
SAS® 9.3 Language
Interfaces to Metadata

SAS® Documentation

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2012. SAS® 9.3 Language Interfaces to Metadata. Cary, NC:
SAS Institute Inc.

SAS® 9.3 Language Interfaces to Metadata

Copyright © 2012, SAS Institute Inc., Cary, NC, USA

All rights reserved. Produced in the United States of America.

For a hardcopy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS Institute Inc.

For a Web download or e-book:Your use of this publication shall be governed by the terms established by the vendor at the time you acquire this
publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the publisher is illegal and
punishable by law. Please purchase only authorized electronic editions and do not participate in or encourage electronic piracy of copyrighted
materials. Your support of others' rights is appreciated.

U.S. Government Restricted Rights Notice: Use, duplication, or disclosure of this software and related documentation by the U.S. government is
subject to the Agreement with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer Software-Restricted Rights
(June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.

1st electronic book, July 2012

SAS® Publishing provides a complete selection of books and electronic products to help customers use SAS software to its fullest potential. For
more information about our e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site at
support.sas.com/publishing or call 1-800-727-3228.

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other
countries. ® indicates USA registration.

Other brand and product names are registered trademarks or trademarks of their respective companies.

http://support.sas.com/publishing

Contents

What's New in the SAS 9.3 Language Interfaces to Metadata . vii
Accessibility Features of the SAS Language Interfaces to Metadata xi
Recommended Reading . xiii

PART 1 Introduction 1

Chapter 1 • What Are the Metadata Language Elements? . 3
Overview of Metadata Language Elements . 3
When to Use Metadata Language Elements . 4
What Can I Report on in a SAS Metadata Repository? . 5

Chapter 2 • Using Language Elements That Read and Write Metadata . 7
Overview of Using SAS Language Elements That Read and Write Metadata 7
Objects Included in the Dictionary . 8
What is the SAS Type Dictionary? . 8
How the Type Dictionary Affects SAS Language Elements . 8

Chapter 3 • Metadata Object Identifiers and URIs . 11
What Is a Metadata Identifier? . 11
Obtaining Metadata Names and Identifiers . 11
What Is a URI? . 12

Chapter 4 • Examples: Using Metadata Language Elements to Create Reports 13
Overview of the Examples . 13
Example: Creating a Report with the METADATA Procedure and the XML Engine . 13
Example: Creating a Report with the DATA Step . 19

PART 2 System Options 25

Chapter 5 • Introduction to System Options for Metadata . 27
Overview of System Options for Metadata . 27
Connection Options . 28
Encryption Options . 30
Resource Option . 30

Chapter 6 • System Options for Metadata . 31
Dictionary . 31

PART 3 Metadata LIBNAME Engine 45

Chapter 7 • Introduction to the Metadata LIBNAME Engine . 47
Overview of the Metadata LIBNAME Engine . 47

What Is Supported? . 48
What Is Not Supported . 49
Advantages of Using the Metadata Engine . 49
The Metadata Engine and Authorization . 49
How the Metadata Engine Constructs a LIBNAME Statement 50

Chapter 8 • Reference for the Metadata Engine . 51
LIBNAME Statement for the Metadata Engine . 51
SAS Data Set Options for the Metadata Engine . 55

Chapter 9 • Examples for the Metadata Engine . 57
Example: Submitting the LIBNAME Statement . 57
Example: Before and After the Metadata Engine . 57

PART 4 Procedures 61

Chapter 10 • Introduction to Procedures for Metadata . 63
Overview of Procedures for Metadata . 63
Comparison of the METADATA Procedure and the METAOPERATE Procedure . . . 63

Chapter 11 • METADATA Procedure . 67
Overview: METADATA Procedure . 67
Syntax: METADATA Procedure . 68
Concepts: METADATA Procedure . 72
Results: METADATA Procedure . 75
Examples: METADATA Procedure . 75

Chapter 12 • METALIB Procedure . 93
Overview: METALIB Procedure . 93
Syntax: METALIB Procedure . 94
Concepts: METALIB Procedure . 103
Results: METALIB Procedure with the REPORT Statement 104
Examples: METALIB Procedure . 105

Chapter 13 • METAOPERATE Procedure . 115
Overview: METAOPERATE Procedure . 115
Syntax: METAOPERATE Procedure . 116
Concepts: METAOPERATE Procedure . 125
Examples: METAOPERATE Procedure . 128

PART 5 DATA Step Functions 135

Chapter 14 • Introduction to DATA Step Functions for Metadata . 137
Overview of DATA Step Functions for Metadata . 137
Best Practices . 138
Array Parameters . 138

Chapter 15 • Understanding DATA Step Functions for Reading and Writing Metadata 141
What Are the DATA Step Functions for Reading and Writing Metadata? 141
Referencing a Metadata Object with a URI . 142
Comparison of DATA Step Functions to Metadata Procedures 143

iv Contents

Examples: DATA Step Functions for Reading Metadata . 144

Chapter 16 • DATA Step Functions for Reading and Writing Metadata 161
Dictionary . 161

Chapter 17 • Understanding DATA Step Functions for Metadata Security Administration . . 189
What Are the DATA Step Functions for Metadata Security Administration? 189
Transaction Contexts and URIs . 190
Using the %MDSECCON() Macro . 191
Examples: DATA Step Functions for Metadata Security Administration 191

Chapter 18 • DATA Step Functions for Metadata Security Administration 201
Dictionary . 201

Glossary . 223
Index . 227

Contents v

vi Contents

What's New in the SAS 9.3
Language Interfaces to Metadata

Overview

Changes and enhancements include the following:

• a new METHOD argument for PROC METADATA

• new options for PROC METAOPERATE ACTION=REFRESH in support of the
new metadata server backup facility

• a new option for PROC METAOPERATE PAUSE and RESUME actions in support
of the new metadata server backup facility

• a new option for PROC METAOPERATE ACTION=REFRESH to enable metadata
server alert e-mail testing

• PROC METAOPERATE no longer requires the <SERVER/> option to be specified
with ACTION=REFRESH

• the METAAUTORESOURCES system option now assigns the LIBNAME engine
based on a pre-assignment type in the library definition

• a new SPN format for the METASPN system option

• documentation changes

Procedures

The METADATA procedure is enhanced as follows:

• Depending on the value of a new METHOD= argument, DOREQUEST or STATUS,
the METADATA procedure submits either a SAS Open Metadata Interface IOMI
DoRequest or IServer Status method call to the SAS Metadata Server. Support for
METHOD=STATUS is important because the DoRequest method (the legacy
behavior) does not work when the SAS Metadata Server is paused. Using
METHOD=STATUS, PROC METADATA can be used to get metadata server
configuration, backup information, and various server statistics while the server is
paused. For more information, see Chapter 11, “METADATA Procedure,” on page
67.

The METAOPERATE procedure is enhanced as follows:

• The REFRESH action has several new options in support of the new metadata server
backup facility

vii

<BACKUP attribute(s)/>
invokes an ad hoc backup of the SAS Metadata Server to the location indicated
in the server’s backup configuration.

<BACKUPCONFIGURATION attribute(s)/>
modifies the value of the specified backup configuration attribute. Backup
configuration attributes are BackupLocation="directory",
RunScheduledBackups="Y | N", and DaysToRetainBackups="number".

<RECOVER options/>
recovers the SAS Metadata Server from the specified backup, and can perform
roll-forward recovery from the metadata server journal. The roll-forward feature
recovers all journal transactions, or transactions up to a specified point in time.

<SCHEDULE EVENT="Backup" WEEKDAYn="timeR"/>
sets or modifies the server backup schedule. SCHEDULE EVENT="Backup"
specifies the event that will be scheduled. WEEKDAYn="time" specifies the
backup schedule. The SAS Metadata Server supports daily backups, specified in
a weekly schedule where the attribute WeekDay1= is Sunday, the attribute
WeekDay7= is Saturday, and appropriately numbered WeekDayn= attributes
represent the other days of the week. Backup times are specified in four-digit
values based on a 24-hour clock. For example, 0100 is 1 a.m.; 1300 is 1 p.m. To
modify the schedule, specify the appropriate WeekDayn= attribute with the
backup time. R can be used to specify that a REORG be performed with a
backup.

<SCHEDULER/>
rebuilds or restarts the backup scheduler thread, depending on the XML
subelement that is specified.

<OMA ALERTEMAILTEST="text"/>
sends a test alert e-mail message to the address configured in the <OMA
ALERTEMAIL="email-address"/> option in the metadata server’s
omaconfig.xml configuration file. The option is provided for testing the metadata
server’s alert e-mail notification subsystem. The subsystem sends an alert e-mail
message to configured recipients whenever a server backup or recover fails, or
when the server itself fails.

• The PAUSE and RESUME actions support a new <FORCE/> option. <FORCE/>
regains control of the SAS Metadata Server during the recovery process in the event
that the recovery process stops responding. When used with RESUME, <FORCE/>
returns the server to an online state. When used with PAUSE, you can include the
<SERVER STATE="ADMIN"/> option to enable administrators to examine the
recovered system before making the server available to clients.

For more information, see Chapter 13, “METAOPERATE Procedure,” on page 115.

System Options

• The METAAUTORESOURCES system option now assigns the LIBNAME engine
based on a pre-assignment type setting in the library definition. Libraries that are
marked as being assigned by external configuration (AUTOEXEC file) are ignored
by METAAUTORESOURCES. Libraries that are marked as being assigned by the
native library engine are assigned by the library engine defined for that library in
metadata. Libraries that are marked as being assigned by the metadata LIBNAME

viii SAS Language Interfaces to Metadata

engine are assigned with the metadata LIBNAME engine (MLE). For more
information, see “METAAUTORESOURCES System Option” on page 31.

• The SPN format for the METASPN system option has changed. The following
formats are supported: SAS/machine-name, or SAS/machine-name.company.com.
For more information, see “METASPN= System Option” on page 42.

Documentation Enhancements

• A new chapter describes how SAS language elements that read and write metadata
are affected by the SAS type dictionary. See “Using Language Elements That Read
and Write Metadata” on page 7.

• Additional examples have been added that show how to use SAS metadata DATA
step functions to create reports that track the data libraries, servers, users, user group
memberships, and logins defined in metadata. See “Examples: DATA Step
Functions for Reading Metadata” on page 144.

Documentation Enhancements ix

x SAS Language Interfaces to Metadata

Accessibility Features of the SAS
Language Interfaces to Metadata

Overview
The SAS language interfaces to metadata are command-line interfaces that are accessible
using a keyboard or alternative keyboard assistive technologies. For this release, no
accessibility testing was done and no additional features were added to address
accessibility. If you have specific questions about the accessibility of SAS products,
send them to accessibility@sas.com or call SAS Technical Support.

xi

xii Accessibility Features of the SAS Language Interfaces to Metadata

Recommended Reading

• SAS Intelligence Platform: Data Administration Guide

• SAS Intelligence Platform: Overview

• SAS Intelligence Platform: Security Administration Guide

• SAS Intelligence Platform: System Administration Guide

• SAS Language Reference: Concepts

• SAS Functions and CALL Routines: Reference

• SAS 9.3 Metadata Model: Reference

• SAS Open Metadata Interface: Reference and Usage

• SAS XML LIBNAME Engine: User's Guide

For a complete list of SAS publications, go to support.sas.com/bookstore. If you have
questions about which titles you need, please contact a SAS Publishing Sales
Representative:

SAS Publishing Sales
SAS Campus Drive
Cary, NC 27513-2414
Phone: 1-800-727-3228
Fax: 1-919-677-8166
E-mail: sasbook@sas.com
Web address: support.sas.com/bookstore

xiii

mailto:sasbook@sas.com
http://support.sas.com/bookstore

xiv Recommended Reading

Part 1

Introduction

Chapter 1
What Are the Metadata Language Elements? . 3

Chapter 2
Using Language Elements That Read and Write Metadata 7

Chapter 3
Metadata Object Identifiers and URIs . 11

Chapter 4
Examples: Using Metadata Language Elements to
Create Reports . 13

1

2

Chapter 1

What Are the Metadata Language
Elements?

Overview of Metadata Language Elements . 3

When to Use Metadata Language Elements . 4

What Can I Report on in a SAS Metadata Repository? . 5

Overview of Metadata Language Elements
SAS Open Metadata Architecture enables an administrator to define metadata objects
that are common to one or more SAS client applications. For example, you can describe
data sources and set security that supplements protections from the host environment and
other systems.

In most cases, an administrator maintains the metadata by using products like SAS
Management Console, SAS Data Integration Studio, or SAS Enterprise Guide. However,
an administrator can also maintain metadata by running a SAS program in batch or from
the SAS windowing environment. The code that can be submitted in a SAS session uses
the SAS metadata language elements.

Many of the metadata language elements enable you to maintain metadata that defines a
data source. A convention in the SAS Open Metadata Architecture is to refer to data in
terms of SAS libraries, tables, rows, and columns.

• A data source is defined in metadata as a table.

• SAS tables are organized by being stored in a library.

• In SAS documentation, a row in a table is often called an observation, and a column
is called a variable.

A SAS Metadata Server manages access to metadata in SAS metadata repositories.
Some of the metadata language elements can be used to monitor and maintain the SAS
Metadata Server.

This book is a reference to the metadata language elements. For information about
metadata and SAS Metadata Server administration tasks, see the SAS Intelligence
Platform: System Administration Guide.

The SAS metadata language elements described in this book include:

System options
Use the system options to set defaults for metadata access. They are organized into
three groups: connection to the SAS Metadata Server, client encryption, and
resources.

3

Metadata LIBNAME statement
As with other SAS engines, an administrator can assign a libref to serve as a
shorthand for users. With the metadata engine, the underlying LIBNAME
information is stored in metadata objects. The metadata engine helps implement
security across an enterprise.

Data set options for the metadata engine
You can apply these data set options to one table, rather than to an entire library.

Procedures
You can use the following procedures to perform many common maintenance tasks
on metadata and the SAS Metadata Server.

• PROC METALIB automates the creation and update of table metadata for a
specified SAS library. (The SAS library must be defined in a SAS Metadata
Repository using SAS Management Console or SAS Data Integration Studio,
first.)

• PROC METADATA enables clients to submit XML-formatted SAS Open
Metadata Interface method calls that read and write metadata objects of all SAS
Metadata Model metadata types from within SAS. It also enables you to issue
status requests that query the SAS Metadata Server’s configuration, the server’s
backup configuration and history, and the server’s availability. PROC
METADATA returns XML output that mirrors the input, except the requested
values are filled in. To process the output with SAS, you can define an XML map
that can be read with the XML LIBNAME engine.

• PROC METAOPERATE pauses, resumes, refreshes, backs up, recovers, and
stops the SAS Metadata Server.

DATA step functions
The DATA step functions cover the same metadata functionality as PROC
METADATA, and return data to the DATA step, which can then be arranged in a
SAS data set. Because the DATA step functions execute within a DATA step, you
can use the output from one function as the input to another function.

The SAS commands METABROWSE, METACON, and METAFIND are documented
in the online Help that is available from the SAS windowing environment.

When to Use Metadata Language Elements
Submitting a batch program can be helpful for repetitive metadata maintenance tasks.
You might want to run reports automatically overnight, when usage of the SAS
Metadata Server is low. The language elements are flexible and can be adapted to almost
any metadata maintenance task.

SAS language elements that return information about the SAS Metadata Server’s
availability and configuration can be issued from the windowing environment at any
time by users with administrative access to the server.

4 Chapter 1 • What Are the Metadata Language Elements?

What Can I Report on in a SAS Metadata
Repository?

The SAS Metadata Repository stores logical data representations of items such as the
libraries, tables, information maps, and cubes that are used by SAS applications, as well
as the information assets that are created by SAS applications. It stores information
about system resources such as servers and the users who access data and metadata, and
the rules that govern who can access what. You can create reports that track changes to
all of these resources.

What Can I Report on in a SAS Metadata Repository? 5

6 Chapter 1 • What Are the Metadata Language Elements?

Chapter 2

Using Language Elements That
Read and Write Metadata

Overview of Using SAS Language Elements That Read and Write Metadata 7

Objects Included in the Dictionary . 8

What is the SAS Type Dictionary? . 8

How the Type Dictionary Affects SAS Language Elements . 8
Creating Metadata . 8
Reading Metadata . 9
Deleting Metadata . 10

Overview of Using SAS Language Elements That
Read and Write Metadata

PROC METADATA, PROC METALIB, and the metadata DATA step functions can be
used to create metadata in the SAS Metadata Repository. PROC METADATA and the
metadata DATA step functions enable you to read metadata from the SAS Metadata
Repository.

To use SAS language elements to create or read any metadata object, you must know the
SAS Metadata Model metadata type that represents the object in the SAS Metadata
Repository. You must know the attributes and associations defined for the metadata type
in the SAS Metadata Model. That information is not provided in this book. For more
information, see the SAS Metadata Model: Reference.

Most resources and information assets in the SAS Metadata Repository are described by
a logical metadata definition. This logical metadata definition includes multiple SAS
Metadata Model metadata types, not just one. For applications to effectively share
metadata, and for SAS tools to effectively import and export definitions, they must use
common logical metadata definitions.

SAS 9.3 includes a type dictionary that SAS Intelligence Platform applications and
solutions use to standardize the usage of common and shared resources and information
assets in their applications or solutions. An aspect of this type dictionary is that for
resources that are persisted in metadata, it standardizes their logical metadata definitions.

This chapter describes how the type dictionary affects read and write requests made with
SAS language elements.

7

Objects Included in the Dictionary
The type dictionary includes metadata objects that describe common and shared
resources and information assets, as well as metadata objects that need to be displayed in
the SAS Management Console Folders tree, and metadata objects that need to be
imported and exported. Examples of object types that are included in the type dictionary
are Table, Library, Information Map, SAS Report, Stored Process, Stored Process
Server, Stored Process Report, Workspace Server, Job, Cube, User, and User Group, to
name a few.

Not all objects in the type dictionary can be imported and exported, and they do not all
display in the SAS Management Console Folders tree.

What is the SAS Type Dictionary?
The SAS type dictionary consists of a set of object type definitions. The dictionary is
located in a Types subfolder of the System folder in the SAS Management Console
Folders tree. Open the folder to see a complete list of the object types that are
managed by the type dictionary.

A type definition is metadata that contains the information that is necessary to display
and manage instances of an object type in a SAS application. Whereas an object’s
logical metadata definition contains information that describes a resource or information
asset, and this definition might configure the resource in the enterprise, the type
definition contains information that an application can use to display and manage the
object, and this definition represents the resource within the application.

A goal of the type dictionary is to hide the details of logical metadata definitions from
clients. The type definition publishes the name of the primary metadata type used to
represent the object in the SAS Metadata Repository. However, it internalizes the
information needed to expand the logical metadata definition. The primary metadata
objects in logical metadata definitions that conform to the type dictionary store the name
of their type definition in a PublicType= attribute. The SAS Open Metadata Interface
GetMetadata method supports a flag that clients can set to instruct the SAS Metadata
Server to use the type definition referenced in the PublicType= attribute to expand an
object’s logical metadata definition.

How the Type Dictionary Affects SAS Language
Elements

Creating Metadata
In SAS 9.3, you should use SAS wizards and procedures to automate the creation of
metadata, such as PROC METALIB and PROC OLAP. This is opposed to using PROC
METADATA and metadata DATA step functions to create metadata. By using SAS
wizards and procedures, you can be assured that the logical metadata definitions
conform to the type dictionary. A client that uses PROC METADATA and metadata

8 Chapter 2 • Using Language Elements That Read and Write Metadata

DATA step functions must create its own logical metadata definitions, and, as a result,
these logical metadata definitions might not conform to the type dictionary.

Advantages of using logical metadata definitions that conform to the type dictionary
include:

• The metadata objects display on the SAS Management Console Folders tab. Not
only are the objects visible in the GUI, but the folder container gives context to the
object in the SAS Metadata Repository.

• The metadata objects can be managed using the functionality available on the
Folders tab. You can copy, paste, delete, import a SAS package, and export a SAS
package. Importing and exporting are not available for all object types.

• The metadata objects can be searched using the functionality on the SAS
Management Console Search tab, which is new.

Reading Metadata
Metadata language elements that request specific object instances require you to identify
the object instance by its primary metadata type and metadata identifier or name. As
long as you are using the correct metadata type and identifier or name, no additional
information is required to retrieve the specified object instance.

For SAS language elements that read metadata, the type dictionary makes it easy to
identify the primary metadata type representing the object in the SAS Metadata
Repository. Open the type definition of the object that you are interested in in the
dictionary. The object’s primary metadata type is specified in the Metadata Type field
on the Advanced tab of its properties. For information about metadata identifiers or
names, see “What Is a Metadata Identifier?” on page 11. Also, see “Obtaining
Metadata Names and Identifiers” on page 11.

PROC METADATA enables you to get specific object instances by submitting the SAS
Open Metadata Interface GetMetadata method. Clients that use PROC METADATA can
set the OMI_FULL_OBJECT flag in the GetMetadata request to return an object’s full
logical metadata definition. Metadata DATA step functions do not support the ability to
return an object’s full logical metadata definition. For an example of a PROC
METADATA request that sets the OMI_FULL_OBJECT flag, see “Example 7: Request
the Metadata for One Object” on page 85.

Metadata requests that list object instances should use the values specified in the type
definition’s MetadataType and TypeName fields. Many type definitions use the same
metadata type as their primary metadata object (for example, Information Map and SAS
Report). The TypeName value is unique across type definitions. The TypeName value
is specified on the Advanced tab of a type definition’s properties. The TypeName value
maps to the PublicType= attribute of the primary metadata object in logical metadata
definitions that conform to the type dictionary.

For an example of a PROC METADATA request that uses the type dictionary to list
objects, see “Example 8: Request the Metadata for One Type of Object” on page 88.

SAS provides the METADATA_GETNOBJ function for getting metadata objects in a
SAS Metadata Repository. The METADATA_GETNOBJ function and many other
metadata DATA step functions use a uniform resource identifier (URI) to identify an
object. To list objects using the type dictionary, use this URI form:

omsobj: type?@PublicType='value'

How the Type Dictionary Affects SAS Language Elements 9

The type is the MetadataType value, and value is the TypeName value from the type
definition. For more information about URIs, see “What Is a URI?” on page 12. Also,
see “METADATA_GETNOBJ Function” on page 170.

SAS provides the METADATA_PATHOBJ function for getting metadata objects in
folders. Specify the TypeName= value in the DefType argument. For more
information, see “METADATA_PATHOBJ Function” on page 178.

Deleting Metadata
SAS metadata interfaces automatically uses the type dictionary to delete metadata when
the specified metadata object is a PrimaryType subtype in the SAS Metadata Model and
stores a value in the PublicType= attribute, unless you specify a user-defined template in
the request. When you specify to delete the primary metadata object, the DeleteMetadata
method also deletes all associated objects that are identified internally in the object’s
type definition.

If the specified metadata object is a SecondaryType subtype in the SAS Metadata Model
or is a PrimaryType subtype but does not store a value in the PublicType= attribute, then
only the specified metadata object is deleted, unless you specify a user-defined template.
For more information about PrimaryType and SecondaryType subtypes, see the SAS
Metadata Model: Reference.

10 Chapter 2 • Using Language Elements That Read and Write Metadata

Chapter 3

Metadata Object Identifiers and
URIs

What Is a Metadata Identifier? . 11

Obtaining Metadata Names and Identifiers . 11

What Is a URI? . 12

What Is a Metadata Identifier?
The SAS Metadata Server uses a unique identifier for every metadata object. The 17-
character identifier consists of two parts, separated by a period. It is often represented in
documentation as reposid.objectid. An example is A52V87R9.A9000001.

• The first eight characters (A52V87R9 in the example) identify the SAS Metadata
Repository in which the object is stored.

• The ninth character is always a period.

• The second set of eight characters (A9000001 in the example) identifies the object
in the repository.

Obtaining Metadata Names and Identifiers
Most of the metadata language elements require you to identify an object by its name or
identifier. If you need the name or identifier of a single object, and you know where the
object is located in SAS Management Console or in SAS Data Integration Studio, then
this task is simple. The metadata identifier is shown in the object's properties. For more
information, see the Online Help that is available from the product.

Another way to locate an object is to issue the METABROWSE command to open the
Metadata Browser window, or issue the METAFIND command to open the Metadata
Find window. For more information, select Using This Window from the Help menu in
the SAS windowing environment.

To retrieve a series of metadata identifiers programmatically, you can use the
“METADATA_RESOLVE Function” on page 182 if you are processing within a
DATA step.

Another choice is to submit a GetMetadataObjects method call with PROC
METADATA, and then use the XML LIBNAME engine to import the procedure's XML

11

output as a SAS data set. For a PROC METADATA example that retrieves object IDs,
see “Example: Creating a Report with the METADATA Procedure and the XML
Engine” on page 13 .

What Is a URI?
For many of the metadata language elements, you can specify a metadata resource by its
name or identifier. Some of the language elements accept a Uniform Resource Identifier
(URI), which is a standard from SAS Open Metadata Architecture. The following URI
formats are supported:

ID
is the metadata object identifier. Some language elements support the 8-character
identifier, and some support the full 17-character identifier, which references both
the repository and the object. Examples are A9000001 and A52V87R9.A9000001.
In general, the ID format is the least efficient.

type/ID
is the metadata type name and metadata object identifier. Some language elements
support the 8-character object identifier, and some support the full 17-character
repository and object identifier. Examples are SASLibrary/A9000001 and
SASLibrary/A52V87R9.A9000001. In general, the type/ID format is the most
efficient.

type?@attribute='value'
is the metadata type name, followed by a search string. For metadata language
elements, the search string is in the form of an attribute='value' pair. Examples are
SASLibrary?@libref='mylib' and Transformation?
@PublicType='Report'. The first example returns SASLibrary objects that store
the value “mylib” in the Libref= attribute. The second example returns
Transformation objects that store the value “Report” in the PublicType= attribute,
which corresponds to the SAS Report type definition in the SAS type dictionary. For
more information, see “What is the SAS Type Dictionary?” on page 8. Some
language elements require the entire value to be enclosed in quotation marks.

See the language elements in this book for important usage details.

12 Chapter 3 • Metadata Object Identifiers and URIs

Chapter 4

Examples: Using Metadata
Language Elements to Create
Reports

Overview of the Examples . 13

Example: Creating a Report with the METADATA
Procedure and the XML Engine . 13

Example: Creating a Report with the DATA Step . 19

Overview of the Examples
These examples show reports that can be created with metadata language elements. For
information about the concepts involved in using the metadata language elements and
examples of other ways the SAS language elements can be used, see the appropriate
SAS language section.

Example: Creating a Report with the METADATA
Procedure and the XML Engine

This example creates a report about all the tables in a user's library, including the tables'
column names, librefs, and engines.

PROC METADATA requests the column names, and so on, from metadata, and outputs
the values in an XML file. Then, the XML LIBNAME engine uses an XML map to read
the XML file and create SAS data sets. When the information is in SAS data sets, an
administrator can run SAS code like DATA steps and procedures. This example uses
PROC PRINT to create an HTML report.

To be clear, the files that are used in this example are described in the following list. The
XML files are temporary and exist during the session only. However, you can also create
permanent files.

• the user's library, which contains an unknown number of tables

• an input XML file, which is created by a DATA step to query the metadata

• an output XML file, which is created by PROC METADATA and contains
information about the user's tables

• an XML map, created by a DATA step

• two SAS data sets, created by the XML LIBNAME engine and an XML map

13

• a third SAS data set, created by a DATA step MERGE

• an HTML report, created by ODS (Output Delivery System) statements

The METADATA procedure is documented in this book; see METADATA Procedure
on page 67. The XML LIBNAME engine and XML maps are not documented in this
book; see SAS XML LIBNAME Engine: User's Guide.

The example begins by connecting to the SAS Metadata Server, updating the metadata
about the library, and creating the input XML file.

/* submit connection information to server */

options metaport=8561
 metaserver="a123.us.company.com"
 metauser="myuserid"
 metapass="mypasswd";

/* Run PROC METALIB to be sure the metadata is current. */
/* The library must be registered already in the SAS Metadata Server. */
/* Use the library name that is defined in the metadata, not the libref. */

proc metalib;
 omr (library="mylib");
 report;
run;

/* Assign filerefs and libref. */
filename query temp;
filename rawdata temp;
filename map temp;
libname myxml xml xmlfileref=rawdata xmlmap=map;

/* Create temporary query file. */
/* 2309 flag plus template gets table name, column name, */
/* engine, libref, and object IDs. The template specifies */
/* attributes of the nested objects. */

data _null_;
 file query;
 input;
 put _infile_;
 datalines;
<GetMetadataObjects>
 <Reposid>$METAREPOSITORY</Reposid>
 <Type>PhysicalTable</Type>
 <Objects/>
 <Ns>SAS</Ns>
 <!-- OMI_ALL (1) + OMI_TEMPLATE(4) +
OMI_GET_METADATA(256) + OMI_SUCCINCT(2048) flags -->
 <Flags>2309</Flags>
 <Options>
 <Templates>
 <PhysicalTable/>
 <Column SASColumnName=""/>
 <SASLibrary Engine="" Libref=""/>
 </Templates>
 </Options>

14 Chapter 4 • Examples: Using Metadata Language Elements to Create Reports

</GetMetadataObjects>
;;
run;
proc metadata
 in=query
 out=rawdata;
run;

The next section of example code creates a temporary text file that contains the XML
map. The map enables the XML LIBNAME engine to process the XML returned by the
metadata query as two data sets, ColumnDetails and LibrefDetails.

In the ColumnDetails data set, the observation boundary (TABLE-PATH) is at Column.
Putting the boundary at Column is necessary because the PhysicalTable elements have
multiple Column elements. If you need to read multiple elements, you must set the
observation boundary at that element, so the XML LIBNAME engine can create
multiple observations for the element.

Because the observation boundary is set at Column, each observation stops at Column,
and any elements that follow Column are not properly read. Therefore, another data set
is required. The LibrefDetails data set contains the SASLibrary elements. Later in the
code, the ColumnDetails and LibrefDetails data sets are merged into a final data set.

The XML map is created in the following code to illustrate the process. You can use a
graphical interface, SAS XML Mapper, to generate an XML map. For more information,
see SAS XML LIBNAME Engine: User's Guide.

data _null_;
 file map;
 input;
 put _infile_;
 datalines;

<?xml version="1.0" ?>
 <SXLEMAP version="1.2">

 <TABLE name="ColumnDetails">
 <TABLE-PATH syntax="xpath">
 /GetMetadataObjects/Objects/PhysicalTable/Columns/Column
 </TABLE-PATH>

 <COLUMN name="SASTableName" retain="yes">
 <PATH>
 /GetMetadataObjects/Objects/PhysicalTable/@SASTableName
 </PATH>
 <TYPE>character</TYPE>
 <DATATYPE>STRING</DATATYPE>
 <LENGTH>14</LENGTH>
 </COLUMN>

 <COLUMN name="Columns">
 <PATH>
 /GetMetadataObjects/Objects/PhysicalTable/Columns/Column/@SASColumnName
 </PATH>
 <TYPE>character</TYPE>
 <DATATYPE>STRING</DATATYPE>
 <LENGTH>12</LENGTH>
 </COLUMN>

15

 <COLUMN name="Column IDs">
 <PATH>
 /GetMetadataObjects/Objects/PhysicalTable/Columns/Column/@Id
 </PATH>
 <TYPE>character</TYPE>
 <DATATYPE>STRING</DATATYPE>
 <LENGTH>17</LENGTH>
 </COLUMN>

 </TABLE>

 <TABLE name="LibrefDetails">
 <TABLE-PATH syntax="xpath">
 /GetMetadataObjects/Objects/PhysicalTable/TablePackage/SASLibrary
 </TABLE-PATH>

 <COLUMN name="SASTableName">
 <PATH>
 /GetMetadataObjects/Objects/PhysicalTable/@SASTableName
 </PATH>
 <TYPE>character</TYPE>
 <DATATYPE>STRING</DATATYPE>
 <LENGTH>14</LENGTH>
 </COLUMN>

 <COLUMN name="Libref">
 <PATH>

/GetMetadataObjects/Objects/PhysicalTable/TablePackage/SASLibrary/@Libref
 </PATH>
 <TYPE>character</TYPE>
 <DATATYPE>STRING</DATATYPE>
 <LENGTH>10</LENGTH>
 </COLUMN>

 <COLUMN name="Engine">
 <PATH>

/GetMetadataObjects/Objects/PhysicalTable/TablePackage/SASLibrary/@Engine
 </PATH>
 <TYPE>character</TYPE>
 <DATATYPE>STRING</DATATYPE>
 <LENGTH>10</LENGTH>
 </COLUMN>

 </TABLE>

</SXLEMAP>
;

/* Optional: print XML mapped data sets before the merge. */

title 'Tables and their Columns';
proc print data=myxml.ColumnDetails;

16 Chapter 4 • Examples: Using Metadata Language Elements to Create Reports

run;

title 'Tables and their Librefs';
proc print data=myxml.LibrefDetails;
run;

/* Create data sets that contain the metadata. */

libname mybase base 'c:\myxml\data';

data mybase.ColumnDetails;
 set myxml.ColumnDetails;
run;

data mybase.LibrefDetails;
 set myxml.LibrefDetails;
run;

/* Sort by table name. */

proc sort data=mybase.ColumnDetails out=mybase.ColumnDetails;
 by SASTableName;
run;

proc sort data=mybase.LibrefDetails out=mybase.LibrefDetails;
 by SASTableName;
run;

/* Merge into one data set. */

data mybase.final;
 merge mybase.ColumnDetails mybase.LibrefDetails ;
 by SASTableName;
run;

After ColumnDetails and LibrefDetails are merged into the final data set, an ODS step
creates the HTML report:

title 'Table Metadata';
filename reports 'c:\myxml\reports\';

proc print data=mybase.final;
run;

17

Here is a portion of the report:

For examples of other types of information that you can obtain with PROC
METADATA, see Chapter 11, “METADATA Procedure,” on page 67.

18 Chapter 4 • Examples: Using Metadata Language Elements to Create Reports

Example: Creating a Report with the DATA Step
This example creates an HTML report about servers that are defined in the repository.

%macro server_report (metaserver=abc.company.com,
 metaport=8561,
 usr=myuserid,
 pw=mypasswd,
 includeopt=N,
 htmlloc=c:\reports\myservers.htm
);

options metaserver="&metaserver"
 metarepository="Foundation"
 metaport=&metaport
 metauser="&usr"
 metapass="&pw";

data _null_;
 length ver $20;
 ver=left(put(metadata_version(),8.));
 put ver=;
 call symput('METAVER',ver);
run;

/* could not connect to metadata server */
%if %eval(&metaver<=0) %then
 %do;
 %put ERROR: could not connect to &metaserver &metaport. ;
 %put ERROR: check connection details, userid and password.;
 %return;
 %end;

 data
 server_connections(keep=id name vendor productname softwareversion
 hostname port con_name app_pro com_pro authdomain)
 server_options (keep=name server_opts)
 ;
 length mac_uri dom_uri con_uri urivar uri $500
 id $17 name vendor productname $50 softwareversion $10 port $4
 authdomain authdesc hostname con_name $40
 app_pro com_pro propname $20 pvalue pdesc $200 server_opts $500
 assn attr value $200;
 nobj=1;
 n=1;

 nobj=metadata_getnobj("omsobj:ServerComponent?@Id contains '.'",n,uri);
 do i=1 to nobj;
 nobj=metadata_getnobj("omsobj:ServerComponent?@Id contains
'.'",i,uri);
 put name=;
 put '-----------------------------------';

Example: Creating a Report with the DATA Step 19

 rc=metadata_getattr(uri,"Name",Name);
 rc=metadata_getattr(uri,"id",id);
 rc=metadata_getattr(uri,"vendor",vendor);
 rc=metadata_getattr(uri,"productname",productname);
 rc=metadata_getattr(uri,"softwareversion",softwareversion);

 hostname=' ';

 nummac=metadata_getnasn(uri,
 "AssociatedMachine",
 1,
 mac_uri);
 if nummac then

 rc=metadata_getattr(mac_uri,"name",hostname);

 numcon=metadata_getnasn(uri,
 "SourceConnections",
 1,
 con_uri);

 port=' ';
 con_name=' ';
 app_pro=' ';
 com_pro=' ';

 if numcon>0 then

 do k=1 to numcon;
 numcon=metadata_getnasn(uri,
 "SourceConnections",
 k,
 con_uri);
 /* Walk through all the notes on this machine object. */
 rc=metadata_getattr(con_uri,"port",port);
 rc=metadata_getattr(con_uri,"hostname",hostname);
 rc=metadata_getattr(con_uri,"name",con_name);
 rc=metadata_getattr(con_uri,"applicationprotocol",app_pro);

rc=metadata_getattr(con_uri,"communicationprotocol",com_pro);

 numdom=metadata_getnasn(con_uri,
 "Domain",
 1,
 dom_uri);
 put numdom=;
 if numdom >=1 then
 do;
 rc=metadata_getattr(dom_uri,"name",authdomain);
 rc=metadata_getattr(dom_uri,"desc",authdesc);
 end;
 else
 authdomain='none';

20 Chapter 4 • Examples: Using Metadata Language Elements to Create Reports

 put authdomain=;
 output server_connections;
 end;

 else
 do;
 put 'Server with no connections=' name;
 if hostname ne ' ' then
 output server_connections;
 end;

 server_opts='none';
 numprop=metadata_getnasn(uri,
 "Properties",
 1,
 con_uri);
 do x=1 to numprop;
 numcon=metadata_getnasn(uri,
 "Properties",
 x,
 con_uri);
 /* Walk through all the notes on this machine object. */
 rc=metadata_getattr(con_uri,"propertyname",propname);
 rc=metadata_getattr(con_uri,"name",pdesc);
 rc=metadata_getattr(con_uri,"defaultvalue",pvalue);
 server_opts=cat(trim(pdesc),' : ',trim(pvalue));

 output server_options;

 end;

 end;

 run;

 proc sort data=server_connections;
 by name;
 run;

 proc sort data=server_options;
 by name;
 run;

 proc transpose data=server_options out=sopts prefix=opt;
 by name ;
 var server_opts;
 run;

 %if &includeopt=Y %then
 %do; /* include server options on the report */
 data server_report;
 length server_opts $70.;
 merge server_connections server_options;
 by name;
 run;

Example: Creating a Report with the DATA Step 21

 %end; /* include server options on the report */

 %else
 %do;
 data server_report;
 length server_opts $1.;
 set server_connections;
 run;
 %end;

 ods listing close;
 ods html body="&htmlloc";
 title "Report for Metadata Server &metaserver:&metaport,
&sysdate9";
 footnote ;

 proc report data=server_report
 nowindows headline headskip split='*' nocenter;
 column name vendor productname softwareversion hostname port
 con_name app_pro com_pro authdomain
 %if &includeopt=Y %then
 %do; /* include server options on the report */
 server_opts
 %end; /* include server options on the report */
 ;
 define name / group flow missing "Server*Name";
 define vendor / group flow missing "Vendor";
 define productname / group flow missing "Product";
 define softwareversion / group missing "Version";
 define port / group missing "Port";
 define hostname / group missing "Host Name";
 define con_name / group missing "Connection*Name";
 define authdomain / group missing "Authentication*Domain";
 define app_pro / group missing "App*Protocol";
 define com_pro / group missing "Com*Protocol";

 %if &includeopt=Y %then
 %do; /* include server options on the report */
 define server_opts / group missing "Server Options";
 %end; /* include server options on the report */

 break after name / style=[BACKGROUND=CCC];

 %if &includeopt=Y %then
 %do; /* include server options on the report */
 compute after name ;
 line ' ';
 line server_opts $70.;
 line ' ';
 endcomp;
 %end; /* include server options on the report */

 run;

 ods html close;
 ods listing;

22 Chapter 4 • Examples: Using Metadata Language Elements to Create Reports

 /* connected to metadata server */

%mend;

%server_report (metaserver=abc.company.com,
 metaport=8561,
 usr=sasadm@saspw,
 pw=xxxxxx,
 includeopt=N,
 htmlloc=c:\reports\myservers.htm
);

Example: Creating a Report with the DATA Step 23

Here is the HTML report:

For more examples of reports that you might want to create with SAS metadata DATA
step functions, see “Examples: DATA Step Functions for Reading Metadata” on page
144.

24 Chapter 4 • Examples: Using Metadata Language Elements to Create Reports

Part 2

System Options

Chapter 5
Introduction to System Options for Metadata . 27

Chapter 6
System Options for Metadata . 31

25

26

Chapter 5

Introduction to System Options for
Metadata

Overview of System Options for Metadata . 27

Connection Options . 28
Introduction to Connection Options . 28
Specifying Connection Properties Directly . 28
Specifying a Stored Connection Profile . 29

Encryption Options . 30

Resource Option . 30

Overview of System Options for Metadata
SAS provides a family of system options to define the default SAS Metadata Server. The
following table shows the system options by category.

Table 5.1 System Options by Category

Category System Options

Connection METACONNECT=

METAPASS=

METAPORT=

METAPROFILE

METAPROTOCOL=

METAREPOSITORY=

METASERVER=

METASPN=

METAUSER=

Encryption METAENCRYPTALG

METAENCRYPTLEVEL

Resource METAAUTORESOURCES

27

To determine what system option settings are active in your SAS session, you can issue
the OPTIONS command on the command line. Or submit the following procedure
statement:

proc options group=meta; run;

Usually these system options are set in a configuration file or at invocation. Some of the
options can be changed at any time; see the options documentation. The metadata system
options affect every server that uses an Integrated Object Model (IOM) connection to the
metadata server. IOM servers include the SAS Workspace Server, SAS Pooled
Workspace Server, SAS Stored Process Server, SAS OLAP Server, and SAS Table
Server, as well as any Base SAS session that connects to the metadata server.

For general information about SAS system options, see the SAS Language Reference:
Concepts. For information about configuration files, see the SAS Companion for your
operating environment. For information about administration, see SAS Intelligence
Platform: System Administration Guide.

Connection Options

Introduction to Connection Options
The connection properties are required to establish a connection to the metadata server.
You can establish a connection in the following ways:

• Set the connection properties directly with the METASERVER=, METAPORT=,
METAUSER=, METAPASS=, and METAREPOSITORY= system options, or the
METASERVER=, METAPORT=, and METASPN= system options; see “Specifying
Connection Properties Directly” on page 28.

• Specify a stored metadata server connection profile with the METACONNECT= and
METAPROFILE options; see “Specifying a Stored Connection Profile” on page
29.

• Specify connection properties when you issue a metadata procedure; see “Overview
of Procedures for Metadata” on page 63.

• Specify connection properties when you issue the metadata LIBNAME statement;
see “LIBNAME Statement for the Metadata Engine ” on page 51.

• When you are running interactively, you can be prompted for connection values.
Prompting occurs when either METASERVER= or METAPORT= are not specified.
Prompting also occurs when METAUSER= or METAPASS= are not specified, and a
trusted peer or Integrated Windows authentication (IWA) connection is rejected. For
information about trusted peer and IWA, see the SAS Intelligence Platform: Security
Administration Guide.

If the connection fails, check the connection properties to be sure you have specified or
omitted quotation marks exactly as documented.

Specifying Connection Properties Directly

Connection Options
The “METAPASS= System Option” on page 36, “METAPORT= System Option” on
page 37, “METAPROTOCOL= System Option” on page 39,
“METAREPOSITORY= System Option” on page 40, “METASERVER= System

28 Chapter 5 • Introduction to System Options for Metadata

Option” on page 41, “METASPN= System Option” on page 42, and “METAUSER=
System Option” on page 43 each specify a connection property. Typically these values
are set in a configuration file. METAPROTOCOL= is optional as there is currently only
one supported value, which is the default.

Example: Configuration File
To set the default metadata server to use the password sasuser1, port 9999, repository
myrepos, metadata server a123.us.company.com, and user ID myuserid, you
would add the following lines to the configuration file:

-METAPASS "sasuser1"
-METAPORT 9999
-METAREPOSITORY "myrepos"
-METASERVER "a123.us.company.com"
-METAUSER "myuserid"

Example: OPTIONS Statement
The following OPTIONS statement, which can be added to an autoexec file or directly to
a SAS program, has the same effect as the configuration file example:

options metapass="sasuser1"
 metaport=8561
 metarepository="myrepos"
 metaserver="a123.us.company.com"
 metauser="myuserid";

Specifying a Stored Connection Profile

Connection Options
Instead of specifying individual connection options for the metadata server, you can use
the “METACONNECT= System Option” on page 33 and “METAPROFILE System
Option” on page 38.

METAPROFILE must be specified at SAS invocation or in a configuration file. It
specifies the pathname of an XML document that contains connection profiles.
METACONNECT= can be submitted at any time. It specifies one named connection
profile in the XML document. A connection profile contains metadata server connection
properties, such as the name of the host computer on which the metadata server is
invoked, the TCP port, and the user ID and password of the requesting user.

You can create connection profiles with the Metadata Server Connections dialog box.
Open the dialog box by executing the SAS windowing environment command
METACON. The dialog box enables you to save (export) one or more connection
profiles to a permanent XML document. To learn more about the METACON command,
see the online Help in the SAS windowing environment.

The connection profiles are similar to the ones that are used by SAS Management
Console. However, SAS Management Console stores its connection profiles in a
different way. For more information about connection profiles in SAS Management
Console, see the online Help that is available from SAS Management Console.

Configuration File Example
Here is a configuration file example that invokes a user connection profile named
Mike's profile:

Connection Options 29

-METAPROFILE "!SASROOT\metauser.xml"
-METACONNECT "Mike's profile"

Encryption Options
The METAENCRYPTALG and METAENCRYPTLEVEL options are used to encrypt
communication with the metadata server. You do not have to license SAS/SECURE
software if you specify the SAS proprietary algorithm. For more information, see
“METAENCRYPTALG System Option” on page 34 and “METAENCRYPTLEVEL
System Option” on page 35.

Resource Option
The METAAUTORESOURCES option identifies resources to be assigned at SAS start-
up. The resources are defined in SAS metadata. For example, in SAS Management
Console, you can define a list of librefs (SAS library references) that are associated with
the LogicalServer, ServerComponent, or ServerContext object.
METAAUTORESOURCES points to the object and assigns the associated libraries at
start-up.

For more information, see “METAAUTORESOURCES System Option” on page 31.

30 Chapter 5 • Introduction to System Options for Metadata

Chapter 6

System Options for Metadata

Dictionary . 31
METAAUTORESOURCES System Option . 31
METACONNECT= System Option . 33
METAENCRYPTALG System Option . 34
METAENCRYPTLEVEL System Option . 35
METAPASS= System Option . 36
METAPORT= System Option . 37
METAPROFILE System Option . 38
METAPROTOCOL= System Option . 39
METAREPOSITORY= System Option . 40
METASERVER= System Option . 41
METASPN= System Option . 42
METAUSER= System Option . 43

Dictionary

METAAUTORESOURCES System Option
Identifies the metadata resources that are assigned when SAS starts.

Valid in: configuration file, SAS invocation

Category: Communications: Metadata

PROC OPTIONS
GROUP=

META

Syntax
METAAUTORESOURCES server-object

Syntax Description
server-object

is the name or URI of a LogicalServer, ServerComponent, or ServerContext
metadata object in a repository on the SAS Metadata Server. The maximum length is
32,000 characters. If you specify either single or double quotation marks, they are
not saved as part of the value.

31

METAAUTORESOURCES accepts the following name and URI formats:

name
specifies the metadata name of the object. An example is the following:

 -metaautoresources 'SASApp'

This format is supported for a ServerContext object only. For LogicalServer and
ServerComponent objects, use one of the following URI formats:

OMSOBJ:identifier.identifier
specifies the metadata identifier of the object. An example is the following:

-metaautoresources "omsobj:A5HMMB7P.AV000005"

OMSOBJ:type/ID
specifies the metadata type name and metadata identifier of the object. An
example is the following:

-metaautoresources "omsobj:ServerComponent/A5HMMB7P.AV000005"

OMSOBJ:type?@attribute='value'
specifies the metadata type name, followed by a search string, which is in the
form of an attribute='value' pair. An example is the following:

-metaautoresources "OMSOBJ:ServerComponent?@Name='My Server'"

Details
METAAUTORESOURCES identifies metadata resources that are assigned when you
invoke SAS. In this release, the option is used to assign libraries. In future releases,
additional resources might be supported.

In SAS Management Console, when you define a library, you can assign a server.
METAAUTORESOURCES specifies the server object, and assigns the associated
libraries at start-up.

In SAS 9.2, libraries that had the Library is pre-assigned check box selected in their
library definitions were pre-assigned using the native library engine defined for that
library in metadata, unless the library was already pre-assigned by an AUTOEXEC file.

In SAS 9.3, the SAS Management Console Data Library Manager enables you to specify
pre-assignment in the library definition. Specifying the PreAssignmentType property
affects METAAUTORESOURCES as follows, unless the library was already pre-
assigned by an AUTOEXEC file:

• Libraries marked as pre-assigned by external configuration (for example, the
AUTOEXEC file) are ignored by METAAUTORESOURCES.

• Libraries marked as pre-assigned by the native library engine are assigned using the
native library engine defined for that library in metadata.

• Libraries marked as pre-assigned by the metadata LIBNAME engine are assigned by
the metadata LIBNAME engine (MLE). MLE is a proxy library engine that enforces
access controls placed on the library and its tables and columns, as defined in
metadata.

Library definitions that were created with the SAS 9.2 Data Library Manager, and that
had the Library is pre-assigned check box selected, continue to behave as if the native
library engine option was specified.

The PreAssignmentType property is not recognized by SAS 9.2 sessions that connect to
a SAS 9.3 Metadata Server that was configured with the SAS 9.3 Data Library Manager.

If the SAS Metadata Server is not available, METAAUTORESOURCES is ignored.

32 Chapter 6 • System Options for Metadata

METAAUTORESOURCES is set automatically for any SAS Workspace Server or SAS
Stored Process Server started by the object spawner. The option can be set manually for
any other batch, interactive, or server SAS session using a command-line or
configuration file option.

For information about pre-assigning SAS libraries, see the SAS Intelligence Platform:
Data Administration Guide.

Operating Environment Information
In a configuration file or at SAS invocation, the syntax for SAS system options is
specific to your operating environment. For more information, see the SAS
documentation for your operating environment.

METACONNECT= System Option
Identifies one named profile from the metadata user connection profiles for connecting to the metadata
server.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Communications: Metadata

PROC OPTIONS
GROUP=

META

Default: NULL

Syntax
METACONNECT="named-connection"

Syntax Description
"named-connection"

is a named connection that is contained in the metadata user profiles. The maximum
length is 256 characters. Quotation marks are required.

Details
This system option is one of a category of system options that define a connection to the
metadata server. Instead of specifying individual connection options for the metadata
server, you can use the METACONNECT= and METAPROFILE on page 38 options.

METAPROFILE must be specified at SAS invocation or in a configuration file. It
specifies the pathname of an XML document that contains connection profiles.
METACONNECT= can be submitted at any time. It specifies one named connection
profile in the XML document. A connection profile contains metadata server connection
properties, such as the name of the host computer on which the metadata server is
invoked, the TCP port, and the user ID and password of the requesting user.

You can create connection profiles with the Metadata Server Connections dialog box.
Open the dialog box by executing the SAS windowing environment command
METACON. The dialog box enables you to save (export) one or more connection
profiles to a permanent XML document. To learn more about the METACON command,
see the online Help in the SAS windowing environment.

METACONNECT= System Option 33

The connection profiles are similar to the ones that are used by SAS Management
Console. However, SAS Management Console stores its connection profiles in a
different way.

Operating Environment Information
In a configuration file or at SAS invocation, the syntax for SAS system options is
specific to your operating environment. For more information, see the SAS
documentation for your operating environment.

Example: Use in a Configuration File

Here is an example from a configuration file, followed by an explanation:

-METAPROFILE "C:\userprofile.xml"
-METACONNECT "B"

Explanation

1. The METAPROFILE system option specifies the file C:\userprofile.xml. The
file contains three named connection profiles: A, B, and C. Each named connection
profile contains properties for connecting to the metadata server.

2. The METACONNECT system option specifies the named connection profile B.

3. The metadata server connection properties that are specified in the named connection
profile B are loaded from the metadata user B and are used as the properties for
connecting to the metadata server.

For information about the metadata server, see SAS Intelligence Platform: System
Administration Guide.

See Also
• “Configuration File Example” on page 29

System Options

• “METAPROFILE System Option” on page 38

METAENCRYPTALG System Option
Specifies the type of encryption to use when communicating with the metadata server.

Valid in: configuration file, SAS invocation

Category: Communications: Metadata

PROC OPTIONS
GROUP=

META

Alias: METAENCRYPTALGORITHM

Default: SASPROPRIETARY

34 Chapter 6 • System Options for Metadata

Syntax
METAENCRYPTALG algorithm | NONE

Syntax Description
algorithm

specifies the algorithm that SAS clients use to communicate with the SAS Metadata
Server. The following algorithms can be used:

• RC2

• RC4

• DES

• TripleDES

• SAS Proprietary (alias SAS)

• AES

NONE
Does not specify an encryption algorithm.

Details
The SAS IOM supports encrypted communication with the metadata server. Use the
METAENCRYPTALG and METAENCRYPTLEVEL system options to define the type
and level of encryption that SAS clients use when they communicate with the metadata
server.

If you specify an encryption algorithm other than SASPROPRIETARY (alias SAS), you
must have a product license for SAS/SECURE software.

For more information about the encryption algorithms, see the Encryption in SAS.

Operating Environment Information
In a configuration file or at SAS invocation, the syntax for SAS system options is
specific to your operating environment. For more information, see the SAS
documentation for your operating environment.

See Also

System Options

• “METAENCRYPTLEVEL System Option” on page 35

METAENCRYPTLEVEL System Option
Specifies the level of encryption when communicating with the metadata server.

Valid in: configuration file, SAS invocation

Category: Communications: Metadata

PROC OPTIONS
GROUP=

META

Default: CREDENTIALS

METAENCRYPTLEVEL System Option 35

Syntax
METAENCRYPTLEVEL EVERYTHING | CREDENTIALS

Syntax Description
EVERYTHING

specifies to encrypt all communication with the metadata server.

CREDENTIALS
specifies to encrypt only login credentials. This is the default.

Details
The SAS IOM supports encrypted communication with the metadata server. Use the
METAENCRYPTLEVEL and METAENCRYPTALG system options to define the level
and type of encryption that SAS clients use when they communicate with the metadata
server.

If the METAENCRYPTALG system option specifies an encryption algorithm other than
SASPROPRIETARY (alias SAS), you must have a product license for SAS/SECURE
software. For more information about encryption levels, see the Encryption in SAS.

Operating Environment Information
In a configuration file or at SAS invocation, the syntax for SAS system options is
specific to your operating environment. For more information, see the SAS
documentation for your operating environment.

See Also

System Options

• “METAENCRYPTALG System Option” on page 34

METAPASS= System Option
Specifies the password for the metadata server.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Communications: Metadata

PROC OPTIONS
GROUP=

META

Syntax
METAPASS= "password"

Syntax Description
"password"

is the password for the user ID on the metadata server. The maximum length is 512
characters. The quotation marks are optional.

36 Chapter 6 • System Options for Metadata

Note: To specify an encoded password, use the PWENCODE procedure to disguise
the text string, and specify the encoded password for METAPASS=. The
metadata server decodes the encoded password. For more information, see the
PWENCODE procedure in the Base SAS Procedures Guide.

Details
This system option is one of a category of system options that define a connection to the
metadata server.

When you are running interactively, you can be prompted for connection properties.
Prompting occurs when either METASERVER= or METAPORT= are not specified.
Prompting also occurs when METAUSER= or METAPASS= are not specified, and a
trusted peer or IWA connection is rejected. For information about trusted peer and IWA,
see the SAS Intelligence Platform: Security Administration Guide.

Operating Environment Information
In a configuration file or at SAS invocation, the syntax for SAS system options is
specific to your operating environment. For more information, see the SAS
documentation for your operating environment.

See Also
• “Example: Configuration File” on page 29

System Options

• “METAPORT= System Option” on page 37

• “METASERVER= System Option” on page 41

• “METAUSER= System Option” on page 43

METAPORT= System Option
Specifies the TCP port for the metadata server.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Communications: Metadata

PROC OPTIONS
GROUP=

META

Range: 1–65535

Syntax
METAPORT=number

Syntax Description
number

is the TCP port that the metadata server is listening to for connections. The default
port number that is configured for the metadata server at installation is 8561.
Installers are not required to use this value, so you must specify METAPORT= to

METAPORT= System Option 37

connect to the metadata server. An example is metaport=8561. Do not quote this
value.

Details
This system option is one of a category of system options that define a connection to the
metadata server.

When you are running interactively, you can be prompted for connection values.
Prompting occurs when either METASERVER= or METAPORT= are not specified.
Prompting also occurs when METAUSER= or METAPASS= are not specified, and a
trusted peer or IWA connection is rejected. For information about trusted peer and IWA,
see the SAS Intelligence Platform: Security Administration Guide.

Operating Environment Information
In a configuration file or at SAS invocation, the syntax for SAS system options is
specific to your operating environment. For more information, see the SAS
documentation for your operating environment.

See Also
• “Example: Configuration File” on page 29

System Options

• “METAPASS= System Option” on page 36

• “METASERVER= System Option” on page 41

• “METASPN= System Option” on page 42

• “METAUSER= System Option” on page 43

METAPROFILE System Option
Identifies the XML document that contains user connection profiles for the metadata server.

Valid in: configuration file, SAS invocation

Category: Communications: Metadata

PROC OPTIONS
GROUP=

META

Default: metaprofile.xml in the current working directory, except under z/OS

See: METAPROFILE System Option in SAS Companion for z/OS

Syntax
METAPROFILE "XML-document"

Syntax Description
"XML–document"

is the pathname of the XML document that contains user connection profiles for
connecting to the metadata server. The pathname is the physical location that is
recognized by the operating environment. The maximum length is 32,000 characters.
Quotation marks are required.

38 Chapter 6 • System Options for Metadata

Details
This system option is one of a category of system options that define a connection to the
metadata server. Instead of specifying individual connection options for the metadata
server, you can use the METACONNECT= on page 33 and METAPROFILE options.

METAPROFILE must be specified at SAS invocation or in a configuration file. It
specifies the pathname of an XML document that contains connection profiles.
METACONNECT= can be submitted at any time. It specifies one named connection
profile in the XML document. A connection profile contains metadata server connection
properties, such as the name of the host computer on which the metadata server is
invoked, the TCP port, and the user ID and password of the requesting user.

You can create connection profiles with the Metadata Server Connections dialog box.
Open the dialog box by executing the SAS windowing environment command
METACON. The dialog box enables you to save (export) one or more connection
profiles to a permanent XML document. To learn more about the METACON command,
open the online Help and in the SAS windowing environment.

The connection profiles are similar to the ones that are used by SAS Management
Console. However, SAS Management Console stores its connection profiles in a
different way.

METAPROFILE behavior is different under z/OS than under other operating
environments. See SAS Companion for z/OS.

Operating Environment Information
In a configuration file or at SAS invocation, the syntax for SAS system options is
specific to your operating environment. For more information, see the SAS
documentation for your operating environment.

Comparisons
Here is a configuration file example that invokes a user connection profile named Mike's
profile from the metauser.xml file:

-METAPROFILE "!SASROOT\metauser.xml"
-METACONNECT "Mike's profile"

See Also
• “Configuration File Example” on page 29

System Options

• “METACONNECT= System Option” on page 33

METAPROTOCOL= System Option
Specifies the network protocol for connecting to the metadata server.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Communications: Metadata

PROC OPTIONS
GROUP=

META

Default: BRIDGE

METAPROTOCOL= System Option 39

Syntax
METAPROTOCOL=BRIDGE

Syntax Description
BRIDGE

specifies that the connection to the metadata server uses the SAS Bridge protocol. In
this release, it is the only supported value and the default value, so there is no need to
specify this system option.

Details
This system option is one of a category of system options that define a connection to the
metadata server.

Operating Environment Information
In a configuration file or at SAS invocation, the syntax for SAS system options is
specific to your operating environment. For more information, see the SAS
documentation for your operating environment.

See Also
“Example: Configuration File” on page 29

METAREPOSITORY= System Option
Specifies the SAS Metadata Repository to use with the metadata server.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Communications: Metadata

PROC OPTIONS
GROUP=

META

Default: Foundation

Syntax
METAREPOSITORY= "name"

Syntax Description
"name"

is the name of the repository to use. The maximum length is 32,000 characters. The
quotation marks are optional.

Details
This system option is one of a category of system options that define a connection to the
metadata server.

40 Chapter 6 • System Options for Metadata

You can use the $METAREPOSITORY substitution variable in the input XML with
PROC METADATA. The variable resolves to the metadata identifier of the repository
that is named by this option.

Operating Environment Information
In a configuration file or at SAS invocation, the syntax for SAS system options is
specific to your operating environment. For more information, see the SAS
documentation for your operating environment.

See Also

System Options

• “METAPASS= System Option” on page 36

• “METAPORT= System Option” on page 37

• “METASERVER= System Option” on page 41

• “METAUSER= System Option” on page 43

METASERVER= System Option
Specifies the host name or address of the metadata server.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Communications: Metadata

PROC OPTIONS
GROUP=

META

Syntax
METASERVER= "address"

Syntax Description
"address"

is the host name or network IP address of the computer that hosts the metadata
server. An example is metaserver="a123.us.company.com". The value
localhost can be used when connecting to a metadata server on the same
computer. The maximum length is 256 characters. The quotation marks are optional.

Details
This system option is one of a category of system options that define a connection to the
metadata server.

When you are running interactively, you can be prompted for connection properties.
Prompting occurs when either METASERVER= or METAPORT= are not specified.
Prompting also occurs when METAUSER= or METAPASS= are not specified, and a
trusted peer or IWA connection is rejected. For information about trusted peer and IWA,
see the SAS Intelligence Platform: Security Administration Guide.

Operating Environment Information

METASERVER= System Option 41

In a configuration file or at SAS invocation, the syntax for SAS system options is
specific to your operating environment. For more information, see the SAS
documentation for your operating environment.

See Also
• “Example: Configuration File” on page 29

System Options

• “METAPASS= System Option” on page 36

• “METAPORT= System Option” on page 37

• “METASPN= System Option” on page 42

• “METAUSER= System Option” on page 43

METASPN= System Option
Specifies the service principal name (SPN) for the SAS Metadata Server.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Communications: Metadata

PROC OPTIONS
GROUP=

META

Default: Generated in the form SAS/machine-name

Syntax
METASPN=SPN-name

Syntax Description
SPN-name

is the SPN for the principal that runs the metadata server. The maximum length is
256 characters. The following formats are supported for SPN-name: SAS/
machine-name or SAS/machine-name.company.com. “SAS” is the name of
the service and represents the service type.

Details
When using IWA, a site can assign an SPN that is used by clients such as the object
spawner or a batch SAS job to connect to the metadata server. METASPN= is used with
METASERVER= and METAPORT= to establish that connection. If you specify
METAUSER= and METAPASS=, then the METASPN= value is not used. For
information about the SPN and IWA, see the SAS Intelligence Platform: Security
Administration Guide.

Operating Environment Information
In a configuration file or at SAS invocation, the syntax for SAS system options is
specific to your operating environment. For more information, see the SAS
documentation for your operating environment.

42 Chapter 6 • System Options for Metadata

Example: Default Form
Here is an example that shows a METASPN= value in the default form:

-METASERVER "a123.company.com"
-METAPORT 9999
-METASPN "SAS/a123.company.com"

See Also

System Options

• “METASERVER= System Option” on page 41

• “METAPORT= System Option” on page 37

METAUSER= System Option
Specifies the user ID for connecting to the metadata server.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Communications: Metadata

PROC OPTIONS
GROUP=

META

Syntax
METAUSER= "userid"

Syntax Description
"userid"

is the user ID for connecting to the metadata server. The maximum length is 256
characters. The quotation marks are optional, unless the user ID includes a special
character, such as "sasadm@saspw".

Details
This system option is one of a category of system options that define a connection to the
metadata server.

When you are running interactively, you can be prompted for connection properties.
Prompting occurs when either METASERVER= or METAPORT= are not specified.
Prompting also occurs when METAUSER= or METAPASS= are not specified, and a
trusted peer or IWA connection is rejected. For information about trusted peer and IWA,
see the SAS Intelligence Platform: Security Administration Guide.

In a network environment, METAUSER= must specify a fully qualified user ID in the
form of SERVERNAME\USERID. For information about user definitions, see the SAS
Intelligence Platform: Security Administration Guide.

Operating Environment Information

METAUSER= System Option 43

In a configuration file or at SAS invocation, the syntax for SAS system options is
specific to your operating environment. For more information, see the SAS
documentation for your operating environment.

See Also
• “Example: Configuration File” on page 29

System Options

• “METAPASS= System Option” on page 36

• “METAPORT= System Option” on page 37

• “METASERVER= System Option” on page 41

44 Chapter 6 • System Options for Metadata

Part 3

Metadata LIBNAME Engine

Chapter 7
Introduction to the Metadata LIBNAME Engine 47

Chapter 8
Reference for the Metadata Engine . 51

Chapter 9
Examples for the Metadata Engine . 57

45

46

Chapter 7

Introduction to the Metadata
LIBNAME Engine

Overview of the Metadata LIBNAME Engine . 47

What Is Supported? . 48

What Is Not Supported . 49

Advantages of Using the Metadata Engine . 49

The Metadata Engine and Authorization . 49

How the Metadata Engine Constructs a LIBNAME Statement 50

Overview of the Metadata LIBNAME Engine
The metadata engine is similar to other SAS engines. In a batch file or in the SAS
windowing environment, you can submit a LIBNAME statement that assigns a libref and
the metadata engine. You then use that libref throughout the SAS session where a libref
is valid.

However, unlike other librefs, the metadata engine's libref is not assigned to the physical
location of a SAS library. The metadata engine's libref is assigned to a set of metadata
objects that are registered in the SAS Metadata Server. These metadata objects must
already be defined by an administrator with a product like SAS Management Console.

The objects contain the specifications that you would normally submit with a LIBNAME
statement. The metadata engine uses the information in the objects to construct a
LIBNAME statement that specifies the data source, the engine that processes the data
(referred to as the “underlying engine”), and options.

After you submit the metadata LIBNAME statement, you can reference the metadata
engine's libref in your SAS code. The metadata engine calls the underlying engine to
process the data.

In other words, the metadata LIBNAME statement takes the place of your usual
LIBNAME statement and creates the usual LIBNAME statement from information in
metadata.

The following diagram illustrates this process. In the example, an Oracle data library is
already defined in metadata. You reference the Oracle data library with the metadata
LIBNAME statement, and the metadata engine constructs a LIBNAME statement that
assigns the SAS/ACCESS interface to Oracle as the underlying engine. Then, when you
submit the PRINT procedure, the metadata engine issues a request to the SAS Metadata
Repository for the library member's metadata, and uses the Oracle engine to run the
PROC PRINT.

47

Figure 7.1 Metadata Engine Process

What Is Supported?
The metadata engine supports the following features:

• Enforces authorizations that are set in the metadata by an administrator.

• Processes tables and views from SAS and third-party DBMSs (database management
systems) by using an underlying engine. The metadata engine supports only tables
and views, and does not support other SAS files such as catalogs.

• Applies library options that are set in the metadata by an administrator.

• Supports SQL implicit pass-through.

• PROC DATASETS and PROC CONTENTS process requests using the SAS
Metadata Repository instead of the underlying engine. Therefore, when you use the
DATASETS procedure to list all members in a library, the engine gets a listing of
only members that have metadata populated in the repository. When you execute the
CONTENTS procedure, the table and column attributes that are returned are from
the repository. Any formats, informats, or labels that are stored in the metadata are
applied to the underlying data.

• Enables you to bypass the engine’s metadata-only processing by setting alternate
METAOUT= values in the LIBNAME statement or as a data set option. When
certain METAOUT= values are set, the user is not restricted to tables that have been
defined in the repository. However, there is restricted functionality for third-party
DBMS tables that are not defined in metadata. For more information, see
“METAOUT= Argument ” on page 53.

48 Chapter 7 • Introduction to the Metadata LIBNAME Engine

What Is Not Supported
The metadata LIBNAME engine does not create or update metadata. If you use the
METAOUT= argument with a value that enables you to add, delete, or modify the
structure of tables, you must use PROC METALIB or the Register Tables feature in SAS
Management Console to create and update metadata.

Advantages of Using the Metadata Engine
Using the metadata engine provides the following advantages:

• The metadata engine is a single point of access to many heterogeneous data sources.
If an administrator has registered the metadata with the metadata server, a user or
application can specify the appropriate metadata engine libref, and omit
specifications for the underlying engine. In many cases, the user can change the data
source for their SAS program by simply changing the libref. The user can ignore the
syntax, options, behavior, and tuning that are required by the underlying engines,
because the administrator has registered that information in the metadata.

• The metadata engine, in conjunction with the metadata server's authorization facility,
enables an administrator to control access to data. The Create, Write, and Delete
permissions are enforced only if the metadata engine is used to access the data. See
“The Metadata Engine and Authorization” on page 49.

• Some data sources do not store column formats, informats, labels, and other SAS
information. This information is stored by the metadata server and is included with
the data that is accessed by the metadata engine.

The Metadata Engine and Authorization
An administrator uses a product like SAS Management Console to set authorization.
This security model is a metadata-based authorization layer that supplements security
from the host environment and other systems. The metadata engine enforces the
authorizations that are set in metadata, but it does not create or update any authorization.
For more information, see the SAS Intelligence Platform: Security Administration Guide.

The administrator can use authorization in the following ways for member-level and
column-level security:

• The administrator can associate authorizations to any metadata resource in a
repository. The metadata engine enforces effective permissions (which is a
calculation of the net effect of all applicable metadata layer permission settings) for
libraries and tables.

• The administrator can associate different authorizations to individual libraries and
tables. For example, suppose a library has 20 tables defined in the repository. The
administrator restricts access to five of the tables, because the five tables contain
sensitive information. Only a few users can access all 20 tables. Most users can
access only 15 tables.

The Metadata Engine and Authorization 49

The metadata authorizations that are enforced by the metadata engine control the actions
that users can perform on data that is accessed with the engine; the engine does not
prevent other SAS programs from accessing the data.

How the Metadata Engine Constructs a LIBNAME
Statement

As noted in “Overview of the Metadata LIBNAME Engine” on page 47, the metadata
engine uses information from metadata to construct a LIBNAME statement for a SAS
library.

When you submit a metadata LIBNAME statement, you assign a libref to a SASLibrary
metadata object. The SASLibrary object is the primary object from which all other
metadata is obtained. The metadata defines attributes of the data, such as table and
column names. The metadata identifies the underlying engine that processes the data,
and how the engine should be assigned.

50 Chapter 7 • Introduction to the Metadata LIBNAME Engine

Chapter 8

Reference for the Metadata
Engine

LIBNAME Statement for the Metadata Engine . 51
Overview: Metadata LIBNAME Statement . 51
Syntax: Metadata LIBNAME Statement . 51

SAS Data Set Options for the Metadata Engine . 55
METAOUT= Data Set Option . 55

LIBNAME Statement for the Metadata Engine

Overview: Metadata LIBNAME Statement
To learn how the metadata engine works, see “Introduction to the Metadata LIBNAME
Engine” on page 47.

The SAS Metadata Server must be running before you submit the metadata LIBNAME
statement. The required SAS library metadata must already exist in the metadata server.
(If you specify the “METAOUT= Argument ” on page 53 with the value "DATA",
table metadata is not required.) This SASLibrary metadata can be created with the New
Library wizard in the SAS Management Console Data Library Manager.

In the syntax, wherever quotation marks are optional, they can be single or double
quotation marks.

Syntax: Metadata LIBNAME Statement

Syntax
LIBNAME libref

META
LIBID=<">identifier<"> | LIBRARY=<">name<"> |

LIBURI="URI-format"
<server-connection-arguments>
<METAOUT=ALL | DATA | DATAREG | META>

51

Required Arguments
libref

specifies a SAS name that serves as a shortcut name to associate with metadata in the
SAS Metadata Repository on the metadata server. This name must conform to the
rules for SAS names. A libref cannot exceed eight characters.

META
is the name of the metadata engine.

LIBID=<">identifier<"> | LIBRARY=<">name<"> | LIBURI="URI-format"
specifies a SASLibrary object, which defines a SAS library. This SAS library
contains the data that you want to process.

LIBID=<">identifier<">
specifies the 8- or 17-character metadata identifier of the SASLibrary object.
Examples are libid=AW000002 and libid="A57DQR88.AW000002". For
more information, see Chapter 3, “Metadata Object Identifiers and URIs,” on
page 11.

LIBRARY=<">name<">
specifies the value in the SASLibrary object's Name= attribute. An example is
library=mylib. The maximum length is 256 characters.
Alias: LIBRNAME=

LIBURI="URI-format"
specifies a URI, which is a standard from SAS Open Metadata Architecture. For
more information, see “Metadata Object Identifiers and URIs” on page 11. The
following URI formats are supported.

LIBURI="identifier.identifier"
specifies the full 17–character metadata identifier, which references both the
repository and the object. This syntax is equivalent to specifying both
LIBID= and REPID=. An example is liburi="A57DQR88.AW000002".

LIBURI="SASLibrary/identifier.identifier"
specifies the SASLibrary object type, followed by the full 17-character
metadata identifier. This syntax is equivalent to specifying both LIBID= and
REPID=. An example is liburi="SASLibrary/
A57DQR88.AW000002".

LIBURI="SASLibrary?@attribute='value'"
specifies the SASLibrary object type, followed by a search string. Examples
are liburi="SASLibrary?@libref='mylib'" and liburi="
SASLibrary?@engine='base'".

Requirement: You must enclose the LIBURI= value in quotation marks.

Server Connection Arguments
The following LIBNAME statement arguments for the metadata engine establish a
connection to the metadata server. For more information, see “Introduction to
Connection Options” on page 28.

METASERVER=<">host-name<">
specifies the host name or network IP address of the computer that hosts the
metadata server. The value localhost can be used if the SAS session is connecting
to the metadata server on the same computer. If you do not specify this argument, the
value of the METASERVER= system option is used. For more information, see
“METASERVER= System Option” on page 41. The maximum length is 256
characters.

52 Chapter 8 • Reference for the Metadata Engine

Alias: HOST= or IPADDR=

PASSWORD=<">password<">
specifies the password for the user ID on the metadata server. If you do not specify
this argument, the value of the METAPASS= system option is used. For more
information, see “METAPASS= System Option” on page 36. The maximum length
is 256 characters.
Alias: METAPASS= or PW=

PORT=<">number<">
specifies the TCP port that the metadata server listens to for connections. This port
number was used to start the metadata server. If you do not specify this argument,
the value of the METAPORT= system option is used. For more information, see
“METAPORT= System Option” on page 37. The range of allowed port numbers is
1–65535. The metadata server is configured with a default port number of 8561.
Alias: METAPORT=

REPID=<">identifier<"> | REPNAME=<">name<">
specifies the repository that contains the SASLibrary object. If you specify both
REPID= and REPNAME=, REPID= takes precedence over REPNAME=. If you do
not specify REPID= or REPNAME=, the value of the METAREPOSITORY=
system option is used; for more information, see “METAREPOSITORY= System
Option” on page 40 . The default for the METAREPOSITORY= system option is
Foundation.

REPID=<">identifier<">
specifies an 8–character identifier. This identifier is the first half of the
SASLibrary's 17–character identifier, and is the second half of the repository's
identifier. For more information, see “Metadata Object Identifiers and URIs” on
page 11.

REPNAME=<">name<">
specifies the value in the repository's Name= attribute. The maximum length is
256 characters.
Alias: METAREPOSITORY= or REPOS= or REPOSITORY=

USER=<">userid<">
specifies the user ID for an account that is known to the metadata server. For
information about user definitions, see the SAS Intelligence Platform: Security
Administration Guide. If you do not specify this argument, the value of the
METAUSER= system option is used; see “METAUSER= System Option” on page
43 . The maximum length is 256 characters.
Alias: ID= or METAUSER= or USERID=

METAOUT= Argument
METAOUT=ALL | DATA | DATAREG | META

specifies the metadata engine's output processing of tables in the data source.

ALL
specifies that you can read, create, update, and delete observations in existing
physical tables that are defined in metadata. You cannot create or delete entire
physical tables. This is the default behavior.
Interaction: The user is restricted to only the tables that have been defined in the

repository.

LIBNAME Statement for the Metadata Engine 53

DATA
specifies that you can read, create, update, alter, and delete physical tables. The
user can access any table, regardless of whether it has been defined in the
repository.
Restriction: The metadata LIBNAME engine does not support variable

projection for tables in a third-party DBMS that are not defined in metadata.
The engine retrieves all columns for undefined tables, regardless of the
operation. If you need to select, insert data into, update, drop, or keep specific
columns, register your DBMS tables in the SAS Metadata Repository.
Variable projection is supported in Base SAS data sets that are not defined in
metadata.

Interaction: The user is not restricted to tables that have been defined in the
repository, although there is restricted functionality for tables that are not
defined in metadata.

DATAREG
specifies that you can read, update, and delete physical tables that are defined in
metadata. You can create a table, but you cannot read, update, or delete the new
table until it is defined in metadata. This value is like ALL, but it adds the ability
to create new tables.
Interaction: The user is restricted to only the tables that have been defined in the

repository.

META
specifies that you can read physical tables that are defined in metadata. You
cannot create, update, or delete physical tables or observations. This value is like
ALL, without the ability to create, update, and delete observations.
Interaction: The user is restricted to only the tables that have been defined in the

repository.
Note: The METAOUT=META value might not be supported in future releases

of the software.

Default: ALL
Restriction: The following descriptions refer to the physical table. Metadata is read-

only with the metadata engine. When you create, update, or delete physical data
with the metadata engine, you must perform an additional step if you want to
update the metadata. You must use a product like SAS Management Console or
the METALIB procedure to update the metadata.

Interactions:
As a LIBNAME statement argument, the behavior applies to all members in the
library, and remains for the duration of the library assignment. To specify
METAOUT= behavior for an individual table, use the METAOUT= data set
option.
If metadata for a table is defined, any authorizations for that table are enforced,
regardless of the METAOUT= value.

54 Chapter 8 • Reference for the Metadata Engine

SAS Data Set Options for the Metadata Engine

METAOUT= Data Set Option

Overview
The METAOUT= data set option for the metadata engine specifies access to an
individual table in the data source.

Note: Although the METAOUT= data set option enables you to specify behavior for
individual tables, you can use the METAOUT= argument for the LIBNAME
statement to specify behavior for an entire library. However, for a library, the
behavior applies to all members in the library, and remains for the duration of the
library assignment.

Note: For library procedures such as PROC DATASETS, you must specify
METAOUT= as an argument in the LIBNAME statement. You cannot specify it as a
data set option.

Syntax
METAOUT=ALL | DATA | DATAREG | META

specifies the metadata engine's output processing of tables in the data source.

ALL
specifies that you can read, create, update, and delete observations in an existing
physical table that is defined in metadata. You cannot create or delete a physical
table. This is the default behavior.
Interaction: The user is restricted to only the tables that have been defined in the

repository.

DATA
specifies that you can read, create, update, and delete a physical table. The user
can access any table, regardless of whether it has been defined in the repository.
Restriction: The metadata LIBNAME engine does not support variable

projection for tables in a third-party DBMS that are not defined in metadata.
The engine retrieves all columns for undefined tables, regardless of the
operation. If you need to select, insert data into, update, drop, or keep specific
columns, register your DBMS tables in the SAS Metadata Repository.
Variable projection is supported in Base SAS data sets that are not defined in
metadata.

Interaction: The user is not restricted to tables that are defined in metadata,
although there is restricted functionality for tables that are not defined in
metadata.

DATAREG
specifies that you can read, update, and delete a physical table that is defined in
metadata. You can create a table, but you cannot read, update, or delete the new
table until it is defined in metadata. This value is like ALL, but it adds the ability
to create new tables.
Interaction: The user is restricted to only the tables that have been defined in the

repository.

SAS Data Set Options for the Metadata Engine 55

META
specifies that you can read a physical table that is defined in metadata. You
cannot create, update, or delete a physical table or observations. This value is like
ALL, without the ability to create, update, and delete observations.
Interaction: The user is restricted to only the tables that have been defined in the

repository.
Note: The METAOUT=META value might not be supported in the future

releases of the software.

Default: ALL
Restriction: The preceding descriptions refer to the physical table. Metadata is read-

only with the metadata engine. When you create, update, or delete physical data
with the metadata engine, you must perform an additional step if you want to
update the metadata. You must use a product like SAS Management Console or
the METALIB procedure to update the metadata.

Interaction: If metadata for a table is defined, any authorizations are enforced for
that table, regardless of the METAOUT= value.

56 Chapter 8 • Reference for the Metadata Engine

Chapter 9

Examples for the Metadata
Engine

Example: Submitting the LIBNAME Statement . 57

Example: Before and After the Metadata Engine . 57
Overview . 57
Using the SAS/ACCESS Interface to Oracle Engine Directly 58
Using the Metadata Engine . 58

Example: Submitting the LIBNAME Statement
This example shows two metadata LIBNAME statements. One statement uses defaults,
and one statement specifies all of the arguments.

• The following LIBNAME statement uses defaults. The connection information for
the SAS Metadata Server is obtained from the metadata system options. Other
defaults are obtained from metadata.

libname metaeng meta library=mylib;

• This example specifies all of the LIBNAME statement options for the metadata
engine to connect to the metadata server.

libname myeng meta library=mylib
 repname=temp metaserver='a123.us.company.com' port=8561
 user=idxyz pw=abcdefg;

Example: Before and After the Metadata Engine

Overview
This example shows how data can be accessed with the SAS/ACCESS Interface to
Oracle and then, for comparison, shows how the same data can be accessed with the
metadata engine. The code accesses Oracle data, lists the tables that exist in the data
source, and prints the contents of one table.

57

Using the SAS/ACCESS Interface to Oracle Engine Directly
To use the SAS/ACCESS Interface to Oracle engine directly to access the data, you
submit statements like the following, which require that you know how to use the Oracle
engine and that you know the appropriate options to access the data:

libname oralib oracle user=myuser pw=mypw
 path=ora_dbms preserve_tab_names=yes
 connection=sharedread schema=myschema; 1

proc datasets library=oralib; 2

quit;

proc print data=oralib.Sales (readbuff=1000); 3

run;

data work.temp;
 set oralib.Sales (dbindex=myindex); 4

run;

1 Identifies an Oracle library that contains the Oracle tables that you want to process.

2 Lists all of the Oracle tables that are available.

3 Displays the Oracle Sales table.

4 Attempts to use the specified index to improve performance.

Using the Metadata Engine
You can access the same data using the metadata engine. However, when using the
metadata engine, you do not have to know how to use the Oracle engine, or know the
appropriate options to access the data. You do not need to be aware that you are using an
Oracle database.

Using SAS Management Console or SAS Data Integration Studio, an administrator
creates metadata in a SAS Metadata Repository for your Oracle environment. The
metadata engine interprets this metadata and locates your data. You do not have to know
how to connect to the metadata server or the repository, because this information can be
provided by the metadata system options.

Here is what happens when you use the metadata engine to access the Oracle data:

1. You submit the following LIBNAME statement for the metadata engine.
LIBRARY= identifies the SASLibrary object that defines information about the
Oracle library. This SASLibrary object serves as an anchor point for obtaining other
metadata.

libname metaeng meta library=mylib;

The metadata server connection properties are specified by metadata system options,
so they are omitted from the LIBNAME statement.

2. The metadata engine queries the repository. The query retrieves information from the
SASLibrary object that is specified by LIBRARY=. Connection and schema
information are returned by the query.

58 Chapter 9 • Examples for the Metadata Engine

3. From the information returned by the metadata query, the metadata engine is able to
generate the following LIBNAME statement, which is the same LIBNAME
statement that is shown at the beginning of this example:

libname oralib oracle user=myuser pw=mypw
 path=ora_dbms preserve_tab_names=yes
 connection=sharedread schema=myschema;

4. With the generated LIBNAME statement, the metadata engine uses the Oracle
engine anytime it needs to access the Oracle data. For example, to view the tables
that exist, you would submit the following:

proc datasets library=metaeng;
quit;

The metadata engine sends a query to the repository. The query requests all members
of the SASLibrary that was specified by LIBRARY=. The metadata engine returns
only those members that are defined in the repository. Any Oracle table that is not
defined in the metadata is not displayed. (If METAOUT=DATA, all tables are
displayed, regardless of whether they are defined in metadata.)

5. For the following PRINT procedure, the metadata engine sends a request to the
repository for the metadata that is associated with the Sales table.

proc print data=metaeng.Sales;
run;

The metadata engine returns the columns that are defined in the metadata. Therefore,
if the Sales table has 20 columns, and only five columns are defined in the metadata,
then you see only five columns. (If METAOUT=DATA, all columns are displayed,
regardless of whether they are defined in the metadata.)

6. A SASLibrary metadata object also stores index information for tables. Any use of
the metadata engine that uses indexes causes a query to the repository that requests
index information. The index metadata must match the physical index on the table.
The metadata engine uses the index information that is stored in the repository:

data work.temp;
 set metaeng.Sales;
run;

Example: Before and After the Metadata Engine 59

60 Chapter 9 • Examples for the Metadata Engine

Part 4

Procedures

Chapter 10
Introduction to Procedures for Metadata . 63

Chapter 11
METADATA Procedure . 67

Chapter 12
METALIB Procedure . 93

Chapter 13
METAOPERATE Procedure . 115

61

62

Chapter 10

Introduction to Procedures for
Metadata

Overview of Procedures for Metadata . 63

Comparison of the METADATA Procedure and the
METAOPERATE Procedure . 63

Overview of Procedures for Metadata
As with the other metadata language elements, you can use the metadata procedures in a
batch SAS program or in the SAS windowing environment. You can also perform these
tasks with a product like SAS Management Console.

The procedures enable you to create and maintain the metadata in a SAS Metadata
Repository.

• The METADATA procedure sends a method call, in the form of an XML string, to
the SAS Metadata Server.

• The METALIB procedure updates metadata to match the tables in a library.

• The METAOPERATE procedure performs administrative tasks on the metadata
server.

To submit the procedures, you must establish a connection with the metadata server.
You can specify connection information in the procedure, in system options, or in a
dialog box. For more information, see “Connection Options ” on page 28.

Comparison of the METADATA Procedure and the
METAOPERATE Procedure

The METADATA procedure can be used to perform some of the same informational
tasks as the METAOPERATE procedure. The benefit of using PROC METAOPERATE
is simpler syntax. The benefit of using PROC METADATA is a broader range of tasks.
(PROC METADATA supports all parameters of the methods that it submits. Some of
these parameters are not supported by PROC METAOPERATE.) In addition, PROC
METADATA creates XML output that you can use in another program (for example, to
run reports).

Here is an example that uses PROC METAOPERATE to check whether the SAS
Metadata Server is paused or running:

63

proc metaoperate
 action=status;
run;

The SAS Metadata Server returns the following information to the SAS log:

NOTE: Server a123.us.company.com SAS Version is 9.02.02B0P012308.
NOTE: Server a123.us.company.com SAS Long Version is 99.02.02B0P01232008.
NOTE: Server a123.us.company.com Operating System is XP_PRO.
NOTE: Server a123.us.company.com Operating System Family is WIN.
NOTE: Server a123.us.company.com Operating System Version is Service Pack 2.
NOTE: Server a123.us.company.com Client is janedoe.
NOTE: Server a123.us.company.com Metadata Model is Version 11.02.
NOTE: Server a123.us.company.com is RUNNING on 11Aug08:15:54:15.

PROC METADATA can perform a similar check with the following code:

proc metadata
in=' <Status>
 <Metadata>
 </Metadata>
 </Status>';
run;

In SAS 9.3, you can also use the following code (note the blank space in the IN=
argument):

proc metadata
 method=status
 in=' ';
run;

The SAS Metadata Server returns the following information to the SAS log in the form
of XML. The status parameters differ slightly from those returned by PROC
METAOPERATE.

<ModelVersion>12.04</ModelVersion><PlatformVersion>9.3.0.0</PlatformVersion>
<ServerState>ONLINE</ServerState><PauseComment/><ServerLocale>en_US</ServerLocale>

The legacy behavior of PROC METADATA is to issue method calls through the SAS
Open Metadata Interface DoRequest method. The first PROC METADATA example
formats the Status method request for the DoRequest method. The DoRequest method is
not available when the SAS Metadata Server is paused. In SAS 9.3, to enable clients to
query a paused SAS Metadata Server for status information, the METHOD= argument is
implemented to issue Status method requests directly to the server. The second PROC
METADATA example shows how METHOD=STATUS is used to get default status
information.

PROC METADATA can submit parameters that are not supported by PROC
METAOPERATE. Here is an example:

proc metadata
in=' <Status>
 <Metadata>
 <OMA JOURNALSTATE=""/>
 </Metadata>
 </Status> ';
run;

The code returns the journal state:

<Status><Metadata><OMA JOURNALSTATE="IDLE"/></Metadata></Status>

64 Chapter 10 • Introduction to Procedures for Metadata

Here is the same example using METHOD=STATUS. (To get information with
METHOD=STATUS, you submit the parameter directly in the IN= argument.)

proc metadata
 method=status
 in='<OMA JOURNALSTATE=""/>';
run;

This code returns the journal state:

<OMA JOURNALSTATE="IDLE"/>

If you have a simple query that is not supported by PROC METAOPERATE, and you
do not want to assign an XML LIBNAME engine to parse the output of PROC
METADATA, you can use the metadata DATA step functions.SAS provides the
“METADATA_PAUSED Function” on page 180 to determine whether the SAS
Metadata Server is paused. SAS provides the “METADATA_VERSION Function” on
page 188 to get the model version number.

Comparison of the METADATA Procedure and the METAOPERATE Procedure 65

66 Chapter 10 • Introduction to Procedures for Metadata

Chapter 11

METADATA Procedure

Overview: METADATA Procedure . 67

Syntax: METADATA Procedure . 68
PROC METADATA Statement . 68

Concepts: METADATA Procedure . 72
Introduction to the METHOD= Argument . 72
Formatting an XML Method Call for DoRequest . 72
The Entire Method Is an XML Element . 73
A Metadata Object Is an XML Element . 73
A Metadata Association Is an XML Element . 73
Quotation Requirements . 74
Submitting an XML Element with METHOD=STATUS . 74
See Also . 74

Results: METADATA Procedure . 75

Examples: METADATA Procedure . 75
Example 1: Get Information about Metadata Repositories 75
Example 2: Change a Metadata Repository's Availability . 78
Example 3: Filerefs with the IN= and OUT= Arguments . 79
Example 4: Fileref to a Temporary File with the IN= Argument 80
Example 5: HEADER= Argument . 82
Example 6: VERBOSE Argument . 84
Example 7: Request the Metadata for One Object . 85
Example 8: Request the Metadata for One Type of Object 88
Example 9: Use METHOD=STATUS to Get Backup Information 89

Overview: METADATA Procedure
The METADATA procedure sends an XML string to the SAS Metadata Server. In SAS
9.3, depending on the value in the METHOD= argument, DOREQUEST or STATUS,
the IN= argument can contain a SAS Open Metadata Interface method call that is
formatted for the IOMI DoRequest method. (This is legacy behavior.) Or, it can contain
an XML element that is supported in the IServer Status method.

The IOMI DoRequest method is a messaging interface for SAS Open Metadata Interface
methods. It accepts all methods from the IOMI server interface, which consists of
methods for reading and writing metadata. It also accepts the IServer Status method,
which supports options for monitoring the server and its configuration.

67

The ability to issue Status requests outside of DoRequest is important because the
DoRequest interface is not available when the SAS Metadata Server is paused.
METHOD=STATUS enables you to use PROC METADATA to get SAS Metadata
Server status information while the SAS Metadata Server is paused.

For more information, see “Concepts: METADATA Procedure” on page 72.

The METAOPERATE procedure and the metadata DATA step functions can perform
some of the same tasks as the METADATA procedure. For more information, see
“Comparison of the METADATA Procedure and the METAOPERATE Procedure” on
page 63.

Syntax: METADATA Procedure
Requirement: The metadata server must be running.

Tip: Be careful when you modify metadata objects, because many objects have
dependencies on other objects. A product like SAS Management Console or SAS
Data Integration Studio is recommended for the routine maintenance of metadata.
Before you use PROC METADATA to create or modify metadata, perform a server
backup. For more information, see Chapter 13, “METAOPERATE Procedure,” on
page 115.

See: “Example: Creating a Report with the METADATA Procedure and the XML Engine”
on page 13

PROC METADATA <server-connection-arguments>
<METHOD = DOREQUEST | STATUS>
IN = "XML-string" | fileref
<OUT = fileref>
<HEADER = NONE | SIMPLE | FULL>
<VERBOSE>;

Statement Task

“PROC METADATA
Statement”

Sends an XML string to the metadata server

PROC METADATA Statement
Sends an XML string to the metadata server

68 Chapter 11 • METADATA Procedure

Syntax
PROC METADATA <server-connection-arguments>

<METHOD = DOREQUEST | STATUS>
IN = "XML–string" | fileref
<OUT = fileref>
<HEADER = NONE | SIMPLE | FULL>
<VERBOSE>;

Summary of Optional Arguments

HEADER= NONE | SIMPLE | FULL
METHOD=DOREQUEST | STATUS
OUT=fileref
VERBOSE

Required Argument
IN= "XML-string " | fileref

specifies an input XML string or fileref. The type of XML string that is submitted
depends on whether the METHOD= argument is specified, and what its value is.

• If the METHOD= argument is omitted, or if it specifies
METHOD=DOREQUEST, IN= specifies an XML-formatted method call, or IN=
specifies an XML file that contains the method call.

You form the method call as if you are submitting it in the inMetadata parameter
of the DoRequest method. You can submit any method from the SAS Open
Metadata Interface IOMI server interface and the IServer Status method. For
more information, see “Concepts: METADATA Procedure” on page 72.

• If METHOD=STATUS, IN= specifies an XML element that is valid in the
inMeta parameter of the IServer Status method, or IN= specifies an XML file
that contains the XML element. For more information, see “Concepts:
METADATA Procedure” on page 72.

For information about using filerefs, see “Example 3: Filerefs with the IN= and
OUT= Arguments” on page 79 and “Example 4: Fileref to a Temporary File with
the IN= Argument” on page 80 .
Note: PROC METADATA does not support fixed-length records in the XML

method call under z/OS. PROC METADATA returns an error on files with
fixed-length records whether a fileref or XML string is used.

Optional Arguments
HEADER= NONE | SIMPLE | FULL

specifies whether to include an XML header in the output XML file. The declaration
specifies the character-set encoding for Web browsers and XML parsers to use when
processing national language characters in the output XML file. For more
information, see “Example 5: HEADER= Argument” on page 82.

NONE
omits an encoding declaration. Web browsers and parsers might not handle
national language characters appropriately.

PROC METADATA Statement 69

SIMPLE
inserts an XML header that specifies the XML version number: <?xml
version="1.0"?>.

FULL
inserts an XML declaration that represents the encoding that was specified when
creating the output XML file. The source for the encoding varies, depending on
the operating environment. In general, the encoding value is taken from the
ENCODING= option specified in the FILENAME statement, or from the
ENCODING= system option.

SAS attempts to use that encoding for the output XML file (and in the XML
header). The encoding can vary. A single encoding can have multiple names or
aliases that can appear in the XML header. These names might not be valid or
recognized in all XML parsers. When generating the encoding attribute in the
XML header, SAS attempts to use an alias that will be recognized by Internet
Explorer. If the alias is not found, SAS attempts to use a name that will be
recognized by Java XML parsers. If the name is not found, SAS uses an alias by
which SAS will recognize the encoding.

For information about encoding and transcoding, see SAS National Language
Support (NLS): Reference Guide.

METHOD=DOREQUEST | STATUS
specifies whether PROC METADATA is submitting an IOMI DoRequest method
call or an IServer Status method call in the IN= argument. If the METHOD=
argument is omitted, the default is DoRequest. For more information, see “Concepts:
METADATA Procedure” on page 72.

OUT=fileref
specifies an XML file in which to store the output that is returned by the metadata
server. The value must be a fileref, not a pathname. Therefore, you must first submit
a FILENAME statement to assign a fileref to a pathname. In most cases, the output
XML string is identical to the input XML string, with the addition of the requested
values within the XML elements. If the OUT= argument is omitted, PROC
METADATA output is written to the SAS log. For more information, see “Results:
METADATA Procedure” on page 75. See also “Example 3: Filerefs with the IN=
and OUT= Arguments” on page 79.
Notes:

PROC METADATA can generate large XML output. You might need to specify
a large LRECL value or RECFM=N (streaming output) to avoid truncation of
long output lines.
Under z/OS, fixed-length records in the XML method call are not supported by
PROC METADATA. Specify RECFM=V (or RECFM=N as suggested above)
when you create the XML method call.

VERBOSE
specifies to print the input XML string to the SAS log after it has been preprocessed.
For more information, see “Example 6: VERBOSE Argument” on page 84.

Server Connection Arguments
The server connection arguments establish communication with the metadata server. If
you omit these arguments, then the values of the metadata system options are used, or

70 Chapter 11 • METADATA Procedure

the values can be obtained interactively. For more information, see “Connection
Options ” on page 28.

PASSWORD="password"
is the password for the authenticated user ID on the metadata server. If you do not
specify PASSWORD=, the value of the METAPASS= system option is used. For
more information, see “METAPASS= System Option” on page 36. The maximum
length is 512 characters.
Alias: METAPASS= or PW=

PORT=number
is the TCP port that the metadata server listens to for requests. This port number was
used to start the metadata server. If you do not specify PORT=, the value of the
METAPORT= system option is used. For more information, see “METAPORT=
System Option” on page 37. The range of allowed port numbers is 1–65535. The
metadata server is configured with a default port number of 8561.
Alias: METAPORT=
Requirement: Do not enclose the value in quotation marks.

PROTOCOL=BRIDGE
specifies the network protocol for connecting to the metadata server. If you do not
specify PROTOCOL=, the value of the METAPROTOCOL= system option is used.
For more information, see “METAPROTOCOL= System Option” on page 39. In this
release, the only supported value is BRIDGE, which specifies the SAS Bridge
protocol. This is the server default, so there is no need to specify this argument.
Alias: METAPROTOCOL=
Requirement: Do not enclose the value in quotation marks.

REPOSITORY= "name"
is the name of the SAS Metadata Repository to use when resolving the
$METAREPOSITORY substitution variable. PROC METADATA enables you to
specify the substitution variable $METAREPOSITORY in your input XML. The
substitution variable is resolved to the repository that you specify in
REPOSITORY=. This value is the repository's Name= attribute. If you do not
specify REPOSITORY=, the value of the METAREPOSITORY= system option is
used. For more information, see “METAREPOSITORY= System Option” on page
40. The default for the METAREPOSITORY= system option is FOUNDATION.
The maximum length is 32,000 characters.
Alias: METAREPOSITORY= or REPOS=

SERVER="host-name"
is the host name or network IP address of the computer that hosts the metadata
server. The value LOCALHOST can be used if the SAS session is connecting to the
metadata server on the same computer. If you do not specify SERVER=, the value of
the METASERVER= system option is used. For more information, see
“METASERVER= System Option” on page 41. The maximum length is 256
characters.
Alias: HOST= or IPADDR= or METASERVER=

USER="authenticated-user-ID"
is an authenticated user ID on the metadata server. The metadata server supports
several authentication providers. For more information about authentication, see the
SAS Intelligence Platform: Security Administration Guide. If you do not specify
USER=, the value of the METAUSER= system option is used. For more
information, see “METAUSER= System Option” on page 43. The maximum length
is 256 characters.
Alias: ID= or METAUSER= or USERID=

PROC METADATA Statement 71

Concepts: METADATA Procedure

Introduction to the METHOD= Argument
New in SAS 9.3, the METHOD= argument enables PROC METADATA to submit two
types of SAS Open Metadata Interface methods calls to the SAS Metadata Server.

• When METHOD=DOREQUEST (or when the METHOD= argument is omitted
from the PROC METADATA request), the procedure issues an IOMI DoRequest
method call. It accepts as input another SAS Open Metadata Interface method call
that is formatted for the IOMI DoRequest method. The IOMI DoRequest method is a
messaging interface for SAS Open Metadata Interface methods. It accepts all
methods from the IOMI server interface, which consists of methods for reading and
writing metadata. It also accepts the IServer Status method, which supports options
for monitoring the server and its configuration. METHOD=DOREQUEST is legacy
behavior.

• When METHOD=STATUS, the procedure issues an IServer Status method call. It
accepts as input an XML element that is valid in the inMeta parameter of the IServer
Status method. The IServer Status method supports XML elements that return
information about the SAS Metadata Server, including its current status, the values
of server configuration and backup configuration options, and journal statistics. For a
comprehensive list of inMeta XML elements, see Status documentation in the SAS
Open Metadata Interface: Reference and Usage.

Use METHOD=STATUS to get SAS Metadata Server status information if the server is
paused. The DoRequest interface is not available when the server is paused.

For examples of how METHOD=STATUS is used, see the following:

• “Comparison of the METADATA Procedure and the METAOPERATE Procedure”
on page 63 compares and contrasts PROC METAOPERATE status functionality
with the two methods that status information can be requested from PROC
METADATA. It also shows how to get default status information.

• “Example 9: Use METHOD=STATUS to Get Backup Information” on page 89.

Formatting an XML Method Call for DoRequest
The IN= argument of PROC METADATA submits one or more XML-formatted method
calls to the metadata server. You can submit any method that is supported by the
DoRequest method of the SAS Open Metadata Interface, including:

• all methods in the IOMI server interface

• the IServer Status method

When multiple method calls are sent in one DoRequest submission, they must be
enclosed within <Multiple_Requests></Multiple_Requests> elements.

For information about how to format a method call for DoRequest, see the
documentation for the DoRequest method in SAS Open Metadata Interface: Reference
and Usage. The IOMI server interface section of the book shows how to format each
IOMI method for use in the DoRequest interface. The IOMI methods are documented
with many usage examples in SAS Open Metadata Interface: Reference and Usage.

72 Chapter 11 • METADATA Procedure

PROC METADATA is among several clients that can submit the DoRequest method to
the metadata server. You are strongly advised to read SAS Open Metadata Interface:
Reference and Usage for help in understanding concepts such as flags, filters, and
templates. The following topics provide a brief introduction to submitting method calls
through the DoRequest interface.

The Entire Method Is an XML Element
With PROC METADATA, you submit a request as an XML string. In the request, a
method is represented as an XML element. In the following example, the method is
GetMetadataObjects. The request starts and ends with GetMetadataObjects tags. Do not
include the DoRequest method in the XML string, because the procedure calls
DoRequest for you.

proc metadata
 in='<GetMetadataObjects>
 <Reposid>A0000001.A5UO0N94</Reposid>
 <Type>SASLibrary</Type>
 <Objects/>
 <NS>SAS</NS>
 <Flags>0</Flags>
 <Options/>
 </GetMetadataObjects>';
run;

The GetMetadataObjects method has parameters Reposid, Type, Objects, NS
(namespace), Flags, and Options. The method parameters are submitted as XML
subelements in the input XML method string.

A Metadata Object Is an XML Element
Some methods input metadata objects. Within your XML string, metadata objects are
represented as XML elements. Object attributes, if any, are XML tag attributes. In the
following code, a PhysicalTable object has "NE Sales" in its Name= attribute:

<PhysicalTable Id="A5UO0N94.B20000TV" Name="NE Sales"/>

A Metadata Association Is an XML Element
Metadata associations are XML elements, which are nested within the primary object's
XML element. In the following code, the PhysicalTable object has a Columns
association to a Column object that has “Sales Associates” in its Name= attribute:

<PhysicalTable Name="NE Sales">
 <Columns>
 <Column Name="Sales Associates"/>
 </Columns>
</PhysicalTable>

The Name= attribute in the Column XML element defines or identifies a particular
Column metadata object.

Empty XML elements (that is, XML elements with no content between start and end
tags) can be expressed in XML shorthand as a singleton tag, like this: <Columns/>. In
a GetMetadata request, an empty association name subelement instructs the metadata
server to return all objects associated to the primary object under that association name.

Concepts: METADATA Procedure 73

Quotation Requirements
Single or double quotation marks can be used to submit the IN= XML method string. To
ensure that the string is parsed correctly, it is recommended that any additional
quotations within the string, such as those enclosing XML attribute values in the
metadata property string, be balanced. For example, if you submit the IN= string within
single quotation marks, use double quotation marks for attribute values. If you use
double quotation marks to submit the IN= string, use single quotation marks for attribute
values.

When additional nesting of quotations is necessary, such as in a GetMetadataObjects
<XMLSELECT search="string"/> element, use double apostrophes or double double
quotation marks as follows:

<XMLSelect search="*[@PublicType=''InformationMap.Relational'']"/>

<XMLSelect search=""*[@PublicType= 'InformationMap.Relational']""/>

Submitting an XML Element with METHOD=STATUS
When METHOD=STATUS, there is no need to specify all of the Status method’s
parameters in the IN= XML string. PROC METADATA accepts as input XML elements
that are valid in the Status method’s inMeta parameter. In the IN= argument, specify
only the XML elements for which you want to get values.

proc metadata
 method=status
 in='<ServerState/>
 <PauseComment/>
 <OMA JournalState=""/>
 <OMA JournalHistoricalData=""/>';
 run;

This example submits four requests that might be useful when the server is unavailable.
For more information about the Status method’s XML elements, see the Status method
documentation in SAS Open Metadata Interface: Reference and Usage.

See Also
Forming proper XML input can be a challenge. Use the following resources:

• See “Example: Creating a Report with the METADATA Procedure and the XML
Engine” on page 13 .

• SAS Open Metadata Interface: Reference and Usage provides the following
information:

• which methods to use for common tasks

• the DoRequest method and other methods in the IOMI server interface

• the Status method in the IServer server interface

• The SAS Metadata Model: Reference shows the relationships among objects,
associations, and attributes that you specify in XML tags.

74 Chapter 11 • METADATA Procedure

Results: METADATA Procedure
The METADATA procedure produces output in the SAS log or in an XML file. If you
do not specify the OUT= argument, the output is written to the SAS log. To send the
output to an XML file, you must first submit a FILENAME statement to assign a fileref
to the pathname. The file can be temporary or permanent.

In most cases, the output XML string is identical to the input XML string, with the
addition of the requested values within the XML elements. XML output is mostly
unformatted and difficult to read. To get a more readable representation, you can send
the output to an XML file, and then open the XML file in an Internet browser such as
Internet Explorer. The browser inserts line breaks between the XML elements to make
them more readable. For an example of a typical output versus an output that was routed
to an XML file, see “Example 1: Get Information about Metadata Repositories” on page
75.

To use the output XML file (for example, to run reports), create an XML map, and then
use an XML LIBNAME statement to read the XML file. The XML LIBNAME
statement associates the XML map to the XML file so that it can be read by the XML
engine as if it were a SAS data set. You can copy the contents to a SAS data set if you
choose. Like the output XML file, this SAS data set can be temporary or permanent. For
an example that creates a report and reads it with the XML engine, see “Example:
Creating a Report with the METADATA Procedure and the XML Engine” on page 13.
For more information about the XML engine and XML maps, see the SAS XML
LIBNAME Engine: User's Guide.

The VERBOSE= argument does not affect the XML output. It causes the input XML to
be written to the SAS log. For an example of the information that is written to the log,
see “Example 6: VERBOSE Argument” on page 84.

Examples: METADATA Procedure

Example 1: Get Information about Metadata Repositories
Features: metadata server connection system options

XML string in IN= argument
default output
fileref in OUT= argument
output displayed in a browser

Note: You must be an administrative user of the metadata server to perform this task.

This example issues the IOMI GetRepositories method to list the metadata repositories
registered on the SAS Metadata Server. By default, the GetRepositories method gets the
values of the Id, Name, Desc, and DefaultNS (namespace) attributes. This example sets
the OMI_ALL (1) flag to return the values of the RepositoryType, RepositoryFormat,
Access, CurrentAccess, PauseState, and Path attributes.

Example 1: Get Information about Metadata Repositories 75

A request like this is useful for getting repository IDs and for getting a quick idea of
repository availability. A repository’s persisted access mode is indicated in the Access
attribute. Its active state is indicated in the PauseState attribute. If the value in
PauseState differs from the value in Access (and PauseState is not blank), then the
repository is being affected by a metadata server pause.

The Access attribute returns the following values to indicate a repository’s availability:

OMS_ADMIN
indicates the repository is registered for administrative access only.

OMS_FULL
indicates a registered access mode of full access.

OMS_READONLY
indicates a registered access mode of Read-Only access.

OMS_OFFLINE
indicates the repository is intentionally unavailable to all users.

GetRepositories request with default output.

options metaserver="myserver"
 metaport=8561
 metauser="sasadm@saspw"
 metapass="adminpw";

proc metadata
 in="<GetRepositories>
 <Repositories/>
 <!-- OMI_ALL (1) flag -->
 <Flags>1</Flags>
 <Options/>
 </GetRepositories>";

run;

The XML output is written to the SAS log as follows. The output is a continuous,
unformatted string. To improve readability, you can assign a fileref, specify the OUT=
argument to write the output to an XML file, and open the file in a browser.

NOTE: Response XML:

<GetRepositories><Repositories><Repository Id="A0000001.A0000001" Name=
"REPOSMGR" Desc="The Repository Manager" DefaultNS="REPOS" RepositoryType=""
RepositoryFormat="12" Access="OMS_FULL"CurrentAccess="OMS_FULL" PauseState=""
Path="rposmgr"/><Repository Id="A0000001.A5JTOPDN" Name="Foundation" Desc=""
DefaultNS="SAS" RepositoryType="FOUNDATION" RepositoryFormat="12"
Access="OMS_FULL"CurrentAccess="OMS_FULL" PauseState=""
Path="MetadataRepositories/Foundation"/>
<Repository Id="A0000001.A521IKPO" Name="Custom1" Desc="" DefaultNS="SAS"
RepositoryType="CUSTOM" RepositoryFormat="12" Access="OMS_FULL" CurrentAccess=
"OMS_FULL" PauseState="" Path="MetadataRepositories/Custom1"/><Repository
Id="A0000001.A5LSUZGP" Name="Custom2" Desc="" DefaultNS="SAS" RepositoryType=
"CUSTOM" RepositoryFormat="12" Access="OMS_READONLY"CurrentAccess="OMS_READONLY"
PauseState="READONLY" Path="MetadataRepositories/Custom2"/><Repository
Id="A0000001.A5EXCXUI" Name="Custom3" Desc="" DefaultNS="SAS" RepositoryType=
"CUSTOM" RepositoryFormat="12" Access="OMS_ADMIN"CurrentAccess="OMS_ADMIN"
PauseState="ADMIN" Path="MetadataRepositories/Custom3"/></Repositories>
<Flags>1</Flags><Options/></GetRepositories>

76 Chapter 11 • METADATA Procedure

GetRepositories request that directs output to an XML file. For more information
about using filerefs, see “Example 3: Filerefs with the IN= and OUT= Arguments” on
page 79.

filename myoutput "C:\myxml\reports\getrepos.xml";

proc metadata
out=myoutput
in="<GetRepositories>
 <Repositories/>
 <!-- OMI_ALL (1) flag -->
 <Flags>1</Flags>
 <Options/>
</GetRepositories>";

run;

Example 1: Get Information about Metadata Repositories 77

This is what the XML output looks like in a browser:

Example 2: Change a Metadata Repository's Availability
Features: XML string in IN= argument

Note: You must be an administrative user of the metadata server to perform this task.

A metadata repository's availability, referred to as its state, is computed from both the
repository's registered Access value and the metadata server's state. To change the
repository's persisted state, submit the UpdateMetadata method with PROC
METADATA to change the value in the repository’s Access attribute.

The example code reregisters the repository with a different Access value, causing the
repository's state to be recomputed. To properly execute this code, the repository

78 Chapter 11 • METADATA Procedure

manager must be in a Read-Write state. For example, if the metadata server is paused
offline, the repository manager will be offline and cannot be updated with this code.

The value of the Access attribute is specified as an integer. The following integers are
supported:

0 full access or online

1 Read-Only access

2 administrative access

4 offline or intentionally unavailable to all users

Change the Access attribute for the repository. The OMI_TRUSTED_CLIENT flag
must be set for the UpdateMetadata method to write to a metadata repository. This
example results in full access for the repository that was in administrative mode in the
previous example.

proc metadata
 in="<UpdateMetadata>
 <Metadata>
 <RepositoryBase Id='A0000001.A5EXCXUI' Access='0'/>
 </Metadata>
 <NS>repos</NS>
 <!-- OMI_TRUSTED_CLIENT flag -->
 <Flags>268435456</Flags>
 </UpdateMetadata>";
 run;

Example 3: Filerefs with the IN= and OUT= Arguments
Features: fileref in IN= argument

fileref in OUT= argument
connection arguments

This example shows how filerefs are used with the IN= and OUT= arguments.

Create filerefs. These filerefs specify pathnames to XML files that are stored on a C:
drive. If you specify the OUT= argument in the procedure, you must first submit a
FILENAME statement, because the OUT= value accepts a fileref only, not a pathname.
Record length is specified by the LRECL= argument.

filename myinput "c:\myxml\query\weeklyquery.xml" lrecl=256;
filename myoutput "c:\myxml\results\weeklyresults.xml" lrecl=256;

Submit PROC METADATA. The code specifies metadata server connection arguments,
so the defaults are not used. REPOS= is an alias for REPOSITORY=. The procedure
submits the contents of weeklyquery.xml (the fileref MYINPUT) to the metadata server,
and stores the server's response in weeklyresults.xml (the fileref MYOUTPUT).

proc metadata
 server="myserver.us.company.com"
 port=8561
 repos="My Repository"
 userid="testid"

Example 3: Filerefs with the IN= and OUT= Arguments 79

 password="testpw"
 in=myinput
 out=myoutput;
run;

Example 4: Fileref to a Temporary File with the IN= Argument
Features: fileref in IN= argument

Other features: DATA _NULL statement
comparison of DATALINES and PUT statements to submit method request

You might want to test your code without creating a permanent input XML file. You can
use a DATA _NULL_ step to create a temporary input XML file.

The input file (whether temporary or permanent) can be created with the DATALINES
or PUT statements. Advantages of using the DATALINES statement include:

• DATALINES is easier to type.

• You can enter XML without having to worry about quotation marks and other SAS
interpreted strings.

PUT statements are useful when the string is complex or dynamic, with values
substituted by DATA step logic.

Create filerefs. The input fileref is temporary.

filename myinput temp lrecl=256;
filename myoutput "c:\myxml\results\weeklyresults.xml" lrecl=256;

Submit the DATALINES statement to create a temporary file that contains a SAS
Open Metadata Interface XML method request. Later in the example, the temporary
input XML file is called by the procedure's IN= argument.

data _null_;
 file myinput;
 input;
 put _infile_ '';
 datalines;
<GetMetadataObjects>
 <Reposid>$METAREPOSITORY</Reposid>
 <Type>Column</Type>
 <Objects/>
 <Ns>SAS</Ns>
 <Flags>1</Flags>
 <Options/>
</GetMetadataObjects>
;;
run;
proc metadata
 in=myinput
 out=myoutput;
run;

Perform the same task with PUT statements. Alternatively, submit PUT statements to
create a temporary file. Each PUT statement is one line in the temporary input XML file.

80 Chapter 11 • METADATA Procedure

This code references the same filerefs as the previous code, and produces the same
output.

data _null_;
 file myinput;
 put "<GetMetadataObjects";
 put " <Reposid>$METAREPOSITORY</Reposid>";
 put " <Type>Column</Type>";
 put " <Objects/>";
 put " <Ns>SAS</Ns>";
 put " <Flags>1</Flags>";
 put " <Options/>";
 put "</GetMetadataObjects>";
run;
proc metadata
 in=myinput
 out=myoutput;
run;

Submit a more complex request in PUT statements. The GetMetadataObjects request
sets the OMI_XMLSELECT (128), OMI_GETMETADATA (256), and
OMI_TEMPLATES (4) flags, and specifies an <XMLSELECT search="string"/> XML
element and templates that request specific Column attributes and associations, and
specific attributes of associated objects.

data _null_;
 file myinput;
put '<GetMetadataObjects>';
put '<Reposid>$METAREPOSITORY</Reposid>';
put '<Type>Column</Type>';
put '<Objects/>';
put '<NS>SAS</NS>';
put '<Flags>388</Flags>';
put '<Options>';
put '<XMLSelect search="*[Table/PhysicalTable[@Id=''A5BCTYE3.B4000004'']]"/>';
put '<Templates>';
put ' <Column ColumnName="" BeginPosition="" ColumnLength="" ColumnType="" ';
put ' desc="" EndPosition="" IsDiscrete="" IsNullable="" MetadataCreated="" ';
put ' MetadataUpdated="" Name="" SASColumnLength="" SASColumnName="" ';
put ' SASColumnType="" SASExtendedLength="" SASFormat="" SASInformat="" ';
put ' SASPrecision="" SASScale="">';
put ' <AccessControls/>';
put ' <Properties/>';
put ' <PropertySets/>';
put ' </Column>';
put ' <AccessControlEntry Id="" Name=""/> ';
put ' <AccessControlTemplate Id="" Name="" Use=""/> ';
put ' <Property UseValueOnly="" PropertyName="" Delimiter="" DefaultValue=""/>';
put ' <PropertySet PropertySetName="" SetRole=""/> ';
put '</Templates>';
put '</Options>';
put '</GetMetadataObjects>';
run;

proc metadata
 in=myinput

Example 4: Fileref to a Temporary File with the IN= Argument 81

 out=myoutput;
run;

Example 5: HEADER= Argument
Features: HEADER= argument

This example shows how the HEADER=SIMPLE and HEADER=FULL arguments can
be used to specify a header and encoding for the output XML file. For a listing of
encoding values that can be used with HEADER=FULL, see the SAS National Language
Support (NLS): Reference Guide.

Example of HEADER=SIMPLE This code inserts the static header <?xml
version="1.0" ?> in the output XML file that is identified by the fileref MYOUTPUT. A
sample of the content of the output file, opened in a browser, follows.

filename myoutput "u:\out1.xml";
proc metadata
 header=simple
 out=myoutput
 in="<GetTypes>
 <Types/>
 <Ns>SAS</Ns>
 <Flags/>
 <Options/>
 </GetTypes>";
run;

Here is a display of the top portion of the output file:

Example of HEADER=FULL When you specify HEADER=FULL, but do not specify an
encoding value in the FILENAME statement, PROC METADATA includes a header
with the encoding that is active in your SAS session. A sample of the output follows.

82 Chapter 11 • METADATA Procedure

filename myoutput "u:\out2.xml";
proc metadata
 header=full
 out=myoutput
 in="<GetTypes>
 <Types/>
 <Ns>SAS</Ns>
 <Flags/>
 <Options/>
 </GetTypes>";
run;

Here is a display of the top portion of the output file:

Example of HEADER=FULL with an Encoding Value This example creates the output
file with an ASCII encoding. The encoding is specified in the FILENAME statement. An
example of the output follows.

filename myoutput "u:\out3.xml" encoding=ascii;
proc metadata
 header=full
 out=myoutput
 in="<GetTypes>
 <Types/>
 <Ns>SAS</Ns>
 <Flags/>
 <Options/>
 </GetTypes>";
run;

Example 5: HEADER= Argument 83

Here is a display of the top portion of the output file:

Example 6: VERBOSE Argument
Features: VERBOSE= argument

IN= argument

Issue PROC METADATA with VERBOSE. The VERBOSE= argument causes the
preprocessed XML from the IN= argument to be written to the SAS log with the title
“NOTE: Input XML.”

proc metadata
 in="<GetMetadataObjects>
 <Reposid>$METAREPOSITORY</Reposid>
 <Type>PhysicalTable</Type>
 <Objects/>
 <Ns>SAS</Ns>
 <Flags>0</Flags>
 <Options/>
 </GetMetadataObjects>"
 verbose;
run;

84 Chapter 11 • METADATA Procedure

Here is the SAS log. If the OUT= argument had been included in the request, “NOTE:
Input XML” would have been the only note in the SAS log.

123 proc metadata
124 in="<GetMetadataObjects>
125 <Reposid>$METAREPOSITORY</Reposid>
126 <Type>PhysicalTable</Type>
127 <Objects/>
128 <Ns>SAS</Ns>
129 <Flags/>
130 <Options/>
131 </GetMetadataObjects>"
132 verbose;
133 run;

NOTE: Input XML:

<GetMetadataObjects> <Reposid>A0000001.A5TJRDIT</Reposid>
<Type>PhysicalTable</Type> <Objects/> <Ns>SAS</Ns> <Flags/>
<Options/> </GetMetadataObjects>

NOTE: Response XML:

<GetMetadataObjects><Reposid>A0000001.A5TJRDIT</Reposid><Type>PhysicalTable
</Type><Objects><PhysicalTable Id="A5TJRDIT.B2000001" Name="ODSSTYLE"/>
<PhysicalTable Id="A5TJRDIT.B2000003" Name="CENSUS"/><PhysicalTable Id=
"A5TJRDIT.B200000K" Name="EMPLOYEE"/><PhysicalTable Id="A5TJRDIT.B20000SX"
Name="CENSUS"/><PhysicalTable Id="A5TJRDIT.B20000TD" Name="CENSUS"/>
<PhysicalTable Id="A5TJRDIT.B20001L8"Name="CENSUS"/></Objects><Ns>SAS</Ns>
<Flags/><Options/></GetMetadataObjects>

Example 7: Request the Metadata for One Object
Features: IN= argument

Other features: <Flags> element

This code submits a GetMetadata method for a table whose object identifier is
A58LN5R2.AR000001. The GetMetadata method retrieves the values of specified
properties for a specified metadata object. The requested properties can be specified in
the input property string or indicated by GetMetadata flags. GetMetadata supports the
following flags in order to get information about an object:

OMI_ALL_SIMPLE (8)
gets all attributes of the specified object.

OMI_ALL (1)
gets all of the attributes and direct associations of the specified object.

OMI_FULL_OBJECT (2)
is new in SAS 9.3. Gets the requested values of the specified object, and the Id=,
Name=, and Desc= attributes of all of the secondary objects in the specified object's
logical metadata definition. The specified object must be a PrimaryType subtype in
the SAS Metadata Model, and it must have a type definition in the type dictionary.
For more information about the type dictionary, see “Using Language Elements That
Read and Write Metadata” on page 7. OMI_FULL_OBJECT expands both an
object’s direct and nested associations.

Example 7: Request the Metadata for One Object 85

OMI_TEMPLATES (4)
gets the attributes and associations specified in one or more property strings
submitted in a <TEMPLATES> XML element in the OPTIONS parameter of the
GetMetadata method.

The flags can be set alone or in combination. If you want to return only information
about properties that have values stored for them, include the OMI_SUCCINCT (2048)
flag. To combine GetMetadata flags, add their numeric values together, and specify the
total in the <Flags> parameter. For more information about the flags, see SAS Open
Metadata Interface: Reference and Usage.

Request the full metadata definition of a table object. Metadata objects are identified
to the GetMetadata method with their metadata type and Id= values. This example
requests information about a PhysicalTable object, and sets the OMI_FULL_OBJECT
(2) and OMI_SUCCINCT (2048) flags.

filename myoutput "C:\results1.xml" lrecl=256;

proc metadata
 in='<GetMetadata>
 <Metadata>
 <PhysicalTable Id="A5TJRDIT.B2000005"/>
 </Metadata>
 <Ns>SAS</Ns>
 <!-- OMI_FULL_OBJECT (2) + OMI_SUCCINCT (2048) -->
 <Flags>2050</Flags>
 <Options/>
 </GetMetadata>'
 out=myoutput;
run;

A sample of the content of the results1.xml file, opened in a browser, follows:

86 Chapter 11 • METADATA Procedure

Output 11.1 Contents of the results1.xml File

Example 7: Request the Metadata for One Object 87

Example 8: Request the Metadata for One Type of Object
Features: IN= argument

Other features: <Flags> element
<XMLSelect> element

This code submits a GetMetadataObjects method to list all objects of the specified type
from the specified repository. The metadata server returns metadata for SAS Information
Maps that are registered in the specified repository. A SAS Information Map is
represented in a metadata repository with a primary object of the Transformation
metadata type. Several other objects in the type dictionary use the Transformation
metadata type as their primary metadata type. For example, SAS reports also use the
Transformation metadata type. SAS supports two types of information maps:
information maps for relational tables and information maps for cubes.

In this request, which specifies a flag value of 128, the GetMetadataObjects
OMI_XMLSELECT flag filters the request to retrieve only Transformation objects
describing information maps for relational tables. An information map for a relational
table has a TypeName= value of "InformationMap.Relational” in its type definition.

The request is submitted from a temporary input file to simplify quoting requirements
for the <XMLSELECT search="string"/> element. The results are written to an output
XML file so that they can be easily viewed in a browser.

For details about information maps, see the Base SAS Guide to Information Maps. For
information about type definitions and the type dictionary, see “Using Language
Elements That Read and Write Metadata” on page 7. For information about PROC
METADATA quoting requirements, see “Quotation Requirements” on page 74. This
example shows a simple search string. For information about how to build a more
complex search string, see SAS Open Metadata Interface: Reference and Usage.

Submit the GetMetadataObjects method. This request specifies to get information
maps for relational tables.

filename myinput temp lrecl=256;
filename myoutput "C:\results2.xml" lrecl=256;

data _null_;
 file myinput;
 input;
 put _infile_ ' ';
 datalines;
<GetMetadataObjects>
 <Reposid>$METAREPOSITORY</Reposid>
 <Type>Transformation</Type>
 <Objects/>
 <NS>SAS</NS>
 <Flags>2440</Flags>
 <Options>
 <XMLSelect search="*[@PublicType='InformationMap.Relational']"/>
 </Options>
</GetMetadataObjects>
;;
run;

88 Chapter 11 • METADATA Procedure

proc metadata
 in=myinput
 out=myoutput;
run;

Here is an example of the output. This request returns one object, shown in the
<OBJECTS> XML element. To get the information, such as the responsible parties for
the information map and the tables on which the information map is defined, you can set
the OMI_GET_METADATA (256), OMI_ALL (8), and OMI_SUCCINCT (2048) flags
in the request. To set the flags, add their values to OMI_XMLSELECT (128), and
specify the total in the <FLAGS> XML element. The OMI_GET_METADATA flag
enables you to set GetMetadata flags in the GetMetadataObjects request. These flags can
return a lot of information, so they should be set only when a few objects are expected to
be returned by GetMetadataObjects.

The following is the content of the output file, opened in a browser.

Output 11.2 Contents of the results2.xml File

Example 9: Use METHOD=STATUS to Get Backup Information
Features: METHOD= argument

IN= argument

The SAS 9.3 Metadata Server performs unassisted, scheduled server backups, and
supports roll-forward recovery to a specified point in time. For detailed information
about this server backup utility and its recovery features, see the SAS Intelligence
Platform: System Administration Guide.

The recommended interface for managing server backups and performing recoveries is
the Server Backup node of SAS Management Console. However, PROC
METAOPERATE can be used to configure and execute backups and recoveries, and
PROC METADATA can be used to get information about the backup configuration,
backup history, and specific backups.

For information about tasks that can be performed with PROC METAOPERATE, see
“Using Backup and Recover XML Elements” on page 127. The following examples
show how to get information about server backups using METHOD=STATUS.

Example 9: Use METHOD=STATUS to Get Backup Information 89

The SAS 9.3 Metadata Server backup facility uses four system files in the SASMeta/
MetadataServer directory to manage backup and recovery processes.

• MetadataServerBackupConfiguration.xml contains the backup configuration and
backup schedule.

• MetadataServerBackupHistory.xml contains a history of backup and recovery
activity.

• MetadataServerBackupManifest.xml contains a record of the repositories and files
copied in a backup.

• MetadataServerRecoveryManifest.xml contains a record of the repositories and files
applied in the latest recovery.

These system files should never be opened directly. To read the files with PROC
METADATA, submit backup-related XML elements that are supported in the IServer
Status method in the IN= argument.

To get your server's backup configuration and backup schedule, submit the
following:

proc metadata
 method=STATUS
 in='<MetadataServerBackupConfiguration/>';
run;

Here is output from the request:

NOTE: Response XML:
<MetadataServerBackupConfiguration xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"
xsi:noNamespaceSchemaLocation="MetadataServerBackupConfiguration.xsd">
1 <MetadataServer GUID="5FC4B20A-EEFE-449D-AA16-8D7745B0F0C6"/>
2 <Schedules><Schedule Event="Backup"
Weekday1="0200" Weekday2="0200R" Weekday3="0200" Weekday4="0200" Weekday5="0200"
Weekday6="0200" Weekday7="0200"/></Schedules>
3 <BackupConfiguration BackupLocation="Backups" DaysToRetainBackups="7"
RunScheduledBackups="Y"/></MetadataServerBackupConfiguration>

1 The <MetadataServer> XML element contains the unique metadata server identifier
in a GUID= attribute.

2 The <Schedules> XML element contains the backup schedule. For a description of
the schedule attributes and values, see “<SCHEDULE EVENT="Backup"
WEEKDAYn="timeR"/>” on page 123.

3 The <BackupConfiguration> XML element contains values for the
BackupLocation=, DaysToRetainBackups=, and RunScheduledBackups=
configuration attributes.

To get the backup schedule for Tuesday only, submit the following:

proc metadata
 method=STATUS
 in='<Schedule Event="Backup" WeekDay3=""/>';
run;

To get the backup retention policy only, submit the following:

90 Chapter 11 • METADATA Procedure

proc metadata
 method=STATUS
 in='<BackupConfiguration DaysToRetainBackups=""/>';
run;

To list the backup history:

proc metadata
 method=STATUS
 in='<MetadataServerBackupHistory/>';
run;

To get status information about the last backup from the history:

proc metadata
 method=STATUS
 in='<MetadataServerBackupHistory XPath="MetadataServerBackupManifest/Backups/
Backup[POSITION()=LAST()]"/>';
run;

To list the backup manifest of the last successful backup, submit the following:

proc metadata
 method=STATUS
 in='<MetadataServerBackupManifest/>';
run;

To list the backup manifest of an earlier backup: The server assumes the backup in
the BackupName= attribute is in the configured backup location.

proc metadata
 method=STATUS
 in='<MetadataServerBackupManifest BackupName="2010-12-13T00_59_59-05_00"/>';
run;

To list the backup manifest of a backup that is not in the configured backup
location: Specify the absolute pathname of the backup in the BackupPath= attribute.

proc metadata
 method=STATUS
 in='<MetadataServerBackupManifest BackupPath="C:/2010-12-08T12_44_21-05_00"/>';
run;

To list the contents of the MetadataServerRecoveryManifest.xml file: The server
maintains a record of the last recovery only. This manifest is located in the SASMeta/
MetadataServer directory.

proc metadata
 method=STATUS
 in='<MetadataServerRecoveryManifest/>';
run;

To check the health of the backup scheduler thread: Possible return values are Alive,
TimeOut, Down, or Unconfigured.

proc metadata
 method=STATUS
 in='<Scheduler Ping=""/>';
run;

Example 9: Use METHOD=STATUS to Get Backup Information 91

92 Chapter 11 • METADATA Procedure

Chapter 12

METALIB Procedure

Overview: METALIB Procedure . 93

Syntax: METALIB Procedure . 94
PROC METALIB Statement . 95
OMR Statement . 95
EXCLUDE or SELECT Statement . 98
FOLDER= or FOLDERID= Statement . 99
IMPACT_LIMIT Statement . 100
NOEXEC Statement . 100
PREFIX Statement . 101
REPORT Statement . 101
UPDATE_RULE Statement . 102

Concepts: METALIB Procedure . 103
How PROC METALIB Works . 103
What Metadata Is Updated? . 103

Results: METALIB Procedure with the REPORT Statement 104
Introduction . 104
Output Format . 105
Details in the Report . 105

Examples: METALIB Procedure . 105
Example 1: Creating Metadata for a Data Source . 105
Example 2: Synchronizing Metadata with the Data Source 107
Example 3: Selecting Tables for Processing . 109
Example 4: Generating an Impact Analysis . 109
Example 5: Adding a Prefix to New Metadata Names . 112
Example 6: Specifying a Folder for the Metadata . 113

Overview: METALIB Procedure
The METALIB procedure supports SAS data sets (data files and data views) and DBMS
data. The data source is referred to as a table in this documentation and the procedure's
output.

When you run PROC METALIB, you specify a SAS library that is already defined in
the SAS Metadata Server. You can create a metadata definition for a SAS library using
the New Library wizard in the SAS Management Console Data Library Manager or SAS
Data Integration Studio.

93

The METALIB procedure updates the metadata in the metadata server to match the
tables in a library. By default, the procedure performs the following tasks:

• creates metadata for any table that does not have metadata

• updates metadata about all of the tables' columns, indexes, and integrity constraints

With optional statements, PROC METALIB can perform the following additional tasks:

• Select or exclude specific tables from processing.

• Specify where new metadata is stored in SAS folders.

• Perform an impact analysis to see whether any Transformation or Job objects are
associated with the tables. (Information maps are modeled with Transformation
objects.)

• Limit the update of table definitions that would affect Job or Transformation objects.

• Add a prefix to the name of all new metadata objects.

• Generate a report of changes that the procedure made to metadata.

• Generate a report of needed metadata changes without making the changes.

• In the generated report, include a list of tables that match the metadata.

• Suppress the metadata add action, the metadata update action, or both.

• Delete metadata that has no corresponding data source or is duplicated.

For more information, see “How PROC METALIB Works” on page 103.

Syntax: METALIB Procedure
Requirements: The SAS Metadata Server must be running. The SAS library must already be

defined in the metadata by using a product such as SAS Management Console or
SAS Data Integration Studio.
If the data source is ADABAS, you must set the META_ADABAS environment
variable to 1.
A user must have WriteMetadata permission to the SAS Metadata Repository and
WriteMemberMetadata permission to the target SAS folder to create metadata. In
addition, the user must have ReadMetadata permission to update metadata.

PROC METALIB;
OMR <=> (library-identifier <server-connection-arguments>);
<EXCLUDE<=> (table-specification<table-specification-n>);>
| <SELECT (table-specification<READ=read-password>

<table-specification-n<READ=read-password-n>>);>
<FOLDER= "/pathname"; > | <FOLDERID= "identifier.identifier";>
<IMPACT_LIMIT = n;>
<NOEXEC;>
<PREFIX<=><">text<">;>
<REPORT<<=> (report-arguments)>;>
<UPDATE_RULE<=> (<DELETE><NOADD><NODELDUP><NOUPDATE>);>

94 Chapter 12 • METALIB Procedure

Statement Task Example

“PROC
METALIB
Statement”

Update metadata in the metadata server to match the
tables in a library

Ex. 1

“OMR
Statement”

Specify the data source and server connection parameters Ex. 1

“EXCLUDE or
SELECT
Statement”

Exclude or select a table, or a list of tables, for processing Ex. 3

“FOLDER= or
FOLDERID=
Statement”

Specify where new metadata is stored in SAS folders Ex. 6

“IMPACT_LIMI
T Statement”

Specify the maximum number of Job or Transformation
objects that can be affected by updates to table definitions

Ex. 4

“NOEXEC
Statement”

Suppress the metadata changes from being made Ex. 4

“PREFIX
Statement”

Specify a text string to add to the beginning of all new
metadata object names

Ex. 5

“REPORT
Statement”

Create a report that summarizes metadata changes Ex. 2

“UPDATE_RUL
E Statement”

Override default update behavior Ex. 2

PROC METALIB Statement
Updates metadata to match the data source.

Syntax
PROC METALIB;

Details
Supports SAS data sets (data files and data views), DBMS data, and SAS Information
Maps in a SAS Metadata Repository.

OMR Statement
Specifies the data source and connection parameters for the SAS Metadata Server.

OMR Statement 95

Syntax
OMR <=> (library-identifier <server-connection-arguments>);

Required Argument
library-identifier

specifies a SASLibrary object, which defines a SAS library. This SAS library
contains the tables whose metadata is updated. The SASLibrary object can be
specified using any of the following forms:

LIBID=<">identifier<">
specifies the 8-character metadata identifier of the SASLibrary object that
represents the library. The 8-character metadata identifier is the second half of
the 17-character identifier. For more information, see “Metadata Object
Identifiers and URIs” on page 11.

LIBRARY=<">name<">
specifies the value in the SASLibrary object's Name= attribute.

LIBURI="URI-format"
specifies a URI, which is a standard from SAS Open Metadata Architecture. For
more information, see “Metadata Object Identifiers and URIs” on page 11. The
following URI formats are supported:

LIBURI="identifier.identifier"
specifies the full 17-character metadata identifier, which references both the
repository and the object. This syntax is equivalent to specifying both
LIBID= and REPID=. An example is liburi="A58LN5R2.A9000001".

LIBURI="SASLibrary/identifier.identifier"
specifies the SASLibrary object type, followed by the full 17-character
metadata identifier. This syntax is equivalent to specifying both LIBID= and
REPID=. An example is liburi="SASLibrary/
A58LN5R2.A9000001".

LIBURI="SASLibrary?@attribute='value'"
specifies the SASLibrary object type, followed by a search string. Examples
are liburi="SASLibrary?@libref='mylib'" and
liburi="SASLibrary?@engine='base'".

Requirements:
You must enclose the LIBURI= value in quotation marks.
The URI must resolve to a single metadata object. When using an attribute
qualifier like @engine=’base’, if you have more than one Base library
defined in metadata, PROC METALIB returns WARNING: Multiple
metadata objects found.

Note: SAS Data Integration Studio can process work tables that exist temporarily in
the Work library. The metadata type is WorkTable. Usually, work tables are not
assigned to a library and have no library metadata, but they do have table and
column metadata. A work table that results from a generated transformation can
be dynamic in nature. In other words, its structure might be modified by the
transformation. PROC METALIB can update the metadata to match the work
table. If there is no library assignment, submit a blank library specification, and
identify the work table with the SELECT statement. Here is an example with a
blank library specification: proc metalib; omr (libid=""
repid="A5O7HLNB"); select ("A5O7HLNB.A9000001"); run;

Tip: In SAS Management Console, avoid the Pre-assigned Library template. When
you pre-assign a library, choose the resource template that is specific to the type

96 Chapter 12 • METALIB Procedure

of data source library that you are creating, and select the This library is pre-
assigned check box. The Pre-assigned Library template is intended for certain
system libraries only, and it does not work for other libraries. In addition, for
PROC METALIB, you must submit the library pre-assignment in the current
SAS session. You can store the LIBNAME statement in an autoexec file, or you
can submit the LIBNAME statement in your SAS session before you submit the
procedure.

Server Connection Arguments
The server connection arguments establish communication with the metadata server. If
you omit these arguments, then the values of the system options are used, or the values
can be obtained interactively. For more information, see “Connection Options ” on page
28.

PASSWORD="password"
is the password for the authorized user ID on the metadata server. If you do not
specify PASSWORD=, the value of the METAPASS= system option is used. For
more information, see “METAPASS= System Option” on page 36. The maximum
length is 256 characters.
Alias: METAPASS= or PW=

PORT="number"
is the TCP port that the metadata server listens to for connections. This port number
was used to start the metadata server. If you do not specify PORT=, the value of the
METAPORT= system option is used. For more information, see “METAPORT=
System Option” on page 37. The range of allowed port numbers is 1 to 65535. The
metadata server is configured with a default port number of 8561.
Alias: METAPORT=

REPID=<">identifier<"> | REPNAME=<">name<">
specifies the repository that contains the SASLibrary object. If you specify both
REPID= and REPNAME=, REPID= takes precedence over REPNAME=. If you do
not specify REPID= or REPNAME=, the value of the METAREPOSITORY=
system option is used. For more information, see “METAREPOSITORY= System
Option” on page 40. The default for the METAREPOSITORY= system option is
FOUNDATION.

REPID=<">identifier<">
specifies an 8-character identifier. This identifier is the first half of the
SASLibrary object's 17-character identifier, and is the second half of the
repository's identifier. For more information, see “Metadata Object Identifiers
and URIs” on page 11.

REPNAME=<">name<">
specifies the value in the repository's Name= attribute. The maximum length is
256 characters.
Alias: METAREPOSITORY=

SERVER="host-name"
is the host name or network IP address of the computer that hosts the metadata
server. The value LOCALHOST can be used if the SAS session is connecting to a
server on the same computer. If you do not specify SERVER=, the value of the
METASERVER= system option is used. For more information, see
“METASERVER= System Option” on page 41. The maximum length is 256
characters.
Alias: HOST= or IPADDR= or METASERVER=

OMR Statement 97

USER="authorized-user-ID"
is an authorized user ID on the metadata server. An authorized user ID has
ReadMetadata and WriteMetadata permission to the specified SASLibrary. It has
WriteMemberMetadata permission to the SAS folders that are affected by the
update. SAS folders that can be affected by the update include the library's folder and
the table's folder, if the table is in a different folder from the library. For more
information, see SAS Intelligence Platform: Security Administration Guide. If you do
not specify USER=, the value of the METAUSER= system option is used. For more
information, see “METAUSER= System Option” on page 43. The maximum length
is 256 characters.
Alias: ID= or METAUSER= or USERID=

EXCLUDE or SELECT Statement
Excludes or selects a table, or a list of tables, for processing.

Requirement: Use either EXCLUDE or SELECT, not both. Use one form of table specification (that
is, either table-name or table-identifier).

Interaction: When you select or exclude tables, be aware that the tables that you select can
affect the associated objects that are updated. For example, both the primary key
and foreign key tables must be selected for foreign key metadata to be updated. The
primary key and foreign key tables must be in the same library and in the same
repository.

Syntax
EXCLUDE<=>(table-specification <table-specification-n>)
| SELECT<=>(table-specification <READ=read-password>
<table-specification-n<READ=read-password-n>>);

Required Argument
table-specification

<">table-name<">
is the SAS name of a physical table that is referenced by the SASLibrary object.
If metadata already exists for the table, the table name is the value of the
SASTableName= attribute of the PhysicalTable object. Do not specify the value
of the Name= attribute, which is a user-defined name that can differ from the
SAS name.

If any of the table names in the list contain special or mixed-case characters, you
must enclose each table name in quotation marks. If any of the table names
contain special or mixed-case characters, PROC METALIB converts all
unquoted table names to uppercase. In the following example, all of the values
must be enclosed in quotation marks, because the fourth value in the statement is
mixed case. If the first three values were not enclosed in quotation marks, they
would be uppercased as TAB1, TAB2, and TAB3.

select ("tab1" "tab2" "tab3" "Table4");

<">reposid.tableid<">
is the full 17-character metadata identifier of a PhysicalTable object. The
identifier is valid for SELECT, but not for EXCLUDE. For more information,

98 Chapter 12 • METALIB Procedure

see “Metadata Object Identifiers and URIs” on page 11. Quotation marks are
optional.

Note: SAS Data Integration Studio can process work tables that exist temporarily in
the Work library. See the note about a blank library specification at “OMR
Statement” on page 95.

Optional Argument
read-password

is the READ password, if any, that was previously assigned to the table. For
information about file protection, see SAS Language Reference: Concepts. The
following example specifies a READ password for tab1:

select ("tab1" read=mypwd "tab2" "tab3" "Table4");

FOLDER= or FOLDERID= Statement
Specifies where new metadata is stored in SAS folders.

See: “Example 6: Specifying a Folder for the Metadata” on page 113

Syntax
FOLDER = "/pathname" | FOLDERID = "identifier.identifier";

Required Arguments
FOLDER= "/pathname"

is the pathname to an existing folder in the SAS folder tree. If the specified folder
does not exist, or if the name is misspelled, PROC METALIB returns an error. The
pathname begins with a forward slash, and is given relative to the branch of the
folder tree in which the folder resides. Here is an example:

folder="/User Folders/MyUserID/My Folder/Test";

FOLDERID= "identifier.identifier"
is the full 17-character metadata identifier of the Tree object that represents the
folder. Using FOLDERID= is not recommended if you can use FOLDER=. The
FOLDER= syntax is preferable because it shows the location of the folder in SAS
Management Console.

Details
When you specify FOLDER= or FOLDERID=, you add or update the table definition in
the specified SAS folder. Column, ForeignKey, Index, KeyAssociation, and UniqueKey
objects are added or updated in the same folder as the specified PhysicalTable object.
The SASLibrary object remains in its original folder.

If a table is defined in more than one folder, updating the table definition in all of the
folders is recommended. And, you must submit a PROC METALIB step for each folder.
Using the SELECT= statement is recommended to ensure that you update the correct
table. If a table is defined in more than one folder, then you will see multiple table
definitions in the Data Library Manager on the Plug-ins tab of SAS Management
Console. The multiple table definitions will have the same name, but they will be in
different SAS folder locations. Every table definition has a unique metadata identifier.

FOLDER= or FOLDERID= Statement 99

If you do not specify a folder, and if table definitions exist in more than one folder,
PROC METALIB updates the first table definition that is found for each table in the
specified library. (If you submit SELECT=, PROC METALIB updates the specified
table in the specified library.) If you do not specify a folder, and if a table is new, PROC
METALIB adds the new table definition to the SASLibrary object's folder.

IMPACT_LIMIT Statement
Specifies the maximum number of Job or Transformation objects that can be affected by an update to a
table definition.

See: “Example 4: Generating an Impact Analysis” on page 109

Syntax
IMPACT_LIMIT=n;

Required Argument
n

maximum number (an integer) of Job or Transformation objects that can be affected
by an update to a table definition. For each table that is analyzed, if the specified
number is exceeded, the table's metadata is not added, updated, or deleted.

Details
The IMPACT_LIMIT statement is optional. An impact analysis is not performed unless
IMPACT_LIMIT and REPORT are specified.

The recommended usage is as follows:

1. Specify IMPACT_LIMIT=0 with REPORT to determine what tables have associated
Job or Transformation objects.

2. Specify IMPACT_LIMIT=0 with REPORT (TYPE=DETAIL) to identify which type
of object is associated: Job or Transformation.

3. Specify IMPACT_LIMIT with an integer that specifies the number of Job or
Transformation objects found. Any updates to table definitions will be made.

IMPACT_LIMIT identifies potential impact only. It does not verify that a Job or
Transformation object was affected, only that it could be affected.

IMPACT_LIMIT identifies only the Job or Transformation objects that can be directly
affected. These objects might contain many other objects that could also be affected
down the line by the changes, but those objects are not analyzed. If you would like to
perform a more thorough impact analysis, you can use SAS Data Integration Studio.

For more information about Job and Transformation objects, see the online Help in SAS
Data Integration Studio.

NOEXEC Statement
Suppress the metadata changes from being made.

100 Chapter 12 • METALIB Procedure

Syntax
NOEXEC;

Details
If you specify NOEXEC and the REPORT statement, you can generate a report of
changes that your request would make to metadata, before you commit to making the
changes. The SAS log contains warnings about any tables that have metadata, but no
longer exist in the library.

PREFIX Statement
Specifies a text string to add to the beginning of all new metadata object names.

See: “Example 5: Adding a Prefix to New Metadata Names” on page 112

Syntax
PREFIX <=> <">text<">;

Required Argument
<">text<">

is the text string to add. If you do not enclose the text string in quotation marks, the
text string is converted to uppercase. If the text string includes special or mixed-case
characters, you must enclose the text string in quotation marks. The text string is
added to the beginning of the value of the Name= attribute. This modification does
not affect PROC METALIB processing because the procedure uses the value of the
SASTableName= attribute to compare the metadata to the tables in the data source.

REPORT Statement
Creates a report that summarizes metadata changes in the Output window.

Default: TYPE=SUMMARY report

See: “Example 4: Generating an Impact Analysis” on page 109

Syntax
REPORT <<=> (report-arguments)>;

Optional Arguments
TYPE=DETAIL | SUMMARY

DETAIL
specifies that the report includes all of the information generated by
TYPE=SUMMARY, and includes the list of Job and Transformation objects that
are related to the tables that are being processed.The “IMPACT_LIMIT
Statement” statement must also be specified to include the list of Job and
Transformation objects.

REPORT Statement 101

SUMMARY
specifies that the report includes information about any metadata changes that
were (or would be) made to the table that is being processed.

When specified with IMPACT_LIMIT, the following occurs:

• Only tables that have Job or Transformation objects associated with them are
listed. (This is also known as an impact analysis.)

• No changes are made, unless IMPACT_LIMIT is greater than zero.

MATCHING
specifies that the report includes a list of tables whose metadata matches their data
source (that is, they require no metadata changes). By default, the report does not
include the list of these matching tables, but it does include the number of matching
tables.

Details
The REPORT statement is optional. If it is omitted from the PROC METALIB request,
PROC METALIB writes summary information to the SAS log. Specifying REPORT
without any report arguments causes the output to be written to the Output window. For
more information, see “Results: METALIB Procedure with the REPORT Statement ” on
page 104 .

UPDATE_RULE Statement
Overrides one or both of the default add and update actions, and specifies the delete actions.

Requirement: An error is returned if you specify both NOADD and NOUPDATE and omit DELETE.
The procedure must have an action to perform if both of the default actions are
suppressed.

Syntax
UPDATE_RULE <=> (<DELETE> <NOADD> <NODELDUP> <NOUPDATE>);

Required Arguments
DELETE

specifies to delete a table definition in the repository if a corresponding table is not
found in the data source. If duplicate table definitions exist, the additional table
definitions are deleted unless NODELDUP is specified.

NOADD
specifies not to add a table definition to the repository for a table that has no
metadata.

NODELDUP
specifies not to delete duplicate table definitions in the repository. A duplicate table
definition has the same SASTableName= value as the table definition being
processed. Duplicate table definitions are deleted by default when DELETE is
specified. NODELDUP is valid only when DELETE is specified.

NOUPDATE
specifies not to update existing table definitions in the repository to match the
corresponding tables in the data source.

102 Chapter 12 • METALIB Procedure

Concepts: METALIB Procedure

How PROC METALIB Works
The procedure examines the data source (the SAS library) that is referenced by the
SASLibrary object. Then, the procedure examines the SAS table names in the data
source, and compares them to the values of the SASTableName= attributes in the
metadata. For each SAS table name in the data source, the procedure checks the
repository association list to see whether a matching table definition exists.

• If a matching table definition does not exist, one is created.

• If a matching table definition exists, it is updated to match the table definition in the
data source.

• If duplicate table definitions exist, only the first table definition is updated. The
additional table definitions are ignored by default. If you specify
UPDATE_RULE=(DELETE), the additional table definitions are deleted. If you
specify UPDATE_RULE=(DELETE NODELDUP), the additional table definitions
are not deleted.

• If a table definition exists that does not correspond to a table in the data source, it is
ignored by default. If you specify UPDATE_RULE=(DELETE), the table definition
is deleted.

• If a column name in a table definition matches a column name in the data source, but
it is in a different case (for example, lowercase instead of uppercase), then the
following change occurs in the table definition. If the data source is a SAS table or
view, the column name in metadata is updated to match the case of the column name
in the data source. If the data source is a DBMS, the column name in metadata is
deleted and added to match the case of the column name in the data source. If the
DBMS has column mappings in a SAS Data Integration Studio job, you might have
to recreate the column mappings.

• When it creates metadata, PROC METALIB creates column attributes in the
metadata to match the data. It does not use the DBSASTYPE data set option settings.
You can manually adjust a column's attributes in the metadata, and the metadata
LIBNAME engine will use the modified settings. To do this, you must manually
adjust a column’s attributes in the metadata after each run of the METALIB
procedure or you must exclude tables that use the DBSASTYPE data set option.

For more information, see topics about managing table metadata in the SAS Intelligence
Platform: Data Administration Guide.

What Metadata Is Updated?
The procedure updates all table definitions that are associated with the specified
SASLibrary object. The affected metadata objects include PhysicalTable, Column,
Index, PrimaryKey, ForeignKey, UniqueKey, and KeyAssociation, with the following
exceptions:

• PROC METALIB does not create UniqueKey objects for data in Oracle.

• PROC METALIB does not create Index, PrimaryKey, and ForeignKey objects for
external databases that are accessed with the SAS/SHARE server.

Concepts: METALIB Procedure 103

• PROC METALIB does not create metadata for indexes on which expressions are
defined. When an expression is defined on an index, the index is ignored. Table
metadata is created without metadata for the index.

Note: The maximum length for index names that can be registered by PROC METALIB
is 256 characters. However, other components of SAS or the DBMS might enforce a
shorter length, causing the name to be truncated.

For more information about these metadata objects, see their descriptions in SAS
Metadata Model: Reference.

Results: METALIB Procedure with the REPORT
Statement

Introduction
By default, regardless of whether you specify the REPORT statement, the METALIB
procedure writes a summary to the SAS log of changes that were made to the metadata.
Here is an example:

NOTE: A total of 10 tables were analyzed for library "mylib".
NOTE: Metadata for 2 tables was updated.
NOTE: Metadata for 0 tables was added.
NOTE: Metadata for 7 tables matched the data sources.
NOTE: 1 other tables were not processed due to error or UPDATE_RULE.

If you specify the REPORT statement, a detailed report is written to the SAS Output
window. The report provides the same summary as the SAS log, and also lists the
changes to tables and their Column, ForeignKey, Index, KeyAssociation, and
UniqueKey objects.

Some procedure arguments add information to the report.

• If you specify UPDATE_RULE=(DELETE), the report lists the number of table
definitions that were deleted from metadata.

• If you specify the SELECT or EXCLUDE statement, the report lists the number of
tables that were not found in either source (data source or metadata).

• If you specify MATCHING in the REPORT statement, the report lists the tables that
match the metadata.

• If you specify TYPE=DETAIL in the REPORT statement, and you specify the
IMPACT_LIMIT statement, the report lists the number of tables that were not
processed because of large impact. It also lists Job and Transformation objects that
are directly related to the table that is being processed.

If you specify the NOEXEC statement, the procedure does not make any of the changes
to the metadata. The SAS log and Output window summarize the metadata changes that
would have been applied if NOEXEC had not been specified.

For information about REPORT statement syntax, see “REPORT Statement” on page
101.

104 Chapter 12 • METALIB Procedure

Output Format
The default report destination in SAS 9.3 is HTML.

Details in the Report
The METALIB procedure updates the attribute values of the table definition and the
attribute values of associated objects to match the data in the specified SAS library, and
then produces a report. Most of the report is self-explanatory. Here is more information
about two of the columns in the report:

SAS Name
is the SAS name of the item described by the metadata.

• For an index, this value is the IndexName= attribute.

• For a column, this value is the SASColumnName= attribute.

• For a non-primary unique key, this value is a two-part identifier in the form
SASTableName.data-source-key-name.

• For a primary unique key, this value is a two-part identifier in the form
SASTableName.Primary.

• For a foreign key, this value is a two-part identifier in the form primary-table-
SASTableName.foreign-table-SASTableName.

Change
is a system-generated description of the change that was made. The description can
be a single word, such as “Added” or “Deleted”, or it can be an attribute name
(which indicates that the attribute's value was modified). It can be a “Column” or a
“Column Order” message, followed by the name of the column that was affected by
the change. PROC METALIB changes a table's Columns association to make the
metadata column order match the data source column order. Affected columns are
listed separately in the report. The column order in the report indicates the new
metadata column order.

Examples: METALIB Procedure

Example 1: Creating Metadata for a Data Source
Features: PROC METALIB

OMR statement with server connection arguments
REPORT statement

This example creates metadata that describes the physical tables in a new SAS library in
a SAS Metadata Repository. The SAS library must already exist and contain SAS data
sets. You must have already created a metadata definition for the SAS library in the SAS
Management Console Data Library Manager.

Example 1: Creating Metadata for a Data Source 105

Specify the data source and server connection properties. PROC METALIB creates
new metadata or updates any existing metadata describing the data sets in the SAS
library identified in the OMR statement. A SAS library is identified by referencing its
metadata definition. To read the metadata definition, you must establish a connection to
the SAS Metadata Server. Here, the optional SERVER, PORT, USER, and PASSWORD
arguments are used to establish the server connection. The library definition is identified
in the LIBID= argument by its 8-character metadata identifier. The object is assumed to
be in the Foundation repository unless the METAREPOSITORY system option specifies
a different repository.

proc metalib;
 omr (libid="AZ00000A" server="localhost" port="8561"
user="sasadm@saspw" password="adminpw");

Create a report. The REPORT statement without options specifies to create a default
summary report.

 report;
 run;

This is the report created in the Output window.

106 Chapter 12 • METALIB Procedure

Example 2: Synchronizing Metadata with the Data Source
Features: PROC METALIB

Default connection properties
OMR statement
UPDATE_RULE statement with DELETE argument
REPORT statement with MATCHING argument

This example adds, updates, and deletes existing metadata describing the tables in a SAS
library in the SAS Metadata Repository to match the current physical tables in the SAS
library. Because this example does not specify connection arguments for the metadata
server, the procedure uses the values of the METAPASS, METAPORT,
METAREPOSITORY, METASERVER, and METAUSER system options that are
active for the SAS session.

Specify the data source. Specify a SAS library that is already defined in the metadata.
This example specifies the same library that was in the previous example.

proc metalib;
 omr (libid="AZ00000A");

Delete obsolete metadata. This example deletes any table definition that does not
correspond to a table in the SAS library. The default actions of add and update are also
performed.

 update_rule=(delete);

Create a report. The MATCHING argument causes the report to include a list of tables
whose metadata matches the data source. If you do not specify the MATCHING
argument when synchronizing existing metadata, and if there has been no change to the
data source (which would result in adding, updating, or deleting metadata), the REPORT
statement returns only summary statistics.

 report(matching);
run;

Example 2: Synchronizing Metadata with the Data Source 107

This is the report created in the Output window.

108 Chapter 12 • METALIB Procedure

Example 3: Selecting Tables for Processing
Features: SELECT statement

This example adds or updates metadata for a specific table.

Specify a table name. The SELECT statement identifies a table definition that contains
the value MYTABLE in its SASTableName= attribute. Because the UPDATE_RULE
statement is omitted, the default is to update or add the specified metadata. Therefore, if
a MYTABLE definition does not exist, a new table definition is created.

proc metalib;
 omr (liburi="SASLibrary?@name='MyTestLibrary'");
 select (mytable);
 report;
run;

Specify a table ID. This example uses the SELECT statement, but specifies the table
definition’s metadata identifier instead of its name. This syntax is preferred because
metadata identifiers are unique. The first part of the two-part metadata identifier
(A7892350) identifies the repository that contains the table definition. The second part
(B00265DX) identifies the table definition in the repository.

proc metalib;
 omr (liburi="SASLibrary?@name='MyTestLibrary'");
 select (A7892350.B00265DX);
 report;
run;

Example 4: Generating an Impact Analysis
Features: IMPACT_LIMIT statement

REPORT statement
REPORT(TYPE=DETAIL) statement

To generate an impact analysis, specify IMPACT_LIMIT=0 and REPORT in PROC
METALIB. The generated impact analysis shows which tables have associated Job or
Transformation objects. Request a detailed report to determine which type of object is
associated with each table. To update the tables regardless of impact, specify
IMPACT_LIMIT with an integer representing the number of Transformation or Job
objects returned.

IMPACT_LIMIT=0 and REPORT

The impact limit is set to zero. Any impact on a Job or Transformation object results in
an impact limit exceeded entry in the output.

proc metalib;
 omr (libid=AZ000009);
 impact_limit=0;

Example 4: Generating an Impact Analysis 109

 report;
run;

Output 12.1 Default PROC METALIB Report with IMPACT_LIMIT=0

IMPACT_LIMIT=0 with REPORT (TYPE=DETAIL)

The detailed report identifies the type of object that is associated with each table.

proc metalib;
 OMR=(libid=AZ000009);
 impact_limit=0;
 report (type=detail);
run;

110 Chapter 12 • METALIB Procedure

Output 12.2 PROC METALIB Report with Report (Type=Detail)

IMPACT_LIMIT=2 and REPORT

Specifying that two objects can be affected (based on the previous example) allows
PROC METALIB to modify the tables.

proc metalib;
 OMR=(libid=AZ000009);
 impact_limit=2;
 report;
run;

Example 4: Generating an Impact Analysis 111

Output 12.3 PROC METALIB Report with IMPACT_LIMIT=2

Example 5: Adding a Prefix to New Metadata Names
Features: PREFIX= statement

To add a prefix to the name of a new metadata object during an update, specify the
PREFIX statement.

In this example, the user runs an update on December 15, and wants to add that date to
any new metadata object. A new table has been added to the SAS library. In the data
source, the table is named ABBA. In the metadata, the table definition is named
December15ABBA.

Submit the PREFIX statement with PROC METALIB. If any new metadata object is
defined, the metadata name (the Name= attribute) begins with the specified prefix.

proc metalib;
 omr (library="MyTestLibrary");
 select (abba);
 prefix="December15";
 report;
run;

112 Chapter 12 • METALIB Procedure

SAS Output

Example 6: Specifying a Folder for the Metadata
Features: FOLDER= statement

PROC METALIB creates table definitions in the same folder as the specified library
definition unless you specify a different folder with the FOLDER= or FOLDERID=
statement. The default location for a library definition is the Shared Data folder. If
you choose to create table definitions in more than one folder, be aware that you must
run PROC METALIB on each folder to update the metadata. PROC METALIB
maintains a separate set of table definitions for each folder.

If a library named baselib is defined in /My Folder/test, the following PROC
METALIB statement registers the Class table in /My Folder/test. The FOLDER=
statement is not necessary because the library is already located in /My Folder/test.

proc metalib;
 omr(library=baselib);
 select (class);
run;

To create metadata for the Class table in a different folder, use the FOLDER= or
FOLDERID= statement. The FOLDER= statement specifies a different folder location
than the one in which the library is located. The folder must exist. PROC METALIB
does not create it for you. There will be two table definitions for the Class table in

Example 6: Specifying a Folder for the Metadata 113

library baselib. One definition is associated with the /My Folder/test location, and one
definition is associated with the /Shared Data/Export location.

proc metalib;
 omr(library=baselib);
 folder=”/Shared Data/Export”;
 select (class);
run;

If a library named oraclelib is defined in /Shared Data, the following request creates
table definitions in /My Folder/Oracle. This request assumes the /My Folder/Oracle
folder already exists. PROC METALIB returns an error if a folder of the specified name
cannot be found in the specified location.

proc metalib;
 omr(library=oraclelib);
 folder="/User Folders/MyUserId/My Folder/Oracle";
run;

114 Chapter 12 • METALIB Procedure

Chapter 13

METAOPERATE Procedure

Overview: METAOPERATE Procedure . 115

Syntax: METAOPERATE Procedure . 116
PROC METAOPERATE Statement . 116

Concepts: METAOPERATE Procedure . 125
How PROC METAOPERATE Works . 125
How PAUSE, REFRESH, and RESUME Affect Repositories 125
Using Backup and Recover XML Elements . 127

Examples: METAOPERATE Procedure . 128
Example 1: Submitting ACTION=STATUS . 128
Example 2: Submitting ACTION=PAUSE with a Pause Comment 130
Example 3: Submitting ACTION=REFRESH with ARM Logging 130
Example 4: Submitting ACTION=REFRESH to Pause and

Resume the Metadata Server . 130
Example 5: Submitting ACTION=RESUME . 131
Example 6: Submitting ACTION=EMPTY . 131
Example 7: Submitting ACTION=REFRESH with the Alert E-mail Test Option 131
Example 8: Submitting ACTION=REFRESH with Backup

and Recover Options . 132

Overview: METAOPERATE Procedure
The METAOPERATE procedure enables you to perform administrative tasks in batch
mode that are associated with the SAS Metadata Server. PROC METAOPERATE
performs the following tasks:

• delete, empty, or unregister a SAS Metadata Repository

• pause the metadata server to temporarily change it to a more restrictive state, and
then resume it to the online state

• refresh the metadata server to:

• recover memory

• reload authorization inheritance rules

• enable or disable Application Response Measurement (ARM) logging

• specify a new filename for metadata server journaling

• stop or get the status of the metadata server

115

Beginning in SAS 9.3, PROC METAOPERATE can be used to:

• execute an ad hoc server backup

• change the metadata server's backup configuration

• change the metadata server's backup schedule

• recover the SAS Metadata Server from an earlier backup, and perform roll-forward
recovery from the metadata server journal

• terminate the recovery if you need to regain control of the metadata server during the
recovery process

• rebuild or restart the scheduler that executes the server backups

The METADATA procedure performs some of the same tasks as PROC
METAOPERATE. For more information, see “Comparison of the METADATA
Procedure and the METAOPERATE Procedure” on page 63.

Syntax: METAOPERATE Procedure
PROC METAOPERATE <server-connection-arguments>

ACTION = PAUSE | REFRESH | RESUME | DELETE | EMPTY | UNREGISTER
| STATUS | STOP

<NOAUTOPAUSE>
<OPTIONS = "XML–string">
<OUT = SAS-data-set>;

Statement Task

“PROC
METAOPERATE
Statement”

Perform administrative tasks associated with the metadata server

PROC METAOPERATE Statement
Performs administrative tasks associated with the metadata server

Syntax
PROC METAOPERATE <server-connection-arguments>

ACTION = PAUSE | REFRESH | RESUME | DELETE | EMPTY | UNREGISTER
| STATUS | STOP

<NOAUTOPAUSE>
<OPTIONS = "XML–string">
<OUT = SAS-data-set>;

116 Chapter 13 • METAOPERATE Procedure

Summary of Optional Arguments

NOAUTOPAUSE
OPTIONS="XML-string"
OUT=SAS-data-set

Required Argument
ACTION=

specifies the action that you want to perform.

DELETE
removes the specified repository, and removes the repository's registration from
the repository manager. The repository is specified in the REPOSITORY= server
connection argument or the METAREPOSITORY= system option. To invoke
this action, the user must have access privilege to the repository, the repository
must be registered in SAS Management Console as online, and the metadata
server cannot be paused offline. The “NOAUTOPAUSE” argument is required.

EMPTY
removes the metadata records from the specified repository, but does not remove
the repository's registration from the repository manager. The repository is
specified in the REPOSITORY= server connection argument or the
METAREPOSITORY= system option. To invoke this action, the user must have
access privilege to the repository, the repository must be registered in SAS
Management Console as online, and the metadata server cannot be paused
offline. The “NOAUTOPAUSE” argument is required. For more information,
see “Example 6: Submitting ACTION=EMPTY” on page 131.

PAUSE
in SAS 9.3, PAUSE has the following two uses:

• Limits the availability of the metadata server by setting the metadata server's
state to ADMIN, OFFLINE, or READONLY. The READONLY state is new
in SAS 9.3.

The PAUSE action affects the metadata server, not an individual repository
or the repository manager. For more information, see “How PAUSE,
REFRESH, and RESUME Affect Repositories” on page 125.

Issue ACTION=PAUSE and use the OPTIONS= argument to specify a
<SERVER STATE="ADMIN"/> or a <SERVER STATE="READONLY”/>
XML string. The OPTIONS= argument, the <SERVER/> element, and the
STATE= parameter are optional. The default is to pause the metadata server
to an offline state, which also sets the repositories in an offline state.

The “<PAUSECOMMENT>text</PAUSECOMMENT>” XML element is
optional. It enables you to submit free-form text (for example, details about
the pause). For more information, see “Example 2: Submitting
ACTION=PAUSE with a Pause Comment” on page 130 .

• When used with the “<FORCE/>”XML element in the OPTIONS parameter,
the PAUSE action regains control of the metadata server during the recovery
process in the event that the recovery process stops responding. The server is
paused to an offline state unless you specify a different <SERVER
STATE=""/> value.

Here are examples of situations that might require you to pause the metadata
server to an ADMIN, OFFLINE, or READONLY state:

PROC METAOPERATE Statement 117

• to troubleshoot system errors

• to install or upgrade software

• to temporarily make all repositories available for reading only

• to close repositories and remove the server lock on them to perform a system
backup with an external backup tool

• to terminate a hung recovery process, and move the server into an ADMIN
state to perform troubleshooting

REFRESH
affects the metadata server differently depending on the XML string that you
specify in the OPTIONS= argument. Here are the choices:

• If you specify REFRESH without an XML string, or if you specify the
<SERVER/> XML element, the REFRESH action pauses and resumes (in a
single step) the metadata server. Do not specify the STATE= parameter in the
<SERVER/> XML element. The REFRESH action recovers memory on the
metadata server, and reloads authorization inheritance rules. For more
information, see “Example 4: Submitting ACTION=REFRESH to Pause and
Resume the Metadata Server” on page 130. After the refresh, all repositories
return to the same pause state that they were in before the refresh.For more
information, see “How PAUSE, REFRESH, and RESUME Affect
Repositories” on page 125.

• With the “<ARM parameter-name="value"/>” XML element specified, the
REFRESH action enables or disables ARM logging, and specifies a
pathname for the ARM log. For more information, see “Example 3:
Submitting ACTION=REFRESH with ARM Logging” on page 130.

• With the “<OMA ALERTEMAILTEST="text"/>” XML element specified,
the REFRESH action sends a test alert e-mail message to the address
configured in the <OMA ALERTEMAIL="email-address"/> option in the
omaconfig.xml configuration file.

• With the “<OMA JOURNALPATH="filename"/>” XML element specified,
the REFRESH action specifies a new filename for metadata server
journaling.

Note: This option is valid only when <OMA JOURNALTYPE="SINGLE"/>
is specified in the server’s omaconfig.xml configuration file. Use of the
<OMA JOURNALTYPE=”SINGLE”/> option is discouraged because it
disables recovery roll-forward processing.

• When used with XML elements that are new in SAS 9.3, REFRESH enables
you to modify the default SAS Metadata Server backup configuration and
backup schedule. It executes ad hoc backups, recovers the metadata server
from a previous backup, and rebuilds or restarts the backup scheduler thread.
For more information, see the following options:
“<BACKUPCONFIGURATION attribute(s)/> ” on page 121,
“<SCHEDULE EVENT="Backup" WEEKDAYn="timeR"/>” on page 123,
“<BACKUP attributes/>” on page 120, “<RECOVER
BACKUPNAME="name" | BACKUPPATH="pathname" options/>” on page
122, and “<SCHEDULER/>” on page 123. Also see “Using Backup and
Recover XML Elements” on page 127 and “Example 8: Submitting
ACTION=REFRESH with Backup and Recover Options” on page 132.

RESUME
restores the paused metadata server to the online state. Beginning in SAS 9.2, the
RESUME action affects the metadata server, not an individual repository or the

118 Chapter 13 • METAOPERATE Procedure

repository manager. For more information, see “How PAUSE, REFRESH, and
RESUME Affect Repositories” on page 125 and “Example 5: Submitting
ACTION=RESUME” on page 131 .

Any text that was specified in the “<PAUSECOMMENT>text</
PAUSECOMMENT>” XML element during the PAUSE action is cleared.

Beginning in SAS 9.3, RESUME supports a “<FORCE/>” XML element in the
“OPTIONS="XML-string"”. argument. <FORCE/> regains control of the
metadata server during the recovery process in the event that the recovery
process stops responding . The server is returned to an online state. The
<SERVER/> XML element is required when <FORCE/> is used.

STATUS
returns the metadata server's SAS version or release number, host operating
environment, the user ID that started the metadata server, SAS Metadata Model
version number, and whether the metadata server is paused or running. For more
information, see “Example 1: Submitting ACTION=STATUS” on page 128.

STOP
stops all client activity, and terminates the metadata server. In complex
environments, the metadata server shutdown can take a few minutes. Therefore,
PROC METAOPERATE might finish executing before the metadata server
finishes its shutdown. Metadata in repositories is unavailable until the metadata
server is restarted. You cannot restart the metadata server with PROC
METAOPERATE.

UNREGISTER
removes the repository's registration from the repository manager, but does not
remove the metadata records from the repository, and does not remove the
repository from disk. The repository is specified in the REPOSITORY= server
connection argument or the METAREPOSITORY= system option. To invoke
this action, the user must have access privilege to the repository, the repository
must be registered in SAS Management Console as online, and the metadata
server cannot be paused offline. The “NOAUTOPAUSE” argument is required.

Requirement: You must have the appropriate SAS Administrator role on the
metadata server to execute all actions except STATUS.

Tips:
Specifying more than one XML element in a PROC METAOPERATE statement
might cause unwanted results. Use more than one XML element only when
specified in the documentation.
If you use PROC METAOPERATE to delete, empty, or unregister a project
repository, you must first make sure that no metadata is checked out to that
project repository. See SAS Data Integration Studio documentation for
information about unlocking any checked out objects. Or, you can use SAS
Management Console to delete, empty, or unregister a project repository. SAS
Management Console unlocks any checked-out objects before it performs the
action.

Optional Arguments
NOAUTOPAUSE

NOAUTOPAUSE is required for the DELETE, EMPTY, and UNREGISTER
actions. It is required when the REFRESH action is specified with the
<BACKUPCONFIGURATION attribute(s)/>, <SCHEDULE Event="BACKUP"
WEEKDAYn="timevalueR"/>, <BACKUP attributes/>, <RECOVER
BACKUPNAME="name" | BACKUPPATH="pathname" options/> and

PROC METAOPERATE Statement 119

<SCHEDULER/> XML elements in the OPTIONS= parameter. It is recommended
with the <OMA ALERTEMAILTEST="text"/> option. NOAUTOPAUSE omits the
automatic pause and resume of the metadata server when PROC METAOPERATE
passes an action to the metadata server. Without NOAUTOPAUSE, all repositories
experience the implicit pause and resume whenever an action is passed to the server.
This can be unwanted because it makes all repositories temporarily unavailable.

OPTIONS="XML-string"
specifies a quoted string that contains one or more XML elements. Some of the XML
elements specify additional parameters for the actions. The OPTIONS= argument is
required for some actions.

Note: To ensure that the XML string is parsed correctly by the metadata server, you
must indicate that quotation marks within the XML element are characters. You
can nest single and double quotation marks, or double and double double
quotation marks as follows: options='<ARM ARMSUBSYS="(ARM_OMA)"
ARMLOC="myfileref"/>' options="<ARM
ARMSUBSYS=""(ARM_OMA)"" ARMLOC=""myfileref""/>"

The XML elements include the following:

<ARM parameter-name="value"/>
is one or more <ARM/> XML elements that specify system options to enable or
disable ARM logging. REFRESH is the most appropriate action to specify the
<ARM/> XML element, but PAUSE and RESUME actions can specify it. If the
metadata server is refreshed or stopped and started, ARM parameters return to
the values in the configuration file. For more information, see “Example 3:
Submitting ACTION=REFRESH with ARM Logging” on page 130 and the SAS
Intelligence Platform: System Administration Guide, as well as the
ARMSUBSYS= and ARMLOC= system options in SAS Interface to Application
Response Measurement (ARM): Reference. An <ARM/> element can include the
following parameters:

ARMSUBSYS="(ARM_NONE | ARM_OMA)"
enables and disables ARM logging.

ARMLOC="fileref | filename"
specifies a location to which to write the ARM log. If ARM logging is
already enabled, specifying ARMLOC= writes the ARM log to a new
location. Relative and absolute pathnames are read as different locations.

<BACKUP attributes/>
supported with the REFRESH action, invokes an ad hoc backup of the metadata
server to the location specified in the server’s backup configuration. The backup
is named with a modified date-and-time stamp in ISO 8601 format. For more
information, see “Using Backup and Recover XML Elements” on page 127.

Optional attributes are the following:

COMMENT="text"
accepts a user-specified text string of unlimited length to describe the reason
for the ad hoc backup. This comment is recorded as part of the backup
history. The backup history is visible in the Server Backup node of the SAS
Management Console Metadata Manager, or it can be requested with PROC
METADATA. For more information, see Chapter 11, “METADATA
Procedure,” on page 67.

REORG="Y | N"
specifies whether repository data sets should be rebuilt to release unused disk
space after the backup. The default value is N (No).

120 Chapter 13 • METAOPERATE Procedure

CAUTION:
The REORG option is not recommended for ad hoc backups because
it interrupts the operation of the metadata server. For more
information, see “<SCHEDULE EVENT="Backup"
WEEKDAYn="timeR"/>” on page 123.

<BACKUPCONFIGURATION attribute(s)/>
supported with the REFRESH action, modifies the value of the specified backup
configuration attribute. Backup configuration attributes include:

BackupLocation="directory"
specifies the directory in which to write the metadata server backups. The
default location is a Backups subdirectory of the SASMeta/
MetadataServer directory of your SAS 9.3 configuration. To create the
directory in a location other than MetadataServer or on a different drive,
specify an absolute pathname that is meaningful to the computer that hosts
the metadata server. If the specified directory does not exist, the metadata
server will create it for you.

RunScheduledBackups="Y | N"
controls the backup scheduler. A value of “Y” enables scheduled backups. A
value of “N” disables them.

DaysToRetainBackups="number"
specifies the number of days to keep backups before they are deleted from the
backup location. The default value is “7”. To never remove any backups,
specify “0” in this attribute. A value of “0” is not advisable except as a
temporary setting.

<FORCE/>
supported with the PAUSE or RESUME actions, regains control of the metadata
server during the recovery process in the event that the recovery process stops
responding. When used with RESUME, <FORCE/> returns the server to an
online state, where it is available to clients. When used with PAUSE, you have
the option to specify “<SERVER STATE="ADMIN | OFFLINE |
READONLY"/>” to return the server to the ADMIN state. In the ADMIN state,
you can examine the server for problems before making it available to clients.

<OMA ALERTEMAILTEST="text"/>
supported with the REFRESH action, sends a test alert e-mail message to the
address configured in the <OMA ALERTEMAIL="email-address"/> option in
the omaconfig.xml configuration file. The configured recipients can be viewed
on the General tab of the active server’s Properties window in SAS Management
Console. The NOAUTOPAUSE argument is recommended. For more
information, see “Example 7: Submitting ACTION=REFRESH with the Alert E-
mail Test Option” on page 131.

<OMA JOURNALPATH="filename"/>
supported with the REFRESH action, stops writing journal entries to the
metadata server journal file in the current location, and resumes writing journal
entries in a new journal file in the specified physical location. This option is valid
only when the metadata server is configured with <OMA
JOURNALTYPE="SINGLE"/> in the omaconfig.xml configuration file. The
default configuration setting is <OMA
JOURNALTYPE="ROLL_FORWARD"/>, which supports roll-forward
recovery of the server.

<PAUSECOMMENT>text</PAUSECOMMENT>
supported with the PAUSE action, enables you to submit free-form text (for
example, details about the pause). Quotation marks are optional around the text.

PROC METAOPERATE Statement 121

For more information, see “Example 2: Submitting ACTION=PAUSE with a
Pause Comment” on page 130. When you submit the RESUME action, the text
in <PauseComment> is cleared.

<RECOVER BACKUPNAME="name" | BACKUPPATH="pathname" options/>
supported with the REFRESH action, recovers the metadata server from the
backup specified in the BACKUPNAME="name" or
BACKUPPATH="pathname" attribute with the specified options.

BACKUPNAME="name"
specifies the name of a backup. Server backups are named with a modified
date-and-time stamp. For information about backup names, see “Using
Backup and Recover XML Elements” on page 127. The server looks for
backups in the backup location specified in the current configuration. To use
a backup from a different directory, either use the BACKUPPATH= attribute
instead of BACKUPNAME=, or specify the BACKUPLOCATION=
attribute with the BACKUPNAME= attribute. The default backup location is
the Backups subdirectory of the SASMeta/MetadataServer
configuration directory.

BACKUPPATH="pathname"
specifies the absolute pathname to the backup. This option is useful when the
backup is located in a different directory or drive from the backup location
specified in the current configuration.

Optional recovery attributes are as follows:

BACKUPLOCATION="directory"
specifies the name of the directory that contains the backup specified in the
BACKUPNAME= attribute, if the directory differs from the backup directory
specified in the current configuration. The name that you specify is
considered to be relative to the SASMeta/MetadataServer directory.

COMMENT="text"
specifies a user-defined text string to record an explanation for the recovery.
The text string is displayed in the backup history.

PAUSECOMMENT="text"
specifies a user-defined text string that will be displayed as a recovery
notification to clients.

INCLUDEALLCONFIGFILES=" Y | N"
specifies whether to replace configuration files in the server directory with
the configuration files that are in the directory when the backup occurs. The
default value is N (No).

CAUTION:
When INCLUDEALLCONFIGFILES=" Y", any recent changes to the
omaconfig.xml configuration file will be lost, as will any files that
were added to the configuration directory after the backup. The
recovery overwrites all files in the SASMeta/MetadataServer
directory, except the backup history, backup configuration, and manifests,
and replaces them with the configuration files in the backup.

ROLLFORWARD="blank | _ALL_ | datetime"
specifies whether the metadata server journal should be used to apply
changes that were made to the server after the backup was taken, and whether
to recover all changes from the journal or only changes up to a specified
point in time.

122 Chapter 13 • METAOPERATE Procedure

Omitting this attribute, or specifying it with a blank value specifies not to
recover changes from the journal.

ALL
recovers all changes from the journal.

datetime
recovers changes from the journal up to a specified point in time. The
metadata server log displays changes in server local time. The
ROLLFORWARD= attribute requires input in GMT time. See “Using
Backup and Recover XML Elements” on page 127 for information to
convert server local time values to GMT time.

<SCHEDULE EVENT="Backup" WEEKDAYn="time<R>"/>
supported with the REFRESH action, modifies the server backup schedule.

EVENT="Backup"
specifies the event that will be scheduled. The valid value is "Backup". The
Event= attribute is required.

WEEKDAYn="time”
specifies the backup schedule. The metadata server supports daily backups,
specified in a weekly schedule where the attribute WeekDay1= is Sunday, the
attribute WeekDay7= is Saturday, and appropriately numbered WeekDayn=
attributes represent the other days of the week. Backup times are specified in
four-digit values based on a 24-hour clock. For example: 0100 is 1 a.m.; 1300
is 1 p.m. The <SCHEDULE EVENT="Backup"/> option accepts input in
server local time, and applies values in server local time. The default backup
schedule specifies daily backups at 1 a.m. To change the schedule, specify
the appropriate WeekDayn= attribute with the backup time. The new time
overwrites the old time. To schedule more than one backup in a day, separate
the time values with semicolons. For example, “0100; 1300”. To remove all
backups from a day, specify an empty string.

R
specifies to perform a REORG with a backup. REORG releases unused disk
space from repository data sets after a backup. The operation is necessary for
repository maintenance, but is time-intensive and causes the metadata server
to be paused. It should not be performed often. The default backup schedule
performs a REORG on Monday (WeekDay2="0100R").

<SCHEDULER/>
supported with the REFRESH action, rebuilds or restarts the backup scheduler,
depending on the XML subelement that is specified in the <SCHEDULER/>
element. The backup scheduler runs continuously from the time the metadata
server is started, and buffers the schedule in 48-hour increments. The
<SCHEDULER/> XML element restores the scheduler in the event the scheduler
is inoperative and backups are not taking place on the specified schedule. You
can issue a STATUS method request through PROC METADATA to check the
health of the scheduler. For more information, see “Example 9: Use
METHOD=STATUS to Get Backup Information” on page 89. The supported
subelements are:

<REBUILD/>
forces the scheduler to rebuild its in-memory linked list of events.

<RESTART/>
causes the current scheduler thread to stop, and then starts a new one.

PROC METAOPERATE Statement 123

<SERVER STATE="ADMIN | OFFLINE | READONLY"/>
supported with the PAUSE and RESUME actions, specifies that the action
applies to the metadata server. The <SERVER/> XML element has the following
uses:

• It is optional for the PAUSE action, and its STATE= parameter is optional.
Supported with the PAUSE action, it specifies an access state to apply to the
metadata server. With the PAUSE action, if you do not specify the
<SERVER STATE="ADMIN | OFFLINE | READONLY"/> XML element,
or if you specify <SERVER/> without a STATE= parameter, the default is to
pause the metadata server to an offline state, which also sets the repositories
to an offline state.

• It is required for the RESUME action without the STATE= parameter when
the <FORCE/> option is used.

STATE= has one of the following values:

ADMIN
allows only users with administrative status to read and write metadata on the
metadata server.

OFFLINE
disables all Read and Write access to the metadata server.

READONLY
allows Read-Only access for any user.

OUT=SAS-data-set
names the output data set. This argument is used with the STATUS action. Other
actions do not create output.

Server Connection Arguments
The server connection arguments establish communication with the metadata server. If
you omit these arguments, then the values of the system options are used, or the values
can be obtained interactively. For more information, see “Connection Options ” on page
28.

PASSWORD="password"
is the password for the authenticated user ID on the metadata server. If you do not
specify PASSWORD=, the value of the METAPASS= system option is used. For
more information, see “METAPASS= System Option” on page 36 . The maximum
length is 512 characters.
Alias: METAPASS= or PW=

PORT=number
is the TCP port that the metadata server listens to for connections. This port number
started the metadata server. If you do not specify PORT=, the value of the
METAPORT= system option is used. For more information, see “METAPORT=
System Option” on page 37 . The range of allowed port numbers is 1 to 65535. The
metadata server is configured with a default port number of 8561.
Alias: METAPORT=
Requirement: Do not enclose the value in quotation marks.

PROTOCOL=BRIDGE
is the network protocol for connecting to the metadata server. If you do not specify
PROTOCOL=, the value of the METAPROTOCOL= system option is used. For
more information, see “METAPROTOCOL= System Option” on page 39 . In this
release, the only supported value is BRIDGE, which specifies the SAS Bridge
protocol. This is the server default, so there is no need to specify this argument.

124 Chapter 13 • METAOPERATE Procedure

Alias: METAPROTOCOL=
Requirement: Do not enclose the value in quotation marks.

REPOSITORY="name"
is the name of an existing repository. This value is the repository's Name=
parameter. The REPOSITORY= argument is required when the action is
UNREGISTER, DELETE, or EMPTY. For other actions, if you do not specify
REPOSITORY=, the value of the METAREPOSITORY= system option is used. For
more information, see “METAREPOSITORY= System Option” on page 40. The
default for the METAREPOSITORY= system option is FOUNDATION. The
maximum length is 32,000 characters.
Alias: METAREPOSITORY= or REPOS=

SERVER="host-name"
is the host name or network IP address of the computer that hosts the metadata
server. The value LOCALHOST can be used if the SAS session is connecting to the
metadata server on the same computer. If you do not specify SERVER=, the value of
the METASERVER= system option is used. For more information, see
“METASERVER= System Option” on page 41. The maximum length is 256
characters.
Alias: HOST= or IPADDR= or METASERVER=

USER="authenticated-user-ID"
is an authenticated user ID on the metadata server. The metadata server supports
several authentication providers. For more information about controlling user access
to the metadata server, see the SAS Intelligence Platform: Security Administration
Guide. If you do not specify USER=, the value of the METAUSER= system option
is used. For more information, see “METAUSER= System Option” on page 43. The
maximum length is 256 characters.
Alias: ID= or METAUSER= or USERID=

Concepts: METAOPERATE Procedure

How PROC METAOPERATE Works
The administrator of the metadata server can perform three types of maintenance with
PROC METAOPERATE.

• Control the metadata server by calling methods in the IServer server interface of
SAS Open Metadata Architecture. Use PAUSE, REFRESH, RESUME, STATUS,
and STOP.

• Control a repository by calling methods in the IOMI server interface of SAS Open
Metadata Architecture. Use DELETE, EMPTY, and UNREGISTER.

• Manage server backups. Use REFRESH.

How PAUSE, REFRESH, and RESUME Affect Repositories
Beginning in SAS 9.2, the PAUSE and RESUME actions affect the metadata server, not
an individual repository or the repository manager. The REFRESH action is equivalent
to a PAUSE action followed by a RESUME action.

Concepts: METAOPERATE Procedure 125

The pause state is a property of each repository. However, a repository's pause state is
not set directly. It is computed from both the metadata server state and the repository's
registered access mode.

• You can set the metadata server's state with the PAUSE and RESUME actions in
PROC METAOPERATE or with SAS Management Console.

• You cannot set a repository's registered access mode with PROC METAOPERATE.
To do so, it is recommended that you use SAS Management Console. Or, you can
change the access mode by issuing an UpdateMetadata method call with PROC
METADATA. You can determine a repository's registered access mode by issuing a
GetRepositories method call with PROC METADATA. For more information, see
“Example 1: Get Information about Metadata Repositories” on page 75.

• However, notice in the grid below that when you use PROC METAOPERATE to
pause the metadata server to an OFFLINE state (which is the default), the
repositories are set to an OFFLINE state, regardless of the repositories' registered
access mode. For more information about the tasks that require PAUSE, REFRESH,
or RESUME actions, see SAS Intelligence Platform: System Administration Guide.

A repository's computed pause state is one of the following:

admin
allows Read and Write access for users with administrative status only.

admin(readonly)
allows Read-Only access for users with administrative status only.

offline
disables all Read and Write access, unloads the repository from memory, and closes
the physical files.

online
allows normal access to the repository.

readonly
allows Read-Only access for any user.

The following grid shows how a repository's pause state is computed from the
repository's access mode (the rows) and the metadata server's state (the columns). For
example, a repository with a registered Read-Only access mode and an ADMIN server
state has an admin(readonly) pause state.

Table 13.1 How Server State Affects Repository State

Registered
Access Mode

Online Server
State

Admin Server
State

Read-Only
Server State

Offline Server
State

online online admin readonly offline

read-only readonly admin(readonly) readonly offline

administration admin admin admin(readonly) offline

offline offline offline offline offline

126 Chapter 13 • METAOPERATE Procedure

Using Backup and Recover XML Elements
The SAS 9.3 Metadata Server has the ability to back up and recover itself. Backups are
initiated by a dedicated scheduler thread that is started when the metadata server is
started. Backups are executed in a dedicated backup thread that is started as needed, so
that backups do not interrupt the regular operation of the metadata server. When a server
recovery is requested, the recovery process is executed in the backup thread.

The SAS 9.3 Metadata Server is configured with a default backup configuration and
backup schedule by SAS 9.3 configuration processes. The default backup schedule
performs daily backups at 1 a.m., and writes them to a Backups subdirectory of the
MetadataServer directory in your SAS configuration directory. Backups are retained
for seven days, and run unassisted unless you want to modify the default backup
configuration or backup schedule. The Monday morning backup includes a REORG
process that releases unused disk space from repository data sets. The REORG process
temporarily pauses the server to an offline state. Therefore, it needs to run when server
activity is low. The server backup facility supports ad hoc backups and server recovery
with an optional roll-forward capability.

You can modify the default backup configuration and backup schedule in SAS
Management Console by opening the Server Backup node in the SAS Management
Console Metadata Manager (this is the recommended method), or by using PROC
METAOPERATE. You can perform ad hoc backups and request a recovery using both
tools.

PROC METAOPERATE supports two options that are not supported in SAS
Management Console.

• an option to rebuild or restart the scheduler thread in case backups are not occurring
as scheduled. See ACTION=“REFRESH” on page 118 and “<SCHEDULER/>” on
page 123.

• an option to interrupt the recovery process in the event that it stops responding. See
ACTION=“PAUSE” on page 117, ACTION=“RESUME” on page 118, and
“<FORCE/>” on page 121.

The PROC METAOPERATE <RECOVER/> option supports a ROLL_FORWARD=
attribute that enables you to request roll-forward recovery to a specified datetime value.
The metadata server log records datetime values in server local time. The
ROLL_FORWARD= attribute requires input in GMT time. Backup names contain
information that you can use to convert server local time values to GMT time values.

Backups are named with a date-and-time stamp in ISO 8601 format. The ISO 8601
format is a server local datetime value that includes the GMT offset at the end of the
string. For example, consider the backup name:

2010-09-20T0_59_59-04_00

The numbers preceding the T are the date: September 20, 2010. The numbers
immediately following the T are the server local time (0_59_59). The -04_00 at the end
of the time is the GMT offset. In this case, the backup was made just before 1 a.m.
server local time. The minus offset indicates that the time value is four hours less than
GMT. A timezone that is greater than GMT has a plus offset (+7_00). Use the GMT
offset in your backup names to determine how you need to adjust the input value from
the server log.

T I P To avoid having to make the conversion, you can use SAS Management Console
to perform recoveries. The SAS Management Console Server Backup Recovery
window enables you to specify the roll-forward value in server local or GMT time.

Concepts: METAOPERATE Procedure 127

The following table summarizes backup-related tasks that can be performed with PROC
METAOPERATE:

Task ACTION= OPTION=

change the default backup
location, retention policy, or
turn off scheduled backups

REFRESH <BACKUPCONFIGURATION
attribute(s)/>

modify the backup schedule REFRESH <SCHEDULE
EVENT="BACKUP"
WEEKDAYn="timevalue"/>

invoke an ad hoc backup REFRESH <BACKUP options/>

recover the server from a
backup

REFRESH <RECOVER
BACKUPNAME="name" |
BACKUPPATH="pathname"
options/>

restart the scheduler thread REFRESH <SCHEDULER/>

regain control of the metadata
server during the recovery
process in the event that the
recover process stops
responding

PAUSE or RESUME <FORCE/>

For usage information, see “Example 8: Submitting ACTION=REFRESH with Backup
and Recover Options” on page 132.

Backups are monitored in the Server Backup node of the SAS Management Console
Metadata Manager or by using PROC METADATA. For more information, see Chapter
11, “METADATA Procedure,” on page 67.

Examples: METAOPERATE Procedure

Example 1: Submitting ACTION=STATUS
Features: Connection arguments

ACTION=STATUS argument
OUT= argument

These examples request the status of the metadata server and show the arguments that
can connect to the metadata server. They compare the default output to the output that
can be obtained with the OUT= argument.

Specify connection arguments and query the metadata server for its status. This
example specifies all connection arguments for the metadata server and show the output
that is written to the SAS log.

128 Chapter 13 • METAOPERATE Procedure

proc metaoperate
 server="a123.us.company.com"
 port=8561
 userid="myuserid"
 password="mypassword"
 action=status;
run;

NOTE: Server a123.us.company.com SAS Version is 9.02.02B0P012308.
NOTE: Server a123.us.company.com SAS Long Version is 9.02.02B0P01232008.
NOTE: Server a123.us.company.com Operating System is XP_PRO.
NOTE: Server a123.us.company.com Operating System Family is WIN
NOTE: Server a123.us.company.com Operating System Version is Service Pack 2.
NOTE: Server a123.us.company.com Client is myuserid.
NOTE: Server a123.us.company.com Metadata Model is Version 11.02.
NOTE: Server a123.us.company.com is RUNNING on 11Aug08:15:54:15.

Specify connection arguments, query the metadata server for its status, and
specify the OUT= argument. LOCALHOST specifies the metadata server that is
running on the same host as the SAS session. The status output is written to a data set
named WORK.STATOUT.

proc metaoperate
 server="localhost"
 port=8561
 userid="myuserid"
 password="mypassword"
 action=status
 out=statout;
run;

proc print data=work.statout;
run;

Example 1: Submitting ACTION=STATUS 129

Example 2: Submitting ACTION=PAUSE with a Pause Comment
Features: ACTION=PAUSE argument

OPTIONS= argument with <PauseComment>

Note: You must be an administrative user of the metadata server to perform this action.

The following example issues a PAUSE action and includes a comment about the pause.

Specify a comment when you pause the metadata server. You can use the
<PauseComment> text to explain why the metadata server is paused. If any user requests
the status of the metadata server, the <PauseComment> text is included in the
information that is printed to the log.

proc metaoperate
 action=pause
 options="<Server STATE='ADMIN'/>
 <PauseComment>The server will resume at 2:00
a.m.</PauseComment>";
run;

Example 3: Submitting ACTION=REFRESH with ARM Logging
Features: ACTION=REFRESH argument

OPTIONS= argument with <ARM/>

Note: You must be an administrative user of the metadata server to perform this action.

Enable ARM logging The ARMLOC= value specifies a pathname for the ARM log file.

proc metaoperate
 action=refresh
 options="<ARM ARMSUBSYS=""(ARM_OMA)"" ARMLOC=""logs/armfile.log""/>";
run;

Example 4: Submitting ACTION=REFRESH to Pause and Resume the
Metadata Server

Features: ACTION=REFRESH argument
OPTIONS= argument with <Server/> only

Note: You must be an administrative user of the metadata server to perform this action.

Refresh the metadata server. To recover memory and reload inheritance rules, submit
the REFRESH action without options.

proc metaoperate
 action=refresh;
run;

130 Chapter 13 • METAOPERATE Procedure

Example 5: Submitting ACTION=RESUME
Features: ACTION=RESUME argument

Note: You must be an administrative user of the metadata server to perform this action.

Resume the metadata server. This example issues a RESUME action to restore the
metadata server to the online state. The RESUME action cannot restart a stopped
metadata server.

proc metaoperate
 action=resume;
run;

Example 6: Submitting ACTION=EMPTY
Features: ACTION=EMPTY argument

Note: You must be an administrative user of the metadata server to perform this action.

Delete metadata records. This example removes the metadata records from the
specified repository, but does not remove the repository's registration from the repository
manager. The EMPTY action is useful for clearing a repository that will be repopulated.

proc metaoperate
 action=empty
 repository="MyRepos"
 noautopause;
run;

Example 7: Submitting ACTION=REFRESH with the Alert E-mail Test
Option

Features: ACTION=REFRESH argument
OPTIONS= argument with <OMA ALERTEMAILTEST=”text”/>

Note: You must be an administrative user of the metadata server to perform this action.

Test that the metadata server’s alert e-mail system is configured correctly. The
configured alert e-mail recipient is displayed on the General tab of the active server’s
Properties window. If the addressee does not receive an e-mail message with the
specified text from the metadata server, there is a problem with the alert e-mail
configuration.

proc metaoperate
 action=refresh
 options="<OMA ALERTEMAILTEST='Please disregard. This is only a test.'/>"
 noautopause;
run;

Example 7: Submitting ACTION=REFRESH with the Alert E-mail Test Option 131

Example 8: Submitting ACTION=REFRESH with Backup and Recover
Options

Features: ACTION=REFRESH argument
OPTIONS= argument with <BACKUP/>, <BACKUPCONFIGURATION/>,
<SCHEDULE/>, and <RECOVER/>

Note: You must be an administrative user of the metadata server to perform this action.

To execute an ad hoc backup of the SAS Metadata Server: This example includes the
COMMENT= attribute.

proc metaoperate
 action=REFRESH
 options=
 "<Backup Comment='Test of backup system.'/>"
 noautopause;
 run;

To modify the backup configuration:

proc metaoperate
 action=REFRESH
 options=
 "<BackupConfiguration DaysToRetainBackups='4'/>"
 noautopause;
 run;

To modify the default backup schedule:

proc metaoperate
 action=REFRESH
 options=
 "<Schedule Event='Backup' WeekDay1='0200' WeekDay2='0200R' WeekDay3='0200'
 WeekDay4='0200' WeekDay5='0200' WeekDay6='0200' WeekDay7='0200'/>"
 noautopause;
 run;

To recover the metadata server:

proc metaoperate
 action=REFRESH
 options=
 "<Recover BackupPath='Backups/2010-09-16T16_14_36-05_00' IncludeAllConfigFiles='N'
RollForward='16Sep2010:16:22:30' PauseComment='The metadata server is being recovered.'
Comment='Recovery from 2010-09-16T16_14_36-05_00'/>"
 noautopause;
 run;

To terminate a hung recovery process, and then put the metadata server in an
ADMIN state:

proc metaoperate
 action=PAUSE

132 Chapter 13 • METAOPERATE Procedure

 options="<Server State='ADMIN'/><Force/>";
run;

Example 8: Submitting ACTION=REFRESH with Backup and Recover Options 133

134 Chapter 13 • METAOPERATE Procedure

Part 5

DATA Step Functions

Chapter 14
Introduction to DATA Step Functions for Metadata 137

Chapter 15
Understanding DATA Step Functions for Reading
and Writing Metadata . 141

Chapter 16
DATA Step Functions for Reading and Writing Metadata 161

Chapter 17
Understanding DATA Step Functions for
Metadata Security Administration . 189

Chapter 18
DATA Step Functions for Metadata Security Administration 201

135

136

Chapter 14

Introduction to DATA Step
Functions for Metadata

Overview of DATA Step Functions for Metadata . 137

Best Practices . 138

Array Parameters . 138

Overview of DATA Step Functions for Metadata
The metadata DATA step functions provide a programming-based interface to create and
maintain metadata in the SAS Metadata Server. Alternatively, you can perform metadata
tasks by using a product like SAS Management Console. However, with DATA step
functions, you can write a SAS program and submit it in batch. You can store
information in a data set, create your own customized reports, or use information in an
existing data set to update metadata. The DATA step provides broad flexibility with IF-
THEN/ELSE conditional logic, DO loops, and more.

This book documents two categories of DATA step functions:

• DATA step functions for reading and writing metadata

• DATA step functions for metadata security administration

Before you can use the metadata DATA step functions, you must issue the metadata
system options to establish a connection with the metadata server. For more information,
see “Connection Options ” on page 28.

For help in forming your DATA step, see the following references:

• For information about metadata objects, see the SAS Metadata Model: Reference.

• For information about administering metadata, see the SAS Intelligence Platform:
System Administration Guide.

• For information about using functions in a DATA step, see SAS Functions and CALL
Routines: Reference.

• For information about DATA step concepts, see SAS Language Reference: Concepts.

137

Best Practices
Be careful when you modify metadata objects, because many objects have dependencies
on other objects. A product like SAS Management Console or SAS Data Integration
Studio is recommended for the routine maintenance of metadata. Before you modify
metadata, run a full backup of repositories. For more information, see the SAS
Intelligence Platform: System Administration Guide. If you create a new object, the
object might be unusable if you do not create the proper attributes and associations. For
more information, see the SAS Metadata Model: Reference.

When the metadata server returns multiple objects, they are returned in the same order as
they are stored in the metadata server. Therefore, if order is important, your program
must examine the objects before it acts on them.

A good programming practice is to define all variables (for example, with a LENGTH or
FORMAT statement) in the DATA step before you call any functions.

For performance reasons, metadata objects are cached by URI. To refresh the metadata
object with the most recent data from the metadata server, purge the URI with the
“METADATA_PURGE Function” on page 181.

For best performance, always resolve your URI into an ID instance. For example, if you
make several function calls on the object “OMSOBJ:LogicalServer?@Name='foo '”,
first use the “METADATA_RESOLVE Function” on page 182 or
“METADATA_GETNOBJ Function” on page 170 to convert the object to
“OMSOBJ:LogicalServer\A57DQR88.AU000003”. URIs in the ID instance form can
fully exploit object caching and usually require only one read from the metadata server.

Array Parameters
Several of the DATA step functions use two-dimensional arrays for input or output. The
arrays enable applications to move information in and out of the metadata server with
fewer calls. However, the DATA step is not two-dimensional, so the following
conventions enable you to handle these multiple-row arrays:

• For functions that return arrays, the function asks the metadata server to return only
one row (or a specific row) of an output array. The output array is generally kept in
an object cache that lasts only as long as the DATA step. The key to the cache is the
uri argument, and the key to the row is the n argument. When you submit the
function, it checks whether information from the output array already exists in the
cache and, if so, returns the information from the cache. If the information does not
exist in the cache, the function calls the metadata server to fill the cache. You can
use the n argument to iterate through the rows of the array; see how n is used in
“Examples: DATA Step Functions for Reading Metadata” on page 144 and
“Examples: DATA Step Functions for Metadata Security Administration” on page
191.

• The functions that input arrays are similar to the functions that return arrays, but the
array is not kept in an object cache. Rather than iterating with an n argument, you
specify the multiple values in a comma-delimited list. In some functions, you submit
two values that must be in parallel. In other words, for a name, value pair, if you
specify three name arguments, then you must specify three value arguments.

138 Chapter 14 • Introduction to DATA Step Functions for Metadata

For more information about DO loops and array processing in a DATA step, see SAS
Language Reference: Concepts.

Array Parameters 139

140 Chapter 14 • Introduction to DATA Step Functions for Metadata

Chapter 15

Understanding DATA Step
Functions for Reading and Writing
Metadata

What Are the DATA Step Functions for Reading and Writing Metadata? 141

Referencing a Metadata Object with a URI . 142

Comparison of DATA Step Functions to Metadata Procedures 143

Examples: DATA Step Functions for Reading Metadata . 144
Overview . 144
Metadata Access Overview . 144
Featured Functions . 145
Featured Metadata Types and Associations . 145
Example: Listing Libraries and Their Associated Directory or Database Schema 145
Example: Listing Libraries and Their Server Contexts . 148
Example: Listing Logins and Their Associated Identities and

Authentication Domains . 152
Example: Listing User Group Memberships . 155
Example: Listing Users and Their Logins . 158

What Are the DATA Step Functions for Reading
and Writing Metadata?

These DATA step functions enable an administrator to set or return information about
attributes, associations, and properties from metadata objects.

Table 15.1 Metadata DATA Step Functions for Reading and Writing Metadata

Name Description

“METADATA_DELASSN Function” (p. 161) Deletes all objects that make up the specified
association

“METADATA_DELOBJ” (p. 163) Deletes the first object that matches the
specified URI

“METADATA_GETATTR Function” (p. 164) Returns the value of the specified attribute for
specified object

“METADATA_GETNASL Function” (p. 165) Returns the nth association of the specified
object

141

Name Description

“METADATA_GETNASN Function” (p.
167)

Returns the nth associated object of the
specified association

“METADATA_GETNATR Function” (p.
168)

Returns the nth attribute on the object
specified by the URI

“METADATA_GETNOBJ Function” (p. 170) Returns the nth object that matches the
specified URI

“METADATA_GETNPRP Function” (p. 171) Returns the nth property of the specified
object

“METADATA_GETNTYP Function” (p. 173) Returns the nth object type on the metadata
server

“METADATA_GETPROP Function” (p. 174) Returns the specified property of the specified
object

“METADATA_NEWOBJ Function” (p. 175) Creates a new metadata object

“METADATA_PATHOBJ Function” (p. 178) Returns the Id and Type attributes of the
specified folder object

“METADATA_PAUSED Function” (p. 180) Determines whether the metadata server is
paused

“METADATA_PURGE Function” (p. 181) Purges the specified URI

“METADATA_RESOLVE Function” (p. 182) Resolves a URI into an object on the metadata
server

“METADATA_SETASSN Function” (p. 183) Modifies an association list for an object

“METADATA_SETATTR Function” (p. 186) Sets the specified attribute for the specified
object

“METADATA_SETPROP Function” (p. 187) Sets the specified property for the specified
object

“METADATA_VERSION Function” (p. 188) Returns the metadata server model version
number

Referencing a Metadata Object with a URI
When you use a metadata DATA step function for reading and writing metadata, you
specify an object by using a URI, which is a concept from SAS Open Metadata
Architecture. For more information, see “Metadata Object Identifiers and URIs” on page
11. Here are examples for the DATA step functions for reading and writing metadata:

142 Chapter 15 • Understanding DATA Step Functions for Reading and Writing Metadata

ID
omsobj: A57DQR88.AU000003

type/ID
omsobj: LogicalServer/A57DQR88.AU000003

type?@attribute='value'
omsobj: LogicalServer?@Name='SASApp - OLAP Server'

Notes:

• The OMSOBJ: prefix is not case sensitive.

• Escape characters are supported with the %nn URL escape syntax. For more
information, see the URLENCODE function in SAS Functions and CALL Routines:
Reference.

Comparison of DATA Step Functions to Metadata
Procedures

The METADATA procedure can perform some of the same tasks as the DATA step
functions for reading and writing metadata. Both language elements can query metadata
for reports, or make changes to specified objects.

PROC METADATA can submit any method that is supported by the DoRequest method
of the SAS Open Metadata Interface, including all methods of the IOMI class, and the
Status method of the IServer class. PROC METADATA produces XML output. By
using the XML LIBNAME engine and ODS, you can create reports.

In general, the DATA step functions perform the same tasks as the PROC METADATA
methods. However, with the DATA step functions, you do not have to understand the
XML hierarchy. You can create the same type of ODS reports as you can with PROC
METADATA. Instead of writing the output to an XML data set, you use the DATA step
to create an output SAS data set directly. See how these two examples create similar
reports from their output: “Example: Creating a Report with the DATA Step” on page 19
and “Example: Creating a Report with the METADATA Procedure and the XML
Engine” on page 13.

Comparison of DATA Step Functions to Metadata Procedures 143

Examples: DATA Step Functions for Reading
Metadata

Overview
This section describes how to use SAS metadata DATA step functions to identify and
track metadata that describes data libraries and users. The examples show how to:

• list the SAS libraries that are defined in metadata

• list the servers that are used to access the libraries

• list the logins defined on the system and their associated user identities and
authentication domains

• list user group assignments

• list the logins used by metadata identities

Because these examples do not create metadata, they can be run on a production
metadata server. However, they must be executed by a user who has authorization to the
metadata, such as the SAS Administrator.

Metadata Access Overview
There is no need to know the physical location of metadata to access it. All access to
metadata is controlled by the SAS Metadata Server. To use the metadata server, a
program must establish a connection to it. In a SAS program, you establish a connection
by specifying metadata system options. For information about the metadata server
connection system options, see “Overview of System Options for Metadata” on page 27.

Once a server connection is established, communicating with the metadata server
involves defining variables for function arguments and issuing metadata DATA step
functions. Use the FORMAT or LENGTH statement to define argument variables. Use
the KEEP statement to specify which variables to include in the output data set. You
should be familiar with the SAS Metadata Model metadata types that represent entities
that you want to query, and the properties defined for each metadata type.

The SAS metadata DATA step functions use a Uniform Resource Identifier (URI)
argument to access metadata objects. The preferred URI forms are:

 “omsobj: type/ID”

or

“omsobj: type?@attribute='value'”

type is the name of the metadata type that represents the entity in the SAS Metadata
Model. The ID value or attribute= ‘value’ pair is used as a filter to locate the objects that
meet the criteria.

In the examples that follow, the following URI is used to request all objects of the
specified type:

"omsobj:type?@Id contains '.'"

The URI can return multiple objects. The GETNOBJ DATA step function returns output
in a two-dimensional array. Each call to GETNOBJ retrieves the URI representing the

144 Chapter 15 • Understanding DATA Step Functions for Reading and Writing Metadata

nth object returned from the query. In the examples, n=1 specifies to get the first object
in the array. n+1 specifies to iterate through the content of the array.

Featured Functions
METADATA_GETNOBJ

Returns the nth object that matches the specified URI. For more information, see
“METADATA_GETNOBJ Function” on page 170.

METADATA_GETATTR
Returns the value of the specified attribute for the specified object. For more
information, see “METADATA_GETATTR Function” on page 164.

METADATA_GETNASN
Returns the nth associated object of the specified association. For more information,
see “METADATA_GETNASN Function” on page 167.

METADATA_RESOLVE
Resolves a URI into an object on the metadata server. For more information, see
“METADATA_RESOLVE Function” on page 182.

Featured Metadata Types and Associations
• A SAS library is described in the SAS Metadata Model by the SASLibrary metadata

type. A directory is described by the Directory metadata type. A database schema is
described by the DatabaseSchema metadata type. A SASLibrary metadata object has
a UsingPackages association to a Directory or DatabaseSchema metadata object.

• A group of SAS servers of different server types is described in the SAS Metadata
Model by the ServerContext metadata type. A SASLibrary metadata object has a
DeployedComponents association to a ServerContext metadata object.

• External logins are represented in the SAS Metadata Model by the Login metadata
type. Users are represented by the Person metadata type. User groups are represented
by the IdentityGroup metadata type. Person and IdentityGroup are subtypes of the
Identity metadata type. An authentication domain is represented by the
AuthenticationDomain metadata type. A Login object has an AssociatedIdentities
association to objects of the Identity subtypes. A Login object has a Domains
association to an AuthenticationDomain object.

• A Person metadata object has an IdentityGroups association to an IdentityGroup
metadata object. A Person metadata object has a Logins association to a Login
metadata object.

• Internal logins are represented by the InternalLogin metadata type. An InternalLogin
has a ForIdentity association to an identity. An identity has a InternalLoginInfo
association to an InternalLogin.

For more information about the metadata types and their associations, see SAS 9.3
Metadata Model: Reference.

Example: Listing Libraries and Their Associated Directory or
Database Schema

This program uses the SAS metadata DATA step functions to query the metadata
repository, and return a list of all libraries and their associated directory or database
schema. The results are returned to a SAS data set in the Work library, which is printed
with PROC PRINT.

Examples: DATA Step Functions for Reading Metadata 145

Note: When running the program, be sure to modify the META* system options to
provide connection parameters for your metadata server. METAUSER should be a
user who has ReadMetadata permission to the metadata objects being queried.
METAREPOSITORY specifies to look in the Foundation repository. If you have
more than one metadata repository, you might want to run this program on all of the
repositories. The same is true for other examples in this section.

/*Connect to the metadata server. */

options metaserver="myserver"
 metaport=8561
 metauser="sasadm@saspw"
 metapass="adminpw"
 metarepository="Foundation";

/* Begin the query. The DATA statement names the output data set. */

data metadata_libraries;

/* The LENGTH statement defines variables for function arguments and
assigns the maximum length of each variable. */

 length liburi upasnuri $256 name $128 type id $17 libref engine $8 path
mdschemaname schema $256;

/* The KEEP statement defines the variables to include in the
output data set. */

 keep name libref engine path mdschemaname schema;

/* The CALL MISSING routine initializes the output variables to missing values. */

 call missing(liburi,upasnuri,name,engine,libref);

 /* The METADATA_GETNOBJ function specifies to get the SASLibrary objects
in the repository. The argument nlibobj=1 specifies to get the first object that
matches the requested URI. liburi is an output variable. It will store the URI
of the returned SASLibrary object. */

 nlibobj=1;
 librc=metadata_getnobj("omsobj:SASLibrary?@Id contains '.'",nlibobj,liburi);

 /* The DO statement specifies a group of statements to be executed as a unit
for each object that is returned by METADATA_GETNOBJ. The METADATA_GETATTR function
is used to retrieve the values of the Name, Engine, and Libref attributes of
the SASLibrary object. */

 do while (librc>0);

 /* Get Library attributes */
 rc=metadata_getattr(liburi,'Name',name);
 rc=metadata_getattr(liburi,'Engine',engine);
 rc=metadata_getattr(liburi,'Libref',libref);

 /* The METADATA_GETNASN function specifies to get objects associated to the
library via the UsingPackages association. The n argument specifies to return the

146 Chapter 15 • Understanding DATA Step Functions for Reading and Writing Metadata

first associated object for that association type. upasnuri is an output variable.
It will store the URI of the associated metadata object, if one is found. */

 n=1;
 uprc=metadata_getnasn(liburi,'UsingPackages',n,upasnuri);

 /* When a UsingPackages association is found, the METADATA_RESOLVE function
is called to resolve the URI to an object on the metadata server. The CALL MISSING
routine assigns missing values to output variables. */

 if uprc > 0 then do;
 call missing(type,id,path,mdschemaname,schema);
 rc=metadata_resolve(upasnuri,type,id);

 /* If type='Directory', the METADATA_GETATTR function is used to get its
path and output the record */

 if type='Directory' then do;
 rc=metadata_getattr(upasnuri,'DirectoryName',path);
 output;
 end;

 /* If type='DatabaseSchema', the METADATA_GETATTR function is used to get
the name and schema, and output the record */

 else if type='DatabaseSchema' then do;
 rc=metadata_getattr(upasnuri,'Name',mdschemaname);
 rc=metadata_getattr(upasnuri,'SchemaName',schema);
 output;
 end;

 /* Check to see if there are any more Directory objects */

 n+1;
 uprc=metadata_getnasn(liburi,'UsingPackages',n,upasnuri);
 end; /* if uprc > 0 */

 /* Look for another library */

 nlibobj+1;
 librc=metadata_getnobj("omsobj:SASLibrary?@Id contains '.'",nlibobj,liburi);
 end; /* do while (librc>0) */
run;

/* Print the metadata_libraries data set */

proc print data=metadata_libraries; run;

Examples: DATA Step Functions for Reading Metadata 147

The example creates output similar to the following:

Display 15.1 PROC PRINT of metadata_libraries Data Set

Example: Listing Libraries and Their Server Contexts
This program uses the SAS metadata DATA step functions to return more detailed
information about the libraries. The results are returned to a Libraries data set in the
Work library. The requested data includes the library metadata ID, the library name,
libref, engine, path on the file system (or if DBMS data, the DBMS path), and the server
contexts to which the library is associated.

/*Connect to the metadata server with the metadata system options,
as shown in the previous example. */

data work.Libraries;

/* The LENGTH statement defines variables for function arguments and
assigns the maximum length for each variable. */

 length LibId LibName $ 32 LibRef LibEngine $ 8 LibPath $ 256
ServerContext uri uri2 type $ 256 server $ 32;

/* The LABEL statement assigns descriptive labels to variables. */

 label
LibId = "Library Id"

148 Chapter 15 • Understanding DATA Step Functions for Reading and Writing Metadata

LibName = "Library Name"
LibRef = "SAS Libref"
LibEngine = "Library Engine"
ServerContext = "Server Contexts"
LibPath = "Library Path"
;

/* The CALL MISSING routine initializes output variables to missing values. */

 call missing(LibId,LibName,LibRef,LibEngine,LibPath,
 ServerContext,uri,uri2,type,server);
 n=1;
 n2=1;

 /* The METADATA_GETNOBJ function gets the first Library object. If none
are found, the program prints an informational message. */
 rc=metadata_getnobj("omsobj:SASLibrary?@Id contains '.'",n,uri);
 if rc<=0 then put "NOTE: rc=" rc
 "There are no Libraries defined in this repository"
 " or there was an error reading the repository.";

/* The DO statement specifies a group of statements to be executed as a unit
for the object that is returned by METADATA_GETNOBJ. The METADATA_GETATTR
function gets the values of the Id, Name, LibRef, and Engine attributes
of the SASLibrary object. */

 do while(rc>0);
 objrc=metadata_getattr(uri,"Id",LibId);
 objrc=metadata_getattr(uri,"Name",LibName);
objrc=metadata_getattr(uri,"Libref",LibRef);
objrc=metadata_getattr(uri,"Engine",LibEngine);

 /* The METADATA_GETNASN function gets objects associated
via the DeployedComponents association. If none are found, the program
prints an informational message. */

 objrc=metadata_getnasn(uri,"DeployedComponents",n2,uri2);
 if objrc<=0 then
 do;
 put "NOTE: There is no DeployedComponents association for "
 LibName +(-1)", and therefore no server context.";
 ServerContext="";
 end;

 /* When an association is found, the METADATA_GETATTR function gets
the server name. */

 do while(objrc>0);
 objrc=metadata_getattr(uri2,"Name",server);
 if n2=1 then ServerContext=quote(trim(server));
 else ServerContext=trim(ServerContext)||" "||quote(trim(server));

/* Look for another ServerContext */
 n2+1;
 objrc=metadata_getnasn(uri,"DeployedComponents",n2,uri2);
 end; /*do while objrc*/

Examples: DATA Step Functions for Reading Metadata 149

 n2=1;

 /* The METADATA_GETNASN function gets objects associated via the
UsingPackages association. The program prints a message if an
association is not found.*/

 objrc=metadata_getnasn(uri,"UsingPackages",n2,uri2);
 if objrc<=0 then
 do;
 put "NOTE: There is no UsingPackages association for "
 LibName +(-1)", and therefore no Path.";
 LibPath="";
 end;

/* When a UsingPackages association is found, the METADATA_RESOLVE function
is called to resolve the URI to an object on the metadata server. */

 do while(objrc>0);
 objrc=metadata_resolve(uri2,type,id);

 /*if type='Directory', the METADATA_GETATTR function is used to get its path */

 if type='Directory' then objrc=metadata_getattr(uri2,"DirectoryName",LibPath);

 /*if type='DatabaseSchema', the METADATA_GETATTR function is used to get
the name */

 else if type='DatabaseSchema' then objrc=metadata_getattr(uri2, "Name", LibPath);
 else LibPath="*unknown*";

 /* output the records */
 output;
 LibPath="";

 /* Look for other directories or database schemas */

 n2+1;
 objrc=metadata_getnasn(uri,"UsingPackages",n2,uri2);
 end; /*do while objrc*/

 ServerContext="";
 n+1;

 /* Look for other libraries */

 n2=1;
 rc=metadata_getnobj("omsobj:SASLibrary?@Id contains '.'",n,uri);

 end; /*do while rc*/

/* The KEEP statement defines the variables to include in the output data set. */

 keep
LibId
LibName

150 Chapter 15 • Understanding DATA Step Functions for Reading and Writing Metadata

LibRef
LibEngine
ServerContext
LibPath;
run;

/* Write a basic listing of data */

proc print data=work.Libraries label;
 /* subset results if you wish
 where indexw(ServerContext,'"SASMain"') > 0; */
run;

The example creates output similar to the following:

Display 15.2 PROC PRINT of work.Libraries Data Set

Examples: DATA Step Functions for Reading Metadata 151

Example: Listing Logins and Their Associated Identities and
Authentication Domains

This program uses the SAS metadata DATA step functions to query the metadata
repository, and return a list of all logins and the users or groups to which they belong. It
returns the authentication domains in which the logins are active. The results are
returned to a Logins data set in the Work library.

Note: A typical user can see only logins that he or she owns, and the logins of groups of
which he or she is a member. For this example to return meaningful information, it
must be executed by an unrestricted user or by a user who has been assigned the
User and Group Administrative role.

/*Connect to the metadata server using the metadata system options
shown in the first example.*/

data logins;

 /* The LENGTH statement defines variables for function arguments and assigns
the maximum length for each variable. */

 length LoginObjId UserId IdentId AuthDomId $ 17
 IdentType $ 32
 Name DispName Desc uri uri2 uri3 AuthDomName $ 256;

/* The CALL MISSING routine initializes the output variables to missing values. */

 call missing
(LoginObjId, UserId, IdentType, IdentId, Name, DispName, Desc, AuthDomId, AuthDomName);
 call missing(uri, uri2, uri3);
 n=1;

 /* The METADATA_GETNOBJ function specifies to get the Login objects
in the repository. The n argument specifies to get the first object that
matches the uri requested in the first argument. The uri argument is an output
variable. It will store the actual uri of the Login object that is returned.
The program prints an informational message if no objects are found. */

 objrc=metadata_getnobj("omsobj:Login?@Id contains '.'",n,uri);
 if objrc<=0 then put "NOTE: rc=" objrc
 "There are no Logins defined in this repository"
 " or there was an error reading the repository.";

/* The DO statement specifies a group of statements to be executed as a unit
for the Login object that is returned by METADATA_GETNOBJ. The METADATA_GETATTR
function gets the values of the object's Id and UserId attributes. */

 do while(objrc>0);
 arc=metadata_getattr(uri,"Id",LoginObjId);
 arc=metadata_getattr(uri,"UserId",UserId);

/* The METADATA_GETNASN function specifies to get objects associated
via the AssociatedIdentity association. The AssociatedIdentity association name
returns both Person and IdentityGroup objects, which are subtypes of the Identity
metadata type. The URIs of the associated objects are returned in the uri2 variable.

152 Chapter 15 • Understanding DATA Step Functions for Reading and Writing Metadata

If no associations are found, the program prints an informational message. */

 n2=1;
 asnrc=metadata_getnasn(uri,"AssociatedIdentity",n2,uri2);
 if asnrc<=0 then put "NOTE: rc=" asnrc
 "There is no Person or Group associated with the " UserId "user ID.";

/* When an association is found, the METADATA_RESOLVE function is called to
resolve the URI to an object on the metadata server. */

 else do;
 arc=metadata_resolve(uri2,IdentType,IdentId);

 /* The METADATA_GETATTR function is used to get the values of each identity's
Name, DisplayName and Desc attributes. */

 arc=metadata_getattr(uri2,"Name",Name);
 arc=metadata_getattr(uri2,"DisplayName",DispName);
 arc=metadata_getattr(uri2,"Desc",Desc);
 end;

 /* The METADATA_GETNASN function specifies to get objects associated
via the Domain association. The URIs of the associated objects are returned in
the uri3 variable. If no associations are found, the program prints an
informational message. */

 n3=1;
 autrc=metadata_getnasn(uri,"Domain",n3,uri3);
 if autrc<=0 then put "NOTE: rc=" autrc
 "There is no Authentication Domain associated with the " UserId "user ID.";

 /* The METADATA_GETATTR function is used to get the values of each
AuthenticationDomain object's Id and Name attributes. */

 else do;
 arc=metadata_getattr(uri3,"Id",AuthDomId);
 arc=metadata_getattr(uri3,"Name",AuthDomName);
 end;

 output;

 /* The CALL MISSING routine reinitializes the variables back to missing values. */

 call missing(LoginObjId, UserId, IdentType, IdentId, Name, DispName, Desc, AuthDomId,
AuthDomName);

 /* Look for more Login objects */

 n+1;
 objrc=metadata_getnobj("omsobj:Login?@Id contains '.'",n,uri);
 end;

/* The KEEP statement specifies the variables to include in the output data set. */

 keep LoginObjId UserId IdentType Name DispName Desc AuthDomId AuthDomName;
run;

Examples: DATA Step Functions for Reading Metadata 153

/* The PROC PRINT statement prints the output data set. */
proc print data=logins;
 var LoginObjId UserId IdentType Name DispName Desc AuthDomId AuthDomName;
run;

154 Chapter 15 • Understanding DATA Step Functions for Reading and Writing Metadata

The example creates output similar to the following:

Display 15.3 PROC PRINT of Logins Data Set

Example: Listing User Group Memberships
This program uses the SAS metadata DATA step functions to query the metadata
repository, and return a list of all users and the user groups to which they belong. The
results are returned to a Users_Grps data set in the Work library. The results are
presented in a listing created with PROC REPORT.

Note: User groups are represented in the SAS Metadata Model by the IdentityGroup
metadata type. The IdentityGroup metadata type is also used to represent roles. This
example lists IdentityGroup objects of both types. If you want to exclude roles from
the listing, use the METADATA_GETATTR function to get the value of each
object’s PublicType attribute. A traditional user group has PublicType=
“UserGroup”. A role has PublicType=“Role”. Then, use the values to distinguish
between two types of IdentityGroup objects.

/*Connect to the metadata server using the metadata system options as
shown in the first example. */

data users_grps;

/* The LENGTH statement defines variables for function arguments and
assigns the maximum length of each variable. */

Examples: DATA Step Functions for Reading Metadata 155

 length uri name dispname group groupuri $256
id MDUpdate $20;

/* The CALL MISSING routine initializes output variables to missing values.*/

 n=1;
 call missing(uri, name, dispname, group, groupuri, id, MDUpdate);

 /* The METADATA_GETNOBJ function specifies to get the Person objects
in the repository. The n argument specifies to get the first Person object that is
returned. The uri argument will return the actual uri of the Person object that
is returned. The program prints an informational message if no Person objects
are found. */

 nobj=metadata_getnobj("omsobj:Person?@Id contains '.'",n,uri);
 if nobj=0 then put 'No Persons available.';

/* The DO statement specifies a group of statements to be executed as a unit
for the Person object that is returned by METADATA_GETNOBJ. The METADATA_GETATTR
function gets the values of the object's Name and DisplayName attributes. */

 else do while (nobj > 0);
 rc=metadata_getattr(uri, "Name", Name);
 rc=metadata_getattr(uri, "DisplayName", DispName);

/* The METADATA_GETNASN function gets objects associated via the IdentityGroups
association. The a argument specifies to return the first associated object for
that association type. The URI of the associated object is returned in the
groupuri variable. */

 a=1;
 grpassn=metadata_getnasn(uri,"IdentityGroups",a,groupuri);

 /* If a person does not belong to any groups, set their group
 variable to 'No groups' and output their name. */

 if grpassn in (-3,-4) then do;
 group="No groups";
 output;
 end;

 /* If the person belongs to many groups, loop through the list
 and retrieve the Name and MetadataUpdated attributes of each group,
 outputting each on a separate record. */

 else do while (grpassn > 0);
 rc2=metadata_getattr(groupuri, "Name", group);
 rc=metadata_getattr(groupuri, "MetadataUpdated", MDUpdate);
 a+1;
 output;
 grpassn=metadata_getnasn(uri,"IdentityGroups",a,groupuri);
 end;

156 Chapter 15 • Understanding DATA Step Functions for Reading and Writing Metadata

 /* Retrieve the next person's information */

 n+1;
 nobj=metadata_getnobj("omsobj:Person?@Id contains '.'",n,uri);
 end;

/* The KEEP statement specifies the variables to include in the output data set. */

 keep name dispname MDUpdate group;
run;

 /* Display the list of users and their groups */
proc report data=users_grps nowd headline headskip;
 columns name dispname group MDUpdate;
 define name / order 'User Name' format=$30.;
 define dispname / order 'Display Name' format=$30.;
 define group / order 'Group' format=$30.;
 define MDUpdate / display 'Updated' format=$20.;
 break after name / skip;
run;

The example creates output similar to the following:

Display 15.4 PROC REPORT of Users_Grps Data Set

Examples: DATA Step Functions for Reading Metadata 157

Example: Listing Users and Their Logins
This program uses the SAS metadata DATA step functions to query the metadata
repository, and return a list of all Person objects and their associated logins. The SAS
Metadata Server supports external user accounts and internal user accounts. Both types
of user accounts are modeled with the metadata type Person. An internal user account
differs from an external user account in that a user specifies the user name with the
suffix @saspw to log in (for example, sasadm@saspw). This value is known only to the
metadata server. External accounts require domain-qualified user IDs to log in. An
external account can have multiple logins defined for it. The logins are controlled with
authentication domains. This program requests a listing of the users that are defined on
the metadata server, and notes whether they are internal or external accounts. It lists the
logins and authentication domains for each external account. The results are returned to
an Identities data set in the Work library. The example includes code to print the listing
with PROC PRINT, or to export it to a Microsoft Excel spreadsheet with PROC
EXPORT.

/*Connect to the metadata server using the metadata system options as
shown in the first example. */

data work.Identities;

/* The LENGTH statement defines the lengths of variables for function arguments. */
length IdentId IdentName DispName ExtLogin IntLogin DomainName $32
uri uri2 uri3 uri4 $256;

/* The LABEL statement assigns descriptive labels to variables. */
label
 IdentId = "Identity Id"
 IdentName = "Identity Name"
 DispName = "Display Name"
 ExtLogin = "External Login"
 IntLogin = "Is Account Internal?"
 DomainName = "Authentication Domain";

/* The CALL MISSING statement initializes the output variables to missing values. */
call missing(IdentId, IdentName, DispName, ExtLogin, IntLogin, DomainName,
uri, uri2, uri3, uri4);
n=1;
n2=1;

/* The METADATA_GETNOBJ function specifies to get the Person objects in the repository.
The n argument specifies to get the first person object that is returned.
The uri argument will return the actual uri of the Person object. The program prints an
informational message if no objects are found. */

rc=metadata_getnobj("omsobj:Person?@Id contains '.'",n,uri);
if rc<=0 then put "NOTE: rc=" rc
"There are no identities defined in this repository"
" or there was an error reading the repository.";

/* The DO statement specifies a group of statements to be executed as a unit.
The METADATA_GETATTR function gets the values of the Person object's Id, Name,
and DisplayName attributes. */
do while(rc>0);

158 Chapter 15 • Understanding DATA Step Functions for Reading and Writing Metadata

 objrc=metadata_getattr(uri,"Id",IdentId);
 objrc=metadata_getattr(uri,"Name",IdentName);
 objrc=metadata_getattr(uri,"DisplayName",DispName);

/* The METADATA_GETNASN function gets objects associated via the
InternalLoginInfo association. The InternalLoginInfo association returns
internal logins. The n2 argument specifies to return the first associated object
for that association name. The URI of the associated object is returned in
the uri2 variable. */

objrc=metadata_getnasn(uri,"InternalLoginInfo",n2,uri2);

/* If a Person does not have any internal logins, set their IntLogin
variable to 'No' Otherwise, set to 'Yes'. */
IntLogin="Yes";
DomainName="**None**";
if objrc<=0 then
do;
put "NOTE: There are no internal Logins defined for " IdentName +(-1)".";
IntLogin="No";
end;

/* The METADATA_GETNASN function gets objects associated via the Logins association.
The Logins association returns external logins. The n2 argument specifies to return
the first associated object for that association name. The URI of the associated
object is returned in the uri3 variable. */

objrc=metadata_getnasn(uri,"Logins",n2,uri3);

/* If a Person does not have any logins, set their ExtLogin
variable to '**None**' and output their name. */
if objrc<=0 then
do;
put "NOTE: There are no external Logins defined for " IdentName +(-1)".";
ExtLogin="**None**";
output;
end;

/* If a Person has many logins, loop through the list and retrieve the name of
each login. */
do while(objrc>0);
objrc=metadata_getattr(uri3,"UserID",ExtLogin);

/* If a Login is associated to an authentication domain, get the domain name. */
DomainName="**None**";
objrc2=metadata_getnasn(uri3,"Domain",1,uri4);
if objrc2 >0 then
do;
 objrc2=metadata_getattr(uri4,"Name",DomainName);
end;

/*Output the record. */
output;

n2+1;

Examples: DATA Step Functions for Reading Metadata 159

/* Retrieve the next Login's information */
objrc=metadata_getnasn(uri,"Logins",n2,uri3);
end; /*do while objrc*/

/* Retrieve the next Person's information */
n+1;
n2=1;

rc=metadata_getnobj("omsobj:Person?@Id contains '.'",n,uri);
end; /*do while rc*/

/* The KEEP statement specifies the variables to include in the output data set. */
keep IdentId IdentName DispName ExtLogin IntLogin DomainName;
run;

/* The PROC PRINT statement writes a basic listing of the data. */
proc print data=work.Identities label;
run;

/* The PROC EXPORT statement can be used to write the data to an Excel spreadsheet. */
/* Change DATA= to the data set name you specified above. */
/* Change OUTFILE= to an appropriate path for your system. */

proc export data=work.Identities
 dbms=EXCEL2000
 outfile="C:\temp\Identities.xls"
 replace;
run;

The example creates output similar to the following:

Display 15.5 PROC PRINT of work.Identities Data Set

160 Chapter 15 • Understanding DATA Step Functions for Reading and Writing Metadata

Chapter 16

DATA Step Functions for Reading
and Writing Metadata

Dictionary . 161
METADATA_DELASSN Function . 161
METADATA_DELOBJ . 163
METADATA_GETATTR Function . 164
METADATA_GETNASL Function . 165
METADATA_GETNASN Function . 167
METADATA_GETNATR Function . 168
METADATA_GETNOBJ Function . 170
METADATA_GETNPRP Function . 171
METADATA_GETNTYP Function . 173
METADATA_GETPROP Function . 174
METADATA_NEWOBJ Function . 175
METADATA_PATHOBJ Function . 178
METADATA_PAUSED Function . 180
METADATA_PURGE Function . 181
METADATA_RESOLVE Function . 182
METADATA_SETASSN Function . 183
METADATA_SETATTR Function . 186
METADATA_SETPROP Function . 187
METADATA_VERSION Function . 188

Dictionary

METADATA_DELASSN Function
Deletes all objects that make up the specified association.

Syntax
rc=METADATA_DELASSN(uri,assn);

Required Arguments
uri (in)

specifies a Uniform Resource Identifier.

161

assn (in)
specifies an association name.

Return Values
0 Successful completion.

-1 Unable to connect to the metadata server.

-2 The deletion was unsuccessful; see the SAS log for details.

-3 No objects match the URI.

Example
options metaserver="a123.us.company.com"
 metaport=8561
 metauser="myid"
 metapass="mypassword"
 metarepository="myrepos";

data _null_;
 length uri $256
 curi $256
 curi1 $256
 curi2 $256;

 rc=0;

 /* Create a PhysicalTable object. */

 rc=metadata_newobj("PhysicalTable",
 uri,
 "My Table");
 put rc=;
 put uri=;

 /* Create a couple of columns on the new PhysicalTable object. */

 rc=metadata_newobj("Column",
 curi,
 "Column1",
 "myrepos",
 uri,
 "Columns");

 put rc=;
 put curi=;

 rc=metadata_newobj("Column",
 curi1,
 "Column2",
 "myrepos",
 uri,
 "Columns");

 put rc=;

162 Chapter 16 • DATA Step Functions for Reading and Writing Metadata

 put curi1=;

 rc=metadata_newobj("Column",
 curi2,
 "Column3",
 "myrepos",
 uri,
 "Columns");

 put rc=;
 put curi2=;

 /* Delete association between table and columns, remove Column objects. */
 rc=metadata_delassn(uri,"Columns");
 put rc=;

 /* Delete PhysicalTable object. */
 rc=metadata_delobj(uri);
 put rc=;

run;

See Also

Functions

• “METADATA_SETASSN Function” on page 183

• “METADATA_GETNASN Function” on page 167

METADATA_DELOBJ
Deletes the first object that matches the specified URI.

Syntax
rc = METADATA_DELOBJ(uri);

Required Argument
uri (in)

specifies a Uniform Resource Identifier.

Return Values
0

Successful completion

-1
Unable to connect to the metadata server

-2
The deletion was unsuccessful; see the SAS log for details

METADATA_DELOBJ 163

-3
No objects match the URI

Example
options metaserver="a123.us.company.com"
 metaport=8561
 metauser="myid"
 metapass="mypassword"
 metarepository="myrepos";

data _null_;

 rc=metadata_delobj("omsobj:Property?@Name='My Object'");
 put rc=;

run;

See Also

Functions

• “METADATA_DELASSN Function” on page 161

• “METADATA_GETNOBJ Function” on page 170

• “METADATA_GETNTYP Function” on page 173

• “METADATA_NEWOBJ Function” on page 175

METADATA_GETATTR Function
Returns the value of the specified attribute for the specified object.

Syntax
rc = METADATA_GETATTR(uri, attr, value);

Required Arguments
uri (in)

specifies a Uniform Resource Identifier.

attr (in)
specifies an attribute of a metadata object.

value (out)
returns the value of the specified attribute.

Return Values
0

Successful completion

164 Chapter 16 • DATA Step Functions for Reading and Writing Metadata

-1
Unable to connect to the metadata server

-2
The attribute was not found

-3
No objects match the URI

Example
options metaserver="a123.us.company.com"
 metaport=8561
 metauser="myid"
 metapass="mypassword"
 metarepository="myrepos";

data _null_;

 length name $200
 desc $200
 modified $100;

 rc=metadata_getattr("omsobj:Machine?@Name='bluedog'","Name",name);
 put rc=;
 put name=;

 rc=metadata_getattr("omsobj:Machine?@Name='bluedog'","Desc",desc);
 put rc=;
 put desc=;

rc=metadata_getattr("omsobj:Machine?@Name='bluedog'","MetadataUpdated",modified);
 put rc=;
 put modified=;

run;

See Also

Functions

• “METADATA_GETNATR Function” on page 168

• “METADATA_SETATTR Function” on page 186

METADATA_GETNASL Function
Returns the nth association for the specified object.

Syntax
rc = METADATA_GETNASL(uri, n, asn);

METADATA_GETNASL Function 165

Required Arguments
uri (in)

specifies a Uniform Resource Identifier.

n (in)
numeric index value that indicates which row to return from the array; see “Array
Parameters” on page 138 .

asn (out)
returns the association name.

Return Values
n

The number of objects that match the URI

-1
Unable to connect to the metadata server

-3
No objects match the URI

-4
n is out of range

Example
options metaserver="a123.us.company.com"
 metaport=8561
 metauser="myid"
 metapass="mypassword"
 metarepository="myrepos";

data _null_;
 length assoc $256;
 rc=1;
 n=1;

 do while(rc>0);

 /* Walk through all possible associations of this object. */

 rc=metadata_getnasl("omsobj:Machine?@Name='bluedog'",
 n,
 assoc);
 put assoc=;
 n=n+1;
 end;
run;

See Also

Functions

• “METADATA_GETNASN Function” on page 167

• “METADATA_SETASSN Function” on page 183

166 Chapter 16 • DATA Step Functions for Reading and Writing Metadata

METADATA_GETNASN Function
Returns the nth associated object of the specified association.

Syntax
rc = METADATA_GETNASN(uri, asn, n, nuri);

Required Arguments
uri (in)

specifies a Uniform Resource Identifier.

asn (in)
specifies an association name.

n (in)
Numeric index value that indicates which row to return from the array; see “Array
Parameters” on page 138 .

nuri
returns the URI of the nth associated object.

Return Values
n

The number of associated objects

-1
Unable to connect to the metadata server

-3
No objects match the URI

-4
n is out of range

Example
options metaserver="a123.us.company.com"
 metaport=8561
 metauser="myid"
 metapass="mypassword"
 metarepository="myrepos";

data _null_;
 length uri $256
 text $256;
 rc=1;
 arc=0;
 n=1;

 do while(rc>0);

 /* Walk through all the notes on this machine object. */

METADATA_GETNASN Function 167

 rc=metadata_getnasn("omsobj:Machine?@Name='bluedog'",
 "Notes",
 n,
 uri);

 arc=1;
 if (rc>0) then arc=metadata_getattr(uri,"StoredText",text);
 if (arc=0) then put text=;
 n=n+1;
 end;
run;

METADATA_GETNATR Function
Returns the nth attribute of the specified object.

Syntax
rc = METADATA_GETNATR(uri, n, attr, value);

Required Arguments
uri (in)

specifies a Uniform Resource Identifier.

n (in)
specifies a numeric index value that indicates which row to return from the array; see
“Array Parameters” on page 138.

attr (out)
returns the name of a metadata object attribute.

value (out)
returns the value of the specified attribute.

Return Values
n

The number of attributes for the URI.

-1
Unable to connect to the metadata server.

-2
No attributes are defined for the object.

-3
No objects match the URI.

-4
n is out of range.

168 Chapter 16 • DATA Step Functions for Reading and Writing Metadata

Examples

Example 1: Using an Object URI
options metaserver="a123.us.company.com"
 metaport=8561
 metauser="myid"
 metapass="mypassword"
 metarepository="myrepos";

data _null_;
 length attr $256
 value $256;
 rc=1;
 n=1;
 do while(rc>0);

 /* Walk through all the attributes on this machine object. */

 rc=metadata_getnatr("omsobj:Machine?@Name='bluedog'",
 n,
 attr,
 value);

 if (rc>0) then put n= attr= value=;

 n=n+1;

 end;
run;

Example 2: Using a Repository URI
options metaserver="a123.us.company.com"
 metaport=8561
 metauser="myid"
 metapass="mypassword"
 metarepository="myrepos";

data _null_;
 length id $20
 type $256
 attr $256
 value $256;

 rc=metadata_resolve("omsobj:RepositoryBase?@Name='myrepos'",type,id);

 put rc=;
 put id=;
 put type=;
 n=1;
 rc=1;
 do while(rc>=0);

rc=metadata_getnatr("omsobj:RepositoryBase?@Name='myrepos'",n,attr,value);
 if (rc>=0) then put attr= value=;

METADATA_GETNATR Function 169

 n=n+1;
 end;
run;

See Also

Functions

• “METADATA_GETATTR Function” on page 164

• “METADATA_SETATTR Function” on page 186

METADATA_GETNOBJ Function
Returns the nth object that matches the specified URI.

Syntax
rc = METADATA_GETNOBJ(uri, n, nuri);

Required Arguments
uri (in)

specifies a Uniform Resource Identifier.

n (in)
specifies a numeric index value that indicates which row to return from the array; see
“Array Parameters” on page 138.

nuri (out)
returns the URI of the nth object that matches the input URI or matches a subtype
object of the input URI.

Return Values
n

The number of objects and subtype objects that match the specified URI.

-1
Unable to connect to the metadata server.

-3
No objects match the specified URI.

-4
n is out of range.

Examples

Example 1: Determining How Many Machine Objects Exist
options metaserver="a123.us.company.com"
 metaport=8561
 metauser="myid"
 metapass="mypassword"

170 Chapter 16 • DATA Step Functions for Reading and Writing Metadata

 metarepository="myrepos";

data _null_;
 length uri $256;
 nobj=0;
 n=1;

 /* Determine how many machine objects are in this repository. */

 nobj=metadata_getnobj("omsobj:Machine?@Id contains '.'",n,uri);
 put nobj=; /* Number of machine objects found. */
 put uri=; /* URI of the first machine object. */

run;

Example 2: Looping Through Each Repository on a Metadata Server
options metaserver="a123.us.company.com"
 metaport=8561
 metauser="myid"
 metapass="mypassword"
 metarepository="myrepos";

data _null_;
 length uri $256;
 nobj=1;
 n=1;

 /* Determine how many repositories are on this server. */

 do while(nobj >= 0);

 nobj=metadata_getnobj("omsobj:RepositoryBase?@Id contains '.'",n,uri);
 put nobj=; /* Number of repository objects found. */
 put uri=; /* Nth repository. */
 n=n+1;
 end;
run;

See Also

Functions

• “METADATA_DELOBJ” on page 163

• “METADATA_NEWOBJ Function” on page 175

METADATA_GETNPRP Function
Returns the nth property of the specified object.

Syntax
rc = METADATA_GETNPRP(uri, n, prop, value);

METADATA_GETNPRP Function 171

Required Arguments
uri (in)

specifies a Uniform Resource Identifier.

n (in)
specifies a numeric index value that indicates which row to return from the array; see
“Array Parameters” on page 138.

prop (out)
returns the name of an abstract property string.

value (out)
returns the value of the specified property string.

Return Values
n

The number of properties for the URI.

-1
Unable to connect to the metadata server.

-2
No properties are defined for the object.

-3
No objects match the URI.

-4
n is out of range.

Example
options metaserver="a123.us.company.com"
 metaport=8561
 metauser="myid"
 metapass="mypassword"
 metarepository="myrepos";

data _null_;
 length prop $256
 value $256;
 rc=1;
 n=1;

 do while(rc>0);

 /* Walk through all the properties on this machine object. */

 rc=metadata_getnprp("omsobj:Machine?@Name='bluedog'",
 n,
 prop,
 value);

 if (rc>0) then put n= prop= value=;
 n=n+1;
 end;
run;

172 Chapter 16 • DATA Step Functions for Reading and Writing Metadata

See Also

Functions

• “METADATA_GETPROP Function” on page 174

• “METADATA_SETPROP Function” on page 187

METADATA_GETNTYP Function
Returns the nth object type on the server.

Syntax
rc = METADATA_GETNTYP(n, type);

Required Arguments
n (in)

specifies a numeric index value that indicates which row to return from the array; see
“Array Parameters” on page 138.

type (out)
returns the metadata type in the specified row.

Return Values
n

The number of objects that match the URI.

-1
Unable to connect to the metadata server.

-4
n is out of range.

Example
options metaserver="a123.us.company.com"
 metaport=8561
 metauser="myid"
 metapass="mypassword"
 metarepository="myrepos";

data _null_;
 length type $256;
 rc=1;
 n=1;

 do while(rc>0);

 /* Walk through all possible types on this server. */
 rc=metadata_getntyp(n,type);
 put type=;

METADATA_GETNTYP Function 173

 n=n+1;
 end;
run;

METADATA_GETPROP Function
Returns the value and Uniform Resource Identifier (URI) of the specified property for the specified object.

Syntax
rc = METADATA_GETPROP(uri, prop, value, propuri);

Required Arguments
uri (in)

specifies a Uniform Resource Identifier.

prop (in)
specifies an abstract property string.

value (out)
returns the value of the specified property string.

propuri (out)
returns the URI of the property object that is associated with the input URI.

Return Values
0

Successful completion.

-1
Unable to connect to the metadata server.

-2
Named property is undefined.

-3
No objects match the specified URI.

Example
options metaserver="a123.us.company.com"
 metaport=8561
 metauser="myid"
 metapass="mypassword"
 metarepository="myrepos";

data _null_;
 length value $200
 propuri $200;
 rc=metadata_getprop("omsobj:Machine?@Name='bluedog'","Property
1",value,propuri);
 if rc=0 then put value= propuri=;
run;

174 Chapter 16 • DATA Step Functions for Reading and Writing Metadata

See Also

Functions

• “METADATA_GETNPRP Function” on page 171

• “METADATA_SETPROP Function” on page 187

METADATA_NEWOBJ Function
Creates a new metadata object.

Syntax
rc = METADATA_NEWOBJ(type, uri<, name><, repos><, parent><, asn>);

Required Arguments
type (in)

specifies a metadata type.

uri (out)
returns a Uniform Resource Identifier (URI).

Optional Arguments
name (in)

specifies a value for the Name attribute of the new metadata object.

repos (in)
specifies the repository identifier of an existing repository. By default, the new
object is created in the default repository.

parent (in)
specifies the Uniform Resource Identifier (URI) of an existing metadata object with
which to associate the new metadata object. Must be used with ASN. ASN specifies
the association name that relates the two metadata objects.

asn (in)
specifies an association name that is relative to the parent metadata object.

Return Values
0

Successful completion.

-1
Unable to connect to the metadata server.

-2
Unable to create object; see the SAS log for details.

Details
When you create a new metadata object, the object might be unusable if you do not
create the proper attributes and associations. For more information, see the SAS
Metadata Model: Reference.

METADATA_NEWOBJ Function 175

The following example creates a SASLibrary object, PhysicalTable object, and Column
objects, and associates the library with the table. Note that each object has PublicType=
and UsageVersion= attributes defined. The SASLibrary and PhysicalTable objects also
have a containing folder defined.

Example
options metaserver="myserver"
 metaport=8561
 metauser="sasadm@saspw"
 metapass="adminpw"
 metarepository="Foundation";

data _null_;
 length uri $256
 curi $256
 curi1 $256
 curi2 $256
 luri $256;

 rc=0;

 /* Create a SASLibrary object in the Shared Data folder. */

 rc=metadata_newobj("SASLibrary",
 luri,
 "DS Test Library",
 "Foundation",
 "omsobj:Tree?@Name='Shared Data'",
 "Members");
 put rc=;
 put luri=;

 /* Add PublicType= and UsageVersion= attribute values. */

 rc=metadata_setattr(luri,
 "PublicType",
 "Library");
 put rc=;
 put luri=;

 rc=metadata_setattr(luri,
 "UsageVersion",
 "1000000.0");
 put rc=;
 put luri=;

 /* Create a PhysicalTable object in the Shared Data folder. */

 rc=metadata_newobj("PhysicalTable",
 uri,
 "TestTable",
 "Foundation",
 "omsobj:Tree?@Name='Shared Data'",

176 Chapter 16 • DATA Step Functions for Reading and Writing Metadata

 "Members");
 put rc=;
 put uri=;

 /* Add PublicType= and UsageVersion= attribute values. */

 rc=metadata_setattr(uri,
 "PublicType",
 "Table");
 put rc=;

 rc=metadata_setattr(uri,
 "UsageVersion",
 "1000000.0");
 put rc=;

 /* Create a couple of columns on the new PhysicalTable object. */

 rc=metadata_newobj("Column",
 curi,
 "Column1",
 "Foundation",
 uri,
 "Columns");

 put rc=;
 put curi=;

 /* Add PublicType= and UsageVersion= attribute values to Column. */
 rc=metadata_setattr(curi,
 "PublicType",
 "Column");
 put rc=;

 rc=metadata_setattr(curi,
 "UsageVersion",
 "1000000.0");
 put rc=;

 rc=metadata_newobj("Column",
 curi1,
 "Column2",
 "Foundation",
 uri,
 "Columns");

 put rc=;
 put curi1=;

/* Add PublicType= and UsageVersion= attribute values to Column2. */
 rc=metadata_setattr(curi1,
 "PublicType",
 "Column");
 put rc=;

METADATA_NEWOBJ Function 177

 rc=metadata_setattr(curi1,
 "UsageVersion",
 "1000000.0");
 put rc=;

 rc=metadata_newobj("Column",
 curi2,
 "Column3",
 "Foundation",
 uri,
 "Columns");

 put rc=;
 put curi2=;

/* Add PublicType= and UsageVersion= attribute values to Column3. */
 rc=metadata_setattr(curi2,
 "PublicType",
 "Column");
 put rc=;

 rc=metadata_setattr(curi2,
 "UsageVersion",
 "1000000.0");
 put rc=;

/* Create an association between library and the table */

 rc=metadata_setassn(luri,
 "Tables",
 "Append",
 uri);
 put=rc;

 run;

See Also

Functions

• “METADATA_DELOBJ” on page 163

• “METADATA_GETNOBJ Function” on page 170

METADATA_PATHOBJ Function
Returns the Id and Type attributes of the specified folder object.

Syntax
rc = METADATA_PATHOBJ(proj, path, deftype, type, ID);

178 Chapter 16 • DATA Step Functions for Reading and Writing Metadata

Required Arguments
proj (in)

not currently used. Set this argument to null by submitting an empty string “ ”.

path (in)
specifies the pathname of the object in SAS folders. Pathname begins with a forward
slash. Can include the deftype in parentheses as a suffix.

deftype (in)
Optionally specifies the value in the TypeName= attribute of the object’s type
definition in the SAS type dictionary. Can be omitted if deftype is specified as a
suffix in the path argument. The deftype is not the same as the type. type
corresponds to value in a type definition’s MetadataType= attribute. For example, If
you submit a deftype of StoredProcess, the returned type will be ClassifierMap.
For more information, see the SAS Metadata Model: Reference. For more
information, see “What is the SAS Type Dictionary?” on page 8.

type (out)
specifies the metadata type of the returned ID.

ID (out)
returns the object's unique identifier.

Return Values
n

Number of objects that match the URI.

0
Successful completion.

-1
Unable to connect to the metadata server.

-2
Syntax error in the path.

-3
Named object not found in the path.

Examples

Example 1: Specifying the TypeName Value in Path
options metaserver="a123.us.company.com"
 metaport=8561
 metauser="myid"
 metapass="mypassword"
 metarepository="myrepos";
data _null_;

 length id $20;
 length type $256;
 proj="";
 deftype="";
 id="";
 type="";

 rc=metadata_pathobj(proj,"/Samples/Stored Processes/Sample(StoredProcess)",

METADATA_PATHOBJ Function 179

 deftype,type,id);

 put rc=;
 put id=;
 put type=;

run;

Example 2: Specifying the TypeName Value in Deftype
options metaserver="a123.us.company.com"
 metaport=8561
 metauser="myid"
 metapass="mypassword"
 metarepository="myrepos";
data _null_;

 length id $20;
 length type $256;
 proj="";
 deftype="StoredProcess";
 id="";
 type="";

 rc=metadata_pathobj(proj,"/Samples/Stored Processes/Sample,
 deftype,type,id);

 put rc=;
 put id=;
 put type=;

run;

METADATA_PAUSED Function
Determines whether the server specified by the METASERVER system option is paused.

Syntax
rc = METADATA_PAUSED();

Return Values
0

Server is not paused.

1
Server is paused.

-1
Unable to connect to the metadata server.

180 Chapter 16 • DATA Step Functions for Reading and Writing Metadata

Example
options metaserver="a123.us.company.com"
 metaport=8561
 metauser="myid"
 metapass="mypassword"
 metarepository="myrepos";

data _null_;
 rc=metadata_paused();
 if rc eq 0 then put 'server is not paused';
 else if rc eq 1 then put 'server is paused';
run;

METADATA_PURGE Function
Purges the specified URI.

Syntax
rc = METADATA_PURGE(<uri>);

Optional Argument
uri (in)

specifies a Uniform Resource Identifier; if no argument is specified, the entire
connection is purged from the cache.

Return Values
0

Object successfully purged.

Details
For performance reasons, metadata objects are cached by URI. To refresh the metadata
object with the latest data from the metadata server, purge the URI with the
METADATA_PURGE function.

Example
options metaserver="a123.us.company.com"
 metaport=8561
 metauser="myid"
 metapass="mypassword"
 metarepository="myrepos";

data _null_;
 length association $256;
 rc=1;
 n=1;

 do while(rc>0);

METADATA_PURGE Function 181

 /* This will make this DATA step run much slower by */
 /* purging the object cache, which requires the metadata */
 /* server to be accessed again. */
 /* Compare run timings by commenting out the purge. */

 rc=metadata_purge("omsobj:Machine?@Name='bluedog'");

 /* Walk through all possible associations of this object. */

 rc=metadata_getnasl("omsobj:Machine?@Name='bluedog'",
 n,
 association);
 put association=;
 n=n+1;
 end;
run;

METADATA_RESOLVE Function
Resolves a URI into an object on the metadata server.

Syntax
rc = METADATA_RESOLVE(uri, type, ID);

Required Arguments
uri (in)

specifies a Uniform Resource Identifier.

type (out)
returns the metadata type for the first object (or subtype object) that matches the
input URI.

ID
returns the unique identifier for the first object (or subtype object) that matches the
input URI.

Return Values
n

Number of objects and subtype objects that match the specified URI.

0
No objects match the URI.

-1
Unable to connect to the metadata server.

182 Chapter 16 • DATA Step Functions for Reading and Writing Metadata

Examples

Example 1: Using an Object URI
options metaserver="a123.us.company.com"
 metaport=8561
 metauser="myid"
 metapass="mypassword"
 metarepository="myrepos";

data _null_;
 length id $20
 type $256;
 rc=metadata_resolve("omsobj:Machine?@Name='bluedog'",type,id);
 put rc=;
 put id=;
 put type=;
run;

Example 2: Using a Repository URI
options metaserver="a123.us.company.com"
 metaport=8561
 metauser="myid"
 metapass="mypassword"
 metarepository="myrepos";

data _null_;

 length id $20
 type $256
 attr $256
 value $256;

 rc=metadata_resolve("omsobj:RepositoryBase?@Name='myrepos'",type,id);

 put rc=;
 put id=;
 put type=;
 n=1;
 rc=1;
 do while(rc>=0);

rc=metadata_getnatr("omsobj:RepositoryBase?@Name='myrepos'",n,attr,value);
 if (rc>=0) then put attr=;
 if (rc>=0) then put value=;
 n=n+1;

 end;
run;

METADATA_SETASSN Function
Modifies an association list for an object.

METADATA_SETASSN Function 183

Syntax
rc = METADATA_SETASSN(uri, asn, mod, auri-1<,...auri-n>);

Required Arguments
uri (in)

specifies a Uniform Resource Identifier.

asn (in)
specifies an association name.

mod (in)
specifies the modification to be performed on the metadata object; values include the
following:

APPEND
Appends the specified associations to the end of the specified object's association
element list without modifying any of the other associations on the list.

MERGE
Modifies existing associations in the specified object's association list, and adds
any associations that do not already exist (new and changed associations are
placed at the end of the association list; use REPLACE if you need to specify the
order of the association list).

MODIFY
Modifies an existing association, or adds an association that does not already
exist (use MODIFY with a single association; use MERGE for a multiple
association*).

REMOVE
Deletes the specified associations from the specified object's association element
list without modifying any of the other associations on the list.

REPLACE
For a single association*, replaces an existing association with the specified
association. For a multiple association*, replaces an existing association list with
the specified association list. Any existing associations that are not represented in
the new association list are deleted.

* A single association refers to an association name with a 0–to-1 or 1–to-1
cardinality. Only one association of that name is supported between the specified
metadata types.

A multiple association refers to an association name with a 0–to-many or 1–to-many
cardinality. Many associations between the specified metadata types is supported.

For more information about associations and cardinality, see SAS Open Metadata
Interface: Reference and Usage.

auri–1<,...auri-n> (in)
specifies a list of the URIs of the associated objects; see “Array Parameters” on page
138 .

Return Values
0

Successful completion.

184 Chapter 16 • DATA Step Functions for Reading and Writing Metadata

-1
Unable to connect to the metadata server.

-3
No objects match the input URI.

-4
Unable to perform modification; see the SAS log for details.

-5
Invalid modification.

-6
Unable to resolve association list URIs.

Example
options metaserver="a123.us.company.com"
 metaport=8561
 metauser="myid"
 metapass="mypassword"
 metarepository="myrepos";

data _null_;
 length uri $256;
 rc=0;

 /* Create a TextStore object. */

 rc=metadata_newobj("TextStore",
 uri,
 "My TextStore");
 put uri=;

 rc=metadata_setassn("omsobj:Machine?@Name='bluedog'",
 "Notes",
 "Append",
 uri);
 put rc=;

 rc=metadata_setassn("omsobj:Machine?@Name='bluedog'",
 "Notes",
 "Remove",
 uri);
 put rc=;

run;

See Also

Functions

• “METADATA_DELASSN Function” on page 161

• “METADATA_GETNASN Function” on page 167

METADATA_SETASSN Function 185

METADATA_SETATTR Function
Sets the specified attribute for the specified object.

Syntax
rc = METADATA_SETATTR(uri, attr, value);

Required Arguments
uri (in)

specifies a Uniform Resource Identifier.

attr (in)
specifies an attribute of the metadata object.

value (in)
specifies a value for the specified attribute.

Return Values
0

Successful completion.

-1
Unable to connect to the metadata server.

-2
Unable to set the attribute.

-3
No objects match the URI.

Example
options metaserver="a123.us.company.com"
 metaport=8561
 metauser="myid"
 metapass="mypassword"
 metarepository="myrepos";

data _null_;
 rc=metadata_setattr("omsobj:Machine?@Name='bluedog'",
 "Desc",
 "My New Description");
 put rc=;
run;

See Also

Functions

• “METADATA_GETATTR Function” on page 164

• “METADATA_GETNATR Function” on page 168

186 Chapter 16 • DATA Step Functions for Reading and Writing Metadata

METADATA_SETPROP Function
Sets the specified property for the specified object.

Syntax
rc = METADATA_SETPROP(uri, prop, value, propuri);

Required Arguments
uri (in)

specifies a Uniform Resource Identifier.

prop (in)
specifies an abstract property string.

value (in)
specifies a value for the specified property.

propuri (out)
returns the URI of the property object that is associated with the input URI.

Return Values
1

New property was created and set.

0
Existing property was successfully set.

-1
Unable to connect to the metadata server.

-2
Unable to set the attribute.

-3
No objects match the URI.

-4
Unable to create a new property.

Example
options metaserver="a123.us.company.com"
 metaport=8561
 metauser="myid"
 metapass="mypassword"
 metarepository="myrepos";

data _null_;
 length propuri $200;
 rc=metadata_setprop("omsobj:Machine?@Name='bluedog'","New Property",
 "my value",propuri);
 if rc>=0 then put propuri=;
run;

METADATA_SETPROP Function 187

See Also

Functions

• “METADATA_GETPROP Function” on page 174

• “METADATA_GETNPRP Function” on page 171

METADATA_VERSION Function
Returns the metadata server's model version number.

Syntax
ver = METADATA_VERSION();

Return Values
ver

Metadata server model version number.

-1
Unable to connect to the metadata server.

Example
options metaserver="a123.us.company.com"
 metaport=8561
 metauser="myid"
 metapass="mypassword"
 metarepository="myrepos";

data _null_;
 ver=metadata_version();
 put ver=;
run;

188 Chapter 16 • DATA Step Functions for Reading and Writing Metadata

Chapter 17

Understanding DATA Step
Functions for Metadata Security
Administration

What Are the DATA Step Functions for Metadata Security Administration? . . 189

Transaction Contexts and URIs . 190

Using the %MDSECCON() Macro . 191

Examples: DATA Step Functions for Metadata Security Administration 191
Overview . 191
Example: Begin and End Transaction Context . 192
Example: Working with ACTs . 193

What Are the DATA Step Functions for Metadata
Security Administration?

These DATA step functions enable an administrator to programmatically define or query
authorization settings on objects in the SAS Metadata Server. In addition, these
functions enable the administrator to create and manipulate access control templates
(ACTs) and apply them to objects in the metadata server.

With the metadata security administration functions, the administrator does not need to
know how the access controls are stored in metadata. The administrator specifies which
permission should be granted or denied to a user, and the metadata server makes the
appropriate change in the metadata. These tasks can also be performed with PROC
METADATA or the DATA step functions for reading and writing metadata, but those
methods can be complicated, and achieving the desired result can be more difficult.

Note: To create security reports about authorization, use the macros that SAS provides.
The macros extract authorization information into SAS data sets that you can use to
create security reports. For more information, see the SAS Intelligence Platform:
Security Administration Guide.

Here are the functions, organized by task:

189

Table 17.1 Summary Table of DATA Step Functions for Metadata Security Administration

Task Functions Example

Transaction context control “METASEC_BEGTRAN
Function” on page 202

“METASEC_ENDTRAN
Function” on page 204

“Example: Begin and End
Transaction Context” (p.
192)

Access control definition “METASEC_APPLYACT
Function” on page 201

“METASEC_GETNACT
Function” on page 206

“METASEC_GETNAUTH
Function” on page 210

“METASEC_GETNID
Function” on page 213

“METASEC_REMACT
Function” on page 216

“METASEC_SETAUTH
Function” on page 219

“Example: Working with
ACTs” (p. 193)

ACT manipulation “METASEC_DELACT
Function” on page 203

“METASEC_GETACTA
Function” on page 205

“METASEC_GETNACTA
Function” on page 208

“METASEC_NEWACT
Function” on page 215

“METASEC_SETACTA
Function” on page 217

“Example: Working with
ACTs” (p. 193)

Transaction Contexts and URIs
The METASEC_BEGTRAN function creates a transaction context (TC), and the
METASEC_ENDTRAN function ends it. The TC instance is located in the metadata
server. The TC instance maintains the state of authorization query results and update
requests for a client that is using the security administration interface. The TC
accumulates changes that are requested for a single object. Submitting the
METASEC_ENDTRAN function commits or discards changes, and then ends the TC.

Here are some usage notes:

• For the value of the TC, if you specify an empty string, a temporary context is
invoked, no server-side state is maintained, and changes to security settings are made
immediately. This choice can be efficient if you have only one change to make, and
you want to make the change immediately.

190 Chapter 17 • Understanding DATA Step Functions for Metadata Security Administration

• Specifying the URI is a best practice and is usually required. For DATA step
functions that return information, the URI is the key to a cache of information about
the object. The information is returned one row at a time in two-dimensional arrays.
For more information, see “Array Parameters” on page 138.

If the URI refers to a standard metadata object, but not to an ACT or to a SAS Metadata
Repository, you can use a standard URI. For more information, see “What Is a URI?” on
page 12.

• If the URI refers to an ACT, the URI must be in the form
omsobj:AccessControlTemplate/my-ACTobj-id. For example:

omsobj:AccessControlTemplate/A5DRX6L4.AT000005

• If the URI refers to a repository, the URI must be in the form reposid:my-repos-id.
For example:

reposid:A5DRX6L4

Using the %MDSECCON() Macro
In the DATA step functions for metadata security administration, two arguments are
represented in the SAS Open Metadata Architecture as bit flags that can be combined
with an OR operation. One argument is flags, which is used in many of the functions.
The other argument is auth in the METASEC_GETNAUTH function.

To simplify usage for the DATA step functions, instead of specifying a numeric
parameter, you specify macro variables with easily recognizable names. To use the
macro variables, you must first submit the macro %MDSECCON(). The appropriate
macro variables are documented with the functions.

Examples: DATA Step Functions for Metadata
Security Administration

Overview
These examples are self-contained. Specify your own connection options, and submit the
code in a SAS session.

To create security reports about authorization, use the macros that SAS provides. The
macros extract authorization information into SAS data sets that you can use to create
security reports. For more information, see the SAS Intelligence Platform: Security
Administration Guide.

CAUTION:
Do not run examples against a production metadata server. The examples create
objects and identities to demonstrate the use of ACTs. Making changes to security
settings poses a risk to a production environment. Be sure to run these examples in
an experimental, nonproduction environment.

CAUTION:
Do not use this code as an example of creating PhysicalTable and Person
objects. The PhysicalTable and Person objects that are created and deleted in these

Examples: DATA Step Functions for Metadata Security Administration 191

examples are not usable by SAS products because they do not have the appropriate
attributes and associations. For information about attributes and associations, see
SAS Metadata Model: Reference. For information about metadata administration
tasks, see the SAS Intelligence Platform: System Administration Guide.

Note: A caller must have administrative access to the metadata server in order to create
and delete user definitions.

Example: Begin and End Transaction Context
options metaserver="myserver"
 metaport=8561
 metauser="myuser"
 metapass="mypwd"
 metarepository="Foundation";

/* Get macro variable bit flags. */
%mdseccon();

data _null_;
 format tc $20.;
 length uri $256;
 tc = "";
 uri="";

 /* Create a PhysicalTable object. */
 rc=metadata_newobj("PhysicalTable",
 uri,
 "My Demo Table for METASEC");

 /* Start transaction on object created above using the URI. */
 rc=METASEC_BEGTRAN(uri,0,tc);
 if (rc < 0) then do;
 sysmsg = sysmsg();
 put sysmsg;
 end;

 /* ... other operations using the TC ... */

 /* End the transaction and commit any changes made to */
 /* the transaction since it was started. */
 rc=METASEC_ENDTRAN(uri,tc, &_SECAD_COMMIT_TC);
 if (rc < 0) then do;
 sysmsg = sysmsg();
 put sysmsg;
 end;

 /* Delete the PhysicalTable */
 rc=metadata_delobj(uri);

run;

192 Chapter 17 • Understanding DATA Step Functions for Metadata Security Administration

Example: Working with ACTs
options metaserver="myserver"
 metaport=8561
 metauser="myuser"
 metapass="mypwd"
 metarepository="Foundation";

/* Get macro variable bit flags. */
%mdseccon();

/*--------------------------------------*/
/* Create a new user for demo purposes. */
/*--------------------------------------*/

data _null_;
 length uri $256;
 rc=0;

 /* Create a new Person object. */
 rc=metadata_newobj("Person",
 uri,
 "Demo User for METASEC");
 if (rc < 0) then do;
 sysmsg = sysmsg();
 put sysmsg;
 end;
 put "The new user's URI is " uri;
run;

/*---*/
/* Create a new ACT that denies PUBLIC ReadMetadata and grants */
/* SASUSERS ReadMetadata. Grant WriteMetadata and Readmetadata */
/* to a specific person to show the ACT working. */
/*---*/
data _null_;
 format tc $20.;
 length uri $256
 act_uri $256
 repos_uri $256
 type $60
 id $17;

 tc = "";
 uri="";

 /* Start transaction - No URI specified because the ACT does not exist. */
 rc=METASEC_BEGTRAN("",0, tc);
 if (rc < 0) then do;
 sysmsg = sysmsg();
 put sysmsg;
 end;

Examples: DATA Step Functions for Metadata Security Administration 193

 /* build the uri for the foundation repository */
 rc=metadata_resolve("omsobj:RepositoryBase?@Name='Foundation'",type,id);
 tmpstr = substr(id, length(id)-7, 8);
 repos_uri="REPOSID:" || tmpstr;

 /* create the ACT */
 rc=METASEC_NEWACT(tc,repos_uri, "Name", "Grant SASUSERS ACT",
 "Desc", "ACT that denies PUBLIC but grants SASUSERS.");
 if (rc < 0) then do;
 sysmsg = sysmsg();
 put sysmsg;
 end;

 /* The URI parameter is blank because the ACT has not been written yet. */
 /* Note the use of &_SECAD_ACT_CONTENTS to indicate that this is setting
*/
 /* the content of the ACT rather than security on the ACT. */
 rc = METASEC_SETAUTH(tc, "","IdentityGroup", "SASUSERS",
 "Grant", "ReadMetadata","",&_SECAD_ACT_CONTENTS);
 if (rc < 0) then do;
 sysmsg = sysmsg();
 put sysmsg;
 end;

 rc = METASEC_SETAUTH(tc, "","IdentityGroup", "PUBLIC",
 "Deny","ReadMetadata","",&_SECAD_ACT_CONTENTS);
 if (rc < 0) then do;
 sysmsg = sysmsg();
 put sysmsg;
 end;

 rc = METASEC_SETAUTH(tc, "","Person", "Demo User for METASEC",
 "Grant", "WriteMetadata","", &_SECAD_ACT_CONTENTS);
 if (rc < 0) then do;
 sysmsg = sysmsg();
 put sysmsg;
 end;

 rc = METASEC_SETAUTH(tc, "","Person", "Demo User for METASEC",
 "Grant", "ReadMetadata","", &_SECAD_ACT_CONTENTS);
 if (rc < 0) then do;
 sysmsg = sysmsg();
 put sysmsg;
 end;

 /* Protect the ACT so the public cannot edit the ACT. */
 /* The unrestricted user will be the only one who can */
 /* modify the ACT. */
 rc = METASEC_SETAUTH(tc, "","IdentityGroup", "PUBLIC",
 "Grant","ReadMetadata","");
 rc = METASEC_SETAUTH(tc, "","IdentityGroup", "PUBLIC",
 "Deny","WriteMetadata","");
 if (rc < 0) then do;
 sysmsg = sysmsg();
 put sysmsg;
 end;

194 Chapter 17 • Understanding DATA Step Functions for Metadata Security Administration

 /* Commit the transaction and write the ACT. */
 rc=METASEC_ENDTRAN("",tc, &_SECAD_COMMIT_TC);
 if (rc < 0) then do;
 sysmsg = sysmsg();
 put sysmsg;
 end;
 else
 put "Transaction creating the ACT has been committed.";
run;

/*--*/
/* Start a new DATA step to exercise the ACT. */
/*--*/

data _null_;
 format tc $20.;
 length uri $256
 act_uri $256
 identitytype $60
 identityname $60
 act_uri2 $256
 actname $60
 actdesc $60
 auth $ 18
 permission $ 60
 condval $ 100
 authorization $30
 authint 8
 type $60
 id $17
 attrname $60
 attrvalue $256;

 tc="";
 uri="";
 attrname="";
 attrvalue="";

 /* Create a PhysicalTable object. */
 rc=metadata_newobj("PhysicalTable",
 uri,
 "Demo Table 2 for METASEC");

 /* Start transaction on the object using the object's URI. */
 rc=METASEC_BEGTRAN(uri,0, tc);
 if (rc < 0) then do;
 sysmsg = sysmsg();
 put sysmsg;
 end;

 /* In the SAS log, list the object's URI. */
 put "The object's URI is: " uri;

 /* In the SAS log, list the identities (both inherited and explicit) */
 /* that have access controls related to the object in the TC. */

Examples: DATA Step Functions for Metadata Security Administration 195

 put "These identities (both inherited and explicit) have access controls
related to the object:";
 n=1;
 rc =1;
 do while (rc > 0) ;
 identitytype="";
 identityname="";
 rc=metasec_getnid(tc, uri, n, identitytype, identityname);
 if (rc < 0) then do;
 sysmsg = sysmsg();
 put sysmsg;
 end;
 else do;
 put n= identitytype= identityname=;
 n=n+1;
 end;
 end;

 /* Get list of ACTs on the object. */

 put "ACT or ACTs on the object:";
 n=1;
 rc =1;
 do while (rc > 0) ;
 act_uri2="";
 actname="";
 actdesc="";
 rc=metasec_getnact(tc, uri, n, act_uri2, actname, actdesc);
 if (rc < 0) then do;
 sysmsg = sysmsg();
 put sysmsg;
 end;
 else do;
 put n= act_uri2= actname= actdesc=;
 n=n+1;
 end;
 end;

 /* Get the URI for the ACT that was created above. */
 /* For best performance, resolve URI into an ID instance to */
 /* exploit object caching. (See the best practices topic.) */

 id="";
 type="";
 rc=metadata_resolve("omsobj:AccessControlTemplate?@Name='Grant SASUSERS
ACT'",
 type,id);
 act_uri="omsobj:AccessControlTemplate/" || id;

 /*---------------------------------*/
 /* Apply the ACT to the object. */
 /*---------------------------------*/
 rc = METASEC_APPLYACT(tc, uri, act_uri);

196 Chapter 17 • Understanding DATA Step Functions for Metadata Security Administration

 /* In the SAS log, list the identities (both inherited and explicit) */
 /* that have access controls related to the object in the TC. */

 put "After ACT has been applied, these identities have access controls
related to the object:";
 n=1;
 rc =1;
 do while (rc > 0) ;
 identitytype="";
 identityname="";
 rc=metasec_getnid(tc, uri, n, identitytype, identityname);
 if (rc < 0) then do;
 sysmsg = sysmsg();
 put sysmsg;
 end;
 else do;
 put n= identitytype= identityname=;
 n=n+1;
 end;
 end;

 /* Get list of ACTs on the object. */

 put "After ACT has been applied, ACT or ACTs on the object:";
 n=1;
 rc =1;
 do while (rc > 0) ;
 act_uri2="";
 actname="";
 actdesc="";
 rc=metasec_getnact(tc, uri, n, act_uri2, actname, actdesc);
 if (rc < 0) then do;
 sysmsg = sysmsg();
 put sysmsg;
 end;
 else do;
 put n= act_uri2= actname= actdesc=;
 n=n+1;
 end;
 end;

 /*---*/
 /* Next in the log, list all the authorizations on the object. */
 /* Authorizations will be returned in a loop. The Auth output */
 /* parameter is a bit field that returns much information. */
 /* It contains bit fields indicating if grants and denies are */
 /* explicit, from an ACT, or indirect (group or inheritance). */
 /* Use the macro variable defined in %mdseccon() to determine */
 /* what is in the fields. */
 /* To create security reports about authorization, use the */
 /* macros that SAS provides. See information above. */
 /*---*/

 put "These are authorizations on the object:";
 rc = 0;
 n=1;

Examples: DATA Step Functions for Metadata Security Administration 197

 do while (rc = 0) ;
 condval="";
 auth="";
 identityname="";
 identitytype="";
 authorization="";
 permission="";

 rc=metasec_getnauth(tc, uri,n,
 identitytype,identityname,auth,permission,condval);
 if (rc = 0)then do;
 n=n+1;
 authint = input(auth, 16.);

 /* The comparisons below must be done in the proper order */
 /* to assure precedence is honored. */
 authorization = "Neither Granted nor Denied";
 if (band(authint, &_SECAD_PERM_EXPM)) then do;
 if (band(authint,&_SECAD_PERM_EXPD)) then
 authorization = "Denied Explicitly";
 else
 authorization = "Granted Explicitly";
 end;
 else if (band(authint, &_SECAD_PERM_ACTM)) then do;
 if (band(authint,&_SECAD_PERM_ACTD)) then
 authorization = "Denied by ACT";
 else
 authorization = "Granted by ACT";
 end;
 else if (band(authint, &_SECAD_PERM_NDRM)) then do;
 if (band(authint,&_SECAD_PERM_NDRD)) then
 authorization = "Denied Indirectly";
 else
 authorization = "Granted Indirectly";
 end;

 put identityname= permission= authorization=;
 end; /* if rc =0 */
 end; /* while */

 /* Commit the transaction and write the ACT. */
 rc=METASEC_ENDTRAN("",tc, &_SECAD_COMMIT_TC);
 if (rc < 0) then do;
 sysmsg = sysmsg();
 put sysmsg;
 end;
 else
 put "Transaction has been committed.";
 put ;

 /*--*/
 /* The ACT calls below will be made without a transaction handle. */
 /* Changes will be immediate. */
 /* This code shows how to change the description of an ACT */
 /*--*/

198 Chapter 17 • Understanding DATA Step Functions for Metadata Security Administration

 /* Get the Desc attribute */
 attrvalue = "";
 rc = METASEC_GETACTA("",act_uri,"Desc", attrvalue);
 if (rc < 0) then do;
 sysmsg = sysmsg();
 put sysmsg;
 end;
 else
 put "Existing ACT Description:" attrvalue;

 /* change the ACT description */
 rc = METASEC_SETACTA("",act_uri,"Desc",
 "ACT that denies PUBLIC and grants SASUSERS");
 if (rc < 0) then do;
 sysmsg = sysmsg();
 put sysmsg;
 end;

 /* Get the Desc attribute */
 attrvalue = "";
 rc = METASEC_GETACTA("",act_uri,"Desc", attrvalue);
 if (rc < 0) then do;
 sysmsg = sysmsg();
 put sysmsg;
 end;
 else
 put "New ACT Description:" attrvalue;

 /* list all the attributes on the ACT */
 put "These are the new attributes on the ACT:";

 n=1;
 rc =1;
 do while (rc > 0) ;
 attrname="";
 attrvalue="";
 rc=metasec_getnacta("", act_uri, n, attrname, attrvalue);
 if (rc < 0) then do;
 sysmsg = sysmsg();
 put sysmsg;
 end;
 else do;
 put "Attribute #" n "Name=" attrname "Value=" attrvalue;
 n=n+1;
 end;
 end;

run;

If you issue the METABROWSE command to open the Metadata Browser window, you
can see the new ACT, "My Demo ACT for METASEC." It is associated with the new
table, "My Demo Table 2 for METASEC."

The following code shows how to remove the ACT from the object. The calls in the code
are submitted without a transaction context, so the changes are made immediately.

Examples: DATA Step Functions for Metadata Security Administration 199

With METASEC_REMACT, you must specify the ID instance form of URI for the
ACT. Use the METADATA_RESOLVE function to find the ID. You can specify the
search form for the object from which you remove the ACT.

data _null_;
 length type $60
 id $17;
 type='';
 id='';
 rc=metadata_resolve("omsobj:AccessControlTemplate?@Name='Grant SASUSERS
ACT'",
 type,id);
 rc2 = METASEC_REMACT("",
 "omsobj:PhysicalTable?@Name='Demo Table 2 for METASEC'",
 "omsobj:AccessControlTemplate/"||id,
 "0");
 if (rc < 0) then do;
 sysmsg = sysmsg();
 put sysmsg;
 end;
run;

If you look at the Metadata Browser window again, you can see that the ACT has been
removed from the table.

The following code deletes the table, the ACT, and the person by name, with the search
form of URI. The calls in the code are submitted without a transaction context, so the
changes are made immediately. Because the PUBLIC user group was denied access to
the ACT earlier, only the unrestricted user can perform this task. Administrative access
is required to add and delete users.

options metaserver="myserver"
metaport=8561
metauser="sasadm@saspw"
metapass="adminpwd"
metarepository="Foundation";

data _null_;
 rc=metadata_delobj("omsobj:PhysicalTable?@Name='Demo Table 2 for METASEC'");

 if (rc < 0) then do;
 sysmsg = sysmsg();
 put sysmsg;
 end;

 rc=metadata_delobj("omsobj:AccessControlTemplate?@Name='Grant SASUSERS
ACT'");
 if (rc < 0) then do;
 sysmsg = sysmsg();
 put sysmsg;
 end;

 rc=metadata_delobj("omsobj:Person?@Name='Demo User for METASEC'");
 if (rc < 0) then do;
 sysmsg = sysmsg();
 put sysmsg;
 end;
run;

200 Chapter 17 • Understanding DATA Step Functions for Metadata Security Administration

Chapter 18

DATA Step Functions for
Metadata Security Administration

Dictionary . 201
METASEC_APPLYACT Function . 201
METASEC_BEGTRAN Function . 202
METASEC_DELACT Function . 203
METASEC_ENDTRAN Function . 204
METASEC_GETACTA Function . 205
METASEC_GETNACT Function . 206
METASEC_GETNACTA Function . 208
METASEC_GETNAUTH Function . 210
METASEC_GETNID Function . 213
METASEC_NEWACT Function . 215
METASEC_REMACT Function . 216
METASEC_SETACTA Function . 217
METASEC_SETAUTH Function . 219

Dictionary

METASEC_APPLYACT Function
Applies an ACT to an object.

Syntax
rc = METASEC_APPLYACT(tc, uri, act_uri,flags);

Required Arguments
tc (in)

specifies a transaction context handle; can be an empty string " " to invoke with a
temporary context.

uri (in)
specifies a character variable or constant that contains the URI of the object to which
you are applying the ACT.

201

act_uri (in)
specifies a character variable or constant that contains the URI of the ACT that you
are applying to the object; use the following form of URI:
“omsobj:AccessControlTemplate/xxxxxxxx.yyyyyyyy”.

flags (in)
not currently used; set to 0 (zero).

Return Values
0

Successful completion.

-1
Unable to connect to the metadata server.

-99 or less
Other error; see log or sysmsg() for information.

Details
This function calls the ISecAdmin method ApplyACTToObj(). For information about
the method, see SAS Open Metadata Interface: Reference and Usage.

See “Example: Working with ACTs” on page 193 for a usage example.

METASEC_BEGTRAN Function
Begins the TC.

Syntax
rc = METASEC_BEGTRAN(uri, flags, tc);

Required Arguments
uri (in)

specifies a character variable or constant that contains the URI of the object to be
manipulated by the transaction, or an empty string if the object is not immediately
known. When an empty string is used, identify the target resource in the
METASEC_ENDTRAN function.

flags (in)
not currently used; set to 0 (zero).

tc (out)
returns a character variable that contains the handle of the new TC; must be at least
$16.

Return Values
0

Successful completion.

-1
Unable to connect to the metadata server.

202 Chapter 18 • DATA Step Functions for Metadata Security Administration

-2
Output variable for TC is too small to hold the TC handle.

-3
No objects match the specified URI.

-4
Numeric value (flag) exceeds the maximum usable value.

-99 or less
Other error; see log or sysmsg() for information.

Details
This function calls the ISecAdmin method BeginTransactionContext(). For information
about the method, see SAS Open Metadata Interface: Reference and Usage.

See “Example: Begin and End Transaction Context” on page 192 for a usage example.

See Also

Functions

• “METASEC_ENDTRAN Function” on page 204

METASEC_DELACT Function
Deletes ACT from the metadata server.

Syntax
rc = METASEC_DELACT(tc, act_uri);

Required Arguments
tc (in)

specifies a transaction context handle; can be an empty string " " to invoke with a
temporary context; if tc is returned from the METASEC_BEGTRAN function, then
tc references an existing ACT.

act_uri (in)
specifies a character variable or constant that contains the URI of the ACT that you
are deleting; use the following form of URI: “omsobj:AccessControlTemplate/
xxxxxxxx.yyyyyyyy”.

Return Values
0

Successful completion.

-1
Unable to connect to the metadata server.

-2
ACT was not deleted; see sysmsg() for information.

METASEC_DELACT Function 203

Details
When the ACT is deleted, any associations are also deleted.

This function calls the ISecAdmin method DestroyAccessControlTemplate(). For
information about the method, see SAS Open Metadata Interface: Reference and Usage.

See “Example: Working with ACTs” on page 193 for a usage example.

See Also

Functions

• “METASEC_GETACTA Function” on page 205

• “METASEC_GETNACT Function” on page 206

• “METASEC_NEWACT Function” on page 215

• “METASEC_SETACTA Function” on page 217

METASEC_ENDTRAN Function
Ends the TC.

Syntax
rc = METASEC_ENDTRAN(uri, tc, flags);

Required Arguments
uri (in)

specifies a character variable or constant that contains the URI of the object to be
manipulated by the transaction.

tc (in)
specifies a character variable that contains the handle of the TC to be ended.

flags (in)
specifies an integer bit field that specifies whether the transaction should be
committed. Use one of the following macro variables from %MDSECCON(). A
value is required. The function will return an error if you do not specify a value.

_SECAD_COMMIT_TC Commit transaction.

_SECAD_DISCARD_TC Do not commit transaction.

For more information, see “Using the %MDSECCON() Macro” on page 191.

Return Values
0

Successful completion.

-1
Unable to connect to the metadata server.

-3
No objects match the specified URI.

204 Chapter 18 • DATA Step Functions for Metadata Security Administration

-4
Numeric value (flag) exceeds the maximum usable value.

-5
No TC handle was specified.

-99 or less
Other error; see log or sysmsg() for information.

Details
This function calls the ISecAdmin method EndTransactionContext(). For information
about the method, see SAS Open Metadata Interface: Reference and Usage.

See “Example: Begin and End Transaction Context” on page 192 for a usage example.

See Also

Functions

• “METASEC_BEGTRAN Function” on page 202

METASEC_GETACTA Function
Returns an ACT attribute.

Syntax
rc = METASEC_GETACTA(tc, act_uri, attr, attr_value);

Required Arguments
tc (in)

specifies a transaction context handle; can be an empty string " " to invoke with a
temporary context; if tc is returned from the METASEC_BEGTRAN function, then
tc references an existing ACT.

act_uri (in)
specifies a character variable or constant that contains the URI of the ACT that is
requested; can be blank if the ACT was specified when creating the TC; use the
following form of URI: “omsobj:AccessControlTemplate/xxxxxxxx.yyyyyyyy”.

attr (in)
specifies a character variable that specifies the ACT attribute whose value you are
requesting; see Details for more information.

attr_value
returns a character variable that contains the value of the ACT attribute; see Details
for more information.

Return Values
0

Successful completion.

-1
Unable to connect to the metadata server.

METASEC_GETACTA Function 205

-99 or less
Attribute is not set; see log or sysmsg() for information.

Details
This function calls the ISecAdmin method GetAccessControlTemplateAttribs(). For
information about this method, see SAS Open Metadata Interface: Reference and Usage.

Lowercase or mixed-case ACT attributes (Name, Desc, Use) are automatically
uppercased (NAME, DESC, USE). The following table provides more information about
the attr and attr_value arguments.

Table 18.1 ACT Attribute Specifications

Attribute Attribute Value
Maximum Length
of Attribute Value Notes

NAME Character string 60 Optional

DESC Character string 200 Optional

USE REPOS or empty
string

5 Optional; the REPOS
value indicates that
the specified ACT is
the default repository
ACT

See “Example: Working with ACTs” on page 193 for a usage example.

See Also

Functions

• “METASEC_DELACT Function” on page 203

• “METASEC_GETNACTA Function” on page 208

• “METASEC_NEWACT Function” on page 215

• “METASEC_SETACTA Function” on page 217

METASEC_GETNACT Function
Returns the nth ACT.

Syntax
rc = METASEC_GETNACT(tc, uri, n, act_uri, name, desc, use<, flags);>

Required Arguments
tc (in)

specifies a transaction context handle; can be an empty string " " to invoke with a
temporary context.

206 Chapter 18 • DATA Step Functions for Metadata Security Administration

uri (in)
specifies a character variable or constant that contains the URI of the object from
which you want to return the ACTs.

If the URI is for a repository (in the form "ReposID:xxxxxxxx"), then the metadata
server function GetAccessControlTemplateList() is called to obtain the ACT
information.

If the URI is for an object (in the form "omsobj:ObjectType/xxxxxxxx.yyyyyyyy"),
then GetACTsOnObj() is called.

Search syntax is supported, such as "omsobj:ObjectType?@Name='My Object' ".

n (in)
specifies a one-based numeric index value that indicates which row to return from
the array. For information, see “Array Parameters” on page 138.

act_uri (out)
returns a character variable that contains the URI of the ACT that is requested; this
URI is in the following form: "omsobj:AccessControlTemplate/xxxxxxxx.yyyyyyyy".

name (out)
returns a character variable that contains the name of the nth ACT.

desc (out)
returns a character variable that contains the description of the nth ACT.

use (out)
returns a character variable that contains the value of the USE attribute of the nth
ACT. If the ACT is for a repository, the returned value is "REPOS". Otherwise, the
returned value is an empty string.

Optional Argument
flags (in)

specifies an optional integer bit field. If the uri argument is in the form
ReposID:yyyyyyyy (that is, GetAccessControlTemplateList() is called), you can use
the following macro variable from %MDSECCON();

_SECAD_REPOS_DEPENDENCY_USES Return all ACTs in all SAS
Metadata Repositories that are
not of type PROJECT.

For more information, see “Using the %MDSECCON() Macro” on page 191.

Return Values
0

Successful completion, but no ACTs are found to be applied to the object.

-1
Unable to connect to the metadata server.

-2
Error returning the ACT list; see log or sysmsg() for information.

-3
No objects match the specified URI.

-4
Numeric value (n) exceeds the maximum usable value.

METASEC_GETNACT Function 207

-5
n is out of range.

-99 or less
Other error; see log or sysmsg() for information.

Details
If the uri argument represents a repository, then the ACTs in the repository are returned.
If uri does not represent a repository, then the ACTs that protect the object are returned.

This function calls the ISecAdmin method GetAccessControlTemplateList() or
GetACTsOnObj(), depending on the form of the URI in the uri argument. For
information about the methods, see SAS Open Metadata Interface: Reference and Usage.

See “Example: Working with ACTs” on page 193 for a usage example.

See Also

Functions

• “METASEC_APPLYACT Function” on page 201

• “METASEC_GETNAUTH Function” on page 210

• “METASEC_GETNID Function” on page 213

• “METASEC_REMACT Function” on page 216

• “METASEC_SETAUTH Function” on page 219

METASEC_GETNACTA Function
Returns the nth attribute for an ACT.

Syntax
rc = METASEC_GETNACTA(tc, act_uri, n, attr, attr_value);

Required Arguments
tc (in)

specifies a transaction context handle; can be an empty string " " to invoke with a
temporary context. If tc is returned from the METASEC_BEGTRAN function, then
tc references an existing ACT.

act_uri (in)
specifies a character variable that contains the URI of the ACT that is requested; this
URI is in the following form: “omsobj:AccessControlTemplate/xxxxxxxx.yyyyyyyy”.

n (in)
One-based numeric index value that indicates which row to return from the array.
For more information, see “Array Parameters” on page 138.

attr (out)
returns a character variable that contains the name of the nth attribute found on the
ACT; see Details for more information.

208 Chapter 18 • DATA Step Functions for Metadata Security Administration

attr_value (out)
returns a character variable that contains the value of the nth attribute found on the
ACT; see Details for more information.

Return Values
0

Successful completion, but no ACTs are found.

-1
Unable to connect to the metadata server.

-4
Numeric value (n) exceeds the maximum usable value.

-5
n is out of range.

-99 or less
Other error; see log or sysmsg() for information.

Details
This function calls the ISecAdmin method GetAccessControlTemplateAttribs(). For
information about the method, see SAS Open Metadata Interface: Reference and Usage.

The following table provides more information about the attr and attr_value arguments.

Table 18.2 ACT Attribute Specifications

Attribute Attribute Value
Maximum Length
of Attribute Value Notes

NAME Character string 60

DESC Character string 200

USE REPOS or empty
string

5 The REPOS value
indicates that the
specified ACT is the
default repository
ACT

See “Example: Working with ACTs” on page 193 for a usage example.

See Also

Functions

• “METASEC_DELACT Function” on page 203

• “METASEC_GETACTA Function” on page 205

• “METASEC_NEWACT Function” on page 215

• “METASEC_SETACTA Function” on page 217

METASEC_GETNACTA Function 209

METASEC_GETNAUTH Function
Returns the nth authorization for an object.

Syntax
rc=METASEC_GETNAUTH(tc, uri, n, type, name, auth, perm, cond <, flags><, display>)

Required Arguments
tc (in)

specifies a transaction context handle; can be an empty string " " to invoke with a
temporary context.

uri (in)
specifies a character variable or constant that contains the URI of the object that is
requested; can be an empty string " " if tc is specified. You can optimize
performance by using the following form of URI:

omsobj: metatype/identifier.identifier

n (in)
specifies a one-based numeric index value that indicates which row to return from
the array. For more information, see “Array Parameters” on page 138.

name (in/out)
specifies a character variable that contains the identity name, which must be unique
for every identity of that type on the metadata server. If this argument is empty, all
identities associated to authorizations for the object are returned. Can be a comma-
delimited list that is parallel to a list for the type argument; for more information, see
“About the in/out Arguments” on page 212.

auth (out)
returns an integer bit field that indicates grant or deny, and the origin of the grant or
deny. You can use macro variables from %MDSECCON() to translate the integer
into a recognizable message. For more information, see “Authorizations and the
%MDSECCON() Macro” on page 211.

perm (in/out)
For input, specifies an optional, comma-delimited list of permission names for which
authorizations are requested. For more information, see “About the in/out
Arguments” on page 212. If this argument is empty, all available permissions are
returned.

For output, returns a character variable that contains the name of the permission
whose grant or deny state is specified in the auth argument.

cond (out)
returns a character variable that contains the condition if a grant permission is
conditional; can be very long, so if this argument is too short, the value is truncated.

Optional Arguments
flags (in)

specifies an optional integer bit field. You can use one of the following macro
variables from %MDSECCON():

210 Chapter 18 • DATA Step Functions for Metadata Security Administration

_SECAD_ACT_CONTENTS Return the authorizations that
define the contents of an ACT
when the tc or uri argument
references an ACT.

_SECAD_DO_NOT_RETURN_PERMCOND Do not return any available
values for the cond argument.

For more information, see “Using the %MDSECCON() Macro” on page 191.

display (out)
specifies a character variable that contains the value of the DisplayName attribute, if
the identity has a DisplayName attribute.

Return Values
0

Successful completion.

-1
Unable to connect to the metadata server.

-2
Error parsing type or name input list.

-3
No objects match the specified URI.

-4
Numeric value (flag) exceeds the maximum usable value.

-5
n is out of range.

-99 or less
Other error; see log or sysmsg() for information.

Details
This function calls the ISecAdmin method GetAuthorizationsOnObj(). For information
about the method, see SAS Open Metadata Interface: Reference and Usage.

Authorizations and the %MDSECCON() Macro
The auth parameter of the METASEC_GETNAUTH function returns an integer that
indicates grant or deny and the origin of the grant or deny. To simplify usage, you can
use macro variables from %MDSECCON() instead of the integer values. Here are the
authorizations, macro variables, and descriptions. For more information, see “Using the
%MDSECCON() Macro” on page 191. For suggested usage, see “Example: Working
with ACTs” on page 193.

Table 18.3 Explicit, ACT, and Indirect Authorizations and Masks

Authorization Type Macro Variable Description

Explicit deny _SEC_PERM_EXPD Explicit deny that originates
from the authorization that is
directly associated to the
object

METASEC_GETNAUTH Function 211

Authorization Type Macro Variable Description

Explicit grant _SEC_PERM_EXPG Explicit grant that originates
from the authorization that is
directly associated to the
object

Explicit mask _SEC_PERM_EXPM Mask to extract explicit value
that originates from the
authorization that is directly
associated to the object

ACT deny _SEC_PERM_ACTD Deny that originates from an
ACT other than the default
ACT

ACT grant _SEC_PERM_ACTG Grant that originates from an
ACT other than the default
ACT

ACT mask _SEC_PERM_ACTM Mask to extract indirect value
that originates from an ACT
other than the default ACT

Indirect deny _SEC_PERM_NDRD Indirect deny that originates
from an IdentityGroup
membership, through
inheritance, or from the
default ACT; an indirect
value is always returned

Indirect grant _SEC_PERM_NDRG Indirect grant that originates
from an IdentityGroup
membership, via inheritance,
or from the default ACT; an
indirect value is always
returned

Indirect mask _SEC_PERM_NDRM Mask to extract indirect value
that originates from an
IdentityGroup membership,
via inheritance, or from the
default ACT; an indirect
value is always returned.

About the in/out Arguments
Some of this function's arguments are in/out. After the first call for the specified URI,
the in/out parameters do not need to be reset to the initial calling value. Subsequent calls
will retrieve the output values from the cache, and place them in the output variable
without consideration of the value when the call was made. In other words, after the first
call is made for the URI, the metadata server ignores the input aspect of the in/out
parameters.

Here is an example of comma-delimited lists for type and name arguments:

type = "person,person,person";
name = "Fred,Yolanda,Viktorija";

212 Chapter 18 • DATA Step Functions for Metadata Security Administration

rc = metasec_getnauth(tc,uri,n,type,name,auth,permission,cond);

See Also

Functions

• “METASEC_APPLYACT Function” on page 201

• “METASEC_GETNACT Function” on page 206

• “METASEC_GETNID Function” on page 213

• “METASEC_REMACT Function” on page 216

• “METASEC_SETAUTH Function” on page 219

METASEC_GETNID Function
Returns the nth identity for an object. Identities can come directly from the object, from the inheritance
parents, from the default ACT, and from any ACTs that are directly associated with the object.

Syntax
rc = METASEC_GETNID(tc, uri, n, type, name, flags<, display, origin);>

Required Arguments
tc (in)

specifies a transaction context handle; can be an empty string " " to invoke with a
temporary context.

uri (in)
specifies a character variable or constant that contains the URI of the object to be
manipulated by the transaction; can be an empty string “ ” if tc is specified.

n (in)
specifies a one-based numeric index value that indicates which row to return from
the array. For more information, see “Array Parameters” on page 138.

type (out)
returns a character variable that contains the identity type. The variable should be
large enough to store the two available values, IdentityGroup or Person. (It should
probably at least $13.)

name (out)
returns a character variable that contains the identity name, which must be unique for
every identity of that type on the SAS Metadata Server.

flags (in)
specifies an optional integer bit field. You can use one of the following macro
variables from %MDSECCON():

_SECAD_ACT_CONTENTS If the uri argument references an ACT,
returns the identities that define the ACT,
and not the identities from the access
controls that protect the ACT.

METASEC_GETNID Function 213

_SECAD_RETURN_ROLE_TYPE Returns roles as the type for
IdentityGroups that are acting as roles.

For more information, see “Using the %MDSECCON() Macro” on page 191.

Optional Arguments
display (out)

returns an optional character variable that contains the value of the DisplayName
attribute if the identity has a DisplayName attribute.

origin (out)
indicates where the identity originates for the object in security:

D The identity originates from an ACT or ACE that is directly attached to the
object.

I The identity originates from inheritance.

DI The identity originates from inheritance, but the identity is involved with
direct access controls on the object.

Return Values
0

Successful completion.

-1
Unable to connect to the metadata server.

-2
Error returned from the metadata server; see log or sysmsg() for information.

-3
No objects match the specified URI.

-4
Numeric value (flag) exceeds the maximum usable value.

-5
n is out of range.

-99 or less
Other error; see log or sysmsg() for information.

Details
This function calls the ISecAdmin method GetIdentitiesOnObject(). For information
about the method, see SAS Open Metadata Interface: Reference and Usage.

See “Example: Working with ACTs” on page 193 for a usage example.

See Also

Functions

• “METASEC_APPLYACT Function” on page 201

• “METASEC_GETNACT Function” on page 206

• “METASEC_GETNAUTH Function” on page 210

214 Chapter 18 • DATA Step Functions for Metadata Security Administration

• “METASEC_REMACT Function” on page 216

• “METASEC_SETAUTH Function” on page 219

METASEC_NEWACT Function
Creates a new ACT.

Syntax
rc = METASEC_NEWACT(tc,repos_uri, attr,attr_value<, attrn, attr_valuen>);

Required Arguments
tc (in)

specifies a transaction context handle; can be an empty string " " to invoke with a
temporary context.

repos_uri (in)
specifies a character variable or constant that contains the URI of the repository
where you are creating the ACT; use the following form of URI:
“Reposid:xxxxxxxx”.

attr (in)
specifies a character variable or constant that specifies an ACT attribute. You must
pair this argument with an attr_value argument, and you can specify up to three attr
and attr_value pairs. See “Details” on page 215 for more information.

attr_value (in)
specifies a character variable or constant that contains the value of an ACT attribute;
you must pair this argument with an attr argument, and you can specify up to three
attr and attr_value pairs. See “Details” on page 215 for more information.

Return Values
0

Successful completion.

-1
Unable to connect to the metadata server.

-99 or less
Other error; see log or sysmsg() for information.

Details
This function calls the ISecAdmin method CreateAccessControlTemplate(). For
information about the method, see SAS Open Metadata Interface: Reference and Usage.

Lowercase or mixed-case ACT attributes (Name, Desc, Use) are automatically
uppercased (NAME, DESC, USE). The following table provides more information about
the attr and attr_value arguments.

METASEC_NEWACT Function 215

Table 18.4 ACT Attribute Specifications

Attribute Attribute Value
Maximum Length
of Attribute Value Notes

NAME Character string 60 Required; the
attribute value must
be unique within the
repository

DESC Character string 200 Optional

USE REPOS or empty
string

5 Optional; when you
specify REPOS, the
ACT becomes the
new default
repository ACT; see
the following caution.

CAUTION:
Passing in an empty string for the USE attribute is not recommended. Passing in
an empty string has an effect only when the ACT already has USE=REPOS.
However, setting a repository ACT's USE attribute to a blank leaves the repository in
a default mode where all permissions are granted. If you want to change the default
ACT, it is recommended that you set USE=REPOS on the ACT that you want to use
as the repository ACT. The metadata server automatically removes the USE=REPOS
attribute from the previous repository ACT. Thus, the repository is not left in a mode
with no repository ACT.

See “Example: Working with ACTs” on page 193 for a usage example.

See Also

Functions

• “METASEC_DELACT Function” on page 203

• “METASEC_GETACTA Function” on page 205

• “METASEC_GETNACTA Function” on page 208

• “METASEC_SETACTA Function” on page 217

METASEC_REMACT Function
Removes an ACT from an object.

Syntax
rc = METASEC_REMACT(tc, uri, act_uri, flags);

216 Chapter 18 • DATA Step Functions for Metadata Security Administration

Required Arguments
tc (in)

specifies a transaction context handle; can be an empty string " " to invoke with a
temporary context.

uri (in)
specifies a character variable or constant that contains the URI of the object from
which you want to remove the ACT.

act_uri (in)
specifies a character variable or constant that contains the URI of the ACT that you
are removing; use the following form of URI: “omsobj:AccessControlTemplate/
xxxxxxxx.yyyyyyyy”.

flags (in)
not currently used; set to 0 (zero).

Return Values
0

Successful completion.

-1
Unable to connect to the metadata server.

-99 or less
Other error; see log or sysmsg() for information.

Details
This function calls the ISecAdmin method RemoveACTFromObj(). For information
about the method, see SAS Open Metadata Interface: Reference and Usage.

See “Example: Working with ACTs” on page 193 for a usage example.

See Also

Functions

• “METASEC_APPLYACT Function” on page 201

• “METASEC_GETNACT Function” on page 206

• “METASEC_GETNAUTH Function” on page 210

• “METASEC_GETNID Function” on page 213

• “METASEC_SETAUTH Function” on page 219

METASEC_SETACTA Function
Sets an ACT attribute.

Syntax
rc = METASEC_SETACTA(tc, act_uri, attr, attr_value);

METASEC_SETACTA Function 217

Required Arguments
tc (in)

specifies a transaction context handle; can be an empty string " " to invoke with a
temporary context. If tc is returned from the METASEC_BEGTRAN function, then
tc references an existing ACT.

act_uri (in)
specifies a character variable or constant that contains the URI of the ACT that you
are modifying; can be blank if the ACT was specified when creating the TC. Use the
following form of URI: ”omsobj:AccessControlTemplate/xxxxxxxx.yyyyyyyy”.

attr (in)
specifies a character variable that specifies the ACT attribute that you are setting; see
Details.

attr_value (out)
returns a character variable that contains the value of the ACT attribute that you are
setting; any specified attribute values replace the current values for the ACT. See
Details.

Return Values
0

Successful completion.

-1
Unable to connect to the metadata server.

-99 or less
Attribute is not set; see log or sysmsg() for information.

Details
This function calls the ISecAdmin method SetAccessControlTemplateAttribs(). For
information about the method, see SAS Open Metadata Interface: Reference and Usage.

Lowercase or mixed-case ACT attributes (Name, Desc, Use) are automatically
uppercased (NAME, DESC, USE). The following table provides more information about
the attr and attr_value arguments.

Table 18.5 ACT Attribute Specifications

Attribute Attribute Value
Maximum Length
of Attribute Value Notes

NAME Character string 60 Optional; the
attribute value must
be unique within the
repository.

DESC Character string 200 Optional

218 Chapter 18 • DATA Step Functions for Metadata Security Administration

Attribute Attribute Value
Maximum Length
of Attribute Value Notes

USE REPOS or empty
string

5 Optional; when you
specify REPOS, the
ACT becomes the
new default
repository ACT.
When you specify an
empty string, the
ACT is removed
from being the
default repository
ACT. See the
following caution.

CAUTION:
Passing in an empty string for the USE attribute is not recommended. Passing in
an empty string has an effect only when the ACT already has USE=REPOS.
However, setting a repository ACT's USE attribute to a blank leaves the repository in
a default mode where all permissions are granted. If you want to change the default
ACT, it is recommended that you set USE=REPOS on the ACT that you want to use
as the repository ACT. The metadata server automatically removes the USE=REPOS
attribute from the previous repository ACT. Thus the repository is not left in a mode
with no repository ACT.

See “Example: Working with ACTs” on page 193 for a usage example.

See Also

Functions

• “METASEC_DELACT Function” on page 203

• “METASEC_GETACTA Function” on page 205

• “METASEC_GETNACTA Function” on page 208

• “METASEC_NEWACT Function” on page 215

METASEC_SETAUTH Function
Sets authorization for an object.

Syntax
rc = METASEC_SETAUTH(tc, uri, type, name, auth, perm, cond<, flags>);

Required Arguments
tc (in)

specifies a transaction context handle; can be an empty string " " to invoke with a
temporary context.

METASEC_SETAUTH Function 219

uri (in)
specifies a character variable or constant that contains the URI of the object to be
manipulated by the transaction; can be an empty string " " if transaction context is
specified.

type (in)
specifies a character variable or string constant that contains the identity type; the
variable should be large enough to store the two available values, IdentityGroup or
Person, probably at least $13.

name (in)
specifies a character variable that contains the identity name.

auth (in)
specifies a character variable that indicates the authorization to set for the permission
and identity (which are specified in the perm and name arguments, respectively).
Specify one of the following values:

G Grant

D Deny

R Remove

perm (in)
specifies a character variable that contains the name of the permission whose grant,
deny, or remove state is specified in the auth argument.

cond (in)
specifies a character variable that contains the condition if a grant permission is
conditional. The value can be very long, so if this argument is too short, the value is
truncated. The permissions are case sensitive and must match the case of the
permissions that are defined in the metadata server.

Optional Argument
flags (in)

Optional bit field. You can use one of the following macro variables from
%MDSECCON():

_SECAD_ACT_CONTENTS Return the authorizations that define the
contents of an ACT when the tc or uri
argument references an ACT.

For more information, see “Using the %MDSECCON() Macro” on page 191.

Return Values
0

Successful completion.

-1
Unable to connect to the metadata server.

-3
No objects match the specified URI.

-99 or less
Other error; see log or sysmsg() for information.

220 Chapter 18 • DATA Step Functions for Metadata Security Administration

Details
This function calls the ISecAdmin method SetAuthorizationsOnObj(). For information
about the method, see SAS Open Metadata Interface: Reference and Usage.

See “Example: Working with ACTs” on page 193 for a usage example.

See Also

Functions

• “METASEC_APPLYACT Function” on page 201

• “METASEC_GETNACT Function” on page 206

• “METASEC_GETNAUTH Function” on page 210

• “METASEC_GETNID Function” on page 213

• “METASEC_REMACT Function” on page 216

METASEC_SETAUTH Function 221

222 Chapter 18 • DATA Step Functions for Metadata Security Administration

Glossary

access control template
a reusable named authorization pattern that you can apply to multiple resources. An
access control template consists of a list of users and groups and indicates, for each
user or group, whether permissions are granted or denied. Short form: ACT.

ACT
See access control template.

Application Response Measurement
the name of an application programming interface that was developed by an industry
partnership and which is used to monitor the availability and performance of
software applications. ARM monitors the application tasks that are important to a
particular business. Short form: ARM.

ARM
See Application Response Measurement.

authentication
See client authentication.

authorization
the process of determining which users have which permissions for which resources.
The outcome of the authorization process is an authorization decision that either
permits or denies a specific action on a specific resource, based on the requesting
user's identity and group memberships.

batch mode
a noninteractive method of running SAS programs by which a file (containing SAS
statements along with any necessary operating system commands) is submitted to the
batch queue of the operating environment for execution.

client authentication
the process of verifying the identity of a person or process for security purposes.

column
a vertical component of a table. Each column has a unique name, contains data of a
specific type, and has particular attributes. A column is analogous to a variable in
SAS terminology.

data set
See SAS data set.

223

data view
See SAS data view.

database management system
a software application that enables you to create and manipulate data that is stored in
the form of databases. Short form: DBMS.

DBMS
See database management system.

encryption
the act or process of converting data to a form that is unintelligible except to the
intended recipients.

engine
a component of SAS software that reads from or writes to a file. Various engines
enable SAS to access different types of file formats.

job
a collection of SAS tasks that can create output.

library reference
See libref.

libref
a SAS name that is associated with the location of a SAS library. For example, in the
name MYLIB.MYFILE, MYLIB is the libref, and MYFILE is a file in the SAS
library.

localhost
the keyword that is used to specify the machine on which a program is executing. If a
client specifies localhost as the server address, the client connects to a server that
runs on the same machine.

metadata
descriptive data about data that is stored and managed in a database, in order to
facilitate access to captured and archived data for further use.

metadata LIBNAME engine
the SAS engine that processes and augments data that is identified by metadata. The
metadata engine retrieves information about a target SAS library from metadata
objects in a specified metadata repository.

metadata object
a set of attributes that describe a table, a server, a user, or another resource on a
network. The specific attributes that a metadata object includes vary depending on
which metadata model is being used.

metadata repository
a collection of related metadata objects, such as the metadata for a set of tables and
columns that are maintained by an application. A SAS Metadata Repository is an
example.

metadata server
a server that stores information about servers, users, and stored processes and that
provides this information to one or more client applications.

224 Glossary

observation
a row in a SAS data set. All of the data values in an observation are associated with a
single entity such as a customer or a state. Each observation contains either one data
value or a missing-value indicator for each variable.

SAS data file
a type of SAS data set that contains data values as well as descriptor information that
is associated with the data. The descriptor information includes information such as
the data types and lengths of the variables, as well as the name of the engine that was
used to create the data.

SAS data set
a file whose contents are in one of the native SAS file formats. There are two types
of SAS data sets: SAS data files and SAS data views. SAS data files contain data
values in addition to descriptor information that is associated with the data. SAS data
views contain only the descriptor information plus other information that is required
for retrieving data values from other SAS data sets or from files whose contents are
in other software vendors' file formats.

SAS data set option
an option that appears in parentheses after a SAS data set name. Data set options
specify actions that apply only to the processing of that SAS data set.

SAS data view
a type of SAS data set that retrieves data values from other files. A SAS data view
contains only descriptor information such as the data types and lengths of the
variables (columns) plus other information that is required for retrieving data values
from other SAS data sets or from files that are stored in other software vendors' file
formats. Short form: data view.

SAS library
one or more files that are defined, recognized, and accessible by SAS and that are
referenced and stored as a unit. Each file is a member of the library.

SAS Management Console
a Java application that provides a single user interface for performing SAS
administrative tasks.

SAS Metadata Model
a collection of metadata types that are used for saving information about application
elements.

SAS Metadata Server
a multi-user server that enables users to read metadata from or write metadata to one
or more SAS Metadata Repositories.

SAS Open Metadata Architecture
a general-purpose metadata management facility that provides metadata services to
SAS applications. The SAS Open Metadata Architecture enables applications to
exchange metadata, which makes it easier for these applications to work together.

SAS table
another term for SAS data set.

Glossary 225

SAS variable
a column in a SAS data set or in a SAS data view. The data values for each variable
describe a single characteristic for all observations (rows).

SAS/ACCESS software
a group of software interfaces, each of which makes data from a particular external
database management system (DBMS) directly available to SAS, as well as making
SAS data directly available to the DBMS.

statement option
a word that you specify in a particular SAS statement and which affects only the
processing that that statement performs.

transformation
in data integration, an operation that extracts data, transforms data, or loads data into
data stores.

variable
See SAS variable.

226 Glossary

Index

Special Characters
%MDSECCON() macro 191

A
access controls

applying ACTs 201
removing ACTs 216

ACT
applying to an object 201
attributes 205, 208, 217
creating 215
deleting from metadata server 203
removing from an object 216
returning nth ACT 206
working with 193

ACTION= arguments
METAOPERATE procedure 117

ACTION=EMPTY argument 131
ACTION=PAUSE argument 130
ACTION=REFRESH argument

submitting with ALERTEMAILTEST
option 131

submitting with ARM options 130
submitting with backup and recover

options 132
ACTION=RESUME argument 131
ACTION=STATUS argument 128
add actions

overriding 102
address

of metadata server 41
alert email test 131
alert email test option

METAOPERATE procedure 121
ARM logging

turning on and off 130
ARM options

METAOPERATE procedure 120
array parameters 138
association lists 183

associations
nth associated object 167

attributes
ACT 205, 208, 217
nth attribute of specified object 168
setting 186
value of 164

authorization
metadata engine and 49
setting for objects 219

B
BACKUP option

METAOPERATE procedure 120
BACKUPCONFIGURATION option

METAOPERATE procedure 121
best practices 138

C
changing metadata server state 130
code testing 80
columns 3
configuration files

invoking connection profile 29
specifying connection options in 29

connection options 28
specifying directly 28
specifying in configuration file 29
specifying stored connection profiles

29
specifying with OPTIONS statement 29

connection profiles
for connecting to metadata server 33
invoking 29
specifying stored profiles 29
XML document containing 38

227

D
data access

Oracle engine versus metadata engine
57

data set options 4, 55
METAOUT= 55

data sources 3
accessing tables in 55
creating metadata for 105
output processing of tables in 53
synchronizing metadata with 107

DATA step
creating reports with 19

DATA step functions 4, 137
array parameters 138
best practices 138
compared with metadata procedures

143
for reading and writing metadata 141
for security administration 189
for security administration, examples

191
DBMS data 93
DELETE action, METAOPERATE

procedure 117
delete actions 102
DELETE argument

UPDATE_RULE statement
(METALIB) 102

delete metadata records from repository
131

E
EMPTY action, METAOPERATE

procedure 117, 131
encryption 34

level of 35
encryption options 30
engines

See also metadata engine
Oracle engine versus metadata engine

57
underlying 47

examples
creating reports with DATA step 19
creating reports with METADATA

procedure and XML engine 13
data access with Oracle versus metadata

engine 57
functions for security administration

191
metadata DATA step functions 144
METADATA procedure 75
METALIB procedure 105
METAOPERATE procedure 128

pausing metadata server for
administration tasks 13

submitting LIBNAME statement 57
EXCLUDE statement

METALIB procedure 98

F
filerefs

to temporary file with IN= argument 80
with IN= and OUT= arguments 79

folder
creating an object in

(METADATA_NEWOBJ) 175
folder objects

Id and Type attributes 178
FOLDER= statement

METALIB procedure 99, 113
FOLDERID= statement

METALIB procedure 99
folders

creating metadata in (METALIB) 99
storing metadata in 113

FORCE option
METAOPERATE procedure 121

functions
See DATA step functions

H
HEADER= argument

METADATA procedure 69, 82
host name or address 41

I
Id attribute

of folder objects 178
identifiers 11

See also URI
obtaining 11

IMPACT_LIMIT statement
METALIB procedure 100
report types 109

impact analysis
of updating table definitions 109

IN= argument
fileref to temporary file 80
filerefs with 79
METADATA procedure 69
quotation requirements 74

input argument
METADATA procedure 71

input XML string 72

228 Index

J
journal path option

METAOPERATE procedure 121

L
language elements 3

when to use 4
LIBNAME 51
LIBNAME statement, metadata engine 4

constructing 50
METAOUT= argument 53
overview 47
required arguments 52
server connection arguments 52
submitting 57
syntax 51

libraries 3
using metadata DATA step functions to

list 145
libraries and server contexts

using metadata DATA step functions to
list 148

library identifier
OMR statement (METALIB) 96

LIBRARY= argument
OMR statement (METALIB) 96

librefs 47
LIBURI= argument

OMR statement (METALIB) 96
logging, ARM 130
logins

using metadata DATA step functions to
list 152

M
MATCHING argument

REPORT statement (METALIB) 102
METAAUTORESOURCES 31
METAAUTORESOURCES system

option 31
METABROWSE command 4
METACON command 4
METACONNECT 33
METACONNECT= system option 33
metadata

adding prefix to names 101, 112
creating 7, 8
creating with METALIB procedure 105
deleting 10
reading 7, 9
reading and writing with DATA step

functions 141
requesting with METADATA

procedure, for one object 85

requesting with METADATA
procedure, for one type of object 88

setting defaults for 3
specifying a folder for

(METADATA_NEWOBJ) 175
specifying a folder for (METALIB) 99,

113
suppressing changes 100
synchronizing with data source 107
updating 103

METADATA_DELOBJ function 163
METADATA_GETATTR function 164
METADATA_GETNASL function 165
METADATA_GETNASN function 167
METADATA_GETNATR function 168
METADATA_GETNOBJ function 145,

170
using to list Login objects 152
using to list Person objects 158
using to list SASLibrary objects 148

METADATA_GETNPRP function 171
METADATA_GETNTYP function 173
METADATA_GETPROP function 174
METADATA_NEWOBJ function 175
METADATA_PATHOBJ function 178
METADATA_PAUSED function 180
METADATA_PURGE function 181
METADATA_RESOLVE function 182
METADATA_SETASSN function 183
METADATA_SETATTR function 186
METADATA_SETPROP function 187
METADATA_VERSION function 188
metadata associations

modifying association list 183
nth association for specified object 165
represented as XML element 73

metadata DATA step functions 141
examples 144
using to list internal and external users

and their logins 158
using to list libraries and their

directories or database schema 145
using to list libraries and their server

contexts 148
using to list logins 152
using to list user group memberships

155
metadata engine 47

advantages of 49
authorization and 49
constructing a LIBNAME statement 50
data set options for 55
librefs 47
output processing of tables 53
process 47
supported features 48

Index 229

versus Oracle engine 57
metadata identifiers 11

obtaining 11
metadata language elements 3

when to use 4
metadata LIBNAME statement

See LIBNAME statement, metadata
engine

metadata names 11
metadata objects

adding prefix to names 101
applying an ACT to 201
creating 175
nth association 167
nth association for specified object 165
nth attribute 168
nth identity for 213
nth object matching specified URI 170
nth object type on metadata server 173
nth property of 171
referencing with URI 142
removing an ACT from 216
represented as XML element 73
requesting metadata for one, using

METADATA procedure 85
requesting metadata for one type of,

using METADATA procedure 88
resolving URI into 182
setting attributes 186
setting authorization for 219
setting properties 187
URI of specified property for 174
value of specified attribute 164

METADATA procedure 67
compared with METAOPERATE

procedure 63
concepts 72
creating reports with 13
example of default output 75
examples 75
filerefs 79
filerefs to temporary files 80
input argument 71
input XML string 72
metadata association represented as

XML element 73
metadata object represented as XML

element 73
method represented as XML element

73
METHOD=STATUS argument 89
output arguments 71
requesting metadata for one object 85
requesting metadata for one type of

object 88
results 75

server connection arguments 71
syntax 68
task tables 69
using to change a repository's state 78
using to list repositories 75

metadata resources
assigned at startup 31

metadata server
connection options for 28
connection profile for connecting to 33
deleting ACT from 203
determining if paused 63, 180
encryption level 35
encryption type 34
executing adhoc backup 132
host name or address 41
interrupting hung recovery process 121
model version number 188
modifying backup configuration 132
modifying backup schedule 132
network protocol for connecting to 39
nth object type 173
password for 36
pausing and resuming 131
recovering from a backup 132
recovering memory 130
reloading inheritance rules 130
requesting status with

METAOPERATE procedure 128
resolving URIs into objects 182
SAS Metadata Repository for 40
sending XML strings to 67
SPN for 42
TCP port for 37
user ID for 43
XML document containing connection

profiles for 38
METAENCRYPTALG system option 34
METAENCRYPTALGORITHM 34
METAENCRYPTLEVEL 35
METAENCRYPTLEVEL system option

35
METAFIND command 4
METALIB procedure 93

adding prefix to metadata names 112
and information maps (Transformation

objects) 100
and Job objects 100
examples 105
EXCLUDE statement 98
FOLDER= statement 99, 113
FOLDERID= statement 99
IMPACT_LIMIT statement 100
impact analysis 109
metadata updated 103
NOEXEC statement 100

230 Index

ODS reports 105
OMR statement 96
PREFIX statement 101
PROC METALIB statement 95
REPORT statement 101, 104
results 104
SELECT statement 98
selecting tables for processing 98, 109
server connection arguments 96
supported actions 103
synchronizing metadata with data

source 107
syntax 94
task tables 95
UPDATE_RULE statement 102

METAOPERATE procedure 115
ACTION= arguments 117
ACTION=EMPTY 131
ACTION=PAUSE, with pause comment

130
ACTION=REFRESH, with ARM

options 130
ACTION=REFRESH, with no options

130
ACTION=REFRESH argument, with

ALERTEMAILTEST option 131
ACTION=REFRESH argument, with

backup and recover options 132
ACTION=RESUME 131
ACTION=STATUS 128
actions and repositories 125
compared with METADATA procedure

63
concepts 125
examples 128
how it works 125
server backups and recovery 127
server connection arguments 124
syntax 116
task tables 116

METAOUT 55
METAOUT= argument

LIBNAME statement, metadata engine
53

METAOUT= data set option 55
METAPASS 36
METAPASS= system option 36
METAPORT 37
METAPORT= system option 37
METAPROFILE 38
METAPROFILE system option 38
METAPROTOCOL 39
METAPROTOCOL= system option 39
METAREPOSITORY 40
METAREPOSITORY= system option 40
METASEC_APPLYACT function 201

METASEC_BEGTRAN function 202
METASEC_DELACT function 203
METASEC_ENDTRAN function 204
METASEC_GETACTA function 205
METASEC_GETNACT function 206
METASEC_GETNACTA function 208
METASEC_GETNAUTH function 210
METASEC_GETNID function 213
METASEC_NEWACT function 215
METASEC_REMACT function 216
METASEC_SETACTA function 217
METASEC_SETAUTH function 219
METASERVER 41
METASERVER system option 180
METASERVER= system option 41
METASPN= system option 42
METAUSER 43
METAUSER= system option 43
METHOD= argument

METADATA procedure 70
usage 72

METHOD=DOREQUEST
formatting input XML string 72

METHOD=STATUS
formatting input XML string 74

METHOD=STATUS argument
METADATA procedure 89

methods
represented as XML element 73

model version number
metadata server 188

N
names 11

adding prefix to metadata names 112
host name of metadata server 41

network protocol
for connecting to metadata server 39

NOADD argument
UPDATE_RULE statement

(METALIB) 102
NOAUTOPAUSE argument

METAOPERATE procedure 119
NODELDUP argument

UPDATE_RULE statement
(METALIB) 102

NOEXEC statement
METALIB procedure 100

NOUPDATE argument
UPDATE_RULE statement

(METALIB) 102

O
objects

Index 231

creating 8
deleting 10
in type dictionary 8
Job objects 100
maximum number for update 100
of folder objects 178
reading 9
Transformation objects 100

observations 3
ODS reports 105
OMR statement

METALIB procedure 96
OPTIONS statement

specifying connection options with 29
OPTIONS= argument

METAOPERATE procedure 120
Oracle engine

versus metadata engine 57
OUT= argument

filerefs with 79
METADATA procedure 70
METAOPERATE procedure 124

output
METADATA procedure 75

output arguments
METADATA procedure 71

output examples
METADATA procedure 75

output processing
of tables in data source 53

overriding
add actions 102
update actions 102

P
PASSWORD= argument

METADATA procedure 71
METAOPERATE procedure 124
OMR statement (METALIB) 97

passwords
for metadata server 36

PAUSE action 125
PAUSE action, METAOPERATE

procedure 117, 130
pause comment option

METAOPERATE procedure 121
pause comments 130
pausing and resuming metadata server

180
pausing metadata server 63
port

TCP port for metadata server 37
PORT= argument

METADATA procedure 71
METAOPERATE procedure 124

OMR statement (METALIB) 97
prefix

adding to metadata names 101, 112
PREFIX statement

METALIB procedure 101
primary metadata objects

deleting first object matching the URI
163

PROC METADATA statement 69
input argument 71
output arguments 71
server connection arguments 71

PROC METALIB statement 95
PROC METAOPERATE statement 116

action arguments 124
server connection arguments 124

procedures 4, 63
See also METADATA procedure
compared with DATA step functions

143
properties

nth property of specified object 171
setting 187
URI of specified property 174

PROTOCOL= argument
METADATA procedure 71
METAOPERATE procedure 124

purging URIs 181

Q
quotation requirements

IN= argument 74

R
reading metadata

overview 7
using metadata DATA step functions

141, 144
RECOVER option

METAOPERATE procedure 122
REFRESH action 125

pausing and resuming metadata server
130

with ARM options 130
REFRESH action, METAOPERATE

procedure 118
REPID= argument

OMR statement (METALIB) 97
REPORT statement

and IMPACT_LIMIT statement 101
METALIB procedure 101, 104

reports
creating with DATA step 19

232 Index

creating with METADATA procedure
and XML engine 13

details in 105
ODS 105
summarizing changes to table

definitions 101
repositories

listing with METADATA procedure 75
repository

changing state of 78
effect of PAUSE, REFRESH, and

RESUME actions 125
SAS Metadata Repository for metadata

server 40
REPOSITORY= argument

METADATA procedure 71
METAOPERATE procedure 125

resolving URIs 182
resource option 30
RESUME action 125
RESUME action, METAOPERATE

procedure 118, 131
resuming metadata server 131
rows 3

S
SAS Metadata Repository

for metadata server 40
SAS/ACCESS Interface to Oracle engine

versus metadata engine 57
SCHEDULE option

METAOPERATE procedure 123
SCHEDULER option

METAOPERATE procedure 123
security administration

DATA step functions for 189
DATA step functions for, examples

191
SELECT statement

METALIB procedure 98
server backups

managing with METAOPERATE
procedure 127

monitoring with METADATA
procedure 89

server connection arguments
LIBNAME statement, metadata engine

52
METADATA procedure 71
METALIB procedure 96
METAOPERATE procedure 124

server state options
METAOPERATE procedure 124

SERVER= argument
METADATA procedure 71

METAOPERATE procedure 125
OMR statement (METALIB) 97

SPN (service principal name) 42
state of repository

changing 78
STATUS action, METAOPERATE

procedure 119, 128
status request for metadata server

benefits of METADATA procedure
METHOD=STATUS statement 72

comparison of METADATA and
METAOPERATE procedures 63

supported server states 125
with METAOPERATE procedure 128

STOP action, METAOPERATE
procedure 119

stored connection profiles 29
synchronizing metadata 107
system options 3

by category 27
connection options 28
encryption options 30
overview 27
resource option 30
viewing settings 28

T
table definitions

creating 105
report summarizing changes in 101

table metadata
creating 93

tables 3
accessing in data source 55
excluding for processing 98
output processing of 53
selecting for processing 98, 109

TCP port
for metadata server 37

temporary files
fileref to, with IN= argument 80

terminology 3
testing alert email subsystem 131
testing code 80
transaction contexts 190

beginning and ending 192, 202, 204
Type attribute

of folder objects 178
type dictionary

affect on language elements that read
and write metadata 8

description and purpose 8
location 8
objects 8

TYPE= argument

Index 233

REPORT statement (METALIB) 101

U
underlying engine 47
Uniform Resource Identifier

See URI
UNREGISTER action, METAOPERATE

procedure 119
UPDATE_RULE statement

METALIB procedure 102
update actions

overriding 102
updates

maximum number of objects for 100
updating metadata 103
URI 12

DATA step functions for security
administration 190

deleting first object that matches 163
formats 12
nth object matching 170
of specified property for specified object

174
purging 181
referencing metadata objects with 142
resolving into metadata objects 182

user group memberships
using metadata DATA step functions to

list 155
user ID

for metadata server 43
USER= argument

METADATA procedure 71
METAOPERATE procedure 125

OMR statement (METALIB) 98
users

using metadata DATA step functions to
list 158

V
variables 3
VERBOSE argument

METADATA procedure 70, 84

W
writing metadata

using metadata DATA step functions
141

X
XML documents

containing connection profiles 38
XML elements

metadata association represented as 73
metadata object represented as 73
methods represented as 73

XML engine
creating reports with 13

XML string
formatting for

METHOD=DOREQUEST 72
formatting for METHOD=STATUS 74

XML strings
input XML string 72
sending to SAS Metadata Server 67

234 Index

	Contents
	What's New in the SAS 9.3 Language Interfaces to Metadata
	Overview
	Procedures
	System Options
	Documentation Enhancements

	Accessibility Features of the SAS Language Interfaces to Metadata
	Overview

	Recommended Reading
	Introduction
	What Are the Metadata Language Elements?
	Overview of Metadata Language Elements
	When to Use Metadata Language Elements
	What Can I Report on in a SAS Metadata Repository?

	Using Language Elements That Read and Write Metadata
	Overview of Using SAS Language Elements That Read and Write
Metadata
	Objects Included in the Dictionary
	What is the SAS Type Dictionary?
	How the Type Dictionary Affects SAS Language Elements
	Creating Metadata
	Reading Metadata
	Deleting Metadata

	Metadata Object Identifiers and URIs
	What Is a Metadata Identifier?
	Obtaining Metadata Names and Identifiers
	What Is a URI?

	Examples: Using Metadata Language Elements to Create Reports
	Overview of the Examples
	Example: Creating a Report with the METADATA Procedure and
the XML Engine
	Example: Creating a Report with the DATA Step

	System Options
	Introduction to System Options for Metadata
	Overview of System Options for Metadata
	Connection Options
	Introduction to Connection Options
	Specifying Connection Properties Directly
	Specifying a Stored Connection Profile

	Encryption Options
	Resource Option

	System Options for Metadata
	Dictionary
	METAAUTORESOURCES System Option
	METACONNECT= System Option
	METAENCRYPTALG System Option
	METAENCRYPTLEVEL System Option
	METAPASS= System Option
	METAPORT= System Option
	METAPROFILE System Option
	METAPROTOCOL= System Option
	METAREPOSITORY= System Option
	METASERVER= System Option
	METASPN= System Option
	METAUSER= System Option

	Metadata LIBNAME Engine
	Introduction to the Metadata LIBNAME Engine
	Overview of the Metadata LIBNAME Engine
	What Is Supported?
	What Is Not Supported
	Advantages of Using the Metadata Engine
	The Metadata Engine and Authorization
	How the Metadata Engine Constructs a LIBNAME Statement

	Reference for the Metadata Engine
	LIBNAME Statement for the Metadata Engine
	Overview: Metadata LIBNAME Statement
	Syntax: Metadata LIBNAME Statement

	SAS Data Set Options for the Metadata Engine
	METAOUT= Data Set Option

	Examples for the Metadata Engine
	Example: Submitting the LIBNAME Statement
	Example: Before and After the Metadata Engine
	Overview
	Using the SAS/ACCESS Interface to Oracle Engine Directly
	Using the Metadata Engine

	Procedures
	Introduction to Procedures for Metadata
	Overview of Procedures for Metadata
	Comparison of the METADATA Procedure and the METAOPERATE Procedure

	METADATA Procedure
	Overview: METADATA Procedure
	Syntax: METADATA Procedure
	PROC METADATA Statement

	Concepts: METADATA Procedure
	Introduction to the METHOD= Argument
	Formatting an XML Method Call for DoRequest
	The Entire Method Is an XML Element
	A Metadata Object Is an XML Element
	A Metadata Association Is an XML Element
	Quotation Requirements
	Submitting an XML Element with METHOD=STATUS
	See Also

	Results: METADATA Procedure
	Examples: METADATA Procedure
	Get Information about Metadata Repositories
	Change a Metadata Repository's Availability
	Filerefs with the IN= and OUT= Arguments
	Fileref to a Temporary File with the IN= Argument
	HEADER= Argument
	VERBOSE Argument
	Request the Metadata for One Object
	Request the Metadata for One Type of Object
	Use METHOD=STATUS to Get Backup Information

	METALIB Procedure
	Overview: METALIB Procedure
	Syntax: METALIB Procedure
	PROC METALIB Statement
	OMR Statement
	EXCLUDE or SELECT Statement
	FOLDER= or FOLDERID= Statement
	IMPACT_LIMIT Statement
	NOEXEC Statement
	PREFIX Statement
	REPORT Statement
	UPDATE_RULE Statement

	Concepts: METALIB Procedure
	How PROC METALIB Works
	What Metadata Is Updated?

	Results: METALIB Procedure with the REPORT Statement
	Introduction
	Output Format
	Details in the Report

	Examples: METALIB Procedure
	Creating Metadata for a Data Source
	Synchronizing Metadata with the Data Source
	Selecting Tables for Processing
	Generating an Impact Analysis
	Adding a Prefix to New Metadata Names
	Specifying a Folder for the Metadata

	METAOPERATE Procedure
	Overview: METAOPERATE Procedure
	Syntax: METAOPERATE Procedure
	PROC METAOPERATE Statement

	Concepts: METAOPERATE Procedure
	How PROC METAOPERATE Works
	How PAUSE, REFRESH, and RESUME Affect Repositories
	Using Backup and Recover XML Elements

	Examples: METAOPERATE Procedure
	Submitting ACTION=STATUS
	Submitting ACTION=PAUSE with a Pause Comment
	Submitting ACTION=REFRESH with ARM Logging
	Submitting ACTION=REFRESH to Pause and Resume the Metadata
Server
	Submitting ACTION=RESUME
	Submitting ACTION=EMPTY
	Submitting ACTION=REFRESH with the Alert E-mail Test Option
	Submitting ACTION=REFRESH with Backup and Recover Options

	DATA Step Functions
	Introduction to DATA Step Functions for Metadata
	Overview of DATA Step Functions for Metadata
	Best Practices
	Array Parameters

	Understanding DATA Step Functions for Reading and Writing Metadata
	What Are the DATA Step Functions for Reading and Writing Metadata?
	Referencing a Metadata Object with a URI
	Comparison of DATA Step Functions to Metadata Procedures
	Examples: DATA Step Functions for Reading Metadata
	Overview
	Metadata Access Overview
	Featured Functions
	Featured Metadata Types and Associations
	Example: Listing Libraries and Their Associated Directory or
Database Schema
	Example: Listing Libraries and Their Server Contexts
	Example: Listing Logins and Their Associated Identities and
Authentication Domains
	Example: Listing User Group Memberships
	Example: Listing Users and Their Logins

	DATA Step Functions for Reading and Writing Metadata
	Dictionary
	METADATA_DELASSN Function
	METADATA_DELOBJ
	METADATA_GETATTR Function
	METADATA_GETNASL Function
	METADATA_GETNASN Function
	METADATA_GETNATR Function
	METADATA_GETNOBJ Function
	METADATA_GETNPRP Function
	METADATA_GETNTYP Function
	METADATA_GETPROP Function
	METADATA_NEWOBJ Function
	METADATA_PATHOBJ Function
	METADATA_PAUSED Function
	METADATA_PURGE Function
	METADATA_RESOLVE Function
	METADATA_SETASSN Function
	METADATA_SETATTR Function
	METADATA_SETPROP Function
	METADATA_VERSION Function

	Understanding DATA Step Functions for Metadata Security Administration
	What Are the DATA Step Functions for Metadata Security Administration?
	Transaction Contexts and URIs
	Using the %MDSECCON() Macro
	Examples: DATA Step Functions for Metadata Security Administration
	Overview
	Example: Begin and End Transaction Context
	Example: Working with ACTs

	DATA Step Functions for Metadata Security Administration
	Dictionary
	METASEC_APPLYACT Function
	METASEC_BEGTRAN Function
	METASEC_DELACT Function
	METASEC_ENDTRAN Function
	METASEC_GETACTA Function
	METASEC_GETNACT Function
	METASEC_GETNACTA Function
	METASEC_GETNAUTH Function
	METASEC_GETNID Function
	METASEC_NEWACT Function
	METASEC_REMACT Function
	METASEC_SETACTA Function
	METASEC_SETAUTH Function

	Glossary
	Index

