS Foundation using PROC DS2 and publish those
packages to SAS Micro Analytic Service after removing the surrounding PROC DS2
syntax.

Programming Blocks
Each DS2 module represents exactly one package, and therefore the DS2 PACKAGE
statement plays a major role in SAS Micro Analytic Service. A DS2 package contains
one or more methods, and methods can contain a wide variety of DS2 language
constructs. Package methods work well with rapid transaction processing because they
can be called over and over again with little overhead, as transactions flow through the
system. By contrast, the DS2 THREAD and TABLE statements are batch-oriented and
are not supported.

The following code blocks are supported:

• PACKAGE…ENDPACKAGE

• METHOD…END

• DO…END

The following code blocks are batch-processing oriented and are not supported:

• TABLE…ENDTABLE

• THREAD…ENDTHREAD

Similarly, the following statements are not supported: OUTPUT and SET

• OUTPUT

• SET

24 Chapter 5 • DS2 Programming for Event Stream Processing with SAS Micro Analytic Service

Public and Private Methods and Packages

Overview
Public methods are DS2 package methods that can be called by clients that are external
to SAS Micro Analytic Service, such as SAS Event Stream Processing.

When a public method is registered with SAS Event Stream Processing as an event
processor, the method's arguments are automatically mapped to the fields of the given
source window and procedural window events. You register the method either by calling
dfESPproject::registerMethod_MAS() or by including it in a window-map entry of an
XML project definition.

Note: The method-argument-to-event-field mappings are by name and are case
sensitive.

DS2 package methods to be used for event processing must follow all of the public
method rules described below.

Private methods and packages are SAS Micro Analytic Service concepts, rather than
DS2 features.

SAS Micro Analytic Service can host public DS2 packages and private DS2 packages.
Private DS2 packages have fewer restrictions on the DS2 features that can be used than
public packages have. Although a private DS2 package cannot be called directly, it can
be called by another DS2 package. Private DS2 packages are useful as utility functions,
as solution-specific built-in functions, or for solution infrastructure. See your SAS
solution documentation for a description of the solution-specific built-in functions that
you can use when authoring custom DS2 modules.

A public DS2 package can contain private methods, as long as it contains at least one
public method. Any method that does not conform to the rules for public methods is
automatically treated as private. Private methods are allowed and do not produce errors
if they contain correct DS2 syntax. Private methods are not callable externally.
Therefore, they do not show up when querying the list of methods within a package.
However, they can be called internally by other DS2 package methods. Here are several
typical uses of private methods:

• Small utility functions that return a single, non-void, result.

• Methods containing DS2 package arguments. These are not callable externally.

Public Method Rules
Public methods must conform to the following rules:

• The return type must be void. Rather than using a single return type, public methods
can return multiple outputs, where each output argument specifies the in_out
keyword in the method declaration. Non-void methods are treated as private.

• Arguments that are passed by reference (meaning ones that specify in_out) are
treated as output only. True update arguments are not supported by public methods.
This restriction results in more efficient parameter marshaling and supports all
interface layers, including REST.

Public and Private Methods and Packages 25

• Input arguments must precede output arguments in the method declaration. It is
permissible for a method to have only inputs or only outputs. However, if both are
present, all inputs must precede the outputs.

• DS2 packages might not be passed as arguments in public methods. The presence of
a DS2 package argument results in the method becoming private.

• The VARARRAY statement might not be present in the argument list of a public
method. VARARRAY is a DS2 statement, not a data type. The presence of
VARARRAY in a methods argument list causes the method to become private.

• For a full list of data types that can be used as public method arguments, see
“Supported DS2 Data Types” on page 28.

Public Method Example
The example below illustrates a valid public method. It has a void return type (no
RETURNS clause), uses only publicly supported data types, and treats in_out arguments
as output only.

method quickSortStep (int lowerIndex, int higherIndex, in_out double numbers[10]);

 dcl int i;
 dcl int j;
 dcl int pivot;
 dcl double temp;

 i = lowerIndex;
 j = higherIndex;

 /* Calculate the pivot number, taking the pivot as the
 * middle index number. */
 pivot = numbers[ceil(lowerIndex+(higherIndex-lowerIndex)/2)];

 /* Divide into two arrays */
 do while (i <= j);
 /**
 * In each iteration, identify a number from the left side that
 * is greater than the pivot value. Also identify a number
 * from the right side that is less than the pivot value.
 * Once the search is done, then exchange both numbers.
 */
 do while (numbers[i] < pivot);
 i = i+1;
 end;
 do while (numbers[j] > pivot);
 j = j-1;
 end;
 if (i <= j) then do;
 temp = numbers[i];
 numbers[i] = numbers[j];
 numbers[j] = temp;

 /* Move the index to the next position on both sides. */
 i = i+1;
 j = j-1;
 end;

26 Chapter 5 • DS2 Programming for Event Stream Processing with SAS Micro Analytic Service

 end;

 /* Call quickSort recursively. */
 if (lowerIndex < j) then do;
 quickSortStep(lowerIndex, j, numbers);
 end;
 if (i < higherIndex) then do;
 quickSortStep(i, higherIndex, numbers);
 end;
 end;

Here is another example of a public method that illustrates the use of the HTTP package
calling out to a web service using a POST request and then getting a response.

 method httppost(nvarchar(8192) url,
 nvarchar(67108864) payload,
 in_out nvarchar respbody,
 in_out int hstat, in_out int rc);
 declare package http h();
 rc = h.createPostMethod(url);
 if rc ne 0 then goto Exit;
 rc = h.setRequestContentType('application/json;charset=utf-8');
 if rc ne 0 then goto Exit;
 rc = h.addRequestHeader('Accept', 'application/json');
 if rc ne 0 then goto Exit;
 rc = h.setRequestBodyAsString(payload);
 if rc ne 0 then goto Exit;
 rc = h.executeMethod();
 if rc ne 0 then goto Exit;
 hstat = h.getStatusCode();
 if hstat lt 400 then h.getResponseBodyAsString(respbody, rc);
 else respbody = '';
 Exit:
 h.delete();
 end;

Private Method Example
The example below generates a private method in SAS Micro Analytic Service. It has a
non-void return type. That is, it has a RETURNS clause in the declaration, which
specifies a single integer return value.

method isNull(double val) returns int;
 return null(val) OR missing(val);
end;

Method Overloading
SAS Micro Analytic Service does not support method overloading when it is running in
the SAS Event Stream Processing Engine.

CAUTION:
If you publish a DS2 package that contains overloaded methods, run-time
errors can occur.

Public and Private Methods and Packages 27

Argument Types Supported in Public Methods

Overview
SAS Micro Analytic Service supports a subset of the DS2 data types for use as public
method arguments. Data types in the unsupported list can still be used in the body of a
(public or private) DS2 package method, and as arguments to private methods. The lists
of publicly supported and unsupported data types are given below.

Note: Any additional types added to the DS2 programming language in future releases
should be considered unsupported unless otherwise stated in the SAS Micro Analytic
Service documentation.

Supported DS2 Data Types
• BIGINT

• CHAR(n)

• DOUBLE

• INTEGER

• NCHAR(n)

• NVARCHAR(n)

• VARCHAR(n)

Unsupported DS2 Data Types
• BINARY(n)

• DATE

• DECIMAL(p, s)

• NUMERIC(p, s)

• PACKAGE

• TIME(p)

• TIMESTAMP(p)

• TINYINT

• VARBINARY(n)

28 Chapter 5 • DS2 Programming for Event Stream Processing with SAS Micro Analytic Service

Chapter 6

Best Practices for DS2
Programming

Overview . 29

Global Packages Versus Local Packages . 29
Overview . 29
Example of Optimized Code . 30
Example of Poorly Optimized Code . 30

Replacing SCAN (and TRANWRD) with DS2 Code . 30

Hash Package . 33

Character-to-Numeric Conversions . 33

Passing Character Values to Methods . 33

Performing the Computation Once . 34

Moving Invariant Computations Out of Loops . 34

Overview
This section describes best practices that are recommended when programming in DS2
for any environment. They are not unique to SAS Micro Analytic Service.

Global Packages Versus Local Packages

Overview
The scope of a package instance makes a difference. Package instances that are created
in the global scope typically are created and deleted (allocated and freed) once and used
over and over again. Package instances that are created in a local scope are created and
deleted each time the scope is entered and exited. For example, a package instance that is
created in a method's scope is created and deleted each time a method is called. The
creation and deletion time can be costly for some packages.

The following examples use the hash package. This technique can be used for all
packages.

29

Example of Optimized Code
This example creates a hash package instance that is global, created and deleted with the
package instance, and reused between calls to load_and_clear.

/** FAST **/
package mypack;
 dcl double k d;
 dcl package hash h([k], [d]);

 method load_and_clear();
 dcl double i;
 do k = 1 to 100;
 d = 2*k;
 h.add();
 end;
 h.clear();
 end;
endpackage;

Example of Poorly Optimized Code
This example creates a hash package instance that is local to the method and created and
deleted for each call to load_and_clear.

/** SLOW **/
package mypack;
 dcl double k d;

 method load_and_clear();
 dcl package hash h([k], [d]);
 dcl double i;
 do k = 1 to 100;
 d = 2*k;
 h.add();
 end;
 h.clear();
 end;
endpackage;

Replacing SCAN (and TRANWRD) with DS2 Code
Consider the following code:

i = 1;
onerow = TRANWRD(SCAN(full_table, i, '|'), ';;', ';-;');
do while (onerow ~= '');
 j = 1;
 elt = scan(onerow, j, ';');
 do while (elt ~= '');
 * processing of each element in the row;
 j = j+1;
 elt = SCAN(onerow, j, ';');

30 Chapter 6 • Best Practices for DS2 Programming

 end;
 i = i+1;
 onerow = TRANWRD(SCAN(full_table, i, '|'), ';;', ';-;');
end;

You can make the following observations:

• SCAN consumes adjacent delimiters. Therefore, TRANWRD is required to
manipulate each row into a form that can be traversed element by element.

• SCAN starts at the front of the string each time. Therefore, the aggregate cost is
O(N^2).

• SCAN and TRANWRD require NCHAR or NVARCHAR input. If full_table is
declared as a CHAR or VARCHAR input, it must be converted to NVARCHAR,
then processed, and then converted back to VARCHAR in order to be captured into
the onerow value.

Here is code that replaces this type of loop with a native DS2 solution and that thus
avoids these problems by collecting the necessary details into a package:

dcl package STRTOK row_iter();
dcl package STRTOK col_iter();
row_iter.load(full_table, '|');
do while (row_iter.hasmore());
 row_iter.getnext(onerow);
 col_iter.load(onerow, ';');
 do while (col_iter.hasmore());
 col_iter.getnext(elt)
 * processing of each element;
 end;
end;

The supporting package, STRTOK, is shown below. It can be used to replace SCAN and
TRANWRD pairs anywhere in DS2.

/** STRTOK package - extract subsequent tokens from a string.
 * So named because it mirrors (in a safe way) what is done by the original
 * strtok(1) function available in C.
 */
package sasuser.strtok/overwrite=yes;
 dcl varchar(32767) _buffer;
 dcl int strt blen;
 dcl char(1) _delim;

 /* Loads the current object with the supplied buffer and delimiter
 * information. This avoids the cost of constructing and destructing the
 * object, and allows the declaration of a STRTOK outside of the loop in which
 * it is used.
 */
 method load(in_out varchar bufinit, char(1) delim);
 _buffer = bufinit .. delim;
 _delim = delim;
 strt = 1;
 blen = length(_buffer);
 end;

 /* Are there more fields? 1 means there are more fields. 0 means there are
 * no more fields.
 */

Replacing SCAN (and TRANWRD) with DS2 Code 31

 method hasmore() returns integer;
 if (strt >= blen) then return 0;
 return 1;
 end;

 /* The void-returning GETNEXT method places the next token in the supplied
 * variable, tok.
 */
 method getnext(in_out varchar tok);
 dcl char(1) c;
 dcl int e;
 tok = '';
 if (hasmore()) then do;
 e = strt;
 c = substr(_buffer,e,1);
 do while (c ~= _delim);
 tok = tok .. c;
 e = e + 1;
 c = substr(_buffer,e,1);
 end;
 strt = e + 1;
 end;
 end;

 /* The value-returning GETNEXT method returns the next token. This version is
 * more computationally expensive because it requires an extra copy, as opposed to
 * the void-returning version, above.
 */
 method getnext() returns varchar(32767);
 dcl varchar(32767) tok;
 getnext(tok);
 return tok;
 end;

 /* Construct a STRTOK object using the parameters as initial values.
 */
 method strtok(varchar(32766) bufinit, char(1) delim);
 load(bufinit, delim);
 end;

 /* Construct a STRTOK object without an initial buffer to be consumed.
 */
 method strtok();
 strt = 0; blen = 0;
 end;
endpackage; run;

Using STRTOK instead of SCAN and TRANWRD avoids the CHAR to NCHAR
conversions and reduces CPU because of how STRTOK retains the intermediate state
between calls to the getnext() methods. Therefore, it is O(N) instead of O(N^2).

32 Chapter 6 • Best Practices for DS2 Programming

Hash Package
With both the DATA step and DS2, note the size of the key. A recent program carried out
many hash lookups with a 356-byte key. Hashing is an O(1) algorithm; the "1" with the
hash package is the length of the key. The longer the key, the longer the hash function
takes to operate.

dcl char(200) k1 k2;
dcl double d1 d2;

/* If k1 and k2 are always smaller than 200, then */
/* size them smaller to reduce the time spent in */
/* the hash function when adding and finding values */
/* in the hash package. */
dcl package hash([k1 k2], [d1 d2]);

Character-to-Numeric Conversions
When converting a string to a numeric value, note the encoding of the string. When the
string is a single-byte encoding, DS2 translates the value to a TKChar (UCS-2 or
UCS-4) for conversion. The longer the string, the longer the time it takes to do the
conversion.

dcl char(512) s;
dcl nchar(512) ns;
dcl double x;
s = '12.345';
ns = '12.345';

x = s; /* slow */
x = substr(s,1,16); /* faster */
x = substr(ns,1,16); /* even faster, avoids transcoding */

Passing Character Values to Methods
In SAS Micro Analytic Service, DS2 method input parameters are passed by value.
What this means is that a copy of the value is passed to the method. When passing
character parameters, a copy of the parameter is made to ensure that the original value is
not modified. Making sure that character data is sized appropriately ensures that less
copying occurs.

DS2 method output parameters, which are specified by the in_out keyword, are passed
by reference. Therefore, no copy is made.

method copy_made(char(256) x);
 ...
end;

method no_copy(in_out char x);

Passing Character Values to Methods 33

 ...
end;

Performing the Computation Once
If a computation is repeated multiple times to compute the same value, you can perform
the computation once and save the computed value. For example, the following code
block performs the computation, compute(x), four times:

if compute(x) > computed_max then computed_max = compute(x);
if compute(x) < computed_min then computed_min = compute(x);

If compute(x) always computes the same value for a given value of x, then the code
block can be modified to perform the computation once and save the computed value:

computed_x = compute(x);
if computed_x > computed_max then computed_max = computed_x;
if computed_x < computed_min then computed_min = computed_x;

Moving Invariant Computations Out of Loops
If a computation inside a loop computes the same value for each iteration, improve
performance by moving the computation outside the loop. Compute the value once
before the loop begins and use the computed value in the loop. For example, in the
following code block, compute(x) is evaluated during each iteration of the DO loop:

do i = 1 to dim(a);
 if (compute(x) eq a[i]) then ...;
end;

If compute(x) is invariant (meaning that it always computes the same value for each
iteration of the loop), then the code block can be modified to perform the computation
once outside the loop:

computed_x = compute(x);
do i = 1 to dim(a);
 if (computed_x eq a[i]) then ...;
end;

34 Chapter 6 • Best Practices for DS2 Programming

Chapter 7

Python Programming for SAS
Event Stream Processing with
SAS Micro Analytic Service

Introduction . 35

Public and Private Methods . 35

Example . 36

Introduction
SAS Micro Analytic Service 2.3 supports modules that are written in the Python
programming language. A Python module represents a group of related Python
functions.

Here is an example of a Python public function that can be hosted by SAS Micro
Analytic Service. This example has no output. Input arguments are given in the
function's argument list. This example has input variables a and b. Outputs of the
function must be listed after "Output:" in the quoted string that follows the function
definition. The output variables should match the variables listed in the return statement.

def calcATimesB(a, b):
 "Output: "
 print ("Function with no output variables.")
 c = a * b
 print ("Result is: ", c, ", but is not returned")
 return None

Note: Input and output argument names live in a single namespace. Therefore, they
cannot be the same. This means that update arguments are not supported. This is true
for all module types in SAS Micro Analytic Service, even though the Python
language does not enforce such a restriction.

Public and Private Methods
Private and public methods are SAS Micro Analytic Service concepts, rather than
Python features. Any method having the "Output:" doc string is considered a public
method. If a method does not have the "Output:" doc string, then it is considered a
private method. SAS Micro Analytic Service can host public and private Python
methods, where a method is a Python function. Although a private method cannot be

35

called directly, it can be called by another method (public or private). Private methods
are useful as utility functions. Private methods are not callable externally. Therefore,
they do not show up when querying the list of methods within a package. However, they
can be called internally by other methods.

Python modules can be published containing all public methods, or a mixture of public
and private methods. Both public and private methods can call other functions that either
exist within the module internally or in external Python packages, including third-party
libraries.

All public functions returning more than one output argument must return a tuple
containing all of the output arguments. This can be done by returning all of the
arguments separated by commas. When returning zero arguments from a public function
you are still required to include the "Output:" doc string to indicate a public function. It
should simply be "Output:", with no output arguments listed. You can omit the return
statement, return "None", or return an empty tuple.

An example of returning an empty tuple is return (). An example of returning
"None" is return None. One output argument can be returned as is. It is not required
to be returned within a tuple. Here is an example: return a.

Therefore, it could be return a,b,c or return (a,b,c).

Note: Order does matter. Therefore, the order in the return statement must match the
order in the "Output:" line. A best practice is to cut and paste from one to the other.

Example
The following example illustrates the use of each SAS Event Stream Processing data
type as input to and as output from a public Python function.

Name: scalarsTest.py
Purpose: Test the Python program for scalar types
#
Inputs (name) (type)
inString String
inBool Boolean
inLong Long
inDouble Double
inTimestamp Long microseconds since 1960
inDatetime Long seconds since 1960
inMoney Double
#
Outputs (name) (type)
outString String
outBool Boolean
outLong Long
outDouble Double
outTimestamp Long microseconds since 1960
outDatetime Long seconds since 1960
outMoney Double
#
Note: Event stream processing presents the timestamp as
long microseconds since 1960 and datetime as long
seconds since 1960.

36 Chapter 7 • Python Programming for SAS Event Stream Processing with SAS Micro Analytic Service

Import the datetime module to perform datetime operations.
import datetime

def scalarsTest(inString, inBool, inLong, inDouble,
 inTimestamp, inDatetime, inMoney):
 "Output: outString, outBool, outLong, outDouble,
 outTimestamp, outDatetime, outMoney"

 if inString == None:
 outString = None
 else:
 # Convert the casing of the string input.
 outString = inString.swapcase()
 print ("\n inString=", inString, " outString=",
 outString, " (reverse case)")

 if inBool == None:
 outBool = None
 else:
 # Reverse value of the Boolean.
 outBool = not inBool
 print ("\n inBool=", inBool, " outBool=", outBool,
 " (not inBool)")

 if inLong == None:
 outLong = None
 else:
 # Add 10 to long.
 outLong = inLong + 10
 print ("\n inLong=", inLong, " outLong=", outLong,
 " (add 10)")

 if inDouble == None:
 outDouble = None
 else:
 # Add 10.1 to the double.
 outDouble = inDouble + 10.1
 print ("\n inDouble=", inDouble, " outDouble=", outDouble,
 " (add 10.1)")

 if inTimestamp == None:
 outTimestamp = None
 else:
 # Since this is defined as a stamp in event stream processing
 # schema, this number is long microseconds since 1960.
 # Add one second == 1000000 microseconds.
 outTimestamp = inTimestamp + 1000000
 print ("\n inTimestamp=", inTimestamp, " outTimestamp=",
 outTimestamp, " (add one second)")

 if inDatetime == None:
 outDatetime = None
 else:
 # Since this is defined as date in the event stream processing schema,
 # this number is long seconds since 1960.

Example 37

 # Add one day.
 outDatetime = inDatetime + (3600 * 24)
 print ("\n inDatetime=", inDatetime, " outDatetime=", outDatetime,
 " (add one day)")

 if inMoney == None:
 outMoney = None
 else:
 # Add 25 cents.
 outMoney = inMoney + 0.25
 print ("\n inMoney=", inMoney, " outMoney=", outMoney,
 "(add 25 cents)")

 # Return all of the outputs.
 return outString, outBool, outLong, outDouble, outTimestamp,
 outDatetime, outMoney

38 Chapter 7 • Python Programming for SAS Event Stream Processing with SAS Micro Analytic Service

Chapter 8

Administration and Deployment

SAS Micro Analytic Service Logging . 39

Deployment . 40
Deploying SAS Micro Analytic Service . 40

Configuring Python . 40
Python 2.7 and 3.4 on 64-Bit Windows . 40
Python 2.7 and 3.4 on 64-Bit Linux . 40
Further Considerations for Configuring Python . 41

Configuration Helper Scripts . 42

SAS Micro Analytic Service Logging
SAS Micro Analytic Service uses the SAS 9.4 Logging Facility. For more information,
see SAS Logging: Configuration and Programming Reference. SAS Event Stream
Processing provides a default logging configuration file, and that file specifies loggers
and appenders in addition to those described in this chapter. For more information about
SAS Event Stream Processing, see Documentation in the Knowledge Base, at http://
support.sas.com.

SAS Micro Analytic Service uses three loggers named App.tk.MAS,
App.tk.MAS.Python, and App.tk.MAS.CodeGen. Code that is hosted by SAS Micro
Analytic Service, or the functions that it calls, can use additional loggers.

The logger App.tk.MAS is used for logging various aspects of SAS Micro Analytic
Service operation. App.tk.MAS.CodeGen is used for code compilation and generation
logging events. App.tk.MAS.Python is used for Python-related logging. Normal
operations, such as start-up and shutdown, are logged at the INFO level. Detailed
information about such operations as compilation start and finish, and others, are logged
at the DEBUG level. Warning and error conditions are logged at the WARN or ERROR
levels, as appropriate. By default, App.tk.MAS is set to the ERROR level.

App.tk.MAS.CodeGen is used for logging compiler-generated messages, such as
compilation warnings and errors. Compiler messages are also retrieved and logged by
SAS Event Stream Processing whenever it publishes a module to SAS Micro Analytic
Service.

39

http://support.sas.com
http://support.sas.com

Deployment

Deploying SAS Micro Analytic Service
SAS Micro Analytic Service is deployed automatically when SAS Event Stream
Processing is deployed. However, if Python modules are to be used, then Python requires
the additional deployment and configuration steps found in “Configuring Python”.

Configuring Python

Python 2.7 and 3.4 on 64-Bit Windows
1. Download and run the latest Anaconda Graphical Installer for 64-bit Windows from

https://www.continuum.io/downloads.

Note: The Python 2.7 and 3.x installers include both version 2 and version 3 of
Python. Regardless of which installer you download, you can create
environments for both of the supported versions: 2.7 and 3.4.

Note: During the installation process, you are prompted for the destination folder.
These instructions assume you installed the folder in C:\Anaconda3.

2. Create a Python environment by entering the following at a Windows command
prompt (note that there are two hyphens before name). Provide the Python version
that you installed. In the following example, Python 3.4 is used.

conda create -name python34 python=3.4

3. Activate the environment (providing the appropriate Python version).

activate python34

4. Before adding any other Python packages to your new, activated environment, first
install the nomkl package.

conda install nomkl

5. When multiple distributions of Python are installed, Python often misjudges which
environment or distribution you want to use. Therefore, it is recommended that you
set the PYTHONHOME environment variable to the value of your environment's
top-level directory. Here is an example:

export PYTHONHOME=\users\myuserid\anaconda3\envs\python34

Python 2.7 and 3.4 on 64-Bit Linux
1. Download and run the latest Anaconda Linux 64-bit installer from https://

www.continuum.io/downloads.

Note: The Python 2.7 and 3.x installers include both version 2 and version 3 of
Python. Regardless of which installer you download, you can create
environments for both of the supported versions: 2.7 and 3.4.

40 Chapter 8 • Administration and Deployment

https://www.continuum.io/downloads
https://www.continuum.io/downloads
https://www.continuum.io/downloads

2. After downloading the installer, enter the following in a terminal window. Provide
the Python version that you installed. In the following example, Python 3.6 is used.

bash Anaconda3-4.3.0-Linux-x86_64.sh

Answer yes to the question, Do you wish the installer to prepend the Anaconda3
install location to PATH in your .bashrc? These instructions assume that you have
used the location /users/myuserid/anaconda3.

3. Create a Python 3.4 environment by entering the following (note that there are two
hyphens before name). Provide the appropriate Python version.

bash
conda create --name python34 python=3.4

4. Activate the environment (provide the appropriate Python version).

source activate python34

5. Prepend the Python environment's lib directory to the LD_LIBRARY_PATH
environment variable. Provide the Python version that you installed. In the following
example, Python 3.4 is used.

LD_LIBRARY_PATH=/users/myuserid/anaconda3/envs/python34/lib:${LD_LIBRARY_PATH}
export LD_LIBRARY_PATH=${LD_LIBRARY_PATH%:}

6. When multiple distributions of Python are installed, Python often misjudges which
environment or distribution you want to use. Therefore, it is recommended that you
set the PYTHONHOME environment variable to the value of your environment's
top-level directory. Here is an example:

export PYTHONHOME=/users/myuserid/anaconda3/envs/python34

Note: Regarding 64-bit Linux, the conda create and source activate
commands must be run from a bash or zsh shell.

Python 2.x uses ASCII as the default encoding. Therefore, you must specify another
encoding at the top of the file to use non-ASCII Unicode characters in literals. As a best
practice, when using Python 2.x, always use the following as the first line of your Python
script:

-*- coding: utf-8 -*-

Also, in Python 2.x, the Unicode literal must be preceded by the letter u. Therefore,
literal strings should be written using the following form:

u”xxxxx”

Note: Python 3.x uses UTF-8 as the default encoding. Therefore, these issues affect
Python 2.x only. When using Python 3.x, you can use the default encoding, and you
can simply enclose literals in quotation marks.

Further Considerations for Configuring Python
The Anaconda documentation states that Python 3.4 can be run from an Anaconda 2.7
installation by creating and activating a Python 3.4 environment. You cannot do this with
embedded Python. Therefore, it is recommended that you use the Python 3.x installer for
both Python 2.7 and 3.4.

When starting SAS Event Stream Processing, do so from a shell in which you have
activated Python, thus allowing the process to use Python.

A rich set of Python packages is available, covering a wide variety of computing needs.
You might want to add some of these packages to your Python environment.

Configuring Python 41

When you add packages to an Anaconda environment, the packages are placed in
<your-environment-path>/lib/python3.4/site-packages. In order to use
the Python scripts that these packages require, add their locations to the PYTHONPATH
environment variable.

Note: The use of the configuration scripts espenv and espenv_print, when running
Python is highly recommended. These scripts are described in “Configuration Helper
Scripts”.

If your Python script imports your own .py files, you also must add their location to
PYTHONPATH. An example location might be .(dot).

Some packages include a lib directory, which also needs to be added to PYTHONPATH.

Finally, you must add <your-environment-path>/lib/python3.4 to
PYTHONPATH.

Anaconda sets the environment variable CONDA_PREFIX when you activate an
environment. It sets it to the location where Anaconda stores any new Python packages
that you install (for example, the site-packages folder).

Here is an example of the locations that you might set for PYTHONPATH, after adding
packages to your Python 3.4 environment for 64-bit Linux:

export SITE_PACKAGES=$CONDA_PREFIX/lib/python3.4/site-packages
export PYTHONPATH=.:$CONDA_PREFIX/lib/python3.4
export PYTHONPATH=$PYTHONPATH:$SITE_PACKAGES
export PYTHONPATH=$PYTHONPATH:$SITE_PACKAGES/numpy
export PYTHONPATH=$PYTHONPATH:$SITE_PACKAGES/numpy/lib

Configuration Helper Scripts
SAS Event Stream Processing includes two shell scripts to assist with configuring
environment variables for running SAS Event Stream Processing. Using these scripts to
run Python modules in SAS Micro Analytic Service is optional.

The script espenv_print prints a list of shell commands that can be cut and pasted into
your .bashrc file or other shell script of your choice. The following is example output
from espenv_print:

[develop]$../package-scripts/espenv_print -i sas -m 3.4

The setting environment for an official SAS installation.
The path name must point to the espenv_print location.
-i indicates that the content must be stored in SAS or that it is SAS software.
-m is required only if you plan to use Python, and it is followed
by the version number.
#
#
Save or restore the previous PATH.
#
if [! -z ${ESPENV_PATH}] ; then
 PATH=$ESPENV_PATH
else
 ESPENV_PATH=$PATH
fi

#

42 Chapter 8 • Administration and Deployment

Unset event stream processing specific variables.
#
unset TKPATH
unset ESP_I

#
Set basic variables for event stream processing.
#
DFESP_HOME="/mnt/data/home/userid/work/esp"
ESP_I="-I /mnt/data/home/userid/work/esp/include/esptk
 -I /mnt/data/home/userid/work/esp/include/mas"

LD_LIBRARY_PATH="/mnt/data/home/userid/work/esp/lib:
 /mnt/data/home/userid/SASFoundation/sasexe"
 PATH="/mnt/data/home/userid/work/esp/bin:
 /mnt/data/tools/java/jdk1.8.0_60/bin:
 /mnt/data/tools/apache/apache-ant-1.8.2/bin:
 /mnt/data/tools/maven/apache-maven-3.3.9/bin:
 /mnt/data/tools/doxy/1.8.8/bin:
 /mnt/data/tools/git/bin:
 /opt/teradata/client/14.10/tbuild/bin:
 /usr/lib64/qt-3.3/bin:/opt/rh/python27/root/usr/bin:
 /usr/local/bin:/bin:/usr/bin:/usr/local/sbin:
 /usr/sbin:/sbin:/mnt/data/home/userid/work/esp/develop/bin"

#
Set the basic variables for event stream processing,
SAS Micro Analytic Service, or Python.
#

source activate python34

PYTHONPATH=".:$CONDA_PREFIX/lib/python3.4:
 $CONDA_PREFIX/lib/python3.4/site-packages:
 $CONDA_PREFIX/lib/python3.4/site-packages/pandas:
 $CONDA_PREFIX/lib/python3.4/site-packages/numpy:
 $CONDA_PREFIX/lib/python3.4/site-packages/numpy/lib"

LD_LIBRARY_PATH="$CONDA_PREFIX/lib:$LD_LIBRARY_PATH"

export DFESP_HOME TKPATH ESP_I LD_LIBRARY_PATH PATH PYTHONPATH ESPENV_PATH

The script espenv can generate the same shell commands as espenv_print. However,
instead of printing the commands to the console, it executes the commands, configuring
the current shell to run Python modules in SAS Event Stream Processing.

To make Python configuration as convenient as possible, add the espenv function to
your .bashrc file using the following steps. This makes the function available to call
from any folder, as long as you are in a bash shell. Use the espenv function if you switch
back and forth between Python 2.7 and Python 3.4. If you plan to use only one of the
versions, add the output of espenv_print to your .bashrc file instead. This makes the
configuration run automatically whenever you launch a bash shell.

1. Open espenv_func and copy the code.

2. Change directories to your home directory.

3. Paste the code into your .bashrc file.

Configuration Helper Scripts 43

4. Copy espenv_print to your home directory.

5. Edit espenv_print and search for the following lines:

#***
MODIFY PYTHONPATH (BELOW) WHENEVER PYTHON PACKAGES HAVE BEEN ADDED *
OR REMOVED FROM YOUR ANACONDA PYTHON 3.4 ENVIRONMENT *
#***
PYTHONPATH='.:$CP/lib/python3.4:$CP/lib/python3.4/site-packages:$CP/lib/
 python3.4/site-packages/numpy:$CP/lib/python3.4/site-packages
 /numpy/lib:$CP/lib/python3.4/site-packages/sklearn'

6. The script contains two lines that set PYTHONPATH, one for Python 3.4 and the
other for Python 2.7. Edit the appropriate PYTHONPATH and add paths for each
Python package that you have installed and intend to use. Be sure to separate each
path with a colon. $CP represents the root location where packages are stored in your
Anaconda environment (such as the folder called site-packages). espenv_print
automatically retrieves this location from Anaconda when the script is executed.

Note: Some Python packages require you to store more than one path because they
store Python modules and executables in more than one folder.

7. Save your changes.

Note: Here is an alternative method:

1. Run espenv_print.

2. Cut and paste the output into your .bashrc file.

3. Append :$PATH to the end of the line that starts with PATH.

4. Append the following to the end of LD_LIBRARY_PATH:

:$LD_LIBRARY_PATH

For a complete description of these scripts and their options, see SAS Event Stream
Processing on Linux: Deployment Guide.

44 Chapter 8 • Administration and Deployment

Recommended Reading

• Encryption in SAS 9.4

• SAS 9.4 DS2 Language Reference

• SAS Event Stream Processing: Deployment Guide

• SAS Event Stream Processing: Examples

• SAS Event Stream Processing: Overview

• SAS 9.4 Logging: Configuration and Programming Reference

For a complete list of SAS publications, go to sas.com/store/books. If you have
questions about which titles you need, please contact a SAS Representative:

SAS Books
SAS Campus Drive
Cary, NC 27513-2414
Phone: 1-800-727-0025
Fax: 1-919-677-4444
Email: sasbook@sas.com
Web address: sas.com/store/books

45

http://www.sas.com/store/books
mailto:sasbook@sas.com
http://sas.com/store/books

46 Recommended Reading

Index

A
administration logging 39
argument types 28

C
character-to-numeric conversions 33
configuring Python 40

D
deploying 40
DS2 best practices 29, 30, 33, 34
DS2 programming 23, 24, 25, 28

G
global packages 29

H
hash package 33

I
invariant computations 34

L
local packages 29

M
module 4

P
passing character values to methods 33
private methods 25
private packages 25
programming blocks 24
public methods 25
public packages 25
publishing DS2 source code 23
Python 35, 40
Python support 35

R
revision 4

S
SAS Micro Analytic Service

concepts 3, 4
SCAN 30
single computation 34

T
TRANWRD 30

47

48 Index

	Contents
	Accessibility
	Introduction to SAS Micro Analytic Service
	What Is SAS Micro Analytic Service?
	What Is SAS Event Stream Processing?

	Concepts
	Overview
	Module Context
	Revision

	Publishing to SAS Micro Analytic Service in SAS Event Stream
Processing
	Overview
	Object Hierarchy
	C++ Methods
	C++ Example
	XML Example
	Data Type Mappings
	Generating Multiple Derived Events from a Single Source Event
	Overview
	Unique Keys
	Setting Opcodes and Flags on Multiple Derived Events

	Processing Event Opcodes and Flags
	Operation Codes and Flags
	DS2 Opcodes Example

	DS2 Programming for Event Stream Processing with SAS Micro
Analytic Service
	Overview
	DS2 Source Code Prerequisites
	SAS Micro Analytic Service and SAS Foundation
	Programming Blocks
	Public and Private Methods and Packages
	Overview
	Public Method Rules
	Public Method Example
	Private Method Example
	Method Overloading

	Argument Types Supported in Public Methods
	Overview
	Supported DS2 Data Types
	Unsupported DS2 Data Types

	Best Practices for DS2 Programming
	Overview
	Global Packages Versus Local Packages
	Overview
	Example of Optimized Code
	Example of Poorly Optimized Code

	Replacing SCAN (and TRANWRD) with DS2 Code
	Hash Package
	Character-to-Numeric Conversions
	Passing Character Values to Methods
	Performing the Computation Once
	Moving Invariant Computations Out of Loops

	Python Programming for SAS Event Stream Processing with SAS
Micro Analytic Service
	Introduction
	Public and Private Methods
	Example

	Administration and Deployment
	SAS Micro Analytic Service Logging
	Deployment
	Deploying SAS Micro Analytic Service

	Configuring Python
	Python 2.7 and 3.4 on 64-Bit Windows
	Python 2.7 and 3.4 on 64-Bit Linux
	Further Considerations for Configuring Python

	Configuration Helper Scripts

	Recommended Reading
	Index

