
SAS® 9.2 Logging
Configuration and
Programming Reference

TW10151_logug_colortitlepg.indd 1 1/22/09 11:59:35 AM

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2009.
SAS ® 9.2 Logging: Configuration and Programming Reference. Cary, NC: SAS Institute
Inc.

SAS® 9.2 Logging: Configuration and Programming Reference
Copyright © 2009, SAS Institute Inc., Cary, NC, USA
ISBN 978–1–59994–434–0
All rights reserved. Produced in the United States of America.
For a hard-copy book: No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, or otherwise, without the prior written permission of the publisher, SAS
Institute Inc.
For a Web download or e-book: Your use of this publication shall be governed by the
terms established by the vendor at the time you acquire this publication.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of this
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227-19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, February 2009
1st electronic book, March 2009
2nd electronic book, August 2009
3rd electronic book, May 2010
SAS® Publishing provides a complete selection of books and electronic products to help
customers use SAS software to its fullest potential. For more information about our
e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site
at support.sas.com/publishing or call 1-800-727-3228.
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.

Contents

What’s New vii

Overview vii

General Enhancements vii

P A R T 1 SAS Logging 1

Chapter 1 � The SAS Logging Facility 3
Accessibility Features of the SAS Logging Facility 3

Overview of the SAS Logging Facility 4

Logging Facility Terminology 5

How the Logging Facility Works 6

Loggers 7

Appenders 10

Logging Thresholds 14

Formatting Messages 15

Message Filtering 16

Using the SAS Logging Facility in the SAS Intelligence Platform 17

Chapter 2 � Enabling the SAS Logging Facility 19
Enabling the Logging Facility for SAS Server Logging 19

Enabling the Logging Facility in SAS Programs 19

Naming a SAS Session 19

P A R T 2 XML Configuration Overview and Reference 23

Chapter 3 � Overview of the Logging Configuration File 25
Typographical Conventions 25

Syntax Conventions 25

XML Elements for Configuring SAS Logging 26

Structure of the Logging Configuration File 28

Sample Configuration Files 29

Chapter 4 � Logger Reference 31
SAS Logger Overview and Syntax 31

Chapter 5 � Appender Reference 33
ARMAppender 34

ConsoleAppender 38

FileAppender 39

FilteringAppender 43

IOMServerAppender 46

RollingFileAppender 48

iv

sLogAppender 56

UNXFacilityAppender 56

WindowsEventAppender 59

ZOSFacilityAppender 60

ZOSWtoAppender 63

Chapter 6 � Pattern Layout 65
Overview of Pattern Layouts 65

Syntax for a Pattern Layout 65

Pattern Layout Syntax Description 66

Conversion Characters 68

Format Modifiers 73

Examples 73

Chapter 7 � Filters 77
Overview of Filters 77

Syntax for Filters 79

AndFilter 79

DenyAllFilter 81

LevelMatchFilter 81

LevelRangeFilter 82

StringMatchFilter 83

Filter Examples 84

P A R T 3 The Logging Facility for SAS Programs 87

Chapter 8 � The SAS Logging Facility in the SAS Language 89
Overview of the SAS Logging Facility in the SAS Language 89

Initializing the SAS Logging Facility for SAS Programs 90

Creating and Using Appenders in a SAS Program 90

Creating Loggers in a SAS Program 91

Creating Log Events in a SAS Program 94

Example of Creating Logger and Appender Categories 94

Chapter 9 � Autocall Macro Reference 97
Using Autocall Macros to Log Messages 97

Dictionary 98

Example of Using Autocall Macros to Log Messages 108

Chapter 10 � Function Reference 111
Using the Logging Facility Functions in the DATA Step 111

Dictionary 112

Logging Example Using Functions 117

Chapter 11 � Logger and Appender Object Language Reference 121
The Logger and Appender Component Object Interface 121

Dot Notation and DATA Step Component Objects 122

v

Dictionary 123

Appendix 1 � Recommended Reading 137
Recommended Reading 137

Glossary 139

Index 143

vi

vii

What’s New

Overview

The logging facility, new with SAS 9.2, is a flexible, configurable framework that you
can use to collect, categorize, and filter events and write them to a variety of output
devices. The logging facility supports problem diagnosis and resolution, performance
and capacity management, and auditing and regulatory compliance.

General Enhancements

In the second maintenance release after SAS 9.2, FilteringAppender has been added
to the documentation. This appender enables you to filter events to determine whether
they should be passed to a referenced appender. The appender can apply a layout to the
events before they are passed.

The primary use of FilteringAppender is to specify different layouts for different
categories of events that are to appear together in the same log.

viii What’s New

1

P A R T1

SAS Logging

Chapter 1.The SAS Logging Facility 3

Chapter 2.Enabling the SAS Logging Facility 19

2

3

C H A P T E R

1
The SAS Logging Facility

Accessibility Features of the SAS Logging Facility 3
Overview of the SAS Logging Facility 4

What Is the Logging Facility? 4

Who Uses the Logging Facility? 4

Comparing the SAS Logging Facility and the SAS Log 4

Logging Facility Terminology 5
How the Logging Facility Works 6

Setting Up the Logging Process 6

The Logging Process 6

Loggers 7

What Is a Logger? 7

XML Elements for Configuring Loggers 7
Hierarchical Logger Names 8

SAS Server Logger Names 9

Loggers in the SAS Language 10

Appenders 10

Appender Overview 10
XML Elements for Configuring Appenders 11

General Appender Syntax 11

SAS Appenders for Server Logging 13

Appenders in the SAS Language 13

Referencing Appenders in a Logger 14
Logging Thresholds 14

Formatting Messages 15

Message Filtering 16

Using the SAS Logging Facility in the SAS Intelligence Platform 17

About the Initial Logging Configuration for SAS Servers 17

Viewing SAS Logging Messages and Adjusting Logging Levels in Client Applications 17
Best Practices for SAS Server Logging 18

Accessibility Features of the SAS Logging Facility
For information about accessibility for any of the products mentioned in this book,

see the online Help for that product.
If you have questions or concerns about the accessibility of SAS products, send e-mail

to accessibility@sas.com.

mailto:accessibility@sas.com

4 Overview of the SAS Logging Facility � Chapter 1

Overview of the SAS Logging Facility

What Is the Logging Facility?
The SAS 9.2 logging facility is a flexible, configurable framework that you can use to

collect, categorize, and filter events and write them to a variety of output devices. The
logging facility supports problem diagnosis and resolution, performance and capacity
management, and auditing and regulatory compliance. The logging facility has the
following features:

� Log events are categorized using a hierarchical naming system that enables you to
configure logging at a broad or a fine-grained level.

� Log events can be directed to multiple output destinations, including files,
operating system facilities, and client applications. For each output destination,
you can specify the following logging facility components:

� the categories and levels of log events to report
� the message layout, including the types of data to be included, the order of

the data, and the format of the data
� filters based on criteria such as diagnostic levels and message content

� Logging levels can be adjusted dynamically without starting and stopping
processes.

� Performance-related log events can be generated for processing by the Application
Response Measurement (ARM) 4.0 server.

The logging facility is used by most SAS server processes. You can also use the
logging facility within SAS programs.

Who Uses the Logging Facility?
This guide is for both administrators, who configure the SAS logging facility, and for

programmers, who can use the logging facility in their SAS programs.

Comparing the SAS Logging Facility and the SAS Log
The SAS logging facility and the SAS log are two different logging systems within

SAS.
Traditionally, the SAS log displays information, warning, and error messages as a

result of executing SAS programs or SAS global statements. Regardless of their origin,
all messages are destined for a single log.

By contrast, the SAS logging facility is a framework that categorizes and filters log
messages in SAS server and SAS programming environments, and writes log messages
to various output devices. In the server environment, the logging facility logs messages
based on predefined message categories, such as Admin for administrative messages,
App for application messages, and Perf for performance messages. Messages for a
category can be written to files, consoles, and other system destinations simultaneously.
The logging facility also enables messages to be filtered based on the following
thresholds: TRACE, DEBUG, INFO, WARN, ERROR, and FATAL.

In the programming environment, if the logging facility is initialized for SAS server
logging, messages are written to logging facility destinations only. If the logging facility
is not initialized for SAS server logging, messages are written not only to the SAS log,
but also to logging facility destinations that are created in a SAS program.

SAS Logging Facility � Logging Facility Terminology 5

Logging Facility Terminology
Here are the common terms that this document uses:

appender
a named entity that represents a specific output destination for messages.
Destinations include fixed files, rolling files, operating system facilities, and client
applications. You can configure appenders by specifying thresholds, filters, log
directories and filenames, pattern layouts, and other parameters that control how
messages are written to the destination.

filter
a set of character strings or thresholds, or a combination of strings and thresholds
that you specify. Log events are compared to the filter to determine whether they
should be processed.

level
the diagnostic level that is associated with a log event. The levels, from lowest to
highest, are TRACE, DEBUG, INFO, WARN, ERROR, and FATAL.

log event
an occurrence that is reported by a program for possible inclusion in a log.

logger
a named entity that identifies a message category. Loggers are named using a
hierarchical system that enables you to configure logging at a broad or a
fine-grained level.

The logging facility includes a set of high-level loggers for SAS servers,
including Audit, Admin, App, IOM, and Perf. Some loggers are subdivided into
lower-level (child) loggers. For example, the Audit logger has descendant loggers
called Audit.Meta and Audit.Authentication, and Audit.Meta has descendant
loggers called Audit.Meta.Security and Audit.Meta.Mgmt. The Root logger is the
highest-level logger and does not represent a specific message category.

Loggers inherit settings from their higher-level (ancestor) loggers.

logging configuration
an XML file or a set of SAS program statements that determines how log events
are processed. You use the logging configuration to assign thresholds to loggers, to
configure appenders, and to specify which categories and levels of log events are to
be written to each appender.

If you perform a planned deployment, then the SAS Deployment Wizard
provides default logging configuration files for your SAS servers.

pattern layout
a template that you create to format messages. The pattern layout identifies the
types of data, the order of the data, and the format of the data that is generated in
a log event and is delivered as output.

threshold
the lowest event level that is processed. Log events whose levels are below the
threshold are ignored.

6 How the Logging Facility Works � Chapter 1

How the Logging Facility Works

Setting Up the Logging Process
To use the SAS logging facility, you must set up your logging environment:
� Define a logging configuration, which configures appenders and loggers. You can

define the configuration by setting up an XML file or by using SAS language
elements. If you perform a planned deployment, then logging configuration files
are provided for your SAS servers.

� Specify the LOGCONFIGLOC= system option to enable logging, if you are using
configuration files. If you perform a planned deployment, then this system option
is included in the SAS configuration files for your SAS servers.

� Issue log events in a format that can be processed by the logging facility, if you are
developing your own SAS programs.

The Logging Process
After your logging environment is in place, the SAS logging facility begins processing

as follows:
1 A SAS process (for example, a SAS server process) issues a log event. Each event

includes the following attributes: a name that indicates the message category, a
diagnostic level, and a message that describes the context for the event.

2 The logging facility receives the log event and determines which logger to assign it
to, based on the event’s name attribute.

3 The log event’s level is compared to the threshold that is specified for the logger in
the logging configuration. If the event’s level is at or above the specified threshold,
then processing continues. If the level is below the threshold, then the event is
ignored.

If no threshold is specified for the event’s logger, then the event inherits the
threshold setting of the nearest ancestor logger. For example, if an
Audit.Meta.Security event is being processed, then inheritance occurs as follows:

a The event’s level is compared to the threshold for the Audit.Meta.Security
logger.

b If no threshold is specified for Audit.Meta.Security, then the threshold for
Audit.Meta is applied.

c If no threshold is specified for Audit.Meta, then the threshold for Audit is
applied.

d If no threshold is specified for Audit, then the threshold for Root is applied.
If no thresholds are assigned to the logger or its ancestors, then the event is

ignored.
4 The log event is processed by the appenders that are assigned to the logger and

any of its ancestors in the logging configuration. For example, an
Audit.Meta.Security event is processed by the appenders that are assigned to the
following loggers: Audit.Meta.Security, Audit.Meta, Audit, and Root.

Each of these appenders processes the event according to the appender’s
configuration as specified in the logging configuration. Appender processing is
performed as follows:

a If the appender configuration includes a threshold, then the event’s level is
compared to the threshold. If the event’s level is at or above the threshold,

SAS Logging Facility � XML Elements for Configuring Loggers 7

then processing continues. If the level is below the threshold, then processing
stops.

b If the appender configuration includes a filter, then the event is compared to
the filtering criteria. Processing either continues or stops depending on the
results of the comparison.

c The event is written to the output destination using the specifications that
are defined in the appender configuration. Appender specifications include
parameters such as pattern layouts, log directories, log filenames, rolling
policies, locales, and encoding.

Loggers

What Is a Logger?
A logger is a named entity that identifies a message category. A logger’s attributes

consist of a level and one or more appenders that process the log events for the message
category. The level indicates the threshold, or lowest event level, that will be processed
for this message category.

Loggers are specified in log events to associate the log event with a message category.
By categorizing log events, the logger can write messages of the same category to the
same destinations. When a log event occurs, the log event message is processed by the
appender that is associated with the logger that is named in the event log if the log
event level is the same or higher than the level that is specified for the logger.

Loggers are organized hierarchically and inherit the attributes of their ancestor
logger. Hierarchical logger names are separated by a period (.) (for example,
Admin.Meta.Security). The root logger is the highest level logger. All loggers inherit
the root logger’s attributes. The logging configuration file defines several message
categories that are immediate descendants of the root logger. These high-level
categories, Admin, App, Audit, IOM, and Perf, are used for SAS server logging and can
be referenced by log events in SAS programs.

You configure loggers in a logging configuration file for SAS server logging or by
using SAS language elements in a DATA step or macro program. If you perform a
planned deployment, then the SAS Deployment Wizard provides logging configuration
files for your SAS servers. You can dynamically adjust thresholds by using the server
management features of SAS Management Console. For more information, see
“Administering Logging for SAS Servers” in the SAS Intelligence Platform: System
Administration Guide.

For more information, see “Logging Thresholds” on page 14 and “Appenders” on page
10.

XML Elements for Configuring Loggers
In a logging configuration file, a logger has the following structure:

<logger name="logger-name">
<level value=threshold/>
<appender-ref ref="appender-name"/>

</logger>

Syntax Description:

name="logger-name"

8 Hierarchical Logger Names � Chapter 1

specifies the name of a message category name. The logger name is specified in a
log event to associate a message with a message category.

<level value="threshold"/>
specifies one of the following levels, from lowest to highest: TRACE, DEBUG,
INFO, WARN, ERROR, FATAL. You use the threshold to filter log events. If the
log event diagnostic level is the same or higher than the threshold that is specified
for the log event’s logger, the logging facility continues to process the log event. If
the log event diagnostic level is lower than the logger’s threshold, the log event is
ignored.

<appender-ref ref="appender-name"/>
specifies the name of an appender to record messages for this logger’s message
category.

Hierarchical Logger Names

The logger architecture enables logger names to be multiple levels so that descendant
loggers can inherit thresholds and appender references from their parent loggers,
therefore omitting the appender reference and threshold in the descendant logger
definition. You separate hierarchical logger names with a period (.).

As an example, suppose that your logging facility configuration file defines the Admin
logger with an appender reference value of MyRollingFile and a threshold of Info. A
second logger definition, Admin.MyPgm, specifies the logger name and a threshold of
Debug. Because no appender reference is specified in Admin.MyPgm, the appender
reference is inherited from its parent, the Admin logger. The appender reference
MyRollingFile logs messages for Admin log events whose level is INFO or higher, as
well as Admin.MyPgm log events whose level is DEBUG or higher.

These loggers might be defined using the following logger elements in the logging
configuration file:

<logger name="Admin">
<level value="Info"/>
<appender-ref ref="MyRollingFile"/>

</logger>

<logger name="Admin.MyPgm">
<level value="Debug"/>

</logger>

<root>
<level value="Error"/>
<appender-ref ref="SystemRollingFile">

</root>

If a log event specifies a hierarchical logger name that does not exist, the logging
facility checks for a parent logger definition. If the parent logger exists, the log event is
processed by the parent logger. If a logger definition does not exist for the parent, the
root logger processes the log event.

Consider the example logger definitions in this section. If a log event specifies the
logger Admin.Special, the logging facility determines that the logger Admin.Special
does not exist. The logging facility then checks for the Admin logger. In this case, the
Admin logger exists and the log event is processed by the Admin logger. If the Admin
logger was not defined, the root logger would process the log event.

SAS Logging Facility � SAS Server Logger Names 9

SAS Server Logger Names
Log events for SAS servers use a hierarchical logger name where each name in the

hierarchy identifies a category such as an operation, a server, and a server operation.
For example, log events that specify the Admin.OLAP.Security logger indicate that the
message is an OLAP server security message that is intended for a system
administrator or computer operator.

SAS server logger names begin with one of the following logger categories:

Admin
processes log events that are relevant to system administrators or computer
operators.

App
processes log events that are related to specific applications. For example,
metadata servers, OLAP servers, stored process servers, and workspace servers
use loggers that are named App.class.interface.method to record method calls that
are issued to the server.

Audit
processes log events that are related to user authentication (including accepted
and rejected authentication requests) and to security administration (including the
administration of users, groups, and access controls).

IOM
processes log events for servers that use the Integrated Object Model (IOM)
workspace interface. The IOM interface provides access to Foundation SAS
features such as the SAS language, SAS libraries, the server file system, results
content, and formatting services. IOM servers include metadata servers, OLAP
servers, stored process servers, and workspace servers.

Perf
processes log events that are related to system performance.

The second category in a hierarchical logger name can indicate a type of server or
some type of event, such as authentication. In most cases, however, the categories are
self-explanatory. The following list gives some examples of server categories for the
logging facility.

Logging Facility Server Category SAS Server

Connect SAS/CONNECT Server

Meta SAS Metadata Server

ObjectSpawner SAS Object Spawner

OLAP SAS OLAP Server

In most cases, the categories are self-explanatory. Here is a list of some of the loggers
that the logging facility uses for SAS servers:

Admin.Operations
processes log events that are related to server operations, such as starting,
pausing, and stopping an instance of a workspace server.

Admin.Session

10 Loggers in the SAS Language � Chapter 1

processes log events that are related to starting and stopping batch, windowing,
and SAS/CONNECT server sessions.

Audit.Authentication
processes log events for server authentication requests.

App.Program
processes log events that are related to running a program using the SAS language.

IOM
processes log events that are related to client interactions.

IOM.PE
processes log events that are related to packets that are processed by the BRIDGE
and COM protocol engines.

Perf.ARM
processes log events that are related to ARM 4.0 transactions.

Loggers in the SAS Language
You create loggers in SAS programs by using the following SAS language elements:

� %log4sas_logger()autocall macro for macro programming
� log4sas_logger function in a DATA step

� DCL Logger object constructor in a DATA step

See the following reference documents for information about defining loggers in the
SAS language:

� “%LOG4SAS_LOGGER Autocall Macro” on page 101

� “LOG4SAS_LOGGER Function” on page 113
� “DECLARE Statement, Logger Object” on page 128

If you are writing SAS programs, you can write log events for loggers that are
defined in one of the logging configuration files or you can write log events for loggers
that you create by using the SAS language.

Loggers that are created by using the SAS language exist for the duration of the SAS
session.

Appenders

Appender Overview
An appender is a named entity that is referenced by a logger. An appender specifies

the destination for the message, specifies how the message is formatted, specifies
attributes for the appender class, and provides additional filtering capabilities.

When a log event occurs, the logging facility processes the message by using the
appender that is named in the logger’s <appender-ref> element in a logging facility
configuration file, or in the APPENDER-REF argument of a logger language element in
a SAS program.

SAS has several appender classes for processing messages:

� appenders to log messages to an operating system console

SAS Logging Facility � XML Elements for Configuring Appenders 11

� an IOM server appender to log messages from any IOM server
� file appenders for writing log messages to a file on disk
� appenders to write to Windows, UNIX, and z/OS operating system logs

For a complete list and description of the SAS server appenders, see “SAS Appenders
for Server Logging” on page 13.

You define appenders in the logging configuration file or in a SAS program by using a
SAS function, autocall macro, or DATA step component object. An appender definition
requires an appender class and name and the required parameters for the appender
class. To customize the message, you specify the message layout within the appender
definition. In a logging facility configuration file, you can include additional filtering
arguments in the appender definition.

Logger definitions in SAS programs can reference appenders that are defined in a
SAS program or any of the SAS server appenders.

For more information, see Chapter 5, “Appender Reference,” on page 33 and
“Creating and Using Appenders in a SAS Program” on page 90.

XML Elements for Configuring Appenders

General Appender Syntax
In a logging configuration file, the appender has the following general structure:

<appender class="appender-class" name="appender-name">
[<param name="parameter-name" value="parameter-value"/>-1

… <param name="parameter-name" value="parameter-value"/>-n]
[<layout>

<param name="Header" value="header-text"/>
<param name="HeaderPattern" value="conversion-pattern"/>
<param name="ConversionPattern" value="conversion-pattern"/>
<param name="Footer" value="footer-text"/>
<param name="FooterPattern" value="conversion-pattern"/>
<param name="XMLEscape" value="TRUE | FALSE"/>

</layout>]
[<filter>

<filter-definitions>
</filter>]

</appender>

The brackets ([])indicate that the element is optional.

Syntax Description:

class="appender-class"
The appender class is a type of appender. The following appender classes can be
used in the logging facility:

� ARMAppender
� ConsoleAppender
� FileAppender
� FilteringAppender
� IOMServerAppender
� RollingFileAppender

12 XML Elements for Configuring Appenders � Chapter 1

� sLogAppender

� UNXFacilityAppender

� WindowsEventAppender

� ZOSFacilityAppender

� ZOSWtoAppender

For more information about logging facility appenders, see Chapter 5, “Appender
Reference,” on page 33.

name="appender-name"
The appender name is a user-specified name for the appender. An appender is
associated with a logger when the appender name is specified as the value of the
logger’s appender-ref attribute.

<param name="parameter-name" value="parameter-value"/>
Most appenders have required parameters for specifying information that is
relevant to the appender. Many parameter names are unique for individual
appenders. The name= attribute specifies the name of the parameter, and the
value= attribute specifies the value for the parameter.

For example, appenders that write messages to a user-specified file use the File
parameter, where the value of the File parameter specifies the location and name
of the log file.

See Chapter 5, “Appender Reference,” on page 33 for each appender’s required
parameters.

<layout>
<param name="ConversionPattern" value="conversion-pattern"/>
<param name="Header" value="literal-string"/>
<param name="HeaderPattern" value="conversion-pattern"/>
<param name="Footer " value="literal-string"/>
<param name="FooterPattern" value="conversion-pattern"/>
<param name="XMLEscape" value="true | false"/>
</layout>

You use the <layout> elements to specify how messages should be formatted in the
log. The conversion pattern is a series of conversion characters that represent the
types of data to include in the log. For example, use the conversion characters %d
%t %m to include the date, the time, and the message, respectively, in the log.

You can use the Header, HeaderPattern, Footer, and FooterPattern parameters
to specify the conversion characters that should appear at the top and the bottom
of the log. You can use the XMLEscape parameter to specify whether certain
characters (for example, "<") is converted to its entity representation, which in this
case would be "<".

For more information, see “Formatting Messages” on page 15.

<filter>
<filter-definitions>
</filter>

You can use filters to accept or deny messages based on the following:

� a character string in the message

� a range of message thresholds

� a single message threshold

� a combination of character string, single message threshold, or a range of
message thresholds

For more information, see Chapter 7, “Filters,” on page 77.

SAS Logging Facility � Appenders in the SAS Language 13

SAS Appenders for Server Logging
The following appenders can be configured as the value of the <appender> "class"

attribute in the XML configuration files for SAS servers:

ARMAppender
ARMAppender processes all Application Response Measurement (ARM) messages
that are submitted by an external ARM agent or by the SAS ARM agent. See
“ARMAppender” on page 34.

ConsoleAppender
ConsoleAppender writes messages to the UNIX and Windows operating system
consoles. See “ConsoleAppender” on page 38.

FileAppender
FileAppender writes messages to the specified file in the specified path. See
“FileAppender” on page 39.

FilteringAppender
FilteringAppender applies specified filters to determine whether events should be
passed to a referenced appender. You can specify a layout to be applied to the
events before they are passed. See “FilteringAppender” on page 43.

IOMServerAppender
IOMServerAppender commits messages from any IOM server to a volatile runtime
cache. See “IOMServerAppender” on page 46.

RollingFileAppender
RollingFileAppender writes messages to the specified file in the specified path, and
begins writing messages to a new file that has a different name when specified
criteria are met. See “RollingFileAppender” on page 48.

sLogAppender
sLogAppender is a reserved appender. You should not define new instances of this
appender. See “sLogAppender” on page 56.

UNXFacilityAppender
UNXFacilityAppender writes messages to the syslogd logging facility in UNIX
operating systems. See “UNXFacilityAppender” on page 56.

WindowsEventAppender
WindowsEventAppender writes messages to the Windows Event log. See
“WindowsEventAppender” on page 59.

ZOSFacilityAppender
ZOSFacilityAppender enables multiple instances of SAS in the z/OS operating
system to write messages to a common location. See “ZOSFacilityAppender” on
page 60.

ZOSWtoAppender
ZOSWtoAppender directs SAS application messages to the z/OS operating system
console. See “ZOSWtoAppender” on page 63.

Appenders in the SAS Language
When you specify an appender reference in a logger language element, you can use

any of the appenders that are defined for SAS server logging and the appender
FileRefAppender.

14 Referencing Appenders in a Logger � Chapter 1

FileRefAppender is an appender that you create only in the SAS language, and only
by using a SAS function, DATA step object, or autocall macro. As the name indicates,
FileRefAppender names a fileref that defines a location to store messages.
FileRefAppender is the only appender that can be created by using the SAS language.

When you create an appender in a DATA step, the appender is available only for the
duration of the DATA step. After the DATA step has run, the appender is no longer
available.

For more information, see “Creating and Using Appenders in a SAS Program” on
page 90.

Referencing Appenders in a Logger
After an appender is defined, it can be referenced by a logger. To reference an

appender in a logging configuration file, you include the appender name in the logger’s
<appender-ref> element. In the following logger and appender definitions, the appender
WinEvntVwr is referenced by the logger WEVLogger:

<appender class="WindowsEventAppender" name="WinEvntVwr">
<param name="Appname" value="myApp"/>

</appender>

<logger name="WEVLogger">
<level="error"/>
<appender-ref ref="WinEvntVwr"/>

</logger>

To reference an appender in a logger language element, you specify the appender
name as the value of the APPENDER-REF argument:

%log4sas_logger(myLogger, appender-ref=(myAppender), level=error);

rc= log4sas_logger("myLogger" "appender-ref=(myAppender) level=error";

declare logger logobj("myLogger");
logobj.appenderref="myAppender");

To write the same message in multiple logs, you can specify multiple appender
references in a configuration file logger definition:

<logger name="MyLoggers">
<level="error"/>
<appender-ref ref="WinEvntVwr"/>
<appender-ref ref="RollingFileAppender"/>

</logger>

In a SAS program, you can add multiple appender names separated by a space in the
APPENDER-REF argument:

%log4sas_logger(myLogger, appender-ref=(myAppender myRollingFile), level=error);

Logging Thresholds

The SAS logging facility provides six thresholds: TRACE, DEBUG, INFO, WARN,
ERROR, and FATAL. Thresholds are used to ignore log events that are lower than a
particular level, or to filter messages so that only a single message level is logged.

SAS Logging Facility � Formatting Messages 15

When a log event occurs, up to three levels of filtering can take place:

1 filtering log events by comparing the log event level to the log event’s logger level

2 filtering log events by comparing the log event level to the appender’s threshold

3 filtering log events by comparing the log event level to the threshold that is
specified in the filter definition, which is a part of the appender configuration

In the first two cases, if the log event level is lower than the logger or appender
threshold, the logging facility ignores the log event. Otherwise, processing of the log
event continues.

In the third case, the log event level is compared to the filter threshold. If there is a
match, the log event can be either accepted or denied. If there is no match, the filtering
process continues to the next filter in the filtering policy. For more information, see
Chapter 7, “Filters,” on page 77.

The logging levels, from the lowest to the highest, are as follows:

TRACE produces the most detailed information about your application. This
level is primarily used by SAS Technical Support or development.

DEBUG produces detailed information that you use to debug your
application. This level is primarily used by SAS Technical Support
or development.

INFO provides information that highlights the progress of an application.

WARN provides messages that identify potentially harmful situations.

ERROR provides messages that might allow the application to continue
running.

FATAL provides messages that indicate that severe errors have occurred.
These errors will probably cause the application to end.

Requirement: The level must be enclosed in quotation marks.
An appender can be configured to have a threshold. By default, however, appenders

do not have a threshold. When set, all log events that have a level lower than the
threshold are ignored by the appender.

Formatting Messages
The format of a message can be customized by specifying a unique pattern layout for

each appender class in the SAS logging facility. To create a pattern layout for an
appender class, you use conversion characters that represent the types of data to
include in the message. You can also control the sequence of the data and the
alignment of the data in columns in the message.

Note: The conversion patterns that are used in the SAS logging facility and in the C
language PRINTF statement are similar.

In addition to the set of pattern layouts that are used by the appender classes in the
SAS logging facility, a different set of pattern layouts is used by ARMAppender. For
more information, see ARMAppender Pattern Layouts in SAS Interface to Application
Response Measurement (ARM): Reference. �

Here is an excerpt of an XML file that contains a pattern layout:

<layout>
<param name="ConversionPattern" value="%d; %-5p; %t; %c; (%F:%L); %m"/>

</layout>

16 Message Filtering � Chapter 1

Each data item to be included in the message is represented by a conversion
character. Also, literal text and alignment commands can be specified to enhance the
message format. In this example, the data items are the date, the logging level, the
thread, the logger, the log file, the line number in the calling program that specified the
logging request, and the message.

Here is an example of a message :

2008--06--25--10:24:22,234; WARN; 3; Appender.IOMCallContext; (yn14.sas.c:149);
Numeric maximum was larger than 8, am setting to 8.

For more information, see Chapter 6, “Pattern Layout,” on page 65.

Message Filtering
In addition to filtering log events based on thresholds that are assigned to loggers or

appender definitions, the logging facility enables you to use filter classes to filter log
events based on the following:

� a character string in the message
� a single threshold
� a range of thresholds
� a combination of strings and thresholds

Here is a list of the filter classes:

Filter Class Name Description

StringMatchFilter filters messages based on a character string in
the message.

LevelRangeFilter filters messages based on a range of thresholds.

LevelMatchFilter filters messages based on a single threshold.

AndFilter filters messages based on the results of a list of
other filters.

DenyAllFilter denies log events that did not meet the criteria
of previous filters in a filter policy.

You can define one or more filters within the <appender> definition in the logging
configuration file. Filters are not available in the logging facility language elements for
SAS programs.

Filters are processed in the order that they appear in the <appender> definition,
creating a filtering policy for the appender. The filters either accept the filtering criteria
and process the log event, deny the filtering criteria and deny the log event, or accept
the filtering criteria, and the filtering process checks the next filter in the filtering
policy. If the log event has not been denied, and if there are no other filters in the
filtering policy, the appender accepts and processes the log event.

For more information, see Chapter 7, “Filters,” on page 77.

SAS Logging Facility � Viewing SAS Logging Messages and Adjusting Logging Levels in Client Applications 17

Using the SAS Logging Facility in the SAS Intelligence Platform

About the Initial Logging Configuration for SAS Servers
When you install the SAS Intelligence Platform, the installation process performs the

following configuration steps:
� It enables logging for each server by specifying the LOGCONFIGLOC= option in

the server’s configuration file.
� For each server, it provides a logging configuration file called logconfig.xml that

is located in the server’s configuration directory.
� For each server, it provides an alternative logging configuration file called

logconfig_trace.xml that can be used for troubleshooting.

For more information, see the following topics in the SAS Intelligence Platform: System
Administration Guide:

� “Initial Logging Configuration for SAS Servers”
� “Default Locations for Server Logs”

Viewing SAS Logging Messages and Adjusting Logging Levels in
Client Applications

The initial logging configurations for some SAS servers include appender definitions
that make logging messages available in the following client applications:

� SAS Management Console. From this application, you can view logging messages
for metadata servers, object spawners, OLAP servers, pooled workspace servers,
and stored process servers. In this example, the metadata server log is displayed:

You can also use the Loggers tab in SAS Management Console to dynamically
adjust server logging levels, without the need to restart the server. The following
example shows the Loggers tab for the metadata server:

18 Best Practices for SAS Server Logging � Chapter 1

For more information, see “Using SAS Management Console to Monitor SAS
Servers” in the SAS Intelligence Platform: System Administration Guide.

� SAS Data Integration Studio. From this application, you can view
performance-related events that are associated with a SAS Data Integration
Studio job. For more information, see the product Help.

You can also use enterprise systems management products to view server logging
messages and dynamically adjust server logging levels. For more information, see the
Enterprise Management Integration Web page at http://support.sas.com/rnd/emi.

Best Practices for SAS Server Logging
When using the logging facility for SAS servers, follow these best practices:
� Use the initial logging configuration files that are created during installation.

These files provide a good starting point for server logging.
� If you need to change a server’s logging configuration, back up the initial

configuration file before making changes. Make configuration changes
incrementally, and evaluate the effect of each change before making additional
changes.

� Do not use the TRACE and DEBUG levels unless you are directed to do so by SAS
Technical Support, since these logging levels can affect performance. You can use
either of these methods to adjust logging levels for SAS Technical Support:

� Enable the logconfig_trace.xml file that is provided for the server.
� Use the server manager features of SAS Management Console to adjust

levels temporarily and avoid having to restart the servers.

For more information, see the following documents:
� “Administering Logging for SAS Servers” in the SAS Intelligence Platform: System

Administration Guide.
� SAS Interface to Application Response Measurement (ARM): Reference, which

describes SAS features that are compliant with the ARM 2.0 and ARM 4.0
standards and that enable you to monitor the performance of SAS applications.

http://support.sas.com/rnd/emi

19

C H A P T E R

2
Enabling the SAS Logging
Facility

Enabling the Logging Facility for SAS Server Logging 19
Enabling the Logging Facility in SAS Programs 19

Naming a SAS Session 19

LOGAPPLNAME= System Option 20

LOGCONFIGLOC= System Option 20

Enabling the Logging Facility for SAS Server Logging
You enable the SAS logging facility for SAS servers, by specifying the

LOGCONFIGLOC= system option when SAS starts. The LOGCONFIGLOC= system
option names the location of the logging configuration file.

You can add the LOGCONFIGLOC= system option to either the SAS configuration
file or to the SAS command that you use to start SAS. If you perform a planned
deployment, then the SAS Deployment Wizard includes this system option in the
configuration for your SAS servers.

This system option can be set only when SAS starts and not during a SAS session.
For more information, see “LOGCONFIGLOC= System Option” on page 20.

Enabling the Logging Facility in SAS Programs
The logging facility is enabled for SAS programs at all times. That is, it is not

necessary to specify the LOGCONFIGLOC= system option in order for SAS programs to
use the logging facility.

If you use the logging facility autocall macros, the MAUTOSOURCE system option
must be set and the %LOG4SAS autocall macros must be invoked before any other
logging facility autocall macros are invoked. The MAUTOSOURCE system option is set
by default. No further action is required unless this option is turned off.

The logging facility functions and DATA step objects have no initialization
requirements.

Naming a SAS Session
Logging facility messages can be set to include the name of the SAS session, which

might help you to read the log and to diagnose problems.
To identify a SAS session by name, you specify a session name as the value of the

LOGAPPLNAME= system option.

20 LOGAPPLNAME= System Option � Chapter 2

To display the value of the LOGAPPLNAME= system option in a message, you must
include the S conversion character in the conversion pattern layout, using the key
App.Name.

For more information, see “LOGAPPLNAME= System Option” on page 20 and the S
conversion character in “Conversion Characters” on page 68.

LOGAPPLNAME= System Option

Specifies a SAS session name for SAS logging.

Valid in: configuration file, SAS invocation
Category: Log and procedure output control: SAS log
PROC OPTIONS GROUP= LOGCONTROL

Syntax
LOGAPPLNAME=name

Syntax Description

name
specifies a name for the SAS session. If the name contains a space, enclose the name
in either single or double quotation marks.

Details
The name that is specified by the LOGAPPLNAME= system option is used to identify
the name of a SAS session in logging facility logs if the S conversion character is
specified in the pattern layout.

You can use the &SYSLOGAPPLNAME automatic macro variable to obtain the name
of the SAS session in a SAS program.

See Also

“Conversion Characters” on page 68
SYSLOGAPPLNAME Automatic Macro Variable in SAS Macro Language: Reference

LOGCONFIGLOC= System Option

Specifies the name of the XML configuration file that is used to initialize the SAS logging facility.

Alias: LOGCFGLOC=
Valid in: configuration file, SAS invocation, spawner invocation
Category: Environment control: Initialization and operation

Enabling the SAS Logging Facility � LOGCONFIGLOC= System Option 21

PROC OPTIONS GROUP= EXECMODES

Syntax
LOGCONFIGLOC=file-specification

Syntax Description

file-specification
specifies the physical name of the XML configuration file that is used to initialize the
SAS logging facility. The physical name is the name that is recognized by your
operating system. Enclose the physical name in single or double quotation marks if
the name contains spaces.

Details
If the LOGCONFIGLOC= system option is specified when SAS starts, and if the
SYSIN= option or the OBJECTSERVER option is also specified, logging is performed
only by the logging facility; the SAS log is not started and the LOGPARM= system
option is ignored. The LOG= system option is applied only when the %S{App.Log}
conversion character is specified in the logging configuration file.

Examples

The following example shows the use of the LOGCONFIGLOC= system option:

sas -logconfigloc metaserverlog.xml

22

23

P A R T2

XML Configuration Overview and Reference

Chapter 3.Overview of the Logging Configuration File 25

Chapter 4.Logger Reference 31

Chapter 5.Appender Reference 33

Chapter 6.Pattern Layout 65

Chapter 7.Filters 77

24

25

C H A P T E R

3
Overview of the Logging
Configuration File

Typographical Conventions 25
Syntax Conventions 25

XML Elements for Configuring SAS Logging 26

Structure of the Logging Configuration File 28

Sample Configuration Files 29

Typographical Conventions
Type styles have special meaning for some components of XML syntax in the logging

configuration file. The following list explains the style conventions for the syntax:

italics identifies arguments or values that you supply. Items in italics can
represent user-supplied values that are either one of the following:

� nonliteral values that are assigned to an argument (for
example, value="column-parameter")

� nonliteral arguments (for example, <filter-definitions>)

case sensitivity All text is case sensitive in the logging configuration file. Type
element and attribute names, as well as literal values, as they are
shown in the syntax.

Syntax Conventions
In traditional SAS syntax, angle brackets (<>) are used to denote optional syntax. In

the logging configuration file syntax, square brackets ([])are used to denote optional
syntax. The logging configuration file syntax uses the following symbols:

< > The left angle bracket begins an XML element. The right angle
bracket ends an XML element.

/ A slash before an element name ends the element definition.

/> A slash followed by a right angle bracket ends the definition for the
<param>, <level>, and <appender-ref> subelements.

[] Square brackets identify optional elements or arguments. Any XML
element or attribute that is not enclosed in square brackets is
required.

| A vertical bar indicates that you can choose one value from a group
of values. Values separated by bars are mutually exclusive.

26 XML Elements for Configuring SAS Logging � Chapter 3

-1
-n
…

For repeated elements, the -1 after an element indicates the first
element. The ellipsis before an element and the -n after the same
element indicates that the element can be repeated any number of
times.

" " Single quotation marks identify an attribute value.

XML Elements for Configuring SAS Logging
You use <?xml?> and <logging:configuration> elements as the first XML elements in

the configuration file to specify XML attributes and the SAS logging message category.
The <appender>, <logger>, and <root> elements define the loggers and appenders.
The <param>, <layout>, <level>, <filter>, and <appender-ref> elements are child

elements that customize appender and logger definitions .
The following table summarizes the XML DTD for SAS logging:

Table 3.1 SAS Logging XML Configuration Elements

Element Name and
Description

Element Characteristics

<?xml ?>

is the first XML element in
the configuration file

� Number of instances: one

� Required attributes:

� version="1.0"

� Optional attributes:

� encoding= "encoding-specification " specifies a language encoding. For more
information, see the SAS National Language Support (NLS): Reference
Guide.

<logging:configuration>

defines the logging
message category and the
message category default
values

</logging:configuration>

� Number of instances: one

� Required attributes:

� xmlns:logging="http://support.sas.com/xml/logging/1.0/"

� Optional attributes:

� threshold="level" specifies the default message threshold for filtering log
messages; the default is null, two double quotation marks with no space
between them (""). For a list of levels, see “Logging Thresholds” on page 14.

� debug="TRUE|FALSE" specifies whether to run in debug mode; the
default is "FALSE". Setting a value of TRUE is the same is setting the
level to a value of DEBUG for the logger that is specified in the log event.

� Optional child elements: number of instances

� <appender>: zero or more

� <logger>: zero or more

� <root>: zero or one

Overview of the Logging Configuration File � XML Elements for Configuring SAS Logging 27

<appender>

defines a destination for
log messages, filters to
limit log messages, and the
format of the log message

</appender>

� Number of instances: zero or multiple

� Required attributes:

� name="appender-name" is a user-defined name for the appender.

� class="class-name " specifies the type of appender (For more information,
see “SAS Appenders for Server Logging” on page 13).

� Optional child elements: number of instances

� <param>: zero or multiple

� <layout>: zero or one

� <filter>: zero or multiple

� <appender-ref>: zero or multiple

� <rollingPolicy>: zero or one; required when the appender class is
RollingFileAppender; otherwise, do not include this element.

<logger>

names a message category,
references an appender,
and defines a message
threshold

</logger>

� Number of instances: zero or multiple

� Required attribute:

� name="logger-name" is a user-defined logger name.

� Optional attribute:

� additivity="TRUE | FALSE" specifies whether to pass the log event to
loggers in a hierarchy.

� Optional child elements: number of instances

� <level>: zero or multiple

� <appender-ref>: zero or multiple

<root>

a fixed SAS logger and the
highest logger in any
logging hierarchy

</root>

� Number of instances: zero or one

� Attributes: none

� optional child elements: number of instances

� <level>: zero or one

� <appender-ref>: zero or multiple

<param />

defines an appender or a
filter parameter and a
parameter value

� Number of instances: zero or multiple

� Required attributes:

� name="attribute-name" specifies the literal name of an attribute.

� value="attribute-value" specifies either a literal or user-supplied
value.

<layout>

specifies
conversion-pattern layouts

</layout>

� Number of instances: zero or one

� Optional child element: number of instances

� <param>: zero or multiple

28 Structure of the Logging Configuration File � Chapter 3

<level>

defines the message
threshold that a logger
accepts

� Number of instances: zero or one

� Required attribute:

� value="level" specifies a message threshold for filtering log events; by
default, a level is inherited from the parent logger (For more information,
see “Logging Thresholds” on page 14).

<filter>

specifies message-filtering
values

</filter>

� Number of instances: zero or one

� Required attribute:

� class="filter-class" specifies the name of the filter (see “Message Filtering”
on page 16).

� Optional child element: instances

� <param>: zero or multiple

<appender-ref>

names an appender for
processing a log event

</appender-ref>

� Number of instances: zero or multiple

� Required attribute:

� ref="appender-name" specifies a user-defined appender name

Structure of the Logging Configuration File
The layout of a logging facility XML configuration file must contain, at minimum, the

<?xml?> element, the <logging> element, and a <root> logger. When you add appenders
and loggers, the elements must appear in this order:

� <?xml>
� <logging:configuration>
� <appender>
� <logger>
� <root>

See “XML Elements for Configuring SAS Logging” on page 26 for information about
the number of instances for each element.

Here is an example configuration file that shows the structure of the configuration
file:

<?xml version="1.0" encoding="UTF-8"?>
<logging:configuration xmlns:logging="http//support.sas.com/xml/logging/1.0/">

<appender class="RollingFileAppender" name="TimeBasedRollingFile">
<param name="Append" value="true"/>
<param name="ImmediateFlush" value="true"/>
<param name="Unique" value="true"/>
<filter class="StringMatchFilter">

<param name="LevelToMatch" value="error"/>
<param name="AcceptOnMatch" value="true"/>

</filter >
<rollingPolicy class="TimeBasedRollingPolicy">

<param name="FileNamePattern" value="c:\sas\logs\server\workspace_%d.log"/>
</rollingPolicy>

Overview of the Logging Configuration File � Sample Configuration Files 29

<layout>
<param name="ConversionPattern" value="%d %-5p [%t] %u - %m"/>

</layout>
</appender>
<appender class="FileAppender" name="rootAppender">

<param name="Append" value="true"/>
<param name="ImmediateFlush" value="true"/>
<param name="File" value="c:\logs\root\root1.log"/>

</appender>
<logger name="log4WServer">

<level value="info"/>
<appender-ref ref="TimeBasedRollingFile"/>

</logger>
<root>

<level value="error">
<appender-ref ref="rootAppender"/>

</root>
</logging:configuration>

Sample Configuration Files
SAS supplies sample logging facility configuration files in SAS Help and

Documentation. To access the sample files, do the following:

1 From the SAS main window, select Help � SAS Help and Documentation.

2 From SAS Help and Documentation, expand Learning to Use SAS � Base SAS.

3 Select Samples and scroll down to the logging facility configuration examples.

30

31

C H A P T E R

4
Logger Reference

SAS Logger Overview and Syntax 31
Logger Overview 31

Logger Syntax 31

Logger Syntax Description 31

Logger Examples 32

Example 1: Define a Logger to Log Error Messages for an Application in Production 32
Example 2: Define Loggers That Inherit the Level 32

SAS Logger Overview and Syntax

Logger Overview
A logger names a specific message category and associates the message category with

a message level and one or more appenders that process the log message.
In a logging facility XML configuration file and in a SAS program, an appender that

is specified as an appender reference in a logger must be defined before the logger is
defined.

For more information about loggers, see “Loggers” on page 7.

Logger Syntax
XML Configuration

<logger name="logger-name">
<level value="TRACE | DEBUG | INFO | WARN | ERROR | FATAL"/>
<appender-ref ref="appender-name"/>

</logger>

Logger Syntax Description
name="logger-name"

specifies the name of a message category. The value of logger-name is case
sensitive and can be a single name or a hierarchical name. Use a period to
separate hierarchical names. Quotation marks are required.
Default: None

32 Logger Examples � Chapter 4

Required: Yes

level value="TRACE | DEBUG | INFO | WARN |ERROR | FATAL"
specifies the lowest event level that is processed by this logger. Log events that
have messages that are below the specified level are ignored. The valid level
values are listed here from lowest to highest. If a level is not specified, SAS uses
the level of the next highest parent logger that defines a level. Quotation marks
are required.
Required: No
Default: None
See: “Logging Thresholds” on page 14

appender-ref ref="appender-name"
specifies the name of an appender whose destination receives messages for log
events that are specified for this logger. The value of appender-name must be
defined in the XML configuration file. You can define multiple appenders for a
logger.

Logger Examples

Example 1: Define a Logger to Log Error Messages for an Application in
Production

This example creates a logger to record error log events for an application that is in
production. The appender ApplProduction_Appender must also be defined in the XML
configuration file.

<logger name="ApplProduction_Logger">
<level value="error"/>
<appender-ref ref="ApplProduction_Appender"/>

</logger

Example 2: Define Loggers That Inherit the Level
In this configuration example, IOMSrv is the parent logger for IOMSrv.Workspace

and IOMSrv.Metadata. The IOMSrv.Workspace logger and the IOMSrv.Metadata logger
do not define a level. Therefore, they inherit the level of the closest parent, which is
IOMSrv. IOMSrv defines a level of error. Log events for the IOMSrv.Workspace and the
IOMSrv.Metadata message categories use the level of error and write error and fatal
messages to their respective appender destinations.

<logger name="IOMSrv">
<level value="error"/>

</logger>

<logger name="IOMSrv.Workspace">
<appender-ref ref="WorkspaceLog"/>

</logger>

<
logger name="IOMSrv.Metadata">

<appender-ref ref="MetadataLog"/>
</logger>

33

C H A P T E R

5
Appender Reference

ARMAppender 34
ARMAppender Overview 34

ARMAppender Syntax 34

ARMAppender Syntax Description 35

ARMAppender Example 37

ARMAppender Usage and Best Practices 38
ConsoleAppender 38

ConsoleAppender Overview 38

ConsoleAppender Syntax 38

ConsoleAppender Syntax Description 39

ConsoleAppender Examples 39

FileAppender 39
FileAppender Overview 40

FileAppender Syntax 40

FileAppender Syntax Description 40

FileAppender Examples 43

Example 1: Appending Messages to a File 43
FileAppender Usage and Best Practices 43

FilteringAppender 43

FilteringAppender Overview 43

FilteringAppender Syntax 44

FilteringAppender Syntax Description 44
FilteringAppender Example 45

FilteringAppender Usage and Best Practices 46

IOMServerAppender 46

IOMServerAppender Overview 46

IOMServerAppender Syntax 47

IOMServerAppender Syntax Description 47
IOMServerAppender Example 47

IOMServerAppender Usage and Best Practices 48

RollingFileAppender 48

RollingFileAppender Overview 48

RollingFileAppender Syntax 48
RollingFileAppender Syntax Description 49

RollingFileAppender Configuration Examples 54

Example 1: Roll Over to a New Log File Every Day 54

Example 2: Roll Over to a New Log When a New Session Begins 55

Example 3: Roll Over to a New Log File When the File Reaches a Specified Size 55
RollingFileAppender Usage and Best Practices 56

sLogAppender 56

UNXFacilityAppender 56

34 ARMAppender � Chapter 5

UNXFacilityAppender Overview 57
UNXFacilityAppender Syntax 57

UNXFacilityAppender Syntax Description 57

UNXFacilityAppender Example 57

UNXFacilityAppender Diagnostic Levels 58

UNXFacilityAppender Usage and Best Practices 58
WindowsEventAppender 59

WindowsEventAppender Overview 59

WindowsEventAppender Syntax 59

WindowsEventAppender Syntax Description 59

WindowsEventAppender Example 59

WindowsEventAppender Usage 60
ZOSFacilityAppender 60

ZOSFacilityAppender Overview 60

ZOSFacilityAppender Syntax 60

ZOSFacilityAppender Syntax Description 61

ZOSFacilityAppender Examples 61
Configuring ZOSFacility Appender 61

Defining the Logstream 61

Using the SUBSYS DD Statement 62

Limiting the Output 62

Deleting the Logstream Contents 62
ZOSFacilityAppender Usage and Best Practices 63

ZOSWtoAppender 63

ZOSWtoAppender Overview 63

ZOSWtoAppender Syntax 63

ZOSWtoAppender Syntax Description 63

ZOSWtoAppender Example 64
ZOSWtoAppender Usage and Best Practices 64

ARMAppender

ARMAppender Overview
The Application Response Measurement (ARM) appender logs performance data

based on ARM 2.0 and ARM 4.0 standards. It supports default transaction correlation
and converts ARM transaction events that were created before SAS 9.2 into SAS log
events.

This document covers only the syntax of ARMAppender. For information about using
ARM in SAS, including details about using ARMAppender, see SAS Interface to
Application Response Measurement (ARM): Reference.

ARMAppender Syntax
ARMAppender syntax is case sensitive.

XML Configuration

<appender class="FileAppender" name="ARM-log-name">
<param name="File" value="file-name"/>

Appender Reference � ARMAppender Syntax Description 35

<layout>
<param name="ConversionPattern"

value="%d,
%X{App.Name},
%X{ARM.Id},
%X{ARM.GroupName},
%X{ARM.TranName},
%X{ARM.TranState},
%X{ARM.TranId},
%X{ARM.TranHandle},
%X{ARM.ParentCorrelator},
%X{ARM.CurrentCorrelator},
%X{ARM.TranStatus},
%X{ARM.TranStart.Time},
%X{ARM.TranStop.Time},
%X{ARM.TranBlocked.Time},
%X{ARM.TranResp.Time}
"/>

</layout>

</appender>

<appender class="ARMAppender" name="ARM">
<param name="Agent" value="libarm4"/>

<param name="Encoding" value="encoding-value"/>

<param name="GetTimes" value="TRUE | FALSE"/>

<param name="ManageCorrelators" value= "TRUE | FALSE"/>

<param name="AppName" value="application-name"/>

<param name="GroupName" value="group-name"/>

<appender-ref ref="ARM-log-names"/>

</appender>

ARMAppender Syntax Description
appender class="ARMAppender" name="ARM"

specifies ARM as the appender name. The ARMAppender name must be ARM.
Default: None
Required: Yes. ARM must be the name of the ARMAppender.
Restriction: Only a single instance of an ARMAppender per process.

name="Agent" value="library-name"
specifies the name of the library that contains the external ARM 4.0 agent library
that receives the events. See your vendor documentation for the correct library
name. Two values that can be used:

value=" "
if no agent is specified, output is sent to any referenced appenders. In the
syntax example, the output is sent to the file appender, "ARM-log-name".

36 ARMAppender Syntax Description � Chapter 5

value="library-name"
specifies the name of the library that contains the external ARM 4.0 agent
library that receives the events.

Default: Output is sent to any referenced appenders.

Required: No

name="AppName" value="application-name"
specifies the name of the application. The maximum length of the value is 128
characters, which includes the termination character (/). This value is sent to the
ARM_REGISTER_APPLICATION() function call. To override this value, specify
the SAS start-up option LOGAPPLNAME=application-name.

Default: SAS

Required: No

name="ConversionPattern" value="conversion-pattern"
specifies how the log event is written to the ARM log.

Required: No

Default: None. If a conversion pattern is not specified, then the log event
produces an empty string.

name="Encoding" value="encoding-value"
specifies the type of character set encoding that is used for strings that are sent to
and calls that are received by the ARM 4.0 agent library.

Default: Native Unicode character set for the host, or UTF-8 as required by the
ARM 4.0 standards.

Required: No

name="File" value="path-and-filename"
specifies the path and filename of the file to which ARM messages are written.

Default: None

Required: Yes

name="GetTimes" value="TRUE | FALSE"
enables the ARM appender to compute transaction response time metrics.

TRUE
enables the appender to compute transaction response times.

FALSE
disables the appender to compute transaction response times.

Default: FALSE

Required: No

name="ManageCorrelators" value="TRUE | FALSE"
specifies whether ARMAppender manages transaction correlation.

TRUE
enables automatic transaction correlation. The true value might affect
existing benchmarks for ARM 2.0 records.

FALSE
enables the application to manage transaction correlation.

Default: true

Required: No

name="GroupName" value="group-name"

Appender Reference � ARMAppender Example 37

specifies the name of a group of application instances, if any. Application instances
that are started with a common run-time purpose are candidates for using the
same group name. The maximum length of the value is 256 characters. This value
is passed to the ARM_START_APPLICATION() function call.
Default: current user ID if available, otherwise NULL
Required: No

ARMAppender Example
The following example is a SAS logging facility configuration file that includes

ARMAppender:

<?xml version="1.0" encoding="UTF-8"?>
<logging:configuration xmlns:logging="http://www.sas.com/xml/logging/1.0/">

<appender class="FileAppender" name="ARM2LOG">
<param name="File" value="arm2.log"/>
<param name="ImmediateFlush" value="true"/>
<layout>

<param name="ConversionPattern" value="%X{ARM2.Record}"/>
</layout>

</appender>

<appender class="FileAppender" name="ARM4LOG">
<param name="File" value="arm4.log"/>
<param name="ImmediateFlush" value="true"/>
<layout>

<param name="ConversionPattern"
value="%d,
%12X{App.Name},
%14X{ARM.GroupName},
%12X{ARM.TranName},
%8X{ARM.TranState},
%8X{ARM.TranStatus},
%20X{ARM.TranStart.Time},
%20X{ARM.TranStop.Time},
%56X{ARM.ParentCorrelator},
%56X{ARM.CurrentCorrelator}
"/>

</layout>
</appender>

<appender class="ARMAppender" name="ARM">
<param name="Encoding" value="UTF-8"/>
<param name="GetTimes" value="true"/>
<param name="ManageCorrelators" value="true"/>
<param name="AppName" value="yourSampleApp"/>
<param name="GroupName" value="SAS"/>
<appender-ref ref="ARM4LOG"/>
<appender-ref ref="ARM2LOG"/>

</appender>

<appender class="FileAppender" name="LOG">
<param name="File" value="root.log"/>

38 ARMAppender Usage and Best Practices � Chapter 5

<param name="ImmediateFlush" value="true"/>
<layout>

<param name="ConversionPattern" value="%d %c %m"/>
</layout>

</appender>

<logger name="Perf.ARM" additivity="false">
<level value="info"/>
<appender-ref ref="ARM"/>

</logger>

<root>
<level value="info"/>
<appender-ref ref="LOG"/>

</root>

</logging:configuration>

ARMAppender Usage and Best Practices
ARMAppender is configured and customized for accessing performance data. The

primary role of ARMAppender is to record ARM transaction events, process the events,
and route the events to an appropriate output destination. These events, when
processed by ARMAppender, are formatted in the appropriate ARM 4.0 format, using
the fixed portion of the message and the values that were recorded in the diagnostic
context.

The existing ARM 2.0 implementations are changed to logger requests that contain
the appropriate performance event attribute settings.

For more information about ARM and ARMAppender, see SAS Interface to
Application Response Measurement (ARM): Reference.

ConsoleAppender

ConsoleAppender Overview
ConsoleAppender is a logging facility appender that supports event logging on UNIX

and Windows operating systems. ConsoleAppender writes messages to the current
console.

ConsoleAppender Syntax
<appender class="ConsoleAppender" name="appender-name">

<layout>
<param name="ConversionPattern" value="conversion-pattern"/>

</layout>

</appender>

Appender Reference � FileAppender 39

ConsoleAppender Syntax Description
For information about the elements of the appender syntax, see “General Appender

Syntax” on page 11.

ConsoleAppender Examples

The following example is a typical XML configuration file that specifies
ConsoleAppender.

<?xml version="1.0" encoding="UTF-8"?>
<logging:configuration xmlns:logging="http://www.sas.com/xml/logging/1.0/">

<appender class="ConsoleAppender" name="console">
<layout>

<param name=’’ConversionPattern" value="%d %-5p [%t] %u - %m"/>
</layout>

<appender>

<!-- Adminstration message logger -->
<logger name="Admin">

<level value="Error">
</logger>

<!-- Application message logger -->
<logger name="App">

<level value="Error">
</logger>

<!-- Audit message logger -->
<logger name="Audit">

<level value="Error">
</logger>

<!-- IOM protocol message logger -->
<logger name="IOM">

<level value="Error">
</logger>

<!-- Root logger -->
<root>

<level value="Error"/>
<appender-ref ref="console"/>

</root>

</logging:configuration>

FileAppender

40 FileAppender Overview � Chapter 5

FileAppender Overview
FileAppender writes messages to the specified file in the specified path.

FileAppender Syntax

XML Configuration

<appender class="FileAppender" name="appender-name">
<param name="Append" value="TRUE | FALSE"/>
<param name="Encoding" value="encoding-value"/>
<param name="File" value="path-and-filename"/>
<param name="FileNamePattern" value="path-and-filename-pattern"/>
<param name="ImmediateFlush" value="TRUE | FALSE"/>
<param name="Locale" value="locale"/>
<param name="Threshold" value="TRACE | DEBUG | INFO | WARN | ERROR

| FATAL"/>
<param name="Unique" value="TRUE | FALSE"/>
<filter>

<filter-definitions>
</filter>
<layout>

<param name="ConversionPattern" value="conversion-pattern"/>
</layout>
</appender>

FileAppender Syntax Description

class="FileAppender" name="appender-name"
specifies the user-assigned name for this instance of FileAppender.
Default: None
Required: Yes

name="Append" value="TRUE | FALSE"
controls how messages are written to the log file if the file already exists when
logging begins. Specify one of the following values:

TRUE appends new messages to the end of the existing file.

FALSE erases the contents of the existing file and overwrites them
with new messages.

Default: TRUE
Required: No
Interaction: If both the Unique parameter and the Append parameter are

specified, then the Unique parameter takes precedence. For details, see the
Unique parameter.

name="Encoding" value="encoding-value"

Appender Reference � FileAppender Syntax Description 41

specifies the encoding that is used to write messages to the file.
Default: The encoding setting that is in effect for the SAS session. For example,

the ENCODING system option might be specified in the configuration file for a
SAS server or for Base SAS. If the ENCODING system option is not specified
for the SAS session, then the defaults that are described in the SAS National
Language Support (NLS): Reference Guide are used.

For logging processes that run outside a SAS session (for example, logging for
the SAS Object Spawner), the default is the encoding that is specified in the
operating system settings.

Required: No
See: SAS National Language Support (NLS): Reference Guide

name="File" value="path-and-filename"
specifies the path and filename of the file to which messages are written.
Default: None
Required: Yes, if path-and-filename-pattern is not specified.
Interaction: path and filename overwrites any value that you specify for

path-and-filename-pattern.

name="FileNamePattern" value="path-and-filename-pattern"
specifies the path to which the log file is written and the conversion pattern that is
used to create the log filename. The conversion pattern can include the following
characters:

%d
indicates where the current date appears. You can specify a date format or a
date and time pattern in braces after %d if you want the date to appear in a
format other than yyyymmdd, or if you want to include additional
information such as the hour.
Main discussion: “Conversion Characters” on page 68

%S{key}
indicates where system information (such as the host name, operating
system, system description, or process ID) appears. You must specify a key to
indicate the type of system information that appears.
Main discussion: “Conversion Characters” on page 68

For example, specify c:\logs\MetadataServer_%d_%S{host_name}.log if you
want the log files to be written to the path c:\logs\ and the filename to include
the current date and the name of the metadata server host machine.
Default: None
Required: Yes, if path-and-filename is not specified.
Interaction: path and filename is overwritten by any value that you specify for

path-and-filename.

name="ImmediateFlush" value="TRUE | FALSE"
determines whether messages are written to the file immediately or held in a
buffer. Specify one of the following values:

TRUE writes messages to the file immediately as they are received.

FALSE holds messages in a buffer and writes them to the file when the
buffer is full. The buffer size is 16 KB.

Required: No
Default: true

name="Locale" value="locale"

42 FileAppender Syntax Description � Chapter 5

specifies the locale that is used to write messages to the file.

Required: No

Default: The locale setting that is in effect for the SAS session. For example, the
LOCALE system option might be specified in the configuration file for a SAS
server or in the configuration file for Base SAS.

For logging processes that run outside a SAS session (for example, logging for
the SAS Object Spawner), the default is the locale that is specified in the
operating system settings.

See: SAS National Language Support (NLS): Reference Guide

name="Threshold" value="TRACE | DEBUG | INFO | WARN | ERROR | FATAL"
specifies the lowest event level that this appender processes. Events that are
below the specified level are ignored. The valid values are listed here from lowest
to highest.

Required: No

Default: None

See: “Logging Thresholds” on page 14

name="Unique" value=""TRUE | FALSE"
creates a new file, with an underscore and a unique number appended to the
filename, if the log file already exists when logging begins. Numbers are assigned
sequentially from 0 to 32766.

For example, suppose Events.log is specified in path-and-filename. If the files
Events.log and Events.log_0 already exist, then the next log file that is created
is named Events.log_1.

Required: No

Default: FALSE

Interaction: If both the Unique parameter and the Append parameter are
specified, then the Unique parameter takes precedence. If the log file already
exists when logging begins, messages are logged as follows:

� If Unique is set to TRUE and Append is set to either TRUE or FALSE,
then messages are written to a new file with a unique number appended to
the filename.

� If Unique is set to FALSE and Append is set to TRUE, then messages are
appended to the end of the existing file.

� If Unique is set to FALSE and Append is set to FALSE, then the contents
of the existing file are erased and overwritten with new messages.

filter-definitions
specifies the names and associated parameters of filters that limit the messages
that are logged by this appender.

Default: None

Required: No

Main discussion: Chapter 7, “Filters,” on page 77

name="ConversionPattern" value="conversion-pattern"
specifies how the log message is written to the log.

Required: No

Default: None. If a conversion pattern is not specified, then the log event
produces an empty string.

Main discussion: Chapter 6, “Pattern Layout,” on page 65

Appender Reference � FilteringAppender Overview 43

FileAppender Examples

Example 1: Appending Messages to a File
The following instance of FileAppender writes messages to a file called Events.log.

If the file already exists when logging begins, messages are appended to the end of the
file.

<appender class="FileAppender" name="File">
<param name="File" value="c:\logs\Events.log"/>
<param name="Append" value="true"/>
<param name="ImmediateFlush" value="true"/>
<layout>

<param name="ConversionPattern" value="%d %-5p [%t] %u - %m"/>
</layout>

</appender>

FileAppender Usage and Best Practices
FileAppender writes messages to the specified file in the specified path. When you

create an instance of FileAppender, you can specify the following:

� how messages are written if the file already exists when logging begins. Messages
can be appended to the end of the existing file, they can overwrite the existing file
contents, or they can be written to a new file that has a unique name.

� whether to write messages immediately upon receipt or to hold them in a buffer.

� the minimum (threshold) event level to be logged.

� the locale and encoding to be used when writing to the file.

� a conversion pattern to be used for creating the filename.

The following best practices apply to FileAppender:

� Use of the Unique parameter is recommended to avoid overwriting log files.
However, if numerous files are created that have the same root filename and
different numerical suffixes, then the system must perform multiple comparisons
to determine a unique number. To conserve system resources, consider specifying a
path-and-filename-pattern that includes a unique identifier such as process ID
(%S{pid}.

FilteringAppender

FilteringAppender Overview

FilteringAppender enables you to do one or both of the following:

� filter events based on thresholds and string values to determine whether the
events should be passed to a referenced appender.

� apply a layout to events before they are passed to the referenced appender. The
resulting string becomes the %m portion of the event in the layout of the
referenced appender.

44 FilteringAppender Syntax � Chapter 5

FilteringAppender Syntax

XML Configuration

<appender class="FilteringAppender" name="appender-name">
<appender-ref ref="referenced-appender-name"/>
<filter>

<filter-definitions>
</filter>
<layout>

<param name="ConversionPattern" value="conversion-pattern"/>
</layout>
<param name="Locale" value="locale"/>
<param name="PropagateLayout value="TRUE | FALSE"/>
<param name="Threshold" value="TRACE | DEBUG | INFO | WARN | ERROR

| FATAL"/>
</appender>

FilteringAppender Syntax Description
class="FilteringAppender" name="appender-name"

specifies the user-assigned name for this instance of FilteringAppender.
Default: None
Required: Yes

ref="referenced-appender-name"
specifies the appender that events are to be passed to.
Required: Yes

filter-definitions
specifies the names and associated parameters of filters that limit the messages
that are passed to the referenced appender.
Default: None
Required: No
Main discussion: Chapter 7, “Filters,” on page 77

name="ConversionPattern" value="conversion-pattern"
specifies formatting that is to be applied to the event before it is passed to the
referenced appender. The resulting string becomes the %m portion of the event in
the layout of the referenced appender.
Required: No
Default: None. If a conversion pattern is not specified, then the log message is

formatted only by the layout that is specified in the referenced appender.
Main discussion: Chapter 6, “Pattern Layout,” on page 65

name="Locale" value="locale"
specifies the locale that is used when the specified layout is applied to the event.
Required: No
Default: The locale setting that is in effect for the SAS session. For example, the

LOCALE system option might be specified in the configuration file for a SAS
server or in the configuration file for Base SAS.

Appender Reference � FilteringAppender Example 45

For logging processes that run outside a SAS session (for example, logging for
the SAS Object Spawner), the default is the locale that is specified in the
operating system settings.

See: SAS National Language Support (NLS): Reference Guide

name="PropagateLayout" value="TRUE | FALSE"
specifies whether the layout that is specified in the conversion pattern is to be
applied to events before they are passed to the referenced appender. Specify one of
the following values:

TRUE applies the specified layout to events before they are passed to
the referenced appender. The resulting string becomes the %m
portion of the event in the layout of the referenced appender.

FALSE passes events to the referenced appender without applying the
specified layout. Messages are formatted only by the layout
that is specified in the referenced appender.

Required: No
Default: TRUE

name="Threshold" value="TRACE | DEBUG | INFO | WARN | ERROR | FATAL"
specifies the lowest event level that this appender processes. Events that are
below the specified level are ignored. The valid values are listed here from lowest
to highest.
Required: No
Default: None
See: “Logging Thresholds” on page 14

FilteringAppender Example
The following logging configuration file writes two different categories of events to

the same log file:
� Events from the App.Program logger. These events are written directly to the log

file.
� Events from loggers other than App.Program, if they contain the word “state.” For

these events, a layout is applied that includes the event’s level and logger followed
by the message. The resulting string becomes the %m portion of the event in the
log file’s layout.

<?xml version="1.0" encoding="UTF-8"?>
<logging:configuration xmlns:logging="http//support.sas.com/xml/logging/1.0">

<!-- Write just the message portion of the event to the log file. -->
<appender name="file" class="FileAppender">

<param name="Append" value="false" />
<param name="FileNamePattern" value="logfile.%S{pid}.log" />
<layout>

<param name="ConversionPattern" value="%m" />
</layout>

</appender>
<!--

Include only the events that contain the word "state," and
prepend the level and the logger name of the event to the
message.

46 FilteringAppender Usage and Best Practices � Chapter 5

-->
<appender name="filter" class="FilteringAppender">

<appender-ref ref="file" />
<filter class="StringMatchFilter">

<param name="StringToMatch" value="state" />
<param name="AcceptOnMatch" value="true" />

</filter>
<filter class="DenyAllFilter" />
<layout>

<param name="ConversionPattern" value="%c - %p - %m" />
</layout>

</appender>
<-- Send App.Program messages directly to the log file -->
<logger name-"App.Program" additivity="false">

<appender-ref ref="file" />
<level value="INFO" />

</logger>
<--

Send all other events to the filter so that a different layout
can be applied.

->
<root>

<appender-ref ref="filter" />
<level value="INFO" />

</root>
</logging:configuration>

FilteringAppender Usage and Best Practices
Since FilteringAppender is an intermediate appender rather than a logging

destination, it must be configured with an appender reference.
The primary use of FilteringAppender is to specify different layouts for different

categories of events that are to appear together in the same log. Specify a separate
instance of FilteringAppender for each event category that requires a different layout.
After the layout is applied, the resulting string becomes the %m portion of the event in
the layout of the referenced appender. You can specify filters to limit the events that
are passed.

If you do not specify a layout, or if you set the PropagateLayout parameter to
FALSE, then events are formatted only by the layout of the referenced appender.

IOMServerAppender

IOMServerAppender Overview
IOMServerAppender writes log messages from any IOM server (for example, a SAS

Metadata Server, a SAS OLAP Server, or a SAS Stored Process Server) to a volatile
runtime cache. The contents of the cache are available for display on the Log tab of
SAS Management Console.

Appender Reference � IOMServerAppender Example 47

IOMServerAppender Syntax

XML Configuration

<appender class="IOMServer" name="appender-name">
<param name="MaxEntries" value="maxiumum-number of-entries"/>
<param name="Threshold" value="TRACE | DEBUG | INFO | WARN | ERROR

| FATAL"/>
<layout>

<param name="ConversionPattern" value="conversion-pattern"/>
</layout>

</appender>

IOMServerAppender Syntax Description

name=”MaxEntries” value=”maximum-number-of-entries”
an integer that specifies the maximum number of messages that are stored in the
cache. When the maximum number is reached, the oldest messages are deleted as
new messages are added.
Required: No
Default: 10000

name="Threshold" value="TRACE | DEBUG | INFO | WARN | ERROR | FATAL"
specifies the lowest event level that this appender processes. Events that are
below the specified level are ignored. The valid values are listed here from lowest
to highest.
Required: No
Default: None
See: “Logging Thresholds” on page 14

name="ConversionPattern" value="conversion-pattern"
specifies how the log message is written to the log.
Required: No
Default: None. If a conversion pattern is not specified, then the log event

produces an empty string.
Main discussion: Chapter 6, “Pattern Layout,” on page 65

IOMServerAppender Example
The following instance of IOMServerAppender writes a maximum of 10,000 messages

to a runtime cache. When the cache contains 10,000 messages, the oldest messages are
deleted as new messages are added.

<appender class="IOMServerAppender" name="IOMServer">
<param name="MaxEntries" value="10000"/>
<layout>

<param name="ConversionPattern" value="%d %-5p [%t] %X{Client.ID}:%u - %m"/>
</layout>

</appender>

48 IOMServerAppender Usage and Best Practices � Chapter 5

IOMServerAppender Usage and Best Practices
IOMServerAppender makes server log messages available for display on the Log tab

of SAS Management Console. For more information, see “Use the Log Tab in Server
Manager” in the SAS Intelligence Platform: System Administration Guide.

If you perform a planned deployment, then IOMServerAppender definitions are
included in the logging configurations for most of your SAS servers. Follow these best
practices when modifying these definitions:

� You can adjust the MaxEntries value to capture a larger or smaller number of
messages for display.

� Do not change the message layout. Changing the message layout could cause
messages to be captured incorrectly.

Note: A location for temporary files must be defined on the host operating system. If
a location has not been defined, then the process that is being logged fails with the
following message: Error creating IOMServerAppender index cache. The
location required for storing temporary utility files does not exist.

If a location for temporary files is not already defined, use one of the following
procedures to define it:

� On Windows systems, define the TEMP environment variable.
� On UNIX systems, create the directory /tmp.
� On z/OS systems, create the directory /tmp if you are using a UNIX file system

(UFS); or submit the following TSO command:

ALLOC UNIT(SYSDA) BLOCK(8192) SPACE(1280,1280)

� On OpenVMS or HP Integrity Servers, define a sys$scratch logical name.

�

RollingFileAppender

RollingFileAppender Overview
RollingFileAppender writes messages to the specified file in the specified path, and

begins writing messages to a new file that has a different name when specified criteria
are met. For example, messages can roll over to a new file every hour, every day, when
the file grows to a specified size, or when filtering criteria are met.

RollingFileAppender Syntax

XML Configuration

<appender class="RollingFileAppender" name="appender-name">
<param name="Append" value="TRUE | FALSE"/>
<param name="Encoding" value="encoding-value"/>
<param name="File" value="path-and-filename"/>

Appender Reference � RollingFileAppender Syntax Description 49

<param name="ImmediateFlush" value="TRUE | FALSE"/>
<param name="Locale" value="locale"/>
<param name="Threshold" value="TRACE | DEBUG | INFO | WARN | ERROR

| FATAL"/>
<param name="Unique" value=""TRUE | FALSE"/>
<filter>

<filter-definitions>
</filter>
<layout>

<param name="ConversionPattern" value="conversion-pattern"/>
</layout>
<rollingPolicy class="FixedWindowRollingPolicy | TimeBasedRollingPolicy">

<rollingPolicy-parameters>
</rollingPolicy>
<triggeringPolicy class="SizeBasedTriggeringPolicy |

FilterBasedTriggeringPolicy">
<triggeringPolicy-parameters>

</triggeringPolicy>
</appender>

RollingFileAppender Syntax Description

class="RollingFileAppender" name="appender-name"
specifies the user-assigned name for this instance of RollingFileAppender.
Default: None
Required: Yes

name="Append" value="TRUE | FALSE"
controls how messages are committed to the log file if the file already exists when
logging begins. Specify one of the following values:

TRUE appends new messages to the end of the existing file.

FALSE erases the contents of the existing file and overwrites them
with new messages.

Default: TRUE
Required: No
Interaction: If both the Unique parameter and the Append parameter are

specified, then the Unique parameter takes precedence. For details, see the
Unique parameter.

name="Encoding" value="encoding-value"
specifies the encoding that is used to write messages to the file.

Default: The encoding setting that is in effect for the SAS session. For example,
the ENCODING system option might be specified in the configuration file for a
SAS server or for Base SAS. If the ENCODING system option is not specified
for the SAS session, then the defaults that are described in the SAS National
Language Support (NLS): Reference Guide are used.

For logging processes that run outside a SAS session (for example, logging for
the SAS Object Spawner), the default is the encoding that is specified in the
operating system settings.

50 RollingFileAppender Syntax Description � Chapter 5

Required: No
See: SAS National Language Support (NLS): Reference Guide

name="File" value="path-and-filename"
specifies the path and filename of the file to which messages are written.
Default: None
Required: No
Interaction: This filename overwrites any value that you specify for

path-and-filename-pattern in a RollingPolicy or TriggeringPolicy configuration.

name="ImmediateFlush" value="TRUE | FALSE"
determines whether messages are written to the file immediately or held in a
buffer. Specify one of the following values:

TRUE writes messages to the file immediately as they are received.

FALSE holds messages in a buffer and writes them to the file when the
buffer is full. The default buffer size is 16 KB.

Required: No
Default: TRUE

name="Locale" value="locale"
specifies the locale that is used to write messages to the file.
Required: No
Default: The locale setting that is in effect for the SAS session. For example, the

LOCALE system option might be specified in the configuration file for a SAS
server or for Base SAS.

For logging processes that run outside a SAS session (for example, logging for
the SAS Object Spawner), the default is the locale that is specified in the
operating system settings.

See: SAS National Language Support (NLS): Reference Guide

name="Threshold" value="TRACE | DEBUG | INFO | WARN | ERROR | FATAL"
specifies the lowest event level that this appender processes. Events that are
below the specified level are ignored. The valid values are listed here from lowest
to highest.
Required: No
Default: None
See: “Logging Thresholds” on page 14

name="Unique" value="TRUE | FALSE"
creates a new file, with an underscore and a unique number appended to the
filename, if the log file already exists when logging begins. Numbers are assigned
sequentially from 0 to 32766.

For example, suppose Events_%d.log is specified in path-and-filename-pattern
for TimeBasedRollingPolicy. If the current date is August 3, 2008, and a file
already exists that has the name Events_20080803.log, then the next log file
that is created is named Events_20080803_0.log. If a file already exists that has
the name Events_20080803_0.log, then the next log file that is created is named
Events_20080803_1.log.
Required: No
Default: FALSE
Interaction:

� If both the Unique parameter and the Append parameter are specified,
then the Unique parameter takes precedence. If the log file already exists

Appender Reference � RollingFileAppender Syntax Description 51

when logging begins, and if Unique is set to TRUE and Append is set to
either TRUE or FALSE, then messages are written to a new file with a
unique number appended to the filename.

� If Unique is set to TRUE and FixedWindowRollingPolicy is specified, then
a complete set of unique files is created when logging begins. For details,
see the Interaction description for FixedWindowRollingPolicy.

filter-definitions
specifies the names and associated parameters of filters that limit the messages
that are logged by this appender.
Default: None
Required: No
Main discussion: Chapter 7, “Filters,” on page 77

name="ConversionPattern" value="conversion-pattern"
specifies how the log message is written to the log.
Required: No
Default: None. If a conversion pattern is not specified, then the log event

produces an empty string.
Main discussion: Chapter 6, “Pattern Layout,” on page 65

rollingPolicy class="FixedWindowRollingPolicy | TimeBasedRollingPolicy"
specifies the policy that controls the creation of new log files and filenames when
messages roll over to a new file. SAS provides the following instances of
rollingPolicy:

� FixedWindowRollingPolicy
� TimeBasedRollingPolicy

FixedWindowRollingPolicy
specifies a fixed set of filenames that include sequentially assigned index numbers.
To specify when log files roll over, specify either SizeBasedTriggeringPolicy or
FilterBasedTriggeringPolicy in the TriggeringPolicy parameter. When the
specified criteria are met, the log files are rolled over as follows:

� The appender renames each existing log file by incrementing the index
number in the filename by 1. For example, Events03.log is renamed to
Events04.log, Events02.log is renamed to Events03.log, and
Events01.log is renamed to Events02.log.

� If a file already exists that has a filename that includes maximum-index,
then the messages in that file are overwritten. For example, if Events04.log
already exists when rollover occurs, and if 4 is specified in maximum-index,
then the contents of Events04.log are replaced with the contents of
Events03.log.

� The appender creates a new file with minimum-index in the filename (for
example, Events01.log), and subsequent messages are written to that file.

Use the following syntax to specify FixedWindowRollingPolicy:

<rollingPolicy class="FixedWindowRollingPolicy">
<param name="fileNamePattern" value="path-and-filename-pattern"/>
<param name="maxIndex" value="maximum-index"/>
<param name="minIndex" value="minimum-index"/>

</rollingPolicy>

name="fileNamePattern" value="path-and-filename-pattern"

52 RollingFileAppender Syntax Description � Chapter 5

specifies the path to which the log file is written and the conversion pattern
that is used to create the log filename when messages roll over to a new file.
The conversion pattern can include the following characters:

%i
indicates where the index number is to appear. The index number is
incremented by 1 each time a new file is created.

%S{key}
indicates where system information (such as the host name, operating
system, or system description) appears. You must specify a key to
indicate the type of system information that appears.
Main discussion: “Conversion Characters” on page 68

For example, specify c:\logs\MetadataServer_S{host_name}_%i.log if
you want the log files to be written to the path c:\logs\ and if you want the
files to be named MetadataServer_host-name_01.log,
MetadataServer_host-name_02.log, and so on.

Default: None
Required: No

Interaction: path and filename is overwritten by any value that you specify
for path-and-filename.

name="maxIndex" value="maximum-index"
specifies an integer that is the highest number to be used as an index in the
log filename. For example, if you set minimum-index to 1 and maximum-index
to 10, the appender creates a maximum of ten log files. When the maximum
has been reached, the appender overwrites the most recently created file.

Range: 1 - 14
Required: No

Default: 7
Interaction: If maximum-index is equal to minimum-index, then only one

file is created.

name="minIndex" value="minimum-index"
specifies an integer that is the beginning number to be used as an index in
the log filename. For example, if you set minimum-index to 3, the name of
the first log file that is created will contain the characters 03 in the position
that is specified by %i in the filename pattern.

Acceptable values: Any integer from 1 to 14
Required: No
Default: 1

Interaction: If Unique is set to TRUE and FixedWindowRollingPolicy is
specified, then a complete set of fixed window files is created when logging
begins. If one or more sets of fixed window files already exist when logging
begins, then a new set of fixed window files is created that has an underscore
character and a unique number appended to each filename.

For example, if Unique is set to TRUE and FixedWindowRollingPolicy is
specified with a filename pattern of Events%i.log, a minimum-index of 1, and
a maximum-index of 4, then log files are created as follows:

� When logging first begins, the following empty files are created:
Events01.log, Events02.log, Events03.log, and Events04.log.
Messages are written to Events01.log and are rolled over to the other
files in the group as specified by the triggering policy.

Appender Reference � RollingFileAppender Syntax Description 53

� The next time logging begins, the following set of files is created and
written to: Events01_0.log, Events02_0.log, Events03_0.log, and
Events04_0.log.

� Each subsequent time that logging begins, a new set of files is created with
a new unique suffix (for example, _1, _2, _3).

TimeBasedRollingPolicy
specifies the use of a log filename that contains the current date. You do not need
to specify a value for triggeringPolicy when you use this policy. To specify when a
new log file is created, you can specify either of the following options:

� Creation of (rollover to) a new log file whenever the generated filename
differs from the current filename. This is the default behavior.

For example, if the filename includes the current year, month, and day,
then a new file is created when the system date changes to a new day.

� Creation of a new log file only when a new session begins.

When rollover occurs, the message Log continues in path-and-filename is
written to the end of the current file. The message Log continued from
path-and-filename is written to the beginning of the newly created file.

Use the following syntax to specify TimeBasedRollingPolicy:

<rollingPolicy class="TimeBasedRollingPolicy">
<param name="fileNamePattern" value="filename-pattern"/>
<param name="rollOver" value="TRUE | FALSE"/>

</rollingPolicy>

name="fileNamePattern" value="path-and-filename-pattern"
specifies the path to which the log file is written and the conversion pattern
that is used to create the log filename. The conversion pattern can include
the following characters:

%d
indicates where the current date appears. You can specify a date format
or a date and time pattern in braces after %d if you want the date to
appear in a format other than yyyymmdd, or if you want to include
additional information such as the hour.
Main discussion: “Conversion Characters” on page 68

%S{key}
indicates where system information (such as the host name, operating
system, or system description) appears. You must specify a key to
indicate the type of system information that appears.
Main discussion: “Conversion Characters” on page 68

For example, specify c:\logs\MetadataServer_%d_%S{host_name}.log if
you want the log files to be written to the path c:\logs\ and the filename to
include the current date and the name of the metadata server host machine.
Default: None
Required: Yes
Interaction: path and filename is overwritten by any value that you specify

for path-and-filename.

name="rollOver" value="TRUE | FALSE"
indicates whether a new log file is created whenever the generated filename
differs from the current filename. Specify one of the following values:

TRUE

54 RollingFileAppender Configuration Examples � Chapter 5

creates (rolls over to) a new file whenever the generated filename differs
from the current filename.

FALSE
creates a new log file only when a new session begins.

Default: TRUE
Required: No

triggeringPolicy class="SizeBasedTriggeringPolicy | FilterBasedTriggeringPolicy"
specifies the policy that determines when a new log file is created. SAS provides
the following instances of triggeringPolicy:

� SizeBasedTriggeringPolicy
� FilterBasedTriggeringPolicy

SizeBasedTriggeringPolicy
specifies the creation of a new log file when the number of bytes in the current log
file is greater than or equal to the specified maximum-file-size. Along with this
policy, specify FixedWindowRollingPolicy in the RollingPolicy parameter to control
how new log filenames are assigned and the number of files that are created.

Use the following syntax to specify SizeBasedTriggeringPolicy:

<triggeringPolicy class="SizeBasedTriggeringPolicy">
<param name="MaxFileSize" value ="maximum-file-size">

</triggeringPolicy>

name="MaxFileSize" value ="maximum-file-size"
specifies the maximum size, in bytes, of the log file. When the log file reaches
this size, messages roll over to a new file. You can use the suffix KB (for
kilobytes), MB (for megabytes), or GB (for gigabytes) when you are specifying
the size. For example, 10KB is interpreted as 10240 bytes.

FilterBasedTriggeringPolicy
specifies the creation of a new log file when a log event is received that meets the
specified filtering criteria. Along with this policy, specify
FixedWindowRollingPolicy in the RollingPolicy parameter to control how new log
filenames are assigned and the number of files that are created.

Use the following syntax to specify FilterBasedTriggeringPolicy:

<triggeringPolicy class="FilterBasedTriggeringPolicy">
<param name="Filters">

<filter-definitions>
</param>

</triggeringPolicy>

filter-definitions
specifies the filters that are used to trigger rollover to a new log file.
Main discussion: Chapter 7, “Filters,” on page 77

RollingFileAppender Configuration Examples

Example 1: Roll Over to a New Log File Every Day
This RollingFileAppender configuration writes messages to a log file whose name

contains the current date (for example, MetadataServer_20080301.log). When the
system date changes, messages roll over to a new log file whose name contains the new
date (for example, MetadataServer_20080302.log).

Appender Reference � RollingFileAppender Configuration Examples 55

<appender class="RollingFileAppender" name="TimeBasedRollingFile">
<param name="Append" value="true"/>
<param name="ImmediateFlush" value="true"/>
<rollingPolicy class="TimeBasedRollingPolicy">

<param name="fileNamePattern" value="c:\logs\MetadataServer_%d.log"/>
</rollingPolicy>
<layout>

<param name="ConversionPattern" value="%d %-5p [%t] %u - %m"/>
</layout>

</appender>

Example 2: Roll Over to a New Log When a New Session Begins
This RollingFileAppender configuration writes messages to a log file whose name

contains the current date (for example, MetadataServer_20080301.log). When a new
session begins, messages roll over to a new log file whose name contains the current
date (for example, MetadataServer_20080302.log).

<appender class="RollingFileAppender" name="TimeBasedRollingFile">
<param name="Append" value="true"/>
<param name="ImmediateFlush" value="true"/>
<rollingPolicy class="TimeBasedRollingPolicy">

<param name="fileNamePattern" value="c:\logs\MetadataServer_%d.log"/>
<param name="rollOver" value="false"/>

</rollingPolicy>
<layout>

<param name="ConversionPattern" value="%d %-5p [%t] %u - %m"/>
</layout>

</appender>

Example 3: Roll Over to a New Log File When the File Reaches a Specified
Size

In this example, RollingFileAppender writes messages to a log file whose name
contains an index number. The first file that is created is called
MetadataServer_01.log. When the size of MetadataServer_01.log is greater than
or equal to 100 KB, the file is renamed to MetadataServer_02.log, and subsequent
messages are written to a newly created instance of MetadataServer_01.log.

The next time MetadataServer_01.log reaches or exceeds 100 KB,
MetadataServer_02.log is renamed to MetadataServer_03.log,
MetadataServer_01.log is renamed to MetadataServer_02.log, and subsequent
messages are written to a newly created instance of MetadataServer_01.log.

Rollover continues until nine files have been created, at which point the contents of
MetadataServer_09.log are overwritten when rollover occurs.

<!-- Rolling log file based on log file size -->
<appender class="RollingFileAppender" name="FixedWindowRollingFile">

<param name="Append" value="true"/>
<param name="ImmediateFlush" value="true"/>
<rollingPolicy class="FixedWindowRollingPolicy">

<param name="fileNamePattern" value="c:\logs\MetadataServ_%i.log"/>
<param name="minIndex" value="1"/>
<param name="maxIndex" value="9"/>

56 RollingFileAppender Usage and Best Practices � Chapter 5

</rollingPolicy>
<triggeringPolicy class="SizeBasedTriggeringPolicy">

<param name="MaxFileSize" value="100KB"/>
</triggeringPolicy>
<layout>

<param name="ConversionPattern" value="%d %-5p [%t] %u - %m"/>
</layout>

</appender>

RollingFileAppender Usage and Best Practices
You can configure an instance of RollingFileAppender to do the following:

� roll over to a new log file when the system date or time changes (for example,
every day or every hour)

� roll over to a new log file when a new session begins

� roll over to a new log file when the file reaches a specified size

� roll over to a new log file when log events match the specified filtering criteria

In addition, RollingFileAppender provides all of the functionality of
FileAppender“FileAppender” on page 39.

Note: On OpenVMS systems, uppercase letters are used in the filename for the first
log file that is created. When logging rolls over to a new file, the filename is formed,
using the case that is specified in the File parameter of the appender configuration. �

The following best practices apply to RollingFileAppender:

� Use of the Unique parameter is recommended to avoid overwriting log files.
However, if numerous files are created that have the same root filename and
different numerical suffixes, then the system must perform multiple comparisons
to determine a unique number. To conserve system resources, consider specifying a
path-and-filename-pattern that includes a unique identifier such as process ID
(%S{pid}).

sLogAppender

sLogAppender is a reserved class. You should not define new instances of this
appender.

Various appender definitions that rely on sLogAppender are enabled by default for
several SAS servers. These appender definitions enable SAS client- and SAS-middle
tier applications to access SAS server internal logging facilities.

CAUTION:
Do not modify sLogAppender definitions that are provided in default logging configuration
files. Modifying these definitions will result in unpredictable behavior. �

UNXFacilityAppender

Appender Reference � UNXFacilityAppender Example 57

UNXFacilityAppender Overview
UNXFacilityAppender is a logging facility appender that supports event logging on

UNIX operating systems. UNXFacilityAppender sends event messages to the syslogd
logging facility.

UNXFacilityAppender Syntax
<appender class="UNXFacilityAppender" name="LOG">

<param name="facilitycode" value="log_value"/>

<layout>
<param name="ConversionPattern" value="conversion-pattern"/>

</layout>

</appender>

UNXFacilityAppender Syntax Description
name="facilitycode" value="log_value"

The facilitycode configuration option specifies the system facility value that
generated the message. It can have any of the following log values:

LOG_USER
specifies that messages that are generated by user processes are logged.
LOG_USER is the default value for facilitycode.

LOG_LOCAL0 through LOG_LOCAL7
specifies values that are reserved for use by your site.

For information about the generic elements of the appender syntax, see “General
Appender Syntax” on page 11.

UNXFacilityAppender Example
The following example is a typical XML configuration file that specifies

UNXFacilityAppender.

<appender class="UNXFacilityAppender" name="LOG">
<layout>
<param name="ConversionPattern"

value="%d %-5p [%t] %c (%F:%L) - %m"/>
</layout>

</appender>

<root>
<level value="trace"/>
<appender-ref ref="LOG"/>

</root>

58 UNXFacilityAppender Diagnostic Levels � Chapter 5

UNXFacilityAppender Diagnostic Levels
The following SAS logging facility’s diagnostic levels are sent to the UNIX syslogd

logging facility with the specified syslogd priorities:

Table 5.1 UNXFacilityAppender Diagnostic Levels

SAS Logging Level syslogd Priority

TRACE, DEBUG debug

INFO info

WARN warning

ERROR err

FATAL crit

no level notice

syslogd priority is sometimes referred to as level in UNIX documentation for syslogd.
When you use syslogd priority as a value for the SAS logging level, it specifies the
severity of the message. It can also be used to specify the part of the system that
generated the message. The following list contains definitions for the SAS logging levels
that are listed in the table above:

TRACE, DEBUG
specifies messages that are helpful in debugging a program.

INFO
specifies messages that contain general information.

WARN
specifies messages that contain warnings.

ERROR
specifies messages that identify error conditions.

FATAL
specifies messages that identify critical conditions.

no level
specifies messages that identify conditions that require special attention. These
conditions are not error conditions. If you do not specify a SAS logging level, then
the syslogd value of notice is the default.

UNXFacilityAppender Usage and Best Practices
UNXFacilityAppender is supported on the Solaris, HP, Linux, and AIX operating

systems. The logging facility that these operating systems provide is named syslogd.
The syslogd daemon must be running before you can see the output that is sent to it by
UNXFacilityAppender. To enable UNXFacilityAppender to communicate with syslogd,
make sure that you have an entry in the /etc/syslog.conf file for the user facility,
the local0 through local7 facilities, or insert * before you start syslogd. You can
also have entries for both the user facility and the local0 through local7 facilities.

Note: The * specifies all facilities. Use caution when specifying *. It can cause
facilities other than user and local0 through local7 to log to the destination. �

Appender Reference � WindowsEventAppender Example 59

These entries should have a format of ’<facility>.<priority> <destination>’.
The following examples show the formats for entries in the configuration file:

user.info /tmp/userinfo.log

or

*.info /tmp/allinfo.log

For more information about syslogd on the UNIX platform that you are using, see the
documentation written by that provider.

WindowsEventAppender

WindowsEventAppender Overview
WindowsEventAppender is a logging facility appender that supports event logging on

Windows operating systems.

WindowsEventAppender Syntax
<appender class="WindowsEventAppender" name="eventAppender">

<param name="Appname" value="application name"/>

</appender>

WindowsEventAppender Syntax Description
name="AppName" value= "application name"

identifies the role of the SAS process. This parameter is ignored on Windows 5.
On Windows 6, this parameter configures the WindowsEventAppender as a
distinct Event Tracing for Windows (ETW) publisher for each role that the SAS
process might perform. Here are some valid values for application name:

� SAS Foundation
� Metadata Server
� OLAP Server

For information about the generic elements of the appender syntax, see “General
Appender Syntax” on page 11.

WindowsEventAppender Example
The following example is a typical XML configuration file that specifies the

WindowsEventAppender. The parameter identifies the role of SAS as the SAS
Foundation.

<?xml version="1.0" encoding="UTF-8"?>
<logging:configuration
xmlns:logging="http://www.sas.com/xml/logging/1.0/">

60 WindowsEventAppender Usage � Chapter 5

<appender name="eventLog" class="WindowsEventAppender">
<param name="AppName" value="SAS Foundation"/>
<layout>

<param name="ConversionPattern"
value="%d %-5p [%t] %c (%F:%L) - %m"/>

</layout>
</appender>

<root>
<level value="trace"/>
<appender-ref ref="eventLog"/>

</root>
<
/logging:configuration>

Note: The install and configuration process usually create a configuration file
automatically. �

WindowsEventAppender Usage

On Windows 5 (Windows XP and Windows Server 2003) WindowsEventAppender sends
events to the Windows Event Log. The Event Log on these earlier versions of Windows
might be easily overloaded. You should configure WindowsEventAppender so that the
event log does not receive more events than it can handle.

On Windows 6 (Windows Vista and Windows Server 2008), WindowsEventAppender
uses Event Tracing for Windows (ETW). The Event Viewer is a consumer of ETW on
these versions of Windows. ETW exists in earlier Windows versions, but
WindowsEventAppender uses ETW beginning with Version 6. Scalability is significantly
improved in ETW.

Note that even on Windows 6, where each SAS role is associated with a distinct
publisher that has its own logging channel, error events are sent to the channel for the
Windows Application log. These error events are considered to be actionable events of
the Windows admin channel.

ZOSFacilityAppender

ZOSFacilityAppender Overview

ZOSFacilityAppender is a logging facility appender that supports event logging on z/OS
operating systems. ZOSFacilityAppender enables multiple instances of SAS in the z/OS
environment to write log information to a common location. If the z/OS environment
uses the coupling facility, all of the SAS jobs that run on all of the z/OS systems that
are on the sysplex can write their logs to the same location.

ZOSFacilityAppender Syntax

Appender Reference � ZOSFacilityAppender Examples 61

<appender class="ZOSFacilityAppender" name="appender-name">
<param name="stream" value="SAS.LOG"/>
<layout>

<param name="ConversionPattern" value="conversion-pattern"/>
</layout>

</appender>

ZOSFacilityAppender Syntax Description
name="stream" value="value"

specifies the logstream for ZOSFacilityAppender.
Restriction: The logstream must be defined, using the IBM IXCMIAPU utility.

For information about the generic elements of the appender syntax, see “General
Appender Syntax” on page 11.

ZOSFacilityAppender Examples

Configuring ZOSFacility Appender
The following example is a typical XML configuration file that specifies

ZOSFacilityAppender.

<appender class="ZOSFacilityAppender" name="LOG">
<param name="stream" value="USERNAME.SAS.LOG"/>
<layout>

<param name="ConversionPattern"
value="%d %-5p [%t] %c (%F:%L) - %m"/>

</layout>
</appender>

<root>
<level value="trace"/>
<appender-ref ref="LOG"/>

</root>

Defining the Logstream
The following example is for use with direct access storage devices (DASD) only. The

values that are included are not necessarily the values that you might want to use. The
values that you specify can depend on the amount of data that is being processed, or on
other variables.

//STEP1 EXEC PGM=IXCMIAPU
//SYSIN DD *

DATA TYPE(LOGR)
DEFINE LOGSTREAM NAME(SAS.LOG)

LS_DATACLAS(STD)
LS_MGMTCLAS(STD)
LS_STORCLAS(STD)
HLQ(IXGLOGR)
MODEL(NO)
LS_SIZE(0)

62 ZOSFacilityAppender Examples � Chapter 5

STG_MGMTCLAS(STD)
STG_STORCLAS(STD)
STG_DATACLAS(STD)
STG_SIZE(3000)
LOWOFFLOAD(60)
HIGHOFFLOAD(95)
STG_DUPLEX(YES)
DUPLEXMODE(UNCOND)
RETPD(3)
AUTODELETE(YES)
OFFLOADRECALL(YES)
DASDONLY(YES)
DIAG(NO)
LOGGERDUPLEX()
EHLQ(NO_EHLQ)
MAXBUFSIZE(64000)

Using the SUBSYS DD Statement
To see the contents of the logstream, you can activate the LOGR subsystem by

placing SUBSYS SUBNAME(LOGR) in SYS1.PARMLIB(IEFSSNxx). The following
example shows how, after the LOGR subsystem has started, you can treat the
logstream as a data set by using the SUBSYS DD statement.

//REPRO EXEC PGM=IDCAMS,REGION=20M
//SYSUT1 DD DISP=SHR,DSN=SAS.LOG,
// SUBSYS=(LOGR),
// DCB=(DSORG=PS,RECFM=VB,LRECL=32756,BLKSIZE=32760)
//SYSUT2 DD SYSOUT=*,
// DCB=(DSORG=PS,RECFM=VB,LRECL=32756,BLKSIZE=32760)
//SYSIN DD *
REPRO INFILE(SYSUT1) OFILE(SYSUT2)
/*

Limiting the Output
The FROM and TO options in the following example are options of the LOGR

subsystem that limit the output.

//IN DD DSN=SAS.LOG,DISP=SHR,
// DCB=(DSORG=PS,RECFM=VB,LRECL=32756,BLKSIZE=32760)
// SUBSYS=(LOGR,IXGSEXIT,
// ’FROM=(1997/152,05:00),TO=(1997/153,23:59),GMT’

Deleting the Logstream Contents
To delete the entire contents of the logstream, copy the IBM sample

PROC IXGDELAB into SYS1.PROCLIB and start it with the logstream name as the
parameter. Although this code does not delete the logstream, it resets the stream to an
empty condition.

S IXGDELAB,LOGSTRM=SAS.LOG

Appender Reference � ZOSWtoAppender Syntax Description 63

ZOSFacilityAppender Usage and Best Practices
To use z/OS Facility Appender, specify a class of ZOSFacilityAppender that has a

stream parameter that names the z/OS logstream that is used. You can define coupling
facility (CF) logstreams or DASD-only logstreams for use with ZOSFacilityAppender.

ZOSWtoAppender

ZOSWtoAppender Overview
ZOSWtoAppender is a logging facility appender that supports event logging on z/OS

operating systems. ZOSWtoAppender enables you to direct SAS application messages,
such as automation messages in the Admin message category, to the operating system
consoles. ZOSWtoAppender uses the z/OS write-to-operator (WTO) service macro to
direct the messages to the consoles. The appender also enables SAS servers to send
messages about the status of applications to z/OS for automation purposes.

ZOSWtoAppender Syntax
<appender class="ZOSWtoAppender" name="appender-name">

<layout>
<param name="ConversionPattern" value="conversion-pattern"/>

</layout>

<param name="routecode" value="value"/>

<param name="desccode" value="value"/>

<param name="mcsflag" value="HRDCPY | BRDCST | NOTIME/>

</appender>

ZOSWtoAppender Syntax Description
name="routecode" value="value"

specifies the routing code that is used for ZOSWtoAppender messages.

name="desccode" value="value"
specifies the descriptor code that is used for ZOSWtoAppender messages.

name="mcsflag" value="value"
specifies the mcs flag that is used for ZOSWtoAppender messages. Valid values for
the mcs flag parameter are HRDCPY, BRDCST, NOTIME, and BUSYEXIT.

For more information about the WTO service macro and the parameters listed here,
see IBM’s z/OS V1R9.0 MVS Assembler Services Reference.

For information about the generic elements of the appender syntax, see “General
Appender Syntax” on page 11.

64 ZOSWtoAppender Example � Chapter 5

ZOSWtoAppender Example
The following example initiates ZOSWtoAppender; specifies a conversion pattern;

specifies the name of the logger; and specifies values for the “routecode”, “descode”, and
“mcsflag” parameters.

<appender name="WTO" class="ZOSWtoAppender">
<layout>

<param name=ConversionPattern"
value="%d %-5p [%t] %c (%F:%L) --- %m"/>

</layout>

<param name="routecode" value="11"/>
<param name="descode" value="7"/>
<param name="mcsflag" value="HRDCPY"/>

</appender>

<logger name ="ADMIN.OPERATIONS">
<level value="trace"/>
<appender-ref ref="WTO"/>

</logger>

ZOSWtoAppender Usage and Best Practices
The “routecode”, “descode”, and “mcsflag” parameters can be included multiple times

in your XML file. For example, you can have multiple “routecode” parameters if you
want to specify more than one routing code.

65

C H A P T E R

6
Pattern Layout

Overview of Pattern Layouts 65
Syntax for a Pattern Layout 65

Pattern Layout Syntax Description 66

Conversion Characters 68

Format Modifiers 73

Examples 73
Examples of Format Modifiers 73

Example of a Pattern Layout 74

Example of a Formatted Log Event 75

Overview of Pattern Layouts
A pattern layout is a template that you create in order to format log messages for the

appender classes in the SAS logging facility. The pattern layout that you define
identifies the type of data, the order of the data, and the format of the data that is
generated in a log event and that is delivered as output. A unique pattern layout is
created for each instance of an appender class. You configure a pattern layout by using
the <layout> appender subelement in a logging configuration file or the PATTERN
attribute of an appender language element.

The pattern layout is created by using a conversion pattern, which consists of literal
text and format-control directives. Format-control directory are also called conversion
specifiers.

The conversion patterns that you use to format log messages are similar to, but not
identical to, the conversion patterns that are used in the C language PRINTF statement.

Note: The conversion patterns that you use to format log messages are also similar
to, but not identical to, these formatting methods that are used in these contexts:

� the directives that are used in the SAS LOGPARM= system option to format log
names.

� the set of conversion patterns that are used by the ARMAppender. For details, see
ARMAppender Pattern Layouts in SAS Interface to Application Response
Measurement (ARM): Reference

The meaning of a specific character that is used in a pattern can vary according to the
context. Do not interchange characters. �

Syntax for a Pattern Layout

66 Pattern Layout Syntax Description � Chapter 6

XML Configuration

<appender class="AppenderName" name="log-name">
<layout>

<param name="Header" value="header-text"/>
<param name="HeaderPattern" value="conversion-pattern"/>
<param name="ConversionPattern" value="conversion-pattern"/>
<param name="Footer" value="footer-text"/>
<param name="FooterPattern" value="conversion-pattern"/>
<param name="XmlEscape" value="TRUE | FALSE"/>

</layout>

</appender>

Note: A pattern layout is configured by using the <layout> and </layout>
elements. Any <appender> element attributes and subelements in the syntax are
present to show the context for the pattern layout elements. �

Pattern Layout Syntax Description

class= "AppenderName "name="log-name"
specifies the name of the log for the specified appender that the formatted log
events are directed to.
See Also: For the appender class names, see Chapter 5, “Appender Reference,” on

page 33.

name="Header" value="header-text"
specifies the header text that the appender uses when it starts a new log.

name="HeaderPattern" value="conversion-pattern"
specifies the pattern layout that is used to identify, order, and format information
in a header for a log event. A conversion pattern consists of optional literal text
and optional format-control directives, which are called conversion specifiers. Each
conversion specifier begins with a percent sign (%) and is followed by optional
format modifiers and one or more instances of the S conversion character. The
format modifiers control field width, padding, and left and right justification.

Here is the syntax for a header pattern:

[literal-text] %[format-modifier-1] system-conversion-character-1 [… [literal-text]
%[format-modifier-n] system-conversion-character-n] />

Valid in: XML configuration files for any appender class.
Restriction: The header pattern is limited to the S conversion character in a

logging configuration file.
Tips: The specification of format modifiers is optional.

There is no explicit separator between literal text and the conversion
specifier. The pattern parser recognizes the end of a conversion specifier when it
detects the S conversion character.

Example: <param name="HeaderPattern" value="%S{os_name} %S{jobid}
%S{host_name} %S{user_name}"/>

Pattern Layout � Pattern Layout Syntax Description 67

See: S Conversion Character on page 70
“Format Modifiers” on page 73

name="ConversionPattern" value="conversion-pattern"
specifies the pattern layout that is used to identify, order, and format information
in the log event. A conversion pattern consists of literal text and format-control
directives called conversion specifiers. Each conversion specifier begins with a
percent sign (%) and is followed by optional format modifiers and a conversion
character. The conversion character specifies the type of data (for example,
category, priority, date, and thread name). The format modifiers control field
width, padding, and left and right justification.

Here is the syntax for a conversion pattern:

[literal-text] %[format-modifier-1] conversion-character-1 [… [literal-text]
%[format-modifier-n] conversion-character-n] />

Valid in: XML configuration files for any appender class.

Default: "%d %-5p [%t] %X{Client.ID}:%u - %m"

Restriction: Conversion specifiers are case sensitive.
Do not use these problematic characters, known as variants, in pattern

layouts in EBCDIC encoding environments:
! # $ @ \ []^‘{}|~ \n

Note: \n represents the use of the New Line (or Enter) key. �

These characters are problematic because they might occupy different code
positions in various encodings that are supported by SAS. For example, the
EBCDIC code point location 5A (hexadecimal) represents the exclamation point
(!) in U.S. English and the right bracket (]) in Spanish.

Tips: The specification of format modifiers is optional.

There is no explicit separator between literal text and a conversion specifier.
The pattern parser recognizes the end of a conversion specifier when it detects a
conversion character.

Example: <param name="ConversionPattern" value="%d; %-5p; %t; %c; (%F:%L);
%m"/>

See: “Conversion Characters” on page 68
“Format Modifiers” on page 73

See Also: For more information about variant characters, see the SAS National
Language Support (NLS): Reference Guide.

name="Footer" value="footer-text"
specifies the footer text that the appender uses when it starts a new log.

name="FooterPattern" value="conversion-pattern"
specifies the pattern layout that is used to identify, order, and format information
in a footer for a log event. A conversion pattern consists of optional literal text and
optional format-control directives, which are called conversion specifiers. Each
conversion specifier begins with a percent sign (%) and is followed by optional
format modifiers and one or more instances of the S conversion character. The
format modifiers control field width, padding, and left and right justification.

Here is the syntax for a footer pattern:

[literal-text] %[format-modifier-1] system-conversion-character-1 [… [literal-text]
%[format-modifier-n] system-conversion-character-n] />

68 Conversion Characters � Chapter 6

Valid in: XML configuration files for any appender class.
Restriction: The footer pattern is limited to the S conversion character in a

logging configuration file.
Tips: The specification of format modifiers is optional.

There is no explicit separator between literal text and the conversion
specifier. The pattern parser recognizes the end of a conversion specifier when it
detects the S conversion character.

Example: <param name="FooterPattern" value="%S{host_name}"/>
See: S Conversion Character on page 70

“Format Modifiers” on page 73

name="XmlEscape" value="TRUE | FALSE"
specifies whether certain characters that can be specified in the m, x, X, and S
conversion specifiers are converted to their entity representations.

TRUE
specifies that the following characters are converted when they are used in
the m, x, X, and S conversion specifiers:

"<" is converted to "<"
"<" is converted to ">"
"" is converted to """
"’" is converted to "'"
"&" is converted to "&"

FALSE
specifies that no character conversion to entity representations is performed.

Conversion Characters
A conversion character defines a data item to include in the message. Some

conversion characters also contain optional specifiers. Here are the supported
conversion characters:

c [{precision-specifier}]
reports the name of the logger that generates the log event.

Alias: logger
Default: Complete logger name; for example,

"Logging.Appender.IOMCallContext".
Requirement: If the precision specifier is used, it must be surrounded with a

pair of braces.
The precision specifier is represented as a decimal constant.

Interaction: If the precision specifier is used, only the corresponding number of
right-most components of the logger name are included in the output.

Example: For the logger name "Logging.Appender.IOMCallContext", the pattern
%c{2} generates this output: "Appender.IOMCallContext".

d [{date conversion specifier}]
reports the date of the log event.
Alias: date
Default: ISO8601 format, which is represented as yyyy-MM-dd HH:mm:ss,SSS.

Pattern Layout � Conversion Characters 69

Requirement: If the date conversion specifier is used, it must be surrounded
with a pair of braces.

Interaction: Here are the supported date conversion specifiers:

ABSOLUTE
specifies the time in this format: HH:mm:ss,SSS. An example is
15:49:37,459

DATE
specifies the date and time in this format: dd MMM yyyy HH:mm:ss,SSS.
An example is 06 Nov 2008 15:49:37,459

ISO8601
specifies the date and time in this format: yyyy-MM-dd HH:mm:ss,SSS. An
example is 1999-11-27 15:49:37,459

Simple Date Format
specifies a date in the form of a string that can contain any of these sets of
characters:

aa: AM/PM marker (string) FF: Day of week in month (numeric)

dd: Day in month (numeric) GG: Era designator (string "AD")

hh: Hour in AM/PM (numeric 1-12) HH: Hour in day (numeric 0-23)

mm: Minute in hour (numeric) KK: Hour in AM/PM (numeric 0-11)

ss: Second in minute (numeric) MM: Month in year (numeric 1-12)

yy: Two-digit year (numeric) MMM: Month in year (abbreviated
string)

yyyy: Four-digit year (numeric) MMMM: Month in year (string)

z: Time zone (string) SSS: Millisecond (numeric)

DD: Day in year (numeric) Z: RFC 822 Time Zone (string)

EE: Day in week (abbreviated string) ’literal string within single quotation
marks ’

EEEE: Day in week (string)

Tip: The d conversion character formats three digits for the precision of
milliseconds, regardless of the number of S simple date format characters that
are specified, and regardless of the machine precision of the timing that is
available.

Examples: d{ABSOLUTE}
d{EEEE MMMM yyyy HH:mm:ss,SSS ’Ship date’}

F
reports the name of the file in the application that generated the log event.

Alias: file

L
reports the line number in the application that generated the log event.
Alias: line

70 Conversion Characters � Chapter 6

m [{prefix-identifier}]
writes the messages that are associated with the log event. When the message is
more than one line long, all lines are written. When a prefix identifier is specified,
all lines after the first line are preceded by the prefix identifier.
Alias: message
Default: None
Valid values: Here are the supported prefix-identifiers:

HYPHEN
inserts a hyphen (-) before each message.

PLUS
inserts a plus sign (+) before each message.

Requirement: If the prefix identifier is used, it must be surrounded with a pair
of braces.

n [{newline-prefix-identifier}]
enables you to supply discretionary newline characters among the data items that
compose the log event.
Default: None
Valid values: Here are the supported prefix-identifiers:

HYPHEN
inserts a hyphen (-) before each message.

PLUS
inserts a plus sign (+) before each message.

Requirement: If the prefix identifier is used, it must be surrounded with a pair
of braces.

p
reports the level of the log event.
Alias: level
Valid values: Here are the supported levels:

TRACE
DEBUG
INFO
WARN
ERROR
FATAL

r
reports the number of milliseconds that elapsed between the start of the
application and the creation of the log event.
Alias: relative

S {key}
delivers various system information to the log event.
Alias: systemInfo
Requirement: The S conversion character must be followed by the specified

value, which is also referred to as a key, and must be surrounded with a pair of
braces.

Valid values: Here are the supported keys and values:

App.Log

Pattern Layout � Conversion Characters 71

reports the filename that is specified by the LOG= system option when
SAS starts. Otherwise, these actions occur:

� If the LOG= system option does not specify a filename, but a filename
is specified by the SYSIN= system option, the filename that is
specified by the SYSIN= option is used. The file extension is changed
to .log.

� If the filename that is specified by the SYSIN= system option lacks a
full pathname, the path of the current working directory is prepended
to the filename.

App.Name
reports the value of the LOGAPPLNAME= system option.

App.Sysin
reports the filename that is specified by the SYSIN= system option.

model_name
reports the name of the manufacturer of the computer hardware.
Examples are HP, SUN, and IBM.

model_num
reports the model number of the computer hardware. Examples are
Itanium, X86, RS/6000, SPARC, and 9000/800.

host_name | hostname
reports the node name that is assigned to the computer hardware. An
example is apex.com.

serial
reports the serial number of the operating system.

os_name
reports the name of the operating system. Examples are LINUX, HP-UX,
SUNOS, and XP_HOME.

os_version
reports the version of the operating system.

os_release
reports the release number of the operating system. Examples are
Linux2.6, Linux 5, Linux 9, and Linux 11.22.

os_family
reports the family of operating system. Examples are LINUX ITANIUM,
LINUX, SUN 64, HP IPF, and WIN.

jobid | pid
reports the job ID or the process ID, as appropriate.

user_name | username
reports the user name in the appropriate form.

Note: The user_name is the identity that owns the process rather than
the client identity that is associated with the current thread. �

For more information, see the u conversion character on page 72.

startup_cmd
reports the arguments that are specified when the application was started.

version

72 Conversion Characters � Chapter 6

reports either of these versions: TK_BASE_MAJOR or TK_BASE_MINOR.

system_desc
reports a description of the hardware and software environment. Examples
are X86_64 Linux, HP Itanium Processor Family, and Sun Sparc 64-bit.

build_date
reports the date on which the kernel for threaded processing was built.

build_time
reports the time at which the kernel for threaded processing was built.

sup_ver
reports the version number of the SAS supervisor.

sup_ver_long2
reports the version number of the SAS supervisor that is Y2K compliant.

Example: %S{os_family}

sn
reports the sequence number of the log event.
Alias: sequenceNumber

t
reports the identifier of the thread that generated the log event.
Alias: thread

u
reports the client identity that is associated with the current thread or task. If the
current thread or task does not have an associated identity, the identity that owns
the current process is reported to the log event.
Alias: username
See Also: S {user_name} on page 71

x
reports the NDC (nested diagnostic context) that is associated with the thread that
generated the log event.
Alias: ndc

X {key}
reports the MDC (mapped diagnostic context) that is associated with the thread
that generated the log event. MDC is used to distinguish interleaved log output
from different sources. Log output is typically interleaved when a server manages
multiple clients in parallel. The MDC is managed on a per-thread basis.

The X conversion character must be followed by the key for the map. The value
in the MDC that corresponds to the key is reported.
Alias: properties
Requirement: The key must be surrounded with a pair of braces. An example is

%X{clientNumber}, where clientNumber is the key.

%%
enables you to specify a literal percent sign symbol in a text string of a conversion
pattern. A single percent sign is interpreted as a conversion specifier. Two percent
signs are interpreted as literal text, which is delivered as a single percent sign in
the log event.
Example: <param name="ConversionPattern" value="%d;text%%text;%m"/>

Here is sample output:
2008–06–25–10:24:22,234; text%text;Numeric maximum was larger than 8,

am setting to 8.

Pattern Layout � Examples of Format Modifiers 73

Format Modifiers
A format modifier is an optional set of characters that controls the field width,

padding, and justification of the specified data item in log output. Here are the
supported format modifiers:

- (hyphen)
specifies left-justification of the data item that is defined by the conversion
character.
Example: %-p

The p conversion character reports the level that is specified by the log event.
For example, the text of the level, "WARN" is left-justified within its field in the
log event.

minimum-field-width-modifier
specified as a decimal constant to indicate the minimum width of the field for the
data item that is specified by the conversion character. If the data item is smaller
than the minimum field width, the field is padded on either the left or the right
until the minimum width is reached. The padding character is a space. If the data
item exceeds the minimum field width, the field is expanded to accommodate the
data item.
Default: Pad on the right (left-justify)
Example: %10p

The constant value, 10, provides a minimum width for the data item that is
specified by the p conversion character. For example, the text of the level,
"WARN", is left-justified and is padded to the right with six spaces.

Tip: The value is never truncated. To specify a maximum width, use the
maximum–field–width–modifier.

maximum–field–width–modifier
specified as a period (.) and a decimal constant to indicate the maximum width of
the field for the data item that is specified by the conversion character.
Default: If the data item exceeds the maximum field width, characters are

left-truncated rather than right-truncated.
Example: %.3p is the pattern layout. "DEBUG" is the data item. "BUG" is the

generated output.
The constant value, 3, provides a maximum width for the data item that is

specified by the p conversion character. For example, the text of the level,
"DEBUG" is left-truncated to form "BUG".

Restriction: The behaviors of the maximum-field-width-modifier in the SAS
logging facility and in the C language PRINTF statement are different. The
PRINTF statement uses right-truncation rather than left-truncation.

Examples

Examples of Format Modifiers
Here are examples of format modifiers that are used with the c conversion character.

The c conversion character reports the name of the logger.

74 Example of a Pattern Layout � Chapter 6

Format
Modifier

Left
Justification

Minimum
Width

Maximum
Width

Explanation

%20c no 20 none If the data item occupies fewer
than 20 characters, pad to the
left, using spaces.

%-20c yes 20 none If the data item occupies fewer
than 20 characters, pad to the
right, using spaces.

%.30c not
applicable

none 30 If the data item exceeds 30
characters, left-truncate the
data item.

%20.30c no 20 30 If the data item occupies fewer
than 20 characters, pad to the
left, using spaces. If the data
item exceeds 30 characters,
left-truncate the data item.

%-20.30c yes 20 30 If the data item occupies fewer
than 20 characters, pad to the
right, using spaces. If the data
item exceeds 30 characters,
left-truncate the data item.

Example of a Pattern Layout
Here is an excerpt of an XML file that contains a pattern layout:

<layout>
<param name="ConversionPattern" value="%d %-5p %t %c (%F:%L) %m"/>

</layout>

Here is an explanation:

Pattern Layout Explanation Example

%d reports the date of the log event and
formats the date using the default format,
ISO8601.

2008-06-25 10:24:22,234;

Note: The semicolon (;)
is literal text. �

%-5p reports the level of the log event and
left-justifies the level in output. If the
level occupies fewer than five characters,
the level is padded on the right.

WARN ;

Note: The semicolon (;)
is literal text. �

%t reports the identifier of the thread that
generated the log event.

3;

Note: The semicolon (;)
is literal text. �

Pattern Layout � Example of a Formatted Log Event 75

Pattern Layout Explanation Example

%c{2} reports the name of the logger that
generated the log event. The precision
specifier limits the logger name to two
subfields, causing left-truncation.

The full logger name is
Log4SAS.Appender.IOMCallContext.
The formatted output is
Appender.IOMCallContext;.

Note: The semicolon (;)
is literal text. �

(%F:%L) reports the filename and the line number
in the application that generated the log
event. The parentheses and colon are
literal text that was specified in the
conversion pattern.

(ynl4sas.c:149);

Note: The parentheses (
()), colon (:), and semicolon
(;) are literal text. �

%m reports the message that is supplied by
the application and that is associated with
the log event.

Numeric maximum was larger
than 8, am setting to 8.

Example of a Formatted Log Event
Here is an example of a formatted log event that is delivered to the appropriate

output device:

Date Level Thread
ID

Logger Filename/Line
Number

Message

20008-06-
25
10:24:22,234;

WARN; 3; Appender.
IOMCallContext;

(ynl4.sas.c:149); Numeric
maximum was
larger than 8,
am setting to 8.

Here is another view of the formatted log event as output:

2008--06--25--10:24:22,234; WARN; 3; Appender.IOMCallContext; (yn14.sas.c:149);
Numeric maximum was larger than 8, am setting to 8.

76

77

C H A P T E R

7
Filters

Overview of Filters 77
Syntax for Filters 79

AndFilter 79

AndFilter Overview 79

AndFilter Syntax 79

AndFilter Syntax Description 80
AndFilter Examples 81

DenyAllFilter 81

DenyAllFilter Overview 81

DenyAllFilter Syntax 81

DenyAllFilter Syntax Description 81

LevelMatchFilter 81
LevelMatchFilter Overview 81

LevelMatchFilter Syntax 82

LevelMatchFilter Syntax Description 82

LevelMatchFilter Example 82

LevelRangeFilter 82
LevelRangeFilter Overview 82

LevelRangeFilter Syntax 83

LevelRangeFilter Syntax Description 83

LevelRangeFilter Example 83

StringMatchFilter 83
When to Use the StringMatchFilter 84

StringMatchFilter Syntax 84

StringMatchFilter Syntax Description 84

StringMatchFilter Example 84

Filter Examples 84

Example 1: Filter for a Specific User’s Error Messages 84
Example 2: Filter for a Specific Date 85

Overview of Filters
In addition to filtering log events by thresholds, using logger and appender

configurations, the logging facility has filter classes to filter log events, based on
character strings and thresholds:

78 Overview of Filters � Chapter 7

Filter Class Name Description

StringMatchFilter filters log messages based on a character string in the log
message.

LevelRangeFilter filters log messages based on a range of message thresholds.

LevelMatchFilter filters log messages based on a single message threshold.

AndFilter filters log messages based on the results of a list of other filters.

DenyAllFilter denies log events that did not meet the criteria of previous
filters in a filter policy.

By using filter classes to filter messages, you can choose whether to accept or deny a
log event if a match occurs between a filter parameter and the string or threshold in the
log event.

You configure filter classes by using the <filter> subelements within an appender
configuration.

Filters are processed in the order that they appear in the appender definition,
creating a filtering policy for the appender.

The results of filtering depend on filter arguments. The AcceptOnMatch argument in
the StringMatchFilter, LevelMatchFilter, and LevelRangeFilter filters indicate whether
to accept the log event if there is a match. The following lists describe the process of
deciding whether a log event is accepted or denied:

StringMatchFilter and LevelMatchFilter
� If there is a match between the filter string or the filter threshold (level) and

the log event, and if AcceptOnMatch is TRUE, then the appender processes
the log event.

� If there is a match between the filter string or the filter threshold (level) and
the log event, and if AcceptOnMatch is FALSE, then the appender denies the
log event.

� If there is no match between the filter and the log event, then the appender
processes the next filter in the filtering policy. If the log event has not been
denied and if there are no other filters in the filtering policy, then the
appender processes the log event.

LevelRangeFilter
� If there is a match between the minimum and maximum thresholds

(inclusive) in the filter and the log event, and if AcceptOnMatch is TRUE, the
appender processes the log event.

� If there is no match, the appender denies the log event.
� If there is a match between the minimum and maximum thresholds

(inclusive) in the filter and the log event, and if AcceptOnMatch is FALSE,
then the appender processes the next filter in the filtering policy. If the log
event has not been denied and if there are no other filters in the filtering
policy, the appender accepts and processes the log event.

AndFilter uses StringMatchFilter, LevelMatchFilter, and LevelRangeFilter as
arguments. The results of these filters as arguments to the AndFilter class is the
same as it is in the individual filters.

You can include DenyAllFilter as the last filter in the filtering policy to deny any log
events that do not meet the filtering policy for the appender.

Filters � AndFilter Syntax 79

The following example is a simple filtering policy to log only performance messages
for the ARM subsystem:

<filter class="StringMatchFilter">
<param="StringToMatch" value="Perf.ARM"/>
<param="AcceptOnMatch" value="true"/>

</filter>
<filter class="DenyAllFilter">
</filter>

Note: Filter definitions are not available in the logging facility language elements
for SAS programs. �

Syntax for Filters

XML Configuration

<appender class="AppenderName" name="log-name">
<filter class="filter-class">

<param name="filter-parameter-1" value="parameter-value-1"/>
<param name="filter-paramter-n" value="parameter-value"/>

</filter>

</appender>

Note: Filters are configured, using the <filter> and </filter> elements and their
respective filter parameters. Any <appender> element attributes and subelements in
the syntax are present to show the context for the pattern layout elements. See the
syntax for each filter for the parameters that are used by that filter. �

AndFilter

AndFilter Overview
You use AndFilter when you want to log messages that meet multiple criteria.

AndFilter syntax allows for two or more subfilter definitions within the AndFilter
definition. The subfilters are evaluated to decide whether to accept or deny the log
event. AndFilters performs a logical AND operation, using the results of each subfilter
evaluation to determine the results of AndFilter.

An example of using AndFilter might be that you want to filter log messages that
have a threshold of INFO and that contain the string "New client connection".

You can filter by a single threshold, a range of thresholds, or by string matching.

AndFilter Syntax

80 AndFilter Syntax Description � Chapter 7

<filter class="AndFilter">
<param name="AcceptOnMatch" value="TRUE | FALSE">
<filter class="filter-name">

<param name="filter-parameter" value="filter-parameter-value"/>
<param name="AcceptOnMatch" value="TRUE | FALSE"/>

</filter/>-1
[… <filter class="filter-name">

<param name="filter-parameter-name" value="filter-parameter-value"/>
<param name="AcceptOnMatch" value="TRUE | FALSE"/>

</filter/>-n]

</filter>

AndFilter Syntax Description
class="AndFilter"

specifies to apply the AND logical operation on the subfilter results to determine
whether the log event is accepted by the appender.

name="AcceptOnMatch" value="TRUE | FALSE"
for AndFilter, specifies whether to accept or deny the log event if the result of the
logical AND is TRUE. For subfilter definitions, specifies whether to accept or deny
the log event if the threshold or string matches. Valid values are TRUE or FALSE.

TRUE specifies to accept the log event.

FALSE for AndFilter, StringMatchFilter, and LevelMatchFilter,
specifies to deny the log event.

class="filter-name"
specifies the name of a filter to use as an argument to the AND logical operation.
Here is a list of valid filters:

� AndFilter
� LevelMatchFilter
� LevelRangeFilter
� StringMatchFilter

name="filter-parameter-name" value="filter-parameter-value"
specifies the name of a filter parameter and the parameter value that is used to
compare with either the log event threshold or the message. The following table
shows the filter parameters:

Filter Name Filter Parameter Name Filter Parameter Value

LevelMatchFilter LevelToMatch DEBUG | TRACE | INFO |
WARN | ERROR | FATAL

LevelRangeFilter LevelMax

LevelMin

DEBUG | TRACE | INFO |
WARN | ERROR | FATAL

StringMatchFilter StringToMatch a character string enclosed in
quotation marks

AndFilter AcceptOnMatch TRUE | FALSE

In addition to the AcceptOnMatch parameter, specify two or
more filters as arguments to a nested AndFilter.

Filters � LevelMatchFilter Overview 81

AndFilter Examples
The following filter accepts log events that have a threshold of INFO and the string

RETURN in the following log message:

<filter class="AndFilter">
<param name="AcceptOnMatch" value="true"/>
<filter class="LevelMatchFilter">

<param name="LevelToMatch" value="info"/>
<param name="AcceptOnMatch" value="true"/>

</filter>
<filter class="StringMatchFilter">

<param name="StringToMatch" value="RETURN"/>
<param name="AcceptOnMatch" value="true"/>

</filter>
</filter>

DenyAllFilter

DenyAllFilter Overview
DenyAllFilter can be configured as the last filter in a chain of filters to deny all

messages that do not meet the filter specifications in the filter chain.

DenyAllFilter Syntax
<filter class="DenyAllFilter">

DenyAllFilter Syntax Description
class="DenyAllFilter"

specifies to deny all messages that do not meet the filter chain criteria.

LevelMatchFilter

LevelMatchFilter Overview
Use LevelMatchFilter when you want to filter log events for a single message

threshold. For example, you might want to log only error messages, or you might want
all messages that do not have a threshold of FATAL.

To use this filter you specify a threshold, and you specify whether to accept or deny
the log event if the filter threshold matches the log event threshold. If there is no
match, the filtering process continues with the next filter in the filtering policy. If there

82 LevelMatchFilter Syntax � Chapter 7

are no other filters in the filtering policy and if the log event has not been denied, the
appender accepts and processes the log event.

LevelMatchFilter Syntax
<filter class="LevelMatchFilter">

<param name="LevelToMatch" value="DEBUG | TRACE | INFO | WARN |
ERROR | FATAL"/>

<param name="AcceptOnMatch" value="TRUE | FALSE"/>

</filter>

LevelMatchFilter Syntax Description
class="LevelMatchFilter"

specifies to filter messages based on a log event threshold.

name="AcceptOnMatch" value="TRUE | FALSE"
specifies whether to accept or deny the log event if the log event threshold matches
the value in this filter. Valid values are TRUE or FALSE:

TRUE specifies to accept the log event.

FALSE specifies to deny the log event.

name="LevelToMatch" value="DEBUG | TRACE | INFO | WARN | ERROR |
FATAL"

specifies the threshold to filter log events for this appender. Valid values are
DEBUG, TRACE, INFO, WARN, ERROR, or FATAL.
See: Chapter 6, “Pattern Layout,” on page 65

LevelMatchFilter Example
The following filter denies log events whose threshold is INFO:

<filter class="LevelMatchFilter">
<param name="LevelToMatch" value="info"/>
<param name="AcceptOnMatch" value="false"/>

</filter>

LevelRangeFilter

LevelRangeFilter Overview
Use LevelRangeFilter when you want to filter log event messages whose message

threshold falls within a range of message thresholds. The thresholds are, from lowest to
highest: TRACE, DEBUG, INFO, WARN, ERROR, and FATAL. For example, if the
minimum threshold is DEBUG and the maximum threshold is ERROR, and if
AcceptOnMatch is TRUE, messages that have the thresholds TRACE and FATAL are
filtered.

Filters � StringMatchFilter 83

To use this filter you specify a minimum and a maximum threshold range to compare
with the log event threshold. If there is no match, the log event is denied. If there is a
match and if AcceptOnMatch is TRUE, the appender accepts and processes the log
event. If there is a match and AcceptOnMatch is FALSE, the next filter in the filtering
policy is processed. If there are no other filters in the filtering policy and if the log
event has not been denied, the appender accepts and processes the log event.

LevelRangeFilter Syntax
<filter class="LevelRangeFilter">

<param name="LevelMax" value="threshold"/>
<param name="LevelMin" value="threshold"/>
<param name="AcceptOnMatch" value="TRUE | FALSE"/>

</filter>

LevelRangeFilter Syntax Description
class="LevelRangeFilter"

specifies to use the LevelRangeFilter

name="LevelMax" value="threshold"
specifies the highest threshold that can be written to the appender.

name="LevelMin" value="threshold"
specifies the lowest threshold that can be written to the appender.

name="AcceptOnMatch" value="TRUE | FALSE"
specifies whether to accept the log event when the log event message threshold
falls within the threshold range that is specified by the filter. Valid values are
TRUE or FALSE:

TRUE specifies to accept the log event.

FALSE specifies to pass the filtering process to the next filter in the
filtering policy. If the log event has not been denied and there
are no other filters in the filtering policy, the appender accepts
and processes the log event.

LevelRangeFilter Example
The following filter accepts log events only if the log event threshold is between

WARN and ERROR:

<filter class="LevelRangeFilter">
<param name="LevelMax" value="error"/>
<param name="LevelMin" value="warn"/>
<param name="AcceptOnMatch" value="true"/>

</filter>

StringMatchFilter

84 When to Use the StringMatchFilter � Chapter 7

When to Use the StringMatchFilter
Use StringMatchFilter when you want to filter messages based on a string in the log

event message.
To use this filter you specify a character string, and you specify whether to accept or

deny the log event if the filter character string matches a character string in the log
event message. If there is no match, the filtering process continues with the next filter
in the filtering policy. If there are no other filters in the filtering policy and if the log
event has not been denied, the appender accepts and processes the log event.

StringMatchFilter Syntax
<filter class="StringMatchFilter">

<param name="StringToMatch" value="character-string"/>

<param name="AcceptOnMatch" value="TRUE | FALSE"/>

</filter>

StringMatchFilter Syntax Description
name="StringToMatch" value="character-string"

specifies the string to search for in the log event message.

name="AcceptOnMatch" value="TRUE | FALSE"
specifies whether to accept or deny the log event when the log event message
contains character-string. Valid values are TRUE or FALSE:

TRUE specifies to accept the log event.

FALSE specifies to deny the log event.

StringMatchFilter Example
The following filter definition does not accept log events that contain the string

"RETURN":

<filter class="StringMatchFilter">
<param name="StringToMatch" value="RETURN"/>
<param name="AcceptOnMatch" value="false"/>

</filter>

Filter Examples

Example 1: Filter for a Specific User’s Error Messages
In this example, the filtering policy writes to the Windows Event Log the messages

whose log event threshold is ERROR and which are issued by user sasuser1:

Filters � Example 2: Filter for a Specific Date 85

<?xml version "1.0" encoding="UTF-8"?>
<logging:configuration xmlns: logging="http://www.sas.com/xml/logging/1.0/">

<appender name="eventLog" class="WindowsEventAppender">
<param name="AppName" value="SAS Foundation"/>
<layout>

<param name="ConversionPattern"
value="%d % -5p [%t] %c (%F:%L) %u - %m"/>

</layout>
<filter class="AndFilter">

<param="AcceptOnMatch" value="true"/>
<filter class="LevelMatchFilter">

<param="LevelToMatch" value="error"/>
<param="AcceptOnMatch" value="true"/>

</filter>
<filter class="StringMatchFilter">

<param="StingToMatch" value="sasuser1"/>
<param="AcceptOnMatch" value="true"/>

</filter>
</filter>
<filter class="DenyAllFilter">
</filter>

</appender>
<root>

<level valuel="trace"/>
<appender-ref ref="eventLog"/>

</root>
</logging:configuration>

Example 2: Filter for a Specific Date
The following filtering policy denies log events that were sent on 2008–09–22:

<filter class="StringMatchFilter">
<param="StringToMatch" value="2008-09-22"/>
<param="AcceptOnMatch" value="false"/>

</filter>
<filter class="DenyAllFilter">
</filter>

86

87

P A R T3

The Logging Facility for SAS Programs

Chapter 8.The SAS Logging Facility in the SAS Language 89

Chapter 9.Autocall Macro Reference 97

Chapter 10.Function Reference 111

Chapter 11.Logger and Appender Object Language Reference 121

Appendix 1.Recommended Reading 137

88

89

C H A P T E R

8
The SAS Logging Facility in the
SAS Language

Overview of the SAS Logging Facility in the SAS Language 89
Initializing the SAS Logging Facility for SAS Programs 90

Which Language Elements Need Initializing? 90

Initializing the Logging Facility Autocall Macros 90

The LOGCONFIGLOC= System Option 90

Creating and Using Appenders in a SAS Program 90
Creating Appenders 90

Associating Appenders with Loggers 91

Creating Loggers in a SAS Program 91

Using SAS Language Elements to Create Loggers 91

Updating Logger Attributes 92

Message Categories in the SAS Language 92
Creating Log Events in a SAS Program 94

Example of Creating Logger and Appender Categories 94

Overview of the SAS Logging Facility in the SAS Language
The SAS language enables you to use the SAS logging facility in a DATA step and in

macro programs. By using the SAS logging facility language elements, you can create
appenders, loggers, and log events within your SAS programs. Loggers that you create
in your SAS program can reference appenders that are created in your SAS program or
appenders that are defined in a logging configuration file. When you write a log event
in your SAS program, the logger that you specify in the log event can be one that has
been created within your SAS program or one that is configured in the logging
configuration file.

SAS logging facility language elements are both functions and DATA step objects for
DATA step programming. The elements are also autocall macros for macro
programming.

Appenders and loggers must be defined before SAS can process a log event in your
SAS program. You include log events at any point in your SAS programs where you
want to log a message of any diagnostic level. The levels, from lowest to highest, are
TRACE, DEBUG, INFO, WARN, ERROR, and FATAL. Log events specify the logger, the
diagnostic level, and the message.

The logging facility is enabled for SAS programs at all times. If the
LOGCONFIGLOC= system option is not specified when SAS starts, all SAS logging
facility messages are written to the SAS log as well as to the appender destinations
that are associated with the logger that is named in a log event. When the
LOGCONFIGLOC= system option is specified when SAS starts, messages are written to
destinations, based on the logger hierarchy. For more information, see “Hierarchical
Logger Names” on page 8 and “LOGCONFIGLOC= System Option” on page 20.

90 Initializing the SAS Logging Facility for SAS Programs � Chapter 8

Initializing the SAS Logging Facility for SAS Programs

Which Language Elements Need Initializing?
Initializing the logging facility for SAS programs is necessary only if you use the

logging facility autocall macros. SAS has no initialization process for the logging facility
functions and DATA step objects.

Initializing the Logging Facility Autocall Macros
In order to use autocall macros in SAS, you must set the MAUTOSOURCE system

option. When SAS starts, the MAUTOSOURCE option is set, and no further action is
required unless this option is turned off.

The logging facility autocall macro %LOG4SAS must be invoked before SAS
processes any other logging facility autocall macros. The %LOG4SAS autocall macro
defines all other logging facility autocall macros to the SAS session. You can invoke the
%LOG4SAS autocall macro in an autoexec file, in an INITSTMT= system option, or at
the beginning of your SAS program.

After the MAUTOSOURCE system option is set and the %LOG4SAS autocall macro
has been invoked, you can invoke any of the logging facility autocall macros in your
SAS program.

The LOGCONFIGLOC= System Option
If your SAS program does not write log events for SAS server loggers, the

LOGCONFIGLOC= system option does not need to be set. If the program does write log
events using SAS server loggers, you can check that the LOGCONFIGLOC= system
option names a logging configuration file. You can check either by issuing the OPTIONS
procedure or by viewing the LOGCONFIGLOC= system option in the SAS System
Options window.

For more information, see “LOGCONFIGLOC= System Option” on page 20 and “SAS
Server Logger Names” on page 9.

Creating and Using Appenders in a SAS Program

Creating Appenders
You create appenders in your SAS program before you define loggers or before you

invoke a log event. The only appender class that you can create is FileRefAppender,
which specifies to write messages to a file that is referenced by a fileref.

Although appenders can be created at any time in a SAS program, it is a good
programming practice to create a named appender only once. In order to prevent the
DATA step from processing the creation of the same appender in each iteration of the
implicit loop, you can create an appender in only the first iteration of the implicit loop
by using an IF-THEN statement:

The SAS Logging Facility in the SAS Language � Using SAS Language Elements to Create Loggers 91

if _n_ = 1 then
do;

rc=log4sas_appender("myAppenderName", "FileRefAppender", "fileref=myfiles");
if rc ne 0 then do

msg = sysmsg();
put msg;
ABORT;
end;

end;

When you create an appender, you specify the appender name, the keyword
FileRefAppender, and appender options. You use appender options to specify a fileref
that references a log file, a conversion pattern to format the message, and the appender
message threshold. The appender THRESHOLD argument enables appender-level log
event message filtering at the appender level. The filtering occurs after the logging
facility processes logger-level message filtering.

The appender name is case sensitive. Be sure to specify the appender name exactly
as it is specified in the respective appender syntax.

An appender that is created by using an autocall macro is defined to SAS for the
duration of the SAS program. An appender that is created in a DATA step exists only
for the duration of the DATA step. After the DATA step or SAS program is complete,
appenders are no longer defined to SAS.

For details, see the following language elements that create appenders in the SAS
language:

� “%LOG4SAS_APPENDER Autocall Macro” on page 99
� “LOG4SAS_APPENDER Function” on page 112
� “DECLARE Statement, Appender Object” on page 126

Associating Appenders with Loggers
After an appender is defined to SAS, you can associate one or more appenders with a

logger. All logger language elements have an APPENDER-REF argument whose value
must be one or more appender names that are defined to SAS. When a log event is
invoked, the message is written to all destinations that are associated with the logger.

For details about the logger APPENDER-REF argument, see the following logger
language elements:

� “%LOG4SAS_LOGGER Autocall Macro” on page 101
� “LOG4SAS_LOGGER Function” on page 113
� “DECLARE Statement, Logger Object” on page 128

Creating Loggers in a SAS Program

Using SAS Language Elements to Create Loggers
You create loggers in your SAS program by using using either the

%LOG4SAS_LOGGER autocall macro, the LOG4SAS_LOGGER function, or the logger
object DECLARE statement. Loggers must be created after you define appenders and
before you invoke log events.

A named logger can be created only once. In order to prevent the DATA step from
processing the creation of the same logger in each iteration of the implicit loop, you can

92 Updating Logger Attributes � Chapter 8

create a logger in only the first iteration of the implicit loop by using an IF-THEN
statement:

if _n_ = 1 then
do;

rc=log4sas_logger("myLoggerName", "appender-ref=(functionAppender) level=info");
if rc ne 0 then do

msg = sysmsg();
put msg;
ABORT;
end;

end;

When you create a logger, you specify the logger name and optional arguments for the
message threshold and for one or more appender references. The logger name is case
sensitive and can be a one-level or multiple-level name. The LEVEL argument specifies
the message threshold that the logger processes. The logger-level threshold is the first
level of message filtering. If a log event threshold is the same or greater than the logger
threshold, the logger accepts the log event and the logging facility uses the appender
arguments to process the log event. The thresholds, from lowest to highest, are TRACE,
DEBUG, INFO, WARN, ERROR, and FATAL. Loggers can be associated with one or
more appenders by specifying appender names in the APPENDER-REF argument. You
separate appender names with a space and enclose the appender names in parentheses.

A logger is defined for the duration of the SAS session. For information about
loggers, see the following topics:

� “Loggers” on page 7
� “Creating Log Events in a SAS Program” on page 94
� “%LOG4SAS_LOGGER Autocall Macro” on page 101
� “LOG4SAS_LOGGER Function” on page 113
� “DECLARE Statement, Logger Object” on page 128

Updating Logger Attributes
You can update a logger’s attributes by using one of the language elements that

creates loggers. To update logger attributes, you specify the logger creation language
element by using the name of a logger that already exists and the new attributes. SAS
updates the attributes of the logger with the new attributes.

Message Categories in the SAS Language
When you create a logger in the SAS language, you create a category for messages

that are logging messages. The message category is user-specified and is meaningful in
your environment for the types of messages that you want to log. For example, if you
are testing an existing SAS program where you have added new functionality, you
might want messages in preexisting code to be logged as regression messages. Log
messages for new code could be logged as new feature messages. Other logger
categories might include department names, SAS program names, or analytical model
names. For an example of logger category definitions, see “Example of Creating Logger
and Appender Categories” on page 94.

Message categories that you create in the SAS language differ from the types of
message categories for SAS servers in that the SAS language message categories are
user-defined, and the SAS server message categories are defined by SAS.

You can create message categories in a hierarchy where the hierarchy levels are
separated by a . (period). Here are examples: IT, IT.Pgm1, and IT.Pgm2. The attributes

The SAS Logging Facility in the SAS Language � Message Categories in the SAS Language 93

that are defined in the higher-level logger can be used by lower-level loggers when the
lower-level logger does not define an attribute. For example, you could create a
high-level logger IT for your IT department. The logger IT specifies the level as INFO.
Loggers IT.Pgm1 and IT.Pgm2 do not specify a level attribute. Therefore, they inherit
the level of the next highest logger, which in this case is IT. Because the logger IT
specifies the level as INFO, when a log event specifies the IT.Pgm1 or IT.Pgm2 logger,
the logger level INFO is compared to the log event message level. The logger definitions
in this scenario might look like the following functions:

/* Create the context for logging regression messages. */
/* Regression log events of level info or higher are written * /
/* to the destination, specified by the appender to be defined as ITPgmRegression. */

if _n_=1 then
do;

rc=log4sas_logger("IT", "appender-ref=(ITPgmRegression) level=info");
if rc ne 0 then do

msg = sysmsg();
put msg;
ABORT;
end;

end;

/* Create the context for Pgm1 in the IT department. */
/* Do not specify a level; use the IT logger level. */

if _n_=1 then
do;

rc=log4sas_logger("IT.Pgm1", "appender-ref=(ITPgm1Regression)");
if rc ne 0 then do

msg = sysmsg();
put msg;
ABORT;
end;

end;

/* Create the context for Pgm2 in the IT department. */
/* Do not specify a level; use the IT logger level. */

if _n_=1 then
do;

rc=log4sas_logger("IT.Pgm2", "appender-ref=(ITPgm2Regression)");
if rc ne 0 then do

msg = sysmsg();
put msg;
ABORT;
end;

end;

94 Creating Log Events in a SAS Program � Chapter 8

Creating Log Events in a SAS Program
After loggers and appenders are defined, you can add log events to your program.

You insert log events at any point in your program or DATA step that you want to log a
message. A log event takes three arguments: a logger name, a level, and the log
message.

The logger that you specify in the log event names the message category for the
message. It can be a category that you created in your SAS program or a category that
is defined for SAS servers. The diagnostic level indicates one of the following diagnostic
types for the message: TRACE, DEBUG, INFO, WARN, ERROR, and FATAL. The log
message is the message that you want to appear in the log. Enclose the message in
single or double quotation marks.

For more information, see the following topics:
� “Loggers” on page 7
� “Logging Thresholds” on page 14

� “%LOG4SAS_TRACE Autocall Macro” on page 102
� “%LOG4SAS_DEBUG Autocall Macro” on page 103

� “%LOG4SAS_INFO Autocall Macro” on page 104
� “%LOG4SAS_WARN Autocall Macro” on page 105

� “%LOG4SAS_ERROR Autocall Macro” on page 106
� “%LOG4SAS_FATAL Autocall Macro” on page 107
� “LOG4SAS_LOGEVENT Function” on page 115

� “TRACE Method” on page 134
� “DEBUG Method” on page 125

� “INFO Method” on page 132
� “WARN Method” on page 135
� “ERROR Method” on page 130

� “FATAL Method” on page 131

Example of Creating Logger and Appender Categories
The following appender and logger functions create regression and new function

categories for testing a SAS program. This example assumes that filerefs that are
named myPgmReg and myPgmNew have been created in the SAS program.

/* Define the destination where regression messages are written. */

if _n_ = 1 then
do;

rc=log4sas_appender("myPgmRegression", "FileRefAppender", "fileref=myPgmReg");
if rc ne 0 then do

msg = sysmsg();
put msg;
ABORT;
end;

end;

/* Define the destination where new function messages are to be written. */

The SAS Logging Facility in the SAS Language � Example of Creating Logger and Appender Categories 95

if _n_ = 1 then
do;

rc=log4sas_appender("myPgmNewFunction", "FileRefAppender", "fileref=myPgmNew");
if rc ne 0 then do

msg = sysmsg();
put msg;
ABORT;
end;

end;

/* Create the context for logging regression messages. */
/* Regression log events of level info or higher are written * /
/* to the destination specified by the appender defined as myPgmRegression. */

if _n_=1 then
do;

rc=log4sas_logger("regression", "appender-ref=(myPgmRegression) level=info");
if rc ne 0 then do

msg = sysmsg();
put msg;
ABORT;
end;

end;

/* Create the context for logging new function messages. */
/* New functionality log events of level debug or higher are written */
/* to the destination that is specified by the appender defined as myPgmNewFunction. */

if _n_=1 then
do;

rc=log4sas_logger("regression", "appender-ref=(myPgmNewFunction) level=debug");
if rc ne 0 then do

msg = sysmsg();
put msg;
ABORT;
end;

end;

96

97

C H A P T E R

9
Autocall Macro Reference

Using Autocall Macros to Log Messages 97
Dictionary 98

%LOG4SAS Autocall Macro 98

%LOG4SAS_APPENDER Autocall Macro 99

%LOG4SAS_LOGGER Autocall Macro 101

%LOG4SAS_TRACE Autocall Macro 102
%LOG4SAS_DEBUG Autocall Macro 103

%LOG4SAS_INFO Autocall Macro 104

%LOG4SAS_WARN Autocall Macro 105

%LOG4SAS_ERROR Autocall Macro 106

%LOG4SAS_FATAL Autocall Macro 107

Example of Using Autocall Macros to Log Messages 108

Using Autocall Macros to Log Messages

SAS supplies a set of autocall macros that you can use in your SAS programs to log
messages by using the SAS logging facility. SAS writes the SAS language logging
facility messages to a file using the appender, FileRefAppender. FileRefAppender is the
only logging facility appender that is available in the SAS language.

You use the following autocall macros to log messages by using the logging facility:

%LOG4SAS
initializes the autocall macro logging environment.

%LOG4SAS_APPENDER
defines an appender, which names the destination of the log message, a message
layout, and a message threshold.

%LOG4SAS_LOGGER
defines a logger, which defines a message category for log messages and the
appenders that are associated with the message category.

%LOG4SAS_DEBUG
is the log event that you use to write debug messages.

%LOG4SAS_TRACE
is the log event that you use to write trace messages.

%LOG4SAS_WARN
is the log event that you use to write warning messages.

%LOG4SAS_INFO
is the log event that you use to write informational messages.

98 Dictionary � Chapter 9

%LOG4SAS_ERROR
is the log event that you use to write error messages.

%LOG4SAS_FATAL
is the log event that you use to write fatal messages.

In order to use the logging facility autocall macros, you must set the
MAUTOSOURCE system option in order to activate the autocall facility. The
MAUTOSOURCE system option is set by default.

For more information about autocall macros and the MAUTOSOURCE system
option, see “Selected Autocall Macros Provided with SAS Software” and
“MAUTOSOURCE System Option” in SAS Macro Language: Reference.

Dictionary

%LOG4SAS Autocall Macro

Initializes the logging environment to use autocall macros.

Category: Logging
Requirement: The MAUTOSOURCE system option must be set.
Requirement: This macro must be invoked before any other logging autocall macro can be
invoked.

Syntax
%LOG4SAS()

Details
You invoke the %LOG4SAS autocall macro in order to initialize the logging
environment for SAS programming. To ensure that the logging environment is
initialized when SAS starts, you can invoke the %LOG4SAS autocall macro as follows:

� in your autoexec file

� as a statement that is specified in the INITSTMT system option, which can be
placed in the SAS configuration file or on the SAS command line.

You can also invoke the %LOG4SAS autocall macro by placing it at the beginning of
your SAS program.

See Also

Autocall macros
“%LOG4SAS_APPENDER Autocall Macro” on page 99
“%LOG4SAS_LOGGER Autocall Macro” on page 101
“%LOG4SAS_DEBUG Autocall Macro” on page 103

Autocall Macro Reference � %LOG4SAS_APPENDER Autocall Macro 99

“%LOG4SAS_TRACE Autocall Macro” on page 102
“%LOG4SAS_WARN Autocall Macro” on page 105
“%LOG4SAS_INFO Autocall Macro” on page 104
“%LOG4SAS_ERROR Autocall Macro” on page 106
“%LOG4SAS_FATAL Autocall Macro” on page 107

“Example of Using Autocall Macros to Log Messages” on page 108

%LOG4SAS_APPENDER Autocall Macro

Defines an appender.

Category: Logging
Requirement: The MAUTOSOURCE system option must be set.
Requirement: The %LOG4SAS autocall macro must be invoked before this macro is
invoked to initialize the logging facility autocall macros.
Requirement: Arguments that follow the FileRefAppender argument must be enclosed as
a group in single quotation marks.

Syntax
%LOG4SAS_APPENDER(name, "FileRefAppender" <’,<FILEREF=fileref>

<PATTERN="pattern"> < THRESHOLD=threshold>’>)

Syntax Description

name
specifies the name of the appender.
Tip: Appender names are case sensitive.

"FileRefAppender"
specifies the FileRefAppender class to which the defined appender belongs.

Note: This is the only supported appender class. More appender classes might be
supported in the future. �
Requirement: Appender classes are case sensitive. In this instance, the classname

must be FileRefAppender.
Requirement: FileRefAppender must be enclosed in double quotation marks.

FILEREF=fileref
specifies the destination for log events that the FileRefAppender class processes.

PATTERN="pattern"
specifies the conversion pattern that is used to format the log message.
Requirement: The pattern must be enclosed in double quotation marks.
Tip: If PATTERN is not specified, the default is the message.

THRESHOLD=threshold
specifies the level at which log events are filtered out for the FileRefAppender. Valid
values are TRACE, DEBUG, INFO, WARN, ERROR, and FATAL.

100 %LOG4SAS_APPENDER Autocall Macro � Chapter 9

Details

Appender Names The name argument of the appender is specified as the value in the
APPENDER-REF argument in the %LOG4SAS_LOGGER autocall macro. Here is an
example:

filename myfile "my.log";
%log4sas();
%log4sas_appender(myAppender,"FileRefAppender",’fileref=myfile’);
%log4sas_logger(testlogger, ’level=info, appender-ref=(myAppender)’);

Patterns Patterns are a feature of SAS logging that enables you to associate a layout
with a particular logging output destination. The layout specifies how the output is
formatted before it is sent to the output destination. The layout is specified as a pattern
string that is similar to the pattern strings that are used in the C language PRINTF
statement. The pattern layout contains literal text and format directives that are called
conversion specifiers.

Each conversion specifier has the following syntax:
%[format_modifiers] conversion_character

If a pattern is not specified, the default pattern contains just the application message.
For more information, see Chapter 6, “Pattern Layout,” on page 65.

Thresholds An appender can be configured to have a threshold level. By default,
appenders do not have a threshold set. When a threshold is set, all log events that have
a level that is lower than the threshold level are ignored by the appender.

For more information, see “Logging Thresholds” on page 14.

Examples
The following appender definition names the appender debugMyProgram, names a log
message destination using the fileref debugOutput, and specifies a pattern that reports
the filename and the line number in the application that generated the log event:

filename debugOut="c:\myDebugOutput.txt";
%log4sas();
%log4sas_appender(debugMyProgram, "FileRefAppender",

’fileref=debugOut pattern="(%F:%L)%m" threshold=trace’);

See Also

Autocall macros

“%LOG4SAS Autocall Macro” on page 98

“%LOG4SAS_LOGGER Autocall Macro” on page 101

“%LOG4SAS_DEBUG Autocall Macro” on page 103

“%LOG4SAS_TRACE Autocall Macro” on page 102

“%LOG4SAS_WARN Autocall Macro” on page 105

“%LOG4SAS_INFO Autocall Macro” on page 104

“%LOG4SAS_ERROR Autocall Macro” on page 106

“%LOG4SAS_FATAL Autocall Macro” on page 107

“Example of Using Autocall Macros to Log Messages” on page 108

Autocall Macro Reference � %LOG4SAS_LOGGER Autocall Macro 101

%LOG4SAS_LOGGER Autocall Macro

Defines a logger.

Category: Logging

Requirement: The MAUTOSOURCE system option must be set.

Requirement: The %LOG4SAS autocall macro must be invoked before this macro is
invoked to initialize SAS logging.

Syntax
%LOG4SAS_LOGGER(name <,"<ADDITIVITY=TRUE | FALSE>

<APPENDER-REF=(appender-list)> <LEVEL=level>">)

Syntax Description

name
specifies the name of the logger.

Tip: You can specify the root logger by setting name equal to either two double
quotation marks with no space between them (" "), or to "root". If you specify the
root logger, these settings are in effect only during the lifespan of the DATA step.
Root setting before and after the DATA step are based on the logging configuration
file.

ADDITIVITY=TRUE | FALSE
specifies whether to pass log events to only the appender that is associated with the
logger or to all of the appenders in the logger’s hierarchy.

APPENDER-REF=(appender-list)
specifies one or more appender names to which log events are passed.

Requirement: The appender names must already exist. Appender names are
created by the %LOG4SAS_APPENDER autocall macro.

Requirement: When you specify more than one appender, the list must be enclosed
in parentheses.

Interaction: If ADDITIVITY=TRUE, log events are also passed to all of the
appenders that are associated with the logger’s hierarchy.

LEVEL=level
specifies the level at which log events of the specified level and higher are applied by
the logger. The following are the valid level values, from lowest to highest: TRACE,
DEBUG, INFO, WARN, ERROR, FATAL.

Details

Logger Names A logger is an ancestor of another logger if the logger name, followed
by a dot, is the prefix of the other logger.

In the following example, MYPROGRAM is the parent logger. MYPROGRAM is the
ancestor of the UNITTEST logger, and both MYPROGRAM and UNITTEST are
ancestors of the REV1 logger.

102 %LOG4SAS_TRACE Autocall Macro � Chapter 9

MYPROGRAM
MYPROGRAM.UNITTEST
MYPROGRAM.UNITTEST.REV1

The hierarchical organization of loggers enables them to inherit log event levels and
appenders from their ancestors.

Additivity By default, each log event is passed to the appenders that are associated
with the logger and to the appenders that are associated with the logger’s hierarchy.
This is the meaning of the term appender additivity.

For example, assume you have a logger, CONSOLE. The output of a log event for the
logger CONSOLE goes to all of the appenders in CONSOLE and its ancestors.
However, if an ancestor of logger CONSOLE, say FILE, has the additivity argument set
to FALSE, then CONSOLE’s output is directed to all of the appenders in CONSOLE
and its ancestors up to and including FILE, but not to the appenders in any of the
ancestors of FILE.

Levels A logging request is applied if its level is greater than or equal to the level of
the logger. Otherwise, the logging request is ignored. Loggers without an explicitly
assigned level inherit their level from the hierarchy. For more information about
logging levels, see “Logging Thresholds” on page 14.

See Also

Autocall macros
“%LOG4SAS Autocall Macro” on page 98
“%LOG4SAS_APPENDER Autocall Macro” on page 99

“%LOG4SAS_DEBUG Autocall Macro” on page 103
“%LOG4SAS_TRACE Autocall Macro” on page 102
“%LOG4SAS_WARN Autocall Macro” on page 105

“%LOG4SAS_INFO Autocall Macro” on page 104
“%LOG4SAS_ERROR Autocall Macro” on page 106
“%LOG4SAS_FATAL Autocall Macro” on page 107

“Example of Using Autocall Macros to Log Messages” on page 108

%LOG4SAS_TRACE Autocall Macro

Logs a TRACE message if the specified logger accepts TRACE messages.

Category: Logging
Requirement: The MAUTOSOURCE system option must be set.
Requirement: The %LOG4SAS autocall macro must be invoked to initialize SAS logging
before this macro is invoked.

Syntax
%LOG4SAS_TRACE(logger-name, message)

Autocall Macro Reference � %LOG4SAS_DEBUG Autocall Macro 103

Syntax Description

logger-name
specifies the name of the logger to process this log event.

message
specifies the log event message.
Requirement: The message must be enclosed in single or double quotation marks.

Details
The %LOG4SAS_TRACE autocall macro is a log event for trace messages. In order to
log messages using this macro, you must previously define loggers and appenders.

See Also

Autocall macros
“%LOG4SAS Autocall Macro” on page 98
“%LOG4SAS_APPENDER Autocall Macro” on page 99
“%LOG4SAS_LOGGER Autocall Macro” on page 101
“%LOG4SAS_DEBUG Autocall Macro” on page 103
“%LOG4SAS_WARN Autocall Macro” on page 105
“%LOG4SAS_INFO Autocall Macro” on page 104
“%LOG4SAS_ERROR Autocall Macro” on page 106
“%LOG4SAS_FATAL Autocall Macro” on page 107

“Example of Using Autocall Macros to Log Messages” on page 108

%LOG4SAS_DEBUG Autocall Macro

Logs a DEBUG message if the specified logger accepts DEBUG messages.

Category: Logging
Requirement: The MAUTOSOURCE system option must be set.
Requirement: The %LOG4SAS autocall macro must be invoked to initialize SAS logging
before this macro is invoked.

Syntax
%LOG4SAS_DEBUG(logger-name, message)

Syntax Description

logger-name

104 %LOG4SAS_INFO Autocall Macro � Chapter 9

specifies the name of the logger to process this log event.

message
specifies the log event message.
Requirement: The message must be enclosed in single or double quotation marks.

Details
The %LOG4SAS_DEBUG autocall macro is a log event for debugging messages. In order
to log messages using this macro, you must previously define loggers and appenders.

See Also

Autocall macros
“%LOG4SAS Autocall Macro” on page 98
“%LOG4SAS_APPENDER Autocall Macro” on page 99
“%LOG4SAS_LOGGER Autocall Macro” on page 101
“%LOG4SAS_TRACE Autocall Macro” on page 102
“%LOG4SAS_WARN Autocall Macro” on page 105
“%LOG4SAS_INFO Autocall Macro” on page 104
“%LOG4SAS_ERROR Autocall Macro” on page 106
“%LOG4SAS_FATAL Autocall Macro” on page 107

“Example of Using Autocall Macros to Log Messages” on page 108

%LOG4SAS_INFO Autocall Macro

Logs an INFO message if the specified logger accepts INFO messages.

Category: Logging
Requirement: The MAUTOSOURCE system option must be set.
Requirement: The %LOG4SAS autocall macro must be invoked to initialize SAS logging
before this macro is invoked.

Syntax
%LOG4SAS_INFO(logger-name, message)

Syntax Description

logger-name
specifies the name of the logger to process this log event.

message
specifies the log event message.
Requirement: The message must be enclosed in single or double quotation marks.

Autocall Macro Reference � %LOG4SAS_WARN Autocall Macro 105

Details
The %LOG4SAS_INFO autocall macro is a log event for informational messages. In
order to log messages using this macro, you must previously define loggers and
appenders.

See Also

Autocall macros
“%LOG4SAS Autocall Macro” on page 98
“%LOG4SAS_APPENDER Autocall Macro” on page 99
“%LOG4SAS_LOGGER Autocall Macro” on page 101
“%LOG4SAS_DEBUG Autocall Macro” on page 103
“%LOG4SAS_TRACE Autocall Macro” on page 102
“%LOG4SAS_WARN Autocall Macro” on page 105
“%LOG4SAS_ERROR Autocall Macro” on page 106
“%LOG4SAS_FATAL Autocall Macro” on page 107

“Example of Using Autocall Macros to Log Messages” on page 108

%LOG4SAS_WARN Autocall Macro

Logs a WARN message if the specified logger accepts WARN messages.

Category: Logging
Requirement: The MAUTOSOURCE system option must be set.
Requirement: The %LOG4SAS autocall macro must be invoked to initialize SAS logging
before this macro is invoked.

Syntax
%LOG4SAS_WARN(logger-name, message)

Syntax Description

logger-name
specifies the name of the logger to process this log event.

message
specifies the log event message.
Requirement: The message must be enclosed in single or double quotation marks.

Details
The %LOG4SAS_WARN autocall macro is a log event for warning messages. In order to
log messages using this macro, you must previously define loggers and appenders.

106 %LOG4SAS_ERROR Autocall Macro � Chapter 9

See Also

Autocall macros
“%LOG4SAS Autocall Macro” on page 98
“%LOG4SAS_APPENDER Autocall Macro” on page 99
“%LOG4SAS_LOGGER Autocall Macro” on page 101
“%LOG4SAS_DEBUG Autocall Macro” on page 103
“%LOG4SAS_WARN Autocall Macro” on page 105
“%LOG4SAS_INFO Autocall Macro” on page 104
“%LOG4SAS_ERROR Autocall Macro” on page 106
“%LOG4SAS_FATAL Autocall Macro” on page 107

“Example of Using Autocall Macros to Log Messages” on page 108

%LOG4SAS_ERROR Autocall Macro

Logs an ERROR message if the specified logger accepts ERROR messages.

Category: Logging
Requirement: The MAUTOSOURCE system option must be set.
Requirement: The %LOG4SAS autocall macro must be invoked to initialize SAS logging
before this macro is invoked.

Syntax
%LOG4SAS_ERROR(logger-name, message)

Syntax Description

logger-name
specifies the name of the logger to process this log event.

message
specifies the log event message.
Requirement: The message must be enclosed in single or double quotation marks.

Details
The %LOG4SAS_ERROR autocall macro is a log event for error messages. In order to
log messages using this macro, you must previously define loggers and appenders.

See Also

Autocall macros

Autocall Macro Reference � %LOG4SAS_FATAL Autocall Macro 107

“%LOG4SAS Autocall Macro” on page 98
“%LOG4SAS_APPENDER Autocall Macro” on page 99
“%LOG4SAS_LOGGER Autocall Macro” on page 101
“%LOG4SAS_DEBUG Autocall Macro” on page 103
“%LOG4SAS_TRACE Autocall Macro” on page 102
“%LOG4SAS_WARN Autocall Macro” on page 105
“%LOG4SAS_INFO Autocall Macro” on page 104
“%LOG4SAS_FATAL Autocall Macro” on page 107

“Example of Using Autocall Macros to Log Messages” on page 108

%LOG4SAS_FATAL Autocall Macro

Logs a FATAL message if the specified logger accepts FATAL messages.

Category: Logging
Requirement: The MAUTOSOURCE system option must be set.
Requirement: The %LOG4SAS autocall macro must be invoked to initialize SAS logging
before this macro is invoked.

Syntax
%LOG4SAS_FATAL(logger-name, message)

Syntax Description

logger-name
specifies the name of the logger to process this log event.

message
specifies the log event message.
Requirement: The message must be enclosed in single or double quotation marks.

Details
The %LOG4SAS_FATAL autocall macro is a log event for fatal messages. In order to log
messages using this macro, you must previously define loggers and appenders.

See Also

Autocall macros
“%LOG4SAS Autocall Macro” on page 98
“%LOG4SAS_APPENDER Autocall Macro” on page 99
“%LOG4SAS_LOGGER Autocall Macro” on page 101
“%LOG4SAS_DEBUG Autocall Macro” on page 103
“%LOG4SAS_TRACE Autocall Macro” on page 102

108 Example of Using Autocall Macros to Log Messages � Chapter 9

“%LOG4SAS_WARN Autocall Macro” on page 105
“%LOG4SAS_INFO Autocall Macro” on page 104
“%LOG4SAS_ERROR Autocall Macro” on page 106

“Example of Using Autocall Macros to Log Messages” on page 108

Example of Using Autocall Macros to Log Messages
The macro program first retrieves the number of variables in a SAS data set and

then appends each variable name to a macro variable. Logging facility debug log events
send progress messages to a file that is referenced by the REV1 fileref. You can see
from the SAS log output that the messages are written in the SAS log as well. By
writing debug messages to a separate file, the logging facility acts as a filter where only
the messages that you want to see are written to the file. The shaded code lines that
follow are the statements that create logging messages.

filename rev1 ("c:\mySAS\Logs\rev1.log");
%log4sas();
%log4sas_appender(dsvar2mvar, "FileRefAppender", ’fileref=rev1’);
%log4sas_logger(macroVar, ’level=debug appender-ref=(dsvar2mvar)’);

/* Create sample data */

data one;
input x y z;

datalines;
1 2 3
;

%macro lst(dsn);
%global x;
%let x=;
/* Open the data set */
%let dsid=%sysfunc(open(&dsn));

/* Assign the number of variables into the macro variable CNT */
%let cnt=%sysfunc(attrn(&dsid,nvars));
%put cnt=&cnt;
%log4sas_debug(macroVar, ’The number of variables is set in CNT’);

/* Create a macro variable that contains all data set variables */
%do i = 1 %to &cnt;

%let x=&x%sysfunc(varname(&dsid,&i));
%log4sas_debug(macroVar, ’data set variable appended to macro variable’);

%end;

/* Close the data set */
%let rc=%sysfunc(close(&dsid));

%mend lst;
%log4sas_debug(macroVar, ’lst Macro complete’);

/* Call the macro and pass the name of the data set to be processed */
%log4sas_debug(macroVar, ’calling lst(one)’);
%lst(one)

Autocall Macro Reference � Example of Using Autocall Macros to Log Messages 109

%put macro variable x = &x

%log4sas_debug(macroVar, ’macro lst(one) complete’);

The file that is referenced by fileref REV1 contains these lines of text:

Output 9.1 Contents of the File Referenced by the REV1 Fileref

lst Macro complete
calling lst(one)
The number of variables is set in CNT
data set variable appended to macro variable
data set variable appended to macro variable
data set variable appended to macro variable
macro lst(one) complete

The following messages were written to the SAS log:

110 Example of Using Autocall Macros to Log Messages � Chapter 9

1 %log4sas();

2 %log4sas_appender(dsvar2mvar, "FileRefAppender", ’fileref=rev1’);

3 %log4sas_logger(macroVar, ’level=debug appender-ref=dsvar2mvar’);

4

5 /* Create sample data */

6

7 data one;

8 input x y;

9 datalines;

NOTE: The data set WORK.ONE has 1 observations and 3 variables.

NOTE: DATA statement used (Total process time):

real time 0.03 seconds

cpu time 0.03 seconds

11 ;

12

13 %macro lst(dsn);

14 %global x;

15 %let x=;

16 /* Open the data set */

17 %let dsid=%sysfunc(open(&dsn));

18

19 /* Assign the number of variables into the macro variable CNT */

20 %let cnt=%sysfunc(attrn(&dsid,nvars));

21 %put cnt=&cnt;

22 %log4sas_debug(macroVar, ’The number of variables is set in CNT’);

23

24 /* Create a macro variable that contains all data set variables */

25 %do i = 1 %to &cnt;

26 %let x=&x%sysfunc(varname(&dsid,&i));

27 %log4sas_debug(macroVar, ’data set variable appended to macro variable’);

28 %end;

29

30 /* Close the data set */

31 %let rc=%sysfunc(close(&dsid));

32 %mend lst;

33 %log4sas_debug(macroVar, ’lst Macro complete’);

lst Macro complete

34

35 /* Call the macro and pass the name of the data set to be processed */

36 %log4sas_debug(macroVar, ’calling lst(one)’);

calling lst(one)

37 %lst(one)

cnt= 3

The number of variables is set in CNT

data set variable appended to macro variable

data set variable appended to macro variable

data set variable appended to macro variable

38 %put macro variable x = &x

macro variable x = xyz

39

40 %log4sas_debug(macroVar, ’macro lst(one) complete’);

macro lst(one) complete

111

C H A P T E R

10
Function Reference

Using the Logging Facility Functions in the DATA Step 111
Dictionary 112

LOG4SAS_APPENDER Function 112

LOG4SAS_LOGGER Function 113

LOG4SAS_LOGEVENT Function 115

Logging Example Using Functions 117

Using the Logging Facility Functions in the DATA Step

SAS supplies three logging facility functions that you can use in the DATA step:

LOG4SAS_APPENDER
creates an appender. FileRefAppender is the only type of appender that can be
created by using the SAS language.

LOG4SAS_LOGGER
logs a message by using a specific logger.

LOG4SAS_LOGEVENT
logs a message by using a specific logger.

You use logging facility functions in the same way as you use other functions in SAS:
by assigning the function to a variable.

rc=log4sas_appender("myAppenderName", "FileRefAppender", "fileref=myfiles");

When you create appenders and loggers, remember to create them only once in a
DATA step, as in this example:

if _n_ = 1 then
do;

rc=log4sas_appender("myAppenderName", "FileRefAppender", "fileref=myfiles");
if rc ne 0 then do;

msg = sysmsg();
put msg;
ABORT;
end;

rc=log4sas_logger("myLoggerName", "appender-ref=(myAppenderName) level=info");
if rc ne 0 then do;

msg = sysmsg();
put msg;
ABORT;

112 Dictionary � Chapter 10

end;
end;

Dictionary

LOG4SAS_APPENDER Function

Creates a fileref appender that can be referenced by a logger.

Category: Logging
Featured in:: “Logging Example Using Functions” on page 117

Syntax
LOG4SAS_APPENDER("name", "FileRefAppender", ’options’)

Arguments

"name"
specifies a name for the appender.
Tip: The appender name is case sensitive.

"FileRefAppender"
specifies that a fileref is used as the destination for the appender.

’options’
specify one or more of the following values:

FILEREF=fileref
specifies a fileref that is used as the log message destination for this appender.
Required: Yes

PATTERN="pattern"
specifies one or more message layout patterns that are used to format the log
message.
See: Chapter 6, “Pattern Layout,” on page 65

THRESHOLD="threshold"
specifies a level at which log events that are lower than threshold are filtered out
for the appender. Valid values for threshold, from lowest to highest, are TRACE,
DEBUG, INFO, WARN, ERROR, and FATAL.

Requirement: Options must be enclosed in single quotation marks.

Details

Appender Names Appender names follow SAS naming conventions. An appender is
associated to a logger by using the appender name as one of the values of the
APPENDER-REF option in the LOG4SAS_LOGGER function.

Function Reference � LOG4SAS_LOGGER Function 113

FileRefAppender A FileRefAppender is the only type of appender that can be used in
the SAS language.

Patterns Patterns are a feature of SAS logging that enable you to associate a layout
with a particular logging output destination. The layout specifies how the output is
formatted before it is sent to the output destination. The layout is specified as a pattern
string that is similar to the pattern strings that are used in the C language PRINTF
statement. The pattern layout contains literal text and format directives that are called
conversion specifiers.

Each conversion specifier has the following syntax:

%[format_modifiers] conversion_character

If a pattern is not specified, the default pattern contains just the log message.
For more information, see Chapter 6, “Pattern Layout,” on page 65.

Thresholds An appender can be defined to have a threshold level. By default,
appenders do not have a threshold. When a threshold is set, all log events that have a
level that is lower than the threshold level are ignored by the appender.

For more information, see “Logging Thresholds” on page 14.

Processing Appenders in the DATA Step An appender needs to be created only one
time for each DATA step. Because the DATA step uses the implicit loop to process
observations in a data set, you can use the automatic variable _N_ in an IF statement
to process the LOG4SAS_APPENDER function during the first DATA step iteration:

if _n_ = 1 then
do;

rc=log4sas_appender("myAppenderName", "FileRefAppender", "fileref=myfiles");
if rc ne 0 then do;

msg = sysmsg();
put msg;
ABORT;
end;

end;

See Also

Functions:
“LOG4SAS_LOGGER Function” on page 113
“LOG4SAS_LOGEVENT Function” on page 115

LOG4SAS_LOGGER Function
Creates a logger.

Category: Logging
Featured in: “Logging Example Using Functions” on page 117

Syntax
LOG4SAS_LOGGER("name", <"options">)

114 LOG4SAS_LOGGER Function � Chapter 10

Arguments

"name"
specifies a name for the logger.
Requirements: The name must be enclosed in double quotation marks.
Tip: Requests to create a logger are ignored if they use the name of an existing

logger.
Tip: You can specify the root logger by setting name equal to either two double

quotation marks with no space between them (" "), or to "root". If you specify the
root logger, these settings are in effect only during the lifespan of the DATA step.
Root settings before and after the DATA step are based on the logging
configuration file.

Example: App.Security

"options"
specify one or more of the following options for this logger:

ADDITIVITY=(TRUE | FALSE)
specifies whether to pass a log event to only the appender that is associated with
the logger or to all of the appenders in the logger’s hierarchy. TRUE specifies to
send a log event to all of the appenders in the logger’s hierarchy. FALSE specifies
to send a log event to only the appenders that are referenced by the
APPENDER-REF= option.
Default: TRUE

APPENDER-REF=(appender_name_list)
specifies one or more appender names to which log events for the logger are
passed. Separate the appender names with a space or a comma.
Requirement: An appender must be defined before it can be used in

appender_name_list.
Tip: If the value of ADDITIVITY is TRUE, then the log events are processed by

appenders that are found in the logger’s hierarchy.

LEVEL=level
specifies the ranking, or level, of a log event message that the logger processes.
The logger processes log events whose level is the same as or greater than level.
The levels, from the lowest level to the highest level are TRACE, DEBUG, INFO,
WARN, ERROR, and FATAL.

Details

Logger Names The logger name associates a logger with a log message. You can send
log messages to be processed by a logger by specifying the logger name as the name
argument in the LOG4SAS_LOGEVENT function.

A logger is an ancestor of another logger if the logger name, followed by a dot, is the
prefix of the other logger. The following names are logger names:

Testing
Testing.MyProg
Testing.MyProg.TraceMsgs

Testing is the parent logger and the ancestor of the loggers MyProg and TraceMsgs.
MyProg is the ancestor of TraceMsgs. The logger Testing.MyProg.TraceMsgs provides a
message category that can be used to log trace messages when you are testing the
program MyProg.

Function Reference � LOG4SAS_LOGEVENT Function 115

The hierarchical organization of loggers enables loggers to inherit levels and
appenders from their ancestors. For information about configuring loggers in a
hierarchy, see “Hierarchical Logger Names” on page 8.

Appender Reference and Additivity The appenders that are in appender_name_list
must be defined by using the LOG4SAS_APPENDER function before the
LOG4SAS_LOGGER function executes.

By default, each log event is passed to the appenders that are referenced by the
logger and to the appenders that are referenced by loggers in the logger’s hierarchy.
This is the meaning of the term appender additivity. If ADDITIVITY=FALSE, the log
event is processed only by the logger.

For example, by default, when a log event is processed by the logger
Testing.MyProg.TraceMsgs, the log message is also directed to the appenders that are
referenced in the MyProg and Testing loggers. If ADDITIVITY=FALSE, the log message
is directed to only the appenders that are referenced by Testing.MyProg.TraceMsgs.

Levels A log event is applied if the level of the log event is the same or greater than
the level of the logger. If the level of the log event is lower than the level of the logger,
then the log event is discarded. For more information about levels, see “Logging
Thresholds” on page 14.

If a logger does not define a level, the logger inherits the level from the next highest
ancestor that has an assigned level.

Processing Loggers in the DATA Step A logger needs to be created only one time for
each DATA step. Because the DATA step uses the implicit loop to process observations
in a data set, you can use the automatic variable _N_ in an IF statement to process the
LOG4SAS_LOGGER function during the first DATA step iteration:

if _n_ = 1 then
do;

rc=log4sas_logger("myLoggerName", "appender-ref=(functionAppender) level=info");
if rc ne 0 then do;

msg = sysmsg();
put msg;
ABORT;
end;

end;

See Also

Functions:
“LOG4SAS_APPENDER Function” on page 112
“LOG4SAS_LOGEVENT Function” on page 115

LOG4SAS_LOGEVENT Function

Logs a message by using a specific logger.

Category: Logging
Featured in: “Logging Example Using Functions” on page 117

116 LOG4SAS_LOGEVENT Function � Chapter 10

Syntax
Log4SAS_logevent(name, level, message)

Arguments

"name"
specifies a name for the logger that processes the log event.

Requirement: The name must be enclosed in quotation marks.

"level"
specifies one of the following message levels:

TRACE produces the most detailed information about your application.
This level is primarily used by SAS Technical Support or
development.

DEBUG produces detailed information that you use to debug your
application. This level is primarily used by SAS Technical
Support or development.

INFO provides information that highlights the progress of an
application.

WARN provides messages that identify potentially harmful situations.

ERROR provides messages that might allow the application to continue
running.

FATAL provides messages that indicate that severe errors have occurred.
These errors will probably cause the application to end.

Requirement: The level must be enclosed in quotation marks.

"message"
specifies the message that is logged.

Interaction: The only variables that the message can resolve are macro variables.
DATA step variables do not resolve in the message.

Requirement: The message must be enclosed in quotation marks.

Details

Name The log message name argument names a logger to process the log message.
A logger is an ancestor of another logger if the logger name, followed by a dot, is the

prefix of the other logger. The following names are logger names:

Testing
Testing.MyProg
Testing.MyProg.TraceMsgs

Testing is the parent logger and the ancestor of the loggers MyProg and TraceMsgs.
MyProg is the ancestor of the logger TraceMsgs. The logger Testing.MyProg.TraceMsgs
provides a message category that can be used to log trace messages when you are
testing the program MyProg.

The hierarchical organization of loggers enables loggers to inherit levels and
appenders from their ancestors. For information about configuring loggers in a
hierarchy, see “Hierarchical Logger Names” on page 8.

Function Reference � Logging Example Using Functions 117

See Also

Functions:
“LOG4SAS_APPENDER Function” on page 112
“LOG4SAS_LOGGER Function” on page 113

Logging Example Using Functions
The example program determines the number of years, months, and days between

two SAS date values. It uses logging facility functions to write progress messages to an
external file. The program is structured so that the appender and the logger are
created, and variables are initialized during the first iteration of the DATA step in order
to ensure efficiency of the program.

data a;
input @1 dob mmddyy10.;
format dob tod mmddyy10.;

/* In the first iteration of the DATA step, create an appender */
/* and a logger, and initialize variables tod and bdays. Then, determine */
/* the number of days in the month prior to the current month. */

if _n_ = 1 then
do;
rc=log4sas_appender("functionAppender", "FileRefAppender", "fileref=myfiles");
if rc ne 0 then do;

msg = sysmsg();
put msg;
ABORT;
end;

rc=log4sas_logger("functionLogger", "appender-ref=(functionAppender)
level=info");

if rc ne 0 then do;
msg = sysmsg();
put msg;
ABORT;
end;

/* Get the current date from the operating system */
tod=today();
retain tod;

rc=log4sas_logevent("functionLogger", "info", "Obtained today’s date.");
if rc ne 0 then do;

msg = sysmsg();
put msg;
ABORT;
end;

/* Determine the number of days in the month prior to current month */
bdays=day(intnx(’month’,tod,0)-1);

118 Logging Example Using Functions � Chapter 10

retain bdays;

rc=log4sas_logevent("functionLogger", "info",
"Determined the number of business days.");

if rc ne 0 then do;
msg = sysmsg();
put msg;
ABORT;
end;

end; /* end the processing for first iteration */

/* Find the difference in days, months, and years between */
/* start and end dates */
dd=day(tod)-day(dob);
mm=month(tod)-month(dob);
yy=year(tod)-year(dob);

rc=log4sas_logevent("functionLogger", "info", "Found date differences.");
if rc ne 0 then do;

msg = sysmsg();
put msg;
ABORT;
end;

/* If the difference in days is a negative value, add the number */
/* of days in the previous month and reduce the number of months */
/* by 1. */
if dd < 0 then do;

dd=bdays+dd;
mm=mm-1;

rc=log4sas_logevent("functionLogger", "info", "Made adjustments in days.");
if rc ne 0 then do;

msg = sysmsg();
put msg;
ABORT;
end;

end;

/* If the difference in months is a negative number add 12 */
/* to the month count and reduce the year count by 1. */
if mm < 0 then do;

mm=mm+12;
yy=yy-1;

rc=log4sas_logevent("functionLogger", "info", "Made adjustments in months.");
if rc ne 0 then do;

msg = sysmsg();
put msg;
ABORT;
end;

end;

Function Reference � Logging Example Using Functions 119

datalines;
01/01/1986
02/28/1990
12/03/2006
02/28/2000
02/29/2000
03/01/2000
05/10/1974
05/11/1974
05/12/1974
;

proc print label;
label dob=’Date of Birth’

tod="Today’s Date"
dd=’Difference in Days’
mm= ’Difference in Months’
yy=’Difference in Years’;

var dob tod yy mm dd;
run;

The file that is represented by the MYFILES fileref contains the following logging
facility messages:

Obtained today’s date.
Determined the number of business days.
Found date differences.
Found date differences.
Made adjustments in days.
Found date differences.
Made adjustments in months.
Found date differences.
Made adjustments in days.
Found date differences.
Made adjustments in days.
Found date differences.
Found date differences.
Made adjustments in months.
Found date differences.
Made adjustments in months.
Found date differences.
Made adjustments in months.

Here is the program output:

120 Logging Example Using Functions � Chapter 10

Display 10.1 Program Output for Determining Date Differences

121

C H A P T E R

11
Logger and Appender Object
Language Reference

The Logger and Appender Component Object Interface 121
Dot Notation and DATA Step Component Objects 122

Definition 122

Syntax 122

Dictionary 123

ADDITIVITY Attribute 123
APPENDERREF Attribute 124

DEBUG Method 125

DECLARE Statement, Appender Object 126

DECLARE Statement, Logger Object 128

ERROR Method 130

FATAL Method 131
INFO Method 132

LEVEL Attribute 133

TRACE Method 134

WARN Method 135

The Logger and Appender Component Object Interface
SAS provides two predefined component objects that you can use in a DATA step to

access SAS logging: the appender object and the logger object. These objects enable you
to record log events and write these events to the appropriate destinations. For more
information about SAS logging, see “The SAS Log” in SAS Language Reference:
Concepts and Chapter 1, “The SAS Logging Facility,” on page 3.

The DATA step Component Interface enables you to create and manipulate the logger
and appender objects by using statements, attributes, and methods. You use the
DECLARE statement to declare and create a component object. You use DATA step
object dot notation to access the component object’s attributes and methods. Attributes
are the properties that specify the information that is associated with an object.
Methods define the operations that an object can perform.

An appender and logger object need to be created only one time for each DATA step.
Because the DATA step uses the implicit loop to process observations in a data set, you
can use the automatic variable _N_ in an IF statement to process the appender and
logger object code during the first DATA step iteration.

Note: The DATA step component object statements, attributes, and methods are
limited to those defined for these objects. You cannot use SAS Component Language
functionality with these predefined DATA step objects. �

122 Dot Notation and DATA Step Component Objects � Chapter 11

Dot Notation and DATA Step Component Objects

Definition
Dot notation provides a shortcut for invoking methods and for setting and querying

attribute values. Using dot notation makes your SAS programs easier to read.
To use dot notation with a DATA step component object, you must declare and

instantiate the component object by using the DECLARE statement.

Syntax

object.attribute

or

object.method(<argument_tag-1: value-1<, ...argument_tag-n: value-n>>);

Arguments

object
specifies the variable name for the DATA step component object.

attribute
specifies an object attribute to assign or query.

When you set an attribute for an object, the code takes this form:

object.attribute = value;

When you query an object attribute, the code takes this form:

value = object.attribute;

method
specifies the name of the method to invoke.

argument_tag
identifies the arguments that are passed to the method. Enclose the argument tag
in parentheses. The parentheses are required whether or not the method contains
argument tags.

All DATA step component object methods take this form:

return_code = object.method(<argument_tag-1: value-1
<, ...argument_tag-n: value-n>>);

The return code indicates the method is success or failure. A return code of zero
indicates success; a non-zero value indicates failure. If you do not supply a return
code variable for the method call and if the method fails, an error message is
printed to the log.

value
specifies the argument value.

Logger and Appender Object Language Reference � ADDITIVITY Attribute 123

Dictionary

ADDITIVITY Attribute

Specifies whether to pass a log event only to the appender that is associated with the logger or to
the appenders in the logger’s hierarchy.

Applies to: logger object

Syntax
object.ADDITIVITY = "TRUE" | "FALSE";

Arguments

object
specifies the name of the logger object.

"TRUE" | "FALSE"
determines whether a log event is processed by the appenders that exist in the
specified logger’s hierarchy.
Default: TRUE

Details
By default, each log event is passed to the appenders that are associated with the
logger and to the appenders that are associated with the logger’s hierarchy. This is the
meaning of the term appender additivity.

For example, assume that you have a logger, CONSOLE. The output of a log event of
logger CONSOLE goes to all of the appenders that are in CONSOLE and its ancestors.
However, if an ancestor of logger CONSOLE, say FILE, has the additivity flag set to
FALSE, then CONSOLE’s output is directed to all of the appenders that are in
CONSOLE and its ancestors up to and including FILE, but not to the appenders that
are in any of the ancestors of FILE.

Note: You can also specify the logger additivity in the logger’s constructor by using
the DECLARE statement. For more information, see “DECLARE Statement, Logger
Object” on page 128. �

Example

The following code sets the additivity attribute to FALSE.

data _null_;
if _n_ = 1 then do;

declare logger logobj("mylog");
end;

124 APPENDERREF Attribute � Chapter 11

logobj.additivity="false";
run;

Alternatively, you can set the additivity attribute in the DECLARE statement.

data _null_;
if _n_ = 1 then do;

declare logger logobj("mylog", additivity:"false");
end;

run;

See Also

Statement:
“DECLARE Statement, Logger Object” on page 128

APPENDERREF Attribute

Specifies the name of the appender to which log events are passed.

Applies to: logger object

Syntax
object.APPENDERREF = "appender-name";

Arguments

object
specifies the name of the logger object.

appendername
specifies the name of the appender to which the log events for the specified logger are
passed.
Interaction: If the ADDITIVITY attribute is set to TRUE, the log events are also

passed to all the appenders that are associated with the logger’s hierarchy.
Interaction: The appender name must already exist. Appender names are created

by using the DECLARE statement. For more information, see “DECLARE
Statement, Appender Object” on page 126.

Details
You can specify more than one appender for each logger.

Example

The logger object in the following example references the myappd appender.

Logger and Appender Object Language Reference � DEBUG Method 125

data _null_;
filename myfref "my.log";
if _n_ = 1 then do;

declare appender appobj("myappd", "FileRefAppender", "FileRef=myfref");

declare logger logobj("mylog", level: "info");
logobj.appenderref="myappd";

end;
logobj.additivity="false";
logobj.info("my info message");

run;

See Also

Attribute:
“ADDITIVITY Attribute” on page 123

Statement:
“DECLARE Statement, Appender Object” on page 126

DEBUG Method
Logs a DEBUG message if the specified logger accepts DEBUG messages.

Applies to: logger object

Syntax
object.DEBUG ("message");

Arguments

object
specifies the name of the logger object.

message
specifies the message to write at the debug level.
Requirement: The message must be enclosed in quotation marks.

Details
The debug level designates fine-grained informational events that are most useful to
debug an application. For more information about logging levels, see “Logging
Thresholds” on page 14.

Examples

The following example creates a debugging message for the logger.

126 DECLARE Statement, Appender Object � Chapter 11

data _null_;
if _n_ = 1 then do;

declare logger logobj("testlog");
end;
logobj.debug("Test debug message");

run;

See Also

Method:
“ERROR Method” on page 130
“FATAL Method” on page 131
“INFO Method” on page 132
“TRACE Method” on page 134
“WARN Method” on page 135

DECLARE Statement, Appender Object

Declares an appender object; creates an instance of an appender object and initializes data for an
appender object.

Valid in: DATA step
Category: Action
Type: Executable
Alias: DCL

Syntax
DECLARE APPENDER ("name", "FileRefAppender", "FILEREF =fileref"

<, PATTERN: "pattern"> <, THRESHOLD: "threshold">);

Arguments

name
specifies the name of the appender object.
Requirement: The name must be enclosed in double quotation marks.
Interaction: This name is valid for use wherever an AppenderRef is accepted (for

example, in the DECLARE statement for the logger object).
Tip: Appender names are case sensitive.

FileRefAppender
specifies the FileRefAppender class to which the defined appender instance belongs.

Note: This is the only supported appender class. More appender classes might be
supported in the future. �

Logger and Appender Object Language Reference � DECLARE Statement, Appender Object 127

Requirement: Appender class names are case sensitive. In this instance, the name
must be “FileRefAppender”.

Requirement: FileRefAppender must be enclosed in double quotation marks.

FILEREF="fileref"
specifies the destination for log events that the FileRefAppender class processes.

Requirement: If the FileRefAppender argument is specified, this argument also
must be specified.

PATTERN: "pattern"
specifies the conversion pattern that is used to format the log message.

Requirement: The pattern must be enclosed in double quotation marks.

Tip: If a conversion pattern is not specified, the log event produces an empty string.

THRESHOLD: "threshold"
specifies the level at which log events are filtered out for the specified appender
object. Valid values are TRACE, DEBUG, INFO, WARN, ERROR, and FATAL.

Requirement: The level must be enclosed in double quotation marks.

Details

Appender Names Appender names follow the rules for SAS naming conventions. For
appender objects, the name can be referenced by the logger object in the
APPENDERREF attribute. For more information, see “APPENDERREF Attribute” on
page 124. Here is an example:

filename myfile "my.log";
declare appender appobj("workappd", "FileRefAppender", "FileRef=myfile");
declare logger logobj("testlog");
logobj.appenderref="workappd";

FileRefAppender A FileRefAppender is the only type of appender that can be used in
the SAS language.

Patterns
Patterns are a feature of SAS logging that enables you to associate a layout with a
particular logging output destination. The layout specifies how the output is formatted
before it is sent to the output destination. The layout is specified as a pattern string
that is similar to the pattern strings that are used in the C language PRINTF
statement. The pattern layout contains literal text and format directives that are called
conversion specifiers.

Each conversion specifier has the following syntax:

% [format_modifiers] conversion_character

If a pattern is not specified, the default pattern contains the log message only.
For more information, see “Overview of Pattern Layouts” on page 65.

Thresholds
An appender can be configured to have a threshold level. By default, appenders do not
have a threshold set. When a threshold is set, all log events that have a level that is
lower than the threshold level are ignored by the appender.

For more information, see “Logging Thresholds” on page 14.

128 DECLARE Statement, Logger Object � Chapter 11

Examples

This example creates an appender object.

data _null_;
if _n_ = 1 then do;

declare appender appobj("testappd", "FileRefAppender", "fileref=testfref",
pattern:"%nrstr(%d{yyyMMdd:HH.mm.ss.SS}: %t:%8p %m)", threshold:"fatal");

end;
run;

See Also

Attribute:
“APPENDERREF Attribute” on page 124

Statement:
“DECLARE Statement, Logger Object” on page 128

DECLARE Statement, Logger Object

Declares a logger object; creates an instance of a logger object and initializes data for a logger
object.

Valid in: DATA step
Category: Action
Type: Executable
Alias: DCL

Syntax
DECLARE LOGGER ("name" <, ADDITIVITY: TRUE | FALSE><, LEVEL: "level">

<, APPENDERREF:" appender-name"<…, APPENDERREF: "appender-name">>);

Arguments

name
specifies the name of the logger object.
Requirement: The name must be enclosed in double quotation marks.
Tip: You can specify the root logger by setting name equal to either double quotation

marks with no space between them (" "), or to "root". If you specify the root
logger, these settings are in effect only during the lifespan of the DATA step. Root
settings before and after the DATA step are based on the logging configuration file.

ADDITIVITY: "TRUE" | "FALSE"
specifies whether to pass a log event only to the appender that is associated with the
logger or to all the appenders in the logger’s hierarchy.

Logger and Appender Object Language Reference � DECLARE Statement, Logger Object 129

Tip: You can also specify this optional argument by using the “ADDITIVITY
Attribute” on page 123 after the logger instance has been created.

APPENDERREF: "appender-name"
specifies the name of the appender to which log events are passed.

Requirement: The appender name must already exist. Appender names are
created by using the “DECLARE Statement, Appender Object” on page 126.

Interaction: If the ADDITIVITY argument is set to TRUE, the log events are also
passed to all the appenders that are associated with the logger’s hierarchy.

Tip: You can specify more than one appender for each logger.

Tip: You can also specify this optional argument by using the APPENDERREF
attribute after the logger instance has been created. For more information, see
“APPENDERREF Attribute” on page 124.

LEVEL: "level"
specifies the level at which a logging request is applied for the specified logger object.
Valid values are TRACE, DEBUG, INFO, WARN, ERROR, and FATAL.

Requirement: The level must be enclosed in double quotation marks.

Tip: You can also specify this optional argument by using the “LEVEL Attribute” on
page 133 after the logger instance has been created.

Details

Logger Names A logger instance is said to be an ancestor of another logger instance if
the logger instance name, followed by a dot, is the prefix of the other logger.

In the following example, IOM is the parent logger, IOM is an ancestor of the APP
logger, and both IOM and APP are ancestors of the WORKSPACE logger.

logobj.name="IOM";
logobj.name="IOM.APP";
logobj.name="IOM.APP.WORKSPACE";

The hierarchical organization of loggers enables them to inherit log event levels and
appenders from their ancestors.

Additivity By default, each log event is passed to the appenders that are associated
with the logger and to the appenders that are associated with the logger’s hierarchy.
This is the meaning of the term appender additivity.

For example, assume that you have a logger, CONSOLE. The output of a log event of
logger CONSOLE goes to all of the appenders that are in CONSOLE and its ancestors.
However, if an ancestor of logger CONSOLE, say FILE, has the additivity flag set to
FALSE, then CONSOLE’s output is directed to all of the appenders that are in
CONSOLE and its ancestors up to and including FILE, but not the appenders in any of
the ancestors of FILE.

Levels A logging request is applied if its level is greater than the level of the logger.
Otherwise, the logging request is ignored. Loggers that do not have an explicitly
assigned level inherit their level from the hierarchy. For more information about the
logging levels, see “Logging Thresholds” on page 14.

Examples

The following example creates a logger object, mylog.

130 ERROR Method � Chapter 11

data _null_;
if _n_ = 1 then do;

declare appender appobj("myappd", "FileRefAppender", "fileref=myfref");
appobj.threshold="trace";

declare logger logobj("mylog");
logobj.appenderref="myappd";

end;
logobj.level="trace";
logobj.debug("Test debug message");
logobj.level="info";
logobj.info("Test info message");

run;

See Also

Attribute:
“ADDITIVITY Attribute” on page 123
“APPENDERREF Attribute” on page 124
“LEVEL Attribute” on page 133

Statement:
“DECLARE Statement, Appender Object” on page 126

ERROR Method
Logs an ERROR message if the specified logger accepts ERROR messages.

Applies to: logger object

Syntax
object.ERROR ("message");

Arguments

object
specifies the name of the logger object.

message
specifies the message to write at the error level.
Requirement: The message must be enclosed in double quotation marks.

Details
The error level designates error events that might allow the application to continue
running. For more information about the logging levels, see “Logging Thresholds” on
page 14.

Logger and Appender Object Language Reference � FATAL Method 131

Example

The following example creates an error message for the logger.

data _null_;
if _n_ = 1 then do;

declare logger logobj("testlog");
end;
logobj.error("Test error message");

run;

See Also

Method:

“DEBUG Method” on page 125

“FATAL Method” on page 131

“INFO Method” on page 132

“TRACE Method” on page 134

“WARN Method” on page 135

FATAL Method

Logs a FATAL message if the specified logger accepts FATAL messages.

Applies to: logger object

Syntax
object.FATAL ("message");

Arguments

object
specifies the name of the logger object.

message
specifies the message to write at the fatal level.

Requirement: The message must be enclosed in double quotation marks.

Details
The fatal level designates very severe error events that will probably cause the
application to end abruptly. For more information about logging levels, see “Logging
Thresholds” on page 14.

132 INFO Method � Chapter 11

Example

The following example creates an error message for the logger.

data _null_;
if _n_ = 1 then do;

declare logger logobj("testlog");
end;
logobj.fatal("Test fatal message");

run;

See Also

Method:

“DEBUG Method” on page 125

“ERROR Method” on page 130

“INFO Method” on page 132

“TRACE Method” on page 134

“WARN Method” on page 135

INFO Method

Logs an INFO message if the specified logger accepts INFO messages.

Applies to: logger object

Syntax
object.INFO ("message");

Arguments

object
specifies the name of the logger object.

message
specifies the message to write at the info level.

Requirement: The message must be enclosed in double quotation marks.

Details
The info level designates informational events that highlight the progress of an
application at a coarse-grained level. For more information about logging levels, see
“Logging Thresholds” on page 14.

Logger and Appender Object Language Reference � LEVEL Attribute 133

Example

The following example creates an info message for the logger.

data _null_;
if _n_ = 1 then do;

declare logger logobj("testlog");
end;
logobj.info("Test info message");

run;

See Also

Method:
“DEBUG Method” on page 125
“ERROR Method” on page 130
“FATAL Method” on page 131
“TRACE Method” on page 134
“WARN Method” on page 135

LEVEL Attribute

Defines the level of message that is accepted by the specified logger.

Applies to: logger object

Syntax
object.LEVEL= "level";

Arguments

object
specifies the name of the logger object.

level
specifies the level at which a logging request is applied for the specified logger object.
Valid values are TRACE, DEBUG, INFO, WARN, ERROR, and FATAL.
Requirement: The level must be enclosed in double quotation marks.

Details
A logging request is applied if its level is greater than the level of the logger.
Otherwise, the logging request is ignored. Loggers without an explicitly assigned level
inherit their level from the hierarchy. For more information about the logging levels,
see “Logging Thresholds” on page 14.

134 TRACE Method � Chapter 11

Note: You can specify the logger level in the logger’s constructor by using the
DECLARE statement. For more information, see “DECLARE Statement, Logger
Object” on page 128. �

Example

The following code sets the attribute level to trace.

data _null_;
if _n_ = 1 then do;

declare logger logobj("mylog"):
end;
logobj.additivity="false";
logobj.level="trace";

run;

Alternatively, you can set the level attribute in the DECLARE statement constructor.

data _null_;
if _n_ = 1 then do;

declare logger logobj("mylog", additivity:"false", level:"trace");
end;

run;

See Also

Statement:
“DECLARE Statement, Logger Object” on page 128

TRACE Method

Logs a TRACE message if the specified logger accepts TRACE messages.

Applies to: logger object

Syntax
object.TRACE ("message");

Arguments

object
specifies the name of the logger object.

message

Logger and Appender Object Language Reference � WARN Method 135

specifies the message to write at the trace level.
Requirement: The message must be enclosed in double quotation marks.

Details
The trace level designates finer-grained informational events then DEBUG. For more
information about logging levels, see “Logging Thresholds” on page 14.

Example

The following example creates a trace message for a logger.

data _null_;
if _n_ = 1 then do;

declare logger logobj("testlog");
end;
logobj.trace("Test trace message");

run;

See Also

Method:
“DEBUG Method” on page 125
“ERROR Method” on page 130
“FATAL Method” on page 131
“INFO Method” on page 132
“WARN Method” on page 135

WARN Method

Logs a WARN message if the specified logger accepts WARN messages.

Applies to: logger object

Syntax
object.WARN ("message");

Arguments

object
specifies the name of the logger object.

message
specifies the message to write at the warn level.

136 WARN Method � Chapter 11

Requirement: The message must be enclosed in double quotation marks.

Details
The warn level designates potentially harmful situations. For more information about
logging levels, see “Logging Thresholds” on page 14.

Example

The following example creates a warn message for a logger.

data _null_;
if _n_ = 1 then do;

declare logger logobj("testlog");
end;
logobj.warn("Test warn message");

run;

See Also

Method:
“DEBUG Method” on page 125
“ERROR Method” on page 130
“FATAL Method” on page 131
“INFO Method” on page 132
“TRACE Method” on page 134

137

A P P E N D I X

1
Recommended Reading

Recommended Reading 137

Recommended Reading

Here is the recommended reading list for this title:
� SAS Intelligence Platform: System Administration Guide
� SAS Interface to Application Response Measurement (ARM): Reference

� SAS Language Reference: Dictionary
� SAS Macro Language: Reference
� SAS OLAP Server: User’s Guide

For a complete list of SAS publications, go to support.sas.com/bookstore. If you
have questions about which titles you need, please contact a SAS Publishing Sales
Representative at:

SAS Publishing Sales
SAS Campus Drive
Cary, NC 27513
Telephone: 1-800-727-3228
Fax: 1-919-531-9439
E-mail: sasbook@sas.com
Web address: support.sas.com/bookstore

Customers outside the United States and Canada, please contact your local SAS office
for assistance.

mailto:sasbook@sas.com
http://support.sas.com/bookstore
http://support.sas.com/bookstore

138

139

Glossary

additivity flag
a flag that is associated with a logger. An additivity flag controls whether ancestor
loggers receive log events. By default, a log event is passed to the logger that is
associated with the event as well as to any ancestor loggers. If a logger’s additivity
flag is set to false, then log events are not passed to ancestor loggers. For example, if
the additivity flag for App.Meta is set to false, then App.Meta.IO events are passed
to the App.Meta.IO and App.Meta loggers, but they are not passed to the App logger.
See also appender additivity.

ancestor logger
a logger that is at a higher level in relation to other loggers in the logger hierarchy.
For example, the Audit logger is an ancestor logger of Audit.Meta and
Audit.Authentication.

appender
a named entity that represents a specific output destination for messages.
Destinations include fixed files, rolling files, operating system facilities, and client
applications.

appender additivity
a feature that causes each log event to be passed to the appenders that are
associated with the logger as well as to appenders that are associated with the
logger’s ancestor loggers. For example, App.Meta.IO events are passed to appenders
that are associated with App.Meta.IO as well as to appenders that are associated
with App.Meta and App. See also additivity flag.

appender reference
an expression that identifies an appender whose destination receives messages for
log events for a particular logger.

Application Response Measurement
the name of an application programming interface that was developed by an industry
partnership and which is used to monitor the availability and performance of
software applications. ARM monitors the application tasks that are important to a
particular business. Short form: ARM.

ARM
See Application Response Measurement.

ARM agent

140 Glossary

a software vendor’s implementation of the ARM API. Each ARM agent is a set of
executable routines that can be called by applications. The ARM agent runs
concurrently with SAS. The SAS application passes transaction information to the
agent, which collects the ARM transaction records and writes them to the ARM log.

autocall macro
a macro whose uncompiled source code and text are stored in an autocall macro
library. Unlike a stored compiled macro, an autocall macro is compiled before
execution the first time it is called.

conversion character
a single character that represents a data item that is generated in a log event. For
example, d specifies the date of the event and t identifies the thread that generated
the event. See also conversion specifier, format modifier, and pattern layout.

conversion pattern
an expression that specifies an appender definition’s pattern layout. A conversion
pattern consists of a combination of user-supplied literal text and conversion
specifiers.

conversion specifier
an expression in a conversion pattern that consists of a percent sign (%), a conversion
character, and optional format modifiers. See also conversion pattern.

descendant logger
a logger that is at a lower level in relation to other loggers in the logger hierarchy.
For example, Audit.Meta and Audit.Authentication are descendant loggers of the
Audit logger.

DTD
Document Type Definition. A file that specifies how the markup tags in a group of
SGML or XML documents should be interpreted by an application that displays,
prints, or otherwise processes the documents.

filter
in the logging facility, a set of character strings, thresholds, or a combination of
strings and thresholds that you specify. Log events are compared to the filter to
determine whether they should be processed.

format modifier
an optional set of characters in a conversion specifier that controls the field width,
padding, and justification of the specified data item in log output.

Integrated Object Model
the set of distributed object interfaces that make SAS software features available to
client applications when SAS is executed as an object server. Short form: IOM.

Integrated Object Model server
a SAS object server that is launched in order to fulfill client requests for IOM
services. Short form: IOM server.

IOM
See Integrated Object Model.

IOM server
See Integrated Object Model server.

level
the diagnostic level that is associated with a log event. Examples of levels are
TRACE, DEBUG, INFO, WARN, ERROR, and FATAL.

log event

Glossary 141

an occurrence that is reported by a program for possible inclusion in a log.

logger
a named entity that identifies a message category. Logger names have a hierarchical
format that enables you to configure logging at a broad or a fine-grained level.

logging configuration
an XML file or a set of SAS program statements that determines how log events are
processed. You use the logging configuration to assign thresholds to loggers, to
configure appenders, and to specify which categories and levels of log events are
written to each appender.

pattern layout
a template that you create to format log messages. The pattern layout identifies the
type, order, and format of the data that is generated in a log event and delivered as
output.

planned deployment
a method of installing and configuring a SAS business intelligence system. This
method requires a deployment plan that contains information about the different
hosts that are included in the system and the software and SAS servers that are to
be deployed on each host. The deployment plan then serves as input to an
installation and configuration tool called the SAS Deployment Wizard.

root logger
the highest-level logger in the logger hierarchy. In a logging configuration, all other
loggers inherit the root logger’s attributes.

SAS console log
a file that contains information, warning, and error messages if the SAS log is not
active. The SAS console log is normally used only for fatal system initialization
errors or for late-termination messages. See also SAS log.

SAS Deployment Wizard
a cross-platform utility that installs and initially configures many SAS products.
Using a SAS installation data file and, when appropriate, a deployment plan for its
initial input, the wizard is designed to prompt the customer for all the remaining
input at the start of the session so that the customer does not have to monitor an
entire deployment.

SAS log
a file that contains a record of the SAS statements that you enter, as well as messages
about the execution of your program. In some cases, the SAS log can also contain
output from the DATA step and from certain procedures. See also SAS console log.

threshold
the lowest event level that is processed. Log events whose levels are below the
threshold are ignored.

142

143

Index

A
accessibility 3
Action Response Measurement 34
additivity

See appender additivity
ADDITIVITY attribute 123
AndFilter 79
appender additivity 102, 115

logger objects and 129
passing log events and 123

appender categories
creating 94

appender classes
formatting log messages for 65

appender objects
creating an instance of 126
declaring 126
FileRefAppender and 127
initializing data for 126
patterns and 127
thresholds and 127

APPENDERREF attribute 124
appenders 10

ARMAppender 34
associating with loggers 91
ConsoleAppender 38
creating and using in SAS programs 90
creating fileref appenders 112
defining 99
definition 5
FileAppender 40
FileRefAppender 97, 113, 127
FilteringAppender 43
in SAS language 13
IOMServerAppender 46
names of 100, 112, 127
names of, for passing log events 124
passing log events to 123
patterns and 100
processing in DATA step 113
referencing in loggers 14
RollingFileAppender 48
SAS appenders for server logging 13
sLogAppender 56
syntax 11
UNXFacilityAppender 57
WindowsEventAppender 59
XML elements for configuring 11
ZOSFacilityAppender 60

ZOSWtoAppender 63
application messages

directing to z/OS consoles 63
ARM appender

example 37
syntax 34
syntax description 35

ARM transaction events 34
ARMAppender 34
attributes 92, 121
autocall macros 97

examples 108
FileRefAppender and 97
initializing 90
initializing logging environment for 98

B
best practices 18

C
client applications

adjusting logging levels in 17
enabling 56
viewing logging messages in 17

Component Interface 121
component objects 121

dot notation and 122
configuration

changing 18
for SAS server logging 17
logging configuration 5
XML elements for configuring appenders 11

configuration file 28
sample files 29
structure of 28
syntax conventions 25
typographical conventions 25
XML 21
XML elements for 26

console
directing application messages to 63
writing messages to 38

ConsoleAppender 38
conversion characters 68
conversion patterns 65
conversion specifiers 65

144 Index

current console
writing messages to 38

D
DATA step

logging facility in 111
processing appenders in 113
processing loggers in 115

DATA step Component Interface 121
DATA step component objects 121

dot notation and 122
dates

filtering for specific date 85
DEBUG level 15, 18
DEBUG messages 103, 125
DEBUG method 125
DECLARE statement, Appender object 126
DECLARE statement, Logger object 128
DenyAllFilter 81
diagnostic levels

UNIX 58
dot notation

component objects and 122
definition 122
syntax 122

E
environment

initializing for autocall macros 98
setting up 6

ERROR level 15
ERROR messages 106, 130
ERROR method 130
event logging

UNIX 57
Windows 59
z/OS 60

F
FATAL level 15
FATAL messages 107, 131
FATAL method 131
FileAppender 40
fileref appenders 112

patterns and 113
thresholds and 113

FileRefAppender
appender objects and 127
autocall macros and 97
functions and 113

files
writing messages to 40
writing messages to rolling files 48

filter classes 16, 77
filtering policy 16, 78
FilteringAppender 43
filters 5, 14

AndFilter 79
based on a string in log event message 84
DenyAllFilter 81
denying messages not meeting specifications 81
examples 84
for specific date 85

for specific user’s error messages 84
LevelMatchFilter 81
LevelRangeFilter 82
log events for a single threshold 81
message filtering 16
messages meeting multiple criteria 79
overview 77
range of message thresholds 82
StringMatchFilter 84
subfilters 79
syntax 79

format modifiers 73
examples 73

formatted log event 75
formatting messages 15, 65
functions 111

examples 117
FileRefAppender and 113

H
hierarchical logger names 8

I
INFO level 15
INFO messages 104, 132
INFO method 132
IOM servers

writing messages to 46
IOMServerAppender 46

L
LEVEL attribute 133
LevelMatchFilter 81
LevelRangeFilter 82
levels 5, 14, 18

adjusting in client applications 17
adjusting temporarily 18
creating loggers and 115
defining 133
defining loggers, to inherit the level 32
defining loggers and 102
logger objects and 129
UNIX diagnostic levels 58

log events 5
additivity and passing events 123
creating in SAS programs 94
filtering for a single threshold 81
formatted 75
passing 123, 124

%LOG4SAS autocall macro 98
%LOG4SAS_APPENDER autocall macro 99
LOG4SAS_APPENDER function 112
%LOG4SAS_DEBUG autocall macro 103
%LOG4SAS_ERROR autocall macro 106
%LOG4SAS_FATAL autocall macro 107
%LOG4SAS_INFO autocall macro 104
LOG4SAS_LOGEVENT function 116
%LOG4SAS_LOGGER autocall macro 101
LOG4SAS_LOGGER function 114
%LOG4SAS_TRACE autocall macro 103
%LOG4SAS_WARN autocall macro 105
LOGAPPLNAME= system option 20
LOGCONFIGLOC= system option 21, 90

Index 145

logconfig_trace.xml file 18
logger categories 94
logger objects

additivity and 129
creating an instance of 128
declaring 128
initializing data for 128
levels and 129

loggers 7
associating appenders with 91
creating 114
creating in SAS programs 91
defining 101
defining to inherit the level 32
defining to log error messages for application in produc-

tion 32
definition 5
examples 32
hierarchical logger names 8
in SAS language 10
logging messages with a specific logger 116
names of 101, 114, 116, 129
overview 31
processing in DATA step 115
referencing appenders in 14
SAS server logger names 9
syntax 31
syntax description 31
updating attributes 92
XML elements for configuring 7

logging configuration 5
logging configuration file

See configuration file
logging facility 4

compared with SAS log 4
enabling for SAS server logging 19
enabling in SAS programs 19
in DATA step 111
in SAS language 89
initializing autocall macros 90
initializing for SAS programs 90
terminology 5
users of 4

logging process 6
setting up 6

logging thresholds
See thresholds

M
macros

See also autocall macros
write-to-operator (WTO) 63

messages
directing to z/OS consoles 63
error messages for applications in production 32
filtering 16
formatting 15
formatting for appender classes 65
logging with a specific logger 116
viewing in client applications 17
writing to current console 38
writing to IOM servers 46
writing to rolling files 48
writing to specified file 40

methods 121

middle tier applications 56

N
names

appender names 100, 112, 124, 127
hierarchical logger names 8
logger names 101, 114, 116, 129
SAS server logger names 9
SAS session names 19, 20

O
operating system consoles

directing application messages to 63

P
passing log events 123, 124
pattern layouts 15

appender objects and 127
conversion characters and 68
defining appenders and 100
definition 5
example 74
fileref appenders and 113
format modifiers and 73
overview 65
syntax 66
syntax description 66

performance data
based on ARM standards 34

R
referencing appenders in loggers 14
reserved class 56
rolling files

writing messages to 48
RollingFileAppender 48

S
SAS Data Integration Studio

logging messages and levels 18
SAS language

appenders in 13
loggers in 10
logging facility in 89
message categories in 92

SAS log
compared with logging facility 4

SAS Management Console
logging messages and levels 17

SAS programs
creating and using appenders in 90
creating log events in 94
creating loggers in 91
enabling logging facility in 19
initializing logging facility for 90

SAS server logging
adjusting logging levels in client applications 17
best practices for 18
enabling logging facility for 19
initial configuration for 17

146 Index

viewing logging messages in client applications 17

SAS servers
appenders for 13
logger names 9

SAS session names 19, 20
sLogAppender 56
StringMatchFilter 84

subfilters 79
syntax conventions 25

T
terminology 5
thresholds 14

appender objects and 127
defining appenders and 100
definition 5

fileref appenders and 113
filtering log events for a single threshold 81
filters for a range of 82

TRACE level 15, 18
TRACE messages 103, 134
TRACE method 134
typographical conventions 25

U
UNIX

diagnostic levels 58
event logging on 57

writing messages to current console 38

UNXFacilityAppender 57

updates

updating logger attributes 92

users 4

filter for specific user’s error messages 84

W
WARN level 15

WARN messages 105, 135

WARN method 135

Windows

event logging on 59

writing messages to current console 38

WindowsEventAppender 59

write-to-operator (WTO) service macro 63

X
XML configuration file 21

XML elements

for configuration file 26

for configuring appenders 11

Z
z/OS

directing application messages to console 63

event logging on 60

ZOSFacilityAppender 60

ZOSWtoAppender 63

Your Turn

We welcome your feedback.
� If you have comments about this book, please send them to yourturn@sas.com.

Include the full title and page numbers (if applicable).
� If you have comments about the software, please send them to suggest@sas.com.

mailto:yourturn@sas.com
mailto:suggest@sas.com

SAS® Publishing Delivers!
Whether you are new to the work force or an experienced professional, you need to distinguish yourself in this rapidly
changing and competitive job market. SAS® Publishing provides you with a wide range of resources to help you set
yourself apart. Visit us online at support.sas.com/bookstore.

SAS® Press
Need to learn the basics? Struggling with a programming problem? You’ll find the expert answers that you
need in example-rich books from SAS Press. Written by experienced SAS professionals from around the
world, SAS Press books deliver real-world insights on a broad range of topics for all skill levels.

s u p p o r t . s a s . c o m / s a s p r e s s
SAS® Documentation
To successfully implement applications using SAS software, companies in every industry and on every
continent all turn to the one source for accurate, timely, and reliable information: SAS documentation.
We currently produce the following types of reference documentation to improve your work experience:

•	 Online help that is built into the software.
•	 Tutorials that are integrated into the product.
•	 Reference documentation delivered in HTML and PDF – free on the Web.
•	 Hard-copy books.

s u p p o r t . s a s . c o m / p u b l i s h i n g
SAS® Publishing News
Subscribe to SAS Publishing News to receive up-to-date information about all new SAS titles, author
podcasts, and new Web site features via e-mail. Complete instructions on how to subscribe, as well as
access to past issues, are available at our Web site.

s u p p o r t . s a s . c o m / s p n

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.
Other brand and product names are trademarks of their respective companies. © 2009 SAS Institute Inc. All rights reserved. 518177_1US.0109

http://support.sas.com/saspress
http://support.sas.com/publishing
http://support.sas.com/spn

	Contents
	What’s New
	Overview
	General Enhancements

	SAS Logging
	The SAS Logging Facility
	Accessibility Features of the SAS Logging Facility
	Overview of the SAS Logging Facility
	What Is the Logging Facility?
	Who Uses the Logging Facility?
	Comparing the SAS Logging Facility and the SAS Log

	Logging Facility Terminology
	How the Logging Facility Works
	Setting Up the Logging Process
	The Logging Process

	Loggers
	What Is a Logger?
	XML Elements for Configuring Loggers
	Hierarchical Logger Names
	SAS Server Logger Names
	Loggers in the SAS Language

	Appenders
	Appender Overview
	XML Elements for Configuring Appenders
	SAS Appenders for Server Logging
	Appenders in the SAS Language
	Referencing Appenders in a Logger

	Logging Thresholds
	Formatting Messages
	Message Filtering
	Using the SAS Logging Facility in the SAS Intelligence Platform
	About the Initial Logging Configuration for SAS Servers
	Viewing SAS Logging Messages and Adjusting Logging Levels in Client Applications
	Best Practices for SAS Server Logging

	Enabling the SAS Logging Facility
	Enabling the Logging Facility for SAS Server Logging
	Enabling the Logging Facility in SAS Programs
	Naming a SAS Session

	XML Configuration Overview and Reference
	Overview of the Logging Configuration File
	Typographical Conventions
	Syntax Conventions
	XML Elements for Configuring SAS Logging
	Structure of the Logging Configuration File
	Sample Configuration Files

	Logger Reference
	SAS Logger Overview and Syntax
	Logger Overview
	Logger Syntax
	Logger Syntax Description
	Logger Examples

	Appender Reference
	ARMAppender
	ARMAppender Overview
	ARMAppender Syntax
	ARMAppender Syntax Description
	ARMAppender Example
	ARMAppender Usage and Best Practices

	ConsoleAppender
	ConsoleAppender Overview
	ConsoleAppender Syntax
	ConsoleAppender Syntax Description
	ConsoleAppender Examples

	FileAppender
	FileAppender Overview
	FileAppender Syntax
	FileAppender Syntax Description
	FileAppender Examples
	FileAppender Usage and Best Practices

	FilteringAppender
	FilteringAppender Overview
	FilteringAppender Syntax
	FilteringAppender Syntax Description
	FilteringAppender Example
	FilteringAppender Usage and Best Practices

	IOMServerAppender
	IOMServerAppender Overview
	IOMServerAppender Syntax
	IOMServerAppender Syntax Description
	IOMServerAppender Example
	IOMServerAppender Usage and Best Practices

	RollingFileAppender
	RollingFileAppender Overview
	RollingFileAppender Syntax
	RollingFileAppender Syntax Description
	RollingFileAppender Configuration Examples
	RollingFileAppender Usage and Best Practices

	sLogAppender
	UNXFacilityAppender
	UNXFacilityAppender Overview
	UNXFacilityAppender Syntax
	UNXFacilityAppender Syntax Description
	UNXFacilityAppender Example
	UNXFacilityAppender Diagnostic Levels
	UNXFacilityAppender Usage and Best Practices

	WindowsEventAppender
	WindowsEventAppender Overview
	WindowsEventAppender Syntax
	WindowsEventAppender Syntax Description
	WindowsEventAppender Example
	WindowsEventAppender Usage

	ZOSFacilityAppender
	ZOSFacilityAppender Overview
	ZOSFacilityAppender Syntax
	ZOSFacilityAppender Syntax Description
	ZOSFacilityAppender Examples
	ZOSFacilityAppender Usage and Best Practices

	ZOSWtoAppender
	ZOSWtoAppender Overview
	ZOSWtoAppender Syntax
	ZOSWtoAppender Syntax Description
	ZOSWtoAppender Example
	ZOSWtoAppender Usage and Best Practices

	Pattern Layout
	Overview of Pattern Layouts
	Syntax for a Pattern Layout
	Pattern Layout Syntax Description
	Conversion Characters
	Format Modifiers
	Examples
	Examples of Format Modifiers
	Example of a Pattern Layout
	Example of a Formatted Log Event

	Filters
	Overview of Filters
	Syntax for Filters
	AndFilter
	AndFilter Overview
	AndFilter Syntax
	AndFilter Syntax Description
	AndFilter Examples

	DenyAllFilter
	DenyAllFilter Overview
	DenyAllFilter Syntax
	DenyAllFilter Syntax Description

	LevelMatchFilter
	LevelMatchFilter Overview
	LevelMatchFilter Syntax
	LevelMatchFilter Syntax Description
	LevelMatchFilter Example

	LevelRangeFilter
	LevelRangeFilter Overview
	LevelRangeFilter Syntax
	LevelRangeFilter Syntax Description
	LevelRangeFilter Example

	StringMatchFilter
	When to Use the StringMatchFilter
	StringMatchFilter Syntax
	StringMatchFilter Syntax Description
	StringMatchFilter Example

	Filter Examples
	Example 1: Filter for a Specific User’s Error Messages
	Example 2: Filter for a Specific Date

	The Logging Facility for SAS Programs
	The SAS Logging Facility in the SAS Language
	Overview of the SAS Logging Facility in the SAS Language
	Initializing the SAS Logging Facility for SAS Programs
	Which Language Elements Need Initializing?
	Initializing the Logging Facility Autocall Macros
	The LOGCONFIGLOC= System Option

	Creating and Using Appenders in a SAS Program
	Creating Appenders
	Associating Appenders with Loggers

	Creating Loggers in a SAS Program
	Using SAS Language Elements to Create Loggers
	Updating Logger Attributes
	Message Categories in the SAS Language

	Creating Log Events in a SAS Program
	Example of Creating Logger and Appender Categories

	Autocall Macro Reference
	Using Autocall Macros to Log Messages
	Dictionary
	Example of Using Autocall Macros to Log Messages

	Function Reference
	Using the Logging Facility Functions in the DATA Step
	Dictionary
	Logging Example Using Functions

	Logger and Appender Object Language Reference
	The Logger and Appender Component Object Interface
	Dot Notation and DATA Step Component Objects
	Definition
	Syntax

	Dictionary

	Recommended Reading
	Recommended Reading

	Glossary
	Index

