

SAS® 9.3 Formats and Informats Reference

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2011. SAS® 9.3 Formats and Informats: Reference. Cary, NC: SAS Institute Inc.

SAS® 9.3 Formats and Informats: Reference

Copyright © 2011, SAS Institute Inc., Cary, NC, USA

All rights reserved. Produced in the United States of America.

For a hardcopy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS Institute Inc.

For a Web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at the time you acquire this publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the publisher is illegal and punishable by law. Please purchase only authorized electronic editions and do not participate in or encourage electronic piracy of copyrighted materials. Your support of others' rights is appreciated.

U.S. Government Restricted Rights Notice: Use, duplication, or disclosure of this software and related documentation by the U.S. government is subject to the Agreement with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer Software-Restricted Rights (June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.

1st printing, July 2011 1st electronic book, November 2011 2nd printing, August 2012

SAS® Publishing provides a complete selection of books and electronic products to help customers use SAS software to its fullest potential. For more information about our e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site at support.sas.com/publishing or call 1-800-727-3228.

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are registered trademarks or trademarks of their respective companies.

Contents

	About This Book	<i>ix</i>
	PART 1 SAS Formats 1	
Chapter 1 • About	Formats	3
•	Definition of Formats	
	Syntax	
	Using Formats	
	Byte Ordering for Integer Binary Data on Big Endian and Little Endian Platforms.	
	Data Conversions and Encodings	
	Working with Packed Decimal and Zoned Decimal Data	10
	Extended Notations	14
Chapter 2 • Diction	nary of Formats	. 21
	Formats Documented in Other Publications	
	Formats by Category	23
	Dictionary	33
	PART 2 SAS Informats 197	
Chapter 3 • About	Informats	. 199
•	Definition of Informats	
	Syntax	. 200
	Using Informats	
	Byte Ordering for Integer Binary Data on Big Endian and Little Endian Platforms.	
	Working with Packed Decimal and Zoned Decimal Data	
	Reading Dates and Times by Using the ISO 860 Basic and Extended Notations	. 209
Chapter 4 • Diction	nary of Informats	. 215
	Informats Documented in Other Publications	
	Informats by Category	
	Dictionary	. 224
	Index	. 357

About This Book

Syntax Conventions for the SAS Language

Overview of Syntax Conventions for the SAS Language

SAS uses standard conventions in the documentation of syntax for SAS language elements. These conventions enable you to easily identify the components of SAS syntax. The conventions can be divided into these parts:

- · syntax components
- style conventions
- · special characters
- references to SAS libraries and external files

Syntax Components

The components of the syntax for most language elements include a keyword and arguments. For some language elements, only a keyword is necessary. For other language elements, the keyword is followed by an equal sign (=).

keyword

specifies the name of the SAS language element that you use when you write your program. Keyword is a literal that is usually the first word in the syntax. In a CALL routine, the first two words are keywords.

In the following examples of SAS syntax, the keywords are the first words in the syntax:

```
CHAR (string, position)
```

CALL RANBIN (*seed, n, p, x*);

ALTER (alter-password)

BEST w

REMOVE < data-set-name>

In the following example, the first two words of the CALL routine are the keywords:

CALL RANBIN(seed, n, p, x)

The syntax of some SAS statements consists of a single keyword without arguments:

DO;

... SAS code ...

END;

Some system options require that one of two keyword values be specified:

DUPLEX | NODUPLEX

argument

specifies a numeric or character constant, variable, or expression. Arguments follow the keyword or an equal sign after the keyword. The arguments are used by SAS to process the language element. Arguments can be required or optional. In the syntax, optional arguments are enclosed between angle brackets.

In the following example, *string* and *position* follow the keyword CHAR. These arguments are required arguments for the CHAR function:

CHAR (string, position)

Each argument has a value. In the following example of SAS code, the argument string has a value of 'summer', and the argument position has a value of 4:x=char('summer', 4);

In the following example, *string* and *substring* are required arguments, while *modifiers* and *startpos* are optional.

FIND(*string*, *substring* <, *modifiers*> <, *startpos*>

Note: In most cases, example code in SAS documentation is written in lowercase with a monospace font. You can use uppercase, lowercase, or mixed case in the code that you write.

Style Conventions

The style conventions that are used in documenting SAS syntax include uppercase bold, uppercase, and italic:

UPPERCASE BOLD

identifies SAS keywords such as the names of functions or statements. In the following example, the keyword ERROR is written in uppercase bold:

ERROR<*message*>;

UPPERCASE

identifies arguments that are literals.

In the following example of the CMPMODEL= system option, the literals include BOTH, CATALOG, and XML:

CMPMODEL = BOTH | CATALOG | XML

italics

identifies arguments or values that you supply. Items in italics represent usersupplied values that are either one of the following:

• nonliteral arguments In the following example of the LINK statement, the argument *label* is a user-supplied value and is therefore written in italics:

LINK label;

nonliteral values that are assigned to an argument

In the following example of the FORMAT statement, the argument DEFAULT is assigned the variable *default-format*:

FORMAT = *variable-1* <, ..., *variable-nformat*><DEFAULT = *default-format*>;

Items in italics can also be the generic name for a list of arguments from which you can choose (for example, attribute-list). If more than one of an item in italics can be used, the items are expressed as item-1, ..., item-n.

Special Characters

The syntax of SAS language elements can contain the following special characters:

an equal sign identifies a value for a literal in some language elements such as system options.

In the following example of the MAPS system option, the equal sign sets the value of MAPS:

```
MAPS = location-of-maps
```

<>

angle brackets identify optional arguments. Any argument that is not enclosed in angle brackets is required.

In the following example of the CAT function, at least one item is required:

```
CAT (item-1 <, ..., item-n>)
```

a vertical bar indicates that you can choose one value from a group of values. Values that are separated by the vertical bar are mutually exclusive.

In the following example of the CMPMODEL= system option, you can choose only one of the arguments:

```
CMPMODEL = BOTH | CATALOG | XML
```

an ellipsis indicates that the argument or group of arguments following the ellipsis can be repeated. If the ellipsis and the following argument are enclosed in angle brackets, then the argument is optional.

In the following example of the CAT function, the ellipsis indicates that you can have multiple optional items:

```
CAT (item-1 <, ..., item-n>)
```

```
'value' or "value"
```

indicates that an argument enclosed in single or double quotation marks must have a value that is also enclosed in single or double quotation marks.

In the following example of the FOOTNOTE statement, the argument *text* is enclosed in quotation marks:

```
FOOTNOTE <n> <ods-format-options 'text' | "text''>;
```

a semicolon indicates the end of a statement or CALL routine.

```
In the following example each statement ends with a semicolon: data namegame;
length color name $8; color = 'black'; name = 'jack'; game =
trim(color) | name; run;
```

References to SAS Libraries and External Files

Many SAS statements and other language elements refer to SAS libraries and external files. You can choose whether to make the reference through a logical name (a libref or fileref) or use the physical filename enclosed in quotation marks. If you use a logical name, you usually have a choice of using a SAS statement (LIBNAME or FILENAME) or the operating environment's control language to make the association. Several methods of referring to SAS libraries and external files are available, and some of these methods depend on your operating environment.

In the examples that use external files, SAS documentation uses the italicized phrase file-specification. In the examples that use SAS libraries, SAS documentation uses the italicized phrase SAS-library. Note that SAS-library is enclosed in quotation marks:

```
infile file-specification obs = 100;
libname libref 'SAS-library';
```

What's New in SAS 9.3 Formats and Informats

Overview

The SAS formats and informats are now published as a separate document. They are no longer part of *SAS Language Reference: Dictionary*. For more information, see "Changes to SAS Language Reference: Dictionary" on page ix.

For SAS 9.3, there are no new or enhanced formats.

New informats read IBM date and time values that include a century marker, read Java date and time values, and read hours, minutes, and seconds in the form *hhmmss* or *hh:mm:ss*.

New SAS Informats

The following informats are new:

B8601CIw. (p. 250)

reads an IBM date and time value that includes a century marker, in the form *cyymmddhhmmss*<*fff*>.

B8601DJw. (p. 253)

reads a Java date and time value that is in the form yyyymmddhhmmssffffff.

HHMMSSw. (p. 284)

reads hours, minutes, and seconds in the form hhmmss or hh:mm:ss.

Changes to SAS Language Reference: Dictionary

Prior to SAS 9.3, this document was part of *SAS Language Reference: Dictionary*. Starting with SAS 9.3, *SAS Language Reference: Dictionary* has been divided into seven documents:

- SAS Data Set Options: Reference
- SAS Formats and Informats: Reference
- SAS Functions and CALL Routines: Reference
- SAS Statements: Reference

x SAS Formats and Informats

- SAS System Options: Reference
- SAS Component Objects: Reference (contains the documentation for the Hash Object and the Java Object)
- Base SAS Utilities: Reference (contains the documentation for the SAS DATA step debugger and the SAS Utility macro %DS2CSV)

Recommended Reading

Here is the recommended reading list for this title:

- An Array of Challanges-Test Your SAS Skills
- Base SAS Glossary
- Base SAS Procedures Guide
- Debugging SAS Programs: A Handbook of Tools and Techniques
- The Little SAS Book: A Primer
- SAS Companion for UNIX Environments
- SAS Companion for Windows
- SAS Companion for z/OS
- SAS Guide to Report Writing: Examples
- SAS Language Reference: Concepts
- SAS National Language Support (NLS): Reference Guide
- SAS Programming by Example
- The SAS Workbook
- Step-by-Step Programming with Base SAS Software
- Using the SAS Windowing Environment: A Quick Tutorial

For a complete list of SAS publications, go to support.sas.com/bookstore. If you have questions about which titles you need, please contact a SAS Publishing Sales Representative:

SAS Publishing Sales SAS Campus Drive Cary, NC 27513-2414 Phone: 1-800-727-3228 Fax: 1-919-677-8166

E-mail: sasbook@sas.com

Web address: support.sas.com/bookstore

Part 1

SAS Formats

Chapter I				
About Formats		 	 	 3
Chapter 2				
Dictionary of Form	ats	 	 	 21

Chapter 1

About Formats

Definition of Formats	3
Syntax Using Formats Ways to Specify Formats Permanent versus Temporary Association User-Defined Formats Byte Ordering for Integer Binary Data on Big Endian and Little Endian Platforms Definitions How Bytes are Ordered Differently Writing Data Generated on Big Endian or Little Endian Platforms Integer Binary Notation and Different Programming Languages Data Conversions and Encodings Working with Packed Decimal and Zoned Decimal Data	4
Using Formats	5
Permanent versus Temporary Association	6
User-Defined Formats	7
Integer Binary Notation and Different Programming Languages	9
Data Conversions and Encodings	9
Working with Packed Decimal and Zoned Decimal Data	10
Definitions	
Types of Data	10
Platforms Supporting Packed Decimal and Zoned Decimal Data	11
Languages Supporting Packed Decimal and Zoned Decimal Data	11
Summary of Packed Decimal and Zoned Decimal Formats and Informats	12
Working with Dates and Times by Using the ISO 8601 Basic	
and Extended Notations	14
ISO 8601 Formatting Symbols	
Writing ISO 8601 Date, Time, and Datetime Values	15
Writing ISO 8601 Duration, Datetime, and Interval Values	16

Definition of Formats

A format is a type of SAS language element that applies a pattern to or executes instructions for a data value to be displayed or written as output. Types of formats correspond to the data's type: numeric, character, date, time, or timestamp. The ability to create user-defined formats is also supported. Examples of SAS formats are BINARY, DATE, and WORDS. For example, the WORDS22. format, which converts numeric values to their equivalent in words, writes the numeric value 692 as six hundred ninety-two.

Syntax

SAS formats have the following form:

```
<$>format<w>.<d>
```

where

\$

indicates a character format. Its absence indicates a numeric format.

format

names the format. The format is a SAS format or a user-defined format that was previously defined with the VALUE statement in PROC FORMAT.

See: For information about user-defined formats, see Chapter 23, "FORMAT Procedure" in *Base SAS Procedures Guide*.

w specifies the format width, which for most formats is the number of columns in the output data.

d

specifies an optional decimal scaling factor in the numeric formats.

Formats always contain a period (.) as a part of the name. If you omit the w and the d values from the format, SAS uses default values. The d value that you specify with a format tells SAS to display that many decimal places. Formats never change or truncate the internally stored data values.

For example, in DOLLAR10.2, the w value of 10 specifies a maximum of 10 columns for the value. The d value of 2 specifies that two of these columns are for the decimal part of the value, which leaves eight columns for all the remaining characters in the value. The remaining columns include the decimal point, the remaining numeric value, a minus sign if the value is negative, the dollar sign, and commas, if any.

If the format width is too narrow to represent a value, SAS tries to squeeze the value into the space available. Character formats truncate values on the right. Numeric formats sometimes revert to the BESTw.d format. SAS prints asterisks if you do not specify an adequate width. In the following example, the result is x=**.

```
x=123;
put x= 2.;
```

If you use an incompatible format, such as using a numeric format to write character values, SAS first attempts to use an analogous format of the other type. If this attempt fails, an error message that describes the problem appears in the SAS log.

When the value of d is greater than fifteen, the precision of the decimal value after the 15th significant digit might not be accurate.

Using Formats

Ways to Specify Formats

About Specifying Formats

You can use formats in the following ways:

- in a PUT statement
- with the PUT, PUTC, or PUTN functions
- with the %SYSFUNC macro function
- in a FORMAT statement in a DATA step or a PROC step
- in an ATTRIB statement in a DATA step or a PROC step

PUT Statement

The PUT statement with a format after the variable name uses a format to write data values in a DATA step. For example, this PUT statement uses the DOLLARw.d format to write the numeric value for AMOUNT as a dollar amount:

```
amount=1145.32;
put amount dollar10.2;
```

The DOLLARw.d format in the PUT statement produces this result:

```
$1,145.32
```

For more information, see "PUT Statement" in SAS Statements: Reference.

PUT Function

The PUT function converts a numeric variable, a character variable, or a constant using any valid format and returns the resulting character value. For example, the following statement converts the value of a numeric variable into a two-character hexadecimal representation:

```
num=15;
char=put(num, hex2.);
```

The PUT function returns a value of 0F, which is assigned to the variable CHAR.

The PUT function is useful for converting a numeric value to a character value.

For more information, see "PUT Function" in SAS Functions and CALL Routines: Reference.

%SYSFUNC Macro Function

The %SYSFUNC (or %QSYSFUNC) macro function executes SAS functions or userdefined functions and applies an optional format to the result of the function outside a DATA step. For example, the following program writes a numeric value in a macro variable as a dollar amount.

```
%macro tst(amount);
 %put %sysfunc(putn(&amount,dollar10.2));
%mend tst;
```

```
%tst (1154.23);
```

For more information, see "%SYSFUNC and %QSYSFUNC Functions" in SAS Macro Language: Reference.

FORMAT Statement

The FORMAT statement permanently associates character variables with character formats and numeric variables with numeric formats.

SAS uses the format to write the values of the variable that you specify. For example, the following statement in a DATA step associates the COMMAw.d numeric format with the variables SALES1 through SALES3:

```
format sales1-sales3 comma10.2;
```

Because the FORMAT statement permanently associates a format with a variable, any subsequent DATA step or PROC step uses COMMA10.2 to write the values of SALES1, SALES2, and SALES3.

For more information, see "FORMAT Statement" in SAS Statements: Reference.

Note: If you assign formats with a FORMAT statement before a PUT statement, all leading blanks are trimmed. Formats that are associated with variables by using a FORMAT statement behave like formats that are used with a colon (:) modifier in a subsequent PUT statement. For details about using the colon format modifier, see "PUT Statement, List" in SAS Statements: Reference.

ATTRIB Statement

The ATTRIB statement can also associate a format, as well as other attributes, with one or more variables. For example, in the following statement the ATTRIB statement permanently associates the COMMAw.d format with the variables SALES1 through SALES3:

```
attrib sales1-sales3 format=comma10.2;
```

Because the ATTRIB statement permanently associates a format with a variable, any subsequent DATA step or PROC step uses COMMA10.2 to write the values of SALES1, SALES2, and SALES3.

For more information, see "ATTRIB Statement" in SAS Statements: Reference.

Permanent versus Temporary Association

When you specify a format in a PUT statement, SAS uses the format to write data values during the DATA step but does not permanently associate the format with a variable. To permanently associate a format with a variable, use a FORMAT statement or an ATTRIB statement in a DATA step. SAS permanently associates a format with the variable by modifying the descriptor information in the SAS data set.

Using a FORMAT statement or an ATTRIB statement in a PROC step associates a format with a variable for that PROC step, as well as for any output data sets that the procedure creates that contain formatted variables.

For more information about using formats in SAS procedures, see "Formatted Values" in Chapter 2 of Base SAS Procedures Guide.

User-Defined Formats

In addition to the formats that are supplied with Base SAS software, you can create your own formats. In Base SAS software, PROC FORMAT enables you to create your own formats for both character and numeric variables.

For more information, see Chapter 23, "FORMAT Procedure" in Base SAS Procedures Guide.

When you execute a SAS program that uses user-defined formats, these formats should be available. The two ways to make these formats available are

- to create permanent, not temporary, formats with PROC FORMAT
- to store the source code that creates the formats (the PROC FORMAT step) with the SAS program that uses them.

To create permanent SAS formats, see Chapter 23, "FORMAT Procedure" in Base SAS Procedures Guide.

If you execute a program that cannot locate a user-defined format, the result depends on the setting of the FMTERR system option. If the user-defined format is not found, then these system options produce these results:

System Options	Result
FMTERR	SAS produces an error that causes the current DATA or PROC step to stop.
NOFMTERR	SAS continues processing and substitutes a default format, usually the BESTw. or \$w. format.

Although using NOFMTERR enables SAS to process a variable, you lose the information that the user-defined format supplies.

To avoid problems, make sure that your program has access to all user-defined formats that are used.

Byte Ordering for Integer Binary Data on Big **Endian and Little Endian Platforms**

Definitions

Integer values for binary integer data are typically stored in one of three sizes: one-byte, two-byte, or four-byte. The ordering of the bytes for the integer varies depending on the platform (operating environment) on which the integers were produced.

The ordering of bytes differs between the "big endian" and "little endian" platforms. These colloquial terms are used to describe byte ordering for IBM mainframes (big endian) and for Intel-based platforms (little endian). In the SAS System, the following platforms are considered big endian: AIX, HP-UX, IBM mainframe, Macintosh, and Solaris on SPARC. The following platforms are considered little endian: Intel ABI, Linux, OpenVMS Alpha, OpenVMS Integrity, Solaris on x64, Tru64 UNIX, and Windows.

How Bytes are Ordered Differently

On big endian platforms, the value 1 is stored in binary and is represented here in hexadecimal notation. One byte is stored as 01, two bytes as 00 01, and four bytes as 00 00 00 01. On little endian platforms, the value 1 is stored in one byte as 01 (the same as big endian), in two bytes as 01 00, and in four bytes as 01 00 00 00.

If an integer is negative, the "two's complement" representation is used. The high-order bit of the most significant byte of the integer will be set on. For example, -2 would be represented in one, two, and four bytes on big endian platforms as FE, FF FE, and FF FF FF FE respectively. On little endian platforms, the representation would be FE, FE FF, and FE FF FF. These representations result from the output of the integer binary value –2 expressed in hexadecimal representation.

Writing Data Generated on Big Endian or Little Endian Platforms

SAS can read signed and unsigned integers regardless of whether they were generated on a big endian or a little endian system. Likewise, SAS can write signed and unsigned integers in both big endian and little endian format. The length of these integers can be up to eight bytes.

The following table shows which format to use for various combinations of platforms. In the Signed Integer column, "no" indicates that the number is unsigned and cannot be negative. "Yes" indicates that the number can be either negative or positive.

Table 1.1	SAS Formats and	Byte Ordering
-----------	-----------------	---------------

Platform For Which the Data Was Created	Platform That Writes the Data	Signed Integer	Format
big endian	big endian	yes	IB or S370FIB
big endian	big endian	no	PIB, S370FPIB, S370FIBU
big endian	little endian	yes	S370FIB
big endian	little endian	no	S370FPIB
little endian	big endian	yes	IBR
little endian	big endian	no	PIBR
little endian	little endian	yes	IB or IBR
little endian	little endian	no	PIB or PIBR
big endian	either	yes	S370FIB
big endian	either	no	S370FPIB
little endian	either	yes	IBR
little endian	either	no	PIBR

Integer Binary Notation and Different Programming Languages

The following table compares integer binary notation according to programming language.

Language	2 Bytes	4 Bytes
SAS	IB2. , IBR2., PIB2., PIBR2., S370FIB2., S370FIBU2., S370FPIB2.	IB4., IBR4., PIB4., PIBR4., S370FIB4., S370FIB4., S370FPIB4.
PL/I	FIXED BIN(15)	FIXED BIN(31)
Fortran	INTEGER*2	INTEGER*4
COBOL	COMP PIC 9(4)	COMP PIC 9(8)
IBM assembler	Н	F
С	short	long

Data Conversions and Encodings

An encoding maps each character in a character set to a unique numeric representation, resulting in a table of all code points. A single character can have different numeric representations in different encodings. For example, the ASCII encoding for the dollar symbol \$ is 24 hexadecimal. The Danish EBCDIC encoding for the dollar symbol \$ is 67 hexadecimal. In order for a version of SAS that normally uses ASCII to properly interpret a data set that is encoded in Danish EBCDIC, the data must be transcoded.

Transcoding is the process of moving data from one encoding to another. When transcoding the ASCII dollar sign to the Danish EBCDIC dollar sign, the hexadecimal representation for the character is converted from the value 24 to a 67.

If you want to know the encoding of a particular SAS data set, for SAS 9 and above follow these steps:

- 1. Locate the data set with SAS Explorer.
- 2. Right-click the data set.
- 3. Select Properties from the menu.
- 4. Click the Details tab.
- 5. The encoding of the data set is listed, along with other information.

Some situations where data might commonly be transcoded are:

when you share data between two different SAS sessions that are running in different locales or in different operating environments,

- when you perform text-string operations, such as converting to uppercase or lowercase,
- when you display or print characters from another language,
- when you copy and paste data between SAS sessions running in different locales.

For more information about SAS features designed to handle Transcoding for NLS from different encodings or operating environments, see *SAS National Language Support (NLS): Reference Guide*.

Working with Packed Decimal and Zoned Decimal Data

Definitions

Packed decimal

specifies a method of encoding decimal numbers by using each byte to represent two decimal digits. Packed decimal representation stores decimal data with exact precision. The fractional part of the number is determined by the informat or format because there is no separate mantissa and exponent.

An advantage of using packed decimal data is that exact precision can be maintained. However, computations involving decimal data might become inexact due to the lack of native instructions.

Zoned decimal

specifies a method of encoding decimal numbers in which each digit requires one byte of storage. The last byte contains the number's sign as well as the last digit. Zoned decimal data produces a printable representation.

Nibble

specifies 1/2 of a byte.

Types of Data

Packed Decimal Data

A packed decimal representation stores decimal digits in each "nibble" of a byte. Each byte has two nibbles, and each nibble is indicated by a hexadecimal character. For example, the value 15 is stored in two nibbles, using the hexadecimal characters 1 and 5.

The sign indication is dependent on your operating environment. On IBM mainframes, the sign is indicated by the last nibble. With formats, C indicates a positive value, and D indicates a negative value. With informats, A, C, E, and F indicate positive values, and B and D indicate negative values. Any other nibble is invalid for signed packed decimal data. In all other operating environments, the sign is indicated in its own byte. If the high-order bit is 1, then the number is negative. Otherwise, it is positive.

The following applies to packed decimal data representation:

 You can use the S370FPD format on all platforms to obtain the IBM mainframe configuration.

- You can have unsigned packed data with no sign indicator. The packed decimal format and informat handles the representation. It is consistent between ASCII and EBCDIC platforms.
- Note that the S370FPDU format and informat expects to have an F in the last nibble, while packed decimal expects no sign nibble.

Zoned Decimal Data

The following applies to zoned decimal data representation:

- A zoned decimal representation stores a decimal digit in the low order nibble of each byte. For all but the byte containing the sign, the high-order nibble is the numeric zone nibble (F on EBCDIC and 3 on ASCII).
- The sign can be merged into a byte with a digit, or it can be separate, depending on the representation. But the standard zoned decimal format and informat expects the sign to be merged into the last byte.
- The EBCDIC and ASCII zoned decimal formats produce the same printable representation of numbers. There are two nibbles per byte, each indicated by a hexadecimal character. For example, the value 15 is stored in two bytes. The first byte contains the hexadecimal value F1 and the second byte contains the hexadecimal value C5

Packed Julian Dates

The following applies to packed Julian dates:

- The two formats and informats that handle Julian dates in packed decimal representation are PDJULI and PDJULG. PDJULI uses the IBM mainframe year computation, while PDJULG uses the Gregorian computation.
- The IBM mainframe computation considers 1900 to be the base year, and the year values in the data indicate the offset from 1900. For example, 98 means 1998, 100 means 2000, and 102 means 2002. 1998 would mean 3898.
- The Gregorian computation allows for 2-digit or 4-digit years. If you use 2-digit years, SAS uses the setting of the YEARCUTOFF= system option to determine the true year.

Platforms Supporting Packed Decimal and Zoned Decimal Data

Some platforms have native instructions to support packed and zoned decimal data, while others must use software to emulate the computations. For example, the IBM mainframe has an Add Pack instruction to add packed decimal data, but the Intel-based platforms have no such instruction and must convert the decimal data into some other format.

Languages Supporting Packed Decimal and Zoned Decimal Data

Several languages support packed decimal and zoned decimal data. The following table shows how COBOL picture clauses correspond to SAS formats and informats.

IBM VS COBOL II clauses	Corresponding S370Fxxx Formats and Informats
PIC S9(X) PACKED-DECIMAL	S370FPDw.

IBM VS COBOL II clauses	Corresponding S370Fxxx Formats and Informats
PIC 9(X) PACKED-DECIMAL	S370FPDUw.
PIC S9(W) DISPLAY	S370FZDw.
PIC 9(W) DISPLAY	S370FZDUw.
PIC S9(W) DISPLAY SIGN LEADING	S370FZDLw.
PIC S9(W) DISPLAY SIGN LEADING SEPARATE	S370FZDSw.
PIC S9(W) DISPLAY SIGN TRAILING SEPARATE	S370FZDTw.

For the packed decimal representation listed above, X indicates the number of digits represented, and W is the number of bytes. For PIC S9(X) PACKED-DECIMAL, W is ceil((x+1)/2). For PIC 9(X) PACKED-DECIMAL, W is ceil(x/2). For example, PIC S9(5) PACKED-DECIMAL represents five digits. If a sign is included, six nibbles are needed. ceil((5+1)/2) has a length of three bytes, and the value of W is 3.

Note that you can substitute COMP-3 for PACKED-DECIMAL.

In IBM assembly language, the P directive indicates packed decimal, and the Z directive indicates zoned decimal. The following shows an excerpt from an assembly language listing, showing the offset, the value, and the DC statement:

offset	value (in hex)	inst label	directive
. 0 0 0 0 0 0	000010	2 DEV1	DG DT 2111
+000000	000010	2 PEX1	DC PL3'1'
+000003	00001D	3 PEX2	DC PL3'-1'
+000006	F0F0C1	4 ZEX1	DC ZL3'1'
+000009	F0F0D1	5 ZEX2	DC ZL3'1'

In PL/I, the FIXED DECIMAL attribute is used in conjunction with packed decimal data. You must use the PICTURE specification to represent zoned decimal data. There is no standardized representation of decimal data for the Fortran or the C languages.

Summary of Packed Decimal and Zoned Decimal Formats and Informats

SAS uses a group of formats and informats to handle packed and zoned decimal data. The following table lists the type of data representation for these formats and informats. Note that the formats and informats that begin with S370 refer to IBM mainframe representation.

Format	Type of data representation	Corresponding informat	Comments
PD	Packed decimal	PD	Local signed packed decimal

Format	Type of data representation	Corresponding informat	Comments
PK	Packed decimal	РК	Unsigned packed decimal; not specific to your operating environment
ZD	Zoned decimal	ZD	Local zoned decimal
none	Zoned decimal	ZDB	Translates EBCDIC blank (hexadecimal 40) to EBCDIC zero (hexadecimal F0); corresponds to the informat as zoned decimal
none	Zoned decimal	ZDV	Non-IBM zoned decimal representation
S370FPD	Packed decimal	S370FPD	Last nibble C (positive) or D (negative)
S370FPDU	Packed decimal	S370FPDU	Last nibble always F (positive)
S370FZD	Zoned decimal	S370FZD	Last byte contains sign in upper nibble: C (positive) or D (negative)
S370FZDU	Zoned decimal	S370FZDU	Unsigned; sign nibble always F
S370FZDL	Zoned decimal	S370FZDL	Sign nibble in first byte in informat; separate leading sign byte of hexadecimal C0 (positive) or D0 (negative) in format
S370FZDS	Zoned decimal	S370FZDS	Leading sign of - (hexadecimal 60) or + (hexadecimal 4E)
S370FZDT	Zoned decimal	S370FZDT	Trailing sign of - (hexadecimal 60) or + (hexadecimal 4E)
PDJULI	Packed decimal	PDJULI	Julian date in packed representation - IBM computation
PDJULG	Packed decimal	PDJULG	Julian date in packed representation - Gregorian computation
none	Packed decimal	RMFDUR	Input layout is: mmsstttF

Format	Type of data representation	Corresponding informat	Comments
none	Packed decimal	SHRSTAMP	Input layout is: yyyydddFhhmmssth, where yyyydddF is the packed Julian date; yyyy is a 0- based year from 1900
none	Packed decimal	SMFSTAMP	Input layout is: xxxxxxxyyyydddF, where yyyydddF is the packed Julian date; yyyy is a 0-based year from 1900
none	Packed decimal	PDTIME	Input layout is: 0hhmmssF
none	Packed decimal	RMFSTAMP	Input layout is: 0hhmmssFyyyydddF, where yyyydddF is the packed Julian date; yyyy is a 0- based year from 1900

Working with Dates and Times by Using the ISO **8601 Basic and Extended Notations**

ISO 8601 Formatting Symbols

The following list explains the formatting symbols that are used to notate the ISO 8601 dates, time, datetime, durations, and interval values:

- n specifies a number that represents the number of years, months, or days
- indicates that the duration that follows is specified by the number of years, months, days, hours, minutes, and seconds
- indicates that a time value follows. Any value with a time must begin with T. **Requirement:** Time values that are read by the extended notation informats that begin with the characters E8601 must use an uppercase T.
- indicates that the duration is specified in weeks.
- Z indicates that the time value is the time in Greenwich, England, or UTC time.
- the + indicates the time zone offset to the east of Greenwich, England. The indicates the time zone offset to the west of Greenwich, England.

```
specifies a four-digit year

mm

as part of a date, specifies a two-digit month, 01–12

dd

specifies a two-digit day, 01–1

hh

specifies a two-digit hour, 00–24

mm

as part of a time, specifies a two-digit minute, 00–59

ss

specifies a two-digit second, 00–59

fff | ffffff

specifies an optional fraction of a second using the digits 0–9:
```

fff use 1 - 3 digits for values read by the \$N8601B informat and the \$N8601E informat

ffffff use 1 - 6 digits for informat other than the \$N8601B informat and the \$N8601E informat

Y indicates that a year value proceeds this character in a duration

M as part of a date, indicates that a month value proceeds this character in a duration

D indicates that a day value proceeds this character in a duration

H indicates that an hour value proceeds this character in a duration

M as part of a time, indicates that a minute value proceeds this character in a durationS

indicates that a seconds value proceeds this character in a duration

Writing ISO 8601 Date, Time, and Datetime Values

SAS uses the formats in the following table to write date, time, and datetime values in the ISO 8601 basic and extended notations from SAS date, time, and datetime values.

Date, Time, or Datetime	ISO 8601 Notation	Example	Format
Basic Notations			
Date	yyyymmdd	20120915	B8601DAw.
Time	hhmmssffffff	155300322348	B8601TMw.d
Time with time zone	hhmmss+ -hhmm	155300+0500	B8601TZw.d

Date, Time, or Datetime	ISO 8601 Notation	Example	Format
	hhmmssZ	155300Z	B8601TZw.d
Convert to local time with time zone	hhmmss+ -hhmm	155300+0500	B8601LZw.d
Datetime	yyymmddThhmmssffffff	20120915T155300	B8601DTw.d
Datetime with timezone	yyyymmddThhmmss+ - hhmm	20120915T155300+0500	B8601DZw.d
	yyyymmddThhmmssZ	20120915T155300Z	B8601DZw.d
Write the date from a datetime	yyyymmdd	20120915	B8601DNw.
Extended Notations			
Date	yyyy-mm-dd	2012-09-15	E8601DAw.
Time	hh:mm:ss.ffffff	15:53:00.322348	E8601TMw.d
Time with time zone	hh:mm:ss.ffffff+ -hh:mm	15:53:00+05:00	E8601TZw.d
Convert to local time with time zone	hh:mm:ss.ffffff+ -hh:mm	15:53:00+05:00	E8601LZw.d
Datetime	yyyy-mm-ddThh:mm:ss.ffffff	2012-09-15T15:53:00	E8601DTw.d
Datetime with time zone	yyyy-mm- ddThh:mm:ss.nnnnnn+ - hh:mm	2012-09-15T15:53:00+05:0 0	E8601DZw.d
Write the date from a datetime	yyyy-mm-dd	2012-09-15	E8601DNw.

An asterisk (*) used in place of a date or time formatted value that is out-of-range.

Writing ISO 8601 Duration, Datetime, and Interval Values

Duration, Datetime, and Interval Formats

SAS writes duration, datetime, and interval values from character data using these formats:

 Table 1.2
 Complete Component Forms

Time Component	ISO 8601 Notation	Example	Format
Duration - Basic Notation	PyyyymmddThhmmssfff	P20120915T155300	\$N8601BA
	-PyyyymmddThhmmssfff	-P20120915T155300	\$N8601BA

Time Component	ISO 8601 Notation	Example	Format
Duration - Extended Notation	Pyyyy-mm-ddThh:mm:ss.fff	P2012-09-15T15:53:00	\$N8601EA
	-Pyyyy-mm-ddThh:mm:ss.fff	-P2012-09-15T15:53:00	\$N8601EA
Duration - Basic and	PnYnMnDTnHnMnS	P2y10m14dT20h13m45s	\$N8601B
Extended Notation			\$N8601E
	-PnYnMnDTnHnMnS	-P2y10m14dT20h13m45s	\$N8601B
			\$N8601E
	PnW (weeks)	P6w	\$N8601B
			\$N8601E
Interval - Basic Notation	yyyymmddThhmmssfff/ yyyymmddThhmmssfff	20120915T155300/2014111 3T000000	\$N8601BA
	PnYnMnDTnHnMnS/ yyyymmddThhmmssfff	P2y10M14dT20h13m45s/ 20120915T155300	\$N8601B
	yyyymmddThhmmssfff/ PnYnMnDTnHnMnS	20120915T155300/ P2y10M14dT20h13m45s	\$N8601BA
Interval- Extended Notation	yyyy-mm-ddThh:mm:ss.fff/ yyyy-mm-ddThh:mm:ss.fff	2012-09-15T15:53:00/2014 -11-13T00:00:00	\$N8601EA
	PnYnMnDTnHnMnS/yyyy- mm-ddThh:mm:ss.fff	P2y10M14dT20h13m45s/ 2012-09-15T15:53:00	\$N8601E
	yyyy-mm-ddThh:mm:ss.fff/ PnYnMnDTnHnMnS	2012-09-15T15:53:00/ P2y10M14dT20h13m45s	\$N8601EA
Datetime-Basic Notation	yyyymmddThhmmss.fff+ - hhmm	20120915T155300	\$N8601BA
	(all blank)		\$N8601B
			\$N8601BA
			\$N8601E
			\$N8601EA
Datetime-Extended Notation	yyyy-mm-ddThh:mm:ss.fff + -hhmm	2012-09-15T15:53:00 +04:30	\$N8601EA
	(all blank)		\$N8601B
			\$N8601BA
			\$N8601E
			\$N8601EA

Writing Omitted Components

An omitted component can be represented by a hyphen (-) or an x in the extended datetime form *yyyy-mm-dd*Thh:mm:ss and in the extended duration form Pyyyy-mm-ddThh:mm:ss.

Omitted components in the durations form PnYnMnDTnHnMnS are dropped, they do not contain a hyphen or x. For example, P2mT4H.

The following formats write omitted components that use the hyphen and the x:

Format	Datetime Form	Duration Form	Examples
\$N8601H	yyyy-mm- ddThh:mm:ss	PnYnMnDTnHnMnS	09-15T15:-:53 P2Y2DT4H5M6S/0 9-15T15:-:00
\$N8601EH	yyyy-mm- ddThh:mm:ss	Pyyyy-mm- ddThh:mm:ss	P00002T02:55:20/ 201215T-:-:45
\$N8601X	yyyy-mm- ddThh:mm:ss	PnYnMnDTnHnMnS	P2Y2DT4H5M6S/ x-09-15T15:x:00
\$N8601EX	yyyy-mm- ddThh:mm:ss	Pyyyy-mm- ddThh:mm:ss	P0003- x-02T02:55:20/2012- x-15Tx:x:45

Datetime values with omitted components that are formatted with either the \$N8601B format or the \$N8601BA format are formatted in the extended notation using the hyphen for omitted components to ensure accurate data. For example, when the month is an omitted component, the value 2012---15 is written and not 2012-15.

The extended notation with hyphens is also used in place of the basic notation if a duration is formatted by using the \$N8601BA format. Using the same date, P2012---15 is written and not P2012-15.

Writing Truncated Duration, Datetime, and Interval Values

Duration, datetime, or interval values can be truncated when one or more lower order values is 0 or is not significant. When SAS writes a truncated value using the formats \$N8601B, \$N8601BA, \$N8601E, and \$N8601EA, the display of the value stops at the last nonmissing component.

When you format a truncated value by using either the \$N8601H format or the \$N8601EH format, the lower order components are written with a hyphen. When you format a truncated value by using the \$N8601X format or the \$N8601EX format, the lower order components are written with an x.

The following examples show truncated values:

- p00030202T1031
- 2012-09-15T15/2014-09-15T15:53
- -p0003-03-03T-:-:-
- P2y3m4dT5h6m
- 2012-09-xTx:x:x
- 2012

Normalizing Duration Components

When a value for a duration component is greater than the largest standard value for a component, SAS normalizes the component except when the duration component is a single component. The following table shows examples of normalized duration components:

Duration	Extended Normalized Duration
p3y13m	p0004-01
pt24h24m65s	P01T-:25:05
p3y13mT24h61m	P0004-01-01T01:01
p0004-13	p0005-01
p0003-02-61T15:61:61	P0003-04-01T16:02:01
p13m	P13M

If a component contains the largest value, such as 60 for minutes or seconds, SAS normalizes the value and replaces the value with a hyphen. For example, pT12:60:13 becomes PT13:-:13.

Thirty days is used to normalize a month.

Dates and times in a datetime value that are greater than the standard value for the component are not normalized. They produce an error.

Fractions in Durations, Datetime, and Interval Values

Ending components can contain a fraction that consists of a period or a comma, followed by one to three digits. The following examples show the use of fractions in duration, datetime, and interval values:

- 201209.5
- P2012-09-15T10.33
- 2012-09-15/P0003-03-03,333

Chapter 2

Dictionary of Formats

F	ormats Documented in Other Publications	. 23
Fo	ormats by Category	. 23
	ictionary	
	\$ASCIIw. Format	
	\$BASE64Xw. Format	
	\$BINARYw. Format	
	\$CHARw. Format	
	\$EBCDICw. Format	
	\$HEXw. Format	
	\$MSGCASEw. Format	
	\$N8601Bw.d Format	
	\$N8601BAw.d Format	
	\$N8601Ew.d Format	
	\$N8601EAw.d Format	
	\$N8601EHw.d Format	. 44
	\$N8601EXw.d Format	. 46
	\$N8601Hw.d Format	. 47
	\$N8601Xw.d Format	. 48
	\$OCTALw. Format	. 49
	\$QUOTEw. Format	. 50
	\$REVERJw. Format	. 52
	\$REVERSw. Format	. 52
	\$UPCASEw. Format	. 53
	\$VARYINGw. Format	. 54
	\$w. Format	
	BESTw. Format	. 57
	BESTDw.p Format	. 58
	BINARYw. Format	
	B8601DAw. Format	
	B8601DNw. Format	
	B8601DTw.d Format	
	B8601DZw. Format	
	B8601LZw. Format	
	B8601TMw.d Format	
	B8601TZw. Format	
	COMMAw.d Format	
	COMMAXw.d Format	
	Dw.p Format	
	DATEw. Format	
	DATEAMPMw.d Format	. 74

DATETIMEw.d Format	. 75
DAYw. Format	. 77
DDMMYYw. Format	. 78
DDMMYYxw. Format	. 79
DOLLARw.d Format	81
DOLLARXw.d Format	82
DOWNAMEw. Format	84
DTDATEw. Format	84
DTMONYYw. Format	. 86
DTWKDATXw. Format	87
DTYEARw. Format	
DTYYQCw. Format	. 89
Ew. Format	90
E8601DAw. Format	. 91
E8601DNw. Format	. 92
E8601DTw.d Format	93
E8601DZw. Format	94
E8601LZw. Format	96
E8601TMw.d Format	. 97
E8601TZw.d Format	98
FLOATw.d Format	100
FRACTw. Format	101
HEXw. Format	102
HHMMw.d Format	103
HOURw.d Format	105
IBw.d Format	106
IBRw.d Format	108
IEEEw.d Format	109
JULDAYw. Format	110
JULIANw. Format	111
MDYAMPMw.d Format	112
MMDDYYw. Format	113
MMDDYYxw. Format	115
MMSSw.d Format	
MMYYw. Format	118
MMYYxw. Format	119
MONNAMEw. Format	
MONTHw. Format	122
MONYYw. Format	123
NEGPARENw.d Format	124
NUMXw.d Format	125
OCTALw. Format	126
PDw.d Format	
PDJULGw. Format	
PDJULIw. Format	
	131
PERCENTNw.d Format	132
	133
PIBRw.d Format	135
PKw.d Format	
	137
	138
QTRRw. Format	
RBw.d Format	
ROMANw. Format	
	142

S370FIBw.d Format	143
S370FIBUw.d Format	144
S370FPDw.d Format	146
S370FPDUw.d Format	147
S370FPIBw.d Format	148
S370FRBw.d Format	149
S370FZDw.d Format	151
S370FZDLw.d Format	152
S370FZDSw.d Format	153
S370FZDTw.d Format	
S370FZDUw.d Format	155
SSNw. Format	156
TIMEw.d Format	
TIMEAMPMw.d Format	158
TODw.d Format	
VAXRBw.d Format	
VMSZNw.d Format	
w.d Format	
WEEKDATEw. Format	
WEEKDATXw. Format	
WEEKDAYw. Format	
WEEKUw. Format	
WEEKVw. Format	
WEEKWw. Format	
WORDDATEw. Format	
WORDDATXw. Format	
WORDFw. Format	
WORDSw. Format	
YEARw. Format	
YYMMw. Format	
YYMMDDw. Format	
YYMMDDxw. Format	
YYMMxw. Format	
YYMONw. Format	
YYQw. Format	
YYQxw. Format	
YYQRw. Format	
YYQRxw. Format	
Zw.d Format	193
7Dw d Format	104

Formats Documented in Other Publications

For informats that support national language, see Chapter 9, "Format Entries," in SAS National Language Support (NLS): Reference Guide.

Formats by Category

There are four categories of formats in this list:

Category	Description	
Character	instructs SAS to write character data values from character variables.	
Date and Time	instructs SAS to write data values from variables that represent dates, times, and datetimes.	
ISO 8601	instructs SAS to write date, time, and datetime values using the ISO 8601 standard.	
Numeric	instructs SAS to write numeric data values from numeric variables.	

Formats that support national languages can be found in SAS National Language Support (NLS): Reference Guide.

Storing user-defined formats is an important consideration if you associate these formats with variables in permanent SAS data sets, especially those data sets shared with other users. For information about creating and storing user-defined formats, see Chapter 23, "FORMAT Procedure" in Base SAS Procedures Guide.

The following table provides brief descriptions of the SAS formats. For more detailed descriptions, see the dictionary entry for each format.

Category	Language Elements	Description
Character	\$ASCIIw. Format (p. 33)	Converts native format character data to ASCII representation.
	\$BASE64Xw. Format (p. 34)	Converts character data into ASCII text by using Base 64 encoding.
	\$BINARYw. Format (p. 35)	Converts character data to binary representation.
	\$CHARw. Format (p. 36)	Writes standard character data.
	\$EBCDICw. Format (p. 37)	Converts native format character data to EBCDIC representation.
	\$HEXw. Format (p. 38)	Converts character data to hexadecimal representation.
	\$MSGCASEw. Format (p. 39)	Writes character data in uppercase when the MSGCASE system option is in effect.
	\$OCTALw. Format (p. 49)	Converts character data to octal representation.
	\$QUOTEw. Format (p. 50)	Writes data values that are enclosed in double quotation marks.
	\$REVERJw. Format (p. 52)	Writes character data in reverse order and preserves blanks.
	\$REVERSw. Format (p. 52)	Writes character data in reverse order and left aligns
	\$UPCASEw. Format (p. 53)	Converts character data to uppercase.
	\$VARYINGw. Format (p. 54)	Writes character data of varying length.
	\$w. Format (p. 56)	Writes standard character data.

Category	Language Elements	Description
Date and Time	\$N8601Bw.d Format (p. 39)	Writes ISO 8601 duration, datetime, and interval forms by using the basic notations PnYnMnDTnHnMnS and yyyymmddThhmmss.
	\$N8601BAw.d Format (p. 41)	Writes ISO 8601 duration, datetime, and interval forms by using the basic notations PyyyymmddThhmmss and yyyymmddThhmmss.
	\$N8601Ew.d Format (p. 42)	Writes ISO 8601 duration, datetime, and interval forms by using the extended notations PnYnMnDTnHnMnS and yyyy-mm-ddThh:mm:ss.
	\$N8601EAw.d Format (p. 43)	Writes ISO 8601 duration, datetime, and interval forms by using the extended notations Pyyyy-mm-ddThh:mm:ss and yyyy-mm-ddThh:mm:ss.
	\$N8601EHw.d Format (p. 44)	Writes ISO 8601 duration, datetime, and interval forms by using the extended notations Pyyyy-mm-ddThh:mm:ss and yyyy-mm-ddThh:mm:ss, using a hyphen (-) for omitted components.
	\$N8601EXw.d Format (p. 46)	Writes ISO 8601 duration, datetime, and interval forms by using the extended notations Pyyyy-mm-ddThh:mm:ss and yyyy-mm-ddThh:mm:ss, using an x for each digit of an omitted component.
	\$N8601Hw.d Format (p. 47)	Writes ISO 8601 duration, datetime, and interval forms PnYnMnDTnHnMnS and yyyy-mm-ddThh:mm:ss, dropping omitted components in duration values and using a hyphen (-) for omitted components in datetime values.
	\$N8601Xw.d Format (p. 48)	Writes ISO 8601 duration, datetime, and interval forms PnYnMnDTnHnMnS and yyyy-mm-ddThh:mm:ss, dropping omitted components in duration values and using an x for each digit of an omitted component in datetime values.
	B8601DAw. Format (p. 60)	Writes date values by using the ISO 8601 basic notation yyyymmdd.
	B8601DNw. Format (p. 61)	Writes dates from datetime values by using the ISO 8601 basic notation yyyymmdd.
	B8601DTw.d Format (p. 62)	Writes datetime values by using the ISO 8601 basic notation yyyymmddThhmmss <ffffff>.</ffffff>
	B8601DZw. Format (p. 64)	Writes datetime values for the zero meridian Coordinated Universal Time (UTC) time by using the ISO 8601 datetime and time zone basic notation yyyymmddThhmmss+0000.
	B8601LZw. Format (p. 65)	Writes time values as local time by appending a time zone offset difference between the local time and UTC, using the ISO 8601 basic time notation hhmmss+ -hhmm.
	B8601TMw.d Format (p. 66)	Writes time values by using the ISO 8601 basic notation hhmmss <ffff>.</ffff>

Category	Language Elements	Description
	B8601TZw. Format (p. 67)	Adjusts time values to the Coordinated Universal Time (UTC) and writes the time values by using the ISO 8601 basic time notation hhmmss+ -hhmm.
	DATEw. Format (p. 73)	Writes date values in the form ddmmmyy, ddmmmyyyy, or ddmmm-yyyy.
	DATEAMPMw.d Format (p. 74)	Writes datetime values in the form ddmmmyy:hh:mm:ss.ss with AM or PM.
	DATETIMEw.d Format (p. 75)	Writes datetime values in the form ddmmmyy:hh:mm:ss.ss.
	DAYw. Format (p. 77)	Writes date values as the day of the month.
	DDMMYYw. Format (p. 78)	Writes date values in the form ddmm <yy>yy or dd/mm/<yy>yy, where a forward slash is the separator and the year appears as either 2 or 4 digits.</yy></yy>
	DDMMYYxw. Format (p. 79)	Writes date values in the form ddmm yy>yy or dd-mm-yy yy>, where the x in the format name is a character that represents the special character that separates the day, month, and year, which can be a hyphen (-), period (.), blank character, slash (/), colon (:), or no separator; the year can be either 2 or 4 digits.
	DOWNAMEw. Format (p. 84)	Writes date values as the name of the day of the week.
	DTDATEw. Format (p. 84)	Expects a datetime value as input and writes date values in the form ddmmmyy or ddmmmyyyy.
	DTMONYYw. Format (p. 86)	Writes the date part of a datetime value as the month and year in the form mmmyy or mmmyyyy.
	DTWKDATXw. Format (p. 87)	Writes the date part of a datetime value as the day of the week and the date in the form day-of-week, dd month-name yy (or yyyy).
	DTYEARw. Format (p. 88)	Writes the date part of a datetime value as the year in the form yy or yyyy.
	DTYYQCw. Format (p. 89)	Writes the date part of a datetime value as the year and the quarter and separates them with a colon (:).
	E8601DAw. Format (p. 91)	Writes date values by using the ISO 8601 extended notation yyyymm-dd.
	E8601DNw. Format (p. 92)	Writes dates from SAS datetime values by using the ISO 8601 extended notation yyyy-mm-dd.
	E8601DTw.d Format (p. 93)	Writes datetime values by using the ISO 8601 extended notation yyyy-mm-ddThh:mm:ss.ffffff.

Category	Language Elements	Description
	E8601DZw. Format (p. 94)	Writes datetime values for the zero meridian Coordinated Universal Time (UTC) time by using the ISO 8601 datetime and time zone extended notation yyyy-mm-ddThh:mm:ss+00:00.
	E8601LZw. Format (p. 96)	Writes time values as local time, appending the Coordinated Universal Time (UTC) offset for the local SAS session, using the ISO 8601 extended time notation hh:mm:ss+ -hh:mm.
	E8601TMw.d Format (p. 97)	Writes time values by using the ISO 8601 extended notation hh:mm:ss.ffffff.
	E8601TZw.d Format (p. 98)	Adjusts time values to the Coordinated Universal Time (UTC) and writes the time values by using the ISO 8601 extended notation hh:mm:ss+ -hh:mm.
	HHMMw.d Format (p. 103)	Writes time values as hours and minutes in the form hh:mm.
	HOURw.d Format (p. 105)	Writes time values as hours and decimal fractions of hours.
	JULDAYw. Format (p. 110)	Writes date values as the Julian day of the year.
	JULIANw. Format (p. 111)	Writes date values as Julian dates in the form yyddd or yyyyddd.
	MDYAMPMw.d Format (p. 112)	Writes datetime values in the form mm/dd/yy <yy> hh:mm AM PM. The year can be either two or four digits.</yy>
	MMDDYYw. Format (p. 113)	Writes date values in the form mmdd <yy>yy or mm/dd/<yy>yy, where a forward slash is the separator and the year appears as either 2 or 4 digits.</yy></yy>
	MMDDYYxw. Format (p. 115)	Writes date values in the form mmdd <yy>yy or mm-dd-<yy>yy, where the x in the format name is a character that represents the special character which separates the month, day, and year. The special character can be a hyphen (-), period (.), blank character, slash (/), colon (:), or no separator; the year can be either 2 or 4 digits.</yy></yy>
	MMSSw.d Format (p. 117)	Writes time values as the number of minutes and seconds since midnight.
	MMYYw. Format (p. 118)	Writes date values in the form mmM <yy>yy, where M is the separator and the year appears as either 2 or 4 digits.</yy>
	MMYYxw. Format (p. 119)	Writes date values in the form mm <yy>yy or mm-<yy>yy, where the x in the format name is a character that represents the special character that separates the month and the year, which can be a hyphen (-), period (.), blank character, slash (/), colon (:), or no separator; the year can be either 2 or 4 digits.</yy></yy>
	MONNAMEw. Format (p. 121)	Writes date values as the name of the month.
	MONTHw. Format (p. 122)	Writes date values as the month of the year.

Category	Language Elements	Description
	MONYYw. Format (p. 123)	Writes date values as the month and the year in the form mmmyy or mmmyyyy.
	PDJULGw. Format (p. 128)	Writes packed Julian date values in the hexadecimal format yyyydddF for IBM.
	PDJULIw. Format (p. 130)	Writes packed Julian date values in the hexadecimal format ccyydddF for IBM.
	QTRw. Format (p. 138)	Writes date values as the quarter of the year.
	QTRRw. Format (p. 139)	Writes date values as the quarter of the year in Roman numerals.
	TIMEw.d Format (p. 157)	Writes time values as hours, minutes, and seconds in the form hh:mm:ss.ss.
	TIMEAMPMw.d Format (p. 158)	Writes time and datetime values as hours, minutes, and seconds in the form hh:mm:ss.ss with AM or PM.
	TODw.d Format (p. 160)	Writes SAS time values and the time portion of SAS datetime values in the form hh:mm:ss.ss.
	WEEKDATEw. Format (p. 165)	Writes date values as the day of the week and the date in the form day-of-week, month-name dd, yy (or yyyy).
	WEEKDATXw. Format (p. 167)	Writes date values as the day of the week and date in the form day-of-week, dd month-name yy (or yyyy).
	WEEKDAYw. Format (p. 168)	Writes date values as the day of the week.
	WEEKUw. Format (p. 169)	Writes a week number in decimal format by using the U algorithm.
	WEEKVw. Format (p. 171)	Writes a week number in decimal format by using the V algorithm.
	WEEKWw. Format (p. 173)	Writes a week number in decimal format by using the W algorithm.
	WORDDATEw. Format (p. 175)	Writes date values as the name of the month, the day, and the year in the form month-name dd, yyyy.
	WORDDATXw. Format (p. 176)	Writes date values as the day, the name of the month, and the year in the form dd month-name yyyy.
	YEARw. Format (p. 179)	Writes date values as the year.
	YYMMw. Format (p. 180)	Writes date values in the form <yy>yyMmm, where M is a character separator to indicate that the month number follows the M and the year appears as either 2 or 4 digits.</yy>
	YYMMDDw. Format (p. 181)	Writes date values in the form yymmdd or <yy>yy-mm-dd, where a hyphen is the separator and the year appears as either 2 or 4 digits.</yy>

Category	Language Elements	Description
	YYMMDDxw. Format (p. 183)	Writes date values in the form yymmdd or <yy>yy-mm-dd, where the x in the format name is a character that represents the special character which separates the year, month, and day. The special character can be a hyphen (-), period (.), blank character, slash (/), colon (:), or no separator; the year can be either 2 or 4 digits.</yy>
	YYMONw. Format (p. 186)	Writes date values in the form yymmm or yyyymmm.
	YYQw. Format (p. 187)	Writes date values in the form <yy>yyQq, where Q is the separator, the year appears as either 2 or 4 digits, and q is the quarter of the year.</yy>
	YYQxw. Format (p. 188)	Writes date values in the form <yy>yyq or <yy>yy-q, where the x in the format name is a character that represents the special character that separates the year and the quarter or the year, which can be a hyphen (-), period (.), blank character, slash (/), colon (:), or no separator; the year can be either 2 or 4 digits.</yy></yy>
	YYQRw. Format (p. 190)	Writes date values in the form <yy>yyQqr, where Q is the separator, the year appears as either 2 or 4 digits, and qr is the quarter of the year expressed in roman numerals.</yy>
	YYQRxw. Format (p. 191)	Writes date values in the form <yy>yyqr or <yy>yy-qr, where the x in the format name is a character that represents the special character that separates the year and the quarter or the year, which can be a hyphen (-), period (.), blank character, slash (/), colon (:), or no separator; the year can be either 2 or 4 digits and qr is the quarter of the year expressed in roman numerals.</yy></yy>
ISO 8601	\$N8601Bw.d Format (p. 39)	Writes ISO 8601 duration, datetime, and interval forms by using the basic notations PnYnMnDTnHnMnS and yyyymmddThhmmss.
	\$N8601BAw.d Format (p. 41)	Writes ISO 8601 duration, datetime, and interval forms by using the basic notations PyyyymmddThhmmss and yyyymmddThhmmss.
	\$N8601Ew.d Format (p. 42)	Writes ISO 8601 duration, datetime, and interval forms by using the extended notations PnYnMnDTnHnMnS and yyyy-mm-ddThh:mm:ss.
	\$N8601EAw.d Format (p. 43)	Writes ISO 8601 duration, datetime, and interval forms by using the extended notations Pyyyy-mm-ddThh:mm:ss and yyyy-mm-ddThh:mm:ss.
	\$N8601EHw.d Format (p. 44)	Writes ISO 8601 duration, datetime, and interval forms by using the extended notations Pyyyy-mm-ddThh:mm:ss and yyyy-mm-ddThh:mm:ss, using a hyphen (-) for omitted components.
	\$N8601EXw.d Format (p. 46)	Writes ISO 8601 duration, datetime, and interval forms by using the extended notations Pyyyy-mm-ddThh:mm:ss and yyyy-mm-ddThh:mm:ss, using an x for each digit of an omitted component.
	\$N8601Hw.d Format (p. 47)	Writes ISO 8601 duration, datetime, and interval forms PnYnMnDTnHnMnS and yyyy-mm-ddThh:mm:ss, dropping

Category	Language Elements	Description
		omitted components in duration values and using a hyphen (-) for omitted components in datetime values.
	\$N8601Xw.d Format (p. 48)	Writes ISO 8601 duration, datetime, and interval forms PnYnMnDTnHnMnS and yyyy-mm-ddThh:mm:ss, dropping omitted components in duration values and using an x for each digit of an omitted component in datetime values.
	B8601DAw. Format (p. 60)	Writes date values by using the ISO 8601 basic notation yyyymmdd.
	B8601DNw. Format (p. 61)	Writes dates from datetime values by using the ISO 8601 basic notation yyyymmdd.
	B8601DTw.d Format (p. 62)	Writes datetime values by using the ISO 8601 basic notation yyyymmddThhmmss <ffffff>.</ffffff>
	B8601DZw. Format (p. 64)	Writes datetime values for the zero meridian Coordinated Universal Time (UTC) time by using the ISO 8601 datetime and time zone basic notation yyyymmddThhmmss+0000.
	B8601LZw. Format (p. 65)	Writes time values as local time by appending a time zone offset difference between the local time and UTC, using the ISO 8601 basic time notation hhmmss+ -hhmm.
	B8601TMw.d Format (p. 66)	Writes time values by using the ISO 8601 basic notation hhmmss <ffff>.</ffff>
	B8601TZw. Format (p. 67)	Adjusts time values to the Coordinated Universal Time (UTC) and writes the time values by using the ISO 8601 basic time notation hhmmss+ -hhmm.
	E8601DAw. Format (p. 91)	Writes date values by using the ISO 8601 extended notation yyyymm-dd.
	E8601DNw. Format (p. 92)	Writes dates from SAS datetime values by using the ISO 8601 extended notation yyyy-mm-dd.
	E8601DTw.d Format (p. 93)	Writes datetime values by using the ISO 8601 extended notation yyyy-mm-ddThh:mm:ss.ffffff.
	E8601DZw. Format (p. 94)	Writes datetime values for the zero meridian Coordinated Universal Time (UTC) time by using the ISO 8601 datetime and time zone extended notation yyyy-mm-ddThh:mm:ss+00:00.
	E8601LZw. Format (p. 96)	Writes time values as local time, appending the Coordinated Universal Time (UTC) offset for the local SAS session, using the ISO 8601 extended time notation hh:mm:ss+ -hh:mm.
	E8601TMw.d Format (p. 97)	Writes time values by using the ISO 8601 extended notation hh:mm:ss.ffffff.
	E8601TZw.d Format (p. 98)	Adjusts time values to the Coordinated Universal Time (UTC) and writes the time values by using the ISO 8601 extended notation hh:mm:ss+ -hh:mm.

Category	Language Elements	Description
Numeric	BESTw. Format (p. 57)	SAS chooses the best notation.
	BESTDw.p Format (p. 58)	Prints numeric values, lining up decimal places for values of similar magnitude, and prints integers without decimals.
	BINARYw. Format (p. 60)	Converts numeric values to binary representation.
	COMMAw.d Format (p. 69)	Writes numeric values with a comma that separates every three digits and a period that separates the decimal fraction.
	COMMAXw.d Format (p. 70)	Writes numeric values with a period that separates every three digits and a comma that separates the decimal fraction.
	Dw.p Format (p. 71)	Prints numeric values, possibly with a great range of values, lining up decimal places for values of similar magnitude.
	DOLLARw.d Format (p. 81)	Writes numeric values with a leading dollar sign, a comma that separates every three digits, and a period that separates the decimal fraction.
	DOLLARXw.d Format (p. 82)	Writes numeric values with a leading dollar sign, a period that separates every three digits, and a comma that separates the decimal fraction.
	Ew. Format (p. 90)	Writes numeric values in scientific notation.
	FLOATw.d Format (p. 100)	Generates a native single-precision, floating-point value by multiplying a number by 10 raised to the dth power.
	FRACTw. Format (p. 101)	Converts numeric values to fractions.
	HEXw. Format (p. 102)	Converts real binary (floating-point) values to hexadecimal representation.
	IBw.d Format (p. 106)	Writes native integer binary (fixed-point) values, including negative values.
	IBRw.d Format (p. 108)	Writes integer binary (fixed-point) values in Intel and DEC formats.
	IEEEw.d Format (p. 109)	Generates an IEEE floating-point value by multiplying a number by 10 raised to the dth power.
	NEGPARENw.d Format (p. 124)	Writes negative numeric values in parentheses.
	NUMXw.d Format (p. 125)	Writes numeric values with a comma in place of the decimal point.
	OCTALw. Format (p. 126)	Converts numeric values to octal representation.
	PDw.d Format (p. 127)	Writes data in packed decimal format.

Category	Language Elements	Description
	PERCENTw.d Format (p. 131)	Writes numeric values as percentages.
	PERCENTNw.d Format (p. 132)	Produces percentages, using a minus sign for negative values.
	PIBw.d Format (p. 133)	Writes positive integer binary (fixed-point) values.
	PIBRw.d Format (p. 135)	Writes positive integer binary (fixed-point) values in Intel and DEC formats.
	PKw.d Format (p. 136)	Writes data in unsigned packed decimal format.
	PVALUEw.d Format (p. 137)	Writes p-values.
	RBw.d Format (p. 140)	Writes real binary data (floating-point) in real binary format.
	ROMANw. Format (p. 141)	Writes numeric values as roman numerals.
	S370FFw.d Format (p. 142)	Writes native standard numeric data in IBM mainframe format.
	S370FIBw.d Format (p. 143)	Writes integer binary (fixed-point) values, including negative values, in IBM mainframe format.
	S370FIBUw.d Format (p. 144)	Writes unsigned integer binary (fixed-point) values in IBM mainframe format.
	S370FPDw.d Format (p. 146)	Writes packed decimal data in IBM mainframe format.
	S370FPDUw.d Format (p. 147)	Writes unsigned packed decimal data in IBM mainframe format.
	S370FPIBw.d Format (p. 148)	Writes positive integer binary (fixed-point) values in IBM mainframe format.
	S370FRBw.d Format (p. 149)	Writes real binary (floating-point) data in IBM mainframe format.
	S370FZDw.d Format (p. 151)	Writes zoned decimal data in IBM mainframe format.
	S370FZDLw.d Format (p. 152)	Writes zoned decimal leading-sign data in IBM mainframe format.
	S370FZDSw.d Format (p. 153)	Writes zoned decimal separate leading-sign data in IBM mainframe format.
	S370FZDTw.d Format (p. 154)	Writes zoned decimal separate trailing-sign data in IBM mainframe format.
	S370FZDUw.d Format (p. 155)	Writes unsigned zoned decimal data in IBM mainframe format.
	SSNw. Format (p. 156)	Writes Social Security numbers.
	VAXRBw.d Format (p. 162)	Writes real binary (floating-point) data in VMS format.
	VMSZNw.d Format (p. 163)	Generates VMS and MicroFocus COBOL zoned numeric data.

Category	Language Elements	Description
	w.d Format (p. 164)	Writes standard numeric data one digit per byte.
	WORDFw. Format (p. 177)	Writes numeric values as words with fractions that are shown numerically.
	WORDSw. Format (p. 178)	Writes numeric values as words.
	Zw.d Format (p. 193)	Writes standard numeric data with leading 0s.
	ZDw.d Format (p. 194)	Writes numeric data in zoned decimal format.

Dictionary

\$ASCIIw. Format

Converts native format character data to ASCII representation.

Category: Character Alignment: left

Syntax

\$ASCIIw.

Syntax Description

specifies the width of the output field.

Default: 1 **Range:** 1-32767

Details

If ASCII is the native format, no conversion occurs.

Comparisons

- On EBCDIC systems, \$ASCIIw. converts EBCDIC character data to ASCIIw.
- On all other systems, \$ASCIIw. behaves like the \$CHARw. format.

Example

```
put x $ascii3.;
```

Value of x	Result*
abc	616263
ABC	414243
();	28293B

^{*} The results are hexadecimal representations of ASCII codes for characters. Each two hexadecimal characters correspond to one byte of binary data, and each byte corresponds to one character.

\$BASE64Xw. Format

Converts character data into ASCII text by using Base 64 encoding.

Category: Character

Alignment: left

Syntax

\$BASE64Xw.

Syntax Description

W

specifies the width of the output field.

Default: 1

Range: 1-32767

Details

Base 64 is an industry encoding method whose encoded characters are determined by using a positional scheme that uses only ASCII characters. Several Base 64 encoding schemes have been defined by the industry for specific uses, such as e-mail or content masking. SAS maps positions 0 - 61 to the characters A - Z, a - z, and 0 - 9. Position 62 maps to the character +, and position 63 maps to the character /.

The following are some uses of Base 64 encoding:

- embed binary data in an XML file
- encode passwords
- encode URLs

The '=' character in the encoded results indicates that the results have been padded with zero bits. In order for the encoded characters to be decoded, the '=' must be included in the value to be decoded.

Example

put x \$base64x64.;

Value of x	Result
"FCA01A7993BC"	RkNBMDFBNzk5M0JD
"MyPassword"	TXIQYXNzd29yZA==
"www.mydomain.com/ myhiddenURL"	d3d3Lm15ZG9tYWluLmNvbi9teWhpZGRlblVSTA==

See Also

The LIBNAME statement option "XMLDOUBLE=DISPLAY | INTERNAL" in Chapter 8 of SAS XML LIBNAME Engine: User's Guide

Informats:

• "\$BASE64Xw. Informat" on page 225

\$BINARYw. Format

Converts character data to binary representation.

Category: Character

Alignment: left

Syntax

\$BINARYw.

Syntax Description

specifies the width of the output field.

Default: The default width is calculated based on the length of the variable to be printed.

Range: 1-32767

Comparisons

The \$BINARYw. format converts character values to binary representation. The BINARYw. format converts numeric values to binary representation.

Example

put @1 name \$binary16.;

Value of name		Result	
	ASCII	EBCDIC	

Value of name		Result
AB	0100000101000010	1100000111000010

\$CHARw. Format

Writes standard character data.

Category: Character

Alignment: left

Syntax

\$CHARw.

Syntax Description

specifies the width of the output field.

Default: 8 if the length of variable is undefined; otherwise, the length of the variable

Range: 1-32767

Comparisons

The \$CHARw. format is identical to the \$w. format.

- The \$CHARw. and \$w. formats do not trim leading blanks. To trim leading blanks, use the LEFT function to left align character data. Alternatively, use the PUT statement with the colon (:) format modifier and the format of your choice to produce list output.
- Use the following table to compare the SAS format \$CHAR8. with notation in other programming languages:

Language	Notation
SAS	\$CHAR8.
С	char [8]
COBOL	PIC x(8)
Fortran	A8
PL/I	A(8)

Example

put @7 name \$char4.;

Value of name	Result
	1
XYZ	XYZ

\$EBCDICw. Format

Converts native format character data to EBCDIC representation.

Category: Character

left Alignment:

Syntax

\$EBCDICw.

Syntax Description

specifies the width of the output field.

Default: 1

Range: 1-32767

Details

If EBCDIC is the native format, no conversion occurs.

Comparisons

- On ASCII systems, \$EBCDICw. converts ASCII character data to EBCDIC.
- On all other systems, \$EBCDICw. behaves like the \$CHARw. format.

Example

put name \$ebcdic3.;

Value of name	Result *
qrs	9899A2
QRS	D8D9E2
+;>	4E5E6E

^{*} The results are shown as hexadecimal representations of EBCDIC codes for characters. Each two hexadecimal characters correspond to one byte of binary data, and each byte corresponds to one character.

\$HEXw. Format

Converts character data to hexadecimal representation.

Category: Character

Alignment: left

See: "\$HEXw. Format: UNIX" in SAS Companion for UNIX Environments

"\$HEXw. Format: Windows" in SAS Companion for Windows

Syntax

\$HEXw.

Syntax Description

u

specifies the width of the output field.

Default: The default width is calculated based on the length of the variable to be printed.

Range: 1-32767

Tips:

To ensure that SAS writes the full hexadecimal equivalent of your data, make w twice the length of the variable or field that you want to represent.

If w is greater than twice the length of the variable that you want to represent, \$HEXw, pads it with blanks.

Details

The \$HEXw. format converts each character into two hexadecimal characters. Each blank counts as one character, including trailing blanks.

Comparisons

The HEXw. format converts real binary numbers to their hexadecimal equivalent.

Example

put @5 name \$hex4.;

Value of name	Result	
	EBCDIC	ASCII
	1	1
AB	C1C2	4142

\$MSGCASEw. Format

Writes character data in uppercase when the MSGCASE system option is in effect.

Category: Character

Alignment: left

Syntax

\$MSGCASEw.

Syntax Description

specifies the width of the output field.

Default: 1, if the length of the variable is undefined. Otherwise, the default is the

length of the variable

Range: 1–32767

Details

When the MSGCASE= system option is in effect, all notes, warnings, and error messages that SAS generates appear in uppercase. Otherwise, all notes, warnings, and error messages appear in mixed case. You specify the MSGCASE= system option in the configuration file or during the SAS invocation.

Example

put name \$msgcase.;

Value of name	Result
sas	SAS

See Also

System Options:

- "MSGCASE System Option: UNIX" in SAS Companion for UNIX Environments
- "MSGCASE System Option: Windows" in SAS Companion for Windows
- "MSGCASE System Option: z/OS" in SAS Companion for z/OS

\$N8601B*w.d* Format

Writes ISO 8601 duration, datetime, and interval forms by using the basic notations PnYnMnDTnHnMnS and yyyymmddThhmmss.

Categories: Date and Time ISO 8601

Alignment: left

Restriction: UTC time zone offset values are not supported.

Supports: ISO 8601 Element 5.4.4, complete representation

Syntax

\$N8601Bw.d

Syntax Description

w

specifies the width of the output field.

Default: 50 **Range:** 1–200

Requirement: The minimum length for a duration value or a datetime value is 16.

The minimum length for an interval value is 16.

d

specifies the number of digits to the right of the lowest-order component. This argument is optional.

Default: 0 **Range:** 0-3

Details

The \$N8601B format writes ISO 8601 duration, datetime, and interval values as character data for the following basic notations:

- PnYnMnDTnHnMnS
- yyyymmddThhmmss
- PnYnMnDTnHnMnS/yyyymmddThhmmss
- yyyymmddThhmmssT/PnYnMnDTnHnMnS

The lowest-order component can contain fractions, as in these examples:

- p2y3.5m
- p00020304T05.335

Example

put nb \$n8601b.;

Value of nb	Result
0002405050112FFC	P2Y4M5DT5H1M12S
2012915155300FFD	20120915T155300
2012915000000FFD2014915000000FFD	20120915T000000/20140915T000000

Value of nb	Result
0033104030255FFC2012915155300FFD	P33Y1M4DT3H2M55S/20120915T155300

See Also

"Working with Dates and Times by Using the ISO 8601 Basic and Extended Notations" on page 14

\$N8601BAw.d Format

Writes ISO 8601 duration, datetime, and interval forms by using the basic notations PyyyymmddThhmmss and yyyymmddThhmmss.

Categories: Date and Time

ISO 8601

Alignment: left

Restriction: UTC time zone offset values are not supported.

Supports: ISO 8601 Element 5.5.4.2, alternative format

Syntax

\$N8601BAw.d

Syntax Description

specifies the width of the output field.

Default: 50 **Range:** 1-200

Requirement: The minimum length for a duration value or a datetime value is 16. The minimum length for an interval value is 16.

specifies the number of digits to the right of the lowest-order component. This argument is optional.

Default: 0 Range: 0-3

Details

The \$N8601BA format writes ISO 8601 duration, datetime, and interval values as character data for the following basic notations:

- PyyyymmddThhmmss
- *yyyymmdd*Thhmmss
- PyyyymmddThhmmss/yyyymmddThhmmss
- yyyymmdd Thhmmss/Pyyyymmdd Thhmmss

The lowest-order component can contain fractions, as in these examples:

- p00023.5
- 00020304T05.335

Example

put @1 nba \$N8601ba.;

Value of nba	Result
00024050501127D0	P00020405T050112.5
2012915155300FFD	20120915T155300
00023040506075282012915155300FFD	P00020304T050607.33/20120915T155300

See Also

"Working with Dates and Times by Using the ISO 8601 Basic and Extended Notations" on page 14

\$N8601E*w.d* Format

Writes ISO 8601 duration, datetime, and interval forms by using the extended notations PnYnMnDTnHnMnS and *yyyy-mm-dd*Thh:mm:ss.

Categories: Date and Time

ISO 8601

Alignment: left

Restriction: UTC time zone offset values are not supported.

Supports: ISO 8601 Element 5.4.4, complete representation

Syntax

\$N8601Ew.d

Syntax Description

w

specifies the width of the output field.

Default: 50 **Range:** 1–200

Requirement: The minimum length for a duration value or a datetime value is 16. The minimum length for an interval value is 16.

d

specifies the number of digits to the right of the lowest-order component. This argument is optional.

Default: 0 **Range:** 0–3

Details

The \$N8601E format writes ISO 8601 duration, datetime, and interval values as character data for the following basic notations:

- PnYnMnDTnHnMnS
- yyyy-mm-ddThh:mm:ss
- PnYnMnDTnHnMnS/yyyy-mm-ddThh:mm:ss
- yyyy-mm-ddThh:mm:ssT/PnYnMnDTnHnMnS

The lowest-order component can contain fractions, as in these examples:

- p2y3.5m
- p0002-03-04T05.335

Example

put @1 ne \$n8601e.;

Value of ne	Result
00024050501127D0	P2Y4M5DT5H1M12.5S
2012915155300FFD	2012-09-15T15:53:00
2012915000000FFD2014915000000FFD	2012-09-15T00:00:00/2013-09-15T00:00:00
0033104030255FFC2012915155300FFD	P33Y1M4DT3H2M55S/2012-09-15T15:53:00

See Also

"Working with Dates and Times by Using the ISO 8601 Basic and Extended Notations" on page 14

\$N8601EAw.d Format

Writes ISO 8601 duration, datetime, and interval forms by using the extended notations Pyyyy-mmddThh:mm:ss and yyyy-mm-ddThh:mm:ss.

Categories: Date and Time

ISO 8601

Alignment: left

Restriction: UTC time zone offset values are not supported.

Supports: ISO 8601 Element 5.4.4, complete representation

Syntax

\$N8601EAw.d

Syntax Description

w

specifies the width of the output field.

Default: 50 **Range:** 1–200

Requirement: The minimum length for a duration value or a datetime value is 16. The minimum length for an interval value is 16.

d

specifies the number of digits to the right of the lowest-order component. This argument is optional.

Default: 0 Range: 0-3

Details

The \$N8601EA format writes ISO 8601 duration, datetime, and interval values as character data for the following basic notations:

- Pyyyy-mm-ddThh:mm:ss
- yyyy-mm-ddThh:mm:ss
- Pyyyy-mm-ddThh:mm:ss/yyyy-mm-ddThh:mm:ss
- yyyy-mm-ddThh:mm:ss/Pyyyy-mm-ddThh:mm:ss

The lowest-order component can contain fractions, as in these examples:

- p00023.5
- 0002-03-04T05.335

Example

put @1 nea \$N8601ea.;

Value of nea	Result
00024050501127D0	P0002-04-05T05:01:12.500
2012915155300FFD	2012-09-15T15:53:00
00023040506075282012915155300FFD	P0002-03-04T05:06:07.330/2012-09-15T15:53

See Also

"Working with Dates and Times by Using the ISO 8601 Basic and Extended Notations" on page 14

\$N8601EHw.d Format

Writes ISO 8601 duration, datetime, and interval forms by using the extended notations Pyyyy-mm-ddThh:mm:ss and yyyy-mm-ddThh:mm:ss, using a hyphen (-) for omitted components.

Categories: Date and Time

ISO 8601

Restriction: UTC time zone offset values are not supported.

ISO 8601 Element 5.4.4, complete representation Supports:

Syntax

\$N8601EHw.d

Syntax Description

specifies the width of the output field.

Default: 50 Range: 1-200

Requirement: The minimum length for a duration value or a datetime value is 16. The minimum length for an interval value is 16.

d

specifies the number of digits to the right of the lowest-order component. This argument is optional.

Default: 0 **Range:** 0-3

Details

The \$N8601EH format writes ISO 8601 duration, datetime, and interval values as character data, using a hyphen (-) to represent omitted components, for the following extended notations:

- Pyyyy-mm-ddThh:mm:ss
- yyyy-mm-ddThh:mm:ss
- Pyyyy-mm-ddThh:mm:ss/yyyy-mm-ddThh:mm:ss
- yyyy-mm-ddThh:mm:ss/Pyyyy-mm-ddThh:mm:ss
- yyyy-mm-ddThh:mm:ss/yyyy-mm-ddThh:mm:ss

Omitted datetime components are always displayed; they are never truncated.

Example

put a \$n8601eh.;

Value of a	Result
00023FFFFFFFFFC2012FFF15FFFFFD	P0002-03-T-:-:-/2012-T15:-:-
2012FFF15FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	2012T15:-:-/P-03-T15:53:-

See Also

"Working with Dates and Times by Using the ISO 8601 Basic and Extended Notations" on page 14

\$N8601EXw.d Format

Writes ISO 8601 duration, datetime, and interval forms by using the extended notations Pyyyy-mm-ddThh:mm:ss and yyyy-mm-ddThh:mm:ss, using an x for each digit of an omitted component.

Categories: Date and Time

ISO 8601

Alignment: left

Restriction: UTC time zone offset values are not supported.

Supports: ISO 8601 Elements 5.5.3, 5.5.4.1, and 5.5.4.2

Syntax

\$N8601EXw.d

Syntax Description

w

specifies the width of the output field.

Default: 50 **Range:** 1–200

Requirement: The minimum length for a duration value or a datetime value is 16. The minimum length for an interval value is 16.

d

specifies the number of digits to the right of the lowest-order component. This argument is optional.

Default: 0 **Range:** 0-3

Details

The \$N8601EX format writes ISO 8601 duration, datetime, and interval values as character data, using a hyphen (-) to represent omitted components, for the following extended notations:

- Pyyyy-mm-ddThh:mm:ss
- yyyy-mm-ddThh:mm:ss
- Pyyyy-mm-ddThh:mm:ss/yyyy-mm-ddThh:mm:ss
- yyyy-mm-ddThh:mm:ss/Pyyyy-mm-ddThh:mm:ss
- yyyy-mm-ddThh:mm:ss/yyyy-mm-ddThh:mm:ss

Omitted datetime components are always displayed; they are never truncated.

Example

put nex \$n8601ex.;

Value of nex	Result
00023FFFFFFFFFC2012FFF15FFFFFFD	P0002-03xxTxx:xx:xx/2012-xx-xxT15:xx:xx
2012FFF15FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	2012-xx-xxT15:xx:xx/Pxxxx-03-xxT15:53:xx

See Also

"Working with Dates and Times by Using the ISO 8601 Basic and Extended Notations" on page 14

\$N8601Hw.d Format

Writes ISO 8601 duration, datetime, and interval forms PnYnMnDTnHnMnS and yyyy-mm-ddThh:mm:ss, dropping omitted components in duration values and using a hyphen (-) for omitted components in datetime values.

Categories: Date and Time

ISO 8601

Alignment: left

Restriction: UTC time zone offset values are not supported.

Supports: ISO 8601 Elements 5.5.3, 5.5.4.1, and 5.5.4.2

Syntax

\$N8601Hw.d

Syntax Description

specifies the width of the output field.

Default: 50 **Range:** 1-200

Requirement: The minimum length for a duration value or a datetime value is 16. The minimum length for an interval value is 16.

d

specifies the number of digits to the right of the lowest-order component. This argument is optional.

Default: 0 Range: 0-3

Details

The \$N8601H format writes ISO 8601 durations, intervals, and datetimes in the following forms, omitting components in the PnYnMnDTnHnMnS form and using a hyphen (-) to represent omitted components in the datetime form:

- PnYnMnDTnHnMnS
- yyyy-mm-ddThh:mm:ss
- PnYnMnDTnHnMnS/yyyy-mm-ddThh:mm:ss
- yyyy-mm-ddThh:mm:ssT/PnYnMnDTnHnMnS
- yyyy-mm-ddThh:mm:ss/yyyy-mm-ddThh:mm:ss

Omitted datetime components are always displayed; they are never truncated.

Example

put nh \$n8601h.;

Value of nh	Result
0002304FFFFFFFC2012FFF15FFFFFFD	P2Y3M4D/2012—T15:-:-
FFFF102FFFFFFFD2012FFF15FFFFFFD	-01-02T-:-:-0/2012

See Also

"Working with Dates and Times by Using the ISO 8601 Basic and Extended Notations" on page 14

\$N8601X*w.d* Format

Writes ISO 8601 duration, datetime, and interval forms PnYnMnDTnHnMnS and yyyy-mm-ddThh:mm:ss, dropping omitted components in duration values and using an x for each digit of an omitted component in datetime values.

Categories: Date and Time

ISO 8601

Alignment: left

Restriction: UTC time zone offset values are not supported.

Supports: ISO 8601 Elements 5.5.3, 5.5.4.1, and 5.5.4.2

Syntax

\$N8601Xw.d

Syntax Description

w

specifies the width of the output field.

Default: 50 **Range:** 1–200

Requirement: The minimum length for a duration value or a datetime value is 16.

The minimum length for an interval value is 16.

d

specifies the number of digits to the right of the lowest-order component. This argument is optional.

Default: 0 Range: 0-3

Details

The \$N8601X format writes ISO 8601 durations, intervals, and datetimes in the following forms, omitting components in the PnYnMnDTnHnMnS form and using an x to represent omitted components in the datetime form:

- PnYnMnDTnHnMnS
- yyyy-mm-ddThh:mm:ss
- PnYnMnDTnHnMnS/yyyy-mm-ddThh:mm:ss
- yyyy-mm-ddThh:mm:ssT/PnYnMnDTnHnMnS
- yyyy-mm-ddThh:mm:ss/yyyy-mm-ddThh:mm:ss

Omitted datetime components are always displayed; they are never truncated.

Example

put nx \$n8601x.;

Value of nx	Result
0002304FFFFFFFC2011FFF15FFFFFD	P2Y3M4D/2011-xx-xxT15:xx:xx
FFFF102FFFFFFFFD2011FFF15FFFFFFd	xxxx-01-02Txx:xx:xx/2011x-xxT15:xx:xx

See Also

"Working with Dates and Times by Using the ISO 8601 Basic and Extended Notations" on page 14

\$OCTALw. Format

Converts character data to octal representation.

Category: Character

Alignment: left

Syntax

\$OCTALw.

Syntax Description

specifies the width of the output field.

Default: The default width is calculated based on the length of the variable to be

Range: 1-32767

Tip: Because each character value generates three octal characters, increase the value of w by three times the length of the character value.

Comparisons

The \$OCTALw. format converts character values to the octal representation of their character codes. The OCTALw. format converts numeric values to octal representation.

Example

The following example shows ASCII output when you use the \$OCTALw. format.

```
data _null_;
   infile datalines truncover;
   input item $5.;
   put item $octal15.;
   datalines;
art
rice
bank
;
run;
```

SAS writes the following results to the log.

```
141162164040040
162151143145040
142141156153040
```

\$QUOTEw. Format

Writes data values that are enclosed in double quotation marks.

Category: Character

Alignment: left

Syntax

\$QUOTEw.

Syntax Description

w

specifies the width of the output field.

Default: 2, if the length of the variable is undefined. Otherwise, the default is the length of the variable + 2

Range: 2-32767

Tip: Make w wide enough to include the left and right quotation marks.

Details

The following list describes the output that SAS produces when you use the \$QUOTEw. format. For examples of these items, see the examples below.

- If your data value is not enclosed in quotation marks, SAS encloses the output in double quotation marks.
- If your data value is not enclosed in quotation marks, but the value contains a single quotation mark, SAS does the following:
 - encloses the data value in double quotation marks
 - does not change the single quotation mark
- If your data value begins and ends with single quotation marks, and the value contains double quotation marks, SAS does the following:
 - encloses the data value in double quotation marks
 - duplicates the double quotation marks that are found in the data value
 - does not change the single quotation marks
- If your data value begins and ends with single quotation marks, and the value contains two single contiguous quotation marks, SAS does the following:
 - encloses the value in double quotation marks
 - does not change the single quotation marks
- If your data value begins and ends with single quotation marks, and contains both double quotation marks and single, contiguous quotation marks, SAS does the following:
 - encloses the value in double quotation marks
 - duplicates the double quotation marks that are found in the data value
 - does not change the single quotation marks
- If the length of the target field is not large enough to contain the string and its quotation marks, SAS returns as much of the quoted string that will fit in the field.

Example

put name \$quote20.;

Value of name	Result
	2
SAS	"SAS"
SAS's	"SAS's"
'ad"verb"'	"'ad""verb"""
'ad''verb'	"'ad''verb'"
"ad"''"verb"'	+12 "'""ad""''""verb"""

Value of name	Result
deoxyribonucleotide	"deoxyribonucleotid" *

^{*} deoxyribonucleotide is 19 characters. When SAS adds the quotation marks, the length of the string is 21 characters. SAS truncates the letter e at the end of the text to accommodate the quotation marks.

\$REVERJw. Format

Writes character data in reverse order and preserves blanks.

Category: Character

Alignment: right

Syntax

\$REVERJw.

Syntax Description

w

specifies the width of the output field.

Default: 1, if w is not specified

Range: 1-32767

Comparisons

The \$REVERJw. format is similar to the \$REVERSw. format except that \$REVERSw. left aligns the result by trimming all leading blanks.

Example

put @1 name \$reverj7.;

Name*	Result
	+
ABCD###	DCBA
###ABCD	DCBA

^{*} The character # represents a blank space.

\$REVERSw. Format

Writes character data in reverse order and left aligns

Category: Character

Alignment:

left

Syntax

\$REVERSw.

Syntax Description

specifies the width of the output field.

Default: 1 if w is not specified

Range: 1-32767

Comparisons

The \$REVERSw. format is similar to the \$REVERJw. format except that \$REVERJw. does not left align the result.

Example

put @1 name \$revers7.;

Name*	Result
	1
ABCD###	DCBA
###ABCD	DCBA

^{*} The character # represents a blank space.

\$UPCASEw. Format

Converts character data to uppercase.

Category: Character

Alignment: left

Syntax

\$UPCASEw.

Syntax Description

specifies the width of the output field.

Default: 8, if the length of the variable is undefined. Otherwise, the default is the

length of the variable

Range: 1-32767

Details

Special characters, such as hyphens and other symbols, are not altered.

Example

put @1 name \$upcase9.;

Value of name	Result
	1
coxe-ryan	COXE-RYAN

\$VARYINGw. Format

Writes character data of varying length.

Valid in: in DATA step

Category: Character

Alignment: left

Syntax

\$VARYING*w. length-variable*

Syntax Description

w

specifies the maximum width of the output field for any output line or output file record.

Default: 8 if the length of the variable is undefined. Otherwise, the default is the length of the variable

Range: 1–32767

length-variable

specifies a numeric variable that contains the length of the current value of the character variable. SAS obtains the value of the *length-variable* by reading it directly from a field that is described in an INPUT statement, reading the value of a variable in an existing SAS data set, or calculating its value.

Restriction: *length-variable* cannot be an array reference.

Requirement: You must specify *length-variable* immediately after \$VARYINGw. in a SAS statement.

Tips:

If the value of *length-variable* is 0, negative, or missing, SAS writes nothing to the output field.

If the value of *length-variable* is greater than 0 but less than w, SAS writes the number of characters that are specified by *length-variable*.

If *length-variable* is greater than or equal to w, SAS writes w columns.

Details

Use \$VARYINGw. when the length of a character value differs from record to record. After writing a data value with \$VARYINGw., the pointer's position is the first column after the value.

Examples

Example 1: Obtaining a Variable Length Directly

An existing data set variable contains the length of a variable. The data values and the results follow the explanation of this SAS statement:

```
put @10 name $varying12. varlen;
```

NAME is a character variable of length 12 that contains values that vary from 1 to 12 characters in length. VARLEN is a numeric variable in the same data set that contains the actual length of NAME for the current observation.

Value of name *	Result
	+
New York 8	New York
Toronto 7	Toronto
Buenos Aires 12	Buenos Aires
Tokyo 5	Tokyo

^{*} The value of NAME appears before the value of VARLEN.

Example 2: Obtaining a Variable Length Indirectly

Use the LENGTH function to determine the length of a variable. The data values and the results follow the explanation of these SAS statements:

```
varlen=length(name);
put @10 name $varying12. varlen;
```

The assignment statement determines the length of the varying-length variable. The variable VARLEN contains this length and becomes the length-variable argument to the \$VARYING12. format.

Values *	Result	
	+	
New York	New York	
Toronto	Toronto	
Buenos Aires	Buenos Aires	

Values *	Result
Tokyo	Tokyo

^{*} The value of NAME appears before the value of VARLEN.

\$w. Format

Writes standard character data.

Category: Character

Alignment: left

Alias: \$Fw.

Syntax

\$w.

Syntax Description

W

specifies the width of the output field. You can specify a number or a column range.

Default: 1, if the length of the variable is undefined. Otherwise, the default is the length of the variable.

Range: 1-32767

Comparisons

The \$w. format and the \$CHARw. format are identical, and they do not trim leading blanks. To trim leading blanks, use the LEFT function to left align character data, or use list output with the colon (:) format modifier and the format of your choice.

Example

```
put @10 name $5.;
put name $ 10-15;
```

Value of name *	Result
	+2
#Cary	Cary
Tokyo	Токуо

^{*} The character # represents a blank space.

BESTw. Format

SAS chooses the best notation.

Category: Numeric Alignment: right

> See: "BESTw. Format: z/OS" in SAS Companion for z/OS

Syntax

BESTw.

Syntax Description

specifies the width of the output field.

Default: 12 **Range:** 1-32

Tip: If you print numbers between 0 and .01 exclusively, then use a field width of at least 7 to avoid excessive rounding. If you print numbers between 0 and -.01 exclusively, then use a field width of at least 8.

Details

When a format is not specified for writing a numeric value, SAS uses the BESTw. format as the default format. The BESTw. format writes numbers as follows:

- Values are written with the maximum precision, as determined by the width.
- Integers are written without decimals.
- Numbers with decimals are written with as many digits to the left and right of the decimal point as needed or as allowed by the width.
- Values that can be written within the given width are written without trailing zeros.
- Values that cannot be written within the given width are written with the maximum allowable number of decimal places as determined by the width.
- Extreme values might be written in scientific notation.

SAS stores the complete value regardless of the format that is used.

Comparisons

- The BESTw. format writes as many significant digits as possible in the output field, but if the numbers vary in magnitude, the decimal points do not line up. Integers print without a decimal.
- The Dw.p format writes numbers with the desired precision and more alignment than the BESTw format.
- The BESTDw.p format is a combination of the BESTw. format and the Dw.p format in that it formats all numeric data, and it does a better job of aligning decimals than the BESTw. format.

The *w.d* format aligns decimal points, if possible, but does not necessarily show the same precision for all numbers.

Example

The following statements produce these results.

SAS Statements	Result	
	1	
x=1257000; put x best6.;	1.26E6	
x=1257000; put x best3.;	1E6	

See Also

Formats:

• "BESTDw.p Format" on page 58

BESTDw.p Format

Prints numeric values, lining up decimal places for values of similar magnitude, and prints integers without decimals.

Category: Numeric

Alignment: right

Syntax

BESTDw.p

Syntax Description

specifies the width of the output field. **Default:** 12 **Range:** 1–32

p specifies the precision. This argument is optional.

Default: 3 **Range:** 0 to w-1

Requirement: must be less than w

Tip: If p is omitted or is specified as 0, then p is set to 3.

Details

The BESTDw.p format writes numbers so that the decimal point aligns in groups of values with similar magnitude. Integers are printed without a decimal point. Larger values of p print the data values with more precision and potentially more shifts in the decimal point alignment. Smaller values of p print the data values with less precision and a greater chance of decimal point alignment.

The format chooses the number of decimal places to print for ranges of values, even when the underlying values can be represented with fewer decimal places.

Comparisons

- The BESTw. format writes as many significant digits as possible in the output field, but if the numbers vary in magnitude, the decimal points do not line up. Integers print without a decimal.
- The Dw.p format writes numbers with the desired precision and more alignment than the BESTw format.
- The BESTDw.p format is a combination of the BESTw. format and the Dw.p format in that it formats all numeric data, and it does a better job of aligning decimals than
- The w.d format aligns decimal points, if possible, but it does not necessarily show the same precision for all numbers.

Example

put x bestd14.;

Data Line	Result	
	+	
12345	12345	
123.45	123.4500000	
1.2345	1.2345000	
.12345	0.1234500	
1.23456789	1.2345679	

See Also

Formats:

- "BESTw. Format" on page 57
- "Dw.p Format" on page 71

BINARYw. Format

Converts numeric values to binary representation.

Category: Numeric Alignment: left

Syntax

BINARYw.

Syntax Description

specifies the width of the output field.

Default: 8 **Range:** 1-64

Comparisons

BINARYw. converts numeric values to binary representation. The \$BINARYw. format converts character values to binary representation.

Example

put @1 x binary8.;

Value of x	Result
	+
123.45	01111011
123	01111011
-123	10000101

B8601DAw. Format

Writes date values by using the ISO 8601 basic notation yyyymmdd.

Categories: Date and Time

ISO 8601

Alignment: left

Restriction: UTC time zone offset values are not supported.

Supports: ISO 8601 Element 5.2.1.1, complete representation

Syntax

B8601DAw.

Syntax Description

specifies the width of the output field.

Default: 10 **Range:** 8-10

Details

The B8601DA format writes the date value by using the ISO 8601 basic date notation yyyymmdd:

yyyy

is a four-digit year.

is a two-digit month (zero padded) between 01 and 12.

dd

is a two-digit day of the month (zero padded) between 0 and 31.

Example

put bda b8601da.;

Value of bda	Result
18885	20110915
18628	20110101

See Also

"Working with Dates and Times by Using the ISO 8601 Basic and Extended Notations" on page 14

B8601DNw. Format

Writes dates from datetime values by using the ISO 8601 basic notation yyyymmdd.

Categories: Date and Time

ISO 8601

Alignment: left

Restriction: UTC time zone offset values are not supported.

ISO 8601 Element 5.2.1.1, complete representation Supports:

Syntax

B8601DNw.

Syntax Description

w

specifies the width of the output field.

 $\begin{array}{ll} \textbf{Default:} & 10 \\ \textbf{Range:} & 8 - 10 \end{array}$

Details

The B8601DN format writes the date from a datetime value by using the ISO 8601 basic date notation *yyyymmdd*:

```
yyyy is a four-digit year.

mm
is a two-digit month (zero padded) between 01 and 12.

dd
is a two-digit day of the month (zero padded) between 01 and 31.
```

Example

put bdn b8601dn.;

Value of bdn	Result
1631664000	20110915

See Also

"Working with Dates and Times by Using the ISO 8601 Basic and Extended Notations" on page 14

B8601DTw.d Format

Writes datetime values by using the ISO 8601 basic notation yyyymmddThhmmss<ffffff>.

Categories: Date and Time

ISO 8601

Alignment: left

Restriction: UTC time zone offset values are not supported. **Supports:** ISO 8601 Element 5.4.1, complete representation

Syntax

B8601DTw.d

Syntax Description

specifies the width of the output field.

Default: 19 Range: 15-26

specifies the number of digits to the right of the seconds value that represents a fraction of a second. This argument is optional.

Default: 0 **Range:** 0-6

Details

The B8601DT format writes the datetime value by using the ISO 8601 basic datetime notation *yyyymmdd*Thhmmss<ffffff>:

```
yyyy
   is a four-digit year.
mm
   is a two-digit month (zero padded) between 01 and 12.
dd
   is a two-digit day of the month (zero padded) between 01 and 31.
hh
   is a two-digit hour (zero padded) between 00 and 23.
mm
   is a two-digit minute (zero padded) between 00 and 59.
   is a two-digit second (zero padded) between 00 and 59.
```

are optional fractional seconds, with a precision of up to six digits, where each digit is between 0 and 9.

Example

ffffff

put bdt b8601dt.;

Value of bdt	Result
+1	
1631721180	20110915T155300

See Also

"Working with Dates and Times by Using the ISO 8601 Basic and Extended Notations" on page 14

B8601DZw. Format

Writes datetime values for the zero meridian Coordinated Universal Time (UTC) time by using the ISO 8601 datetime and time zone basic notation *yyyymmdd*Thhmmss+0000.

Categories: Date and Time

ISO 8601

Alignment: left

Supports: ISO 8601 Element 5.4.1, complete representation

Syntax

B8601DZw.

Syntax Description

w

specifies the width of the output field.

Default: 26 **Range:** 20–35

Details

UTC values specify a time and a time zone based on the zero meridian in Greenwich, England. The B8601DZ format writes SAS datetime values for the zero meridian date and time by using one of the following ISO 8601 basic datetime notations:

yyyymmddThhmmss+0000

Note: Use this form when w is large enough to support this time zone notation.

• yyyymmddThhmmssZ

Note: Use this form when w is not large enough to support the +0000 time zone notation.

```
yyyy
```

is a four-digit year.

mm

is a two-digit month (zero padded) between 01 and 12.

dd

is a two-digit day of the month (zero padded) between 01 and 31.

hh

is a two-digit hour (zero padded) between 00 and 23.

mm

is a two-digit minute (zero padded) between 00 and 59.

SS

is a two-digit second (zero padded) between 00 and 59.

+0000

indicates the UTC time for the zero meridian (Greenwich, England).

An ISO 8601 time or datetime value that specifies a time zone offset is adjusted by the number of hours and minutes that is specified in the offset and processed as the time or datetime for the zero meridian (Greenwich, England). The B8601DZ format always writes the datetime value using the zero meridian offset value of +0000. To write a datetime that uses the UTC offset other than +0000, see "B8601LZw. Format" on page 65.

Restriction: The shorter form +00 is not supported.

Z

indicates that the time is for the zero meridian (Greenwich, England) or +0000 UTC time. Z is used when the width of the format does not support the +0000 notation.

Example

put bdz b8601dz20.;

Datetime Value	Value of bdz	Result
20110915T155300+0500	1631703180 [*]	20110915T105300+0000
20110915T155300Z	1631721180	20110915T155300+0000

^{*} The ISO 8601 value specifies a time zone offset of five hours. When SAS read the value, the SAS datetime value was adjusted by five hours. The Result column shows the adjustment of five hours.

See Also

"Working with Dates and Times by Using the ISO 8601 Basic and Extended Notations" on page 14

B8601LZw. Format

Writes time values as local time by appending a time zone offset difference between the local time and UTC, using the ISO 8601 basic time notation *hhmmss*+|-*hhmm*.

Categories: Date and Time

ISO 8601

Alignment: left

ISO 8601 Elements 5.3.3 and 5.3.4.2 Supports:

Syntax

B8601LZw.

Syntax Description

specifies the width of the output field.

Default: 14 **Range:** 9-20

Details

The B8601LZ format writes time values without making any adjustments, and appends the UTC time zone offset for the local SAS session by using the ISO 8601 basic notation *hhmmss*+|-*hhmm*:

hh

is a two-digit hour (zero padded) between 00 and 23.

mm

is a two-digit minute (zero padded) between 00 and 59.

SS

is a two-digit second (zero padded) between 00 and 59.

+|-hhmm

is an hour and minute signed offset from zero meridian time. Note that the offset must be +|-hhmm| (that is, + or - and four characters).

Use + for time zones east of the zero meridian, and use – for time zones west of the zero meridian. For example, +0200 indicates a two-hour time difference to the east of the zero meridian, and -0600 indicates a six-hour time difference to the west of the zero meridian.

Restriction: The shorter form +|-hh| is not supported.

When SAS reads a UTC time by using the B8601TZ informat, and the adjusted time is greater than 24 hours or less than 00 hours, SAS adjusts the value so that the time is between 000000 and 235959. If the B8601LZ format attempts to format a time outside of this time range, the time is formatted with asterisks to indicate that the value is out of range.

Example

This PUT statement writes the time for the Eastern Standard time zone:

put blz b8601lz.;

Value of blz	Result
46380	125300-0500

See Also

"Working with Dates and Times by Using the ISO 8601 Basic and Extended Notations" on page 14

B8601TMw.d Format

Writes time values by using the ISO 8601 basic notation hhmmss<ffff>.

Categories: Date and Time

ISO 8601

Alignment: left

Restriction: UTC time zone offset values are not supported.

Supports: ISO 8601 Element 5.3.1.1, complete representation

Syntax

B8601TMw.d

Syntax Description

specifies the width of the output field.

Default: 8 **Range:** 6–15

d

specifies the number of digits to the right of the seconds value that represents a fraction of a second. This argument is optional.

Default: 0 **Range:** 0-6

Details

The B8601TM format writes SAS time values by using the ISO 8601 basic time notation *hhmmss*<*fffff*>:

hh

is a two-digit hour (zero padded) between 00 and 23.

mm

is a two-digit minute (zero padded) between 00 and 59.

SS

is a two-digit second (zero padded) between 00 and 59.

ffffff

are optional fractional seconds, with a precision of up to six digits, where each digit is between 0 and 9.

Example

put btm b8601tm.;

Value of btm	Result
57180	155300

See Also

"Working with Dates and Times by Using the ISO 8601 Basic and Extended Notations" on page 14

B8601TZw. Format

Adjusts time values to the Coordinated Universal Time (UTC) and writes the time values by using the ISO 8601 basic time notation *hhmmss*+|-*hhmm*.

Categories: Date and Time

ISO 8601

Alignment: left

Supports: ISO 8601 Elements 5.3.3 and 5.3.4

Syntax

B8601TZw.

Syntax Description

W

specifies the width of the output field.

Default: 14 Range: 9–20

Details

UTC time values specify a time and a time zone based on the zero meridian in Greenwich, England. The B8601TZ format adjusts the time value to be the time at the zero meridian and writes the time value in one of the following ISO 8601 basic time notations:

• hhmmss+|-hhmm

Note: Use this form when w is large enough to support this time notation.

hhmmssZ

Note: Use this form when w is not large enough to support the +|-hhmm| time zone notation.

hh

is a two-digit hour (zero padded) between 00 and 23.

mm

is a two-digit minute (zero padded) between 00 and 59.

SS

is a two-digit second (zero padded) between 00 and 59.

+|-hh:mm

is an hour and minute signed offset from zero meridian time. Note that the offset must be +|-hhmm| (that is, + or - and four characters).

Use + for time zones east of the zero meridian, and use – for time zones west of the zero meridian. For example, +0200 indicates a two-hour time difference to the east of the zero meridian, and -0600 indicates a six-hour time difference to the west of the zero meridian.

Restriction: The shorter form +|-hh| is not supported.

Z

indicates that the time is for zero meridian (Greenwich, England) or $\pm 0000~\mathrm{UTC}$ time.

When SAS reads a UTC time by using the B8601TZ informat, and the adjusted time is greater than 24 hours or less than 00 hours, SAS adjusts the value so that the time is between 000000 and 240000. If the B8601TZ format attempts to format a time outside

of this time range, the time is formatted with asterisks to indicate that the value is out of range.

Comparisons

For time values between 000000 and 240000, the B8601TZ format adjusts the time value to be the time at the zero meridian and writes the time value in the international standard extended time notation. The B8601LZ format makes no adjustment to the time and writes time values in the international standard extended time notation, using a UTC time zone offset for the local SAS session.

Example

put btz b8601tz.;

Values for btz	Result
73441	202401+0000

See Also

"Working with Dates and Times by Using the ISO 8601 Basic and Extended Notations" on page 14

COMMAw.d Format

Writes numeric values with a comma that separates every three digits and a period that separates the decimal fraction.

Category: Numeric Alignment: right

Syntax

COMMAw.d

Syntax Description

specifies the width of the output field.

Default: 6 **Range:** 1-32

Tip: Make w wide enough to write the numeric values, the commas, and the optional decimal point.

d

specifies the number of digits to the right of the decimal point in the numeric value. This argument is optional.

Range: 0-31

Requirement: must be less than w

Details

The COMMAw.d format writes numeric values with a comma that separates every three digits and a period that separates the decimal fraction.

Comparisons

- The COMMAw.d format is similar to the COMMAXw.d format, but the COMMAXw.d format reverses the roles of the decimal point and the comma. This convention is common in European countries.
- The COMMAw.d format is similar to the DOLLARw.d format except that the COMMAw.d format does not print a leading dollar sign.

Example

put @10 sales comma10.2;

Value of sales	Result
	+2
23451.23	23,451.23
123451.234	123,451.23

See Also

Formats:

- "COMMAXw.d Format" on page 70
- "DOLLARw.d Format" on page 81

COMMAXw.d Format

Writes numeric values with a period that separates every three digits and a comma that separates the decimal fraction.

Numeric Category: Alignment: right

Syntax

COMMAXw.d

Syntax Description

specifies the width of the output field. This argument is optional.

Default: 6 **Range:** 1–32 **Tip:** Make w wide enough to write the numeric values, the commas, and the optional decimal point.

d

specifies the number of digits to the right of the decimal point in the numeric value.

Requirement: must be less than w

Details

The COMMAXw.d format writes numeric values with a period that separates every three digits and with a comma that separates the decimal fraction.

Comparisons

The COMMAw.d format is similar to the COMMAXw.d format, but the COMMAXw.d format reverses the roles of the decimal point and the comma. This convention is common in European countries.

Example

put @10 sales commax10.2;

Value of sales	Result
	+2
23451.23	23.451,23
123451.234	123.451,23

Dw.p Format

Prints numeric values, possibly with a great range of values, lining up decimal places for values of similar magnitude.

Category: Numeric Alignment: right

Syntax

 $\mathbf{D}w.p$

Syntax Description

specifies the width of the output field. This argument is optional.

Default: 12 **Range:** 1-32 p

specifies the precision. This argument is optional.

Default: 3 **Range:** 0–9

Requirement: p must be less than w

Tips:

If p is omitted or is specified as 0, then p is set to 3.

If zero is the desired precision, use the w.d format in place of the Dw.p format.

Details

The Dw.p format writes numbers so that the decimal point aligns in groups of values with similar magnitude. Larger values of p print the data values with more precision and potentially more shifts in the decimal point alignment. Smaller values of p print the data values with less precision and a greater chance of decimal point alignment.

Comparisons

- The BESTw. format writes as many significant digits as possible in the output field, but if the numbers vary in magnitude, the decimal points do not line up.
- Dw.p writes numbers with the desired precision and more alignment than the BESTw format.
- The BESTDw.p format is a combination of the BESTw. format and the Dw.p format in that it formats all numeric data, and it does a better job of aligning decimals than the BESTw. format.
- The w.d format aligns decimal points, if possible, but it does not necessarily show the same precision for all numbers.

Example

put @1 x d10.4;

Value of x	Result
	1
12345	12345.0
1234.5	1234.5
123.45	123.45000
12.345	12.34500
1.2345	1.23450
.12345	0.12345

See Also

Formats:

"BESTDw.p Format" on page 58

DATEw. Format

Writes date values in the form ddmmmyy, ddmmmyyyy, or dd-mmm-yyyy.

Category: Date and Time

Alignment: right

Syntax

DATEw.

Syntax Description

specifies the width of the output field.

Default: 7 **Range:** 5–11

Tip: Use a width of 9 to print a 4-digit year without a separator between the day, month, and year. Use a width of 11 to print a 4-digit year using a hyphen as a separator between the day, month, and year

Details

The DATEw. format writes SAS date values in the form ddmmmyy, ddmmmyyyy, or ddmmm-yyyy, where

dd

is an integer that represents the day of the month.

mmm

is the first three letters of the month name.

is a two-digit or four-digit integer that represents the year.

Example

The example table uses the input value of 19068, which is the SAS date value that corresponds to March 16, 2012.

SAS Statement	Result
	+
<pre>put day date5.;</pre>	16MAR
put day date6.;	16MAR
put day date7.;	16MAR12
put day date8.;	16MAR12

SAS Statement	Result
put day date9.;	16MAR2012
put day datel1.;	16-MAR-2012

Functions:

• "DATE Function" in SAS Functions and CALL Routines: Reference

Informats:

"DATEw. Informat" on page 267

DATEAMPMw.d Format

Writes datetime values in the form ddmmmyy:hh:mm:ss.ss with AM or PM.

Category: Date and Time

Alignment: right

Syntax

DATEAMPMw.d

Syntax Description

w

specifies the width of the output field.

Default: 19 **Range:** 7–40

Tip: SAS requires a minimum w value of 13 to write AM or PM. For widths between 10 and 12, SAS writes a 24-hour clock time.

d

specifies the number of digits to the right of the decimal point in the seconds value. This argument is optional.

Range: 0-39

Requirement: must be less than w

Note: If w-d < 17, SAS truncates the decimal values.

Details

The DATEAMPMw.d format writes SAS datetime values in the form ddmmmyy:hh:mm:ss.ss, where

dd

is an integer that represents the day of the month.

mmm

is the first three letters of the month name.

уу

is a two-digit integer that represents the year.

hh

is an integer that represents the hour.

mm

is an integer that represents the minutes.

SS.SS

is the number of seconds to two decimal places.

Comparisons

The DATEAMPMw.d format is similar to the DATETIMEw.d format except that DATEAMPMw.d prints AM or PM at the end of the time.

Example

The example table uses the input value of 1650538894, which is the SAS datetime value that corresponds to 11:01:34 a.m. on April 20, 2012.

SAS Statement	Result
	+
<pre>put event dateampm.;</pre>	20APR12:11:01:34 AM
<pre>put event dateampm7.;</pre>	20APR12
<pre>put event dateampm10.;</pre>	20APR:11
<pre>put event dateampm13.;</pre>	20APR12:11 AM
<pre>put event dateampm22.2;</pre>	20APR12:11:01:34.00 AM

See Also

Formats:

"DATETIMEw.d Format" on page 75

DATETIMEw.d Format

Writes datetime values in the form ddmmmyy:hh:mm:ss.ss.

Category: Date and Time

Alignment: right

Restriction: If w–d< 17, SAS truncates the decimal values.

Syntax

DATETIMEw.d

Syntax Description

w

specifies the width of the output field.

Default: 16 **Range:** 7–40

Tip: SAS requires a minimum w value of 16 to write a SAS datetime value with the date, hour, and seconds. Add an additional two places to w and a value to d to return values with optional decimal fractions of seconds.

d

specifies the number of digits to the right of the decimal point in the seconds value. This argument is optional.

Range: 0-39

Requirement: must be less than w

Details

The DATETIMEw.d format writes SAS datetime values in the form *ddmmmyy:hh:mm:ss.ss*:

dd

is an integer that represents the day of the month.

mmm

is the first three letters of the month name.

уу

is a two-digit integer that represents the year.

hh

is an integer that represents the hour in 24-hour clock time.

mm

is an integer that represents the minutes.

SS.SS

is the number of seconds to two decimal places.

Example

The example table uses the input value of 1668138559, which is the SAS datetime value that corresponds to 3:49:19 a.m. on November 10, 2012.

SAS Statement	Result
	+
<pre>put event datetime.;</pre>	10NOV12:03:49:19
<pre>put event datetime7.;</pre>	10NOV12
<pre>put event datetime12.;</pre>	10NOV12:03

SAS Statement	Result
<pre>put event datetime18.;</pre>	10NOV12:03:49:19
<pre>put event datetime18.1;</pre>	10NOV12:03:49:19.0
<pre>put event datetime19.;</pre>	10NOV2012:03:49:19
<pre>put event datetime20.1;</pre>	10NOV2012:03:49:19.0
<pre>put event datetime21.2;</pre>	10NOV2012:03:49:19.00

Formats:

- "DATEw. Format" on page 73
- "TIMEw.d Format" on page 157

Functions:

"DATETIME Function" in SAS Functions and CALL Routines: Reference

Informats:

- "DATEw. Informat" on page 267
- "DATETIMEw. Informat" on page 268
- "TIMEw. Informat" on page 332

DAYw. Format

Writes date values as the day of the month.

Category: Date and Time

Alignment: right

Syntax

DAYw.

Syntax Description

specifies the width of the output field.

Default: 2 **Range:** 2-32

The example table uses the input value of 19158, which is the SAS date value that corresponds to June 14, 2012.

SAS Statement	Result
	+
put date day2.;	14

DDMMYYw. Format

Writes date values in the form *ddmm*<*yy*>*yy* or *dd/mm*/<*yy*>*yy*, where a forward slash is the separator and the year appears as either 2 or 4 digits.

Category: Date and Time

Alignment: right

Syntax

DDMMYYw.

Syntax Description

W

specifies the width of the output field.

Default: 8 **Range:** 2-10

Interaction: When w has a value of from 2 to 5, the date appears with as much of the day and the month as possible. When w is 7, the date appears as a two-digit year without slashes.

Details

The DDMMYYw. format writes SAS date values in the form *ddmm*<*yy*>*yy* or *dd/mm/* <*yy*>*yy*:

dd

is an integer that represents the day of the month.

/ is the separator.

mm

is an integer that represents the month.

 $\langle yy \rangle yy$

is a two-digit or four-digit integer that represents the year.

Example

The following examples use the input value of 19351, which is the SAS date value that corresponds to December 24, 2012.

SAS Statement	Result
	+1
<pre>put date ddmmyy5.;</pre>	24/12
<pre>put date ddmmyy6.;</pre>	241212
<pre>put date ddmmyy7.;</pre>	241212
put date ddmmyy8.;	24/12/12
put date ddmmyy10.;	24/12/2012

Formats:

- "DATEw. Format" on page 73
- "DDMMYYxw. Format" on page 79
- "MMDDYYw. Format" on page 113
- "YYMMDDw. Format" on page 181

Functions:

"MDY Function" in SAS Functions and CALL Routines: Reference

Informats:

- "DATEw. Informat" on page 267
- "DDMMYYw. Informat" on page 270
- "MMDDYYw. Informat" on page 292
- "YYMMDDw. Informat" on page 347

DDMMYYxw. Format

Writes date values in the form *ddmm*<*yy*>*yy* or *dd-mm-yy*<*yy*>, where the *x* in the format name is a character that represents the special character that separates the day, month, and year, which can be a hyphen (-), period (.), blank character, slash (/), colon (:), or no separator; the year can be either 2 or 4 digits.

Category: Date and Time

Alignment: right

Syntax

DDMMYYxw.

Syntax Description

x

identifies a separator or specifies that no separator appear between the day, the month, and the year. The following are valid values for x:

separates with a blank

 \mathbf{C}

В

separates with a colon

D

separates with a hyphen

N

indicates no separator

P

separates with a period

S

separates with a slash.

w

specifies the width of the output field.

Default: 8 Range: 2-10

Interactions:

When w has a value of from 2 to 5, the date appears with as much of the day and the month as possible. When w is 7, the date appears as a two-digit year without separators.

When x has a value of N, the width range changes to 2-8.

Details

The DDMMYYxw. format writes SAS date values in the form *ddmm*<*yy*>*yy* or *ddxmmx*<*yy*>*yy*:

dd

is an integer that represents the day of the month.

х

is a specified separator.

mm

is an integer that represents the month.

<yy>yy

is a two-digit or four-digit integer that represents the year.

Example

The following examples use the input value of 19137, which is the SAS date value that corresponds to May 24, 2012.

SAS Statement	Result
	+

SAS Statement	Result
<pre>put date ddmmyyc5.;</pre>	24:05
<pre>put date ddmmyyd8.;</pre>	24-05-12
<pre>put date ddmmyyp10.;</pre>	24.05.2012
put date ddmmyyn8.;	24052012

Formats:

- "DATEw. Format" on page 73
- "DDMMYYw. Format" on page 78
- "MMDDYYxw. Format" on page 115
- "YYMMDDxw. Format" on page 183

Functions:

- "DAY Function" in SAS Functions and CALL Routines: Reference
- "MDY Function" in SAS Functions and CALL Routines: Reference
- "MONTH Function" in SAS Functions and CALL Routines: Reference
- "YEAR Function" in SAS Functions and CALL Routines: Reference

Informats:

• "DDMMYYw. Informat" on page 270

DOLLARw.d Format

Writes numeric values with a leading dollar sign, a comma that separates every three digits, and a period that separates the decimal fraction.

Category: Numeric Alignment: right

Syntax

DOLLARw.d

Syntax Description

specifies the width of the output field.

Default: 6 **Range: 2–32** d

specifies the number of digits to the right of the decimal point in the numeric value. This argument is optional.

Range: 0-31

Requirement: must be less than w

Details

The DOLLARw.d format writes numeric values with a leading dollar sign, a comma that separates every three digits, and a period that separates the decimal fraction.

The hexadecimal representation of the code for the dollar sign character (\$) is 5B on EBCDIC systems and 24 on ASCII systems. The monetary character that these codes represent might be different in other countries, but DOLLARw.d always produces one of these codes. If you need another monetary character, define your own format with the FORMAT procedure. For more details, see Chapter 23, "FORMAT Procedure" in Base SAS Procedures Guide.

Comparisons

- The DOLLARw.d format is similar to the DOLLARXw.d format, but the DOLLARXw.d format reverses the roles of the decimal point and the comma. This convention is common in European countries.
- The DOLLARw.d format is the same as the COMMAw.d format except that the COMMAw.d format does not write a leading dollar sign.

Example

put @3 netpay dollar10.2;

Value of netpay	Result
	+
1254.71	\$1,254.71

See Also

Formats:

- "COMMAw.d Format" on page 69
- "DOLLARXw.d Format" on page 82

DOLLARXw.d Format

Writes numeric values with a leading dollar sign, a period that separates every three digits, and a comma that separates the decimal fraction.

Category: Numeric

Alignment: right

Syntax

DOLLARXw.d

Syntax Description

specifies the width of the output field.

Default: 6 **Range: 2-32**

d

specifies the number of digits to the right of the decimal point in the numeric value. This argument is optional.

Default: 0 Range: 0-31

Requirement: must be less than w

Details

The DOLLARXw.d format writes numeric values with a leading dollar sign, with a period that separates every three digits, and with a comma that separates the decimal fraction.

The hexadecimal representation of the code for the dollar sign character (\$) is 5B on EBCDIC systems and 24 on ASCII systems. The monetary character that these codes represent might be different in other countries, but DOLLARXw.d always produces one of these codes. If you need another monetary character, define your own format with the FORMAT procedure. See For details, see Chapter 23, "FORMAT Procedure" in Base SAS Procedures Guide.

Comparisons

- The DOLLARXw.d format is similar to the DOLLARw.d format, but the DOLLARXw.d format reverses the roles of the decimal point and the comma. This convention is common in European countries.
- The DOLLARXw.d format is the same as the COMMAXw.d format except that the COMMAw.d format does not write a leading dollar sign.

Example

put @3 netpay dollarx10.2;

Value of netpay	Result
	+
1254.71	\$1.254,71

See Also

Formats:

"COMMAXw.d Format" on page 70

• "DOLLARw.d Format" on page 81

DOWNAMEw. Format

Writes date values as the name of the day of the week.

Category: Date and Time

Alignment: right

Syntax

DOWNAMEw.

Syntax Description

specifies the width of the output field.

Default: 9 **Range:** 1–32

Tip: If you omit w, SAS prints the entire name of the day.

Details

If necessary, SAS truncates the name of the day to fit the format width. For example, the DOWNAME2. prints the first two letters of the day name.

Example

The example table uses the input value of 19137, which is the SAS date value that corresponds to May 24, 2012.

SAS Statement	Result
	+
put date downame.;	Thursday

See Also

Formats:

"WEEKDAYw. Format" on page 168

DTDATEw. Format

Expects a datetime value as input and writes date values in the form ddmmmyy or ddmmmyyyy.

Category: Date and Time Alignment:

right

Syntax

DTDATEw.

Syntax Description

specifies the width of the output field.

Default: 7 **Range:** 5–9

Tip: Use a width of 9 to print a 4–digit year.

Details

The DTDATEw. format writes SAS date values in the form ddmmmyy or ddmmmyyyy, where

dd

is an integer that represents the day of the month.

mmm

are the first three letters of the month name.

yy or yyyy

is a two-digit or four-digit integer that represents the year.

Comparisons

The DTDATEw. format produces the same type of output that the DATEw. format produces. The difference is that the DTDATEw. format requires a datetime value.

Example

The example table uses a datetime value of 16APR2012:10:00:00 as input, and prints both a two-digit and a four-digit year for the DTDATEw. format.

SAS Statement	Result
	1
<pre>put trip_date=dtdate.;</pre>	16APR12
<pre>put trip_date=dtdate9.;</pre>	16APR2012

See Also

Formats:

"DATEw. Format" on page 73

DTMONYYw. Format

Writes the date part of a datetime value as the month and year in the form mmmyy or mmmyyyy.

Category: Date and Time

Alignment: right

Syntax

DTMONYYw.

Syntax Description

specifies the width of the output field.

Default: 5 **Range:** 5–7

Details

The DTMONYYw. format writes SAS datetime values in the form mmmyy or mmmyyyy, where

mmm

is the first three letters of the month name.

yy or yyyy

is a two-digit or four-digit integer that represents the year.

Comparisons

The DTMONYYw. format and the MONYYw. format are similar in that they both write date values. The difference is that DTMONYYw. expects a datetime value as input, and MONYYw. expects a SAS date value.

Example

The example table uses as input the value 1665986932, which is the SAS datetime value that corresponds to October 16, 2012, at 06:08:52 a.m.

SAS Statement	Result
	+1
<pre>put date dtmonyy.;</pre>	OCT12
<pre>put date dtmonyy5.;</pre>	OCT12
<pre>put date dtmonyy6.;</pre>	OCT12
<pre>put date dtmonyy7.;</pre>	OCT2012

Formats:

- "DATETIMEw.d Format" on page 75
- "MONYYw. Format" on page 123

DTWKDATXw. Format

Writes the date part of a datetime value as the day of the week and the date in the form day-of-week, dd month-name yy (or yyyy).

Category: Date and Time

Alignment: right

Syntax

DTWKDATXw.

Syntax Description

specifies the width of the output field.

Default: 29 **Range: 3-37**

Details

The DTWKDATXw. format writes SAS date values in the form day-of-week, dd monthname, yy or yyyy, where

day-of-week

is either the first three letters of the day name or the entire day name.

dd

is an integer that represents the day of the month.

month-name

is either the first three letters of the month name or the entire month name.

is a two-digit or four-digit integer that represents the year.

Comparisons

The DTWKDATXw. format is similar to the WEEKDATXw. format in that they both write date values. The difference is that DTWKDATXw. expects a datetime value as input, and WEEKDATXw. expects a SAS date value.

Example

The example table uses as input the value 1665986932, which is the SAS datetime value that corresponds to October 16, 20012, at 06:08:52 a.m.

SAS Statement	Result
	+
<pre>put date dtwkdatx.;</pre>	Tuesday, 16 October 2012
<pre>put date dtwkdatx3.;</pre>	Tue
put date dtwkdatx8.;	Tue
put date dtwkdatx25.;	Tuesday, 16 Oct 2012

Formats:

- "DATETIMEw.d Format" on page 75
- "WEEKDATXw. Format" on page 167

DTYEARw. Format

Writes the date part of a datetime value as the year in the form yy or yyyy.

Category: Date and Time

Alignment: right

Syntax

DTYEARw.

Syntax Description

w

specifies the width of the output field.

Default: 4 Range: 2-4

Details

The DTYEARw. format is similar to the YEARw. format in that they both write date values. The difference is that DTYEARw. expects a datetime value as input, and YEARw. expects a SAS date value.

Example

The example table uses as input the value 1665986932, which is the SAS datetime value that corresponds to October 16, 2012, at 06:08:52 a.m.

SAS Statement	Result
	1
put date dtyear.;	2012
put date dtyear2.;	12
put date dtyear3.;	12
put date year4.;	2012

Formats:

- "DATETIMEw.d Format" on page 75
- "YEARw. Format" on page 179

DTYYQCw. Format

Writes the date part of a datetime value as the year and the quarter and separates them with a colon (:).

Category: Date and Time

Alignment:

right

Syntax

DTYYQCw.

Syntax Description

specifies the width of the output field.

Default: 4 **Range:** 4–6

Details

The DTYYQCw. format writes SAS datetime values in the form yy or yyyy, followed by a colon (:) and the numeric value for the quarter of the year.

Example

The example table uses as input the value 1665986932, which is the SAS datetime value that corresponds to October 16, 2012, at 06:08:52 p.m..

SAS Statement	Result
	+
<pre>put date dtyyqc.;</pre>	12:4
<pre>put date dtyyqc4.;</pre>	12:4
<pre>put date dtyyqc5.;</pre>	12:4
<pre>put date dtyyqc6.;</pre>	2012:4

Formats:

• "DATETIMEw.d Format" on page 75

Ew. Format

Writes numeric values in scientific notation.

Category: Numeric

Alignment: right

See: "Ew. Format: z/OS" in SAS Companion for z/OS

Syntax

 $\mathbf{E}w$.

Syntax Description

w

specifies the width of the output field. The output field can display up to 14 significant digits.

Default: 12 Range: 7-32

Details

When formatting values in scientific notation, the E format reserves the first column of the result for a minus sign and formats up to 14 significant digits.

```
put @1 x e10.;
```

Value of x	Result
	1
1257	1.257E+03
-1257	-1.257E+03

E8601DAw. Format

Writes date values by using the ISO 8601 extended notation yyyy-mm-dd.

Categories: Date and Time

ISO 8601

Alignment: left

> Alias: IS8601DA

Restriction: UTC time zone offset values are not supported.

Supports: ISO 8601 Element 5.2.1.1, complete representation

Syntax

E8601DAw.

Syntax Description

specifies the width of the output field.

Default: 10

Requirement: The width of the output field must be 10.

Details

The E8601DA format writes a date by using the ISO 8601 extended notation yyyy-mmdd:

yyyy

is a four-digit year.

is a two-digit month (zero padded) between 01 and 12.

dd

is a two-digit day of the month (zero padded) between 01 and 31.

```
put eda e8601da.;
```

Value for eda	Result
19251	2012-09-15

"Working with Dates and Times by Using the ISO 8601 Basic and Extended Notations" on page 14

E8601DNw. Format

Writes dates from SAS datetime values by using the ISO 8601 extended notation yyyy-mm-dd.

Categories: Date and Time

ISO 8601

Alignment: left

> Alias: IS8601DN

Restriction: UTC time zone offset values are not supported.

Supports: ISO 8601 Element 5.2.1.1, complete representation

Syntax

E8601DNw.

Syntax Description

specifies the width of the input field.

Default: 10

Requirement: The width of the input field must be 10.

Details

The E8601DN format writes the date by using the ISO 8601 extended date notation yyyy-mm-dd:

yyyy

is a four-digit year.

mm

is a two-digit month (zero padded) between 01 and 12.

dd

is a two-digit day of the month (zero padded) between 01 and 31.

```
put edn e8601dn.;
```

Value for edn	Result
1663308532	2012-09-15

"Working with Dates and Times by Using the ISO 8601 Basic and Extended Notations" on page 14

E8601DTw.d Format

Writes datetime values by using the ISO 8601 extended notation yyyy-mm-ddThh:mm:ss.fffff.

Categories: Date and Time

ISO 8601

Alignment: left

> Alias: IS8601DT

Restriction: UTC time zone offset values are not supported.

ISO 8601 Element 5.4.1, complete representation Supports:

Syntax

E8601DTw.d

Syntax Description

specifies the width of the input field.

Default: 19 **Range:** 19–26

specifies the number of digits to the right of the decimal point in the seconds value. This argument is optional.

Default: 0 **Range:** 0-6

Details

The E8601DT format writes datetime values by using the ISO 8601 extended datetime notation *yyyy-mm-dd*Thh:mm:ss.ffffff:

```
yyyy
   is a four-digit year.
mm
   is a two-digit month (zero padded) between 01 and 12.
dd
```

is a two-digit day of the month (zero padded) between 01 and 31.

hh

is a two-digit hour (zero padded) between 00 and 23.

mm

is a two-digit minute (zero padded) between 00 and 59.

SS

is a two-digit second (zero padded) between 00 and 59.

ffffff

are optional fractional seconds, with a precision of up to six digits, where each digit is between 0 and 9.

Example

put edt e8601dt25.3.;

Value of edt	Result
1663343580.2	2012-09-15T15:53:00.234

See Also

"Working with Dates and Times by Using the ISO 8601 Basic and Extended Notations" on page 14

E8601DZw. Format

Writes datetime values for the zero meridian Coordinated Universal Time (UTC) time by using the ISO 8601 datetime and time zone extended notation *yyyy-mm-ddThh:mm:ss*+00:00.

Categories: Date and Time

ISO 8601

Alignment: left

Alias: IS8601DZ

Restriction: UTC time zone offset values are not supported.

Supports: ISO 8601 Element 5.4.1, complete representation

Syntax

E8601DZw.

Syntax Description

w

specifies the width of the output field.

Default: 26 **Range:** 20–35

Details

UTC values specify a time and a time zone based on the zero meridian in Greenwich, England. The E8601DZ format writes SAS datetime values by using one of the following ISO 8601 extended datetime notations:

yyyy-mm-ddThh:mm:ss+00:00

Note: Use this form when w is large enough to support this time zone notation.

yyyy-mm-ddThh:mm:ssZ

Note: Use this form when w is not large enough to support the +00:00 time zone notation.

yyyy

is a four-digit year.

mm

is a two-digit month (zero padded) between 01 and 12.

dd

is a two-digit day of the month (zero padded) between 01 and 31.

hh

is a two-digit hour (zero padded) between 00 and 24.

is a two-digit minute (zero padded) between 00 and 59.

SS

is a two-digit second (zero padded) between 00 and 59.

indicates that the time is for zero meridian (Greenwich, England) time.

An ISO 8601 time or datetime value that specifies a time zone offset is adjusted by the number of hours and minutes that is specified in the offset and processed as the time or datetime for the zero meridian (Greenwich, England). The E8601DZ format always writes the datetime value by using the zero meridian offset value of +00:00. To write a datetime that uses the UTC offset other than +00:00, see "E8601LZw. Format" on page 96.

Restriction: The shorter form +00 is not supported.

Z

indicates that the time is for zero meridian (Greenwich, England) or +00:00 UTC time. Z is used when the width of the format does not support the +00:00 notation.

Example

put edz e8601dz.;

Value of edz	Result
1663332780	2012-09-15T12:53:00+00:00

See Also

"Working with Dates and Times by Using the ISO 8601 Basic and Extended Notations" on page 14

E8601LZw. Format

Writes time values as local time, appending the Coordinated Universal Time (UTC) offset for the local SAS session, using the ISO 8601 extended time notation *hh:mm:ss+|-hh:mm*.

Categories: Date and Time

ISO 8601

Alignment: left

Alias: IS8601LZ

Supports: ISO 8601 Element 5.3.1.1, complete representation

Syntax

E8601LZw.

Syntax Description

w

specifies the width of the output field.

Default: 14 Range: 9–20

Details

The E8601LZ format writes time values without making any adjustments, and appends the UTC time zone offset for the local SAS session by using one of the following ISO 8601 extended time notations:

• *hh:mm:ss*+|-*hh:mm*

Note: Use this form when w is large enough to support this time notation.

• hh:mm:ssZ

Note: Use this form when w is not large enough to support the +|-hh:mm time zone notation.

hh

is a two-digit hour (zero padded) between 00 and 23.

mm

is a two-digit minute (zero padded) between 00 and 59.

SS

is a two-digit second (zero padded) between 00 and 59.

+|*-hh:mm*

is an hour and minute signed offset from zero meridian time. Note that the offset must be +|-hh:mm| (that is, + or - and five characters).

Use + for time zones east of the zero meridian, and use – for time zones west of the zero meridian. For example, +02:00 indicates a two-hour time difference to the east of the zero meridian, and -06:00 indicates a six-hour time difference to the west of the zero meridian.

Restriction: The shorter form +|-hh| is not supported.

Z

indicates zero meridian (Greenwich, England) or +00:00 UTC time.

SAS writes the time value by using the form *hh:mm.ffffff*, and appends the time zone indicator +|-hh:mm based on the time zone offset from the zero meridian for the local SAS session, or Z. The Z time zone indicator is used for format lengths that are less than 14.

If the same time is written using both zone indicators, they indicate two different times based on the UTC. For example, if the local SAS session uses Eastern Standard Time in the U.S., and the time value is 45824, SAS would write 12:43:44–04:00 or 12:43:44Z. The time 12:43:44–04:00 is the time 16:43:44+00:00 at the zero meridian. The Z indicates that the time is the time at the zero meridian, or 12:43:44+00:00.

When SAS reads a UTC time by using the E8601TZ informat, and the adjusted time is greater than 24 hours or less than 00 hours, SAS adjusts the value so that the time is between 00:00:00 and 24:00:00. If the E8601LZ format attempts to format a time outside of this time range, the time is formatted with asterisks to indicate that the value is out of range.

Example

This PUT statement writes the time for the Eastern Standard Time zone:

put elz e8601lz.;

Value of elz	Result
46380	12:53:00-5:00

See Also

"Working with Dates and Times by Using the ISO 8601 Basic and Extended Notations" on page 14

E8601TMw.d Format

Writes time values by using the ISO 8601 extended notation hh:mm:ss.ffffff.

Categories: Date and Time

ISO 8601

Alignment: left

> Alias: IS8601TM

Restriction: UTC time zone offset values are not supported.

Supports: ISO 8601 Element 5.3.1.1, complete representation, and 5.3.1.3, representation of

decimal fractions

Syntax

E8601TMw.d

Syntax Description

w

specifies the width of the output field.

Default: 8 Range: 8-15

d

specifies the number of digits to the right of the decimal point in the seconds value. This argument is optional.

Default: 0 **Range:** 0-6

Details

The E8601TM format writes SAS time values by using the ISO 8601 extended time notation *hh:mm:ss.ffffff*:

hh

is a two-digit hour (zero padded) between 00 and 23.

mm

is a two-digit minute (zero padded) between 00 and 59.

SS

is a two-digit second (zero padded) between 00 and 59.

ffffff

are optional fractional seconds, with a precision of up to six digits, where each digit is between 0 and 9.

Example

put etm e8601tm.;

Value of etm	Result
57180	15:53:00

See Also

"Working with Dates and Times by Using the ISO 8601 Basic and Extended Notations" on page 14

E8601TZw.d Format

Adjusts time values to the Coordinated Universal Time (UTC) and writes the time values by using the ISO 8601 extended notation *hh:mm:ss*+|*-hh:mm*.

Categories: Date and Time

ISO 8601

Alignment: left

Alias: IS8601TZ

Supports: ISO 8601 Element 5.3.1.1, complete representation

Syntax

E8601TZw.d

Syntax Description

specifies the width of the output field.

Default: 14 **Range:** 9-20

d

specifies the number of digits to the right of the decimal point in the seconds value. This argument is optional.

Default: 0 **Range:** 0-6

Details

UTC time values specify a time and a time zone based on the zero meridian in Greenwich, England. The E8601TZ format writes time values in one of the following ISO 8601 extended time notations:

hh:mm:ss+|-hh:mm

Note: Use this form when w is large enough to support this time zone notation.

hh:mm:ssZ

Note: Use this form when w is not large enough to support the +|-hh:mm time zone notation.

hh

is a two-digit hour (zero padded) between 00 and 23.

mm

is a two-digit minute (zero padded) between 00 and 59.

SS

is a two-digit second (zero padded) between 00 and 59.

+|-hh:mm

is an hour and minute signed offset from zero meridian time. Note that the offset must be +|-hh:mm| (that is, + or - and five characters).

Restriction: The shorter form +|-hh| is not supported.

Use + for time zones east of the zero meridian, and use - for time zones west of the zero meridian. For example, +02:00 indicates a two-hour time difference to the east of the zero meridian, and -06:00 indicates a six- hour time difference to the west of the zero meridian.

Z

indicates zero meridian (Greenwich, England) or +00:00 UTC time.

When SAS reads a UTC time by using the E8601TZ informat, and the adjusted time is greater than 24 hours or less than 00 hours, SAS adjusts the value so that the time is between 00:00:00 and 24:00:00. If the E8601TZ format attempts to format a time outside of this time range, the time is formatted with asterisks to indicate that the value is out of range.

Comparisons

For time values between 00:00:00 and 24:00:00, the the time value E8601TZ format adjusts the time value to be the time at the zero meridian and writes the time value in the international standard extended time notation. The E8601LZ format makes no adjustment to the time and writes time values in the international standard extended time notation, using a UTC time zone offset for the local SAS session.

Example

put etz e8601tz.;

Value of etz	Result
17024	04:43:44+00:00
85424	23:43:44+00:00

See Also

"Working with Dates and Times by Using the ISO 8601 Basic and Extended Notations" on page 14

FLOATw.d Format

Generates a native single-precision, floating-point value by multiplying a number by 10 raised to the *d*th power.

Category: Numeric Alignment: left

Syntax

FLOATw.d

Syntax Description

w

specifies the width of the output field.

Requirement: width must be 4

d

specifies the power of 10 by which to multiply the value. This argument is optional.

Default: 0 Range: 0-31

Details

This format is useful in operating environments where a float value is not the same as a truncated double. Values that are written by FLOAT4. typically are values that are meant to be read by some other external program that runs in your operating environment and that expects these single-precision values.

Note: If the value that is to be formatted is a missing value, or if it is out-of-range for a native single-precision, floating-point value, a single-precision value of zero is generated.

On IBM mainframe systems, a four-byte floating-point number is the same as a truncated eight-byte floating-point number. However, in operating environments using the IEEE floating-point standard, such as IBM PC-based operating environments and most UNIX operating environments, a four-byte floating-point number is not the same as a truncated double. Hence, the RB4. format does not produce the same results as the FLOAT4. format. Floating-point representations other than IEEE might have this same characteristic.

Comparisons

The following table compares the names of float notation in several programming languages:

Language	Float Notation
SAS	FLOAT4
Fortran	REAL+4
С	float
IBM 370 ASM	E
PL/I	FLOAT BIN(21)

Example

put x float4.;

Value of x	Result *
1	3F800000

^{*} The result is a hexadecimal representation of a binary number that is stored in IEEE form.

FRACTw. Format

Converts numeric values to fractions.

Category: Numeric Alignment: right

Syntax

FRACTw.

Syntax Description

specifies the width of the output field.

Default: 10 **Range:** 4-32

Details

Dividing the number 1 by 3 produces the value 0.33333333. To write this value as 1/3, use the FRACTw. format. FRACTw. writes fractions in reduced form, that is, 1/2 instead of 50/100.

Example

put x fract8.;

Value of x	Result	
	+1	
0.6666666667	2/3	
0.2784	174/625	

HEXw. Format

Alignment:

Converts real binary (floating-point) values to hexadecimal representation.

Category: Numeric

left

See: "HEXw. Format: Windows" in SAS Companion for Windows

"HEXw. Format: UNIX" in SAS Companion for UNIX Environments

"HEXw. Format: z/OS" in SAS Companion for z/OS

Syntax

HEXw.

Syntax Description

specifies the width of the output field.

Default: 8 **Range:** 1–16

Tip: If w < 16, the HEXw. format converts real binary numbers to fixed-point integers before writing them as hexadecimal characters. It also writes negative numbers in two's complement notation, and right aligns digits. If w is 16, HEXw. displays floating-point values in their hexadecimal form.

Details

In any operating environment, the least significant byte written by HEXw. is the rightmost byte. Some operating environments store integers with the least significant digit as the first byte. The HEXw. format produces consistent results in any operating environment regardless of the order of significance by byte.

Note: Different operating environments store floating-point values in different ways. However, the HEX16. format writes hexadecimal representations of floating-point values with consistent results in the same way that your operating environment stores them.

Comparisons

The HEXw. numeric format and the \$HEXw. character format both generate the hexadecimal equivalent of values.

Example

put @8 x hex8.;

Value of x	Result
	+2
35.4	00000023
88	0000058
2.33	0000002
-150	FFFFF6A

HHMMw.d Format

Writes time values as hours and minutes in the form hh:mm.

Category: Date and Time

Alignment: right

Syntax

HHMMw.d

Syntax Description

specifies the width of the output field.

Default: 5 **Range: 2-20** d

specifies the number of digits to the right of the decimal point in the minutes value. The digits to the right of the decimal point specify a fraction of a minute. This argument is optional.

Default: 0 **Range:** 0–19

Requirement: must be less than w

Details

The HHMMw.d format writes SAS time values in the form hh:mm:

hh

is an integer.

Note: If *hh* is a single digit, HHMM*w.d* places a leading blank before the digit. For example, the HHMM*w.d.* format writes 9:00 instead of 09:00.

mm

is an integer between 00 and 59 that represents minutes.

SAS rounds hours and minutes that are based on the value of seconds in a SAS time value

The HHMM format uses asterisks to format values that are outside the time range 0–24 hours, such as datetime values.

Comparisons

The HHMMw.d format is similar to the TIMEw.d format except that the HHMMw.d format does not print seconds.

The HHMMw.d format writes a leading blank for a single-hour digit. The TODw.d format writes a leading zero for a single-hour digit.

Example

The example table uses the input value of 46796, which is the SAS time value that corresponds to 12:59:56 p. m.

SAS Statement	Result
	+1
<pre>put time hhmm.;</pre>	13:00
<pre>put time hhmm8.2;</pre>	12:59.93

In the first example, SAS rounds up the time value four seconds based on the value of seconds in the SAS time value. In the second example, by adding a decimal specification of 2 to the format shows that fifty-six seconds is 93% of a minute.

See Also

Formats:

• "HOURw.d Format" on page 105

- "MMSSw.d Format" on page 117
- "TIMEw.d Format" on page 157
- "TODw.d Format" on page 160

Functions:

- "HMS Function" in SAS Functions and CALL Routines: Reference
- "HOUR Function" in SAS Functions and CALL Routines: Reference
- "MINUTE Function" in SAS Functions and CALL Routines: Reference
- "SECOND Function" in SAS Functions and CALL Routines: Reference
- "TIME Function" in SAS Functions and CALL Routines: Reference

Informats:

• "TIMEw. Informat" on page 332

HOURw.d Format

Writes time values as hours and decimal fractions of hours.

Date and Time Category:

Alignment: right

Syntax

HOURw.d

Syntax Description

specifies the width of the output field.

Default: 2 **Range: 2-20**

specifies the number of digits to the right of the decimal point in the hour value. Therefore, SAS prints decimal fractions of the hour. This argument is optional.

Range: 0-19

Requirement: must be less than w

Details

SAS rounds hours based on the value of minutes in the SAS time value.

The HOUR format uses asterisks to format values that are outside the time range 0-24 hours, such as datetime values.

Example

The example table uses the input value of 41400, which is the SAS time value that corresponds to 11:30 a.m.

SAS Statement	Result
	1
put time hour4.1;	11.5

See Also

Formats:

- "HHMMw.d Format" on page 103
- "MMSSw.d Format" on page 117
- "TIMEw.d Format" on page 157
- "TODw.d Format" on page 160

Functions:

- "HMS Function" in SAS Functions and CALL Routines: Reference
- "HOUR Function" in SAS Functions and CALL Routines: Reference
- "MINUTE Function" in SAS Functions and CALL Routines: Reference
- "SECOND Function" in SAS Functions and CALL Routines: Reference
- "TIME Function" in SAS Functions and CALL Routines: Reference

Informats:

• "TIMEw. Informat" on page 332

IBw.d Format

Writes native integer binary (fixed-point) values, including negative values.

Category: Numeric Alignment:

> "IBw.d Format: UNIX" in SAS Companion for UNIX Environments See:

> > "IBw.d Format: Windows" in SAS Companion for Windows

"IBw.d Format: z/OS" in SAS Companion for z/OS

Syntax

IBw.d

Syntax Description

specifies the width of the output field. Default: 4 Range: 1-8d specifies to multiply the number by 10^d. This argument is optional. Default: 0

Range: 0-10

Details

The IBw.d format writes integer binary (fixed-point) values, including negative values that are represented in two's complement notation. IBw.d writes integer binary values with consistent results if the values are created in the same type of operating environment that you use to run SAS.

Note: Different operating environments store integer binary values in different ways. This concept is called byte ordering. For a detailed discussion about byte ordering, see "Byte Ordering for Integer Binary Data on Big Endian and Little Endian Platforms" on page 7.

Comparisons

The IBw.d and PIBw.d formats are used to write native format integers. (Native format enables you to read and write values created in the same operating environment.) The IBRw.d and PIBRw.d formats are used to write little endian integers in any operating environment.

To view a table that shows the type of format to use with big endian and little endian integers, see Table 1.1 on page 8.

To view a table that compares integer binary notation in several programming languages, see "Integer Binary Notation and Different Programming Languages" on page 9.

Example

```
y=put(x,ib4.);
put y $hex8.;
```

Value of x	Result on Big Endian Platforms *	Result on Little Endian Platforms *
	1	+
128	00000080	80000000

^{*} The result is a hexadecimal representation of a four-byte integer binary number. Each byte occupies one column of the output field.

See Also

Formats:

"IBRw.d Format" on page 108

IBRw.d Format

Writes integer binary (fixed-point) values in Intel and DEC formats.

Category: Numeric Alignment: left

Syntax

IBRw.d

Syntax Description

specifies the width of the output field. Default: 4 Range: 1-8d

specifies to multiply the number by 10^d . This argument is optional.

Default: 0 Range: 0-10

Details

The IBRw.d format writes integer binary (fixed-point) values, including negative values that are represented in two's complement notation. IBRw.d writes integer binary values that are generated by and for Intel and DEC operating environments. Use IBRw.d to write integer binary data from Intel or DEC environments on other operating environments. The IBRw.d format in SAS code allows for a portable implementation for writing the data in any operating environment.

Note: Different operating environments store integer binary values in different ways. This concept is called byte ordering. For a detailed discussion about byte ordering, see "Byte Ordering for Integer Binary Data on Big Endian and Little Endian Platforms" on page 7.

Comparisons

- The IBw.d and PIBw.d formats are used to write native format integers. (Native format enables you to read and write values that are created in the same operating environment.)
- The IBRw.d and PIBRw.d formats are used to write little endian integers, regardless of the operating environment that you are writing on.
- In Intel and DEC operating environments, the IBw.d and IBRw.d formats are equivalent.

To view the type of format to use with big endian and little endian integers, see Table 1.1 on page 8.

To view a table that compares integer binary notation in several programming languages, see "Integer Binary Notation and Different Programming Languages" on page 9.

Example

```
y=put(x,ibr4.);
put y $hex8.;
```

Value of x	Result*
	1
128	80000000

^{*} The result is a hexadecimal representation of a 4-byte integer binary number. Each byte occupies one column of the output field.

See Also

Formats:

"IBw.d Format" on page 106

IEEEw.d Format

Generates an IEEE floating-point value by multiplying a number by 10 raised to the ath power.

Category: Numeric

Alignment: left

CAUTION: Large floating-point values and floating-point values that require precision might not be

identical to the original SAS value when they are written to an IBM mainframe by using

the IEEE format and read back into SAS using the IEE informat.

Syntax

IEEEw.d

Syntax Description

specifies the width of the output field.

Default: 8 Range: 3-8

Tip: If w is 8, an IEEE double-precision, floating-point number is written. If w is 5, 6, or 7, an IEEE double-precision, floating-point number is written, which assumes truncation of the appropriate number of bytes. If w is 4, an IEEE singleprecision floating-point number is written. If w is 3, an IEEE single-precision, floating-point number is written, which assumes truncation of one byte.

d

specifies to multiply the number by 10^d . This argument is optional.

Default: 0 Range: 0-10

Details

This format is useful in operating environments where IEEEw.d is the floating-point representation that is used. In addition, you can use the IEEEw.d format to create files that are used by programs in operating environments that use the IEEE floating-point representation.

Typically, programs generate IEEE values in single-precision (4 bytes) or double-precision (8 bytes). Programs perform truncation solely to save space on output files. Machine instructions require that the floating-point number be one of the two lengths. The IEEEw.d format allows other lengths, which enables you to write data to files that contain space-saving truncated data.

Example

```
test1=put(x,ieee4.);
put test1 $hex8.;
test2=put(x,ieee5.);
put test2 $hex10.;
```

Value of x	Result*
1	3F800000
	3FF0000000

^{*} The result contains hexadecimal representations of binary numbers stored in IEEE form.

JULDAYw. Format

Writes date values as the Julian day of the year.

Category: Date and Time

Alignment: right

Syntax

JULDAYw.

Syntax Description

w

specifies the width of the output field.

Default: 3 Range: 3-32

Details

The JULDAYw. format writes SAS date values in the form ddd, where ddd

is the number of the day, 1–365 (or 1–366 for leap years).

Example

The example table uses the input values of 18993, which is the SAS date value that corresponds to January 1, 2012, and 19068, which is the SAS date value that corresponds to March 16, 2012.

Input Value	SAS Statement	Result	
		+1	
18993	put date julday3.;	1	
19068	<pre>put date julday3.;</pre>	76	

JULIANW. Format

Writes date values as Julian dates in the form yyddd or yyyyddd.

Category: Date and Time

Alignment:

Syntax

JULIANw.

Syntax Description

specifies the width of the output field.

Default: 5 **Range:** 5-7

Tip: If w is 5, the JULIANw. format writes the date with a two-digit year. If w is 7, the JULIANw. format writes the date with a four-digit year.

Details

The JULIANw. format writes SAS date values in the form yyddd or yyyyddd:

yy or yyyy

is a two-digit or four-digit integer that represents the year.

is the number of the day, 1–365 (or 1–366 for leap years), in that year.

Example

The example table uses the input value of 19114, which is the SAS date value that corresponds to May 1, 2012 (the 122nd day of the year).

SAS Statement	Result
	+
<pre>put date julian5.;</pre>	12122
<pre>put date julian7.;</pre>	2012122

Functions:

- "DATEJUL Function" in SAS Functions and CALL Routines: Reference
- "JULDATE Function" in SAS Functions and CALL Routines: Reference

Informats:

• "JULIANw. Informat" on page 289

MDYAMPMw.d Format

Writes datetime values in the form *mm/dd/yy<yy> hh:mm* AM|PM. The year can be either two or four digits.

Date and Time Category:

Alignment: right

> Note: The default time period is AM.

Syntax

MDYAMPMw.

Syntax Description

specifies the width of the output field.

Default: 19 **Range:** 8-40

Details

The MDYAMPMw.d format writes SAS datetime values in the following form:

```
mm/dd/yy < yy > hh:mm < AM \mid PM >:
```

is an integer between 1 and 12 that represents the month.

dd

is an integer between 1 and 31 that represents the day of the month.

specifies a two-digit or four-digit integer that represents the year.

hh

is an integer between 00 and 23 that represents hours.

mm

is an integer between 00 and 59 that represents minutes.

specifies either the time period 00:01-12:00 noon (AM) or the time period 12:01–12:00 midnight (PM). The default is AM.

date and time separator characters

is one of several special characters, such as the slash (/), colon (:), or a blank character that SAS uses to separate date and time components.

Comparisons

The MDYAMPMw. format writes datetime values with separators in the form mm/dd/ yy<yy> hh:mm AM | PM, and requires a space between the date and the time.

The DATETIMEw.d format writes datetime values with separators in the form ddmmmyy<yy>: hh:mm:ss.ss.

Example

This example uses the input value of 1663343580, which is the SAS datetime value that corresponds to 3:53:00 PM on September 15, 2012.

SAS Statement	Result
put dt mdyampm25.	9/15/2012 3:53 PM

See Also

Formats:

"DATETIMEw.d Format" on page 75

Informats:

"MDYAMPMw.d Informat" on page 291

MMDDYYw. Format

Writes date values in the form mmdd<yy>yy or mm/dd/<yy>yy, where a forward slash is the separator and the year appears as either 2 or 4 digits.

Category: Date and Time

Alignment: right

Syntax

MMDDYYw.

Syntax Description

w

specifies the width of the output field.

Default: 8 Range: 2-10

Interaction: When w has a value of from 2 to 5, the date appears with as much of the month and the day as possible. When w is 7, the date appears as a two-digit year without slashes.

Details

The MMDDYYw. format writes SAS date values in one of the following forms:

```
mmdd<yy>yy
mm/dd/<yy>yy:
where
mm
    is an integer that represents the month.
/
    is the separator.
dd
    is an integer that represents the day of the month.

<yy>yy
    is a two-digit or four-digit integer that represents the year.
```

Example

The following examples use the input value of 19291, which is the SAS date value that corresponds to October 25, 2012.

SAS Statement	Result
	+
<pre>put day mmddyy2.;</pre>	10
<pre>put day mmddyy3.;</pre>	10
<pre>put day mmddyy4.;</pre>	1025
<pre>put day mmddyy5.;</pre>	10/25
<pre>put day mmddyy6.;</pre>	102512
<pre>put day mmddyy7.;</pre>	102512
<pre>put day mmddyy8.;</pre>	10/25/12
put day mmddyy10.;	10/25/2012

Formats:

- "DATEw. Format" on page 73
- "DDMMYYw. Format" on page 78
- "MMDDYYxw. Format" on page 115
- "YYMMDDw. Format" on page 181

Functions:

- "DAY Function" in SAS Functions and CALL Routines: Reference
- "MDY Function" in SAS Functions and CALL Routines: Reference
- "MONTH Function" in SAS Functions and CALL Routines: Reference
- "YEAR Function" in SAS Functions and CALL Routines: Reference

Informats:

- "DATEw. Informat" on page 267
- "DDMMYYw. Informat" on page 270
- "YYMMDDw. Informat" on page 347

MMDDYYxw. Format

Writes date values in the form mmdd<yy>yy or mm-dd-<yy>yy, where the x in the format name is a character that represents the special character which separates the month, day, and year. The special character can be a hyphen (-), period (.), blank character, slash (/), colon (:), or no separator; the year can be either 2 or 4 digits.

Date and Time Category:

Alignment: right

Syntax

MMDDYYxw.

Syntax Description

identifies a separator or specifies that no separator appear between the month, the day, and the year. These are valid values for x:

В separates with a blank.

 \mathbf{C} separates with a colon.

D separates with a hyphen. N indicates no separator.

P separates with a period.

S separates with a slash.

w

specifies the width of the output field.

Default: 8 Range: 2-10 Interactions:

When w has a value of from 2 to 5, the date appears with as much of the month and the day as possible. When w is 7, the date appears as a two-digit year without separators.

When x has a value of N, the width range changes to 2-8.

Details

The MMDDYYxw. format writes SAS date values in one of the following forms:

```
mmdd<yy>yy
mmxddx<yy>yy
where
mm
    is an integer that represents the month.

x
    is a specified separator.

dd
    is an integer that represents the day of the month.
```

is a two-digit or four-digit integer that represents the year.

Example

<*yy*>*yy*

The following examples use the input value of 19127, which is the SAS date value that corresponds to May 14, 2012.

SAS Statement	Result
	+
put day mmddyyc5.;	05:14
<pre>put day mmddyyd8.;</pre>	05-14-12
<pre>put day mmddyyp10.;</pre>	05.14.2012
<pre>put day mmddyyn8.;</pre>	05142012

Formats:

- "DATEw. Format" on page 73
- "DDMMYYxw. Format" on page 79
- "MMDDYYw. Format" on page 113
- "YYMMDDxw. Format" on page 183

Functions:

- "DAY Function" in SAS Functions and CALL Routines: Reference
- "MDY Function" in SAS Functions and CALL Routines: Reference
- "MONTH Function" in SAS Functions and CALL Routines: Reference
- "YEAR Function" in SAS Functions and CALL Routines: Reference

Informats:

"MMDDYYw. Informat" on page 292

MMSSw.d Format

Writes time values as the number of minutes and seconds since midnight.

Category: Date and Time

Alignment: right

Syntax

MMSSw.d

Syntax Description

specifies the width of the output field.

Default: 5 **Range: 2-20**

Tip: Set w to a minimum of 5 to write a value that represents minutes and seconds.

d

specifies the number of digits to the right of the decimal point in the seconds value. Therefore, the SAS time value includes fractional seconds. This argument is optional.

Range: 0-19

Restriction: must be less than w

Details

The MMSS format uses asterisks to format values that are outside the time range 0–24 hours, such as datetime values.

Example

The example uses the input value of 4530.

SAS Statement	Result
	1
<pre>put time mmss.;</pre>	75:30

See Also

Formats:

- "HHMMw.d Format" on page 103
- "TIMEw.d Format" on page 157

Functions:

- "HMS Function" in SAS Functions and CALL Routines: Reference
- "MINUTE Function" in SAS Functions and CALL Routines: Reference
- "SECOND Function" in SAS Functions and CALL Routines: Reference

Informats:

• "TIMEw. Informat" on page 332

MMYYw. Format

Writes date values in the form mmM<yy>yy, where M is the separator and the year appears as either 2 or 4 digits.

Category: Date and Time

Alignment: right

Syntax

MMYYw.

Syntax Description

specifies the width of the output field.

Default: 7 **Range:** 5-32

Interaction: When w has a value of 5 or 6, the date appears with only the last two digits of the year. When w is 7 or more, the date appears with a four-digit year.

Details

The MMYYw. format writes SAS date values in the form mmM<yy>yy, where

mm

is an integer that represents the month.

M

is the character separator.

is a two-digit or four-digit integer that represents the year.

Example

The following examples use the input value of 19291, which is the SAS date value that corresponds to October 25, 2012.

SAS Statement	Result
	+
<pre>put date mmyy5.;</pre>	10M12
<pre>put date mmyy6.;</pre>	10M12
<pre>put date mmyy.;</pre>	10M2012
<pre>put date mmyy7.;</pre>	10M2012
<pre>put date mmyy10.;</pre>	10M2012

See Also

Formats:

- "MMYYxw. Format" on page 119
- "YYMMw. Format" on page 180

MMYYxw. Format

Writes date values in the form *mm*<*yy*>*yy* or *mm*-<*yy*>*yy*, where the *x* in the format name is a character that represents the special character that separates the month and the year, which can be a hyphen (-), period (.), blank character, slash (/), colon (:), or no separator; the year can be either 2 or 4 digits.

Category: Date and Time

Alignment: right

Syntax

MMYYxw.

Syntax Description

x

identifies a separator or specifies that no separator appear between the month and the year. These are valid values for x:

 \mathbf{C}

separates with a colon.

D

separates with a hyphen.

N

indicates no separator.

P

separates with a period.

S

separates with a forward slash.

w

specifies the width of the output field.

Default: 7
Range: 5-32
Interactions:

When x is set to N, no separator is specified. The width range is then 4–32, and the default changes to 6.

When x has a value of C, D, P, or S and w has a value of 5 or 6, the date appears with only the last two digits of the year. When w is 7 or more, the date appears with a four-digit year.

When x has a value of N and w has a value of 4 or 5, the date appears with only the last two digits of the year. When x has a value of N and w is 6 or more, the date appears with a four-digit year.

Details

The MMYYxw. format writes SAS date values in one of the following forms:

```
mm<yy>yy
mmx<yy>yy
where
mm
is an inter
```

is an integer that represents the month.

is a specified separator.

<уу>уу

is a two-digit or four-digit integer that represents the year.

Example

The following examples use the input value of 19127, which is the SAS date value that corresponds to May 14, 2012.

SAS Statement	Result
	+
<pre>put date mmyyc5.;</pre>	05:12
<pre>put date mmyyd.;</pre>	05-2012
put date mmyyn4.;	0512
put date mmyyp8.;	05.2012
put date mmyys10.;	05/2012

Formats:

- "MMYYw. Format" on page 118
- "YYMMxw. Format" on page 185

MONNAMEw. Format

Writes date values as the name of the month.

Category: Date and Time

Alignment: right

Syntax

MONNAMEw.

Syntax Description

specifies the width of the output field.

Default: 9 **Range:** 1-32

Tip: Use MONNAME3. to print the first three letters of the month name.

Details

If necessary, SAS truncates the name of the month to fit the format width.

Example

The example table uses the input value of 19057, which is the SAS date value that corresponds to March 5, 2012.

SAS Statement	Result
	1
<pre>put date monname1.;</pre>	М
<pre>put date monname3.;</pre>	Mar
<pre>put date monname5.;</pre>	March

Formats:

• "MONTHw. Format" on page 122

MONTHw. Format

Writes date values as the month of the year.

Category: Date and Time

Alignment: right

Syntax

MONTHw.

Syntax Description

specifies the width of the output field.

Default: 2 **Range:** 1-32

Tip: Use MONTH1. to obtain a hexadecimal value.

Details

The MONTHw. format writes the month (1 through 12) of the year from a SAS date value. If the month is a single digit, the MONTHw. format places a leading blank before the digit. For example, the MONTHw. format writes 4 instead of 04.

Example

The example table uses the input value of 19127, which is the SAS date value that corresponds to May 14, 2012.

SAS Statement	Result
	+1

SAS Statement	Result
<pre>put date month.;</pre>	5

Formats:

• "MONNAMEw. Format" on page 121

MONYYw. Format

Writes date values as the month and the year in the form mmmyy or mmmyyyy.

Category: Date and Time

Alignment: right

Syntax

MONYYw.

Syntax Description

specifies the width of the output field.

Default: 5 **Range:** 5-7

Details

The MONYYw. format writes SAS date values in the form mmmyy or mmmyyyy, where

is the first three letters of the month name.

yy or yyyy

is a two-digit or four-digit integer that represents the year.

Comparisons

The MONYYw. format and the DTMONYYw. format are similar in that they both write date values. The difference is that MONYYw. expects a SAS date value as input, and DTMONYYw. expects a datetime value.

Example

The example table uses the input value of 19127, which is the SAS date value that corresponds to May 14, 2012.

SAS Statement	Result
	+1
<pre>put date monyy5.;</pre>	MAY12
<pre>put date monyy7.;</pre>	MAY2012

Formats:

- "DTMONYYw. Format" on page 86
- "DDMMYYw. Format" on page 78
- "MMDDYYw. Format" on page 113
- "YYMMDDw. Format" on page 181

Functions:

- "MONTH Function" in SAS Functions and CALL Routines: Reference
- "YEAR Function" in SAS Functions and CALL Routines: Reference

Informat:

• "MONYYw. Informat" on page 294

NEGPARENw.d Format

Writes negative numeric values in parentheses.

Category: Numeric Alignment: right

Syntax

NEGPARENw.d

Syntax Description

specifies the width of the output field.

Default: 6 **Range:** 1–32

specifies the number of digits to the right of the decimal point in the numeric value. This argument is optional.

Default: 0**Range:** 0-31

Details

The NEGPARENw.d format attempts to right-align output values. If the input value is negative, NEGPARENw.d displays the output by enclosing the value in parentheses, if the field that you specify is wide enough. Otherwise, it uses a minus sign to represent the negative value. If the input value is nonnegative, NEGPARENw.d displays the value with a leading and trailing blank to ensure proper column alignment. It reserves the last column for a close parenthesis even when the value is positive.

Comparisons

The NEGPARENw.d format is similar to the COMMAw.d format in that it separates every three digits of the value with a comma.

Example

put @1 sales negparen8.;

Value of sales	Result
	+
100	100
1000	1,000
-200	(200)
-2000	(2,000)

NUMXw.d Format

Writes numeric values with a comma in place of the decimal point.

Category: Numeric Alignment: right

Syntax

NUMXw.d

Syntax Description

specifies the width of the output field. Default: 12

Range: 1-32

d

specifies the number of digits to the right of the decimal point (comma) in the numeric value. This argument is optional.

Default: 0 **Range:** 0-31

Details

The NUMXw.d format writes numeric values with a comma in place of the decimal point.

Comparisons

The NUMXw.d format is similar to the w.d format except that NUMXw.d writes numeric values with a comma in place of the decimal point.

Example: Examples

put x numx10.2;

Value of x	Result
+	
896.48	896,48
64.89	64,89
3064.10	3064,10

See Also

Formats:

• "w.d Format" on page 164

Informats:

• "NUMXw.d Informat" on page 296

OCTALw. Format

Converts numeric values to octal representation.

Category: Numeric Alignment: left

Syntax

OCTALw.

Syntax Description

specifies the width of the output field.

Default: 3 **Range:** 1-24

Details

If necessary, the OCTALw. format converts numeric values to integers before displaying them in octal representation.

Comparisons

OCTALw. converts numeric values to octal representation. The \$OCTALw. format converts character values to octal representation.

Example

put x octal6.;

Value of x	Result
	1
3592	007010

PDw.d Format

Writes data in packed decimal format.

Category: Numeric

Alignment: left

> See: "PDw.d Format: UNIX" in SAS Companion for UNIX Environments

> > "PDw.d Format: Windows" in SAS Companion for Windows

"PDw.d Format: z/OS" in SAS Companion for z/OS

Syntax

PDw.d

Syntax Description

specifies the width of the output field. The w value specifies the number of bytes, not the number of digits. (In packed decimal data, each byte contains two digits.)

Default: 1 **Range:** 1-16 d

specifies to multiply the number by 10^d . This argument is optional.

Default: 0 **Range:** 0–31

Details

Different operating environments store packed decimal values in different ways. However, the PDw.d format writes packed decimal values with consistent results if the values are created in the same type of operating environment that you use to run SAS.

The PDw.d format writes missing numerical data as -0. When the PDw.d informat reads a -0, it stores it as 0.

Comparisons

The following table compares packed decimal notation in several programming languages:

Language	Notation
SAS	PD4.
COBOL	COMP-3 PIC S9(7)
IBM 370 assembler	PL4
PL/I	FIXED DEC

Example

```
y=put(x,pd4.);
put y $hex8.;
```

Value of x	Result *
	+
128	00000128

^{*} The result is a hexadecimal representation of a binary number written in packed decimal format. Each byte occupies one column of the output field.

PDJULGw. Format

Writes packed Julian date values in the hexadecimal format yyyydddF for IBM.

Category: Date and Time

Syntax

PDJULGw.

Syntax Description

specifies the width of the output field.

Default: 4 **Range: 3-16**

Details

The PDJULGw. format writes SAS date values in the form yyyydddF:

yyyy

is the two-byte representation of the four-digit Gregorian year.

ddd

is the one-and-a-half byte representation of the three-digit integer that corresponds to the Julian day of the year, 1–365 (or 1–366 for leap years).

F

is the half byte that contains all binary 1s, which assigns the value as positive.

Note: SAS interprets a two-digit year as belonging to the 100-year span that is defined by the YEARCUTOFF= system option.

Example

SAS Statement	Result
	+
<pre>date = '17mar2012'd; juldate = put(date,pdjulg4.); put juldate \$hex8.;</pre>	2012077F

See Also

Formats:

- "PDJULIw. Format" on page 130
- "JULIANw. Format" on page 111
- "JULDAYw. Format" on page 110

Functions:

- "JULDATE Function" in SAS Functions and CALL Routines: Reference
- "DATEJUL Function" in SAS Functions and CALL Routines: Reference

Informats:

• "PDJULIw. Informat" on page 301

- "PDJULGw. Informat" on page 300
- "JULIANw. Informat" on page 289

System Options:

• "YEARCUTOFF= System Option" in SAS System Options: Reference

PDJULIw. Format

Writes packed Julian date values in the hexadecimal format ccyydddF for IBM.

Category: Date and Time

Syntax

PDJULIw.

Syntax Description

specifies the width of the output field.

Default: 4 **Range: 3-16**

Details

The PDJULIw. format writes SAS date values in the form *ccyyddd*F:

ccis the one-byte representation of a two-digit integer that represents the century.

yyis the one-byte representation of a two-digit integer that represents the year. The PDJULIw. format makes an adjustment for the century byte by subtracting 1900 from the 4-digit Gregorian year to produce the correct packed decimal ccyy representation. A year value of 1998 is stored in ccyy as 0098, and a year value of 2011 is stored as 0111.

ddd

is the one-and-a-half byte representation of the three-digit integer that corresponds to the Julian day of the year, 1–365 (or 1–366 for leap years).

F

is the half byte that contains all binary 1s, which assigns the value as positive.

Note: SAS interprets a two-digit year as belonging to the 100-year span that is defined by the YEARCUTOFF= system option.

Example

SAS Statement	Result
	1

SAS Statement	Result
<pre>date = '17mar2012'd; juldate = put(date,pdjuli4.); put juldate \$hex8.;</pre>	0112077F
<pre>date = '31dec2013'd; juldate = put(date,pdjuli4.); put juldate \$hex8.;</pre>	0113365F

Formats:

- "PDJULGw. Format" on page 128
- "JULIANw. Format" on page 111
- "JULDAYw. Format" on page 110

Functions:

- "DATEJUL Function" in SAS Functions and CALL Routines: Reference
- "JULDATE Function" in SAS Functions and CALL Routines: Reference

Informats:

- "PDJULGw. Informat" on page 300
- "PDJULIw. Informat" on page 301
- "JULIANw. Informat" on page 289

System Options:

• "YEARCUTOFF= System Option" in SAS System Options: Reference

PERCENTw.d Format

Writes numeric values as percentages.

Category: Numeric Alignment: right

Syntax

PERCENTw.d

Syntax Description

specifies the width of the output field.

Default: 6

Range: 4–32

Tip: The width of the output field must account for the percent sign (%) and parentheses for negative numbers, whether the number is negative or positive.

d

specifies the number of digits to the right of the decimal point in the numeric value. This argument is optional.

Range: 0-31

Requirement: must be less than w

Details

The PERCENTw.d format multiplies values by 100, formats them the same as the BESTw.d format, and adds a percent sign (%) to the end of the formatted value, while it encloses negative values in parentheses.

Example

put @10 gain percent10.;

Value of x	Result
	+2
0.1	10%
1.2	120%
-0.05	(5%)

See Also

Formats:

• "PERCENTNw.d Format" on page 132

PERCENTNw.d Format

Produces percentages, using a minus sign for negative values.

Category: Numeric Alignment: right

Syntax

PERCENTNw.d

Syntax Description

specifies the width of the output field.

Default: 6 **Range:** 4-32

Tip: The width of the output field must account for the minus sign (-), the percent sign (%), and a trailing blank, whether the number is negative or positive.

specifies the number of digits to the right of the decimal point in the numeric value. This argument is optional.

Range: 0-31

Requirement: must be less than w

Details

The PERCENTNw.d format multiplies negative values by 100, formats them the same as the BESTw.d format, adds a minus sign to the beginning of the value, and adds a percent sign (%) to the end of the formatted value.

Comparisons

The PERCENTNw.d format produces percents by using a minus sign instead of parentheses for negative values. The PERCENTw.d format produces percents by using parentheses for negative values.

Example

put x percentn10.;

Value of x	Result	
-0.1	-10%	
.2	20%	
. 8	80%	
-0.05	-5%	
-6.3	-630%	

See Also

Format:

"PERCENTw.d Format" on page 131

PIBw.d Format

Writes positive integer binary (fixed-point) values.

Category: Numeric Alignment: left

See: "PIBw.d Format: UNIX" in SAS Companion for UNIX Environments

"PIBw.d Format: Windows" in SAS Companion for Windows

Syntax

PIBw.d

Syntax Description

w

specifies the width of the output field.

Default: 1 **Range:** 1-8

d

specifies to multiply the number by 10^d . This argument is optional.

Default: 0 **Range:** 0–31

Details

All values are treated as positive. PIBw.d writes positive integer binary values with consistent results if the values are created in the same type of operating environment that you use to run SAS.

Note: Different operating environments store integer binary values in different ways. This concept is called byte ordering. For a detailed discussion about byte ordering, see "Byte Ordering for Integer Binary Data on Big Endian and Little Endian Platforms" on page 7.

Comparisons

- Positive integer binary values are the same as integer binary values except that the sign bit is part of the value, which is always a positive integer. The PIBw.d format treats all values as positive and includes the sign bit as part of the value.
- The PIBw.d format with a width of 1 results in a value that corresponds to the binary equivalent of the contents of a byte. A value that corresponds to the binary equivalent of the contents of a byte is useful if your data contain values between hexadecimal 80 and hexadecimal FF, where the high-order bit can be misinterpreted as a negative sign.
- The PIBw.d format is the same as the IBw.d format except that PIBw.d treats all values as positive values.
- The IBw.d and PIBw.d formats are used to write native format integers. (Native format enables you to read and write values that are created in the same operating environment.) The IBRw.d and PIBRw.d formats are used to write little endian integers in any operating environment.

To view a table that shows the type of format to use with big endian and little endian integers, see Table 1.1 on page 8.

To view a table that compares integer binary notation in several programming languages, see "Integer Binary Notation and Different Programming Languages" on page 9.

```
y=put(x,pib1.);
put y $hex2.;
```

Value of x	Result *
	1
12	0C

^{*} The result is a hexadecimal representation of a one-byte binary number written in positive integer binary format, which occupies one column of the output field.

See Also

Formats:

"PIBRw.d Format" on page 135

PIBRw.d Format

Writes positive integer binary (fixed-point) values in Intel and DEC formats.

Numeric Category:

Syntax

PIBRw.d

Syntax Description

specifies the width of the input field.

Default: 1 Range: 1-8

d

specifies to multiply the number by 10^d . This argument is optional.

Default: 0 **Range:** 0-10

Details

All values are treated as positive. PIBRw.d writes positive integer binary values that have been generated by and for Intel and DEC operating environments. Use PIBRw.d to write positive integer binary data from Intel or DEC environments on other operating environments. The PIBRw.d format in SAS code allows for a portable implementation for writing the data in any operating environment.

Note: Different operating environments store positive integer binary values in different ways. This concept is called byte ordering. For a detailed discussion about byte

ordering, see "Byte Ordering for Integer Binary Data on Big Endian and Little Endian Platforms" on page 7.

Comparisons

- Positive integer binary values are the same as integer binary values except that the sign bit is part of the value, which is always a positive integer. The PIBRw.d format treats all values as positive and includes the sign bit as part of the value.
- The PIBRw.d format with a width of 1 results in a value that corresponds to the binary equivalent of the contents of a byte. A value that corresponds to the binary equivalent of the contents of a byte is useful if your data contain values between hexadecimal 80 and hexadecimal FF, where the high-order bit can be misinterpreted as a negative sign.
- On Intel and DEC operating environments, the PIBw.d and PIBRw.d formats are equivalent.
- The IBw.d and PIBw.d formats are used to write native format integers. (Native format enables you to read and write values that are created in the same operating environment.) The IBRw.d and PIBRw.d formats are used to write little endian integers in any operating environment.

To view a table that shows the type of format to use with big endian and little endian integers, see Table 1.1 on page 8.

To view a table that compares integer binary notation in several programming languages, see "Integer Binary Notation and Different Programming Languages" on page 9.

Example

```
y=put(x,pibr2.);
put y $hex4.;
```

Value of x	Result *
	1
128	8000

^{*} The result is a hexadecimal representation of a two-byte binary number written in positive integer binary format, which occupies one column of the output field.

See Also

Informats:

"PIBw.d Informat" on page 304

PKw.d Format

Writes data in unsigned packed decimal format.

Category: Numeric

Alignment: left

Syntax

PKw.d

Syntax Description

```
specifies the width of the output field.
   Default: 1
    Range: 1-16
d
   specifies to multiply the number by 10<sup>d</sup>. This argument is optional.
   Default: 0
   Range: 0-10
   Requirement: must be less than w
```

Details

Each byte of unsigned packed decimal data contains two digits.

Comparisons

The PKw.d format is similar to the PDw.d format except that PKw.d does not write the sign in the low-order byte.

Example

```
y=put(x,pk4.);
put y $hex8.;
```

Value of x	Result *
	+1
128	00000128

^{*} The result is a hexadecimal representation of a four-byte number written in packed decimal format. Each byte occupies one column of the output field.

PVALUEw.d Format

Writes p-values.

Category: Numeric Alignment: right

Syntax

PVALUEw.d

Syntax Description

w

specifies the width of the output field.

Default: 6 Range: 3-32

d

specifies the number of digits to the right of the decimal point in the numeric value. This argument is optional.

Default: the minimum of 4 and w–2

Range: 1–30

Restriction: must be less than w

Comparisons

The PVALUEw.d format follows the rules for the w.d format, except in the following conditions:

- if the value x is such that $0 \le x \le 10^{-d}$, x prints as " $\le 0...01$ " with d-1 zeros
- missing values print as "." unless you specify a different character by using the MISSING= system option

Example

put x pvalue6.4;

Value of x	Result
	+1
.05	0.0500
0.000001	<.0001
0	<.0001
.0123456	0.0123

QTRw. Format

Writes date values as the quarter of the year.

Category: Date and Time

Alignment: right

Syntax

QTRw.

Syntax Description

specifies the width of the output field.

Default: 1 **Range:** 1-32

Example

The example table uses the input value of 19057, which is the SAS date value that corresponds to March 5, 2012.

SAS Statement	Result
	+1
put date qtr.;	1

See Also

Formats:

• "QTRRw. Format" on page 139

QTRRw. Format

Writes date values as the quarter of the year in Roman numerals.

Category: Date and Time

Alignment: right

Syntax

QTRRw.

Syntax Description

specifies the width of the output field.

Default: 3 **Range:** 3–32

Example

The example table uses the input value of 19251, which is the SAS date value that corresponds to September 15, 2012.

SAS Statement	Result
	+
put date qtrr.;	III

See Also

Formats:

• "QTRw. Format" on page 138

RBw.d Format

Writes real binary data (floating-point) in real binary format.

Category: Numeric Alignment: left

> See: "RBw.d Format: UNIX" in SAS Companion for UNIX Environments

> > "RBw.d Format: Windows" in SAS Companion for Windows

"RBw.d Format: z/OS" in SAS Companion for z/OS

Syntax

RBw.d

Syntax Description

w

specifies the width of the output field.

Default: 4 Range: 2-8

d

specifies to multiply the number by 10^d . This argument is optional.

Default: 0 Range: 0-10

Details

The RBw.d format writes numeric data in the same way that SAS stores them. Because it requires no data conversion, RBw.d is the most efficient method for writing data with SAS.

Note: Different operating environments store real binary values in different ways. However, RBw.d writes real binary values with consistent results in the same type of operating environment that you use to run SAS.

CAUTION:

Using RB4. to write real binary data on equipment that conforms to the IEEE standard for floating-point numbers results in a truncated eight-byte (double-

precision) number rather than a true four-byte (single-precision) floating-point number.

Comparisons

The following table compares the names of real binary notation in several programming languages:

Language	4 Bytes	8 Bytes
SAS	RB4.	RB8.
Fortran	REAL*4	REAL*8
С	float	double
COBOL	COMP-1	COMP-2
IBM 370 assembler	Е	D

Example

```
y=put(x,rb8.);
put y $hex16.;
```

Value of x	Result *
	+2
128	428000000000000

^{*} The result is a hexadecimal representation of an eight-byte real binary number as it looks on an IBM mainframe. Each byte occupies one column of the output field.

ROMANw. Format

Writes numeric values as roman numerals.

Category: Numeric

Alignment: left

Syntax

ROMANw.

Syntax Description

specifies the width of the output field.

Default: 6

Range: 2-32

Details

The ROMANw. format truncates a floating-point value to its integer component before the value is written.

Example

put @5 year roman10.;

Value of year	Result
2012	MMXII

S370FFw.d Format

Writes native standard numeric data in IBM mainframe format.

Category: Numeric

Syntax

S370FFw.d

Syntax Description

specifies the width of the output field.

Default: 12 **Range:** 1–32

specifies the power of 10 by which to divide the value. This argument is optional.

Range: 0-31

Details

The S370FFw.d format writes numeric data in IBM mainframe format (EBCDIC). The EBCDIC numeric values are represented with one byte per digit. If EBCDIC is the native format, S370FFw.d performs no conversion.

If a value is negative, an EBCDIC minus sign precedes the value. A missing value is represented as a single EBCDIC period.

- On an EBCDIC system, S370FFw.d behaves like the w.d format.
- On all other systems, S370FFw.d performs the same role for numeric data that the \$EBCDICw. format does for character data.

```
y=put(x,s370ff5.);
put y $hex10.;
```

Value of x	Result *
	1
12345	F1F2F3F4F5

^{*} The result is the hexadecimal representation for the integer.

See Also

Formats:

- "\$EBCDICw. Format" on page 37
- "w.d Format" on page 164

S370FIBw.d Format

Writes integer binary (fixed-point) values, including negative values, in IBM mainframe format.

Category: Numeric Alignment: left

Syntax

S370FIBw.d

Syntax Description

specifies the width of the output field. Default: 4 Range: 1-8specifies to multiply the number by 10^d . This argument is optional.

Default: 0 **Range:** 0-10

Details

The S370FIBw.d format writes integer binary (fixed-point) values that are stored in IBM mainframe format, including negative values that are represented in two's complement notation. S370FIBw.d writes integer binary values with consistent results if the values are created in the same type of operating environment that you use to run SAS.

Use S370FIBw.d to write integer binary data in IBM mainframe format from data that are created in other operating environments.

Note: Different operating environments store integer binary values in different ways. This concept is called byte ordering. For a detailed discussion about byte ordering, see "Byte Ordering for Integer Binary Data on Big Endian and Little Endian Platforms" on page 7.

Comparisons

- If you use SAS on an IBM mainframe, S370FIBw.d and IBw.d are identical.
- S370FPIBw.d, S370FIBUw.d, and S370FIBw.d are used to write big endian integers in any operating environment.

To view a table that shows the type of format to use with big endian and little endian integers, see Table 1.1 on page 8.

To view a table that compares integer binary notation in several programming languages, see "Integer Binary Notation and Different Programming Languages" on page 9.

Example

```
y=put(x,s370fib4.);
put y $hex8.;
```

Value of x	Result *
	+
128	00000080

^{*} The result is a hexadecimal representation of a 4-byte integer binary number. Each byte occupies one column of the output field.

See Also

Formats:

- "S370FIBUw.d Format" on page 144
- "S370FPIBw.d Format" on page 148

S370FIBUw.d Format

Writes unsigned integer binary (fixed-point) values in IBM mainframe format.

Category: Numeric

Alignment: left

Syntax

S370FIBUw.d

Syntax Description

specifies the width of the output field.

Default: 4 Range: 1-8

d

specifies to multiply the number by 10^d. This argument is optional.

Default: 0 **Range:** 0-10

Details

The S370FIBUw.d format writes unsigned integer binary (fixed-point) values that are stored in IBM mainframe format, including negative values that are represented in two's complement notation. Unsigned integer binary values are the same as integer binary values, except that all values are treated as positive. S370FIBUw.d writes integer binary values with consistent results if the values are created in the same type of operating environment that you use to run SAS.

Use S370FIBUw.d to write unsigned integer binary data in IBM mainframe format from data that are created in other operating environments.

Note: Different operating environments store integer binary values in different ways. This concept is called byte ordering. For a detailed discussion about byte ordering, see "Byte Ordering for Integer Binary Data on Big Endian and Little Endian Platforms" on page 7.

Comparisons

- The S370FIBUw.d format is equivalent to the COBOL notation PIC 9(n) BINARY, where n is the number of digits.
- The S370FIBUw.d format is the same as the S370FIBw.d format except that the S370FIBUw.d format always uses the absolute value instead of the signed value.
- The S370FPIBw.d format writes all negative numbers as FFs, while the S370FIBUw.d format writes the absolute value.
- S370FPIBw.d, S370FIBUw.d, and S370FIBw.d are used to write big endian integers in any operating environment.

To view a table that shows the type of format to use with big endian and little endian integers, see Table 1.1 on page 8.

To view a table that compares integer binary notation in several programming languages, see "Integer Binary Notation and Different Programming Languages" on page 9.

Example

```
y=put(x,s370fibu1.);
put y $hex2.;
```

Value of x	Result *
245	F5

Value of x	Result *
-245	F5

^{*} The result is a hexadecimal representation of a one-byte integer binary number. Each byte occupies one column of the output field.

See Also

Formats

- "S370FIBw.d Format" on page 143
- "S370FPIBw.d Format" on page 148

S370FPDw.d Format

Writes packed decimal data in IBM mainframe format.

Category: Numeric Alignment: left

Syntax

S370FPDw.d

Syntax Description

specifies the width of the output field.

Default: 1 **Range:** 1–16

d

specifies to multiply the number by 10^d . This argument is optional.

Default: 0 **Range:** 0-31

Details

Use S370FPDw.d in other operating environments to write packed decimal data in the same format as on an IBM mainframe computer.

Comparisons

The following table shows the notation for equivalent packed decimal formats in several programming languages:

Language	Packed Decimal Notation
SAS	S370FPD4.

Language	Packed Decimal Notation
PL/I	FIXED DEC(7,0)
COBOL	COMP-3 PIC S9(7)
IBM 370 assembler	PL4

```
y=put(x,s370fpd4.);
put y $hex8.;
```

Value of x	Result *
	+
128	0000128C

^{*} The result is a hexadecimal representation of a binary number written in packed decimal format. Each byte occupies one column of the output field.

S370FPDUw.d Format

Writes unsigned packed decimal data in IBM mainframe format.

Category: Numeric Alignment: left

Syntax

S370FPDUw.d

Syntax Description

specifies the width of the output field.

Default: 1 **Range:** 1-16

d

specifies to multiply the number by 10^d. This argument is optional.

Default: 0 **Range:** 0-31

Details

Use S370FPDUw.d in other operating environments to write unsigned packed decimal data in the same format as on an IBM mainframe computer.

Comparisons

- The S370FPDUw.d format is similar to the S370FPDw.d format except that the S370FPDw.d format always uses the absolute value instead of the signed value.
- The S370FPDUw.d format is equivalent to the COBOL notation PIC 9(n) PACKED-DECIMAL, where the n value is the number of digits.

Example

```
y=put(x,s370fpdu2.);
put y $hex4.;
```

Value of x	Result *
123	123F
-123	123F

^{*} The result is a hexadecimal representation of a binary number written in packed decimal format. Each two hexadecimal characters correspond to one byte of binary data, and each byte corresponds to one column of the output field.

S370FPIBw.d Format

Writes positive integer binary (fixed-point) values in IBM mainframe format.

Category: Numeric Alignment: left

Syntax

S370FPIBw.d

Syntax Description

specifies the width of the output field. **Default:** 4 **Range:** 1–8

specifies to multiply the number by 10^d. This argument is optional.

Details

d

Positive integer binary values are the same as integer binary values, except that all values are treated as positive. S370FPIBw.d writes integer binary values with consistent results if the values are created in the same type of operating environment that you use to run SAS.

Use S370FPIBw.d to write positive integer binary data in IBM mainframe format from data that are created in other operating environments.

Note: Different operating environments store integer binary values in different ways. This concept is called byte ordering. For a detailed discussion about byte ordering, see "Byte Ordering for Integer Binary Data on Big Endian and Little Endian Platforms" on page 7.

Comparisons

- If you use SAS on an IBM mainframe, S370FPIBw.d and PIBw.d are identical.
- The S370FPIBw.d format is the same as the S370FIBw.d format except that the S370FPIBw.d format treats all values as positive values.
- S370FPIBw.d, S370FIBUw.d, and S370FIBw.d are used to write big endian integers in any operating environment.

To view a table that shows the type of format to use with big endian and little endian integers, see Table 1.1 on page 8.

To view a table that compares integer binary notation in several programming languages, see "Integer Binary Notation and Different Programming Languages" on page 9.

Example

```
y=put(x,s370fpib1.);
put y $hex2.;
```

Value of x	Result *
	1
12	0C

^{* *} The result is a hexadecimal representation of a one-byte binary number written in positive integer binary format, which occupies one column of the output field.

See Also

Formats:

- "S370FIBw.d Format" on page 143
- "S370FIBUw.d Format" on page 144

S370FRBw.d Format

Writes real binary (floating-point) data in IBM mainframe format.

Category: Numeric Alignment: left

Syntax

S370FRBw.d

Syntax Description

w

specifies the width of the output field.

Default: 4 Range: 2-8

d

specifies to multiply the number by 10^d . This argument is optional.

Default: 0 **Range:** 0–10

Details

A floating-point value consists of two parts: a mantissa that gives the value and an exponent that gives the value's magnitude.

Use S370FRBw.d in other operating environments to write floating-point binary data in the same format as on an IBM mainframe computer.

Comparisons

The following table shows the notation for equivalent floating-point formats in several programming languages:

Language	4 Bytes	8 Bytes
SAS	S370FRB4.	S370FRB8.
PL/I	FLOAT BIN(21)	FLOAT BIN(53)
Fortran	REAL*4	REAL*8
COBOL	COMP-1	COMP-2
IBM 370 assembler	Е	D
С	float	double

Example

```
y=put(x,s370frb6.);
put y $hex8.;
```

Value of x	Result *
128	42800000

Value of x	Result *
-123	C2800000

^{*} The result is a hexadecimal representation of a binary number in zoned decimal format on an IBM mainframe computer. Each two hexadecimal characters correspond to one byte of binary data, and each byte corresponds to one column of the output field.

S370FZDw.d Format

Writes zoned decimal data in IBM mainframe format.

Category: Numeric Alignment: left

Syntax

S370FZDw.d

Syntax Description

specifies the width of the output field.

Default: 8 **Range:** 1-32

d

specifies to multiply the number by 10^d. This argument is optional.

Default: 0 **Range:** 0-31

Details

Use S370FZDw.d in other operating environments to write zoned decimal data in the same format as on an IBM mainframe computer.

Comparisons

The following table shows the notation for equivalent zoned decimal formats in several programming languages:

Language	Zoned Decimal Notation
SAS	S370FZD3.
PL/I	PICTURE '99T'
COBOL	PIC S9(3) DISPLAY
assembler	ZL3

```
y=put(x,s370fzd3.);
put y $hex6.;
```

Value of x	Result *
123	F1F2C3
-123	F1F2D3

^{*} The result is a hexadecimal representation of a binary number in zoned decimal format on an IBM mainframe computer. Each two hexadecimal characters correspond to one byte of binary data, and each byte corresponds to one column of the output field.

S370FZDLw.d Format

Writes zoned decimal leading-sign data in IBM mainframe format.

Category: Numeric Alignment: left

Syntax

S370FZDLw.d

Syntax Description

specifies the width of the output field.

Default: 8 **Range:** 1-32

d

specifies to multiply the number by 10^d. This argument is optional.

Default: 0 **Range:** 0-31

Details

Use S370FZDLw.d in other operating environments to write zoned decimal leading-sign data in the same format as on an IBM mainframe computer.

- The S370FZDLw.d format is similar to the S370FZDw.d format except that the S370FZDLw.d format displays the sign of the number in the first byte of the formatted output.
- The S370FZDLw.d format is equivalent to the COBOL notation PIC S9(n) DISPLAY SIGN LEADING, where the n value is the number of digits.

```
y=put(x,s370fzdl3.);
put y $hex6.;
```

Value of x	Result *
123	C1F2F3
-123	D1F2F3

^{*} The result is a hexadecimal representation of a binary number in zoned decimal format on an IBM mainframe computer. Each two hexadecimal characters correspond to one byte of binary data, and each byte corresponds to one column of the output field.

S370FZDSw.d Format

Writes zoned decimal separate leading-sign data in IBM mainframe format.

Category: Numeric Alignment: left

Syntax

S370FZDSw.d

Syntax Description

specifies the width of the output field.

Default: 8 **Range: 2–32**

d

specifies to multiply the number by 10^d. This argument is optional.

Default: 0 **Range:** 0-31

Details

Use S370FZDSw.d in other operating environments to write zoned decimal separate leading-sign data in the same format as on an IBM mainframe computer.

- The S370FZDSw.d format is similar to the S370FZDLw.d format except that the S370FZDSw.d format does not embed the sign of the number in the zoned output.
- The S370FZDSw.d format is equivalent to the COBOL notation PIC S9(n) DISPLAY SIGN LEADING SEPARATE, where the *n* value is the number of digits.

```
y=put (x,s370fzds4.);
put y $hex8.;
```

Value of x	Result *
123	4EF1F2F3
-123	60F1F2F3

^{*} The result is a hexadecimal representation of a binary number in zoned decimal format on an IBM mainframe computer. Each two hexadecimal characters correspond to one byte of binary data, and each byte corresponds to one column of the output field.

S370FZDTw.d Format

Writes zoned decimal separate trailing-sign data in IBM mainframe format.

Category: Numeric

Alignment: left

Syntax

S370FZDTw.d

Syntax Description

w

specifies the width of the output field.

Default: 8 **Range:** 2–32

d

specifies to multiply the number by 10^d. This argument is optional.

Default: 0 **Range:** 0–31

Details

Use S370FZDTw.d in other operating environments to write zoned decimal separate trailing-sign data in the same format as on an IBM mainframe computer.

- The S370FZDTw.d format is similar to the S370FZDSw.d format except that the S370FZDTw.d format displays the sign of the number at the end of the formatted output.
- The S370FZDTw.d format is equivalent to the COBOL notation PIC S9(n) DISPLAY SIGN TRAILING SEPARATE, where the n value is the number of digits.

```
y=put (x,s370fzdt4.); ;
put y $hex8.;
```

Value of x	Result *
123	F1F2F34E
-123	F1F2F360

^{*} The result is a hexadecimal representation of a binary number in zoned decimal format on an IBM mainframe computer. Each two hexadecimal characters correspond to one byte of binary data, and each byte corresponds to one column of the output field.

S370FZDUw.d Format

Writes unsigned zoned decimal data in IBM mainframe format.

Category: Numeric Alignment: left

Syntax

S370FZDUw.d

Syntax Description

specifies the width of the output field. Default: 8 **Range:** 1–32

specifies to multiply the number by 10^d. This argument is optional.

Default: 0 **Range:** 0-31

Details

d

Use S370FZDUw.d in other operating environments to write unsigned zoned decimal data in the same format as on an IBM mainframe computer.

- The S370FZDUw.d format is similar to the S370FZDw.d format except that the S370FZDUw.d format always uses the absolute value of the number.
- The S370FZDUw.d format is equivalent to the COBOL notation PIC 9(n)DISPLAY, where the n value is the number of digits.

```
y=put (x,s370fzdu3.);
put y $hex6.;
```

Value of x	Result *
123	F1F2F3
-123	F1F2F3

^{*} The result is a hexadecimal representation of a binary number in zoned decimal format on an IBM mainframe computer. Each pair of hexadecimal characters (such as F1) corresponds to one byte of binary data, and each byte corresponds to one column of the output field.

SSNw. Format

Writes Social Security numbers.

Category: Numeric

Syntax

SSNw.

Syntax Description

n

specifies the width of the output field.

Default: 11

Restriction: w must be 11

Details

If the value is missing, SAS writes nine single periods with hyphens between the third and fourth periods and between the fifth and sixth periods. If the value contains fewer than nine digits, SAS right aligns the value and pads it with zeros on the left. If the value has more than nine digits, SAS writes it as a missing value.

Example

```
put id ssn.;
```

Value of id	Result
	+
263878439	263-87-8439

TIMEw.d Format

Writes time values as hours, minutes, and seconds in the form hh:mm:ss.ss.

Category: Date and Time

Alignment: right

Syntax

TIMEw.d

Syntax Description

specifies the width of the output field.

Default: 8 **Range: 2-20**

Tip: Make w large enough to produce the desired results. To obtain a complete time value with three decimal places, you must allow at least 12 spaces: eight spaces to the left of the decimal point, one space for the decimal point itself, and three spaces for the decimal fraction of seconds.

d

specifies the number of digits to the right of the decimal point in the seconds value. This argument is optional.

Default: 0 **Range:** 0-19

Requirement: must be less than w

Details

The TIMEw.d format writes SAS time values in the form hh:mm:ss.ss:

hh

is an integer.

Note: If *hh* is a single digit, TIME*w.d* places a leading blank before the digit. For example, the TIMEw.d. format writes 9:00 instead of 09:00.

is an integer between 00 and 59 that represents minutes.

SS.SS

is the number of seconds between 00 and 59, with the fraction of a second following the decimal point.

Comparisons

The TIMEw.d format is similar to the HHMMw.d format except that TIMEw.d includes seconds

The TIMEw.d format writes a leading blank for a single-hour digit. The TODw.d format writes a leading zero for a single-hour digit.

Example 1

This example uses the input value of 59083, which is the SAS time value that corresponds to 4:24:43 p.m.

SAS Statement	Result
	+
put begin time.;	16:24:43

Example 2

This example uses the input value of 32083, which is the SAS time value that corresponds to 8:54:43 a.m.

SAS Statement	Result
	1
<pre>put begin time.;</pre>	8:54:43

See Also

Formats:

- "HHMMw.d Format" on page 103
- "HOURw.d Format" on page 105
- "MMSSw.d Format" on page 117
- "TODw.d Format" on page 160

Functions:

- "HOUR Function" in SAS Functions and CALL Routines: Reference
- "MINUTE Function" in SAS Functions and CALL Routines: Reference
- "SECOND Function" in SAS Functions and CALL Routines: Reference
- "TIME Function" in SAS Functions and CALL Routines: Reference

Informats:

• "TIMEw. Informat" on page 332

TIMEAMPMw.d Format

Writes time and datetime values as hours, minutes, and seconds in the form hh:mm:ss.ss with AM or PM.

Category: Date and Time

Alignment:

right

Syntax

TIMEAMPMw.d

Syntax Description

w

specifies the width of the output field.

Default: 11 **Range: 2-20**

d

specifies the number of digits to the right of the decimal point in the seconds value. This argument is optional.

Default: 0 **Range:** 0–19

Requirement: must be less than w

Details

The TIMEAMPMw.d format writes SAS time values and SAS datetime values in the form hh:mm:ss.ss with AM or PM, where

hh

is an integer that represents the hour.

mm

is an integer that represents the minutes.

is the number of seconds to two decimal places.

Times greater than 23:59:59 PM appear as the next day.

Make w large enough to produce the desired results. To obtain a complete time value with three decimal places and AM or PM, you must allow at least 11 spaces (hh:mm:ss PM). If w is less than 5, SAS writes AM or PM only.

Comparisons

- The TIMEAMPMMw.d format is similar to the TIMEMw.d format except, that TIMEAMPMMw.d prints AM or PM at the end of the time.
- TIMEw,d writes hours greater than 23:59:59 PM, and TIMEAMPMw.d does not.

Example

The example table uses the input value of 59083, which is the SAS time value that corresponds to 4:24:43 p.m.

SAS Statement	Result
	+

SAS Statement	Result
<pre>put begin timeampm3.;</pre>	PM
<pre>put begin timeampm5.;</pre>	4 PM
<pre>put begin timeampm7.;</pre>	4:24 PM
<pre>put begin timeampm11.;</pre>	4:24:43 PM

See Also

Formats:

• "TIMEw.d Format" on page 157

TODw.d Format

Writes SAS time values and the time portion of SAS datetime values in the form hh:mm:ss.ss.

Category: Date and Time

Alignment: right

Syntax

TODw.d

Syntax Description

w

specifies the width of the output field.

Default: 8 Range: 2-20

Tip: SAS writes a zero for a zero hour if the specified width is sufficient. For example, 02:30 or 00:30.

d

specifies the number of digits to the right of the decimal point in the seconds value. This argument is optional.

Default: 0 **Range:** 0–19

Requirement: must be less than w

Details

The TODw.d format writes SAS time and datetime values in the form hh:mm:ss.ss:

hh

is an integer that represents the hour.

mm

is an integer that represents the minutes.

SS.SS

is the number of seconds to two decimal places.

Comparisons

The TODw.d format writes a leading zero for a single-hour digit. The TIMEw.d format and the HHMMw.d format write a leading blank for a single-hour digit.

Examples

Example 1

In this example, the SAS datetime value 1661437223 corresponds to August 24, 2012 at 2:20:23 p.m.

SAS Statement	Result
	+
<pre>begin = '1:30't; put begin tod5.;</pre>	01:30
begin = 1661437223; put begin tod9.;	14:20:23

Example 2

In this example, the SAS time value 32083 corresponds to 8:54:43 a.m.

SAS Statement	Result	
	+	
begin = 32083;		
<pre>put begin tod9.;</pre>	08:54:43	

See Also

Formats:

- "HHMMw.d Format" on page 103
- "TIMEw.d Format" on page 157
- "TIMEAMPMw.d Format" on page 158

Functions:

"TIMEPART Function" in SAS Functions and CALL Routines: Reference

Informats:

• "TIMEw. Informat" on page 332

VAXRBw.d Format

Writes real binary (floating-point) data in VMS format.

Category: Numeric Alignment: right

Syntax

VAXRBw.d

Syntax Description

```
specifies the width of the output field.
   Default: 8
   Range: 2-8
d
```

specifies the power of 10 by which to divide the value. This argument is optional.

Range: 0-31

Details

Use the VAXRBw.d format to write data in native VAX or VMS floating-point notation.

Comparisons

If you use SAS that is running under VAX or VMS, then the VAXRBw.d and the RBw.d formats are identical.

Example

```
x=1;
y=put(x,vaxrb8.);
put y=$hex16.;
```

Value of x	Result *
+1	
1	804000000000000

^{*} The result is the hexadecimal representation for the integer.

VMSZNw.d Format

Generates VMS and MicroFocus COBOL zoned numeric data.

Category: Numeric Alignment: left

Syntax

VMSZNw.d

Required Arguments

specifies the width of the output field

Default: 1 **Range:** 1–32

d

specifies the number of digits to the right of the decimal point in the numeric value. This argument is optional.

Details

The VMSZNw.d format is similar to the ZDw.d format. Both generate a string of ASCII digits, and the last digit is a special character that denotes the magnitude of the last digit and the sign of the entire number. The difference between these formats is in the special character that is used for the last digit. The following table shows the special characters that are used by the VMSZNw.d format.

Desired Digit	Special Character	Desired Digit	Special Character
0	0	-0	p
1	1	-1	q
2	2	-2	r
3	3	-3	S
4	4	-4	t
5	5	-5	u
6	6	-6	V
7	7	-7	W
8	8	-8	X

Desired	Special	Desired	Special
Digit	Character	Digit	Character
9	9	-9	y

Data formatted using the VMSZNw.d format are ASCII strings.

If the value to be formatted is too large to fit in a field of the specified width, then the VMSZNw.d format does the following:

- For positive values, it sets the output to the largest positive number that fits in the given width.
- For negative values, it sets the output to the negative number of greatest magnitude that fits in the given width.

Example

SAS Statements	Result
	+1
x=1234;	
<pre>put x vmszn4.;</pre>	1234
x=1234;	
<pre>put x vmszn5.1;</pre>	12340
x=1234;	
<pre>put x vmszn6.2;</pre>	123400
-1234;	
<pre>put x vmszn5.;</pre>	0123t

See Also

Formats:

• "ZDw.d Format" on page 194

Informats:

• "VMSZNw.d Informat" on page 337

w.d Format

Writes standard numeric data one digit per byte.

Category: Numeric

Alignment: right

Alias: Fw.d

"w.d Format: z/OS" in SAS Companion for z/OS See:

Syntax

w.d

Syntax Description

w

specifies the width of the output field.

Range: 1–32

Tip: Allow enough space to write the value, the decimal point, and a minus sign, if necessary.

d

specifies the number of digits to the right of the decimal point in the numeric value. This argument is optional.

Range: 0-31

Requirement: must be less than w

Tip: If d is 0 or you omit d, w.d writes the value without a decimal point.

Details

The w.d format rounds to the nearest number that fits in the output field. If w.d is too small, SAS might shift the decimal to the BESTw. format. The w.d format writes negative numbers with leading minus signs. In addition, w.d right aligns before writing and pads the output with leading blanks.

Comparisons

The Zw.d format is similar to the w.d format except that Zw.d pads right-aligned output with 0s instead of blanks.

Example

put @7 x 6.3;

Value of x	Result
	+
23.45	23.450

WEEKDATEw. Format

Writes date values as the day of the week and the date in the form day-of-week, month-name dd, yy (or уууу).

Date and Time Category:

Alignment: right

Syntax

WEEKDATEw.

Syntax Description

w

specifies the width of the output field.

Default: 29 Range: 3-37

Details

The WEEKDATEw. format writes SAS date values in the form *day-of-week*, *month-name dd*, *yy* (or *yyyy*):

dd

is an integer that represents the day of the month.

yy or yyyy

is a two-digit or four-digit integer that represents the year.

If w is too small to write the complete day of the week and month, SAS abbreviates as needed.

Comparisons

The WEEKDATEw. format is the same as the WEEKDATXw. format except that WEEKDATXw. prints *dd* before the month's name.

Example

The example table uses the input value of 19158, which is the SAS date value that corresponds to June 14, 2012.

SAS Statement	Result
	+2
<pre>put date weekdate3.;</pre>	Thu
put date weekdate9.;	Thursday
<pre>put date weekdate15.;</pre>	Thu, Jun 14, 12
<pre>put date weekdate17.;</pre>	Thu, Jun 14, 2012

See Also

Formats:

- "DATEw. Format" on page 73
- "DDMMYYw. Format" on page 78

- "MMDDYYw. Format" on page 113
- "TODw.d Format" on page 160
- "WEEKDATXw. Format" on page 167
- "YYMMDDw. Format" on page 181

Functions:

- "JULDATE Function" in SAS Functions and CALL Routines: Reference
- "MDY Function" in SAS Functions and CALL Routines: Reference
- "WEEKDAY Function" in SAS Functions and CALL Routines: Reference

Informats:

- "DATEw. Informat" on page 267
- "DDMMYYw. Informat" on page 270
- "MMDDYYw. Informat" on page 292
- "YYMMDDw. Informat" on page 347

WEEKDATXw. Format

Writes date values as the day of the week and date in the form day-of-week, dd month-name yy (or yyyy).

Category: Date and Time

Alignment: right

Syntax

WEEKDATXw.

Syntax Description

specifies the width of the output field.

Default: 29 **Range:** 3–37

Details

The WEEKDATXw. format writes SAS date values in the form day-of-week, dd monthname, yy (or yyyy):

dd

is an integer that represents the day of the month.

is a two-digit or a four-digit integer that represents the year.

If w is too small to write the complete day of the week and month, then SAS abbreviates as needed.

Comparisons

The WEEKDATEw. format is the same as the WEEKDATXw. format, except that WEEKDATEw. prints dd after the month's name.

The WEEKDATXw. format is the same as the DTWKDATXw. format, except that DTWKDATXw. expects a datetime value as input.

Example

The example table uses the input value of 19046, which is the SAS date value that corresponds to February 23, 2012.

SAS Statement	Result
	3
<pre>put date weekdatx.;</pre>	Thursday, 23 February 2012

See Also

Formats:

- "DTWKDATXw. Format" on page 87
- "DATEw. Format" on page 73
- "DDMMYYw. Format" on page 78
- "MMDDYYw. Format" on page 113
- "TODw.d Format" on page 160
- "WEEKDATEw. Format" on page 165
- "YYMMDDw. Format" on page 181

Functions:

- "JULDATE Function" in SAS Functions and CALL Routines: Reference
- "MDY Function" in SAS Functions and CALL Routines: Reference
- "WEEKDAY Function" in SAS Functions and CALL Routines: Reference

Informats:

- "DATEw. Informat" on page 267
- "DDMMYYw. Informat" on page 270
- "MMDDYYw. Informat" on page 292
- "YYMMDDw. Informat" on page 347

WEEKDAYw. Format

Writes date values as the day of the week.

Category: Date and Time

Alignment: right

Syntax

WEEKDAYw.

Syntax Description

specifies the width of the output field.

Default: 1 **Range:** 1-32

Details

The WEEKDAYw. format writes a SAS date value as the day of the week (where 1=Sunday, 2=Monday, and so on).

Example

The example table uses the input value of 19025, which is the SAS date value that corresponds to February 2, 2012.

SAS Statement	Result
	1
put date weekday.;	5

See Also

Formats:

• "DOWNAMEw. Format" on page 84

WEEKUw. Format

Writes a week number in decimal format by using the U algorithm.

Category: Date and Time

Alignment: left

Syntax

WEEKUw.

Syntax Description

specifies the width of the output field.

Default: 11 Range: 3-200

Details

The WEEKUw. format writes a week-number format. The WEEKUw. format writes the various formats depending on the specified width. Algorithm U calculates the SAS date value by using the number of the week within the year (Sunday is considered the first day of the week). The number-of-the-week value is represented as a decimal number in the range 0–53, with a leading zero and maximum value of 53. For example, the fifth week of the year would be represented as 05.

Refer to the following table for widths, formats, and examples:

Widths	Formats	Examples
3-4	Www	w01
5-6	yyWww	12W01
7-8	yyWwwdd	12W0101
9-10	yyyyWwwdd	2012W0101
11-200	yyyy-Www-dd	2012-W01-01

Comparisons

The WEEKVw. format writes the week number as a decimal number in the range 01–53, with weeks beginning on a Monday and week 1 of the year including both January 4th and the first Thursday of the year. If the first Monday of January is the 2nd, 3rd, or 4th, the preceding days are part of the last week of the preceding year. The WEEKWw. format writes the week number of the year as a decimal number in the range 00–53, with Monday as the first day of week 1. The WEEKUw. format writes the week number of the year (Sunday as the first day of the week) as a decimal number in the range 0–53, with a leading zero.

Example

sasdate = '31JAN2012'd;

Statements	Result
	+

Statements	Result
v=put(sasdate,weeku3.);	
<pre>w=put(sasdate,weeku5.);</pre>	
x=put(sasdate,weeku7.);	
y=put(sasdate,weeku9.);	
<pre>z=put(sasdate,weeku11.);</pre>	
put v;	
put w;	W05
put x;	12W05
put y;	12W0503
put z;	2012W0503
	2012-W05-03

Formats:

- "WEEKVw. Format" on page 171
- "WEEKWw. Format" on page 173

Functions:

• "WEEK Function" in SAS Functions and CALL Routines: Reference

Informats:

- "WEEKUw. Informat" on page 340
- "WEEKVw. Informat" on page 341
- "WEEKWw. Informat" on page 343

WEEKVw. Format

Writes a week number in decimal format by using the V algorithm.

Category: Date and Time

Alignment: left

Syntax

WEEKVw.

Syntax Description

specifies the width of the output field.

Default: 11 **Range:** 3-200

Details

The WEEKVw. format writes the various formats depending on the specified width. Algorithm V calculates the SAS date value, with the number-of-the-week value represented as a decimal number in the range 01–53, with a leading zero and maximum value of 53. Weeks begin on a Monday and week 1 of the year is the week that includes both January 4th and the first Thursday of the year. If the first Monday of January is the 2nd, 3rd, or 4th, the preceding days are part of the last week of the preceding year. For example, the fifth week of the year would be represented as 06.

Refer to the following table for widths, formats, and examples:

Widths	Formats	Examples
3-4	Www	w01
5-6	yyWww	12W01
7-8	yyWwwdd	12W0101
9-10	yyyyWwwdd	2012W0101
11-200	yyyy-Www-dd	2012-W01-01

Comparisons

The WEEKVw. format writes the week number as a decimal number in the range 01–53, with weeks beginning on a Monday and week 1 of the year including both January 4th and the first Thursday of the year. If the first Monday of January is the 2nd, 3rd, or 4th, the preceding days are part of the last week of the preceding year. The WEEKWw. format writes the week number of the year as a decimal number in the range 00-53, with Monday as the first day of week 1. The WEEKUw. format writes the week number of the year (Sunday as the first day of the week) as a decimal number in the range 0–53, with a leading zero.

Example

sasdate='31JAN2012'd;

Result	
+	
W05	
12W01	
12W0502	
2012W0502	
2012-W05-02	
	W05 12W01 12W0502 2012W0502

Formats:

- "WEEKUw. Format" on page 169
- "WEEKWw. Format" on page 173

Functions:

"WEEK Function" in SAS Functions and CALL Routines: Reference

Informats:

- "WEEKUw. Informat" on page 340
- "WEEKVw. Informat" on page 341
- "WEEKWw. Informat" on page 343

WEEKWw. Format

Writes a week number in decimal format by using the W algorithm.

Category: Date and Time

Alignment:

left

Syntax

WEEKWw.

Syntax Description

specifies the width of the output field.

Default: 11 **Range:** 3-200

Details

The WEEKWw. format writes the various formats depending on the specified width. Algorithm W calculates the SAS date value using the number of the week within the year (Monday is considered the first day of the week). The number-of-the-week value is represented as a decimal number in the range 0-53, with a leading zero and maximum value of 53. For example, the fifth week of the year would be represented as 05.

Refer to the following table for widths, formats, and examples:

Widths	Formats	Examples
3-4	Www	w01
5-6	yyWww	12W01

Widths	Formats	Examples
7-8	yyWwwdd	12W0101
9-10	yyyyWwwdd	2012W0101
11-200	yyyy-Www-dd	2012-W01-01

Comparisons

The WEEKVw. format writes the week number as a decimal number in the range 01–53. Weeks beginning on a Monday and on week 1 of the year include both January 4th and the first Thursday of the year. If the first Monday of January is the 2nd, 3rd, or 4th, the preceding days are part of the last week of the preceding year. The WEEKWw. format writes the week number of the year as a decimal number in the range 00-53, with Monday as the first day of week 1. The WEEKUw. format writes the week number of the year (Sunday as the first day of the week) as a decimal number in the range 0–53, with a leading zero.

Example

sasdate = '31JAN2012'd;

Statements	Result	
	+	
v=put(sasdate,weekw3.);		
<pre>w=put(sasdate,weekw5.);</pre>		
<pre>x=put(sasdate,weekw7.);</pre>		
y=put(sasdate,weekw9.);		
<pre>z=put(sasdate,weekw11.);</pre>		
put v;		
put w;	W05	
put x;	12W05	
put y;	12W0502	
put z;	2012W0502	
	2012-W05-02	

See Also

Formats:

- "WEEKUw. Format" on page 169
- "WEEKVw. Format" on page 171

Functions:

"WEEK Function" in SAS Functions and CALL Routines: Reference

Informats:

• "WEEKUw. Informat" on page 340

- "WEEKVw. Informat" on page 341
- "WEEKWw. Informat" on page 343

WORDDATEw. Format

Writes date values as the name of the month, the day, and the year in the form month-name dd, yyyy.

Category: Date and Time

Alignment: right

Syntax

WORDDATEw.

Syntax Description

specifies the width of the output field.

Default: 18 **Range:** 3-32

Details

The WORDDATEw. format writes SAS date values in the form month-name dd, yyyy:

dd

is an integer that represents the day of the month.

vvvv

is a four-digit integer that represents the year.

If the width is too small to write the complete month, SAS abbreviates as necessary.

Comparisons

The WORDDATEw. format is the same as the WORDDATXw. format except that WORDDATXw. prints dd before the month's name.

Example

The example table uses the input value of 19158, which is the SAS date value that corresponds to June 14, 2012.

SAS Statement	Result
<pre>put term worddate3.;</pre>	Jun
<pre>put term worddate9.;</pre>	+2 June
put term worddate12.;	Jun 14, 2012

SAS Statement	Result	
put term worddate20.;	June 14, 2012	

Formats:

• "WORDDATXw. Format" on page 176

WORDDATXw. Format

Writes date values as the day, the name of the month, and the year in the form dd month-name yyyy.

Category: Date and Time

Alignment: right

Syntax

WORDDATXw.

Syntax Description

specifies the width of the output field.

Default: 18 **Range:** 3-32

Details

The WORDDATXw. format writes SAS date values in the form dd month-name, yyyy:

dd

is an integer that represents the day of the month.

уууу

is a four-digit integer that represents the year.

If the width is too small to write the complete month, SAS abbreviates as necessary.

Comparisons

The WORDDATXw. format is the same as the WORDDATEw. format except that WORDDATEw. prints dd after the month's name.

Example

The example table uses the input value of 19057, which is the SAS date value that corresponds to March 5, 2012.

SAS Statement	Result
	+2
<pre>put term worddatx.;</pre>	05 March 2012

Formats:

• "WORDDATEw. Format" on page 175

WORDFw. Format

Writes numeric values as words with fractions that are shown numerically.

Category: Numeric Alignment: left

Syntax

WORDFw.

Syntax Description

specifies the width of the output field.

Default: 10 Range: 5-32767

Details

The WORDFw. format converts numeric values to their equivalent in English words, with fractions that are represented numerically in hundredths. For example, 8.2 prints as eight and 20/100.

Negative numbers are preceded by the word minus. When the value's equivalent in words does not fit into the specified field, it is truncated on the right and the last character prints as an asterisk.

Comparisons

The WORDFw. format is similar to the WORDSw. format except that WORDFw. prints fractions as numbers instead of words.

Example

```
put price wordf15.;
```

Value of price	Result
	+
2.5	two and 50/100

Formats:

• "WORDSw. Format" on page 178

WORDSw. Format

Writes numeric values as words.

Category: Numeric

Alignment: left

Syntax

WORDSw.

Syntax Description

specifies the width of the output field.

Default: 10 Range: 5-32767

Details

You can use the WORDSw. format to print checks with the amount written out below the payee line.

Negative numbers are preceded by the word minus. If the number is not an integer, the fractional portion is represented as hundredths. For example, 5.3 prints as five and thirty hundredths. When the value's equivalent in words does not fit into the specified field, it is truncated on the right and the last character prints as an asterisk.

Comparisons

The WORDSw. format is similar to the WORDFw. format except that WORDSw. prints fractions as words instead of numbers.

Example

```
put price words23.;
```

Value of price	Result
	+
2.1	two and ten hundredths

Formats:

• "WORDFw. Format" on page 177

YEARw. Format

Writes date values as the year.

Category: Date and Time

Alignment: right

Syntax

YEARw.

Syntax Description

specifies the width of the output field.

Default: 4 **Range:** 2–32

Tip: If w is less than 4, the last two digits of the year print. Otherwise, the year value prints as four digits.

Details

The YEARw. format is similar to the DTYEARw. format in that they both write date values. The difference is that YEARw. expects a SAS date value as input, and DTYEARw. expects a datetime value.

Example

The example table uses the input value of 19158, which is the SAS date value that corresponds to June 14, 2012.

SAS Statement	Result
	1
put date year2.;	12

SAS Statement	Result
<pre>put date year4.;</pre>	2012

Formats:

• "DTYEARw. Format" on page 88

YYMMw. Format

Writes date values in the form <yy>yyMmm, where M is a character separator to indicate that the month number follows the M and the year appears as either 2 or 4 digits.

Category: Date and Time

Alignment: right

Syntax

YYMMw.

Syntax Description

w

specifies the width of the output field.

Default: 7 Range: 5-32

Interaction: When w has a value of 5 or 6, the date appears with only the last two digits of the year. When w is 7 or more, the date appears with a four-digit year.

Details

The YYMMw. format writes SAS date values in the form <yy>yyMmm:

<*yy>yy*

is a two-digit or four-digit integer that represents the year.

M

is the character separator to indicate that the number of the month follows.

mm

is an integer that represents the month.

Example

The following examples use the input value of 19291, which is the SAS date value that corresponds to October 25, 2012.

SAS Statement	Result
	+
<pre>put date yymm5.;</pre>	12M10
<pre>put date yymm6.;</pre>	12M10
put date yymm.;	2012M10
<pre>put date yymm7.;</pre>	2012M10
<pre>put date yymm10.;</pre>	+1+ 2012M10

Formats:

- "MMYYw. Format" on page 118
- "YYMMxw. Format" on page 185

YYMMDDw. Format

Writes date values in the form yymmdd or <yy>yy-mm-dd, where a hyphen is the separator and the year appears as either 2 or 4 digits.

Category: Date and Time

Alignment: right

Syntax

YYMMDDw.

Syntax Description

specifies the width of the output field.

Default: 8 **Range:** 2–10

Interaction: When w has a value of from 2 to 5, the date appears with as much of the year and the month as possible. When w is 7, the date appears as a two-digit year without hyphens.

Details

The YYMMDDw. format writes SAS date values in one of the following forms:

yymmdd

<*yy*>*yy*-*mm*-*dd*

where

<yy>yy

is a two-digit or four-digit integer that represents the year.

is the separator.

mm

is an integer that represents the month.

dd

is an integer that represents the day of the month.

To format a date that has a four-digit year and no separators, use the YYMMDDx. format.

Example

The following examples use the input value of 19086, which is the SAS date value that corresponds to April 3, 2012.

SAS Statement	Result
	+
<pre>put day yymmdd2.;</pre>	12
<pre>put day yymmdd3.;</pre>	12
<pre>put day yymmdd4.;</pre>	1204
<pre>put day yymmdd5.;</pre>	12-04
<pre>put day yymmdd6.;</pre>	120403
<pre>put day yymmdd7.;</pre>	120403
<pre>put day yymmdd8.;</pre>	12-04-03
<pre>put day yymmdd10.;</pre>	2012-04-03

See Also

Formats:

- "DATEw. Format" on page 73
- "DDMMYYw. Format" on page 78
- "MMDDYYw. Format" on page 113
- "YYMMDDxw. Format" on page 183

Functions:

• "DAY Function" in SAS Functions and CALL Routines: Reference

- "MDY Function" in SAS Functions and CALL Routines: Reference
- "MONTH Function" in SAS Functions and CALL Routines: Reference
- "YEAR Function" in SAS Functions and CALL Routines: Reference

Informats:

- "DATEw. Informat" on page 267
- "DDMMYYw. Informat" on page 270
- "MMDDYYw. Informat" on page 292

YYMMDDxw. Format

Writes date values in the form *yymmdd* or *yyyymm-dd*, where the *x* in the format name is a character that represents the special character which separates the year, month, and day. The special character can be a hyphen (-), period (.), blank character, slash (/), colon (:), or no separator; the year can be either 2 or 4 digits.

Category: Date and Time

Alignment: right

Syntax

YYMMDDxw.

Syntax Description

identifies a separator or specifies that no separator appear between the year, the month, and the day. These are the valid values for x:

В separates with a blank.

C separates with a colon.

D separates with a hyphen.

Ν indicates no separator.

P separates with a period.

S separates with a slash.

specifies the width of the output field.

Default: 8 **Range: 2-10** Interactions:

w

When w has a value of from 2 to 5, the date appears with as much of the year and the month. When w is 7, the date appears as a two-digit year without separators. When x has a value of N, the width range is 2-8.

Details

The YYMMDDxw. format writes SAS date values in one of the following forms:

yymmdd

<yy>yyxmmxdd

where

<*yy*>*yy*

is a two-digit or four-digit integer that represents the year.

х

is a specified separator.

mm

is an integer that represents the month.

dd

is an integer that represents the day of the month.

Example

The following examples use the input value of 19127, which is the SAS date value that corresponds to May 14, 2012.

SAS Statement	Result
	+
<pre>put day yymmddc5.;</pre>	12:05
put day yymmddd8.;	12-05-14
put day yymmddp10.;	2012.05.14
put day yymmddn8.;	20120514

See Also

Formats:

- "DATEw. Format" on page 73
- "DDMMYYxw. Format" on page 79
- "MMDDYYxw. Format" on page 115
- "YYMMDDw. Format" on page 181

Functions:

• "DAY Function" in SAS Functions and CALL Routines: Reference

- "MDY Function" in SAS Functions and CALL Routines: Reference
- "MONTH Function" in SAS Functions and CALL Routines: Reference
- "YEAR Function" in SAS Functions and CALL Routines: Reference

Informats:

"YYMMDDw. Informat" on page 347

YYMMxw. Format

Writes date values in the form $\langle yy \rangle yymm$ or $\langle yy \rangle yy-mm$. The x in the format name represents the special character that separates the year and the month. This special character can be a hyphen (-), period (.), slash (/), colon (:), or no separator. The year can be either two or four digits.

Syntax

YYMMxw.

Syntax Description

identifies a separator or specifies that no separator appear between the year and the month. These are valid values for x:

 \mathbf{C} separates with a colon.

D separates with a hyphen.

Ν indicates no separator.

P separates with a period.

S separates with a forward slash.

specifies the width of the output field.

Default: 7 **Range:** 5-32 Interactions:

> When x is set to N, no separator is specified. The width range is then 4–32, and the default changes to 6.

When x has a value of C, D, P, or S and w has a value of 5 or 6, the date appears with only the last two digits of the year. When w is 7 or more, the date appears with a four-digit year.

When x has a value of N and w has a value of 4 or 5, the date appears with only the last two digits of the year. When x has a value of N and w is 6 or more, the date appears with a four-digit year.

Details

The YYMMxw. format writes SAS date values in one of the following forms:

<*yy*>*yymm*

<yy>yyXmm

where

<*yy*>*yy*

is a two-digit or four-digit integer that represents the year.

 \boldsymbol{x}

is a specified separator.

mm

is an integer that represents the month.

Example

The following examples use the input value of 19127, which is the SAS date value that corresponds to May 14, 2012.

SAS Statement	Result
	+1+
<pre>put date yymmc5.;</pre>	12:05
<pre>put date yymmd.;</pre>	2012-05
<pre>put date yymmn4.;</pre>	1205
<pre>put date yymmp8.;</pre>	2012.05
put date yymms10.;	2012/05

See Also

Formats:

- "MMYYxw. Format" on page 119
- "YYMMw. Format" on page 180

YYMONw. Format

Writes date values in the form yymmm or yyyymmm.

Category: Date and Time

Alignment: right

Syntax

YYMONw.

Syntax Description

specifies the width of the output field. If the format width is too small to print a fourdigit year, only the last two digits of the year are printed.

Default: 7 **Range:** 5–32

Details

The YYMONw. format writes SAS date values in the form <yy>yymmm:

<*yy*>*yy*

is a two-digit or four-digit integer that represents the year.

is the name of the month, abbreviated to three characters.

Example

The example table uses the input value of 19158, which is the SAS date value that corresponds to June 14, 2012.

SAS Statement	Result
	+
<pre>put date yymon6.;</pre>	02JUN
<pre>put date yymon7.;</pre>	2012JUN

See Also

Formats:

"MMYYw. Format" on page 118

YYQw. Format

Writes date values in the form <yy>yyQq, where Q is the separator, the year appears as either 2 or 4 digits, and q is the quarter of the year.

Category: Date and Time

Alignment: right

Syntax

YYQw.

Syntax Description

w

specifies the width of the output field.

Default: 6 Range: 4-32

Interaction: When w has a value of 4 or 5, the date appears with only the last two digits of the year. When w is 6 or more, the date appears with a four-digit year.

Details

The YYQw. format writes SAS date values in the form <yy>yyQq:

<*yy*>*yy*

is a two-digit or four-digit integer that represents the year.

Q is the character separator.

is an integer (1,2,3, or 4) that represents the quarter of the year.

Example

The following examples use the input value of 19158, which is the SAS date value that corresponds to June 14, 2012.

SAS Statements	Result
	+
<pre>put date yyq4.;</pre>	12Q2
put date yyq5.;	12Q2
<pre>put date yyq.;</pre>	2012Q2
put date yyq6.;	2012Q2
<pre>put date yyq10.;</pre>	2012Q2

See Also

Formats:

- "YYQxw. Format" on page 188
- "YYQRw. Format" on page 190

YYQxw. Format

Writes date values in the form $\langle yy \rangle yyq$ or $\langle yy \rangle yy-q$, where the x in the format name is a character that represents the special character that separates the year and the quarter or the year, which can be a

hyphen (-), period (.), blank character, slash (/), colon (:), or no separator; the year can be either 2 or 4 digits.

Category: Date and Time

Alignment: right

Syntax

YYQxw.

Syntax Description

identifies a separator or specifies that no separator appear between the year and the quarter. Valid values for x are:

C

separates with a colon

D

separates with a hyphen

N

indicates no separator

P

separates with a period

S

separates with a forward slash.

w

specifies the width of the output field.

Default: 6 **Range:** 4-32

Interactions:

When x is set to N, no separator is specified. The width range is then 3–32, and the default changes to 5.

When w has a value of 4 or 5, the date appears with only the last two digits of the year. When w is 6 or more, the date appears with a four-digit year.

When x has a value of N and w has a value of 3 or 4, the date appears with only the last two digits of the year. When x has a value of N and w is 5 or more, the date appears with a four-digit year.

Details

The YYQxw. format writes SAS date values in one of the following forms:

<*yy*>*yyq*

<*yy*>*yyxq*

where

is a two-digit or four-digit integer that represents the year.

x

is a specified separator.

is an integer (1,2,3, or 4) that represents the quarter of the year.

Example

The following examples use the input value of 19188, which is the SAS date value that corresponds to July 14, 2012.

SAS Statement	Result
	+
<pre>put date yyqc4.;</pre>	12:3
<pre>put date yyqd.;</pre>	2012-3
<pre>put date yyqn3.;</pre>	123
put date yyqp6.;	2012.3
put date yyqs8.;	2012/3

See Also

Formats:

- "YYQw. Format" on page 187
- "YYQRxw. Format" on page 191

YYQRw. Format

Writes date values in the form <*yy*>*yy*Q*qr*, where Q is the separator, the year appears as either 2 or 4 digits, and *qr* is the quarter of the year expressed in roman numerals.

Category: Date and Time

Alignment: right

Syntax

YYQRw.

Syntax Description

n

specifies the width of the output field.

Default: 8 Range: 6-32

Interaction: When the value of *w* is too small to write a four-digit year, the date appears with only the last two digits of the year.

Details

The YYQRw. format writes SAS date values in the form <*yy*>*yy*Q*qr*:

<*yy*>*yy*

is a two-digit or four-digit integer that represents the year.

is the character separator.

qr

is a roman numeral (I, II, III, or IV) that represents the quarter of the year.

Example

The following examples use the input value of 19158, which is the SAS date value that corresponds to June 14, 2012.

SAS Statement	Result
	+
put date yyqr6.;	12QII
put date yyqr7.;	2012QII
put date yyqr.;	2012QII
put date yyqr8.;	2012QII
put date yyqr10.;	2012QII

See Also

Formats:

- "YYQw. Format" on page 187
- "YYQRxw. Format" on page 191

YYQRxw. Format

Writes date values in the form $\langle yy \rangle yyqr$ or $\langle yy \rangle yy-qr$, where the x in the format name is a character that represents the special character that separates the year and the quarter or the year, which can be a hyphen (-), period (.), blank character, slash (/), colon (:), or no separator; the year can be either 2 or 4 digits and *qr* is the quarter of the year expressed in roman numerals.

Category: Date and Time

Alignment: right

Syntax

YYQRxw.

Syntax Description

 \boldsymbol{x}

identifies a separator or specifies that no separator appear between the year and the quarter. These are valid values for *x*:

separates with a colon.

D

C

separates with a hyphen.

N

indicates no separator.

P

separates with a period.

S

separates with a forward slash.

specifies the width of the output field.

Default: 8 **Range:** 6-32

Interactions:

When x is set to N, no separator is specified. The width range is then 5–32, and the default changes to 7.

When the value of w is too small to write a four-digit year, the date appears with only the last two digits of the year.

Details

The YYQRxw. format writes SAS date values in one of the following forms:

<*yy*>*yyqr* <*yy*>*yyxqr*

where

<*yy*>*yy*

is a two-digit or four-digit integer that represents the year.

xis a specified separator.

is a roman numeral (I, II, III, or IV) that represents the quarter of the year.

Example

The following examples use the input value of 19127, which is the SAS date value that corresponds to May 14, 2012.

SAS Statement	Result	
	+	
put date yyqrc6.;	12:II	

SAS Statement	Result
<pre>put date yyqrd.;</pre>	2012-II
put date yyqrn5.;	12II
put date yyqrp8.;	2012.II
put date yyqrs10.;	2012/II

Formats:

- "YYQxw. Format" on page 188
- "YYQRw. Format" on page 190

Zw.d Format

Writes standard numeric data with leading 0s.

Category: Numeric Alignment: right

Syntax

 $\mathbf{Z}w.d$

Syntax Description

specifies the width of the output field.

Default: 1 **Range:** 1-32

Tip: Allow enough space to write the value, the decimal point, and a minus sign, if necessary.

d

specifies the number of digits to the right of the decimal point in the numeric value. This argument is optional.

Default: 0 **Range:** 0-31

Tip: If d is 0 or you omit d, Zw.d writes the value without a decimal point.

Details

The Zw.d format writes standard numeric values one digit per byte and fills in 0s to the left of the data value.

The Zw.d format rounds to the nearest number that will fit in the output field. If w.d is too large to fit, SAS might shift the decimal to the BESTw. format. The Zw.d format writes negative numbers with leading minus signs. In addition, it right aligns before writing and pads the output with leading zeros.

Comparisons

The Zw.d format is similar to the w.d format except that Zw.d pads right-aligned output with 0s instead of blanks.

Example

put @5 seqnum z8.;

Value of seqnum	Result	
	1	
1350	00001350	

ZDw.d Format

Writes numeric data in zoned decimal format.

Category: Numeric

Alignment: left

See: "ZDw.d Format: UNIX" in SAS Companion for UNIX Environments

"ZDw.d Format: Windows" in SAS Companion for Windows

"ZDw.d Format: z/OS" in SAS Companion for z/OS

Syntax

 $\mathbf{Z}\mathbf{D}w.d$

Syntax Description

,

specifies the width of the output field.

Default: 1 **Range:** 1-32

d

specifies to multiply the number by 10^d. This argument is optional.

Default: 0 **Range:** 0–31

Details

The zoned decimal format is similar to standard numeric format in that every digit requires one byte. However, the value's sign is in the last byte, along with the last digit.

Note: Different operating environments store zoned decimal values in different ways. However, the ZDw.d format writes zoned decimal values with consistent results if the values are created in the same type of operating environment that you use to run SAS.

Comparisons

The following table compares the zoned decimal format with notation in several programming languages:

Language	Zoned Decimal Notation
SAS	ZD3.
PL/I	PICTURE '99T'
COBOL	DISPLAY PIC S 999
IBM 370 assembler	ZL3

Example

```
y=put(x,zd4.);
put y $hex8.;
```

Value of x	Result *
120	F0F1F2C0

^{*} The result is a hexadecimal representation of a binary number in zoned decimal format on an IBM mainframe computer. Each byte occupies one column of the output field.

Part 2

SAS Informats

Chapter 3				
About Informats	 	 	 	 199
Chapter 4				
Dictionary of Informats	 	 	 	 215

Chapter 3

About Informats

Definition of Informats	199
Syntax	200
Using Informats	200
Ways to Specify Informats	200
Permanent versus Temporary Association	202
User-Defined Informats	202
Byte Ordering for Integer Binary Data on Big Endian and	
Little Endian Platforms	203
Definitions	203
How the Bytes Are Ordered	
Reading Data Generated on Big Endian or Little Endian Platforms	
Integer Binary Notation in Different Programming Languages	204
Working with Packed Decimal and Zoned Decimal Data	205
Definitions	
Types of Data	206
Platforms Supporting Packed Decimal and Zoned Decimal Data	207
Languages Supporting Packed Decimal and Zoned Decimal Data	207
Summary of Packed Decimal and Zoned Decimal Formats and Informats .	208
Reading Dates and Times by Using the ISO 860 Basic and Extended Notat	ions . 209
ISO 8601 Formatting Symbols	209
Reading ISO 8601 Date, Time, and Datetime Values	210
Reading ISO 8601 Duration, Interval, and Datetime Values	212

Definition of Informats

An informat is a type of SAS language element that applies a pattern to or executes instructions for a data value to be read as input. Types of informats correspond to the data's type: numeric, character, date, time, or timestamp. The ability to create user-defined informats is also supported. Examples of SAS informats are BINARY, DATE. and COMMA. For example, the following value contains a dollar sign and commas:

\$1,000,000

To remove the dollar sign (\$) and commas (,) before storing the numeric value 1000000 in a variable, read this value with the COMMA11. informat.

Unless you explicitly define a variable first, SAS uses the informat to determine whether the variable is numeric or character. SAS also uses the informat to determine the length of character variables

Syntax

SAS informats have the following form:

<\$>informat<w>.<d>

¢

indicates a character informat; its absence indicates a numeric informat.

informat

names the informat. The informat is a SAS informat or a user-defined informat that was previously defined with the INVALUE statement in PROC FORMAT. Chapter 23, "FORMAT Procedure" in *Base SAS Procedures Guide*.

specifies the informat width, which for most informats is the number of columns in the input data.

d

specifies an optional decimal scaling factor in the numeric informats. SAS divides the input data by 10 to the power of d.

Note: Even though SAS can read up to 32 digits when you specify some numeric informats, numbers with more than 15 significant digits might lose precision due to the limitations of the eight-byte floating-point representation used by most computers.

Informats always contain a period (.) as a part of the name. If you omit the w and the d values from the informat, SAS uses default values. If the data contain decimal points, SAS ignores the d value and reads the number of decimal places that are actually in the input data.

If the informat width is too narrow to read all the columns in the input data, you might get unexpected results. The problem frequently occurs with the date and time informats. You must adjust the width of the informat to include blanks or special characters between the day, month, year, or time. For more information about date and time values, see "Dates, Times, and Intervals" in Chapter 7 of SAS Language Reference: Concepts.

When a problem occurs with an informat, SAS writes a note to the SAS log and assigns a missing value to the variable. Problems occur if you use an incompatible informat, such as a numeric informat to read character data, or if you specify the width of a date and time informat that causes SAS to read a special character in the last column.

Using Informats

Ways to Specify Informats

Overview of Specifying Informats

You can specify informats in the following ways:

- in an INPUT statement
- with the INPUT, INPUTC, and INPUTN functions
- in an INFORMAT statement in a DATA step or a PROC step
- in an ATTRIB statement in a DATA step or a PROC step

INPUT Statement

The INPUT statement with an informat after a variable name is the simplest way to read values into a variable. For example, the following INPUT statement uses two informats:

```
input @15 style $3. @21 price 5.2;
```

The \$w. character informat reads values into the variable STYLE. The w.d numeric informat reads values into the variable PRICE.

For a complete discussion of the INPUT statement, see "INPUT Statement" in SAS Statements: Reference.

INPUT Function

The INPUT function converts a SAS character expression using a specified informat. The informat determines whether the resulting value is numeric or character. Thus, the INPUT function is useful for converting data. For example,

```
TempCharacter='98.6';
TemperatureNumber=input(TempCharacter,4.);
```

Here, the INPUT function in combination with the w.d informat converts the character value of TempCharacter to a numeric value and assigns the numeric value 98.6 to TemperatureNumber.

Use the PUT function with a SAS format to convert numeric values to character values. For an example of a numeric-to-character conversion, see "PUT Function" in SAS Functions and CALL Routines: Reference. For a complete discussion of the INPUT function, see "INPUT Function" in SAS Functions and CALL Routines: Reference.

INFORMAT Statement

The INFORMAT statement associates an informat with a variable. SAS uses the informat in any subsequent INPUT statement to read values into the variable. For example, in the following statements the INFORMAT statement associates the DATEw. informat with the variables Birthdate and Interview:

```
informat Birthdate Interview date9.;
input @63 Birthdate Interview;
```

An informat that is associated with an INFORMAT statement behaves like an informat that you specify with a colon (:) format modifier in an INPUT statement. For details about using the colon (:) modifier, see "INPUT Statement, List" in SAS Statements: Reference. Therefore, SAS uses a modified list input to read the variable so that

- the w value in an informat does not determine column positions or input field widths in an external file
- the blanks that are embedded in input data are treated as delimiters unless you change the DLM= or DLMSTR= option in an INFILE statement
- for character informats, the w value in an informat specifies the length of character variables
- for numeric informats, the w value is ignored

for numeric informats, the d value in an informat behaves in the usual way for numeric informats.

If you have coded the INPUT statement to use another style of input, such as formatted input or column input, that style of input is not used when you use the INFORMAT statement.

See "INPUT Statement, List" in SAS Statements: Reference for more information about how to use modified list input to read data.

Note: Any time a text file originates from anywhere other than the local encoding environment, it might be necessary to specify the ENCODING= option in either ASCII or EBCDIC environments. For example, when you read an EBCDIC text file on an ASCII platform, it is recommended that you specify the ENCODING= option in the FILENAME or INFILE statement. However, if you use the DSD and the DLM= or DLMSTR= options in the FILENAME or INFILE statement, the ENCODING= option is a requirement because these options require certain characters in the session encoding (such as quotation marks, commas, and blanks). The use of encoding-specific informats should be reserved for use with true binary files. That is, they contain both character and non-character fields.

ATTRIB Statement

The ATTRIB statement can also associate an informat, as well as other attributes, with one or more variables. For example, in the following statements, the ATTRIB statement associates the DATEw. informat with the variables Birthdate and Interview:

```
attrib Birthdate Interview informat=date9.;
input @63 Birthdate Interview;
```

An informat that is associated by using the INFORMAT= option in the ATTRIB statement behaves like an informat that you specify with a colon (:) format modifier in an INPUT statement. For details about using the colon (:) modifier, see "INPUT Statement, List" in SAS Statements: Reference.. Therefore, SAS uses a modified list input to read the variable in the same way as it does for the INFORMAT statement.

For more information, see "ATTRIB Statement" in SAS Statements: Reference.

Permanent versus Temporary Association

When you specify an informat in an INPUT statement, SAS uses the informat to read input data values during that DATA step. SAS, however, does not permanently associate the informat with the variable. To permanently associate an informat with a variable, use an INFORMAT statement or an ATTRIB statement. SAS permanently associates an informat with the variable by modifying the descriptor information in the SAS data set.

User-Defined Informats

In addition to the informats that are supplied with Base SAS software, you can create your own informats. In Base SAS software, PROC FORMAT enables you to create your own informats and formats for both character and numeric variables. For more information about user-defined informats, see Chapter 23, "FORMAT Procedure" in Base SAS Procedures Guide.

When you execute a SAS program that uses user-defined informats, these informats should be available. The two ways to make these informats available are

to create permanent, not temporary, informats with PROC FORMAT

to store the source code that creates the informats (the PROC FORMAT step) with the SAS program that uses them.

If you execute a program that cannot locate a user-defined informat, the result depends on the setting of the FMTERR= system option. If the user-defined informat is not found, then these system options produce these results:

System Options	Result
FMTERR	SAS produces an error that causes the current DATA or PROC step to stop.
NOFMTERR	SAS continues processing by substituting a default informat.

Although using NOFMTERR enables SAS to process a variable, you lose the information that the user-defined informat supplies. This option can cause a DATA step to misread data, and it can produce incorrect results. For more information, see "FMTERR System Option" in SAS System Options: Reference.

To avoid problems, make sure that users of your program have access to all the userdefined informats that are used.

Byte Ordering for Integer Binary Data on Big **Endian and Little Endian Platforms**

Definitions

Integer values for integer binary data are typically stored in one of three sizes: one—byte, two-byte, or four-byte. The ordering of the bytes for the integer varies depending on the platform (operating environment) on which the integers were produced.

The ordering of bytes differs between the "big endian" and the "little endian" platforms. These colloquial terms are used to describe byte ordering for IBM mainframes (big endian) and for Intel-based platforms (little endian). In the SAS System, the following platforms are considered big endian: IBM mainframe, HP-UX, AIX, Solaris on SPARC, and Macintosh. In SAS, the following platforms are considered little endian: Intel ABI, Linux, OpenVMS Alpha, OpenVMS Integrity, Solaris on x64, Tru64 UNIX, and Windows.

How the Bytes Are Ordered

On big endian platforms, the value 1 is stored in binary and is represented here in hexadecimal notation. One byte is stored as 01, two bytes as 00 01, and four bytes as 00 00 00 01. On little endian platforms, the value 1 is stored in one byte as 01 (the same as big endian), in two bytes as 01 00, and in four bytes as 01 00 00 00.

If an integer is negative, the "two's complement" representation is used. The high-order bit of the most significant byte of the integer will be set on. For example, -2 would be represented in one, two, and four bytes on big endian platforms as FE, FF FE, and FF FF FF FE respectively. On little endian platforms, the representation would be FE, FE FF, and FE FF FF. These representations result from the output of the integer binary value –2 expressed in hexadecimal representation.

Reading Data Generated on Big Endian or Little Endian Platforms

SAS can read signed and unsigned integers regardless of whether they were generated on a big endian or a little endian system. Likewise, SAS can write signed and unsigned integers in both big endian and little endian format. The length of these integers can be up to eight bytes.

The following table shows which informat to use for various combinations of platforms. In the Sign? column, "no" indicates that the number is unsigned and cannot be negative. "Yes" indicates that the number can be either negative or positive.

Table 3.1 SAS Informats and Byte Ordering

Platform for Which the Data Was Created	Platform the Data Is Read on	Signed Integer	Informat
big endian	big endian	yes	IB or S370FIB
big endian	big endian	no	PIB, S370FPIB, S370FIBU
big endian	little endian	yes	IBR
big endian	little endian	no	PIBR
little endian	big endian	yes	IBR
little endian	big endian	no	PIBR
little endian	little endian	yes	IB or IBR
little endian	little endian	no	PIB or PIBR
big endian	either	yes	S370FIB
big endian	either	no	S370FPIB
little endian	either	yes	IBR
little endian	either	no	PIBR

Integer Binary Notation in Different Programming Languages

The following table compares integer binary notation according to programming language.

Language	2 Bytes or 8-Bit Systems	4 Bytes or 16-Bit Systems	8 Bytes or 64-Bit Systems
SAS	IB2., IBR2., PIB2.,PIBR2., S370FIB2., S370FIBU2., S370FPIB2.	IB4., IBR4., PIB4., PIBR4., S370FIB4., S370FIBU4., S370FPIB4.	IB8., IBR8., PIB8., PIBR8., S370FIB8., S370FIBU8., S370FPIB8.
С	short	int	long *
Java	short	int	long *
Visual Basic 6.0	short	long*	none
Visual Basic.NET	short	integer	long *
PL/I	fixed bin(15)	fixed bin(31)	fixed bin(63)
Fortran	integer*2	integer*4	integer*8
COBOL	comp pic 9(4)	comp pic 9(8)	comp pic 9(16)
IBM assembler	Н	F	FD

^{*} The size of integers declared as long depends on the operating environment.

Working with Packed Decimal and Zoned Decimal Data

Definitions

Packed decimal

specifies a method of encoding decimal numbers by using each byte to represent two decimal digits. Packed decimal representation stores decimal data with exact precision. The fractional part of the number is determined by the informat or format because there is no separate mantissa and exponent.

An advantage of using packed decimal data is that exact precision can be maintained. However, computations involving decimal data might become inexact due to the lack of native instructions.

Zoned decimal

specifies a method of encoding decimal numbers in which each digit requires one byte of storage. The last byte contains the number's sign as well as the last digit. Zoned decimal data produces a printable representation.

Nibble

specifies 1/2 of a byte.

Types of Data

Packed Decimal Data

A packed decimal representation stores decimal digits in each "nibble" of a byte. Each byte has two nibbles, and each nibble is indicated by a hexadecimal character. For example, the value 15 is stored in two nibbles, using the hexadecimal characters 1 and 5.

The sign indication is dependent on your operating environment. On IBM mainframes, the sign is indicated by the last nibble. With formats, C indicates a positive value, and D indicates a negative value. With informats, A, C, E, and F indicate positive values, and B and D indicate negative values. Any other nibble is invalid for signed packed decimal data. In all other operating environments, the sign is indicated in its own byte. If the high-order bit is 1, then the number is negative. Otherwise, it is positive.

The following applies to packed decimal data representation:

- You can use the S370FPD format on all platforms to obtain the IBM mainframe configuration.
- You can have unsigned packed data with no sign indicator. The packed decimal format and informat handles the representation. It is consistent between ASCII and EBCDIC platforms.
- Note that the S370FPDU format and informat expects to have an F in the last nibble, while packed decimal expects no sign nibble.

Zoned Decimal Data

The following applies to zoned decimal data representation:

- A zoned decimal representation stores a decimal digit in the low order nibble of each byte. For all but the byte containing the sign, the high-order nibble is the numeric zone nibble (F on EBCDIC and 3 on ASCII).
- The sign can be merged into a byte with a digit, or it can be separate, depending on the representation. But the standard zoned decimal format and informat expects the sign to be merged into the last byte.
- The EBCDIC and ASCII zoned decimal formats produce the same printable representation of numbers. There are two nibbles per byte, each indicated by a hexadecimal character. For example, the value 15 is stored in two bytes. The first byte contains the hexadecimal value F1 and the second byte contains the hexadecimal value C5.

Packed Julian Dates

The following applies to packed Julian dates:

- The two formats and informats that handle Julian dates in packed decimal representation are PDJULI and PDJULG. PDJULI uses the IBM mainframe year computation, while PDJULG uses the Gregorian computation.
- The IBM mainframe computation considers 1900 to be the base year, and the year values in the data indicate the offset from 1900. For example, 98 means 1998, 100 means 2000, and 102 means 2002. 1998 would mean 3898.
- The Gregorian computation allows for 2-digit or 4-digit years. If you use 2-digit years, SAS uses the setting of the YEARCUTOFF= system option to determine the true year.

Platforms Supporting Packed Decimal and Zoned Decimal Data

Some platforms have native instructions to support packed and zoned decimal data, while others must use software to emulate the computations. For example, the IBM mainframe has an Add Pack instruction to add packed decimal data, but the Intel-based platforms have no such instruction and must convert the decimal data into some other format

Languages Supporting Packed Decimal and Zoned Decimal Data

Several languages support packed decimal and zoned decimal data. The following table shows how COBOL picture clauses correspond to SAS formats and informats.

IBM VS COBOL II Clauses	Corresponding S370Fxxx Formats and Informats
PIC S9(X) PACKED-DECIMAL	S370FPDw.
PIC 9(X) PACKED-DECIMAL	S370FPDUw.
PIC S9(W) DISPLAY	S370FZDw.
PIC 9(W) DISPLAY	S370FZDUw.
PIC S9(W) DISPLAY SIGN LEADING	S370FZDLw.
PIC S9(W) DISPLAY SIGN LEADING SEPARATE	S370FZDSw.
PIC S9(W) DISPLAY SIGN TRAILING SEPARATE	S370FZDTw.

For the packed decimal representation listed above, X indicates the number of digits represented, and W is the number of bytes. For PIC S9(X) PACKED-DECIMAL, W is ceil ((x+1)/2). For PIC 9(X) PACKED-DECIMAL, W is ceil (x/2). For example, PIC S9(5) PACKED-DECIMAL represents five digits. If a sign is included, six nibbles are needed. ceil((5+1)/2) has a length of three bytes, and the value of W is

Note that you can substitute COMP-3 for PACKED-DECIMAL.

In IBM assembly language, the P directive indicates packed decimal, and the Z directive indicates zoned decimal. The following shows an excerpt from an assembly language listing, showing the offset, the value, and the DC statement:

offset	value (in hex)	inst label	directive
+000000	00001C	2 PEX1	DC PL3'1'
+000003	00001D	3 PEX2	DC PL3'-1'
+000006	F0F0C1	4 ZEX1	DC ZL3'1'
+000009	F0F0D1	5 ZEX2	DC ZL3'1'

In PL/I, the FIXED DECIMAL attribute is used in conjunction with packed decimal data. You must use the PICTURE specification to represent zoned decimal data. There is no standardized representation of decimal data for the Fortran or the C languages.

Summary of Packed Decimal and Zoned Decimal Formats and **Informats**

SAS uses a group of formats and informats to handle packed and zoned decimal data. The following table lists the type of data representation for these formats and informats. Note that the formats and informats that begin with S370 refer to IBM mainframe representation.

Format	Data Type Representation	Corresponding Informat	Comments
PD	Packed decimal	PD	Local signed packed decimal
PK	Packed decimal	PK	Unsigned packed decimal; not specific to your operating environment
ZD	Zoned decimal	ZD	Local zoned decimal
none	Zoned decimal	ZDB	Translates EBCDIC blank (x'40') to EBCDIC zero (x'F0'), and then corresponds to the informat as zoned decimal
none	Zoned decimal	ZDV	Non-IBM zoned decimal representation
S370FPD	Packed decimal	S370FPD	Last nibble C (positive) or D (negative)
S370FPDU	Packed decimal	S370FPDU	Last nibble always F (positive)
S370FZD	Zoned decimal	S370FZD	Last byte contains sign in upper nibble: C (positive) or D (negative)
S370FZDU	Zoned decimal	S370FZDU	Unsigned; sign nibble always F
S370FZDL	Zoned decimal	S370FZDL	Sign nibble in first byte in informat; separate leading sign byte of x'C0' (positive) or x'D0' (negative) in format
S370FZDS	Zoned decimal	S370FZDS	Leading sign of - $(x'60')$ or + $(x'4E')$
S370FZDT	Zoned decimal	S370FZDT	Trailing sign of - $(x'60')$ or + $(x'4E')$

Format	Data Type Representation	Corresponding Informat	Comments
PDJULI	Packed decimal	PDJULI	Julian date in packed representation - IBM computation
PDJULG	Packed decimal	PDJULG	Julian date in packed representation - Gregorian computation
none	Packed decimal	RMFDUR	Input layout is: mmsstttF
none	Packed decimal	SHRSTAMP	Input layout is: yyyydddFhhmmssth, where yyyydddF is the packed Julian date; yyyy is a 0- based year from 1900
none	Packed decimal	SMFSTAMP	Input layout is: xxxxxxxyyyydddF, where yyyydddF is the packed Julian date; yyyy is a 0-based year from 1900
none	Packed decimal	PDTIME	Input layout is: 0hhmmssF
none	Packed decimal	RMFSTAMP	Input layout is: 0hhmmssFyyyydddF, where yyyydddF is the packed Julian date; yyyy is a 0-based year from 1900

Reading Dates and Times by Using the ISO 860 **Basic and Extended Notations**

ISO 8601 Formatting Symbols

The following list explains the formatting symbols that are used to notate the ISO 8601 dates, time, datetime, durations, and interval values:

- specifies a number that represents the number of years, months, or days
- indicates that the duration that follows is specified by the number of years, months, days, hours, minutes, and seconds
- indicates that a time value follows. Any value with a time must begin with T. **Requirement:** Time values that are read by the extended notation informats that begin with the characters E8601 must use an uppercase T.

W indicates that the duration is specified in weeks. \mathbf{Z} indicates that the time value is the time in Greenwich, England, or UTC time. +|the + indicates the time zone offset to the east of Greenwich, England. The indicates the time zone offset to the west of Greenwich, England. yyyy specifies a four-digit year as part of a date, specifies a two-digit month, 01–12 dd specifies a two-digit day, 01-1 hh specifies a two-digit hour, 00-24 mm as part of a time, specifies a two-digit minute, 00-59 SS specifies a two-digit second, 00-59 fff | ffffff specifies an optional fraction of a second using the digits 0–9: fffuse 1 - 3 digits for values read by the \$N8601B informat and the \$N8601E informat use 1 - 6 digits for informat other than the \$N8601B informat and the ffffff \$N8601E informat Y indicates that a year value proceeds this character in a duration M as part of a date, indicates that a month value proceeds this character in a duration indicates that a day value proceeds this character in a duration Н indicates that an hour value proceeds this character in a duration as part of a time, indicates that a minute value proceeds this character in a duration \mathbf{S}

Reading ISO 8601 Date, Time, and Datetime Values

SAS reads ISO 8601 dates, times, and datetimes using various informats, and the resulting values are SAS date, time, or datetime values. The following table shows different date, time, and datetime forms and the informats that you use to read them:

indicates that a seconds value proceeds this character in a duration

Date, Time, or Datetime	ISO 8601 Notation	Example	Informat
Basic Notations			
Date	YYYYMMDD	20120915	B8601DAw.
Time	hhmmssnnnnn	155300322348	B8601TMw.d
Time with time zone	hhmmss+ -hhmm	155300+0500	B8601TZw.d
	hhmmssZ	155300Z	B8601TZw.d
Convert to local time with time zone	hhmmss+ -hhmm	155300+0500	B8601TZw.d
Datetime	YYYYMMDDThhmmssn nnnnn	20120915T155300	B8601DTw.d
Datetime with timezone	YYYYMMDDThhmmss + -hhmm	20120915T155300+0 500	B8601DZw.d
	YYYYMMDDThhmmssZ	20120915T155300Z	B8601DZw.d
Read the date from a datetime	YYYYMMD	20120915	B8601DNw.
Extended Notations			
Date	YYYY-MM-DD	2012-09-15	E8601DAw.
Time	hh:mm:ss.nnnnn	15:53:00.322348	E8601TMw.d
Time with time zone	hh:mm:ss.nnnnnn+ - hh:mm	15:53:00+05:00	E8601TZw.d
Convert to local time with time zone	hh:mm:ss.nnnnnn+ - hh:mm	15:53:00+05:00	E8601LZw.d
Datetime	YYYY-MM- DDThh:mm:ss.nnnnn	2012-09-15T15:53:0 0	E8601DTw.d
Datetime with time zone	YYYY-MM- DDThh:mm:ss.nnnnnn+ - hh:mm	2012-09-15T15:53:0 0+05:00	E8601DZw.d
Read date from a datetime	YYYY-MM-DD	2012-09-15	E8601DNw.

When SAS reads an ISO 8601 value that specifies a time zone offset (+|-hh:mm or +|hhmm), the time or datetime value is adjusted to account for the offset. A SAS time or datetime value for an ISO 8601 value with a time zone offset is the time or datetime for the zero meridian (Greenwich, England). For example, if SAS reads the datetime 2011-09–15T15:53:00+05:00 using the E8601DZ informat, the datetime value 1631703180 has been adjusted for the five hour time zone difference. This datetime value is the

datetime value for the zero meridian. If you write this value using the E8601DZ format, the value is 2011–09–15T10:53:00+00:00. The hour specified after the T shows the five hour adjustment.

Reading ISO 8601 Duration, Interval, and Datetime Values

Informats That Read Duration, Interval, and Datetime Values

SAS uses two informats that reads ISO datetime, duration, and interval values.

\$N8601B informat

reads duration, interval, and datetime values that are specified in either the basic notation or the extended notation

\$N8601E informat

reads duration, interval, and datetime values that are specified only in the extended

Use the \$N8601E informat when you want to make sure that you are in compliance with the extended notation.

The datetime values that are read by these informats result in a SAS character representation. If you want a datetime value to be read as a numeric value, use the B8601DT informat, the B8601DZ informat, the E8601DT informat, or the E8601DZ informat.

Complete Duration, Interval, and Datetime Notations

The following table shows the formatting of duration, datetime, and interval values that can be read in the complete form:

Table 3.2 Complete Component Forms

Time Component	ISO 8601 Notation	Example
Duration - Basic Notation	PYYYYMMDDThhmmss	P20120915T155300
	-PYYYYMMDDThhmmss	-P20080915T155300
Duration - Extended Notation	PYYYY-MM-DDThh:mm:ss	P2012-09-15T15:53:00
	-PYYYY-MM- DDThh:mm:ss	-P2012-09-15T15:53:00
Duration - Basic and Extended Notation	PnYnMnDTnHnMnS	P2y10m14dT20h13m45s
	-PnYnMnDTnHnMnS	-P2n10m14dT20h13m45s
	PnW (weeks)	P6w
Interval - Basic Notation	YYYYMMDDThhmmss/ YYYYMMDDThhmmss	20120915T155300/20141113 T000000
	PnYnMnDTnHnMnS/ YYYYMMDDThhmmss	P2y10M14dT20h13m45s/ 20120915T155300

Time Component	ISO 8601 Notation	Example
	YYYYMMDDThhmmss/ PnYnMnDTnHnMnS	20120915T155300/ P2y10M14dT20h13m45s
Interval- Extended Notation	YYYY-MM-DDThh:mm:ss/ YYYY-MM-DDThh:mm:ss	2012-09-15T15:53:00/2014-1 1-13T00:00:00
	PnYnMnDTnHnMnS/ YYYY-MM-DDThh:mm:ss	P2y10M14dT20h13m45s/ 2012-09-15T15:53:00
	YYYY-MM-DDThh:mm:ss/ PnYnMnDTnHnMnS	2012-09-15T15:53:00/ P2y10M14dT20h13m45s
Datetime-Basic Notation	YYYYMMDDThhmmss.fff + -hhmm	20120915T155300
	(all blank)	
Datetime-Extended Notation	YYYY-MM- DDThh:mm:ss.fff+ -hhmm	2012-09-15T15:53:00 +04:30
	(all blank)	

Reading Omitted Components

One or more date or time components can be omitted from a datetime value or a duration value that is in the form Pyyyymmdd. SAS reads omitted components using the \$N8601B informat or the \$N8601E informat, and the omitted component must be represented by a hyphen (-).

The following examples show duration, datetime, and interval values with omitted components:

p0003-02--T10:31:33

The omitted component is the number of days.

-p0003-02-02T-:31:33

The omitted component is the number of hours.

x-09-15T15:x:x

The omitted components are the number of years, minutes, and seconds.

The omitted components are the minutes.

When reading values that contain a time zone offset, omitted components are not allowed. Use 00 in place of omitted components.

Truncated Values

SAS reads truncated duration, datetime, and interval values, where one or more lower order components is truncated because the value is 0 or the value is not significant.

The following list shows examples of truncated values:

- p00030202T1031
- 2012-09-15T15/2014-09-15T15:53

- -p0003-03-03T-:-:-
- P2y3m4dT5h6m
- 2012-09-xTx:x:x
- 2012

When reading values that contain a time zone offset, truncation is not allowed. Use 00 in place of truncated values.

Normalizing Duration Components

When a value for a duration component is greater than the largest standard value for a component, SAS normalizes the component except when the duration component is a single component. The following table shows examples of normalized duration components:

Duration	Extended Normalized Duration
p3y13m	p0004-01
pt24h24m65s	P01T-:25:05
p3y13mT24h61m	P0004-01-01T01:01
p0004-13	p0005-01
p0003-02-61T15:61:61	P0003-04-01T16:02:01
p13m	P13M

If a component contains the largest value, such as 60 for minutes or seconds, SAS normalizes the value and replaces the value with a hyphen. For example, pT12:60:13 becomes PT13:-:13.

Thirty days is used to normalize a month.

Dates and times in a datetime value that are greater than the standard value for the component are not normalized. They produce an error.

Fractions in Durations, Datetime, and Interval Values

Ending components can contain a fraction that consists of a period or a comma, followed by one to three digits. The following examples show the use of fractions in duration, datetime, and interval values:

- 201209.5
- P2012-09-15T10.33
- 2012-09-15/P0003-03-03,333

Chapter 4

Dictionary of Informats

Informats Documented in Other Publications	217
Informats by Category	217
Dictionary	224
\$ASCIIw. Informat	
\$BASE64Xw. Informat	
\$BINARYw. Informat	226
\$CBw. Informat	227
\$CHARw. Informat	228
\$CHARZBw. Informat	229
\$EBCDICw. Informat	230
\$HEXw. Informat	231
\$N8601Bw.d Informat	232
\$N8601Ew.d Informat	234
\$OCTALw. Informat	236
\$PHEXw. Informat	237
\$QUOTEw. Informat	238
\$UPCASEw. Informat	239
\$VARYINGw. Informat	239
\$w. Informat	241
ANYDTDTEw. Informat	
ANYDTDTMw. Informat	
ANYDTTMEw. Informat	
B8601CIw.d Informat	250
B8601DAw. Informat	252
B8601DJw.d Informat	253
B8601DNw. Informat	254
B8601DTw.d Informat	
B8601DZw.d Informat	
B8601TMw.d Informat	
B8601TZw.d Informat	259
BINARYw.d Informat	
BITSw.d Informat	
BZw.d Informat	
CBw.d Informat	
COMMAw.d Informat	265
COMMAXw.d Informat	266
DATEw. Informat	
DATETIMEw. Informat	
DDMMYYw. Informat	
Ew.d Informat	272

E8601DAw. Informat	272
E8601DNw. Informat	273
E8601DTw.d Informat	274
E8601DZw.d Informat	276
E8601LZw.d Informat	277
E8601TMw.d Informat	279
E8601TZw.d Informat	280
FLOATw.d Informat	282
HEXw. Informat	283
HHMMSSw. Informat	284
IBw.d Informat	286
IBRw.d Informat	287
IEEEw.d Informat	288
JULIANw. Informat	289
MDYAMPMw.d Informat	291
MMDDYYw. Informat	292
MONYYw. Informat	294
MSECw. Informat	295
NUMXw.d Informat	296
OCTALw.d Informat	297
PDw.d Informat	298
PDJULGw. Informat	300
PDJULIw. Informat	
PDTIMEw. Informat	
PERCENTw.d Informat	
PIBw.d Informat	
PIBRw.d Informat	
PKw.d Informat	
PUNCH.d Informat	
RBw.d Informat	
RMFDURw. Informat	311
RMFSTAMPw. Informat	
ROWw.d Informat	
S370FFw.d Informat	
S370FIBw.d Informat	
S370FIBUw.d Informat	
S370FPDw.d Informat	
S370FPDUw.d Informat	
S370FPIBw.d Informat	
S370FRBw.d Informat	322
S370FZDw.d Informat	323
S370FZDBw.d Informat	
S370FZDLw.d Informat	
S370FZDSw.d Informat	
S370FZDTw.d Informat	
S370FZDUw.d Informat	
SHRSTAMPw. Informat	
SMFSTAMPw. Informat	
STIMERw. Informat	
TIMEw. Informat	
TODSTAMPw. Informat	
TRAILSGNw. Informat	1
The same of the minute of the same of the	334
TUw Informat	
TUw. Informat	335
TUw. Informat VAXRBw.d Informat VMSZNw.d Informat	335336

WEEKUw. Informat	. 340
WEEKVw. Informat	
WEEKWw. Informat	343
YMDDTTMw.d Informat	. 345
YYMMDDw. Informat	. 347
YYMMNw. Informat	348
YYQw. Informat	. 350
ZDw.d Informat	351
ZDBw.d Informat	. 353
ZDVw.d Informat	. 353

Informats Documented in Other Publications

For informats that support national language, see Chapter 12, "Informat Entries," in SAS National Language Support (NLS): Reference Guide.

Informats by Category

There are five categories of informats in this list:

Category	Description
Character	instructs SAS to read character data values into character variables.
Column Binary	instructs SAS to read data stored in column-binary or multipunched form into character or numeric variables.
Date and Time	instructs SAS to read date values into variables that represent dates, times, and datetimes.
ISO 8601	instructs SAS to read date, time, and datetime values that are written in the ISO 8601 standard into either numeric or character variables.
Numeric	instructs SAS to read numeric data values into numeric variables.

For information about column-binary data, see "Reading Column-Binary Data" in Chapter 19 of SAS Language Reference: Concepts. For information about creating userdefined informats, see Chapter 23, "FORMAT Procedure" in Base SAS Procedures Guide.

The following table provides brief descriptions of the SAS informats. For more detailed descriptions, see the dictionary entry for each informat.

Category	Language Elements	Description
Character	\$ASCIIw. Informat (p. 224)	Converts ASCII character data to native format.
	\$BASE64Xw. Informat (p. 225)	Converts ASCII text into character data by using Base 64 encoding.

Category	Language Elements	Description	
	\$BINARYw. Informat (p. 226)	Converts binary data to character data.	
	\$CHARw. Informat (p. 228)	Reads character data with blanks.	
	\$CHARZBw. Informat (p. 229)	Converts binary 0s to blanks.	
	\$EBCDICw. Informat (p. 230)	Converts EBCDIC character data to native format.	
	\$HEXw. Informat (p. 231)	Converts hexadecimal data to character data.	
	\$OCTALw. Informat (p. 236)	Converts octal data to character data.	
	\$PHEXw. Informat (p. 237)	Converts packed hexadecimal data to character data.	
	\$QUOTEw. Informat (p. 238)	Removes matching quotation marks from character data.	
	\$UPCASEw. Informat (p. 239)	Converts character data to uppercase.	
	\$VARYINGw. Informat (p. 239)	Reads character data of varying length.	
	\$w. Informat (p. 241)	Reads standard character data.	
Column Binary	\$CBw. Informat (p. 227)	Reads standard character data from column-binary files.	
	CBw.d Informat (p. 264)	Reads standard numeric values from column-binary files.	
	PUNCH.d Informat (p. 308)	Reads whether a row of column-binary data is punched.	
	ROWw.d Informat (p. 313)	Reads a column-binary field down a card column.	
Date and Time	\$N8601Bw.d Informat (p. 232)	Reads complete, truncated, and omitted forms of ISO 8601 duration, datetime, and interval values that are specified in either the basic or extended notations.	
	\$N8601Ew.d Informat (p. 234)	Reads ISO 8601 duration, datetime, and interval values that are specified in the extended notation.	
	ANYDTDTEw. Informat (p. 242)	Reads and extracts the date value from various date, time, and datetime forms.	
	ANYDTDTMw. Informat (p. 245)	Reads and extracts datetime values from various date, time, and datetime forms.	
	ANYDTTMEw. Informat (p. 248)	Reads and extracts time values from various date, time, and datetime forms.	
	B8601CIw.d Informat (p. 250)	Reads an IBM date and time value that includes a century marker, in the form cyymmddhhmmss <fff>.</fff>	
	B8601DAw. Informat (p. 252)	Reads date values that are specified using the ISO 8601 base notation yyyymmdd.	

Category	Language Elements	Description
	B8601DJw.d Informat (p. 253)	Reads a Java date and time value that is in the form yyyymmddhhmmss <ffffff>.</ffffff>
	B8601DNw. Informat (p. 254)	Reads date values that are specified using the ISO 8601 basic notation yyyymmdd and returns SAS datetime values where the time portion of the value is 000000.
	B8601DTw.d Informat (p. 255)	Reads datetime values that are specified using the ISO 8601 basic notation yyyymmddThhmmss <ffffff>.</ffffff>
	B8601DZw.d Informat (p. 257)	Reads Coordinated Universal Time (UTC) datetime values that are specified using the ISO 8601 datetime basic notation yyyymmddThhmmss+ -hhmm or yyyymmddThhmmss <ffffff>Z.</ffffff>
	B8601TMw.d Informat (p. 258)	Reads time values that are specified using the ISO 8601 basic notation hhmmss <ffffff>.</ffffff>
	B8601TZw.d Informat (p. 259)	Reads time values that are specified using the ISO 8601 basic time notation hhmmss <fffff>+ -hhmm or hhmmss<ffffff>Z.</ffffff></fffff>
	DATEw. Informat (p. 267)	Reads date values in the form ddmmmyy or ddmmmyyyy.
	DATETIMEw. Informat (p. 268)	Reads datetime values in the form ddmmmyy hh:mm:ss.ss or ddmmmyyyy hh:mm:ss.ss.
	DDMMYYw. Informat (p. 270)	Reads date values in the form ddmmyy <yy> or dd-mm-yy<yy>, where a special character, such as a hyphen (-), period (.), or slash (/), separates the day, month, and year; the year can be either 2 or 4 digits.</yy></yy>
	E8601DAw. Informat (p. 272)	Reads date values that are specified using the ISO 8601 extended notation yyyy-mm-dd.
	E8601DNw. Informat (p. 273)	Reads date values that are specified using the ISO 8601 extended notation yyyy-mm-dd and returns SAS datetime values where the time portion of the value is 000000.
	E8601DTw.d Informat (p. 274)	Reads datetime values that are specified using the ISO 8601 extended notation yyyy-mm-ddThh:mm:ss. <ffffff>.</ffffff>
	E8601DZw.d Informat (p. 276)	Reads Coordinated Universal Time (UTC) datetime values that are specified using the ISO 8601 datetime extended notation yyyymm-ddThh:mm:ss+ -hh:mm. <fffff> or yyyy-mm-ddThh:mm:ss.<fffff>Z.</fffff></fffff>
	E8601LZw.d Informat (p. 277)	Reads Coordinated Universal Time (UTC) values that are specified using the ISO 8601 extended notation hh:mm:ss+ -hh:mm. <fffff> or hh:mm:ss.<fffff>Z and converts the values to the local time.</fffff></fffff>
	E8601TMw.d Informat (p. 279)	Reads time values that are specified using the ISO 8601 extended notation hh:mm:ss. <ffffff>.</ffffff>

Category	Language Elements	Description
	E8601TZw.d Informat (p. 280)	Reads time values that are specified using the ISO 8601 extended time notation hh:mm:ss+ -hh:mm. <ffffff> or hh:mm:ssZ.</ffffff>
	HHMMSSw. Informat (p. 284)	Reads hours, minutes, and seconds in the form hh:mm:ss or hhmmss.
	JULIANw. Informat (p. 289)	Reads Julian dates in the form yyddd or yyyyddd.
	MDYAMPMw.d Informat (p. 291)	Reads datetime values in the form mm-dd-yy <yy> hh:mm:ss.ss AM PM, where a special character such as a hyphen (-), period (.), slash (/), or colon (:) separates the month, day, and year; the year can be either 2 or 4 digits.</yy>
	MMDDYYw. Informat (p. 292)	Reads date values in the form mmddyy or mmddyyyy.
	MONYYw. Informat (p. 294)	Reads month and year date values in the form mmmyy or mmmyyyy.
	MSECw. Informat (p. 295)	Reads TIME MIC values.
	PDJULGw. Informat (p. 300)	Reads packed Julian date values in the hexadecimal form yyyydddF for IBM.
	PDJULIw. Informat (p. 301)	Reads packed Julian dates in the hexadecimal format ccyydddF for IBM.
	PDTIMEw. Informat (p. 302)	Reads packed decimal time of SMF and RMF records.
	RMFDURw. Informat (p. 311)	Reads duration intervals of RMF records.
	RMFSTAMPw. Informat (p. 312)	Reads time and date fields of RMF records.
	SHRSTAMPw. Informat (p. 329)	Reads date and time values of SHR records.
	SMFSTAMPw. Informat (p. 330)	Reads time and date values of SMF records.
	STIMERw. Informat (p. 331)	Reads time values and determines whether the values are hours, minutes, or seconds; reads the output of the STIMER system option.
	TIMEw. Informat (p. 332)	Reads hours, minutes, and seconds in the form hh:mm:ss.ss, where special characters such as the colon (:) or the period (.) are used to separate the hours, minutes, and seconds.
	TODSTAMPw. Informat (p. 334)	Reads an eight-byte time-of-day stamp.
	TUw. Informat (p. 335)	Reads timer units.

Category	Language Elements	Description
	WEEKUw. Informat (p. 340)	Reads a value in the form of a week-number within the year and returns a SAS date value by using the U algorithm.
	WEEKVw. Informat (p. 341)	Reads a value in the form a week-number within a year and returns a SAS date value using the V algorithm.
	WEEKWw. Informat (p. 343)	Reads a value in the form of a week-number within the year and returns a SAS date value using the W algorithm.
	YMDDTTMw.d Informat (p. 345)	Reads datetime values in the form <yy>yy-mm-dd hh:mm:ss.ss, where special characters such as a hyphen (-), period (.), slash (/), or colon (:) are used to separate the year, month, day, hour, minute, and seconds; the year can be either 2 or 4 digits.</yy>
	YYMMDDw. Informat (p. 347)	Reads date values in the form yymmdd or yyyymmdd.
	YYMMNw. Informat (p. 348)	Reads date values in the form yyyymm or yymm.
	YYQw. Informat (p. 350)	Reads quarters of the year in the form yyQq or yyyyQq.
ISO 8601	\$N8601Bw.d Informat (p. 232)	Reads complete, truncated, and omitted forms of ISO 8601 duration, datetime, and interval values that are specified in either the basic or extended notations.
	\$N8601Ew.d Informat (p. 234)	Reads ISO 8601 duration, datetime, and interval values that are specified in the extended notation.
	B8601CIw.d Informat (p. 250)	Reads an IBM date and time value that includes a century marker, in the form cyymmddhhmmss <fff>.</fff>
	B8601DAw. Informat (p. 252)	Reads date values that are specified using the ISO 8601 base notation yyyymmdd.
	B8601DJw.d Informat (p. 253)	Reads a Java date and time value that is in the form yyyymmddhhmmss <ffffff>.</ffffff>
	B8601DNw. Informat (p. 254)	Reads date values that are specified using the ISO 8601 basic notation yyyymmdd and returns SAS datetime values where the time portion of the value is 000000.
	B8601DTw.d Informat (p. 255)	Reads datetime values that are specified using the ISO 8601 basic notation yyyymmddThhmmss <ffffff>.</ffffff>
	B8601DZw.d Informat (p. 257)	Reads Coordinated Universal Time (UTC) datetime values that are specified using the ISO 8601 datetime basic notation yyyymmddThhmmss+ -hhmm or yyyymmddThhmmss <ffffff>Z.</ffffff>
	B8601TMw.d Informat (p. 258)	Reads time values that are specified using the ISO 8601 basic notation hhmmss <ffffff>.</ffffff>
	B8601TZw.d Informat (p. 259)	Reads time values that are specified using the ISO 8601 basic time notation hhmmss <ffff5+ -hhmm hhmmss<fffff5-z.<="" or="" td=""></ffff5+ -hhmm>

Category	Language Elements	Description
	E8601DAw. Informat (p. 272)	Reads date values that are specified using the ISO 8601 extended notation yyyy-mm-dd.
	E8601DNw. Informat (p. 273)	Reads date values that are specified using the ISO 8601 extended notation yyyy-mm-dd and returns SAS datetime values where the time portion of the value is 000000.
	E8601DTw.d Informat (p. 274)	Reads datetime values that are specified using the ISO 8601 extended notation yyyy-mm-ddThh:mm:ss. <ffffff>.</ffffff>
	E8601DZw.d Informat (p. 276)	Reads Coordinated Universal Time (UTC) datetime values that are specified using the ISO 8601 datetime extended notation yyyymm-ddThh:mm:ss+ -hh:mm. <fffff> or yyyy-mm-ddThh:mm:ss.<fffff>Z.</fffff></fffff>
	E8601LZw.d Informat (p. 277)	Reads Coordinated Universal Time (UTC) values that are specified using the ISO 8601 extended notation hh:mm:ss+ -hh:mm. <fffff> or hh:mm:ss.<fffff>Z and converts the values to the local time.</fffff></fffff>
	E8601TMw.d Informat (p. 279)	Reads time values that are specified using the ISO 8601 extended notation hh:mm:ss. <ffffff>.</ffffff>
	E8601TZw.d Informat (p. 280)	Reads time values that are specified using the ISO 8601 extended time notation hh:mm:ss+ -hh:mm. <fffffff> or hh:mm:ssZ.</fffffff>
Numeric	BINARYw.d Informat (p. 261)	Converts positive binary values to integers.
	BITSw.d Informat (p. 262)	Extracts bits.
	BZw.d Informat (p. 263)	Converts blanks to 0s.
	COMMAw.d Informat (p. 265)	Removes embedded characters.
	COMMAXw.d Informat (p. 266)	Removes embedded periods, blanks, dollar signs, percent signs, dashes, and closing parenthesis from the input data. An open parenthesis at the beginning of a field is converted to a minus sign. The COMMAX informat reverses the roles of the decimal point and the comma.
	Ew.d Informat (p. 272)	Reads numeric values that are stored in scientific notation and double-precision scientific notation.
	FLOATw.d Informat (p. 282)	Reads a native single-precision, floating-point value and divides it by 10 raised to the dth power.
	HEXw. Informat (p. 283)	Converts hexadecimal positive binary values to either integer (fixed-point) or real (floating-point) binary values.
	IBw.d Informat (p. 286)	Reads native integer binary (fixed-point) values, including negative values.
	IBRw.d Informat (p. 287)	Reads integer binary (fixed-point) values in Intel and DEC formats.

Category	Language Elements	Description
	IEEEw.d Informat (p. 288)	Reads an IEEE floating-point value and divides it by 10 raised to the d th power.
	NUMXw.d Informat (p. 296)	Reads numeric values with a comma in place of the decimal point.
	OCTALw.d Informat (p. 297)	Converts positive octal values to integers.
	PDw.d Informat (p. 298)	Reads data that are stored in IBM packed decimal format.
	PERCENTw.d Informat (p. 303)	Reads percentages as numeric values.
	PIBw.d Informat (p. 304)	Reads positive integer binary (fixed-point) values.
	PIBRw.d Informat (p. 306)	Reads positive integer binary (fixed-point) values in Intel and DEC formats.
	PKw.d Informat (p. 307)	Reads unsigned packed decimal data.
	RBw.d Informat (p. 309)	Reads numeric data that are stored in real binary (floating-point) notation.
	S370FFw.d Informat (p. 315)	Reads EBCDIC numeric data.
	S370FIBw.d Informat (p. 316)	Reads integer binary (fixed-point) values, including negative values, in IBM mainframe format.
	S370FIBUw.d Informat (p. 317)	Reads unsigned integer binary (fixed-point) values in IBM mainframe format.
	S370FPDw.d Informat (p. 318)	Reads packed data in IBM mainframe format.
	S370FPDUw.d Informat (p. 319)	Reads unsigned packed decimal data in IBM mainframe format.
	S370FPIBw.d Informat (p. 320)	Reads positive integer binary (fixed-point) values in IBM mainframe format.
	S370FRBw.d Informat (p. 322)	Reads real binary (floating-point) data in IBM mainframe format.
	S370FZDw.d Informat (p. 323)	Reads zoned decimal data in IBM mainframe format.
	S370FZDBw.d Informat (p. 324)	Reads zoned decimal data in which zeros have been left blank.
	S370FZDLw.d Informat (p. 325)	Reads zoned decimal leading-sign data in IBM mainframe format.
	S370FZDSw.d Informat (p. 326)	Reads zoned decimal separate leading-sign data in IBM mainframe format.
	S370FZDTw.d Informat (p. 327)	Reads zoned decimal separate trailing-sign data in IBM mainframe format.

Category	Language Elements	Description
	S370FZDUw.d Informat (p. 328)	Reads unsigned zoned decimal data in IBM mainframe format.
	TRAILSGNw. Informat (p. 334)	Reads a trailing plus (+) or minus (-) sign.
	VAXRBw.d Informat (p. 336)	Reads real binary (floating-point) data in VMS format.
	VMSZNw.d Informat (p. 337)	Reads VMS and MicroFocus COBOL zoned numeric data.
	w.d Informat (p. 338)	Reads standard numeric data.
	ZDw.d Informat (p. 351)	Reads zoned decimal data.
	ZDBw.d Informat (p. 353)	Reads zoned decimal data in which zeros have been left blank.
	ZDVw.d Informat (p. 353)	Reads and validates zoned decimal data.

Dictionary

\$ASCIIw. Informat

Converts ASCII character data to native format.

Category: Character

Syntax

\$ASCIIw.

Syntax Description

w

specifies the width of the input field.

Default: 1 if the length of the variable is undefined. Otherwise, the default is the length of the variable.

Range: 1-32767

Details

If ASCII is the native format, no conversion occurs.

Comparisons

- On an IBM mainframe system, \$ASCIIw. converts ASCII data to EBCDIC.
- On all other systems, \$ASCIIw. behaves like the \$CHARw. informat except that the default length is different.

Example

input @1 name \$ascii3.;

Data Line	Result *	
1	EBCDIC	ASCII
abc	818283	616263
ABC	C1C2C3	414243
();	4D5D5E	28293B

^{*} The results are hexadecimal representations of codes for characters. Each two hexadecimal characters correspond to one byte of binary data, and each byte corresponds to one character value.

\$BASE64Xw. Informat

Converts ASCII text into character data by using Base 64 encoding.

Category: Character

Alignment: left

Syntax

\$BASE64Xw.

Syntax Description

specifies the width of the input field.

Default: 1

Range: 1–32767

Details

Base 64 is an industry encoding method whose encoded characters are determined by using a positional scheme that uses only ASCII characters. Several Base 64 encoding schemes have been defined by the industry for specific uses, such as e-mail or content masking. SAS maps positions 0–61 to the characters A–Z, a–z, and 0–9. Position 62 maps to the character +, and position 63 maps to the character /.

The following are some uses of Base 64 encoding:

- embed binary data in an XML file
- encode passwords
- encode URLs

The '=' character in the encoded results indicates that the results have been padded with zero bits. In order for the encoded characters to be decoded, the '=' must be included in the value to be decoded.

Example

input @1 b64exmpl \$base64x64.;

Data Line	Result
RkNBMDFBNzk5M0JD	FCA01A7993BC
TXIQYXNzd29yZA==	MyPassword
d3d3Lm15ZG9tYWluLmNvbi9teWhpZGRlblVSTA==	www.mydomain.com/ myhiddenURL

See Also

The XMLDOUBLE option of the "LIBNAME Statement Syntax" in SAS XML LIBNAME Engine: User's Guide

Formats:

"\$BASE64Xw. Format" on page 34

\$BINARYw. Informat

Converts binary data to character data.

Category: Character

Syntax

\$BINARYw.

Syntax Description

specifies the width of the input field. Because eight bits of binary information represent one character, every eight characters of input that \$BINARYw. reads becomes one character value stored in a variable.

If w < 8, \$BINARYw. reads the data as w characters followed by 0s. Thus, \$BINARY4. reads the characters 0101 as 01010000, which converts to an EBCDIC & or an ASCII P. If w > 8 but is not a multiple of 8, \$BINARYw. reads up to the largest multiple of 8 that is less than w before converting the data.

Default: 8 Range: 1-32767

Details

The \$BINARYw. informat does not interpret actual binary data, but it converts a string of characters that contains only 0s or 1s as if it is actual binary information. Therefore, use only the character digits 1 and 0 in the input, with no embedded blanks. \$BINARYw. ignores leading and trailing blanks.

To read representations of binary codes for unprintable characters, enter an ASCII or EBCDIC equivalent for a particular character as a string of 0s and 1s. The \$BINARYw. informat converts the string to its equivalent character value.

Comparisons

- The BINARYw. informat reads eight characters of input that contain only 0s or 1s as a binary representation of one byte of numeric data.
- The \$HEXw. informat reads hexadecimal characters that represent the ASCII or EBCDIC equivalent of character data.

Example

input @1 name \$binary16.;

Data Line	Result	
+2	ASCII	EBCDIC
0100110001001101	LM	< (

\$CBw. Informat

Reads standard character data from column-binary files.

Category: Column Binary

Syntax

\$CBw.

Syntax Description

specifies the width of the input field.

Default: none Range: 1-32767

Details

Column-binary data storage compresses data so that more than 80 items of data can be stored on a single "virtual" punch card.

The \$CBw. informat reads standard character data from column-binary files, with each card column represented in two bytes. The \$CBw. informat translates the data into standard character codes. If the combinations are invalid punch codes, SAS returns blanks and sets the automatic variable ERROR to 1.

Example

```
input @1 name $cb2.;
```

Data Line *	Result	
1	EBCDIC	ASCII
200A	+	N

^{*} The data line is a hexadecimal representation of the column binary. The "virtual" punch card column for the example data has row 12, row 6, and row 8 punched. The binary representation is 0010 0000 0000 1010.

See Also

 "How to Read Column-Binary Data" in Chapter 19 of SAS Language Reference: Concepts

Informats:

- "CBw.d Informat" on page 264
- "PUNCH.d Informat" on page 308
- "ROWw.d Informat" on page 313

\$CHARw. Informat

Reads character data with blanks.

Category: Character

Syntax

\$CHARw.

Syntax Description

w

specifies the width of the input field.

Default: 8 if the length of the variable is undefined. Otherwise, the default is the

length of the variable

Range: 1–32767

Details

The \$CHARw. informat does not trim leading and trailing blanks or convert a single period in the input data field to a blank before storing values. If you use \$CHARw. in an INFORMAT or ATTRIB statement within a DATA step to read list input, then by default SAS interprets any blank embedded within data as a field delimiter, including leading blanks.

Comparisons

• The \$CHARw. informat is almost identical to the \$w. informat. However \$CHARw. does not trim leading blanks or convert a single period in the input data field to a blank, while the \$w. informat does.

Use the table below to compare the SAS informat \$CHAR8. with notation in other programming languages:

Language	Character Notation
SAS	\$CHAR8.
IBM 370 assembler	CL8
С	char [8]
COBOL	PIC x(8)
Fortran	A8
PL/I	CHAR(8)

Example

input @1 name \$char5.;

Data Line	Result *
+	
XYZ	XYZ##
XYZ	#XYZ#
	##.##
X YZ	#X#YZ

^{*} The character # represents a blank space.

\$CHARZBw. Informat

Converts binary 0s to blanks.

Category: Character

Syntax

\$CHARZBw.

Syntax Description

specifies the width of the input field.

Default: 1 if the length of the variable is undefined. Otherwise, the default is the length of the variable.

Range: 1-32767

Details

The \$CHARZBw. informat does not trim leading and trailing blanks in character data before it stores values.

Comparisons

The \$CHARZBw. informat is identical to the \$CHARw. informat except that \$CHARZBw. converts any byte that contains a binary 0 to a blank character.

Example

input @1 name \$charzb5.;

Data Line *		Result **
EBCDIC	ASCII	
E7E8E90000	58595A0000	XYZ##
00E7E8E900	0058595A00	#XYZ#
00E700E8E9	005800595A	#X#YZ

^{*} The data lines are hexadecimal representations of codes for characters. Each two hexadecimal characters correspond to one byte of binary data, and each byte corresponds to one character.

\$EBCDICw. Informat

Converts EBCDIC character data to native format.

Category: Character

Syntax

\$EBCDICw.

Syntax Description

w

specifies the width of the input field.

Default: 1 if the length of the variable is undefined. Otherwise, the default is the length of the variable.

Range: 1–32767

^{**} The character # represents a blank space.

Details

If EBCDIC is the native format, no conversion occurs.

Note: Any time a text file originates from anywhere other than the local encoding environment, it might be necessary to specify the ENCODING= option on either ASCII or EBCDIC environments. When that you read an EBCDIC text file on an ASCII platform, it is recommended that you specify the ENCODING= option in the FILENAME or INFILE statement. However, if you use the DSD and the DLM= or DLMSTR= options in the FILENAME or INFILE statement, the ENCODING= option is a requirement because these options require certain characters in the session encoding (for example, quotation marks, commas, and blanks). The use of encodingspecific informats should be reserved for use with true binary files. That is, they contain both character and non-character fields.

Comparisons

- On an IBM mainframe system, \$EBCDICw. behaves like the \$CHARw, informat.
- On all other systems, \$EBCDICw. converts EBCDIC data to ASCII.

Example

input @1 name \$ebcdic3.

Data Line	Result *	
1	ASCII	EBCDIC
qrs	717273	9899A2
QRS	515253	D8D9E2
+;>	2B3B3E	4E5E6E

^{*} The results are hexadecimal representations of codes for characters. Each two hexadecimal characters correspond to one byte of binary data, and each byte corresponds to one character value.

\$HEXw. Informat

Converts hexadecimal data to character data.

Category: Character

See:

"\$HEXw. Informat: UNIX" in SAS Companion for UNIX Environments

"\$HEXw. Informat: Windows" in SAS Companion for Windows

Syntax 5 4 1

\$HEXw.

Syntax Description

w

specifies the number of digits of hexadecimal data.

If *w*=1, \$HEX*w*. pads a trailing hexadecimal 0. If *w* is an odd number that is greater than 1, then \$HEX*w*. reads *w*-1 hexadecimal characters.

Default: 2 **Range:** 1–32767

Details

The \$HEXw. informat converts every two digits of hexadecimal data into one byte of character data. Use \$HEXw. to encode hexadecimal values into a character variable when your input method is limited to printable characters.

Comparisons

The HEXw. informat reads two digits of hexadecimal data at a time and converts them into one byte of numeric data.

Example

input @1 name \$hex4.;

Data Line	Result	
1	ASCII	EBCDIC
6C6C	11	%%

\$N8601Bw.d Informat

Reads complete, truncated, and omitted forms of ISO 8601 duration, datetime, and interval values that are specified in either the basic or extended notations.

Categories: Date and Time

ISO 8601

Alignment: left

Restriction: UTC time zone offset values are not supported.

Supports: ISO 8601 Element 5.4.4, complete representation

Syntax

\$N8601Bw.d

Syntax Description

W

specifies the width of the input field.

Default: 50 Range: 1-200

Requirement: The minimum length for a duration value or a datetime value is 16.

The minimum length for an interval value is 16.

d

specifies the number of digits to the right of the decimal point in the seconds value. This argument is optional.

Default: 0 Range: 0-3

Details

The \$N8601B informat reads ISO 8601 duration, interval, and datetime values as character data for the following basic notations:

Time Component	ISO 8601 Notation	Example
Duration	Pyyyy-mm-ddThh:mm:ss.fff	P2012-09-15T15:53:00
	PyyyymmddThhmmss	P00020304T050607
	PnYnMnDTnHnMn.fffS	P2y10m14dT20h13m45.222s
	PnW	P6w
Interval	yyyy-mm-ddThh:mm:ss.fff/ yyyy-mm-ddThh:mm:ss.fff	2012-09-15T15:53:00/2014-1 1-13T00:00:00
	yyyymmddThhmmss.fff/ yyyymmddThhmmss.fff	20120915T155300/20141115 T120000
	PnYnMnDTnHnMn.fffS/ yyyy-mm-ddThh:mm:ss.fff	P2y10M14dT20h13m45s/ 2012-09-15T15:53:00
	yyyy-mm-ddThh:mm:ss.fff/ PnYnMnDTnHnMn.fffS	2012-09-15T15:53:00/ P2y10M14dT20h13m45s
Datetime	yyyy-mm-ddThh:mm:ss.fff	2012-09-15T15:53:00
	yyyymmddThhmmss.fff	20120915T155300

The \$N8601B informat also reads ISO 8601 duration, interval, and datetime components that contain omitted or truncated components. Omitted components must use a single hyphen (-) to represent the component.

Comparisons

The \$N8601B informat reads durations, intervals, and datetimes that are specified in either the basic or extended notation.

The \$N8601E informat reads durations, intervals, and datetimes that are specified only in the extended notation. Use the \$N8601E informat when you need to ensure compliance with the extended notation.

Example

input @1 i860 \$n8601b.;

Data Line	Result
p0002-04-05t5:1:12	0002405050112FFC
2012-09-15T15:53:00/2010-09-15T00:00:00	2012915155300FFD2010915000000FFD
p0033-01-04T3:2:55/2012-09-15T15:53:00	0033104030255FFC2012915155300FFD

See Also

"Reading Dates and Times by Using the ISO 860 Basic and Extended Notations" on page 209

\$N8601Ew.d Informat

Reads ISO 8601 duration, datetime, and interval values that are specified in the extended notation.

Categories: Date and Time

ISO 8601

Alignment: left

Restriction: UTC time zone offset values are not supported.

Supports: ISO 8601 Element 5.4.4, complete representation

Syntax

\$N8601Ew.d

Syntax Description

specifies the width of the input field.

Default: 50 **Range:** 1-200

Requirement: The minimum length for a duration value or a datetime value is 16. The minimum length for an interval value is 16.

d

specifies the number of digits to the right of the decimal point in the seconds value. This argument is optional.

Default: 0 Range: 0-3

Details

The \$N8601E informat reads ISO 8601 duration, interval, and datetime values that can be specified in the following extended notations:

Time Component	ISO 8601 Notation	Example
Duration	Pyyyy-mm-ddThh:mm:ss.fff	P2012-09-15T15:53:00
	PnW	P6w
Interval	yyyy-mm-ddThh:mm:ss.fff/ yyyy-mm-ddThh:mm:ss.fff	2012-09-15T15:53:00/2014-1 1-13T00:00:00
	yyyy-mm-ddThh:mm:ss.fff/ PnYnMnDTnHnMns.fffS	2012-09-15T15:53:00/ P2Y10M14DT20H13M45S
Datetime	yyyy-mm-ddThh:mm:ss.fff	2012-09-15T15:53:00

specifies a number that represents the number of years, months, or days.

P is the character that is used to indicate that the duration that follows is specified by the number of years, months, days, hours, minutes, and seconds.

is the character that is used to designate that the duration is specified in weeks.

T is the character that is used to designate that a time value follows. If all time values are 0, T is not required.

in an interval, is used to separate the beginning and ending datetime values.

уууу

specifies a four-digit year.

mm

specifies a two-digit month between 01 and 12.

dd

specifies a two-digit day between 01 and 31.

hh

specifies a two-digit hour between 00 and 23.

specifies a two-digit minute between 00 and 59.

specifies a two-digit second between 00 and 59.

specifies an optional fraction of a second with a precision of up to three digits, where each digit is between 0 and 9.

is the character that is used to designate years in a duration.

M is the character that is used to designate months in a duration.

D is the character that is used to designate days in a duration. Η

is the character that is used to designate hours in a duration.

M

is the character that is used to designate minutes in a duration.

S

is the character that is used to designate seconds in a duration.

Comparisons

The \$N8601E informat reads valid durations, intervals, and datetimes that are specified only in the extended notation.

The \$N8601B informat reads valid durations, intervals, and datetimes that are specified in either the basic or extended notation.

Use the \$N8601E informat when you need to ensure compliance with the extended notation.

Example

input @1 i860 \$n8601e.;

Data Line	Result
p0002-04-05t5:1:12s	0002405050112FFC
2012-09-15T15:53:00/2014-09-15T00:00:00	2012915155300FFD2014915000000FFD
p0033-01-04T3:2:55/2012-09-15T15:53:00	0033104030255FFC2012915155300FFD

See Also

"Reading Dates and Times by Using the ISO 860 Basic and Extended Notations" on page 209

\$OCTALw. Informat

Converts octal data to character data.

Category:

Character

Syntax

\$OCTALw.

Syntax Description

n

specifies the width of the input field in bits. Because one digit of octal data represents three bits of binary information, increment the value of w by three for every column of octal data that \$OCTALw. will read.

Default: 3

Range: 1-32767

Details

Eight bits of binary data represent the code for one digit of character data. Therefore, you need at least three digits of octal data to represent one digit of character data, which includes an extra bit. \$OCTALw. treats every three digits of octal data as one digit of character data, ignoring the extra bit.

Use \$OCTALw. to read octal representations of binary codes for unprintable characters. Enter an ASCII or EBCDIC equivalent for a particular character in octal notation. Then use \$OCTALw. to convert it to its equivalent character value.

Use only the digits 0 through 7 in the input, with no embedded blanks. \$OCTALw. ignores leading and trailing blanks.

Comparisons

The OCTALw, informat reads octal data and converts them into the numeric equivalents.

Example

input @1 name \$octal9.;

Data Line	Result	
+	EBCDIC	ASCII
114	<	L

\$PHEXw. Informat

Converts packed hexadecimal data to character data.

Category: Character

Syntax

\$PHEXw.

Syntax Description

specifies the number of bytes in the input.

When you use \$PHEXw. to read packed hexadecimal data, the length of the variable is the number of bytes that are required to store the resulting character value, not w. In general, a character variable whose length is implicitly defined with \$PHEXw. has a length of 2w-1.

Default: 2 Range: 1-32767

Details

Packed hexadecimal data are like packed decimal data, except that all hexadecimal characters are valid. In packed hexadecimal data, the value of the low-order nibble has no meaning. In packed decimal data, the value of the low-order nibble indicates the sign of the numeric value that the data represent. The \$PHEXw. informat returns a character value and treats the value of the sign nibble as if it were X'F', regardless of its actual value.

Comparisons

The PDw.d. informat reads packed decimal data and converts them to numeric data.

Example

input @1 devaddr \$phex2.;

Data Line *	Result
0001111000001111	1E0

^{*} The data line represents two bytes of actual binary data, with each half byte corresponding to a single hexadecimal digit. The equivalent hexadecimal representation for the data line is 1E0F.

\$QUOTE*w*. Informat

Removes matching quotation marks from character data.

Category: Character

Syntax

\$QUOTEw.

Syntax Description

w

specifies the width of the input field.

Default: 8 if the length of the variable is undefined. Otherwise, the default is the length of the variable.

Range: 1-32767

Example

input @1 name \$quote7.;

Data Line	Result
+	
'SAS'	SAS

Data Line	Result
"SAS"	SAS
"SAS's"	SAS's

\$UPCASEw. Informat

Converts character data to uppercase.

Category: Character

Syntax

\$UPCASEw.

Syntax Description

specifies the width of the input field.

Default: 8 if the length of the variable is undefined. Otherwise, the default is the length of the variable.

Range: 1-32767

Details

Special characters, such as hyphens, are not altered.

Example

input @1 name \$upcase3.;

Data Line	Result
+1	
sas	SAS

\$VARYING*w*. Informat

Reads character data of varying length.

Category: Character

Syntax

\$VARYING*w. length-variable*

Syntax Description

u

specifies the maximum width of a character field for all the records in an input file.

Default: 8 if the length of the variable is undefined. Otherwise, the default is the length of the variable.

Range: 1-32767

length-variable

specifies a numeric variable that contains the width of the character field in the current record. SAS obtains the value of *length-variable* by reading it directly from a field that is described in an INPUT statement or by calculating its value in the DATA step.

Restriction: *Length-variable* cannot be an array reference.

Requirement: You must specify *length-variable* immediately after \$VARYINGw. in an INPUT statement.

Tips:

If the value of *length-variable* is negative or missing, SAS reads no data from the corresponding record.

If the value of *length-variable* is 0, the value of the variable is a blank character. A value of 0 for *length-variable* enables you to read zero-length records and fields.

If a variable has been read using an informat other than the \$VARYING. informat, and then the same data is read into the same variable that uses the \$VARYING. informat where *length-variable* is 0, then the previous value is overwritten with a blank value.

If *length-variable* is greater than 0 but less than w, SAS reads the number of columns that are specified by *length-variable*. Then SAS pads the value with trailing blanks up to the maximum width that is assigned to the variable.

If *length-variable* is greater than or equal to w, SAS reads w columns.

Details

Use \$VARYINGw. when the length of a character value differs from record to record. After reading a data value with \$VARYINGw., the pointer's position is set to the first column after the value.

Examples

Example 1: Obtaining a Current Record Length Directly

input fwidth 1. name \$varying9. fwidth;

Data Line	Result *
+	
5shark	shark
3sunfish	sun

Data Line	Result *
8bluefish	bluefish

^{*} Notice the result of reading the second data line.

Example 2: Obtaining a Record Length Indirectly

Use the LENGTH= option in the INFILE statement to obtain a record length indirectly. The input data lines and results follow the explanation of the SAS statements.

```
data one;
   infile file-specification length=reclen;
   input @;
   fwidth=reclen-9;
   input name $ 1-9
         @10 class $varying20. fwidth;
run;
```

The LENGTH= option in the INFILE statement assigns the internally stored record length to RECLEN when the first INPUT statement executes. The trailing @ holds the record for another INPUT statement. Next, the assignment statement calculates the value of the varying-length field by subtracting the fixed-length portion of the record from the total record length. The variable FWIDTH contains the length of the last field and becomes the *length-variable* argument to the \$VARYING20. informat.

Data Lin	е	Result	
+	-12		
PATEL	CHEMISTRY	PATEL	CHEMISTRY
JOHNSON	GEOLOGY	JOHNSON	GEOLOGY
WILCOX	ART	WILCOX	ART

\$w. Informat

Reads standard character data.

Category: Character Alias: \$Fw.

Syntax

\$w.

Syntax Description

w

specifies the width of the input field. You must specify w because SAS does not supply a default value.

Range: 1-32767

Details

The \$w. informat trims leading blanks and left aligns the values before storing the text. In addition, if a field contains only blanks and a single period, \$w. converts the period to a blank because it interprets the period as a missing value. The \$w. informat treats two or more periods in a field as character data.

Comparisons

The \$w. informat is almost identical to the \$CHARw. informat. However, \$CHARw. does not trim leading blanks nor does it convert a single period in an input field to a blank, while \$w. does both.

Example

input @1 name \$5.;

Data Line	Result *
+	
XYZ	XYZ##
XYZ	XYZ##
X YZ	X#YZ#

^{*} The character # represents a blank space.

ANYDTDTEw. Informat

Reads and extracts the date value from various date, time, and datetime forms.

Category: Date and Time

Syntax

ANYDTDTEw.

Syntax Description

specifies the width of the input field.

Default: 9 **Range:** 5–32

Details

The ANYDTDTE informat reads input data that corresponds to any of the following informats or date, time, or datetime forms and extracts the date part from the derived value.

Informat or Form of Input	Example Data	Informat or Form of Input	Example Data
DATE	01JAN12 01JAN2012	MONYY	JAN12 JAN2012
DATETIME	01JAN12 14:30:08 01JAN2012 14:30:08.5	TIME	14:30 14:30:08.05
DDMMYY	010112 01012012	YMDDTTM	12-01-01 11:23
JULIAN	12001 2012001	YYMMDD	120101 20120101
MDYAMPM	01-01-12 3:53 pm	YYQ	12Q1 2012Q1
MMDDYY	010112 01012012	YY <yy>xMM*</yy>	12/01 2012-01
MMxYY <yy>*</yy>	01/12 01-2012	month-day-year	January 1, 2012

^{*} x is a special character that separates the month from the year.

If the input value is a time-only value, then SAS assumes a date of 01JAN1960.

It is possible for input data such as 01-02-03 or 01-02 to be ambiguous with respect to the month, day, and year. In this case, the DATESTYLE system option indicates the order of the month, day, and year.

Comparisons

The ANYDTDTE informat extracts the date part from the derived value. The ANYDTDTM informat extracts the datetime part. The ANYDTTME informat extracts the time part.

Example

input dateinfo anydtdte21.;

Data Line	Informat Form	Result	Formatted with the DATEw. Format
+2			
01JAN12	DATE	18993	01JAN12
01JAN2012 14:30:08.5	DATETIME	18993	01JAN12
01012012	DDMMYY	18993	01JAN12
2012001	JULIAN	18993	01JAN12
01/01/12	MMDDYY	18993	01JAN12
JAN2012	MONYY	18993	01JAN12
14:30	TIME	0	01JAN60
20120101	YYMMDD	18993	01JAN12
12q1	YYQ	18993	01JAN12
January 1, 2012	none	18993	01JAN12

See Also

Informats:

- "ANYDTDTMw. Informat" on page 245
- "ANYDTTMEw. Informat" on page 248
- "DATEw. Informat" on page 267
- "DATETIMEw. Informat" on page 268
- "DDMMYYw. Informat" on page 270
- "JULIANw. Informat" on page 289
- "MDYAMPMw.d Informat" on page 291
- "MMDDYYw. Informat" on page 292
- "MONYYw. Informat" on page 294
- "TIMEw. Informat" on page 332
- "YMDDTTMw.d Informat" on page 345
- "YYMMDDw. Informat" on page 347
- "YYQw. Informat" on page 350

ANYDTDTMw. Informat

Reads and extracts datetime values from various date, time, and datetime forms.

Category:

Date and Time

Syntax

ANYDTDTMw.

Syntax Description

specifies the width of the input field.

Default: 19 **Range:** 1–32

Details

The ANYDTDTM informat reads data that is in the form of any of the following informats or date/time forms, and extracts the datetime part from the derived value:

Example Data
01JAN12
01JAN2012
01JAN12 14:30:08
01JAN2012 14:30:08.5
010112
01012012
12001
2012001
010112
01012012
01/12
01-2012
01/01/12 02:30:08 AM
01/01/2012 02:30:08 AM
JAN12
JAN2012

Informat or Form of Input	Example Data
TIME	14.30
	14:30:08.05
<yy>YYMMDD</yy>	120101
	20120101
<yy>YYQ</yy>	12Q1
	2012Q1
<yy>YYxMM*</yy>	12/01
	2012/01
month-day-year	January 1, 2012

^{*} x is a special character that separates the month from the year. <YY> indicates the century is optional.

If the input value is a time-only value, then SAS assumes a date of 01JAN1960. If the input value is a date-only value, then SAS assumes a time of 12:00 midnight. Input time values must include hours and minutes. If any part of a date in the input value is missing in the input value, or if the hour and minutes in a time value are missing or out of range, then the value read is a SAS missing value.

The input values for the preceding informats are mutually exclusive except for MMDDYY, DDMMYY, or YYMMDD when two-digit years are used. It is possible for input data such as 01-02-03 or 01-02 to be ambiguous with respect to the month, day, and year. In this case, the DATESTYLE system option indicates the order of the month, day, and year.

The ANYDTTME informat uses the following rules when reading colons and periods in time values:

Use of Colons and Periods	Example
a single colon in the value <i>h:m</i> indicates hours and minutes	14:30
two colons in the value h:m:s indicate hours, minutes, and seconds	14:30:08
a single period in the value m:s.ff, where ff is a fraction of a second, indicates that the number preceding the period is the number of seconds	2:39.66
multiple periods in the value indicate that the period is a delimiter for dates and the value is not a time value.	12.25.2012

^{**} IF AM | PM is not present and the month and day values are ambiguous, the value for the DATESTYLE= system option is used to determine the order.

Comparisons

The ANYDTDTE informat extracts the date part from the derived value. The ANYDTDTM informat extracts the datetime part. The ANYDTTME informat extracts the time part.

Example

input dateinfo anydtdtm21.;

Data Line	Informat or Form of Data	Result	Formatted with DATETIME w.d Format
+2			
01JAN2012	DATE	1640995200	01JAN12:00:00:00
01JAN2012 14:30:08.5	DATETIME	1641047408.5	01JAN12:14:30:09
01012012	DDMMYY	1640995200	01JAN12:00:00:00
2012001	JULIAN	1546387200	01JAN12:00:00:00
01/01/12	MMDDYY	1546387200	01JAN12:00:00:00
01-12	MMxYY	1546387200	01JAN12:00:00:00
JAN2012	MONYY	1546387200	01JAN12:00:00:00
14:30	TIME	52200	01JAN60:14:30:00
20120101	YYMMDD	1546387200	01JAN12:00:00:00
12Q1	YYQ	1546387200	01JAN12:00:00:00
January 1, 2012	month-day-year	1546387200	01JAN12:00:00:00

See Also

Informats:

- "ANYDTDTEw. Informat" on page 242
- "ANYDTTMEw. Informat" on page 248
- "DATEw. Informat" on page 267
- "DATETIMEw. Informat" on page 268
- "DDMMYYw. Informat" on page 270
- "JULIANw. Informat" on page 289
- "MMDDYYw. Informat" on page 292
- "MONYYw. Informat" on page 294

- "TIMEw. Informat" on page 332
- "YYMMDDw. Informat" on page 347
- "YYQw. Informat" on page 350

ANYDTTMEw. Informat

Reads and extracts time values from various date, time, and datetime forms.

Category: Date and Time

Syntax

ANYDTTMEw.

Syntax Description

И

specifies the width of the input field.

Default: 8 Range: 1–32

Details

The ANYDTTME informat reads input data that corresponds to any of the following informats or forms.

Informat or Form of Input	Example Data	Informat or Form of Input	Example Data
DATE	01JAN12	MONYY	JAN12
	01JAN2012		JAN2012
DATETIME	01JAN12 14:30:08	YYMMDD	120101
	01JAN2012 14:30:08.5		20120101
DDMMYY	010112	YYQ	12Q1
	01012012		2012Q1
JULIAN	12001	YYQ	12Q1
	2012001		2012Q1
MMDDYY	010112	month-day-year	January 1, 2012
	01012012		2012-01

If the input value is a time-only value, then SAS assumes a date of 01JAN1960. If the input value is a date value only, then SAS assumes a time of 12:00 midnight.

It is possible for input data such as 01-02-03 or 01-02 to be ambiguous with respect to the month, day, and year. In this case, the DATESTYLE system option indicates the order of the month, day, and year.

The ANYDTTME informat uses the following rules when reading colons and periods in time values:

Use of Colons and Periods	Example
a single colon in the value <i>h</i> : <i>m</i> indicates hours and minutes	14:30
two colons in the value h:m:s indicate hours, minutes, and seconds	14:30:08
a single period in the value m:s.ff, where ff is a fraction of a second, indicates that the number preceding the period is the number of seconds	2:39.66
multiple periods in the value indicate that the period is a delimiter for dates and the value is not a time value.	12.25.2012

Comparisons

The ANYDTDTE informat extracts the date part from the derived value. The ANYDTDTM informat extracts the datetime part. The ANYDTTME informat extracts the time part.

Example

input dateinfo anydttme21.;

Data Line	Informat	Result	Formatted with the TIMEw.d Format
2			
01JAN12	DATE	0	00:00:00
01JAN2012 14:30:08.5	DATETIME	52208.5	14:30:09
010112	DDMMYY	0	00:00:00
2012001	JULIAN	0	00:00:00
01012012	MMDDYY	0	00:00:00
JAN2012	MONYY	0	00:00:00
14:30:08.5	TIME	52208.5	14:30:09

Data Line	Informat	Result	Formatted with the TIMEw.d Format
20120101	YYMMDD	0	00:00:00
12Q1	YYQ	0	00:00:00
January 1, 2012	month-day-year	0	00:00:00

See Also

Informats:

- "ANYDTDTEw. Informat" on page 242
- "ANYDTDTMw. Informat" on page 245
- "DATEw. Informat" on page 267
- "DATETIMEw. Informat" on page 268
- "DDMMYYw. Informat" on page 270
- "JULIANw. Informat" on page 289
- "MMDDYYw. Informat" on page 292
- "MONYYw. Informat" on page 294
- "TIMEw. Informat" on page 332
- "YYMMDDw. Informat" on page 347
- "YYQw. Informat" on page 350

B8601Clw.d Informat

Reads an IBM date and time value that includes a century marker, in the form cyymmddhhmmss<fff>.

Categories: Date and Time

ISO 8601

Alignment: left

Syntax

B8601CIw.d

Syntax Description

n

specifies the width of the input field.

Default: 16 **Range:** 10–26

d

specifies the number of digits to the right of the decimal point in the seconds value.

Default: 0 **Range:** 0-6

Details

The B8601CI informat reads time values that are specified in the IBM time notation cyymmddhhmmss<fff>:

- is a single digit that represents a century:
- 0 indicates the years 1900-1999.
 - indicates the years 2000–2099.
 - 2 indicates the years 2100-2199.
 - indicates the years 00-99 in a century that is determined by performing a calculation on a year greater than 2199. To determine the century marker, subtract 1900 from the year and divide the result by 100. Discard the remainder. The remaining integer is the century marker. For example, to determine the century marker for the year 2382, perform this calculation: (2382–1900)/100=4.82. Discard .82. The century marker is 4.
- yy is a two-digit year between 00 and 99.
- mm

is a two-digit month (zero padded) between 01 and 12.

dd

is a two-digit day of the month (zero padded) between 01 and 31.

hh

is a two-digit hour (zero padded) between 00 and 23.

is a two-digit minute (zero padded) between 00 and 59.

SS

is a two-digit second (zero padded) between 00 and 59.

fff

are optional fractional seconds, with a precision of up to three digits, where each digit is between 0 and 9.

Example

input @1 bci b8601ci.;

Date and Time	Data Line	Result
	+	
January 1, 1900 12:00:00	0000101120000	-1893326400
October 1, 2011 12:15:30.25	111100112153025	1633090530.3

B8601DAw. Informat

Reads date values that are specified using the ISO 8601 base notation yyyymmdd.

Categories: Date and Time

ISO 8601

Alignment: left

> ND8601DA Alias:

Restriction: UTC time zone offset values are not supported.

Supports: ISO 8601 Element 5.2.1.1, complete representation

Syntax

B8601DAw.

Syntax Description

specifies the width of the input field.

Default: 10

Requirement: The width of the output field must be 10.

Details

The B8601DA informat reads date values that are specified using the ISO 8601 basic date notation yyyymmdd:

yyyy

is a four-digit year.

is a two-digit month (zero padded) between 01 and 12.

dd

is a two-digit day of the month (zero padded) between 01 and 31.

If the month or day values are omitted, SAS uses a value of 1 for the month or day. If the hour, minute, or second values are omitted, SAS uses a value of 0 for the hour, minute, or second.

Example

input @1 bda b8601da.;

Data Line	Result	Formatted Using B8601DA Format
1		
20120915	19251	20120915

Data Line	Result	Formatted Using B8601DA Format
2012	18993	20120101

See Also

"Reading Dates and Times by Using the ISO 860 Basic and Extended Notations" on page 209

B8601DJw.d Informat

Reads a Java date and time value that is in the form yyyymmddhhmmss<ffffff>.

Categories: Date and Time

ISO 8601

Alignment: left

Syntax

B8601DJw.d

Syntax Description

specifies the width of the input field.

Default: 16 Range: 10-26

d

specifies the number of digits to the right of the decimal point in the seconds value.

Default: 0 Range: 0-6

Details

The B8601DJ informat reads a date and time value that is specified using the Java date and time notation *yyyymmddhhmmss*<*ffffff*>:

yyyy

is a four-digit year between 0000 and 9999.

mm

is a two-digit month (zero padded) between 01 and 12.

dd

is a two-digit day of the month (zero padded) between 01 and 31.

hh

is a two-digit hour (zero padded) between 00 and 23.

mm

is a two-digit minute (zero padded) between 00 and 59.

SS

is a two-digit second (zero padded) between 00 and 59.

ffffff

are optional fractional seconds, with a precision of up to six digits, where each digit is between 0 and 9.

Comparisons

The B8601DJ informat reads a date and time value that does not include a T to separate the date from the time.

Java date and time values do not include a T. For example, the date January 1, 2011 at 4:30:25 a.m. is written as 20110101043025.

ISO 8601 date and time values include a T. For example, the date January 1, 2011 at 4:30:25 a.m. is written as 20110101T043025.

Example

input @1 bdj b8601dj.;

Date and Time	Data Line	Result
	+1	
July 31, 2011 2:33:35 p.m.	20110731142335	1627741415
September 1, 2012 7:30:00.33 a.m.	2012090107300033	1662103800.3

B8601DNw. Informat

Reads date values that are specified using the ISO 8601 basic notation *yyyymmdd* and returns SAS datetime values where the time portion of the value is 000000.

Categories: Date and Time

ISO 8601

Alignment: left

Alias: ND8601DN

Restriction: UTC time zone offset values are not supported.

Supports: ISO 8601 Element 5.2.1.1, complete representation

Syntax

B8601DNw.

Syntax Description

n

specifies the width of the input field.

Default: 10

Requirement: The width of the input field must be 10.

Details

The B8601DN informat reads date values that are specified using the ISO 8601 basic date notation yyyymmdd and returns the date in a SAS datetime value:

```
уууу
   is a four-digit year.
   is a two-digit month (zero padded) between 01 and 12.
dd
   is a two-digit day of the month (zero padded) between 01 and 31.
```

Example

input @1 bdn b8601dn.;

Data Line	Result
1	
20120915	1663286400

See Also

"Reading Dates and Times by Using the ISO 860 Basic and Extended Notations" on page 209

B8601DTw.d Informat

Reads datetime values that are specified using the ISO 8601 basic notation yyyymmddThhmmss<ffffff>.

Categories: Date and Time

ISO 8601

Alignment: left

> Alias: ND8601DT

Restriction: UTC time zone offset values are not supported.

Syntax

B8601DTw.d

Syntax Description

specifies the width of the input field.

Default: 19 **Range:** 19-26 d

specifies the number of digits to the right of the decimal point in the seconds value. This argument is optional.

Default: 0 **Range:** 0-6

Details

The B8601DT informat reads datetime values that are specified in the ISO 8601 basic datetime notation *yyyymmdd*Thhmmss<ffffff>:

```
is a four-digit year.

mm
is a two-digit month (zero padded) between 01 and 12.

dd
is a two-digit day of the month (zero padded) between 01 and 31.

hh
is a two-digit hour (zero padded) between 00 and 23.

mm
is a two-digit minute (zero padded) between 00 and 59.
```

is a two-digit second (zero padded) between 00 and 59.

are optional fractional seconds, with a precision of up to six digits, where each digit is between 0 and 9.

If the month or day values are omitted, SAS uses a value of 1 for the month or day. If the hour, minute, or second values are omitted, SAS uses a value of 0 for the hour, minute, or second.

Example

SS

ffffff

input @1 bdt b8601dt.;

Data Line	Result	Formatted Using B8601DT Format
+		
20120915T155300	1663343580	20120915T155300
2012	1640995200	20120101T000000

See Also

"Reading Dates and Times by Using the ISO 860 Basic and Extended Notations" on page 209

B8601DZw.d Informat

Reads Coordinated Universal Time (UTC) datetime values that are specified using the ISO 8601 datetime basic notation yyyymmddThhmmss+|-hhmm or yyyymmddThhmmss<ffffff>Z.

Categories: Date and Time

ISO 8601

Alignment: left

> Alias: ND8601DZ

Restriction: UTC time zone offset values are not supported.

Supports: ISO 8601 Element 5.4.1, complete representation

Syntax

B8601DZw.d

Syntax Description

specifies the width of the input field.

Default: 26 **Range:** 20–35

d

specifies the number of digits to the right of the seconds value, which represents a fraction of a second. This argument is optional.

Default: 0 **Range:** 0-6

Details

UTC values specify a time and a time zone based on the zero meridian in Greenwich, England. The B8601DZ informat reads datetime values that are specified in one of the following ISO 8601 basic datetime notations:

- yyyymmddThhmmss+|-hhmm
- yyyymmddThhmmss<ffffff>Z

yyyy

is a four-digit year.

is a two-digit month (zero padded) between 01 and 12.

dd

is a two-digit day of the month (zero padded) between 01 and 31.

hh

is a two-digit hour (zero padded) between 00 and 24.

is a two-digit minute (zero padded) between 00 and 59.

SS

is a two-digit second (zero padded) between 00 and 59.

ffffff

are optional fractional seconds, with a precision of up to six digits, where each digit is between 0 and 9.

+|-hhmm

is an hour and minute signed offset from zero meridian time. Note that the offset must be +|-hhmm| (that is, + or - and four characters).

Use + for time zones east of the zero meridian, and use – for time zones west of the zero meridian. For example, +0200 indicates a two-hour time difference to the east of the zero meridian, and -0600 indicates a six-hour time difference to the west of the zero meridian.

Restriction: The shorter form +|-hh| is not supported.

Z

indicates that the time is for zero meridian (Greenwich, England) or ± 0000 UTC time.

Example

input @1 bdz b8601dz.;

Data Line	Result
+1	
20120915T155300+0500	1663325580

See Also

"Reading Dates and Times by Using the ISO 860 Basic and Extended Notations" on page 209

B8601TMw.d Informat

Reads time values that are specified using the ISO 8601 basic notation hhmmss<ffffff>.

Categories: Date and Time

ISO 8601

Alignment: left

Alias: ND8601TM

Restriction: UTC time zone offset values are not supported.

Supports: ISO 8601 Elements 5.3.1.1 and 5.3.1.3, complete representation and representation

of decimal fractions

Syntax

B8601TMw.d

Syntax Description

specifies the width of the input field.

Default: 8 **Range:** 6–15

d

specifies the number of digits to the right of the decimal point in the seconds value. This argument is optional.

Default: 0 **Range:** 0-6

Details

The B8601TM informat reads time values that are specified using the ISO 8601 basic time notation *hhmmss*<*ffffff*>:

hh

is a two-digit hour (zero padded) between 00 and 23.

mm

is a two-digit minute (zero padded) between 00 and 59.

SS

is a two-digit second (zero padded) between 00 and 59.

ffffff

are optional fractional seconds, with a precision of up to six digits, where each digit is between 0 and 9.

Example

input @1 btm b8601tm;

Data Line	Result
1	
155300	57180

See Also

"Reading Dates and Times by Using the ISO 860 Basic and Extended Notations" on page 209

B8601TZw.d Informat

Reads time values that are specified using the ISO 8601 basic time notation hhmmss<ffff>+|-hhmm or hhmmss<ffffff>Z.

Categories: Date and Time

ISO 8601

Alignment: left Alias: ND8601TZ

Restriction: UTC time zone offset values are not supported.

Supports: ISO 8601 Element 5.3.1.1, complete representation

Syntax

B8601TZw.d

Syntax Description

w

specifies the width of the input field.

Default: 14 Range: 9-20

d

(optional) specifies the number of digits to the right of the decimal point in the seconds value.

Default: 0 **Range:** 0-6

Details

UTC time values specify a time and a time zone based on the zero meridian in Greenwich, England. The B8601TZ informat reads time values that are specified in the following ISO 8601 basic time notations:

- hhmmss<ffffff>+|-hhmm
- hhmmss<ffffff>Z

hh

is a two-digit hour (zero padded) between 00 and 23.

mm

is a two-digit minute (zero padded) between 00 and 59.

SS

is a two-digit second (zero padded) between 00 and 59.

ffffff

are optional fractional seconds, with a precision of up to six digits, where each digit is between 0 and 9.

+|-hh:mm

time.

is an hour and minute signed offset from zero meridian time. Note that the offset must be +|-hhmm| (that is, + or - and four characters).

Use + for time zones east of the zero meridian, and use – for time zones west of the zero meridian. For example, +0200 indicates a two-hour time difference to the east of the zero meridian, and -0600 indicates a six-hour time difference to the west of the zero meridian.

Restriction: The shorter form +|-hh| is not supported.

Z indicates that the time is for zero meridian (Greenwich, England) or +0000 UTC

When SAS reads a UTC time by using the B8601TZ informat and the adjusted time is greater than 240000 or less than 000000, SAS adjusts the time value so that the time is between 000000 and 240000. For example, if SAS reads the UTC time 234344-0500 using the B8601TZ informat, SAS adds five hours to the time so that the value is 284344, and then makes the time adjustment. The value stored represents the time 044344+0000.

Example

input @1 btz b8601tz.;

Data Line	Result
1	
202401-0500	5041
202401Z	73441
202401+0000	73441

See Also

"Reading Dates and Times by Using the ISO 860 Basic and Extended Notations" on page 209

BINARYw.d Informat

Converts positive binary values to integers.

Category: Numeric

Syntax

BINARYw.d

Syntax Description

specifies the width of the input field.

Default: 8 **Range:** 1–64

d

specifies the power of 10 by which to divide the value. SAS uses the d value even if the data contain decimal points. This argument is optional.

Range: 0-31

Details

Use only the character digits 1 and 0 in the input, with no embedded blanks. BINARYw.d ignores leading and trailing blanks.

BINARYw.d cannot read negative values. It treats all input values as positive (unsigned).

Example

input @1 value binary8.1;

Data Line	Result
+	
00001111	1.5

BITSw.d Informat

Extracts bits.

Category:

Numeric

Syntax

BITSw.d

Syntax Description

specifies the number of bits to read. Default: 1 **Range:** 1–64 d

specifies the zero-based offset.

Range: 0-63

Details

The BITSw.d informat extracts particular bits from an input stream and assigns the numeric equivalent of the extracted bit string to a variable. Together, the w and d values specify the location of the string that you want to read.

This informat is useful for extracting data from system records that have many pieces of information packed into single bytes.

Example

input @1 value bits4.1;

Data Line	Result *
+	

Data Line	Result *
В	8

^{*} The EBCDIC binary code for a capital B is 11000010, and the ASCII binary code is 01000010.

The input pointer moves to column 2 (d=1). Then the INPUT statement reads four bits (w=4) which is the bit string 1000 and stores the numeric value 8, which is equivalent to this binary combination.

BZw.d Informat

Converts blanks to 0s.

Category:

Numeric

Syntax

BZw.d

Syntax Description

specifies the width of the input field.

Default: 1 **Range:** 1-32

d

specifies the power of 10 by which to divide the value. If the data contain decimal points, the d value is ignored. This argument is optional.

Range: 0-31

Details

The BZw.d informat reads numeric values, converts any trailing or embedded blanks to 0s, and ignores leading blanks.

The BZw.d informat can read numeric values that are located anywhere in the field. Blanks can precede or follow the numeric value, and a minus sign must precede negative values. The BZw.d informat ignores blanks between a minus sign and a numeric value in an input field.

The BZw.d informat interprets a single period in a field as a 0. The informat interprets multiple periods or other nonnumeric characters in a field as a missing value.

To use BZw.d in a DATA step with list input, change the delimiter for list input with the DLM= or DLMSTR= option in the INFILE statement. By default, SAS interprets blanks between values in the data line as delimiters rather than 0s.

Comparisons

The BZw.d informat converts trailing or embedded blanks to 0s. If you do not want to convert trailing blanks to 0s (for example, when reading values in E-notation), use either the w.d informat or the Ew.d informat instead.

Example

input @1 x bz4.;

Data Line	Result
+	
34	3400
-2	-200
-2 1	-201

CBw.d Informat

Reads standard numeric values from column-binary files.

Category: Column Binary

Syntax

CBw.d

Syntax Description

w

specifies the width of the input field.

Range: 1-32

d

specifies the power of 10 by which to divide the value. SAS uses the d value even if the data contain decimal points. This argument is optional.

Details

Column-binary data storage compresses data so that more than 80 items of data can be stored on a single "virtual" punch card.

The CBw.d informat reads standard numeric values from column-binary files and translates the data into standard binary format.

SAS first stores each column of column-binary data that you read with CBw.d in two bytes and ignores the two high-order bits of each byte. If the punch codes are valid, then SAS stores the equivalent numeric value in the variable that you specify. If the combinations are not valid, then SAS assigns the variable a missing value and sets the automatic variable _ERROR_ to 1.

Example: Examples

```
input @1 x cb8.;
```

Data Line *	Result
+	
0009	9

^{*} The data line is a hexadecimal representation of the column binary. The "virtual" punch card column for the example data has row 9 punched. The binary representation is 0000 0000 0000 1001.

See Also

"How to Read Column-Binary Data" in Chapter 19 of SAS Language Reference: Concepts in SAS Language Reference: Concepts

Informats

- "\$CBw. Informat" on page 227
- "PUNCH.d Informat" on page 308
- "ROWw.d Informat" on page 313

COMMAw.d Informat

Removes embedded characters.

Category: Numeric

> Alias: DOLLARw.d

Syntax

COMMAw.d

Syntax Description

w

specifies the width of the input field.

Default: 1 **Range:** 1-32

d

specifies the power of 10 by which to divide the value. If the data contain decimal points, the *d* value is ignored. This argument is optional.

Range: 0-31

Details

The COMMAw.d informat reads numeric values and removes embedded commas, blanks, dollar signs, percent signs, hyphens, and close parentheses from the input data. The COMMAw.d informat converts an open parenthesis at the beginning of a field to a minus sign.

Comparisons

The COMMAw.d informat operates like the COMMAXw.d informat, but it reverses the roles of the decimal point and the comma. This convention is common in European countries.

Example

input @1 x comma10.;

Data Line	Result
+	
\$1,000,000	1000000
(500)	-500

COMMAXw.d Informat

Removes embedded periods, blanks, dollar signs, percent signs, dashes, and closing parenthesis from the input data. An open parenthesis at the beginning of a field is converted to a minus sign. The COMMAX informat reverses the roles of the decimal point and the comma.

Category: Numeric

Alias: DOLLARXw.d

Syntax

COMMAXw.d

Syntax Description

w

specifies the width of the input field.

Default: 1 Range: 1-32

d

specifies the power of 10 by which to divide the value. If the data contain a comma, which represents a decimal point, the *d* value is ignored. This argument is optional.

Range: 0-31

Details

The COMMAXw.d informat reads numeric values and removes embedded periods, blanks, dollar signs, percent signs, hyphens, and close parentheses from the input data. The COMMAXw.d informat converts an open parenthesis at the beginning of a field to a minus sign.

Comparisons

The COMMAXw.d informat operates like the COMMAw.d informat, but it reverses the roles of the decimal point and the comma. This convention is common in European countries.

Example

input @1 x commax10.;

Data Line	Result
+	
\$1.000.000	1000000
1.234,56	1234.56
(500)	-500

DATEw. Informat

Reads date values in the form ddmmmyy or ddmmmyyyy.

Category:

Date and Time

Syntax

DATEw.

Syntax Description

specifies the width of the input field.

Default: 7 **Range:** 7-32

Tip: Use a width of 9 to read a 4–digit year.

Details

The date values must be in the form *ddmmmyyyy*:

is an integer between 01 and 31 that represents the day of the month.

mmm

is the first three letters of the month name.

is a two-digit or four-digit integer that represents the year.

You can separate the year, month, and day values by blanks or by special characters. Make sure the width of the input field allows space for blanks and special characters. *Note:* SAS interprets a two-digit year as belonging to the 100-year span that is defined by the YEARCUTOFF= system option.

Example

input calendar_date date11.;

Data Line	Result
+	
16mar12	19068
16 mar 12	19068
16-mar-2012	19068

See Also

Formats:

• "DATEw. Format" on page 73

Functions:

• "DATE Function" in SAS Functions and CALL Routines: Reference

System Options:

• "YEARCUTOFF= System Option" in SAS System Options: Reference

DATETIMEw. Informat

Reads datetime values in the form ddmmmyy hh:mm:ss.ss or ddmmmyyyy hh:mm:ss.ss.

Category: Date and Time

Syntax

DATETIMEw.

Syntax Description

и

specifies the width of the input field.

Default: 18 **Range:** 13–40

Details

The datetime values must be in the following form: ddmmmyy or ddmmmyyyy, followed by a blank or special character, followed by *hh:mm:ss.ss* (the time):

dd

is an integer between 01 and 31 that represents the day of the month.

mmm

is the first three letters of the month name.

yy or yyyy

is a two-digit or four-digit integer that represents the year.

hh

is an integer between 00 and 23 that represents hours.

mm

is an integer between 00 and 59 that represents minutes.

is the number of seconds ranging from 00-59 with the fraction of a second following the decimal point.

DATETIMEw. requires values for both the date and the time. However, the ss.ss portion is optional.

Note: SAS interprets a two-digit year as belonging to the 100-year span that is defined by the YEARCUTOFF= system option.

Note: SAS can read time values with AM and PM in them.

Comparisons

The DATETIMEw.d informat reads datetime values with optional separators in the form dd-mmm-yy<yy> hh:mm:ss.ss AM|PM, and the date and time can be separated by a special character.

The MDYAMPMw.d in format reads datetime values with optional separators in the form mm-dd-yy<yy> hh:mm:ss.ss AM | PM, and requires a space between the date and the time.

The YMDDTTMw.d informat reads datetime values with required separators in the form <*yy*>*yy-mm-dd/hh:mm:ss.ss.*

Example

input date_and_time datetime20.;

Data Line	Result
+2	
16mar12:11:23:07.4	1647516187.4
16mar2012/11:23:07.4	1647516187.4
16mar2012/11:23 PM	1647559380.0

See Also

"About SAS Date, Time, and Datetime Values" in Chapter 7 of SAS Language Reference: Concepts

Formats:

- "DATEw. Format" on page 73
- "DATETIMEw.d Format" on page 75
- "TIMEw.d Format" on page 157

Functions:

• "DATETIME Function" in SAS Functions and CALL Routines: Reference

Informats:

- "DATEw. Informat" on page 267
- "MDYAMPMw.d Informat" on page 291
- "TIMEw. Informat" on page 332
- "YMDDTTMw.d Informat" on page 345

System Options:

• "YEARCUTOFF= System Option" in SAS System Options: Reference

DDMMYYw. Informat

Reads date values in the form ddmmyy<yy> or dd-mm-yy<yy>, where a special character, such as a hyphen (-), period (.), or slash (/), separates the day, month, and year; the year can be either 2 or 4 digits.

Category: Date and Time

Syntax

DDMMYYw.

Syntax Description

specifies the width of the input field.

Default: 6 **Range:** 6-32

Details

The date values must be in the form *ddmmyy*<*yy*> or *ddxmmxyy*<*yy*>:

is an integer between 01 and 31 that represents the day of the month.

mm

is an integer between 01 and 12 that represents the month.

yy or yyyy

is a two-digit or four-digit integer that represents the year.

x

is a separators that can be any special character or a blank.:

If you use separators, place them between all the values. Blanks can also be placed before and after the date. Make sure the width of the input field allows space for blanks and special characters.

Note: SAS interprets a two-digit year as belonging to the 100-year span that is defined by the YEARCUTOFF= system option.

Example

input calendar_date ddmmyy10.;

Data Line	Result
+	
160308	19068
16/03/08	19068
16-03-2008	19068
16 03 2008	19068

See Also

Formats:

- "DATEw. Format" on page 73
- "DDMMYYw. Format" on page 78
- "MMDDYYw. Format" on page 113
- "YYMMDDw. Format" on page 181

Functions:

"MDY Function" in SAS Functions and CALL Routines: Reference

Informats:

- "DATEw. Informat" on page 267
- "MMDDYYw. Informat" on page 292
- "YYMMDDw. Informat" on page 347

System Options:

"YEARCUTOFF= System Option" in SAS System Options: Reference

Ew.d Informat

Reads numeric values that are stored in scientific notation and double-precision scientific notation.

Category: Numeric

> See: Ew.d Informat under z/OS

Syntax

Ew.d

Syntax Description

specifies the width of the field that contains the numeric value.

Default: 12 **Range:** 1-32

d

specifies the number of digits to the right of the decimal point in the numeric value. If the data contain decimal points, the d value is ignored. This argument is optional.

Range: 0-31

Comparisons

The Ew.d informat is not used extensively because the SAS informat for standard numeric data, the w.d informat, can read numbers in scientific notation.

Example

input @1 x e7.;

Data Line	Result
+	
1.257E3	1257
12d3	12000

E8601DAw. Informat

Reads date values that are specified using the ISO 8601 extended notation yyyy-mm-dd.

Categories: Date and Time

ISO 8601

Alignment: left Alias: IS8601DA

Restriction: UTC time zone offset values are not supported.

Supports: ISO 8601 Element 5.2.1.1, complete representation

Syntax

E8601DAw.

Syntax Description

specifies the width of the input field.

Default: 10

Requirement: The width of the input field must be 10.

Details

The E8601DA informat reads date values that are specified in the ISO 8601 extended date notation yyyy-mm-dd:

yyyy

is a four-digit year.

mm

is a two-digit month (zero padded) between 01 and 12.

dd

is a two-digit day of the month (zero padded) between 01 and 31.

Example

input eda e8601da.;

Data Line	Result
1	
2012-09-15	19251

See Also

"Reading Dates and Times by Using the ISO 860 Basic and Extended Notations" on page 209

E8601DNw. Informat

Reads date values that are specified using the ISO 8601 extended notation yyyy-mm-dd and returns SAS datetime values where the time portion of the value is 000000.

Categories: Date and Time

ISO 8601

Alignment: left Alias: IS8601DN

Restriction: UTC time zone offset values are not supported.

Supports: ISO 8601 Element 5.2.1.1, complete representation

Syntax

E8601DNw.

Syntax Description

W

specifies the width of the input field.

Default: 10

Requirement: The width of the input field must be 10.

Details

The E8601DN informat reads date values that are specified using the ISO 8601 extended date notation *yyyy-mm-dd* and returns the date in a SAS datetime value:

yyyy

is a four-digit year.

mm

is a two-digit month (zero padded) between 01 and 12.

dd

is a two-digit day of the month (zero padded) between 01 and 31.

Example

input edn e8601dn.;

Data Line	Result
1	
2012-09-15	1663286400

See Also

"Reading Dates and Times by Using the ISO 860 Basic and Extended Notations" on page 209

E8601DTw.d Informat

Reads datetime values that are specified using the ISO 8601 extended notation *yyyy-mm-dd*Thh:mm:ss.<fffff>.

Categories: Date and Time

ISO 8601

Alignment: left

Alias: IS8601DT

Restriction: UTC time zone offset values are not supported. Supports: ISO 8601 Element 5.4.1, complete representation

Syntax

E8601DTw.d

Syntax Description

specifies the width of the input field.

Default: 19 **Range:** 19–26

d

specifies the number of digits to the right of the decimal point in the seconds value. This argument is optional.

Default: 0**Range:** 0-6

Details

The E8601DT informat reads datetime values that are specified using the ISO 8601 extended datetime notation *yyyy-mm-ddThh:mm:ss*.<*ffffff*>:

```
yyyy
   is a four-digit year.
mm
   is a two-digit month (zero padded) between 01 and 12.
   is a two-digit day of the month (zero padded) between 01 and 31.
hh
   is a two-digit hour (zero padded) between 00 and 23.
mm
   is a two-digit minute (zero padded) between 00 and 59.
SS
```

is a two-digit second (zero padded) between 00 and 59.

ffffff

are optional fractional seconds, with a precision of up to six digits, where each digit is between 0 and 9.

Example

```
input @1 edt e8601dt.;
```

Data Line	Result
+3	

Data Line	Result
2012-09-15T15:53:00	1663343580

See Also

"Reading Dates and Times by Using the ISO 860 Basic and Extended Notations" on page 209

E8601DZw.d Informat

Reads Coordinated Universal Time (UTC) datetime values that are specified using the ISO 8601 datetime extended notation yyyy-mm-ddThh:mm:ss+|-hh:mm.<fffff> or yyyy-mm-ddThh:mm:ss.<fffff>Z.

Categories: Date and Time

ISO 8601

Alignment: left

> Alias: IS8601DZ

Supports: ISO 8601 Element 5.4.1, complete representation

Syntax

E8601DZw.d

Syntax Description

specifies the width of the input field.

Default: 26 **Range:** 20–35

d

specifies the number of digits to the right of the decimal point in the value for the lowest-order component. This argument is optional.

Default: 0 **Range:** 0-6

Details

UTC values specify a time and a time zone based on the zero meridian in Greenwich, England. The E8601DZ informat reads datetime values that contain UTC time offsets and that are specified in one of the following ISO 8601 extended datetime notations:

- yyyy-mm-ddThh:mm:ss.<ffffff>+|-hh:mm
- yyyy-mm-ddThh:mm:ss.<ffffff>Z

yyyy

is a four-digit year.

is a two-digit month (zero padded) between 01 and 12.

dd

is a two-digit day of the month (zero padded) between 01 and 31.

hh

is a two-digit hour (zero padded) between 00 and 24.

mm

is a two-digit minute (zero padded) between 00 and 59.

SS

is a two-digit second (zero padded) between 00 and 59.

are optional fractional seconds, with a precision of up to six digits, where each digit is between 0 and 9.

+|-hh:mm

is an hour and minute signed offset from zero meridian time. Note that the offset must be +|-hh:mm| (that is, + or - and five characters).

Use + for time zones east of the zero meridian, and use – for time zones west of the zero meridian. For example, +02:00 indicates a two-hour time difference to the east of the zero meridian, and -06:00 indicates a six-hour time difference to the west of the zero meridian.

Restriction: The shorter form +|-hh| is not supported.

Z

indicates that the time is UTC time at the zero meridian (Greenwich, England).

Example

Input Statement	Data Line	Result
	13	
input edz e8601dz.;	2012-09-15T15:53:00Z	1663343580
input edz e8601dz28.2;	2012-09-15T15:53:00+03:00	1663332780

See Also

"Reading Dates and Times by Using the ISO 860 Basic and Extended Notations" on page 209

E8601LZw.d Informat

Reads Coordinated Universal Time (UTC) values that are specified using the ISO 8601 extended notation hh:mm:ss+|-hh:mm.<fffff> or hh:mm:ss.<fffff>Z and converts the values to the local time.

Date and Time Categories:

ISO 8601

Alignment: left

> Alias: IS8601LZ

Supports: ISO 8601 Element 5.3.1.1, complete representation

Syntax

E8601LZw.d

Syntax Description

w

specifies the width of the input field.

Default: 14 Range: 9-20

Requirement: To read a time with the Z time zone indicator, the width of the input field must be 9 if data follows on the same line of data.

d

specifies the number of digits to the right of the decimal point in the value for the lowest-order component. This argument is optional.

Default: 0 **Range:** 0-6

Details

UTC values specify a time and a time zone based on the zero meridian in Greenwich, England. The E8601LZ informat reads UTC time values that are specified in one of the following ISO 8601 extended time notations and returns a SAS time value for the local time:

- *hh:mm:ss.*<*ffffff*>+|-*hh:mm*
- *hh:mm:ss.*<*ffffff*>Z

hh

is a two-digit hour (zero padded) between 00 and 23.

mm

is a two-digit minute (zero padded) between 00 and 59.

SS

is a two-digit second (zero padded) between 00 and 59.

ffffff

are optional fractional seconds, with a precision of up to six digits, where each digit is between 0 and 9.

+|-hh:mm

is an hour and minute signed offset from zero meridian. Note that the offset must be +|-hh:mm| (that is, + or - and five characters).

Use the + for time zones east of the zero meridian, and use the – for time zones west of the zero meridian.

Restriction: The shorter form +|-hh| is not supported.

Z

indicates zero meridian or +00:00 UTC time.

When SAS reads a UTC time by using the E8601LZ informat and the adjusted time is greater than 24:00:00 or less than 00:00:00, SAS adjusts the value so that the time is between 00:00:00 and 24:00:00. For example, if SAS reads the UTC time 23:43:44-05:00 by using the E8601LZ informat, SAS adds five hours to the time so that

the value is 28:43:44, and then makes the time adjustment. The value stored represents the time 04:43:44+00:00.

Example

input elz e86011z.;

Data Line	Result
+	
09:13:21+02:00	26001
23:43:44Z	85424

See Also

"Reading Dates and Times by Using the ISO 860 Basic and Extended Notations" on page 209

E8601TMw.d Informat

Reads time values that are specified using the ISO 8601 extended notation hh:mm:ss.<fffff>.

Categories: Date and Time

ISO 8601

Alignment: left

> Alias: IS8601TM

Restriction: UTC time zone offset values are not supported.

Supports: ISO 8601 Elements 5.3.1.1 and 5.3.1.3, complete representation and representation

of decimal fractions

Syntax

E8601TMw.d

Syntax Description

specifies the width of the input field.

Default: 8 **Range:** 8–15

d

specifies the number of digits to the right of the decimal point in the seconds value. This argument is optional.

Default: 0**Range:** 0–6

Details

The E8601TM informat reads time values that are specified using the ISO 8601 extended time notation *hh:mm:ss.*<*ffffff*>:

hh

is a two-digit hour (zero padded) between 00 and 23.

mm

is a two-digit minute (zero padded) between 00 and 59.

SS

is a two-digit second (zero padded) between 00 and 59.

ffffff

are optional fractional seconds, with a precision of up to six digits, where each digit is between 0 and 9.

Example

input @1 etm e8601tm.;

Data Line	Result
+	
15:53:00	57180

See Also

"Reading Dates and Times by Using the ISO 860 Basic and Extended Notations" on page 209

E8601TZw.d Informat

Reads time values that are specified using the ISO 8601 extended time notation *hh:mm:ss+|-hh:mm:ssZ*.

Categories: Date and Time

ISO 8601

Alignment: left

Alias: IS8601TZ

Supports: ISO 8601 Element 5.3.1.1, complete representation

Syntax

E8601TZw.d

Syntax Description

n

specifies the width of the input field.

Default: 14

Range: 9-20

Requirement: To read a time with the Z time zone indicator, the width of the input field must be 9 if data follows on the same line of data.

d

specifies the number of digits to the right of the decimal point in the value for the lowest-order component. This argument is optional.

Default: 0 Range: 0-6

Details

UTC time values specify a time and a time zone based on the zero meridian in Greenwich, England. The E8601TZ informat reads UTC time values that are specified in one of the following ISO 8601 extended notations:

- hh:mm:ss+|-hh:mm.<ffffff>
- hh:mm:ssZ

hh

is a two-digit hour (zero padded) between 00 and 23.

mm

is a two-digit minute (zero padded) between 00 and 59.

SS

is a two-digit second (zero padded) between 00 and 59.

ffffff

are optional fractional seconds, with a precision of up to six digits, where each digit is between 0 and 9.

+|-hh:mm

is an hour and minute signed offset from zero meridian. Note that the offset must be +|-hh:mm| (that is, + or - and five characters).

Use the + for time zones east of the zero meridian, and use the – for time zones west of the zero meridian.

Restriction: The shorter form +|-hh| is not supported.

Z

indicates zero meridian or +00:00 UTC time.

When SAS reads a UTC time by using the E8601TZ informat and the adjusted time is greater than 24:00:00 or less than 00:00:00, SAS adjusts the value so that the time is between 00:00:00 and 24:00:00. For example, if SAS reads the UTC time 23:43:44-05:00 by using the E8601TZ informat, SAS adds five hours to the time so that the value is 28:43:44, and then makes the time adjustment. The value stored represents the time 04:43:44+00:00.

Example

input @1 etz e8601tz.;

Data Line	Result
+	

Data Line	Result
23:43:44-05:00	17024
23:43:44Z	85424

See Also

"Reading Dates and Times by Using the ISO 860 Basic and Extended Notations" on page 209

FLOATw.d Informat

Reads a native single-precision, floating-point value and divides it by 10 raised to the dth power.

Category: Numeric

Syntax

FLOATw.d

Syntax Description

w

specifies the width of the input field.

Requirement: w must be 4.

d

specifies the power of 10 by which to divide the value. This argument is optional.

Details

The FLOATw.d informat is useful in operating environments where a float value is not the same as a truncated double.

On the IBM mainframe systems, a four-byte floating-point number is the same as a truncated eight-byte floating-point number. However, in operating environments that use the IEEE floating-point standard, such as the IBM PC-based operating environments and most UNIX platforms, a four-byte floating-point number is not the same as a truncated double. Therefore, the RB4. informat does not produce the same results as FLOAT4. Floating-point representations other than IEEE might have this same characteristic. Values read with FLOAT4. typically come from some other external program that is running in your operating environment.

Comparisons

The following table compares the names of float notation in several programming languages:

Language	Float Notation
SAS	FLOAT4.

Language	Float Notation
Fortran	REAL*4
С	float
IBM 370 ASM	E
PL/I	FLOAT BIN(21)

Example

input x float4.;

Data Line *	Result
+2	
3F800000	1

^{*} The data line is a hexadecimal representation of a binary number that is stored in IEEE form.

HEXw. Informat

Converts hexadecimal positive binary values to either integer (fixed-point) or real (floating-point) binary values.

Category: Numeric

> See: "HEXw. Informat: UNIX" in SAS Companion for UNIX Environments

> > "HEXw. Informat: Windows" in SAS Companion for Windows

"HEXw. Informat: z/OS" in SAS Companion for z/OS

Syntax

HEXw.

Syntax Description

specifies the field width of the input value and also specifies whether the final value is fixed-point or floating-point.

Default: 8 Range: 1-16

Tip: If w<16, HEXw. converts the input value to positive integer binary values, treating all input values as positive (unsigned). If w is 16, HEXw. converts the input value to real binary (floating-point) values, including negative values.

Details

Operating Environment Information

Different operating environments store floating-point values in different ways. However, HEX16. reads hexadecimal representations of floating-point values with consistent results if the values are expressed in the same way that your operating environment stores them.

The HEXw. informat ignores leading or trailing blanks.

Example

input @1 x hex3. @5 y hex16.;

Data Line *	Result
+2	
88F 415200000000000	2191 5.125

^{*} The data line shows IBM mainframe hexadecimal data.

HHMMSSw. Informat

Reads hours, minutes, and seconds in the form hh:mm:ss or hhmmss.

Category: Date and Time

Syntax

HHMMSSw.

Syntax Description

w

specifies the width of the input field.

Default: 8 Range: 1–20

Details

The HHMMSSw. informat reads SAS time values in one of the following forms:

- hh:mm:ss
- hhmmss

hh

is an integer that represents the number of hours.

represents a special character that separates hours, minutes, and seconds.

mm

is an integer that represents the number of minutes.

is an integer that represents the number of seconds. Fractional seconds are ignored.

If the input data is six digits or less, SAS reads the data from left to right as hours, minutes, and seconds. Any data less than six digits is padded to the right with zeros. The first two digits are read as hours. Digits three and four are read as minutes. Digits five and six are read as seconds.

1 is the same as 100000 or 10:00:00.

02 is the same as 020000 or 02:00:00.

124 is the same as 124000 or 12:40:00.

1435 is the same as 143500 or 14:35:00.

20345 is the same as 203450 or 20:34:50.

165532 is the same as 16:55:32.

When there are more than six digits, SAS reads the last two digits from the right as seconds. The third and forth digits from the right are read as minutes. The remaining digits to the left of the minutes are read as hours.

2358444 is the same as 235:84:44.

12545533 is the same as 1254:55:33.

If the input data has only one colon (for example, 17:35), the two digits before the colon are read as hours. The two digits after the colon are read as seconds. The number of seconds is 0.

Note: If a colon is omitted between minutes and seconds, as in 12:3400, the 3400 is read as 3400 minutes. 3400 minutes adds 56 hours and 40 minutes to the 12 hours, resulting in 68:40:00. See the following example.

Example

input tm hhmmss.;

Data Line	Result	Formatted with TIMEw.
23	82800	23:00:00
12:45:44	45344	12:45:44
2358444	851084	236:24:44
17:35	63300	17:35:00
12:3400	247200	68:40:00

See Also

Informats:

"TIMEw. Informat" on page 332

IBw.d Informat

Reads native integer binary (fixed-point) values, including negative values.

Category: Numeric

> See: "IBw.d Informat: UNIX" in SAS Companion for UNIX Environments

> > "IBw.d Informat: Windows" in SAS Companion for Windows

"IBw.d Informat: z/OS" in SAS Companion for z/OS

Syntax

IBw.d

Syntax Description

specifies the width of the input field.

Default: 4 Range: 1-8

d

specifies the power of 10 by which to divide the value. This argument is optional.

Range: 0-10

Details

The IBw.d informat reads integer binary (fixed-point) values, including negative values represented in two's complement notation. IBw.d reads integer binary values with consistent results if the values are created in the same type of operating environment that you use to run SAS.

Note: Different operating environments store integer binary values in different ways. This concept is called byte ordering. For a detailed discussion about byte ordering, see "Byte Ordering for Integer Binary Data on Big Endian and Little Endian Platforms" on page 203.

Comparisons

The IBw.d and PIBw.d informats are used to read native format integers. (Native format enables you to read and write values created in the same operating environment.) The IBRw.d and PIBRw.d informats are used to read little endian integers in any operating environment.

To view a table that shows the type of informat to use with big endian and little endian integers, see Table 3.1 on page 204.

To view a table that compares integer binary notation in several programming languages, see "Integer Binary Notation and Different Programming Languages" on page 9.

Example

You can use the INPUT statement and specify the IB informat. However, these examples use the informat with the INPUT function, where binary input values are described using a hexadecimal literal.

```
x=input('0080'x,ib2.);
y=input('8000'x,ib2.);
```

SAS Statement	Result on Big Endian Platforms	Result on Little Endian Platforms
put x=;	128	-32768
put y=;	-32768	128

See Also

Informats:

• "IBRw.d Informat" on page 287

IBRw.d Informat

Reads integer binary (fixed-point) values in Intel and DEC formats.

Category: Numeric

Syntax

IBRw.d

Syntax Description

specifies the width of the input field. Default: 4 Range: 1-8

specifies the power of 10 by which to divide the value. This argument is optional.

Range: 0-10

Details

d

The IBRw.d informat reads integer binary (fixed-point) values, including negative values that are represented in two's complement notation. IBRw.d reads integer binary values that are generated by and for Intel and DEC platforms. Use IBRw.d to read integer binary data from Intel or DEC environments in other operating environments. The IBRw.d informat in SAS code allows for a portable implementation for reading the data in any operating environment.

Note: Different operating environments store integer binary values in different ways. This concept is called byte ordering. For a detailed discussion about byte ordering, see "Byte Ordering for Integer Binary Data on Big Endian and Little Endian Platforms" on page 203.

Comparisons

The IBw.d and PIBw.d informats are used to read native format integers. (Native format enables you to read and write values that are created in the same operating environment.) The IBRw.d and PIBRw.d informats are used to read little endian integers in any operating environment.

On Intel and DEC operating environments, the IBw.d and IBRw.d informats are equivalent.

To view a table that shows the type of informat to use with big endian and little endian integers, see Table 3.1 on page 204.

To view a table that compares integer binary notation in several programming languages, see "Integer Binary Notation and Different Programming Languages" on page 9.

Example

You can use the INPUT statement and specify the IBR informat. However, in these examples that we use the informat with the INPUT function, where binary input values are described using a hexadecimal literal.

```
x=input('0100'x,ibr2.);
y=input('0001'x,ibr2.);
```

SAS Statement	Result on BigEndian Platforms	Result on LittleEndian Platforms
<pre>put x=; put y=;</pre>	1 256	1 256

See Also

Informats:

"IBw.d Informat" on page 286

IEEEw.d Informat

Reads an IEEE floating-point value and divides it by 10 raised to the *d* th power.

Category: Numeric

Syntax

IEEEw.d

Syntax Description

specifies the width of the input field.

Default: 8 Range: 2-8

Tip: If w is 8, an IEEE double-precision, floating-point number is read. If w is 5, 6, or 7, an IEEE double-precision, floating-point number is read, which assumes truncation of the appropriate number of bytes. If w is 4, an IEEE single-precision, floating-point number is read. If w is 3, an IEEE single-precision, floating-point number is read, which assumes truncation of one byte.

d

specifies the power of 10 by which to divide the value.

Details

The IEEEw.d informat is useful in operating environments where IEEE is the floatingpoint representation that is used. In addition, you can use the IEEEw.d informat to read files that are created by programs on operating environments that use the IEEE floatingpoint representation.

Typically, programs generate IEEE values in single precision (4 bytes) or double precision (8 bytes). Truncation is performed by programs solely to save space on output files. Machine instructions require that the floating-point number be of one of the two lengths. The IEEEw.d informat allows other lengths, which enables you to read data from files that contain space-saving truncated data.

Example

```
input test1 ieee4.;
input test2 ieee5.;
```

Data Line *	Result
+	
3F800000	1
3FF000000	1

^{*} The data lines are hexadecimal representations of binary numbers that are stored in IEEE format.

The first INPUT statement reads the first data line, and the second INPUT statement reads the next data line.

JULIANw. Informat

Reads Julian dates in the form yyddd or yyyyddd.

Category: Date and Time

Syntax

JULIANw.

Syntax Description

w

specifies the width of the input field.

Default: 5 Range: 5-32

Details

The date values must be in one of the following forms:

- yyddd
- yyyyddd

yy or yyyy

is a two-digit or four-digit integer that represents the year.

dd or dda

is an integer from 01–365 that represents the day of the year.

Julian dates consist of strings of contiguous numbers, which means that zeros must pad any space between the year and the day values.

Julian dates that contain year values before 1582 are invalid for the conversion to Gregorian dates.

Note: SAS interprets a two-digit year as belonging to the 100-year span that is defined by the YEARCUTOFF= system option.

Example

input julian_date julian7.;

Data Line	Result *
1	
12076	19068
2012076	19068

^{*} The input values correspond to the 76th day of 2012, which is March 16.

See Also

Formats:

• "JULIANw. Format" on page 111

Functions:

- "DATEJUL Function" in SAS Functions and CALL Routines: Reference
- "JULDATE Function" in SAS Functions and CALL Routines: Reference

System Options:

• "YEARCUTOFF= System Option" in SAS System Options: Reference

MDYAMPMw.d Informat

Reads datetime values in the form mm-dd-yy<yy> hh:mm:ss.ss AM|PM, where a special character such as a hyphen (-), period (.), slash (/), or colon (:) separates the month, day, and year; the year can be either 2 or 4 digits.

Category: Date and Time

Alignment: right

Requirement: A space must separate the date and the time.

> Note: The default time period is AM.

Syntax

MDYAMPMw.d

Syntax Description

specifies the width of the output field.

Default: 19 **Range:** 8-40

d

specifies the number of digits to the right of the decimal point in the seconds value. The digits to the right of the decimal point specify a fraction of a second. This argument is optional.

Default: 0 **Range:** 0-39

Details

The MDYAMPMw.d format reads SAS datetime values in the form mm-dd-yy<yy> *hh:mm*<:*ss*<.*ss*>> <AM | PM>:

mm

is an integer between 01 and 12 that represents the month.

dd

is an integer between 01 and 31 that represents the day of the month.

yy or yyyy

specifies a two-digit or four-digit integer that represents the year.

hh

is an integer between 00 and 23 that represents hours.

mm

is an integer between 00 and 59 that represents minutes.

SS.SS

is the number of seconds that range from 00–59 with the fraction of a second following the decimal point.

Requirement: If a fraction of a second is specified, the decimal point can be represented only by a period and is required.

AM | PM

specifies either the time period 00:01–12:00 noon (AM) or the time period 12:01– 12:00 midnight (PM)

- or :

represents one of several special characters, such as the slash (/), hyphen (-), colon (:), or a blank character that can be used to separate date and time components. Special characters can be used as separators between any date or time component and between the date and the time.

Comparisons

The MDYAMPMw.d informat reads datetime values with optional separators in the form mm-dd-yy<yy> hh:mm:ss.ss AM | PM, and requires a space between the date and the time.

The DATETIMEw.d informat reads datetime values with optional separators in the form dd-mmm-yy<yy> hh:mm:ss.ss AM|PM, and the date and time can be separated by a special character.

The YMDDTTMw.d informat reads datetime values with required separators in the form <*yy*>*yy-mm-dd/hh:mm:ss.ss*.

Example

input @1 dt mdyampm25.2.;

Data Line	Result
09.15.2012 03:53:00 pm	1663343580
09-15-12 3.53 pm	1663343580

See Also

Informats:

- "DATETIMEw. Informat" on page 268
- "YMDDTTMw.d Informat" on page 345

MMDDYYw. Informat

Reads date values in the form mmddyy or mmddyyyy.

Category: Date and Time

Syntax

MMDDYYw.

Syntax Description

specifies the width of the input field.

Default: 6 **Range:** 6-32

Details

The date values must be in one of the following forms:

- mmddyy
- mmddyyyy

is an integer between 01 and 12 that represents the month.

dd

is an integer between 01 and 31 that represents the day of the month.

yy or yyyy

is a two-digit or four-digit integer that represents the year.

You can separate the month, day, and year fields by blanks or by special characters. However, if you use delimiters, place them between all fields in the value. Blanks can also be placed before and after the date.

Note: SAS interprets a two-digit year as belonging to the 100-year span that is defined by the YEARCUTOFF= system option.

Example

input calendar_date mmddyy8.;

Data Line	Result
+	
031612	19068
03/16/12	19068
03 16 12	19068
03162012	19068

See Also

Formats:

- "DATEw. Format" on page 73
- "DDMMYYw. Format" on page 78

- "MMDDYYw. Format" on page 113
- "YYMMDDw. Format" on page 181

Functions:

- "DAY Function" in SAS Functions and CALL Routines: Reference
- "MDY Function" in SAS Functions and CALL Routines: Reference
- "MONTH Function" in SAS Functions and CALL Routines: Reference
- "YEAR Function" in SAS Functions and CALL Routines: Reference

Informats:

- "DATEw. Informat" on page 267
- "DDMMYYw. Informat" on page 270
- "YYMMDDw. Informat" on page 347

System Options:

• "YEARCUTOFF= System Option" in SAS System Options: Reference

MONYYw. Informat

Reads month and year date values in the form mmmyy or mmmyyyy.

Category: Date and Time

Syntax

MONYYw.

Syntax Description

w

specifies the width of the input field.

Default: 5 Range: 5-32

Details

The date values must be in one of the following forms:

- mmmyy
- mmmyyyy

mmm

is the first three letters of the month name.

yy or yyyy

is a two-digit or four-digit integer that represents the year.

A value read with the MONYYw. informat results in a SAS date value that corresponds to the first day of the specified month.

Note: SAS interprets a two-digit year as belonging to the 100-year span that is defined by the YEARCUTOFF= system option.

Example

input month_and_year monyy7.;

Data Line	Result
+1	
mar 12	19053
mar2012	19053

See Also

Formats:

- "DDMMYYw. Format" on page 78
- "MMDDYYw. Format" on page 113
- "MONYYw. Format" on page 123
- "YYMMDDw. Format" on page 181

Functions:

- "MONTH Function" in SAS Functions and CALL Routines: Reference
- "YEAR Function" in SAS Functions and CALL Routines: Reference

Informats:

- "DDMMYYw. Informat" on page 270
- "MMDDYYw. Informat" on page 292
- "YYMMDDw. Informat" on page 347

System Options:

• "YEARCUTOFF= System Option" in SAS System Options: Reference

MSECw. Informat

Reads TIME MIC values.

Category: Date and Time

Syntax

MSECw.

Syntax Description

w

specifies the width of the input field.

Requirement: w must be 8 because the OS TIME macro or the STCK System/370 instruction on IBM mainframes each return an eight-byte value.

Details

The MSECw. informat reads time values that are produced by IBM mainframe operating environments and converts the time values to SAS time values.

Use the MSECw. informat to find the difference between two IBM mainframe TIME values, with precision to the nearest microsecond.

Comparisons

The MSECw. and TODSTAMPw. informats both read IBM time-of-day clock values, but the MSECw. informat assigns a time value to a variable, and the TODSTAMPw. informat assigns a datetime value.

Example

input btime msec8.;

Data Line *	Result
0000EA044E65A000	62818.412122

^{*} The data line is a hexadecimal representation of a binary 8-byte time-of-day clock value. Each byte occupies one column of the input field. The result is a SAS time value corresponding to 5:26:58.41 p.m.

See Also

Informats:

"TODSTAMPw. Informat" on page 334

NUMXw.d Informat

Reads numeric values with a comma in place of the decimal point.

Category: Numeric

Syntax

NUMXw.d

Syntax Description

n

specifies the width of the input field.

Default: 12

Range: 1-32

d

specifies the number of digits to the right of the decimal. If the data contain decimal points, the d value is ignored. This argument is optional.

Range: 0-31

Details

The NUMXw.d informat reads numeric values and interprets a comma as a decimal point.

Comparisons

The NUMXw.d informat is similar to the w.d informat except that it reads numeric values that contain a comma in place of the decimal point.

Example

input @1 x numx10.;

Data Line	Result
+	
896,48	896.48
3064,1	3064.1
6489	6489

See Also

Formats:

- "NUMXw.d Format" on page 125
- "w.d Format" on page 164

OCTALw.d Informat

Converts positive octal values to integers.

Category: Numeric

Syntax

OCTALw.d

Syntax Description

w

specifies the width of the input field.

Default: 3 Range: 1-24

d

specifies the power of 10 by which to divide the value. This argument is optional.

Range: 1-31

Restriction: must be greater than or equal to the *w* value.

Details

Use only the digits 0 through 7 in the input, with no embedded blanks. The OCTALw.d informat ignores leading and trailing blanks.

OCTALw.d cannot read negative values. It treats all input values as positive (unsigned).

Example

input @1 value octal3.1;

Data Line	Result
+1	
177	12.7

PDw.d Informat

Reads data that are stored in IBM packed decimal format.

Category: Numeric

See: "PDw.d Informat: UNIX" in SAS Companion for UNIX Environments

"PDw.d Informat: Windows" in SAS Companion for Windows

"PDw.d Informat: z/OS" in SAS Companion for z/OS

Syntax

PDw.d

Syntax Description

w

specifies the width of the input field.

Default: 1 **Range:** 1-16

d

specifies the power of 10 by which to divide the value. This argument is optional.

Range: 0-10

Details

The PDw.d informat is useful because many programs write data in packed decimal format for storage efficiency, fitting two digits into each byte and using only a half byte for a sign.

Note: Different operating environments store packed decimal values in different ways. However, PDw.d reads packed decimal values with consistent results if the values are created on the same type of operating environment that you use to run SAS.

The PDw.d format writes missing numerical data as -0. When the PDw.d informat reads -0, it stores it as 0.

Comparisons

The following table compares packed decimal notation in several programming languages:

Language	Notation
SAS	PD4.
COBOL	COMP-3 PIC S9(7)
IBM 370 Assembler	PL4
PL/I	FIXED DEC

Examples

Example 1: Reading Packed Decimal Data

input @1 x pd4.;

Data Line *	Result
+	
0000128C	128

^{*} The data line is a hexadecimal representation of a binary number stored in packed decimal form. Each byte occupies one column of the input field.

Example 2: Creating a SAS Date with Packed Decimal Data

```
input x: $hex10.;
mnth=input(x, pd5.);
date=input(put(mnth,8.),mmddyy6.);
```

Data Line *	Result
1	

Data Line *	Result
012252010C	18621

^{*} The data line is a hexadecimal representation of a binary number that is stored in packed decimal form on an IBM mainframe operating environment. Each byte occupies one column of the input field. The result is a SAS date value that corresponds to December 25, 2010.

PDJULGw. Informat

Reads packed Julian date values in the hexadecimal form yyyydddF for IBM.

Category: Date and Time

Syntax

PDJULGw.

Syntax Description

w

specifies the width of the input field.

Default: 4 Range: 4

Details

The PDJULGw. informat reads IBM packed Julian date values in the form of yyyydddF:

yyyy

is the two-byte representation of the four-digit Gregorian year.

ddd

is the one-and-a-half byte representation of the three-digit integer that corresponds to the Julian day of the year, 1–365 (or 1–366 for leap years).

F

is the half byte that contains all binary 1s, which assigns the value as positive.

Note: SAS interprets a two-digit year as belonging to the 100-year span that is defined by the YEARCUTOFF= system option.

Example

input date pdjulg4.;

Data Line	Result *
+1	
2012003F	18995

^{*} SAS date value 18995 represents January 3, 2012.

See Also

Formats:

- "JULDAYw. Format" on page 110
- "JULIANw. Format" on page 111
- "PDJULGw. Format" on page 128
- "PDJULIw. Format" on page 130

Functions:

- "DATEJUL Function" in SAS Functions and CALL Routines: Reference
- "JULDATE Function" in SAS Functions and CALL Routines: Reference

Informats:

- "JULIANw. Informat" on page 289
- "PDJULIw. Informat" on page 301

System Options:

• "YEARCUTOFF= System Option" in SAS System Options: Reference

PDJULIw. Informat

Reads packed Julian dates in the hexadecimal format ccyydddF for IBM.

Category: Date and Time

Syntax

PDJULIw.

Syntax Description

specifies the width of the input field.

Default: 4 Range: 4

Details

The PDJULIw. informat reads IBM packed Julian date values in the form ccyydddF:

is the one-byte representation of a two-digit integer that represents the century.

is the one-byte representation of a two-digit integer that represents the year. The PDJULIw informat makes an adjustment to the one-byte century representation by adding 1900 to the two-byte ccyy value in order to produce the correct four-digit

Gregorian year. This adjustment causes *ccyy* values of 0098 to become 1998, 0101 to become 2001, and 0218 to become 2118.

ddd

is the one-and-a-half bytes representation of the three-digit integer that corresponds to the Julian day of the year, 1–365 (or 1–366 for leap years).

F

is the half byte that contains all binary 1s, which assigns the value as positive.

Example

input date pdjuli4.;

Data Line	Result *
+	
0099001F	14245
0112015F	19007

^{*} SAS date value 14245 is January 1, 1999. SAS date value 19007 is January 15, 2012.

See Also

Formats:

- "JULDAYw. Format" on page 110
- "JULIANw. Format" on page 111
- "PDJULGw. Format" on page 128
- "PDJULIw. Format" on page 130

Functions:

- "DATEJUL Function" in SAS Functions and CALL Routines: Reference
- "JULDATE Function" in SAS Functions and CALL Routines: Reference

Informats:

- "JULIANw. Informat" on page 289
- "PDJULGw. Informat" on page 300

System Options:

• "YEARCUTOFF= System Option" in SAS System Options: Reference

PDTIMEw. Informat

Reads packed decimal time of SMF and RMF records.

Category: Date and Time

Syntax

PDTIMEw.

Syntax Description

specifies the width of the input field.

Requirement: w must be 4 because packed decimal time values in RMF and SMF records contain four bytes of information.

Details

The PDTIMEw. informat reads packed decimal time values that are contained in SMF and RMF records that are produced by IBM mainframe systems and converts the values to SAS time values.

The general form of a packed decimal time value in hexadecimal notation is 0hhmmssF:

0

is a half byte that contains all 0s.

hh

is one byte that represents two digits that correspond to hours.

mm

is one byte that represents two digits that correspond to minutes.

SS

is one byte that represents two digits that correspond to seconds.

F

is a half byte that contains all 1s.

If a field contains all 0s, PDTIMEw. treats it as a missing value.

PDTIMEw. enables you to read packed decimal time values from files that are created on an IBM mainframe on any operating environment.

Example

input begin pdtime4.;

Data Line *	Result
0142225F	51745

^{*} The data line is a hexadecimal representation of a binary time value that is stored in packed decimal form. Each byte occupies one column of the input field. The result is a SAS time value that corresponds to 2:22.25 p.m.

PERCENTw.d Informat

Reads percentages as numeric values.

Category: Numeric

Syntax

PERCENTw.d

Syntax Description

specifies the width of the input field.

Default: 6 **Range:** 1–32

d

specifies the power of 10 by which to divide the value. If the data contain decimal points, the *d* value is ignored. This argument is optional.

Range: 0-31

Details

The PERCENTw.d informat converts the numeric portion of the input data to a number using the same method as the COMMAw.d informat. If a percent sign (%) follows the number in the input field, PERCENTw.d divides the number by 100.

Example

input @1 x percent3. @4 y percent5.;

Data Line	Result
+1	
1% (20%)	0.01 -0.2

PIBw.d Informat

Reads positive integer binary (fixed-point) values.

Category: Numeric

> See: "PIBw.d Informat: UNIX" in SAS Companion for UNIX Environments

> > "PIBw.d Informat: Windows" in SAS Companion for Windows

Syntax

PIBw.d

Syntax Description

specifies the width of the input field.

Default: 1 **Range:** 1-8

d

specifies the power of 10 by which to divide the value. This argument is optional.

Range: 0–10

Details

All values are treated as positive. PIBw.d reads positive integer binary values with consistent results if the values are created in the same type of operating environment that you use to run SAS.

Note: Different operating environments store positive integer binary values in different ways. This concept is called byte ordering. For a detailed discussion about byte ordering, see "Byte Ordering for Integer Binary Data on Big Endian and Little Endian Platforms" on page 203.

Comparisons

- Positive integer binary values are the same as integer binary values except that the sign bit is part of the value, which is always a positive integer. The PIBw.d informat treats all values as positive and includes the sign bit as part of the value.
- The PIBw.d informat with a width of 1 results in a value that corresponds to the binary equivalent of the contents of a byte. The binary equivalent of the contents of a byte is useful if your data contain values between hexadecimal 80 and hexadecimal FF, where the high-order bit can be misinterpreted as a negative sign.
- The IBw.d and PIBw.d informats are used to read native format integers. (Native format enables you to read and write values that are created in the same operating environment.) The IBRw.d and PIBRw.d informats are used to read little endian integers in any operating environment.

To view a table that shows the type of informat to use with big endian and little endian integers, see Table 3.1 on page 204.

To view a table that compares integer binary notation in several programming languages, see "Integer Binary Notation and Different Programming Languages" on page 9.

Example

You can use the INPUT statement and specify the PIB informat. However, in these examples, we use the informat with the INPUT function, where binary input values are described by using a hexadecimal literal.

```
x=input('0100'x,pib2.);
y=input('0001'x,pib2.);
```

SAS Statement	Result on Big Endian Platforms	Result on Little Endian Platforms
<pre>put x=; put y=;</pre>	256 1	1 256

See Also

Informats:

"PIBRw.d Informat" on page 306

PIBRw.d Informat

Reads positive integer binary (fixed-point) values in Intel and DEC formats.

Category: Numeric

Syntax

PIBRw.d

Syntax Description

n

specifies the width of the input field.

Default: 1 **Range:** 1–8

d

specifies the power of 10 by which to divide the value. This argument is optional.

Range: 0-10

Details

All values are treated as positive. PIBRw.d reads positive integer binary values that have been generated by and for Intel and DEC operating environments. Use PIBRw.d to read positive integer binary data from Intel or DEC environments on other operating environments. The PIBRw.d informat in SAS code allows for a portable implementation for reading the data in any operating environment.

Note: Different operating environments store positive integer binary values in different ways. This concept is called byte ordering. For a detailed discussion about byte ordering, see "Byte Ordering for Integer Binary Data on Big Endian and Little Endian Platforms" on page 203.

Comparisons

- Positive integer binary values are the same as integer binary values except that the sign bit is part of the value, which is always a positive integer. The PIBRw.d informat treats all values as positive and includes the sign bit as part of the value.
- The PIBRw.d informat with a width of 1 results in a value that corresponds to the binary equivalent of the contents of a byte. This is useful if your data contain values between hexadecimal 80 and hexadecimal FF, where the high-order bit can be misinterpreted as a negative sign.
- On Intel and DEC platforms, the PIBw.d and PIBRw.d informats are equivalent.
- The IBw.d and PIBw.d informats are used to read native format integers. (Native format enables you to read and write values that are created in the same operating

environment.) The IBRw.d and PIBRw.d informats are used to read little endian integers in any operating environment.

To view a table that shows the type of informat to use with big endian and little endian integers, see Table 3.1 on page 204.

To view a table that compares integer binary notation in several programming languages, see "Integer Binary Notation and Different Programming Languages" on page 9.

Example

You can use the INPUT statement and specify the PIBR informat. However, these examples use the informat with the INPUT function, where binary input values are described using a hexadecimal literal.

```
x=input('0100'x,pibr2.);
y=input('0001'x,pibr2.);
```

SAS Statement	Result on Big Endian Platforms	Result on Little Endian Platforms
<pre>put x=; put y=;</pre>	1 256	1 256

See Also

Informat

• "PIBw.d Informat" on page 304

PKw.d Informat

Reads unsigned packed decimal data.

Category: Numeric

Syntax

PKw.d

Syntax Description

w

specifies the number of bytes of unsigned packed decimal data, each of which contains two digits.

Default: 1 **Range:** 1–16

d

specifies the power of 10 by which to divide the value. This argument is optional.

Range: 0–10

Details

Each byte of unsigned packed decimal data contains two digits.

Comparisons

The PKw.d informat is the same as the PDw.d informat, except that PKw.d treats the sign half of the field's last byte as part of the value, not as the sign of the value.

Example

input @1 x pk3.;

Data Line *	Result
1	
001234	1234

^{*} The data line is a hexadecimal representation of a binary number stored in unsigned packed decimal form. Each byte occupies one column of the input field.

PUNCH.d Informat

Reads whether a row of column-binary data is punched.

Category: Column Binary

Syntax

PUNCH.d

Syntax Description

d

specifies which row in a card column to read.

Range: 1-12

Details

Column-binary data storage compresses data so that more than 80 items of data can be stored on a single "virtual" punch card.

This informat assigns the value 1 to the variable if row *d* of the current card column is punched, or 0 if row *d* of the current card column is not punched. After PUNCH.*d* reads a field, the pointer does not advance to the next column.

Example

Data Line *	SAS Statement	Result
12-7-8	input x punch.12	1
	input x punch.11	0
	input x punch0.7	1

^{*} The data line is "virtual" punched card code. The punch card column for the example data has row 12, row 7, and row 8 punched.

See Also

"How to Read Column-Binary Data" in Chapter 19 of SAS Language Reference: Concepts

Informats:

- "\$CBw. Informat" on page 227
- "CBw.d Informat" on page 264
- "ROWw.d Informat" on page 313

RBw.d Informat

Reads numeric data that are stored in real binary (floating-point) notation.

Category: Numeric

> See: "RBw.d Informat: UNIX" in SAS Companion for UNIX Environments

> > "RBw.d Informat: Windows" in SAS Companion for Windows

"RBw.d Informat: z/OS" in SAS Companion for z/OS

Syntax

RBw.d

Syntax Description

specifies the width of the input field.

Default: 4 **Range: 2-8**

d

specifies the power of 10 by which to divide the value. This argument is optional.

Range: 0-10

Details

Note: Different operating environments store real binary values in different ways. However, the RBw.d informat reads real binary values with consistent results if the values are created on the same type of operating environment that you use to run SAS.

Comparisons

The following table compares the names of real binary notation in several programming languages:

	Real Binary Notation	
Language	4 Bytes	8 Bytes
SAS	RB4.	RB8.
Fortran	REAL*4	REAL*8
С	float	double
IBM 370 assembler	F	D
PL/I	FLOAT BIN(21)	FLOAT BIN(53)

CAUTION:

Using the RBw.d informat to read real binary information about equipment that conforms to the IEEE standard for floating-point numbers results in a truncated eight-byte number (double-precision), rather than in a true four-byte floatingpoint number (single-precision).

Example

input @1 x rb8.;

Data Line *	Result
1	
428000000000000	128

^{*} The data line is a hexadecimal representation of a real binary (floating-point) number on an IBM mainframe operating environment. Each byte occupies one column of the input field.

See Also

Informats:

"IEEEw.d Informat" on page 288

RMFDURw. Informat

Reads duration intervals of RMF records.

Category:

Date and Time

Syntax

RMFDURw.

Syntax Description

specifies the width of the input field.

Requirement: w must be 4 because packed decimal duration values in RMF records contain four bytes of information.

Details

The RMFDURw. informat reads the duration of RMF measurement intervals of RMF records that are produced as packed decimal data by IBM mainframe systems and converts them to SAS time values.

The general form of the duration interval data in an RMF record in hexadecimal notation is *mmssttt*F:

mm

is the one-byte representation of two digits that correspond to minutes.

SS

is the one-byte representation of two digits that correspond to seconds.

ttt

is the one-and-a-half-bytes representation of three digits that correspond to thousandths of a second.

F

is a half byte that contains all binary 1s, which assigns the value as positive.

If the field does not contain packed decimal data, then RMFDURw. results in a missing value.

Comparisons

- Both the RMFDURw. informat and the RMFSTAMPw. informat read packed decimal information from RMF records that are produced by IBM mainframe systems.
- The RMFDURw, informat reads duration data and results in a time value.
- The RMFSTAMPw. informat reads time-of-day data and results in a datetime value.

Example

```
input dura rmfdur4.;
```

Data Line *	Result
1	
3552226F	2152.226

^{*} The data line is a hexadecimal representation of a binary duration value that is stored in packed decimal form as it would appear in an RMF record. Each byte occupies one column of the input field. The result is a SAS time value corresponding to 00:35:52.226.

See Also

Informats:

- "RMFSTAMPw. Informat" on page 312
- "SMFSTAMPw. Informat" on page 330

RMFSTAMPw. Informat

Reads time and date fields of RMF records.

Category:

Date and Time

Syntax

RMFSTAMPw.

Syntax Description

specifies the width of the input field.

Requirement: w must be 8 because packed decimal time and date values in RMF records contain eight bytes of information: four bytes of time data that are followed by four bytes of date data.

Details

The RMFSTAMPw. informat reads packed decimal time and date values of RMF records that are produced by IBM mainframe systems, and converts the time and date values to SAS datetime values.

The general form of the time and date information in an RMF record in hexadecimal notation is 0hhmmssFccyydddF:

0

is the half byte that contains all binary 0s.

hh

is the one-byte representation of two digits that correspond to the hour of the day.

is the one-byte representation of two digits that correspond to minutes.

SS

is 1 byte that represents two digits that correspond to seconds.

ccis the one-byte representation of two digits that correspond to the century.

yyis the one-byte representation of two digits that correspond to the year.

ddd

is the one-and-a-half bytes that contain three digits that correspond to the day of the year.

F

is the half byte that contains all binary 1s.

The century indicators 00 correspond to 1900, 01 to 2000, and 02 to 2100.

RMFSTAMPw. enables you to read, on any operating environment, packed decimal time and date values from files that are created on an IBM mainframe.

Comparisons

Both the RMFSTAMPw. informat and the PDTIMEw. informat read packed decimal values from RMF records. The RMFSTAMPw. informat reads both time and date values and results in a SAS datetime value. The PDTIMEw. informat reads only time values and results in a SAS time value.

Example

```
input begin: $hex16.;
y=input(begin, rmfstamp8.);
```

Data Line *	Result
+2	
0142225F2612200F	80550512545

* The data line is a hexadecimal representation of a binary time and date value that is stored in packed decimal form as it would appear in an RMF record. Each byte occupies one column of the input field. The result is a SAS datetime value that corresponds to July 18, 2012, 2:22.25 PM.

ROWw.d Informat

Reads a column-binary field down a card column.

Category: Column Binary

Syntax

ROWw.d

Syntax Description

specifies the row where the field begins.

Range: 0-12

d

specifies the length in rows of the field.

Default: 1 Range: 1–25

Details

Column-binary data storage compresses data so that more than 80 items of data can be stored on a single "virtual" punch card.

The ROWw.d informat assigns the relative position of the punch in the field to a numeric variable.

If the field that you specify has more than one punch, then ROWw.d assigns the variable a missing value and sets the automatic variable _ERROR_ to 1. If the field has no punches, then ROWw.d assigns the variable a missing value.

ROWw.d can read fields across columns, continuing with row 12 of the new column and going down through the rest of the rows. After ROWw.d reads a field, the pointer moves to the next row.

Example

```
input x row5.3
input x row7.1
input x row5.2
input x row3.5
```

Data Line *	Result
+1	
00	
04	3
	1
	5

^{*} The data line is a hexadecimal representation of the column binary. The "virtual" punch card column for the example data has row 7 punched. The binary representation is 0000 0000 0000 0100.

See Also

 "How to Read Column-Binary Data" in Chapter 19 of SAS Language Reference: Concepts

Informats:

- "\$CBw. Informat" on page 227
- "CBw.d Informat" on page 264
- "PUNCH.d Informat" on page 308

S370FFw.d Informat

Reads EBCDIC numeric data.

Category: Numeric

Syntax

S370FFw.d

Syntax Description

specifies the width of the input field.

Default: 12 **Range:** 1-32

d

specifies the power of 10 by which to divide the value. This argument is optional.

Range: 0-31

Details

The S370FFw.d informat reads numeric data that are represented in EBCDIC and converts the data to native format. If EBCDIC is the native format, S370FFw.d performs no conversion.

S370FFw.d reads EBCDIC numeric values that are represented with one byte per digit. Use S370FFw.d on other operating environments to read numeric data from IBM mainframe files.

S370FFw.d reads numeric values located anywhere in the input field. EBCDIC blanks can precede or follow a numeric value with no effect. If a value is negative, an EBCDIC minus sign should immediately precede the value. S370FFw.d reads values with EBCDIC decimal points and values in scientific notation, and it interprets a single EBCDIC period as a missing value.

Comparisons

The S370FFw.d informat performs the same role for numeric data that the \$EBCDICw.d informat does for character data. That is, on an IBM mainframe system, S370FFw.d has the same effect as the standard w.d informat. On all other systems, using S370FFw.d is equivalent to using \$EBCDICw.d as well as using the standard w.d informat.

Example

input @1 x s370ff3.;

Data Line *	Result
+1	
F1F2F3	123

Data Line *	Result
F2F4F0	240

^{*} The data lines are hexadecimal representations of codes for characters. Each two hexadecimal characters correspond to one byte of binary data, and each byte corresponds to one character value.

S370FIBw.d Informat

Reads integer binary (fixed-point) values, including negative values, in IBM mainframe format.

Category: Numeric

Syntax

S370FIBw.d

Syntax Description

specifies the width of the input field.

Default: 4 Range: 1-8

d

specifies the power of 10 by which to divide the value. This argument is optional.

Range: 0-10

Details

The S370FIBw.d informat reads integer binary (fixed-point) values that are stored in IBM mainframe format, including negative values that are represented in two's complement notation. S370FIBw.d reads integer binary values with consistent results if the values are created in the same type of operating environment that you use to run SAS.

Use S370FIBw.d for integer binary data that are created in IBM mainframe format for reading in other operating environments.

Note: Different operating environments store integer binary values in different ways. This concept is called byte ordering. For a detailed discussion about byte ordering, see "Byte Ordering for Integer Binary Data on Big Endian and Little Endian Platforms" on page 203.

Comparisons

- If you use SAS on an IBM mainframe, S370FIBw.d and IBw.d are identical.
- S370FPIBw.d, S370FIBUw.d, and S370FIBw.d are used to read big endian integers in any operating environment.

To view a table that shows the type of informat to use with big endian and little endian integers, see Table 3.1 on page 204.

To view a table that compares integer binary notation in several programming languages, see "Integer Binary Notation and Different Programming Languages" on page 9...

Example

You can use the INPUT statement and specify the S370FIB informat. However, this example uses the informat with the INPUT function, where the binary input value is described by using a hexadecimal literal.

x=input('0080'x,s370fib2.);

SAS Statement	Result
<pre>put x=;</pre>	128

See Also

Informats

- "S370FIBUw.d Informat" on page 317
- "S370FPIBw.d Informat" on page 320

S370FIBUw.d Informat

Reads unsigned integer binary (fixed-point) values in IBM mainframe format.

Category: Numeric

Syntax

S370FIBUw.d

Syntax Description

specifies the width of the input field.

Default: 4 Range: 1-8

d

specifies the power of 10 by which to divide the value. SAS uses the d value even if the data contain decimal points. This argument is optional.

Range: 0-10

Details

The S370FIBUw.d informat reads unsigned integer binary (fixed-point) values that are stored in IBM mainframe format, including negative values that are represented in two's complement notation. Unsigned integer binary values are the same as integer binary values, except that all values are treated as positive. S370FIBUw.d reads integer binary

values with consistent results if the values are created in the same type of operating environment that you use to run SAS.

Use S370FIBUw.d for unsigned integer binary data that are created in IBM mainframe format for reading in other operating environments.

Note: Different operating environments store integer binary values in different ways. This concept is called byte ordering. For a detailed discussion about byte ordering, see "Byte Ordering for Integer Binary Data on Big Endian and Little Endian Platforms" on page 203.

Comparisons

- The S370FIBUw.d informat is equivalent to the COBOL notation PIC 9(n) BINARY, where n is the number of digits.
- The S370FIBUw.d and S370FPIBw.d informats are identical.
- S370FPIBw.d, S370FIBUw.d, and S370FIBw.d are used to read big endian integers in any operating environment.

To view a table that shows the type of informat to use with big endian and little endian integers, see Table 3.1 on page 204.

To view a table that compares integer binary notation in several programming languages, see "Integer Binary Notation and Different Programming Languages" on page 9..

Example

You can use the INPUT statement and specify the S370FIBU informat. However, these examples use the informat with the INPUT function, where binary input values are described by using a hexadecimal literal.

```
x=input('7F'x,s370fibu1.);
y=input('F6'x,s370fibu1.);
```

SAS Statement	Result
put x=;	127
<pre>put y=;</pre>	246

See Also

Informats:

- "S370FIBw.d Informat" on page 316
- "S370FPIBw.d Informat" on page 320

S370FPDw.d Informat

Reads packed data in IBM mainframe format.

Category: Numeric

Syntax

S370FPDw.d

Syntax Description

specifies the width of the input field.

Default: 1 **Range:** 1–16

d

specifies the power of 10 by which to divide the value. This argument is optional.

Default: 0 **Range:** 0-31

Details

Packed decimal data contain two digits per byte, but only one digit in the input field represents the sign. The last half of the last byte indicates the sign: a C or an F for positive numbers and a D for negative numbers.

Use S370FPDw.d to read packed decimal data from IBM mainframe files on other operating environments.

Comparisons

- If you use SAS on an IBM mainframe, the S370FPDw.d and the PDw.d informats are identical.
- The following table compares the equivalent packed decimal notation by programming language:

Language	Packed Decimal Notation
SAS	S370FPD4.
PL/I	FIXED DEC(7,0)
COBOL	COMP-3 PIC 9(7)
assembler	PL4

S370FPDUw.d Informat

Reads unsigned packed decimal data in IBM mainframe format.

Category: Numeric

Syntax

S370FPDUw.d

Syntax Description

w

specifies the width of the input field.

Default: 1 **Range:** 1-16

d

specifies the power of 10 by which to divide the value. This argument is optional.

Default: 0 **Range:** 0–31

Details

Packed decimal data contain two digits per byte. The last half of the last byte, which indicates the sign for signed packed data, is always F for unsigned packed data.

Use S370FPDUw.d on other operating environments to read unsigned packed decimal data from IBM mainframe files.

Comparisons

- The S370FPDUw.d informat is similar to the S370FPDw.d informat except that the S370FPDUw.d informat rejects all sign digits except F.
- The S370FPDUw.d informat is equivalent to the COBOL notation PIC 9(n) PACKED-DECIMAL, where the n value is the number of digits.

Example

input @1 x s370fpdu3.;

Data Line *	Result
1	
12345F	12345

^{*} The data line is a hexadecimal representation of a binary number that is stored in packed decimal form. Each two hexadecimal characters correspond to one byte of binary data, and each byte corresponds to one column of the input field.

S370FPIBw.d Informat

Reads positive integer binary (fixed-point) values in IBM mainframe format.

Category: Numeric

Syntax

S370FPIBw.d

Syntax Description

specifies the width of the input field.

Default: 4 Range: 1-8

specifies the power of 10 by which to divide the value. This argument is optional.

Default: 0 **Range:** 0-10

Details

Positive integer binary values are the same as integer binary values, except that all values are treated as positive. S370FPIBw.d reads integer binary values with consistent results if the values are created in the same type of operating environment that you use to run SAS.

Use S370FPIBw.d for positive integer binary data that are created in IBM mainframe format for reading in other operating environments.

Note: Different operating environments store integer binary values in different ways. This concept is called byte ordering. For a detailed discussion about byte ordering, see "Byte Ordering for Integer Binary Data on Big Endian and Little Endian Platforms" on page 203.

Comparisons

- If you use SAS on an IBM mainframe, S370FPIBw.d and PIBw.d are identical.
- S370FPIBw.d, S370FIBUw.d, and S370FIBw.d are used to read big endian integers in any operating environment.

To view a table that shows the type of informat to use with big endian and little endian integers, see Table 3.1 on page 204.

To view a table that compares integer binary notation in several programming languages, see "Integer Binary Notation and Different Programming Languages" on page 9.

Example

You can use the INPUT statement and specify the S370FPIB informat. However, this example uses the informat with the INPUT function, where the binary input value is described using a hexadecimal literal.

```
x=input('0100'x,s370fpib2.);
```

SAS Statement	Result
put x=4;	256

See Also

Informats:

- "S370FIBw.d Informat" on page 316
- "S370FIBUw.d Informat" on page 317

S370FRBw.d Informat

Reads real binary (floating-point) data in IBM mainframe format.

Category: Numeric

Syntax

S370FRBw.d

Syntax Description

specifies the width of the input field.

Default: 6 **Range:** 2–8

d

specifies the power of 10 by which to divide the value. This argument is optional.

Range: 0-10

Details

Real binary values are represented in two parts: a mantissa that gives the value, and an exponent that gives the value's magnitude.

Use S370FRBw.d to read real binary data from IBM mainframe files on other operating environments.

Comparisons

- If you use SAS on an IBM mainframe, S370FRBw.d and RBw.d are identical.
- The following table shows the equivalent real binary notation for several programming languages:

	Real Binary Notation	
Language	4 Bytes	8 Bytes
SAS	S370FRB4.	S370FRB8.
PL/I	FLOAT BIN(21)	FLOAT BIN(53)
Fortran	REAL*4	REAL*8
COBOL	COMP-1	COMP-2
assembler	Е	D

	Real Binary Notation	
Language	4 Bytes	8 Bytes
С	float	double

See Also

Informats:

"RBw.d Informat" on page 309

S370FZDw.d Informat

Reads zoned decimal data in IBM mainframe format.

Category: Numeric

Syntax

S370FZDw.d

Syntax Description

specifies the width of the input field.

Default: 8 **Range:** 1-32

d

specifies the power of 10 by which to divide the value. If the data contain decimal points, the *d* value is ignored. This argument is optional.

Default: 0 **Range:** 0-31

Details

Zoned decimal data are similar to standard decimal data in that every digit requires one byte. However, the value's sign is stored in the last byte, along with the last digit.

Use S370FZDw.d on other operating environments to read zoned decimal data from IBM mainframe files.

Comparisons

- If you use SAS on an IBM mainframe, S370FZDw.d and ZDw.d are identical.
- The following table shows the equivalent zoned decimal notation for several programming languages:

Language	Zoned Decimal Notation
SAS	S370FZD3.
PL/I	PICTURE'99T'
COBOL	PIC S9(3) DISPLAY
assembler	ZL3

Example

input @1 x s370fzd3.;

Data Line *	Result
1	
F1F2C3	123
F1F2D3	-123

^{*} The data line contains a hexadecimal representation of a binary number stored in zoned decimal format on an IBM mainframe operating environment. Each two hexadecimal characters correspond to one byte of binary data, and each byte corresponds to one column of the input field.

See Also

Informats:

• "ZDw.d Informat" on page 351

S370FZDBw.d Informat

See:

Reads zoned decimal data in which zeros have been left blank.

Category: Numeric

"ZDBw.d Informat: z/OS" in SAS Companion for z/OS

Syntax

S370FZBDw.d

Syntax Description

specifies the width of the input field.

Default: 8 **Range:** 1-32 d

specifies the power of 10 by which to divide the value. This argument is optional.

Default: 0 **Range:** 0-31

Details

Use the S370FZDBw.d informat on other operating environments to read zoned decimal data from IBM mainframe files.

Example

input @1 x s370fzdb8.;

Data Line *	Result
+1	
40404040F14040C0	1000
4040404040F1F2D3	-123

^{*} The data lines contain a hexadecimal representation of a binary number that is stored in zoned decimal format on an IBM mainframe operating environment. Two hexadecimal characters correspond to one byte of binary data, and each byte corresponds to one column of the input field.

S370FZDLw.d Informat

Reads zoned decimal leading-sign data in IBM mainframe format.

Numeric Category:

Syntax

S370FZDLw.d

Syntax Description

specifies the width of the input field.

Default: 8 **Range:** 1-32

specifies the power of 10 by which to divide the value. This argument is optional.

Default: 0 **Range:** 0-31

Details

Use S370FZDLw.d on other operating environments to read zoned decimal data from IBM mainframe files.

- Zoned decimal leading-sign data is similar to standard zoned decimal data except
 that the sign of the value is stored in the first byte of zoned decimal leading-sign
 data, along with the first digit.
- The S370FZDLw.d informat is equivalent to the COBOL notation PIC S9(n) DISPLAY SIGN LEADING, where the n value is the number of digits.

Example

input @1 x s370fzdl3.;

Data Line *	Result
+1	
C1F2F3	123
D1F2F3	-123

^{*} The data lines contain a hexadecimal representation of a binary number stored in zoned decimal format on an IBM mainframe operating environment. Each two hexadecimal characters correspond to one byte of binary data, and each byte corresponds to one column of the input field.

S370FZDSw.d Informat

Reads zoned decimal separate leading-sign data in IBM mainframe format.

Category: Numeric

Syntax

S370FZDSw.d

Syntax Description

w

specifies the width of the input field.

Default: 8 Range: 2-32

d

specifies the power of 10 by which to divide the value. This argument is optional.

Default: 0 **Range:** 0–31

Details

Use S370FZDSw.d on other operating environments to read zoned decimal data from IBM mainframe files.

- Zoned decimal separate leading-sign data is similar to standard zoned decimal data except that the sign of the value is stored in the first byte of zoned decimal leading sign data, and the first digit of the value is stored in the second byte.
- The S370FZDSw.d informat is equivalent to the COBOL notation PIC S9(n) DISPLAY SIGN LEADING SEPARATE, where the *n* value is the number of digits.

Example

input @1 x s370fzds4.;

Data Line *	Result
+	
4EF1F2F3	123
60F1F2F3	-123

^{*} The data line contains a hexadecimal representation of a binary number that is stored in zoned decimal format on an IBM mainframe operating environment. Each two hexadecimal characters correspond to one byte of binary data, and each byte corresponds to one column of the input field.

S370FZDTw.d Informat

Reads zoned decimal separate trailing-sign data in IBM mainframe format.

Category: Numeric

Syntax

S370FZDTw.d

Syntax Description

specifies the width of the input field.

Default: 8 **Range: 2–32**

specifies the power of 10 by which to divide the value. This argument is optional.

Default: 0 **Range:** 0-31

Details

Use S370FZDTw.d on other operating environments to read zoned decimal data from IBM mainframe files.

- Zoned decimal separate trailing-sign data are similar to zoned decimal separate leading-sign data except that the sign of the value is stored in the last byte of zoned decimal separate trailing-sign data.
- The S370FZDTw.d informat is equivalent to the COBOL notation PIC S9(n) DISPLAY SIGN TRAILING SEPARATE, where the n value is the number of digits.

Example

input @1 x s370fzdt4.;

Data Line *	Result
+	
F1F2F34E	123
F1F2F360	-123

^{*} The data line contains a hexadecimal representation of a binary number that is stored in zoned decimal format on an IBM mainframe operating environment. Each two hexadecimal characters correspond to one byte of binary data, and each byte corresponds to one column of the input field.

S370FZDUw.d Informat

Reads unsigned zoned decimal data in IBM mainframe format.

Category: Numeric

Syntax

S370FZDUw.d

Syntax Description

w

specifies the width of the input field.

Default: 8 **Range:** 1-32

d

specifies the power of 10 by which to divide the value. This argument is optional.

Default: 0 **Range:** 0–31

Details

Use S370FZDUw.d on other operating environments to read unsigned zoned decimal data from IBM mainframe files.

- The S370FZDUw.d informat is similar to the S370FZDw.d informat except that the S370FZDUw.d informat rejects all sign digits except F.
- The S370FZDUw.d informat is equivalent to the COBOL notation PIC 9(n)DISPLAY, where the n value is the number of digits.

Example

input @1 x s370fzdu3.;

Data Line *	Result
+	
F1F2F3	123

^{*} The data line contains a hexadecimal representation of a binary number that is stored in zoned decimal format on an IBM mainframe operating environment. Each two hexadecimal characters correspond to one byte of binary data, and each byte corresponds to one column of the input field.

SHRSTAMPw. Informat

Reads date and time values of SHR records.

Category:

Date and Time

Syntax

SHRSTAMPw.

Syntax Description

specifies the width of the input field.

Requirement: w must be 8 because packed decimal date and time values in SHR records contain eight bytes of information: four bytes of date data that are followed by four bytes of time data.

Details

The SHRSTAMPw. informat reads packed decimal date and time values of SHR records that are produced by IBM mainframe environments and converts the date and time values to SAS datetime values.

The general form of the date and time information in an SHR record in hexadecimal notation is *ccyyddd*Fhhmmssth, where

ссуу

is the two byte representation of the year. The cc portion is the one byte representation of a two-digit integer that represents the century. The yy portion is the one byte representation of two digits that correspond to the year.

The *cc* portion is the century indicator where 00 indicates 19yy, 01 indicates 20yy, 02 indicates 21yy, and so on. A hexadecimal year value of 0115 is equal to the year 2015.

ddd

is the one-and-a-half bytes that contain three digits that correspond to the day of the year.

F

is the half byte that contains all binary 1s.

hh

is the one byte representation of two digits that correspond to the hour of the day.

mm

is the one byte representation of two digits that correspond to minutes.

SS

is the one byte representation of two digits that correspond to seconds.

th

is the one byte representation of two digits that correspond to a 100th of a second.

The SHRSTAMPw. informat enables you to read, on any operation environment, packed decimal date and time values from files that are created on an IBM mainframe.

Example

```
input begin: $hex16.;
y=input(begin, shrstamp8.);
```

Data Line *	Result
+2	
0110239F12403576	1598532035.8

^{*} The data line is a hexadecimal representation of a packed decimal date and time value that is stored as it would appear in an SHR record. Each byte occupies one column of the input field. The result is a SAS datetime value that corresponds to August. 27, 2010 12:40:36.

SMFSTAMPw. Informat

Reads time and date values of SMF records.

Category: Date and Time

Syntax

SMFSTAMPw.

Syntax Description

w

specifies the width of the input field.

Requirement: w must be 8 because time and date values in SMF records contain eight bytes of information: four bytes of time data that are followed by four bytes of date data.

Tip: The time portion of an SMF record is a four-byte integer binary number that represents time as the number of hundredths of a second past midnight.

Details

The SMFSTAMPw. informat reads integer binary time values and packed decimal date values of SMF records that are produced by IBM mainframe systems and converts the time and date values to SAS datetime values.

The date portion of an SMF record in hexadecimal notation is *ccyyddd*F:

is the one-byte representation of two digits that correspond to the century.

уу is the one-byte representation of two digits that correspond to the year.

ddd

is the one-and-a-half bytes that contain three digits that correspond to the day of the year.

F

is the half byte that contains all binary 1s.

The SMFSTAMPw. informat enables you to read, on any operating environment, integer binary time values and packed decimal date values from files that are created on an IBM mainframe.

Example

```
input begin: $hex16.;
y=input(begin, smfstamp8.);
```

Data Line *	Result
+2	
0058DC0C0108200F	1532016635

^{*} The data line is a hexadecimal representation of a binary time and date value that is stored as it would appear in an SMF record. Each byte occupies one column of the input field. The result is a SAS datetime value that corresponds to July 18, 2008, 4:10:35 PM.

STIMERw. Informat

Reads time values and determines whether the values are hours, minutes, or seconds; reads the output of the STIMER system option.

Category: Date and Time

Syntax

STIMERw.

Syntax Description

w

specifies the width of the input field.

Details

The STIMER informat reads performance statistics that the STIMER system option writes to the SAS log.

The informat reads time values and determines whether the values are hours, minutes, or seconds based on the presence of decimal points and colons:

- If no colon is present, the value is the number of seconds.
- If a single colon is present, the value before the colon is the number of minutes. The value after the colon is the number of seconds.
- If two colons are present, the sequence of time is hours, minutes, and then seconds.

In all cases, the result is a SAS time value.

The input values for STIMER must be in one of the following forms:

- SS
- SS.SS
- mm:ss
- mm:ss.ss
- hh:mm:ss
- hh:mm:ss.ss

SS

is an integer that represents the number of seconds.

mm

is an integer that represents the number of minutes.

hh

is an integer that represents the number of hours.

TIMEw. Informat

Reads hours, minutes, and seconds in the form *hh:mm:ss.ss*, where special characters such as the colon (:) or the period (.) are used to separate the hours, minutes, and seconds.

Category:

Date and Time

Syntax

TIMEw.

Syntax Description

n

specifies the width of the input field.

Default: 8

Range: 5-32

Details

The TIMEw. informat reads SAS time values in the form: hh:mm:ss<.ss> <AM | PM>:

hh

is an integer that represents the number of hours.

represents a special character that separates hours, minutes, and seconds.

mm

is an integer between 00 and 59 that represents minutes.

<22.>22

is an integer that represents the number of seconds, and if needed, tenths of a second. Seconds and tenths of a second must always be separated by a period.

AM | PM

AM indicates time between 12:00 midnight and 11:59 in the morning. PM indicates time between 12:00 noon and 11:59 at night.

Separate hh, mm, and ss with a special character. When the period is used as the special character, the time is interpreted in the order hours, minutes, and seconds. For example, 23.22 is 23 hours and 22 minutes, not 23 minutes and 22 seconds, or 23 seconds and 22 tenths of a second.

If you do not enter a value for seconds, SAS assumes a value of 0.

The stored value is the total number of seconds in the time value.

Example

input begin time10.;

Data Line	Result	Formatted with TIMEw.
1		
12.56	46560	12:56:00
120:120	439200	122:00:00
1:13 pm	47580	13:13:00

See Also

Formats:

- "HHMMw.d Format" on page 103
- "HOURw.d Format" on page 105
- "MMSSw.d Format" on page 117
- "TIMEw.d Format" on page 157

Functions:

- "HOUR Function" in SAS Functions and CALL Routines: Reference
- "MINUTE Function" in SAS Functions and CALL Routines: Reference
- "SECOND Function" in SAS Functions and CALL Routines: Reference
- "TIME Function" in SAS Functions and CALL Routines: Reference

TODSTAMPw. Informat

Reads an eight-byte time-of-day stamp.

Category:

Date and Time

Syntax

TODSTAMPw.

Syntax Description

и

specifies the width of the input field.

Requirement: w must be 8 because the OS TIME macro or the STCK instruction on IBM mainframes each return an eight-byte value.

Details

The TODSTAMPw. informat reads time-of-day clock values that are produced by IBM mainframe operating systems and converts the clock values to SAS datetime values.

If the time-of-day value is all 0s, TODSTAMPw. results in a missing value.

Use TODSTAMPw. on other operating environments to read time-of-day values that are produced by an IBM mainframe.

Example

```
input btime: $hex16.;
y=input(btime, todstamp8.);
```

Data Line *	Result
+2	
B591183D5FB80000	1300786905

^{*} The data line is a hexadecimal representation of a binary, 8-byte time-of-day clock value. Each byte occupies one column of the input field. The result is a SAS datetime value that corresponds to March 21, 2001, 09:41:45.

TRAILSGNw. Informat

Reads a trailing plus (+) or minus (-) sign.

Category:

Numeric

Syntax

TRAILSGNw.

Syntax Description

specifies the width of the input field.

Default: 6 **Range:** 1-32

Details

If the data contains a decimal point, the TRAILSGN informat honors the number of decimal places that are in the input data. If the data contains a comma, the TRAILSGN informat reads the value, ignoring the comma.

Example

input x trailsgn8.;

Data Line	Result
+1	
1	1
1,000	1000
1+	1
1-	-1
1.2	1.2
1.2+	1.2
1.2-	-1.2

TUw. Informat

Reads timer units.

Category:

Date and Time

Syntax

TUw.

Syntax Description

w

specifies the width of the input field.

Requirement: w must be 4 because the OS TIME macro returns a four-byte value.

Details

The TUw. informat reads timer unit values that are produced by IBM mainframe operating environments and converts the timer unit values to SAS time values.

There are exactly 38,400 software timer units per second. The low-order bit in a timer unit value represents approximately 26.041667 microseconds.

Use the TUw. informat to read timer unit values that are produced by an IBM mainframe on other operating environments.

Example

input btime tu4.;

Data Line *	Result
1	
8FC7A9BC	62818.411563

^{*} The data line is a hexadecimal representation of a binary, four-byte timer unit value. Each byte occupies one column of the input field. The result is a SAS time value that corresponds to 5:26:58.41 p.m.

VAXRBw.d Informat

Reads real binary (floating-point) data in VMS format.

Category: Numeric

Syntax

VAXRBw.d

Syntax Description

w

specifies the width of the input field.

Default: 4 Range: 2-8

d

specifies the power of 10 by which to divide the value. This argument is optional.

Range: 0–10

Details

Use the VAXRBw.d informat to read floating-point data from VMS files on other operating environments.

Comparisons

If you use SAS that is running under VMS, the VAXRBw.d and the RBw.d informats are identical.

See Also

Informats:

"RBw.d Informat" on page 309

VMSZNw.d Informat

Reads VMS and MicroFocus COBOL zoned numeric data.

Category: Numeric

Syntax

VMSZNw.d

Required Arguments

specifies the width of the output field.

Default: 1 **Range:** 1-32

d

specifies the number of digits to the right of the decimal point in the numeric value. This argument is optional.

Details

The VMSZNw.d informat is similar to the ZDw.d informat. Both read a string of ASCII digits, and the last digit is a special character denoting the magnitude of the last digit and the sign of the entire number. The difference between the VMSZNw.d informat and the ZDw.d informat is in the special character used for the last digit. The following table shows the special characters used by the VMSZNw.d informat.

Desired Digit	Special Character	Desired Digit	Special Character
0	0	-0	p
1	1	-1	q
2	2	-2	r

Desired Digit	Special Character	Desired Digit	Special Character
3	3	-3	S
4	4	-4	t
5	5	-5	u
6	6	-6	V
7	7	-7	W
8	8	-8	X
9	9	-9	у

Data formatted using the VMSZNw.d informat are ASCII strings.

Example

input @1 vmszn4.;

Data line	Result
+	
1234	1234
123t	-1234

See Also

Formats:

• "VMSZNw.d Format" on page 163

Informats:

• "ZDw.d Informat" on page 351

w.d Informat

Reads standard numeric data.

Category: Numeric

> Alias: BESTw.d, Dw.d, Ew.d, Fw.d

Syntax

w.d

Syntax Description

specifies the width of the input field.

Range: 1–32

d

specifies the power of 10 by which to divide the value. If the data contain decimal points, the *d* value is ignored. This argument is optional.

Range: 0-31

Details

The w.d informat reads numeric values that are located anywhere in the field. Blanks can precede or follow a numeric value with no effect. A minus sign with no separating blank should immediately precede a negative value. The w.d informat reads values with decimal points and values in scientific E-notation, and it interprets a single period as a missing value.

Comparisons

- The w.d informat is identical to the BZw.d informat, except that the w.d informat ignores trailing blanks in the numeric values. To read trailing blanks as 0s, use the BZw.d informat.
- The w.d informat can read values in scientific E-notation exactly as the Ew.d informat does.

Example

```
input @1 x 6. @10 y 6.2;
put x @7 y;
```

Data Line		Resu	t
+1	+	+	1+
23	2300	23	23
23 230	0	23	0
23 -:	2300	23	-23
23.0	23.	23	23
2.3E1	2.3	23	2.3
-23 0		-23	

WEEKUw. Informat

Reads a value in the form of a week-number within the year and returns a SAS date value by using the U algorithm.

Category:

Date and Time

Syntax

WEEKUw.

Syntax Description

specifies the width of the input field.

Default: 11 **Range:** 3–200

Details

The WEEKUw. informat reads the week-number value within the year, and then returns a SAS date value by using the U algorithm. If the input does not contain a year expression, then WEEKUw. uses the current year as the year expression, which is the default. If the input does not contain a day expression, then WEEKUw. uses the first day of the week as the day expression, which is the default.

The U Algorithm calculates the SAS date value using the number-of-week value within the year (Sunday is considered the first day of the week). The number-of-week value is represented as a decimal number in the range 0–53, with a leading zero and maximum value of 53. For example, the fifth week of the year would be represented as 05.

The inputs to the WEEKUw. informat are the same date for the following example. The current year is 2012.

Widths	Formats	Examples
3-4	Www	w01
5-6	yyWww	12W01
7-8	yyWwwdd	12W0101
9-10	yyyyWwwdd	2012W0101
11-200	yyyy-Www-dd	2012-W01-01

Comparisons

The WEEKUw. informat reads the week-number value as a decimal number in the range 0–53, with Sunday as the first day of the week.

The WEEKVw. informat reads the number-of-week value as a decimal number in the range 01–53, with Monday as the first day of the week. Week one of the year is the week that includes both January fourth and the first Thursday of the year. If the first Monday of January is the second, third, or fourth, the preceding days are part of the last week of the preceding year.

The WEEKWw. informat reads the week-number value as a decimal number in the range 00-53, with Monday as the first day of week.

Example

The current year is 2012 in the following examples.

Statements	Result
	1
<pre>v=input('W01',weeku3.);</pre>	
w=input('03W01',weeku5.);	
x=input('03W0101',weeku7.);	
y=input('2003W0101',weeku9.);	
z=input('2003-W01-01',weeku11.)	;
put v;	
put w;	18993
put x;	18993
put y;	18993
put z;	18993
	18993

See Also

Formats:

- "WEEKUw. Format" on page 169
- "WEEKVw. Format" on page 171
- "WEEKWw. Format" on page 173

Functions:

"WEEK Function" in SAS Functions and CALL Routines: Reference

Informats:

- "WEEKVw. Informat" on page 341
- "WEEKWw. Informat" on page 343

WEEKVw. Informat

Reads a value in the form a week-number within a year and returns a SAS date value using the V algorithm.

Date and Time Category:

Syntax

WEEKVw.

Syntax Description

specifies the width of the input field.

Default: 11 **Range:** 3-200

Details

The WEEKVw. informat reads the week-number value within a year. If the input does not contain a year expression, WEEKVw. uses the current year as the year expression, which is the default. If the input does not contain a day expression, WEEKVw. uses the first day of the week as the day expression, which is the default.

The V algorithm calculates the SAS date value. The number-of-week value is represented as a decimal number in the range 01-53, with a leading zero and maximum value of 53. Weeks begin on a Monday and week 1 of the year is the week that includes both January 4th and the first Thursday of the year. If the first Monday of January is the 2nd, 3rd, or 4th, the preceding days are part of the last week of the preceding year. For example, the fifth week of the year would be represented as 06.

The inputs to the WEEKVw. informat are the same date for the following example. The current year is 2012.

Widths	Formats	Examples
3-4	Www	w01
5-6	yyWww	12W01
7-8	yyWwwdd	12W0101
9-10	yyyyWwwdd	2012W0101
11-200	yyyy-Www-dd	2012-W01-01

Comparisons

The WEEKVw. informat reads the week-number value as a decimal number in the range 01-53, with Monday as the first day of the week. Week one of the year is the week that includes both January fourth and the first Thursday of the year. If the first Monday of January is the second, third, or fourth, the preceding days are part of the last week of the preceding year.

The WEEKUw. informat reads the week-number value as a decimal number in the range 0–53, with Sunday as the first day of the week.

The WEEKWw. informat reads the week-number-of-year value as a decimal number in the range 00–53, with Monday as the first day of week.

Example

The current year is 2012 in the following examples.

Statements	Result
	1
v=input('W01',weekv3.);	
w=input('03W01',weekv5.);	
x=input('03W0101',weekv7.);	
y=input('2003W0101',weekv9.);	
z=input('2003-W01-01',weekv11.);	
put v;	
put w;	18994
put x;	18994
put y;	18994
put z;	18994
	18994

See Also

Formats:

- "WEEKUw. Format" on page 169
- "WEEKVw. Format" on page 171
- "WEEKWw. Format" on page 173

Functions:

• "WEEK Function" in SAS Functions and CALL Routines: Reference

Informats:

- "WEEKUw. Informat" on page 340
- "WEEKWw. Informat" on page 343

WEEKWw. Informat

Reads a value in the form of a week-number within the year and returns a SAS date value using the W algorithm.

Category:

Date and Time

Syntax

WEEKWw.

Syntax Description

specifies the width of the input field.

Default: 11 **Range:** 3–200

Details

The WEEKWw. informat reads the week-number value within the year. If the input does not contain a year expression, the WEEKWw. informat uses the current year as the year expression, which is the default. If the input does not contain a day expression, the WEEKWw. informat uses the first day of the week as the day expression, which is the default. Algorithm W calculates the SAS date value using the number of the week within the year (Monday is considered the first day of the week). The number-of-week value is represented as a decimal number in the range 0–53, with a leading zero and maximum value of 53. For example, the fifth week of the year would be represented as 05.

The inputs to the WEEKWw. informat are the same date for the following example. The current year is 2012.

Widths	Formats	Examples
3-4	Www	w01
5-6	yyWww	12W01
7-8	yyWwwdd	12W0101
9-10	yyyyWwwdd	2012W0101
11-200	yyyy-Www-dd	2012-W01-01

Comparisons

The WEEKWw. informat reads the week-number value as a decimal number in the range 00–53, with Monday as the first day of week.

The WEEKUw. informat reads the week-number value as a decimal number in the range 00–53, with Sunday as the first day of the week.

The WEEKVw. informat reads the week-number value as a decimal number in the range 01–53, with Monday as the first day of the week. Week one of the year is the week that includes both January fourth and the first Thursday of the year. If the first Monday of January is the second, third, or fourth, the preceding days are part of the last week of the preceding year.

Example

The current year is 2012 in the following examples.

Statements	Result
	1

Statements	Result
<pre>v=input('W01',weekw3.); w=input('03W01',weekw5.);</pre>	
x=input('03W0101',weekw7.);	
y=input('2003W0101',weekw9.);	
z=input('2003-W01-01',weekw11.);	
put v;	
put w;	18994
put x;	18994
put y;	18994
put z;	18994
	18994

See Also

Formats:

- "WEEKUw. Format" on page 169
- "WEEKVw. Format" on page 171
- "WEEKWw. Format" on page 173

Function:

• "WEEK Function" in SAS Functions and CALL Routines: Reference

Informats:

- "WEEKUw. Informat" on page 340
- "WEEKVw. Informat" on page 341

YMDDTTMw.d Informat

Reads datetime values in the form <yy>yy-mm-dd hh:mm:ss.ss, where special characters such as a hyphen (-), period (.), slash (/), or colon (:) are used to separate the year, month, day, hour, minute, and seconds; the year can be either 2 or 4 digits.

Category: Date and Time

Alignment: right

Syntax

YMDDTTMw.d

Syntax Description

specifies the width of the output field.

Default: 19 **Range:** 13-40 d

specifies the number of digits to the right of the decimal point in the seconds value. The digits to the right of the decimal point specify a fraction of a second. This argument is optional.

Default: 0 **Range:** 0–39

Details

The YMDDTTMw.d format reads SAS datetime values in the form <*yy*>*yy-mm-dd hh:mm*:<*ss*<.*ss*>>:

yy or yyyy

specifies a two- or four-digit integer that represents the year.

mm

is an integer between 01 and 12 that represents the month.

da

is an integer between 01 and 31 that represents the day of the month.

hh

is an integer between 00 and 23 that represents hours.

mm

is an integer between 00 and 59 that represents minutes.

SS.SS

is the number of seconds ranging from 00–59 with the fraction of a second following the decimal point.

requirement If a fraction of a second is specified, the decimal point can be represented only by a period and is required.

- or :

represents one of several special characters, such as the slash (/), hyphen (-), colon (:), or a blank character that can be used to separate date and time components. Special characters can be used as separators between any date or time component and between the date and the time.

Comparisons

The YMDDTTMw.d informat reads datetime values with required separators in the form <yy>yy-mm-dd/hh:mm:ss.ss.

The MDYAMPMw.d in format reads datetime values with optional separators in the form mm-dd-yy<yy> hh:mm:ss.ss AM | PM, and requires a space between the date and the time.

The DATETIMEw.d informat reads datetime values with optional separators in the form dd-mmm-yy<yy> hh:mm:ss.ss AM|PM, and the date and time can be separated by a special character.

Example

```
input @1 dt ymddttm24.;
```

Data Line	Result
2012-03-16 11:23:07.4	1647516187.4
2012 03 16 11 23 07.4	1647516187.4
12.3.16/11:23	1647516180

See Also

Informats:

- "DATETIMEw. Informat" on page 268
- "MDYAMPMw.d Informat" on page 291

YYMMDDw. Informat

Reads date values in the form yymmdd or yyyymmdd.

Category: Date and Time

Syntax

YYMMDDw.

Syntax Description

specifies the width of the input field.

Default: 6 **Range:** 6-32

Details

SAS read date values in one of the following forms:

- vymmdd
- yyyymmdd

yy or yyyy

is a two-digit or four-digit integer that represents the year.

is an integer between 01 and 12 that represents the month of the year.

dd

is an integer between 01 and 31 that represents the day of the month.

You can separate the year, month, and day values by blanks or by special characters. However, if delimiters are used, place them between all the values. You can also place blanks before and after the date. Make sure the width of the input field allows space for blanks and special characters.

Note: SAS interprets a two-digit year as belonging to the 100-year span that is defined by the YEARCUTOFF= system option.

Example

input calendar_date yymmdd10.;

Data Line	Result
+	
120316	19068
12/03/16	19068
12 03 16	19068
2012-03-16	19068

See Also

Formats:

- "DATEw. Format" on page 73
- "DDMMYYw. Format" on page 78
- "MMDDYYw. Format" on page 113
- "YYMMDDw. Format" on page 181

Functions:

- "DAY Function" in SAS Functions and CALL Routines: Reference
- "MDY Function" in SAS Functions and CALL Routines: Reference
- "MONTH Function" in SAS Functions and CALL Routines: Reference
- "YEAR Function" in SAS Functions and CALL Routines: Reference

Informats:

- "DATEw. Informat" on page 267
- "DDMMYYw. Informat" on page 270
- "MMDDYYw. Informat" on page 292

System Options:

• "YEARCUTOFF= System Option" in SAS System Options: Reference

YYMMNw. Informat

Reads date values in the form yyyymm or yymm.

Category:

Date and Time

Syntax

YYMMNw.

Syntax Description

specifies the width of the input field.

Default: 4 **Range:** 4-6

Details

SAS reads date values in one of the following forms:

- yyyymm
- yymm

yy or yyyy

is a two-digit or four-digit integer that represents the year.

mm

is a two-digit integer that represents the month.

The N in the informat name must be used and indicates that you cannot separate the year and month values by blanks or by special characters. SAS automatically adds a day value of 01 to the value to make a valid SAS date variable.

Note: SAS interprets a two-digit year as belonging to the 100-year span that is defined by the YEARCUTOFF= system option.

Example

input date1 yymmn6.;

Data Line	Result
+1	
201208	19206

See Also

Formats:

- "DATEw. Format" on page 73
- "DDMMYYw. Format" on page 78
- "YYMMDDw. Format" on page 181
- "YYMMw. Format" on page 180
- "YYMONw. Format" on page 186

Functions:

- "DAY Function" in SAS Functions and CALL Routines: Reference
- "MONTH Function" in SAS Functions and CALL Routines: Reference
- "MDY Function" in SAS Functions and CALL Routines: Reference
- "YEAR Function" in SAS Functions and CALL Routines: Reference

Informats:

- "DATEw. Informat" on page 267
- "DDMMYYw. Informat" on page 270
- "MMDDYYw. Informat" on page 292
- "YYMMDDw. Informat" on page 347

System Options:

• "YEARCUTOFF= System Option" in SAS System Options: Reference

YYQw. Informat

Reads quarters of the year in the form yyQq or yyyyQq.

Category: Date and Time

Syntax

YYQw.

Syntax Description

W

specifies the width of the input field.

Default: 6 (For SAS version 6, the default is 4.) **Range:** 4–32 (For SAS version 6, the range is 4–6.)

Details

SAS reads data in one of the following forms:

- yyQq
- yyyyQq

yy or yyyy

is an integer that represents the two-digit or four-digit year.

is an integer (1, 2, 3, or 4) that represents the quarter of the year. You can also represent the quarter as 01, 02, 03, or 04.

The letter Q must separate the year value and the quarter value. The year value, the letter Q, and the quarter value cannot be separated by blanks. A value that is read with YYQw. produces a SAS date value that corresponds to the first day of the specified quarter.

Note: SAS interprets a two-digit year as belonging to the 100-year span that is defined by the YEARCUTOFF= system option.

Example

input quarter yyq9.;

Data Line	Result
+	
12Q2	19084
12Q02	19084
2012Q02	19084

See Also

Functions:

- "QTR Function" in SAS Functions and CALL Routines: Reference
- "YEAR Function" in SAS Functions and CALL Routines: Reference
- "YYQ Function" in SAS Functions and CALL Routines: Reference

System Options:

• "YEARCUTOFF= System Option" in SAS System Options: Reference

ZDw.d Informat

Reads zoned decimal data.

Category: Numeric

> See: "ZDw.d Informat: UNIX" in SAS Companion for UNIX Environments

> > "ZDw.d Informat: Windows" in SAS Companion for Windows

"ZDw.d Format: z/OS" in SAS Companion for z/OS

Syntax

 $\mathbf{Z}\mathbf{D}w.d$

Syntax Description

specifies the width of the input field.

Default: 1 **Range:** 1–32 d

specifies the power of 10 by which to divide the value. This argument is optional.

Range: 1-31

Details

The ZDw.d informat reads zoned decimal data in which every digit requires one byte and in which the last byte contains the value's sign along with the last digit.

Note: Different operating environments store zoned decimal values in different ways. However, ZDw.d reads zoned decimal values with consistent results if the values are created in the same type of operating environment that you use to run SAS.

You can enter positive values in zoned decimal format from a personal computer. Some keying devices enable you to enter negative values by overstriking the last digit with a minus sign.

Comparisons

- Like the w.d informat, the ZDw.d informat reads data in which every digit requires one byte. Use ZDVw.d or ZDw.d to read zoned decimal data in which the last byte contains the last digit and the sign.
- The ZDw.d informat functions like the ZDVw.d informat with one exception: ZDVw.d validates the input string and disallows invalid data.
- The following table compares the zoned decimal informat with notation in several programming languages:

Language	Zoned Decimal Notation
SAS	ZD3.
PL/I	PICTURE'99T'
COBOL	DISPLAY PIC S 999
IBM assembler	ZL3

Example

input @1 x zd4.;

Data Line *	Result
+1	
F0F1F2C8	128

^{*} The data line contains a hexadecimal representation of a binary number that is stored in zoned decimal format on an IBM mainframe computer system. Each byte occupies one column of the input field.

See Also

Informats

- "w.d Informat" on page 338
- "ZDVw.d Informat" on page 353

ZDBw.d Informat

Reads zoned decimal data in which zeros have been left blank.

Category: Numeric

"ZDBw.d Informat: z/OS" in SAS Companion for z/OS

Syntax

ZDBw.d

Syntax Description

specifies the width of the input field.

Default: 1 **Range:** 1-32

specifies the power of 10 by which to divide the value. This argument is optional.

Range: 0-31

Details

The ZDBw.d informat reads zoned decimal data that are produced in IBM 1410, 1401, and 1620 form, where 0s are left blank rather than being punched.

Example

input @1 x zdb3.;

Data Line *	Result
+	
F140C2	102

^{*} The data line contains a hexadecimal representation of a binary number that is stored in zoned decimal form, including the codes for spaces, on an IBM mainframe operating environment. Each byte occupies one column of the input field.

ZDVw.d Informat

Reads and validates zoned decimal data.

Category: Numeric

Syntax

ZDVw.d

Syntax Description

w

specifies the width of the input field.

Default: 1 Range: 1-32

d

specifies the power of 10 by which to divide the value. This argument is optional.

Range: 1-31

Details

The ZDVw.d informat reads data in which every digit requires one byte and in which the last byte contains the value's sign along with the last digit. It also validates the input string and disallows invalid data.

ZDVw.d is dependent on the operating environment. For example, on IBM mainframes, ZDVw.d requires an F for all high-order nibbles except the last. (In contrast, the ZDw.d informat ignores the high-order nibbles for all bytes except for the nibbles that are associated with the sign.) The last high-order nibble accepts values ranging from A-F, where A, C, E, and F are positive values and B and D are negative values. The low-order nibble on IBM mainframes must be a numeric digit that ranges from 0-9, as with ZD.

Note: Different operating environments store zoned decimal values in different ways. However, the ZDV*w.d* informat reads zoned decimal values with consistent results if the values are created in the same type of operating environment that you use to run SAS.

Comparisons

The ZDVw.d informat functions like the ZDw.d informat with one exception: ZDVw.d validates the input string and disallows invalid data.

Example

input @1 test zdv4.;

Data Line *	Result
1	
F0F1F2C8	128

^{*} The data line contains a hexadecimal representation of a binary number stored in zoned decimal form. The example was run on an IBM mainframe. The results might vary depending on your operating environment.

See Also

Informats:

• "w.d Informat" on page 338

• "ZDw.d Informat" on page 351

Index

Special Characters	\$UPCASEw. informat 239
\$ASCIIw. format 33	\$VARYINGw. format 54
\$ASCIIw. informat 224	\$VARYINGw. informat 239
\$BASE64Xw. format 34	\$w. format 56
\$BASE64Xw. informat 225	\$w. informat 241
\$BINARYw. format 35	compared to \$CHARw. informat 228
\$BINARYw. informat 226	%SYSFUNC function
\$CBw. informat 227	specifying formats with 5
\$CHARw. format 36	sp *****
\$CHARw. informat 228	
compared to \$ASCII informat 224	Α
compared to \$CHARZBw. informat	AM or PM
230	datetime values with 74, 291
compared to \$EBCDICw. informat 231	time values with 158
compared to \$w. informat 242	ANYDTDTEw, informat 242
\$CHARZBw. informat 229	ANYDTDTMw. informat 245
\$EBCDICw. format 37	ANYDTTMEw. informat 248
\$EBCDICw. informat 230	ASCII
compared to S370FFw.d informat 315	converting character data to 33
\$HEXw. format 38	ASCII data
\$HEXw. informat 231	converting character data to, Base 64
compared to \$BINARYw. informat 227	encoding 34, 225
\$MSGCASEw. format 39	converting to native format 224
\$N8601BAw.d format 41	ATTRIB statement
\$N8601Bw.d format 39	specifying formats with 6
\$N8601Bw.d informat 232	specifying informats with 202
\$N8601EAw.d format 43	specifying informats with 202
\$N8601EHw.d format 44	
\$N8601Ev.d format 42	В
\$N8601Ew.d informat 42	B8601CI informat 250
\$N8601EXw.d format 46	B8601DAw. format 60
\$N8601Hw.d format 47	B8601DAw. informat 252
\$N8601Xw.d format 48	B8601DJ informat 253
\$OCTALw. format 49	B8601DNw. format 61
\$OCTALW. informat 236	B8601DNw. informat 254
\$PHEXw. informat 237	B8601DTw.d format 62, 255
\$QUOTEw. format 50	B8601DZw. format 64
\$QUOTEW. informat 238	B8601DZw. format 04 B8601DZw.d informat 257
\$REVERJw. format 52	B8601LZw. format 65
\$REVERSw. format 52	B8601TMw.d format 66
\$UPCASEw. format 52 \$UPCASEw. format 53	B8601TMw.d informat 258
pui Casew. Ioimat 33	Dood Hviw.u iiiuiiiiat 238

B8601TZw.d format 67	punch-card code 308
B8601TZw.d informat 259	column-binary files, reading 227
Base 64 encoding	commas
converting character data to ASCII text	in numeric values 69, 70
34, 225	replacing decimal points with 125
BASE64X 225	COMMAw.d format 69
BESTDw.p format 58	COMMAw.d informat 265
BESTw. format 57	compared to COMMAXw.d informat
big endian platforms	267
byte ordering 7	COMMAXw.d format 70
big endian platforms, byte ordering on	COMMAXw.d informat 266
203	compared to COMMAw.d informat 266
binary	compared to commitmed materials 200
converting character data to 35	
converting numeric values to 60	D
binary data, converting to	data conversion
character 226	formats and 9
integers 261	data values, reading 199
binary zeros, converting to blanks 229	date and time informats
BINARYw. format 60	B8601DN informat, ISO 8601 basic
BINARYw.d informat 261	date notation, returns the date in a
bits, extracting 262	date indution, returns the date in a
BITSw.d informat 262	B8601DT informat, ISO 8601 basic
blanks	datetime notation, no time zone 255
	reading IBM dates and times 250
converting binary zeros to 229	
converting to zeros 263	reading Java dates and times 253
byte ordering 7, 203	date and time values
BZw.d informat 263	SHR records 329
compared to w.d informat 339	date values
	as day of month 77
C	B8601DA format, ISO 8601 basic
C CDurdinformat 264	B8601DA format, ISO 8601 basic notation 60
CBw.d informat 264	B8601DA format, ISO 8601 basic notation 60 B8601DA informat, ISO 8601 basic
CBw.d informat 264 character data	B8601DA format, ISO 8601 basic notation 60 B8601DA informat, ISO 8601 basic notation 252
CBw.d informat 264 character data converting to ASCII 33	B8601DA format, ISO 8601 basic notation 60 B8601DA informat, ISO 8601 basic notation 252 DATEw. format 73
CBw.d informat 264 character data converting to ASCII 33 converting to ASCII text, Base 64	B8601DA format, ISO 8601 basic notation 60 B8601DA informat, ISO 8601 basic notation 252 DATEw. format 73 day-of-week name 84
CBw.d informat 264 character data converting to ASCII 33 converting to ASCII text, Base 64 encoding 34, 225	B8601DA format, ISO 8601 basic notation 60 B8601DA informat, ISO 8601 basic notation 252 DATEw. format 73 day-of-week name 84 DDMMYYw. format 78
CBw.d informat 264 character data converting to ASCII 33 converting to ASCII text, Base 64 encoding 34, 225 converting to binary 35	B8601DA format, ISO 8601 basic notation 60 B8601DA informat, ISO 8601 basic notation 252 DATEw. format 73 day-of-week name 84 DDMMYYw. format 78 DDMMYYw. format 79
CBw.d informat 264 character data converting to ASCII 33 converting to ASCII text, Base 64 encoding 34, 225 converting to binary 35 converting to EBCDIC 37	B8601DA format, ISO 8601 basic notation 60 B8601DA informat, ISO 8601 basic notation 252 DATEw. format 73 day-of-week name 84 DDMMYYw. format 78 DDMMYYxw. format 79 DTDATEw. format 84
CBw.d informat 264 character data converting to ASCII 33 converting to ASCII text, Base 64 encoding 34, 225 converting to binary 35 converting to EBCDIC 37 converting to hexadecimal 38	B8601DA format, ISO 8601 basic notation 60 B8601DA informat, ISO 8601 basic notation 252 DATEw. format 73 day-of-week name 84 DDMMYYw. format 78 DDMMYYxw. format 79 DTDATEw. format 84 E8601DA format, ISO 8601 extended
CBw.d informat 264 character data converting to ASCII 33 converting to ASCII text, Base 64 encoding 34, 225 converting to binary 35 converting to EBCDIC 37 converting to hexadecimal 38 converting to octal 49	B8601DA format, ISO 8601 basic notation 60 B8601DA informat, ISO 8601 basic notation 252 DATEw. format 73 day-of-week name 84 DDMMYYw. format 78 DDMMYYw. format 79 DTDATEw. format 84 E8601DA format, ISO 8601 extended notation 91
CBw.d informat 264 character data converting to ASCII 33 converting to ASCII text, Base 64 encoding 34, 225 converting to binary 35 converting to EBCDIC 37 converting to hexadecimal 38 converting to octal 49 reverse order, left alignment 52	B8601DA format, ISO 8601 basic notation 60 B8601DA informat, ISO 8601 basic notation 252 DATEw. format 73 day-of-week name 84 DDMMYYw. format 78 DDMMYYw. format 79 DTDATEw. format 84 E8601DA format, ISO 8601 extended notation 91 E8601DA informat, extended notation
CBw.d informat 264 character data converting to ASCII 33 converting to ASCII text, Base 64 encoding 34, 225 converting to binary 35 converting to EBCDIC 37 converting to hexadecimal 38 converting to octal 49 reverse order, left alignment 52 reverse order, preserving blanks 52	B8601DA format, ISO 8601 basic notation 60 B8601DA informat, ISO 8601 basic notation 252 DATEw. format 73 day-of-week name 84 DDMMYYw. format 78 DDMMYYw. format 79 DTDATEw. format 84 E8601DA format, ISO 8601 extended notation 91 E8601DA informat, extended notation 272
CBw.d informat 264 character data converting to ASCII 33 converting to ASCII text, Base 64 encoding 34, 225 converting to binary 35 converting to EBCDIC 37 converting to hexadecimal 38 converting to octal 49 reverse order, left alignment 52 reverse order, preserving blanks 52 uppercase conversion 53	B8601DA format, ISO 8601 basic notation 60 B8601DA informat, ISO 8601 basic notation 252 DATEw. format 73 day-of-week name 84 DDMMYYw. format 78 DDMMYYxw. format 79 DTDATEw. format 84 E8601DA format, ISO 8601 extended notation 91 E8601DA informat, extended notation 272 E8601DN informat, ISO 8601 extended
CBw.d informat 264 character data converting to ASCII 33 converting to ASCII text, Base 64 encoding 34, 225 converting to binary 35 converting to EBCDIC 37 converting to hexadecimal 38 converting to octal 49 reverse order, left alignment 52 reverse order, preserving blanks 52 uppercase conversion 53 varying length 54	B8601DA format, ISO 8601 basic notation 60 B8601DA informat, ISO 8601 basic notation 252 DATEw. format 73 day-of-week name 84 DDMMYYw. format 78 DDMMYYw. format 79 DTDATEw. format 84 E8601DA format, ISO 8601 extended notation 91 E8601DA informat, extended notation 272 E8601DN informat, ISO 8601 extended notation, returns date in datetime
CBw.d informat 264 character data converting to ASCII 33 converting to ASCII text, Base 64 encoding 34, 225 converting to binary 35 converting to EBCDIC 37 converting to hexadecimal 38 converting to octal 49 reverse order, left alignment 52 reverse order, preserving blanks 52 uppercase conversion 53 varying length 54 writing 36, 56	B8601DA format, ISO 8601 basic notation 60 B8601DA informat, ISO 8601 basic notation 252 DATEw. format 73 day-of-week name 84 DDMMYYw. format 78 DDMMYYw. format 79 DTDATEw. format 84 E8601DA format, ISO 8601 extended notation 91 E8601DA informat, extended notation 272 E8601DN informat, ISO 8601 extended notation, returns date in datetime value 273
CBw.d informat 264 character data converting to ASCII 33 converting to ASCII text, Base 64 encoding 34, 225 converting to binary 35 converting to EBCDIC 37 converting to hexadecimal 38 converting to octal 49 reverse order, left alignment 52 reverse order, preserving blanks 52 uppercase conversion 53 varying length 54 writing 36, 56 writing in uppercase 39	B8601DA format, ISO 8601 basic notation 60 B8601DA informat, ISO 8601 basic notation 252 DATEw. format 73 day-of-week name 84 DDMMYYw. format 78 DDMMYYw. format 79 DTDATEw. format 84 E8601DA format, ISO 8601 extended notation 91 E8601DA informat, extended notation 272 E8601DN informat, ISO 8601 extended notation, returns date in datetime value 273 extracting from informat values 242
CBw.d informat 264 character data converting to ASCII 33 converting to ASCII text, Base 64 encoding 34, 225 converting to binary 35 converting to EBCDIC 37 converting to hexadecimal 38 converting to octal 49 reverse order, left alignment 52 reverse order, preserving blanks 52 uppercase conversion 53 varying length 54 writing 36, 56 writing in uppercase 39 character data, reading	B8601DA format, ISO 8601 basic notation 60 B8601DA informat, ISO 8601 basic notation 252 DATEw. format 73 day-of-week name 84 DDMMYYw. format 78 DDMMYYw. format 79 DTDATEw. format 84 E8601DA format, ISO 8601 extended notation 91 E8601DA informat, extended notation 272 E8601DN informat, ISO 8601 extended notation, returns date in datetime value 273 extracting from informat values 242 Julian dates 111
CBw.d informat 264 character data converting to ASCII 33 converting to ASCII text, Base 64 encoding 34, 225 converting to binary 35 converting to EBCDIC 37 converting to hexadecimal 38 converting to octal 49 reverse order, left alignment 52 reverse order, preserving blanks 52 uppercase conversion 53 varying length 54 writing 36, 56 writing in uppercase 39 character data, reading from column-binary files 227	B8601DA format, ISO 8601 basic notation 60 B8601DA informat, ISO 8601 basic notation 252 DATEw. format 73 day-of-week name 84 DDMMYYw. format 78 DDMMYYw. format 79 DTDATEw. format 84 E8601DA format, ISO 8601 extended notation 91 E8601DA informat, extended notation 272 E8601DN informat, ISO 8601 extended notation, returns date in datetime value 273 extracting from informat values 242 Julian dates 111 Julian day of the year 110
CBw.d informat 264 character data converting to ASCII 33 converting to ASCII text, Base 64 encoding 34, 225 converting to binary 35 converting to EBCDIC 37 converting to hexadecimal 38 converting to octal 49 reverse order, left alignment 52 reverse order, preserving blanks 52 uppercase conversion 53 varying length 54 writing 36, 56 writing in uppercase 39 character data, reading from column-binary files 227 standard format 241	B8601DA format, ISO 8601 basic notation 60 B8601DA informat, ISO 8601 basic notation 252 DATEw. format 73 day-of-week name 84 DDMMYYw. format 78 DDMMYYw. format 79 DTDATEw. format 84 E8601DA format, ISO 8601 extended notation 91 E8601DA informat, extended notation 272 E8601DN informat, ISO 8601 extended notation, returns date in datetime value 273 extracting from informat values 242 Julian dates 111 Julian day of the year 110 MMDDYYw. format 113
CBw.d informat 264 character data converting to ASCII 33 converting to ASCII text, Base 64 encoding 34, 225 converting to binary 35 converting to EBCDIC 37 converting to hexadecimal 38 converting to octal 49 reverse order, left alignment 52 reverse order, preserving blanks 52 uppercase conversion 53 varying length 54 writing 36, 56 writing in uppercase 39 character data, reading from column-binary files 227 standard format 241 varying length fields 239	B8601DA format, ISO 8601 basic notation 60 B8601DA informat, ISO 8601 basic notation 252 DATEw. format 73 day-of-week name 84 DDMMYYw. format 78 DDMMYYw. format 79 DTDATEw. format 84 E8601DA format, ISO 8601 extended notation 91 E8601DA informat, extended notation 272 E8601DN informat, ISO 8601 extended notation, returns date in datetime value 273 extracting from informat values 242 Julian dates 111 Julian day of the year 110 MMDDYYw. format 113 MMDDYYxw. format 115
CBw.d informat 264 character data converting to ASCII 33 converting to ASCII text, Base 64 encoding 34, 225 converting to binary 35 converting to EBCDIC 37 converting to hexadecimal 38 converting to octal 49 reverse order, left alignment 52 reverse order, preserving blanks 52 uppercase conversion 53 varying length 54 writing 36, 56 writing in uppercase 39 character data, reading from column-binary files 227 standard format 241 varying length fields 239 with blanks 227	B8601DA format, ISO 8601 basic notation 60 B8601DA informat, ISO 8601 basic notation 252 DATEw. format 73 day-of-week name 84 DDMMYYw. format 78 DDMMYYw. format 79 DTDATEw. format 84 E8601DA format, ISO 8601 extended notation 91 E8601DA informat, extended notation 272 E8601DN informat, ISO 8601 extended notation, returns date in datetime value 273 extracting from informat values 242 Julian day of the year 110 MMDDYYw. format 113 MMDDYYw. format 115 MMYYw. format 115
CBw.d informat 264 character data converting to ASCII 33 converting to ASCII text, Base 64 encoding 34, 225 converting to binary 35 converting to EBCDIC 37 converting to hexadecimal 38 converting to octal 49 reverse order, left alignment 52 reverse order, preserving blanks 52 uppercase conversion 53 varying length 54 writing 36, 56 writing in uppercase 39 character data, reading from column-binary files 227 standard format 241 varying length fields 239 with blanks 227 column-binary, reading	B8601DA format, ISO 8601 basic notation 60 B8601DA informat, ISO 8601 basic notation 252 DATEw. format 73 day-of-week name 84 DDMMYYw. format 78 DDMMYYw. format 79 DTDATEw. format 84 E8601DA format, ISO 8601 extended notation 91 E8601DA informat, extended notation 272 E8601DN informat, ISO 8601 extended notation, returns date in datetime value 273 extracting from informat values 242 Julian day of the year 110 MMDDYYw. format 113 MMDDYYw. format 115 MMYYw. format 118 MMYYw. format 119
CBw.d informat 264 character data converting to ASCII 33 converting to ASCII text, Base 64 encoding 34, 225 converting to binary 35 converting to EBCDIC 37 converting to hexadecimal 38 converting to octal 49 reverse order, left alignment 52 reverse order, preserving blanks 52 uppercase conversion 53 varying length 54 writing 36, 56 writing in uppercase 39 character data, reading from column-binary files 227 standard format 241 varying length fields 239 with blanks 227 column-binary, reading with blanks 228	B8601DA format, ISO 8601 basic notation 60 B8601DA informat, ISO 8601 basic notation 252 DATEw. format 73 day-of-week name 84 DDMMYYw. format 78 DDMMYYw. format 79 DTDATEw. format 84 E8601DA format, ISO 8601 extended notation 91 E8601DA informat, extended notation 272 E8601DN informat, ISO 8601 extended notation, returns date in datetime value 273 extracting from informat values 242 Julian dates 111 Julian day of the year 110 MMDDYYw. format 113 MMDDYYxw. format 115 MMYYw. format 118 MMYYxw. format 119 month name 121
CBw.d informat 264 character data converting to ASCII 33 converting to ASCII text, Base 64 encoding 34, 225 converting to binary 35 converting to EBCDIC 37 converting to hexadecimal 38 converting to octal 49 reverse order, left alignment 52 reverse order, preserving blanks 52 uppercase conversion 53 varying length 54 writing 36, 56 writing in uppercase 39 character data, reading from column-binary files 227 standard format 241 varying length fields 239 with blanks 227 column-binary, reading	B8601DA format, ISO 8601 basic notation 60 B8601DA informat, ISO 8601 basic notation 252 DATEw. format 73 day-of-week name 84 DDMMYYw. format 78 DDMMYYw. format 79 DTDATEw. format 84 E8601DA format, ISO 8601 extended notation 91 E8601DA informat, extended notation 272 E8601DN informat, ISO 8601 extended notation, returns date in datetime value 273 extracting from informat values 242 Julian day of the year 110 MMDDYYw. format 113 MMDDYYw. format 115 MMYYw. format 118 MMYYw. format 119

quarter of the year 138	B8601DZ informat, ISO 8601 basic
quarter of the year in Roman numerals	notation with time zone 257
139	datetime values
WEEKDATEw. format 165	\$N8601 informat, ISO 8601 basic and
WEEKDATXw. format 167	extended notation 232
WEEKDAYw. format 168	\$N8601B format, basic notation 39
WORDDATEw. format 175	\$N8601BA format, ISO 8601 basic
WORDDATXw. format 176	notation 41
YEARw. format 179	\$N8601E format, extended notation 42
YYMMDDw. format 181	\$N8601E informat, extended notation
YYMMDDxw. format 183	234
YYMMw. format 180	\$N8601EH format, ISO 8601 extended
YYMMxw. format 185	notation, hyphen for omitted
YYMONw. format 186	components 44
YYQRw. format 190	\$N8601EX format, extended notation, x
YYQRxw. format 191	for omitted components 46
YYQw. format 187	\$N8601H format, basic notation,
YYQxw. format 188	hyphen for omitted componentents
date/time values, reading	47
date, yymm 348	\$N8601X format, x for omitted
date, yymmn 348	components 48
date values, dddmmmyy 267	B8601DN format, ISO 8601 basic
date values, dddmmmyy hh:mm:ss.ss	datetime notation, formats the date
268	61
date values, dddmmmyyyy 267	B8601DT format, ISO 8601 basic
date values, dddmmmyyyy hh:mm:ss.ss	notation, no time zone 62
268	B8601DZ format, ISO 8601 basic
date values, ddmmyy 270	notation with time zone 64
date values, ddmmyyyy 270	DATEAMPMw.d format 74
dates, mmddyy 292	DATETIMEw.d format 75
dates, mmddyyyy 292	DTDATEW. format 84
dates, yymmmdd 347	DTMONYYw. format 86
dates, yyymmmdd 347	DTWKDATXw. format 87
IBM mainframes 302	DTYEARw. format 88
IBM mainframes, RMF records 312	DTYYQCw. format 89 E8601DN format, ISO 8601 extended,
IBM mainframes, SMF records 330	formats the date 92
Julian dates 289	
month and year values 294	E8601DT informat, ISO 8601 extended,
RMF records 302	notation, no time zone 274
SMF records 302	E8601DZ informat, ISO 8601 extended
time, hh:mm:ss.ss 332	notation with time zone 276
TIME MIC values 295	E8601LZ informat, ISO 8601 extended
time values, IBM mainframe 295	local notation with time zone 277
time-of-day stamp 334	extracting from informat values 245
timer units 335	with AM or PM 74
year quarter 350	datetime vlaues
DATEAMPMw.d format 74	YMDDTTMw.d informat 345
datetime values	DATETIMEw. informat 268
\$N8601EA format, ISO 8601 extended	DATETIMEw.d format 75
notation 43	DATEw. format 73
datetime formats	DATEw. informat 267
ISO 8601 extended datetime, with time	DAYw. format 77
zone 94	DDMMYYw. format 78
ISO 8601 extended datetime with no	DDMMYYw. informat 270
time zone 93	DDMMYYxw. format 79
datetime informats	DEC format

integer binary (fixed-point) values in	E8601DZw.d informat 276
108	E8601LZw. format 96
positive integer binary (fixed-point)	E8601LZw.d informat 277
values in 135	E8601TMw.d format 97
reading integer binary values in 287	E8601TMw.d informat 279
reading positive integer binary values in	E8601TZw.d format 98
306	E8601TZw.d informat 280
decimal places	EBCDIC
aligned 58, 71	converting character data to 37
decimal points	numeric data in 142
replacing with commas 125	EBCDIC data
decimal points, reading as commas 296	convert to native format 230
DOLLARw.d format 81	reading 315
DOLLARXw.d format 82	embedded characters, removing 265, 266
double quotation marks	encoding
data values in 50	formats and 9
DOWNAMEw. format 84	Ew. format 90
DTDATEw. format 84	Ew.d informat 272
DTMONYYw. format 86	
DTWKDATXw. format 87	
DTYEARw. format 88	F
DTYYQCw. format 89	fixed-point values
duation values	DEC format 108, 135
\$N8601 informat, ISO 8601 basic and	Intel format 108, 135
extended notation 232	reading in Intel and DEC formats 287,
duration values	306
\$N8601B format, basic notation 39	writing 106, 133
\$N8601BA format, ISO 8601 basic	floating-point data, reading 282
notation 41	floating-point data (IEEE), reading 288
\$N8601E format, extended notation 42	floating-point values 100
\$N8601E informat, extended notation	IEEE 109
234	FLOATw.d format 100
\$N8601EA format, ISO 8601 extended	FLOATw.d informat 282
notation 43	FORMAT statement
\$N8601EH format, ISO 8601 extended	specifying formats with 6
notation, hyphen for omitted	formats 3
components 44	byte ordering and 7
\$N8601EX formats, extended notation,	data conversions 9
x for omitted components 46	encodings 9
\$N8601H format, basic notation,	integer binary notation 9
hyphen for omitted componentents	packed decimal data 10
47	permanent 6
\$N8601X format, x for omitted	specifying with %SYSFUNC function
components 48	5
Dw.p format 71	specifying with ATTRIB statement 6
	specifying with FORMAT statement 6
	specifying with PUT function 5
E	specifying with PUT statement 5
E8601DAw. format 91	syntax 4
E8601DAw. informat 272	temporary 6
E8601DNw. format 92	user-defined 7
E8601DNw. informat 273	zoned decimal data 10
E8601DTw.d format 93	formatting symbols
E8601DTw.d informat 274	ISO 8601 14, 209
E8601DZ 276	fractions 101, 177
E8601DZw. format 94	FRACTw. format 101

Н	IEEE floating-point values 109
HEX 38	reading 288
hexadecimal	IEEEw.d format 109
converting character data to 38	IEEEw.d informat 288
converting real binary (floating-point)	INFORMAT statement
values to 102	specifying informats with 201
packed Julian dates in 128	informats 199
packed Julian dates in, for IBM 130	byte ordering 203
hexadecimal binary values, converting to	integer binary notation 204
integers 283	packed decimal data and 12
hexadecimal binary values, converting to	permanent 202
real binary 283	specifying, with ATTRIB statement
hexadecimal data, converting to character	202
231	specifying, with INFORMAT statement
hexadecimal values	201
reading packed Julian date values in, for	specifying, with INPUT function 201
IBM 300	specifying, with INPUT statement 201
reading packed Julian dates in, for IBM	syntax 200
301	temporary 202
HEXw. format 102	user-defined 202
HEXw. informat 283	zoned decimal data and 12
compared to \$HEXw. informat 232	INPUT function
HHMMSSw. informat 284	specifying informats with 201
HHMMw.d format 103	INPUT statement
HOURw.d format 105	specifying informats with 201
	integer binary (fixed-point) values
	IBM mainframe format 143
I	integer binary data
IBM	byte ordering 7
packed Julian dates in hexadecimal for	notation and programming languages 9
130	integer binary data, reading
IBM dates and times, reading 250, 253	IBM mainframe format 316, 320
IBM mainframe format	integer binary notation 204
integer binary (fixed-point) values in	integer binary values
143	DEC format 108
numeric data in 142	Intel format 108
packed decimal data in 146	reading in Intel and DEC formats 287
positive integer binary (fixed-point)	writing 106
values in 148	integer binary values, reading 286, 304
real binary (floating-point) data in 149	integers
unsigned integer binary (fixed-point)	printing without decimals 58
values in 144	Intel format
unsigned packed decimal data in 147	integer binary (fixed-point) values in
unsigned zoned decimal data in 155	108
zoned decimal data 151	positive integer binary (fixed-point)
zoned decimal leading-sign data in 152	values in 135
zoned decimal separate leading-sign	reading integer binary values in 287
data in 153	reading positive integer binary values in
zoned decimal separate trailing-sign	306
data in 154	interval values
IBM packed decimal data, reading 298	\$N8601BA format, ISO 8601 basic
IBRw.d format 108	notation 41
IBRw.d informat 287	\$N8601EA format, ISO 8601 extended
IBw.d format 106	notation 43
IBw.d informat 286	\$N8601EX formats, extended notation,
compared to S370FIBw.d informat 316	x for omitted components 46

\$N8601H format, basic notation,	B8601TZ informat, basic time notation
hyphen for omitted componentents	with time zone 259
47	E8601DA informat, extended date
interval values	notation 272
\$N8601 informat, ISO 8601 basic and	E8601DN informat, extended notation,
extended notation 232	returns date in datetime value 273
\$N8601B format, basic notation 39	E8601DT informat, basic datetime
\$N8601E format, extended notation 42	notation, no time zone 255
\$N8601E informat, extended notation	E8601DT informat, extended datetime
234	notation, no time zone 274
\$N8601EH format, ISO 8601 extended	E8601DZ informat, extended datetime
notation, hyphen for omitted	notation with time zone 276
components 44	E8601LZ informat, extended local
\$N8601X format, x for omitted	datetime notation with time zone
components 48	277
ISO 8601 date and time formats	E8601TM informat, extended time
B8601DA format, basic date notation	notation, no time zone 279
60	E8601TZ informat, extended time
B8601DN format, basic datetime	notation with time zone 280
notation, formats the date 61	ISO 8601 datetime formats
B8601DT format, basic datetime	extended datetime with no time zone 93
notation, no time zone 62	ISO 8601 duration and datetime formats
B8601DZ format, basic datetime	\$N8601B format, basic notation 39
notation with time zone 64	\$N8601BA format, basic notation 41
B8601LZ format, basic local time with	\$N8601E format, extended notation 42
time zone 65	\$N8601EA format, extended notation
B8601TM format, basic time notation,	43
no time zone 66	\$N8601EH format, extended notation,
B8601TZ format, basic time notation	hyphen for omitted components 44
with time zone 67	\$N8601H format, hyphen for omitted
E8601DA format, extended date	componentents 47
notation 91	\$N8601X format, x for omitted
E8601DN format, extended datetime	components 48
notation, formats the date 92	ISO 8601 formatting symbols 14, 209
E8601TM format, extended time	ISO 8602 duration and datetime formats
notation, no time zone 97	\$N8601EX formats, extended notation,
E8601TZ format, extended time	x for omitted components 46
notation with time zone 98	r · · · · · · · · · · · · · · · · · · ·
extended datetime, with time zone 94	
extended local time with UTC offset 96	J
ISO 8601 date and time informats	Java dates and times, reading 253
\$N8601 informat, basic and extended	JULDAYw. format 110
notation for durations, datetimes,	Julian date values, packed
and intervals 232	reading in hexadecimal form, for IBM
\$N8601E informat, extended notation	300
for duration, datetime, and interval	Julian dates 111, 206
234	day of the year 110
	•
B8601DA informat, basic date notation	packed 11
252	packed values in hexadecimal 128
B8601DN informat, basic datetime	packed values in hexadecimal for IBM
notation, returns the date in a	130
datetime value 254	Julian dates, packed
B8601DZ informat, basic datetime	reading in hexadecimal format, for IBM
notation with time zone 257	301
B8601TM informat, basic time notation,	JULIANw. format 111
no time zone 258	JULIANw. informat 289

L	converting to fractions 101
leading zeros 193	converting to octal 126
little endian platforms	DOLLARw.d format 81
byte ordering 7	DOLLARXw.d format 82
little endian platforms, byte ordering on	Roman numerals 141
203	words with numeric fractions 177
	writing as percentages 131
	writing as words 178
M	writing negative values in parentheses
MDYAMPMw.d format 112	124
MDYAMPMw.d informat 291	NUMXw.d format 125
MicroFocus COBOL	NUMXw.d informat 296
zoned numeric data 337	
MicroFocus Cobol zoned numeric data	
163	0
minus sign	octal
trailing 334	converting character data to 49
MMDDYYw. format 113	converting numeric values to 126
MMDDYYw. informat 292	octal data
MMDDYYxw. format 115	converting to character 236
MMSSw.d format 117	converting to integers 297
MMYYw. format 118	OCTALw. format 126
MMYYxw. format 119	OCTALw. informat
MONNAMEw. format 121	compared to \$OCTALw. informat 237
MONTHw. format 122	OCTALw.d informat 297
MONYYw. format 123	
MONYYw. informat 294	
MSECw. informat 295	Р
	p-values
	writing 137
N	packed data, reading in IBM mainframe
N8601B 39	format 318
N8601E 42	packed decimal data 10, 206
N8601EH 44	defined 205
negative numeric values	definition 10
writing in parentheses 124	formats and 10
NEGPARENw.d format 124	formats and informats for 208
nibble 205	IBM mainframe format 146
definition 10	languages supporting 11, 207
numeric data	platforms supporting 11, 207
commas replacing decimal points 125	summary of formats and informats 12
EBCIDC format 142	unsigned format 136
IBM mainframe format 142	packed decimal format
leading zeros with 193	writing data in 127
one digit per byte 164	packed hexadecimal data, converting to
scientific notation 90	character 237
zoned decimal format 194	packed Julian date values
numeric data, reading	reading in hexadecimal form, for IBM
commas for decimal points 296	300
from column-binary files 264	writing in hexadecimal 128
standard format 338	writing in hexadecimal for IBM 130
numeric values	packed Julian dates 11, 206
aligning decimal places 58, 71	reading in hexadecimal format, for IBM
best notation 57	301
commas in 69, 70	parentheses
converting to binary 60	writing negative numeric values in 124

PDJULGw. format 128	quotation marks
PDJULGw. informat 300	removing 238
PDJULIw. format 130	-
PDJULIw. informat 301	
PDTIMEw. informat 302	R
compared to RMFSTAMPw. informat	RBw.d format 140
313	RBw.d informat 309
PDw.d format 127	compared to S370FRBw.d informat
PDw.d informat 298	322
compared to \$PHEXw. informat 238	compared toVAXRBw.d informat 337
compared to PKw.d informat 308	reading data values 199
compared to S370FPDw.d informat 319	real binary (floating-point) data
percentages	IBM mainframe format 149
converting to numeric values 303	VMS format 162
numeric values as 131	real binary (floating-point) values
with minus sign for negative values 132	converting to hexadecimal 102
PERCENTNw.d format 132	real binary data
PERCENTw.d format 131	real binary format 140
PERCENTw.d informat 303	real binary data, reading 309
permanent formats 6	IBM mainframe format 322
PIBRw.d format 135	VMS format 336
PIBRw.d informat 306	real binary format
PIBw.d format 133	real binary data (floating-point) in 140
PIBw.d informat 304	reverse order character data 52
compared to S370FPIBw.d informat	RMF records, reading duration intervals
321	311
PKw.d format 136	RMFDURw. informat 311
PKw.d informat 307	RMFSTAMPw. informat 312
plus sign	compared to RMFDURw. informat 311
trailing 334	roman numerals 190, 191
PM or AM	Roman numerals 139, 141
datetime values with 74	ROMANw. format 141
time values with 158	ROWw.d informat 313
positive integer binary (fixed-point)	
values	
IBM mainframe format 148	S
positive integer binary values	S370FFw.d format 142
DEC format 135	S370FFw.d informat 315
Intel format 135	S370FIBUw.d format 144
reading in Intel and DEC formats 306	S370FIBUw.d informat 317
writing 133	S370FIBw.d format 143
programming languages	S370FIBw.d informat 316
integer binary notation and 9	S370FPDUw.d format 147
packed decimal data support 11	S370FPDUw.d informat 319
zoned decimal data support 11	S370FPDw.d format 146
PUNCH.d informat 308	S370FPDw.d informat 318
PUT function	compared to S370FPDUw.d informat
specifying formats with 5	320
PUT statement	S370FPIBw.d format 148
specifying formats with 5	S370FPIBw.d informat 320
PVALUEw.d format 137	compared to S370FIBUw.d informat 318
	S370FRBw.d format 149
Q	S370FRBw.d informat 322
QTRRw. format 139	S370FZDB 324
QTRw. format 138	S370FZDBw.d informat 324

S370FZDLw.d format 152	TIMEw.d format 157
S370FZDLw.d informat 325	TODSTAMPw. informat 334
S370FZDSw.d format 153	compared to MSECw. informat 296
S370FZDSw.d informat 326	TODw.d format 160
S370FZDTw.d format 154	trailing plus or minus sign 334
S370FZDTw.d informat 327	TRAILSGNw. informat 334
S370FZDUw.d format 155	transcoding 9
S370FZDUw.d informat 328	TUw. informat 335
S370FZDw.d format 151	TOW. Informat 333
S370FZDw.d informat 323	
compared to S370FZDUw.d informat	U
329	unsigned integer binary (fixed-point)
SAS informats 199	values
scientific notation 90	IBM mainframe format 144
reading 272	unsigned integer binary data, reading
SHR records	IBM mainframe format 317
reading data and time values of 329	unsigned packed decimal data
SHRSTAMPw. informat 329	IBM mainframe format 147
SMFSTAMPw. informat 330	unsigned packed decimal data, reading
Social Security numbers 156	307
SSNw. format 156	IBM mainframe format 319
STIMERw. informat 331	unsigned packed decimal format 136
511WERW. Informat 551	unsigned zoned decimal data
	IBM mainframe format 155
т	unsigned zoned decimal data, reading
temporary formats 6	IBM mainframe format 328
time values	uppercase
B8601LZ format, ISO 8601 basic local	\$UPCASEw. informat 239
time with time zone 65	converting character data to 53
B8601TM format, ISO 8601 basic time	reading data as 239
notation, no time zone 66	writing character data in 39
B8601TM informat, ISO 8601 basic	user-defined formats 7
time notation, no time zone 258	dser defined formats /
B8601TZ format, ISO 8601 basic time	
notation with time zone 67	V
B8601TZ informat, ISO 8601 basic time	VAXRBw.d format 162
notation with time zone 259	VAXRBw.d informat 336
E8601TM format, ISO 8601 extended	VMS
notation, no time zone 97	zoned numeric data 163, 337
E8601TM informat, ISO 8601 extended	VMS format
time notation, no time zone 279	real binary (floating-point) data in 162
E8601TZ format, ISO 8601 extended	VMSZN 163
notation with time zone 98	VMSZNw.d format 163
E8601TZ informat, ISO 8601 extended	VMSZNw.d informat 337
notation with time zone 280	VIVISZIVW.d Informat 337
extracting from informat values 248	
HHMMw.d format 103	W
HOURw.d format 105	w.d 164
ISO 8601 extended local time with UTC	w.d format 164
offset 96	w.d informat 338, 353
MMSSw.d format 117	compared to Ew.d informat 272
TIMEAMPMw.d format 158	compared to NUMXw.d informat 297
TIMEW.d format 157	compared to ZDw.d informat 352
TODw.d format 160	WEEKDATEw. format 165
TIMEAMPMw.d format 158	WEEKDATEW. format 167
TIMEw. informat 332	WEEKDAYW. format 168
Tivily. Informat 332	TELEVITY W. TOTTIGE 100

weeks	Z
number of week, date value, U	ZDBw.d informat 353
algorithm 340	ZDVw.d informat 353
week number, date value, V algorithm	See also w.d informat
341	See also ZDw.d informat
week number, date value, W algorithm	compared to ZDw.d informat 352
343	ZDw.d format 194
week number, decimal format, U	ZDw.d informat 351, 353
algorithm 169	compared to ZDVw.d 354
week number, decimal format, V	zero
algorithm 171	numeric data with leading zeros 193
week number, decimal format, W	zeros, binary
algorithm 173	converting to blanks 229
WEEKU 169	zoned decimal data 11, 206
WEEKUw. format 169	defined 205
WEEKUw. informat 340	definition 10
WEEKVw. format 171	formats and 10
WEEKVw. informat 341	formats and informats for 208
WEEKW 173	IBM mainframe format 151
WEEKWw. format 173	languages supporting 11, 207
WEEKWw. informat 343	platforms supporting 11, 207
WORDDATEw. format 175	summary of formats and informats 12
WORDDATXw. format 176	zoned decimal data, reading 351, 353
WORDFw. format 177	IMB mainframe format 323
words	zoned decimal format 194
writing numeric values as 178	zoned decimal leading-sign data
WORDSw. format 178	IBM mainframe format 152
writing character data 36, 56	zoned decimal leading-sign data, reading
,	IBM mainframe format 325
	zoned decimal separate leading-sign data
Υ	IBM mainframe format 153
YEARw. format 179	zoned decimal separate trailing-sign data
YMDDTTMw.d finformat 345	IBM mainframe format 154
YYMMDDw. format 181	zoned decimal separate trailing-sign data
YYMMDDw. informat 347	reading
YYMMDDxw. format 183	IBM mainframe format 327
YYMMNw. informat 348	zoned numeric data
YYMMw. format 180	MicroFocus COBOL 163, 337
YYMMxw. format 185	VMS 163, 337
YYMONw. format 186	zoned separate leading-sign data, reading
YYQRw. format 190	IBM mainframe format 326
YYQRxw. format 191	Zw.d format 193
YYQw. format 187	
YYQw. informat 350	
YYQxw. format 188	
~	