# LOGCDF Function

Returns the logarithm of a left cumulative distribution function.

 Category: Probability See: CDF Function

## Syntax

LOGCDF('dist',quantile<,parm-1,...,parm-k> )

### Required Arguments

#### 'dist'

is a character constant, variable, or expression that identifies the distribution. Valid distributions are as follows:

Distribution
Argument
Bernoulli
`'BERNOULLI'`
Beta
`'BETA'`
Binomial
`'BINOMIAL'`
Cauchy
`'CAUCHY'`
Chi-Square
`'CHISQUARE'`
Exponential
`'EXPONENTIAL'`
F
`'F'`
Gamma
`'GAMMA'`
Generalized Poisson
`'GENPOISSON'`
Geometric
`'GEOMETRIC'`
Hypergeometric
`'HYPERGEOMETRIC'`
Laplace
`'LAPLACE'`
Logistic
`'LOGISTIC'`
Lognormal
`'LOGNORMAL'`
Negative binomial
`'NEGBINOMIAL'`
Normal
`'NORMAL'|'GAUSS'`
Normal mixture
`'NORMALMIX'`
Pareto
`'PARETO'`
Poisson
`'POISSON'`
T
`'T'`
Tweedie
`'TWEEDIE'`
Uniform
`'UNIFORM'`
Wald (inverse Gaussian)
`'WALD'|'IGAUSS'`
Weibull
`'WEIBULL'`
Note: Except for T, F, and NORMALMIX, you can minimally identify any distribution by its first four characters.

#### quantile

is a numeric variable, constant, or expression that specifies the value of a random variable.

### Optional Argument

#### parm-1,...,parm-k

are optional shape, location, or scale parameters appropriate for the specific distribution.

## Details

The LOGCDF function computes the logarithm of a left cumulative distribution function (logarithm of the left side) from various continuous and discrete distributions. For more information, see the CDF Function.