SAS® 9.4 Integration Technologies
Overview
Contents

What’s New in SAS 9.4 Integration Technologies v

Chapter 1 • Overview of SAS Integration Technologies 1
 What Is SAS Integration Technologies? ... 1
 Accessibility Features of SAS Integration Technologies 1
 What SAS Integration Technologies Includes 2
 Support for SAS Open Metadata Architecture 2
 Support for Industry Standards .. 3

Chapter 2 • Components of SAS Integration Technologies 5
 IOM Servers .. 5
 Using IOM to Develop Applications .. 10
 Foundation Services ... 13
 Publishing Framework ... 14
 Application Messaging ... 16
 Stored Processes ... 17
 SAS BI Web Services ... 18
 Directory Services ... 19
 SAS Web Infrastructure Platform ... 19

Glossary .. 23

Index ... 41
Contents
What’s New in SAS 9.4 Integration Technologies

Overview

New features for SAS Integration Technologies in SAS 9.4 include a number of general enhancements for the following products:

- SAS Stored Processes
- SAS BI Web Services
- SAS Publishing Framework
- Directory Services
- Application Messaging
- SAS Foundation Services

General Enhancements

SAS Integration Technologies includes the following enhancements:

- SAS Stored Processes introduces new features for the STP procedure and the SAS Stored Process Web Application, as well as general enhancements.
- SAS BI Web Services includes an update for RESTful web services.
- SAS Publishing Framework has added support for circular integrity constraints and extended attributes. If you are publishing to SharePoint or WebDAV, SSL setup can be done using TKESSL. In addition, event publishing is obsolete, and the event publishing documentation has been removed.
- Directory Services includes new TLS_MODE_ON and TLS_MODE_OFF options for the LDAPS_OPEN CALL routine.
- Application messaging provides a new ACTIVEMQ file access method.
- In SAS Foundation Services, the Event Broker Service is no longer available.
Chapter 1
Overview of SAS Integration Technologies

What Is SAS Integration Technologies?

SAS Integration Technologies, in combination with other SAS software and solutions, enables you to make information delivery and decision support a part of the information technology architecture for your enterprise.

SAS Integration Technologies provides you with software that enables you to build a secure client/server infrastructure on which to implement SAS distributed processing solutions. With SAS Integration Technologies, you can integrate SAS with other applications in your enterprise; provide proactive delivery of information from SAS throughout the enterprise; extend the capabilities of SAS to meet your organization's specific needs; and develop your own distributed applications that leverage the analytic and reporting powers of SAS.

SAS Integration Technologies is part of the SAS Intelligence Platform. For an overview of the SAS Intelligence Platform and the products that it contains, see the SAS Intelligence Platform: Overview.

Accessibility Features of SAS Integration Technologies

This product has not been tested for compliance with U.S. Section 508 standards. If you have specific questions about the accessibility of SAS products, send them to accessibility@sas.com or call SAS Technical Support.
What SAS Integration Technologies Includes

SAS Integration Technologies includes the following integration and system development tools, which are based on a combination of industry-standard technologies and technology developed by SAS:

- the Integrated Object Model (IOM), which provides distributed object interfaces to SAS software features. IOM enables you to use industry-standard languages, programming tools, and communication protocols to develop client programs that access these services on IOM servers. The IOM Bridge communications protocol enables diverse clients to connect transparently to IOM servers on multiple platforms.

- two types of IOM servers: the SAS Workspace Server, which surfaces the SAS programming environment to calling clients through an application programming interface (API); and the SAS Stored Process Server, which enables clients to execute parameterized SAS programs without having to know the SAS language.

 Note: Other types of IOM servers include the SAS Metadata Server, which is provided with Foundation SAS, and the SAS OLAP Server, which is provided with SAS Intelligent Storage products.

- SAS Foundation Services, which is a set of core infrastructure services that Java programmers can use to write distributed applications that are integrated with the SAS platform. The services provide client connections to IOM servers, dynamic service discovery, user authentication, profile management, session context management, metadata and content repository access, activity logging, information publishing, and stored process execution.

- the Publishing Framework, which consists of SAS CALL routines and graphical user interfaces that enable you to publish information proactively by using a subscription channel model.

- the Application Messaging interface, which provides three sets of CALL routines that enable you to incorporate messaging services into your SAS programs.

- SAS Stored Processes, which enable client applications to execute SAS programs that are stored centrally on a server.

- SAS BI Web Services, which expose SAS Stored Processes for execution by using web service protocols. Remote clients are then able to specify input parameters, drive execution of SAS code, and obtain results from that execution.

- the SAS Web Infrastructure Platform, which enables you to develop web applications and components using portal technology.

- the Directory Services interface, which enables you to incorporate LDAP directory services functions into your SAS programs.

Support for SAS Open Metadata Architecture

SAS Integration Technologies supports the SAS Open Metadata Architecture, which is a metadata management facility that provides common metadata services to SAS applications. This architecture is required in order to do the following tasks:
• use the SAS Metadata Server to store configuration information for SAS Integration Technologies and other SAS products
• use SAS Management Console as a central interface to administer configuration and security information for SAS Integration Technologies and other SAS products
• use new security features for user registration, authentication, and authorization (access control)
• configure new types of IOM servers (SAS Metadata Servers, SAS Stored Process Servers, and SAS OLAP Servers) in addition to SAS Workspace Servers
• use load balancing for workspace servers and spawners, as well as stored process servers and spawners
• operate stored processes on a stored process server to produce streaming output for use in web applications
• use the SAS Web Infrastructure Platform to create web applications that use portal technology
• use SAS Foundation Services to implement Java applications that are integrated with the SAS Intelligence Platform
• install and operate other SAS products that depend on the SAS Intelligence Platform

For more information about the SAS Open Metadata Architecture, see the SAS Intelligence Platform: System Administration Guide.

Support for Industry Standards

SAS Integration Technologies supports the following industry standard technologies, allowing you to leverage your existing infrastructure investments and skill sets to provide application interoperability:

• client development by using any programming environment that supports bindings to the COM and DCOM or Java object model. The programming environments that are supported include the following:
 • Microsoft Visual Basic for Applications, VBScript, Visual C++ .NET, Visual Basic .NET, and Visual C# .NET
 • any Java integrated development environment (IDE), including Eclipse, Sun ONE Studio, IBM VisualAge, Borland JBuilder, and SAS webAF (which is part of SAS AppDev Studio)
 • proprietary Windows programming environments such as Borland Delphi, Sybase PowerBuilder, and others
 • asynchronous message queuing through the use of IBM WebSphere MQ (formerly called MQSeries), Microsoft MSMQ, and TIBCO Rendezvous.
• file management that uses web-based Distributed Authoring and Versioning (WebDAV). The publish and subscribe features of SAS Integration Technologies can access any WebDAV server. Two specific types of WebDAV servers are supported for use by SAS business intelligence web applications:
 • Xythos Software's WebFile Server (WFS) can be used to store content for the SAS Web Infrastructure Kit and the SAS Information Delivery Portal. It can also be used to store reports that have been created with SAS Web Report Studio. The
SAS User Management Customization enables a Xythos WebFile Server to interact with the SAS Metadata Server for authorization and authentication.

- Apache HTTP Server (with its WebDAV module enabled) can also be used to store reports that have been created with SAS Web Report Studio.
- Web services development based on the XML for Analysis interface, SOAP, XML, JSON, and RESTful technologies.
- Web application development on web servers that are compatible with the Java 2 platform.
Chapter 2
Components of SAS Integration Technologies

IOM Servers

Overview of IOM Servers
Configuring and Using IOM Servers
Connecting Clients to IOM Servers

Using IOM to Develop Applications
IOM Scenario
Workspace Object Hierarchy

Foundation Services

Publishing Framework
Overview of the Publishing Framework
Channel Definition
Subscription Management
Package Publishing
Package Retrieval and Viewing

Application Messaging
Overview of Application Messaging
WebSphere MQ Functional Interface
MSMQ Functional Interface
Common Messaging Interface

Stored Processes
SAS BI Web Services
Directory Services
SAS Web Infrastructure Platform

IOM Servers

Overview of IOM Servers

The Integrated Object Model (IOM) in SAS Integration Technologies provides distributed object interfaces to SAS software features. To call these interfaces, clients can use industry-standard languages, programming tools, and communication protocols. The interfaces are built into SAS and are available to clients whenever SAS is executed as an object server.
An IOM server is an object server that is launched in order to fulfill client requests for IOM services. There are four types of IOM servers:

SAS Workspace Server
- is provided with SAS Integration Technologies and is accessed through the IOM workspace interface. This interface provides access to Foundation SAS software features such as the SAS language, SAS libraries, the server file system, results content, and formatting services. A SAS workspace represents a session with the SAS System, and it is functionally equivalent to a SAS Display Manager session or the execution of the SAS System as a batch job.

SAS Stored Process Server
- is a multi-user server that is provided with SAS Integration Technologies and is used to execute SAS Stored Processes and deliver the results. A SAS Stored Process is a SAS program that is stored on a server and can be called by client applications. SAS Stored Processes enable clients to execute parameterized SAS programs without having to know the SAS language.

SAS OLAP Server
- delivers pre-summarized cubes of data to OLAP clients like SAS Enterprise Guide using OLE DB for OLAP. *Cubes* are logical sets of data that are organized and structured in a hierarchical, multidimensional arrangement. You can query cubes by using the multidimensional expression (MDX) language. The SAS OLAP Server, which is provided with SAS Intelligent Storage products, is designed to reduce the load on traditional back-end storage systems by delivering summarized views of data to business intelligence applications, irrespective of the amount of data underlying these summaries.

SAS Metadata Server
- is a multi-user server, provided with SAS Foundation, that enables users to read metadata from or write metadata to one or more SAS Metadata Repositories. SAS Metadata Repositories contain metadata that represents items such as SAS application servers (including SAS Workspace Servers, SAS OLAP Servers, and SAS Stored Process Servers), users in the metadata environment, libraries, tables, stored processes, and cubes.

Configuring and Using IOM Servers

You can use the SAS Deployment Wizard to plan, install, and define the configurations for your IOM servers. Detailed documentation is provided to help you perform these tasks either with or without the wizard. Documentation is also provided to help you manage and administer your server configurations after installation, and to assist you in developing application programs that use the IOM servers.

The following table provides information about the documentation that is available for IOM servers:
<table>
<thead>
<tr>
<th>Server Type</th>
<th>Type of Information</th>
<th>Documentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>all IOM server types</td>
<td>using SAS Deployment Wizard to plan and configure</td>
<td>SAS Intelligence Platform: Installation and Configuration Guide</td>
</tr>
<tr>
<td>securing</td>
<td></td>
<td>SAS Intelligence Platform: Security Administration Guide</td>
</tr>
<tr>
<td>starting</td>
<td></td>
<td>SAS Intelligence Platform: System Administration Guide</td>
</tr>
<tr>
<td>developing applications</td>
<td></td>
<td>“IOM Scenario” on page 10 in this overview</td>
</tr>
<tr>
<td>connecting a client application</td>
<td></td>
<td>“Connecting Clients to IOM Servers ” on page 8 in this overview</td>
</tr>
<tr>
<td></td>
<td></td>
<td>“Using the Java Connection Factory” in Chapter 2 of SAS Integration Technologies: Java Client Developer's Guide</td>
</tr>
<tr>
<td></td>
<td></td>
<td>“Using the SAS Object Manager ” in Chapter 3 of SAS Integration Technologies: Windows Client Developer's Guide</td>
</tr>
<tr>
<td>implementing distributed security for clients</td>
<td></td>
<td>“Java Client Security” in Chapter 1 of SAS Integration Technologies: Java Client Developer's Guide</td>
</tr>
<tr>
<td>Server Type</td>
<td>Type of Information</td>
<td>Documentation</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>SAS Workspace Server</td>
<td>modifying and administering the configuration after installation</td>
<td>SAS Intelligence Platform: System Administration Guide</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SAS Intelligence Platform: Application Server Administration Guide</td>
</tr>
<tr>
<td></td>
<td>developing clients</td>
<td>“Workspace Object Hierarchy” on page 11 in this overview</td>
</tr>
<tr>
<td></td>
<td></td>
<td>“Developing Java Clients” in Chapter 1 of SAS Integration Technologies: Java Client Developer's Guide</td>
</tr>
<tr>
<td>SAS Stored Process Server</td>
<td>modifying and administering the configuration after installation</td>
<td>SAS Intelligence Platform: System Administration Guide</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SAS Intelligence Platform: Application Server Administration Guide</td>
</tr>
<tr>
<td></td>
<td>developing clients</td>
<td>SAS Stored Processes: Developer's Guide</td>
</tr>
<tr>
<td></td>
<td></td>
<td>“Developing Java Clients” in Chapter 1 of SAS Integration Technologies: Java Client Developer's Guide</td>
</tr>
<tr>
<td>SAS OLAP Server</td>
<td>modifying and administering the configuration after installation</td>
<td>SAS Intelligence Platform: Application Server Administration Guide</td>
</tr>
<tr>
<td>SAS Metadata Server</td>
<td>modifying and administering the configuration after installation</td>
<td>SAS Intelligence Platform: System Administration Guide</td>
</tr>
<tr>
<td></td>
<td>developing clients</td>
<td>SAS Open Metadata Interface: Reference and Usage</td>
</tr>
</tbody>
</table>

Connecting Clients to IOM Servers

Overview of Communication between Clients and IOM Servers
The information that is needed to connect to an IOM server is obtained from the SAS Metadata Server. SAS Integration Technologies supports additional SAS software features by enabling Java and Windows clients to connect to and request objects from

SAS Integration Technologies facilitates client/server communication across multiple vendor architectures by supporting multiple client/server interoperability standards. The following figure shows the different ways that clients and IOM servers can communicate.

Figure 2.1 Communication between Clients and IOM Servers

Windows Clients

As shown in the figure, Windows clients that are written in languages such as Visual Basic or Visual C++ access IOM servers that are running in the Windows operating environment by using the Microsoft Component Object Model (COM). Windows client interfaces provided in SAS Integration Technologies support two leading industry standards: ActiveX Data Objects (ADO) and Object Linked Embedding for Databases (OLE DB).

Windows clients accessing IOM servers on other server platforms use the IOM Bridge for COM. This bridge enables you to develop native COM and DCOM applications that
access server data, for example, on UNIX and mainframe platforms. This transparency is a key feature of SAS Integration Technologies. It enables application developers to have full access to the architectural elements that are available in the Windows environment, even when their clients communicate with servers in other operating environments. The bridge makes other operating environments appear to be extensions of the client's native operating environment.

With SAS Integration Technologies, Windows clients can use the Windows Object Manager to connect to IOM servers.

Note: In SAS®9, SAS Integration Technologies still supports the SAS 8 interface for using the Windows Workspace Manager. However, it is recommended that you use the Windows Object Manager interface in order to take advantage of the new features.

Java Clients

Java clients that access IOM servers use the Common Object Request Broker Architecture (CORBA). CORBA is an architecture for an open software bus on which objects can interoperate across networks and operating systems.

The Object Request Broker (ORB) is the key element of CORBA. It provides the infrastructure for distributed object computing by enabling software components (objects) on one machine to locate and communicate with components on other machines. This infrastructure enables you, as an application developer, to focus on implementing your business logic instead of worrying about all the underlying technology.

SAS Integration Technologies provides an ORB called the IOM bridge for Java. This ORB implements the standard CORBA ORB interface defined by the Object Management Group (OMG). It uses a proprietary inter-orb protocol (called the IOM Bridge protocol) to communicate with the IOM server.

With SAS Integration Technologies, Java clients can use the Java Connection Factory to connect to IOM servers.

Note: In SAS®9, SAS Integration Technologies still supports the SAS 8 interface for using the Java Workspace Factory. However, it is recommended that you use the Connection Factory interface in order to take advantage of the new features.

Using IOM to Develop Applications

IOM Scenario

One of the chief benefits of building component-based applications by using the Integrated Object Model (IOM) is that it enables you to de-couple your business application logic from your presentation methods. This enables you to reuse core application functionality in multiple presentation personalities and, as a result, it extends your application's deployment options.

For example, consider the following figure. Using SAS Integration Technologies software, you can develop applications in which web browsers, desktop GUIs, and middle-tier web and application server presentation platforms can all become clients of SAS software server components.
Within the web browser context, you can use client-side scripting such as VBScript, local components such as ActiveX controls, and Java applets to implement access to server components.

Similarly, you can assess server components from desktop application environments including custom applications that are written in Visual Basic, Java, C++, Delphi, and PowerBuilder. Further, any desktop application container that supports Visual Basic for Applications (VBA), including those in the Microsoft Office suite and many third-party offerings, can also participate.

Finally, you can deploy middle-tier web and application servers, such as the Microsoft Internet Information Server (IIS), Microsoft Transaction Server (MTS), and various .NET servers to host logic that accesses SAS software server components.

This level of deployment flexibility enables you to distribute your logic components across the enterprise in order to realize the performance advantages that are associated with data source co-location. This component distribution can be accomplished in a manner that is transparent to the client.

Workspace Object Hierarchy

The principal IOM interfaces of the SAS Workspace Server include the following:

- Workspace (a SAS session)
- LanguageService (submit, list/log, stored processes)
- DataService (librefs, plus access through ADO, OLE-DB or JDBC)
- FileService (filerefs and directories)
- Utilities (result packages, formats, host info)

The following figure depicts the object hierarchy for these interfaces.
Figure 2.3 Workspace Object Hierarchy
In the figure, the number 1 indicates that that part of the hierarchy has exactly one child per parent. An asterisk (*) indicates that that part of the hierarchy has zero or greater children per parent.

The LanguageService defines methods for submitting SAS procedural scripting language statements (to execute SAS DATA and procedure steps) and for retrieving the associated LOG and LIST outputs.

Applications that produce sophisticated results such as HTML and graphs generated by using the SAS Output Delivery System can use the ResultPackageService to retrieve collected elements. Program execution progress events such as step begin, step end, and error conditions can also be monitored with a LanguageService event interface.

The FileService defines methods for managing SAS file references (FILEREFs) and reading or writing files on the server's host file system. A client can exploit SAS external file access methods and host-specific fileref assignment options to access the wide variety of specialized features in SAS external file I/O on the various server host platforms. The DataService surfaces similar control over SAS library references (librefs).

IOM uses standard interface mechanisms within the Microsoft COM and Java application environments to expose the object hierarchy. This enables you to use the ActiveX Data Objects (ADO) and OLE DB access protocols in the Windows COM environment. In Java environments, the JDBC 2.0 access protocol is supported. These standard mechanisms provide semantic richness, including read, write, update, and query services. All components that support the same standards can easily interoperate.

Application hierarchies are also available through specialized SAS product offerings and custom applications developed with the SAS/AF software.

SAS Integration Technologies provides the middleware necessary to connect clients and servers across multiple vendor architectures, as described in “Connecting Clients to IOM Servers” on page 8.

Foundation Services

The SAS Foundation Services are a set of infrastructure and extension services that support the development of integrated, scalable, and secure Java applications. The SAS Foundation Services are based on the following design principles:

• implementation modularity
• location transparency
• robust and adaptive resource management
• run-time monitoring
• consistent deployment methodology
• client neutrality

The design model of the SAS Foundation Services supports both local and remote resource deployment and promotes resource sharing among applications. Sharing can occur for a specific session, for a specific user, or globally, as appropriate. At the same time, the model controls access to protected resources based on privileged-user status and group membership.

The SAS Foundation Services are as follows:

• Connection Service
The Connection, Publish, and Stored Process services are extensions of similar services that are part of the Integrated Object Model (IOM) Services published with SAS Integration Technologies 8.2. The IOM Services continue to be supported. However, the SAS Foundation Services provide enhanced features, including support for the use of a SAS Metadata Server for storing configuration information, and support for the use of shared remote service deployments.

For information about configuring and administering SAS Foundation Services, see the *SAS Foundation Services: Administrator's Guide*. For information about using SAS Foundation Services to develop applications, see the *SAS Integration Technologies: Java Client Developer's Guide*.

Publishing Framework

Overview of the Publishing Framework

The Publishing Framework feature of SAS Integration Technologies provides a complete and robust publishing environment for enterprise-wide information delivery. The Publishing Framework consists of SAS CALL routines, application programming interfaces (APIs), and graphical user interfaces that enable both users and applications to publish SAS files (including data sets, catalogs, and database views) and other digital content to a variety of destinations:

- e-mail addresses
- message queues
- publication channels and subscribers
- WebDAV-compliant servers
- archive locations
- Microsoft SharePoint servers

The Publishing Framework also provides tools that enable both users and applications to receive and process published information. For example, users can receive packages with content, such as charts and graphs, that is ready for viewing. In addition, SAS programs can receive packages with SAS data sets that might in turn trigger additional analyses on that data.

The functions of the Publishing Framework include channel definition, subscription management, package publishing, package retrieval, and package viewing.

For information about how to perform publishing tasks, or how to incorporate publishing tasks into your SAS programs or applications, see the *SAS Publishing Framework: Developer's Guide*. For information about how to administer publication channels and
publisher information, see the product Help for the Publishing Framework plug-in in SAS Management Console.

Channel Definition

The Publishing Framework enables you to define SAS publication channels, which are conduits for publishing particular categories of information. You can set up a channel for a particular topic, organizational group, user audience, or any other category.

To define a channel, use SAS Management Console to define a name for the channel, a description, a subject, the path in which the channel's archived packages are to be stored, and one or more key words. The channel definition, or metadata, is stored on the SAS Metadata Server. SAS Management Console can also be used to specify which groups of users are authorized to subscribe to the channel.

Subscription Management

Once publication channels have been defined, authorized users can subscribe to them and automatically receive information whenever it is published to those channels.

First, you must define the users who are eligible subscribers. To do so, use SAS Management Console to enter user authentication information.

If your organization has installed the SAS Information Delivery Portal, users can manage their subscriptions from within the portal. The portal enables users to select channels to subscribe to, specify the desired delivery transport (such as an e-mail address or message queue), and specify filters that indicate which information is to be included or excluded.

Administrators can also use the Publishing Framework plug-in for SAS Management Console to manage subscriptions. Using this application, administrators can create groups of subscribers, subscribe individual users or groups to a channel, and specify delivery transport and filtering options.

Package Publishing

The Publishing Framework enables you to create packages that contain one or more information entities, including SAS data sets, SAS catalogs, SAS databases, and almost any other type of digital content. You can also define viewers that make the information entities easier to display.

After creating a package, you can publish the package and its associated viewers to one or more channels. Publishing the package causes the information to be delivered to each user who has subscribed to those channels if the package and its contents meet the subscriber's filtering criteria. In addition to channels, you can publish packages directly to one or more e-mail addresses, message queues, WebDAV-compliant servers, SharePoint servers, and archive locations.

To create and publish packages, you can use any of the following methods:

- use the publish CALL routines to create packages and publish them from within a SAS program
- use the APIs that are provided with SAS Integration Technologies to create packages and publish them from within a third-party application

You can also use SAS Enterprise Guide or the SAS Information Delivery Portal to create and publish packages via the Publishing Framework.
Package Retrieval and Viewing

The Publishing Framework provides SAS Package Retriever, which is a graphical user interface that enables users to extract and save information from packages that have been published through the Publishing Framework. The SAS Package Reader user interface enables users to display the contents of packages. If the SAS Information Delivery Portal has been installed, users can view published information from the portal.

In addition, you can use CALL routines to extract and process published information from within SAS programs. APIs are provided to enable third-party programs to extract and process published information.

Application Messaging

Overview of Application Messaging

The Application Messaging Interface includes three sets of CALL routines that enable you to incorporate messaging services into your SAS programs. The interfaces support asynchronous message queuing through the use of the following messaging software: IBM WebSphere MQ (formerly called MQSeries); Microsoft Message Queuing Services (MSMQ), which are part of the Windows NT® Server product; and TIBCO TIB/Rendezvous.

Application messaging enables two or more applications to communicate with one another indirectly and asynchronously using message queues. The applications do not have to be running at the same time or even in the same operating environment. An application can communicate with another application by sending a message to a queue. The receiving application retrieves the message when it is ready.

SAS Integration Technologies provides three messaging interfaces: the WebSphere MQ Functional Interface, the MSMQ Functional Interface, and the Common Messaging Interface.

In addition to the messaging interfaces, SAS Integration Technologies provides the JMS file access method. The SAS JMS file access method allows SAS programs to read and write records to and from any message-oriented middleware that supports a JMS provider.

For complete documentation of the SAS application messaging interfaces and the JMS file access method, see Application Messaging with SAS.

WebSphere MQ Functional Interface

With the SAS interface to IBM WebSphere MQ (formerly called MQSeries), SAS programs can create new WebSphere MQ message queues or take advantage of existing ones that are available throughout the enterprise. This interface was designed to be as similar as possible to the WebSphere message queuing interface (MQI).

MSMQ Functional Interface

With the SAS interface to Microsoft MSMQ, SAS programs can create new MSMQ message queues or take advantage of existing ones that are available throughout the
enterprise. The CALL routines in this interface interact directly with the MSMQ application programming interface (API).

Common Messaging Interface

The SAS Common Messaging Interface provides a seamless environment for writing SAS programs that access message queues of the IBM WebSphere MQ, Microsoft MSMQ, and TIBCO TIB/Rendezvous transports. The CALL routines in this interface enable programs to interact in a consistent manner that is independent of the application messaging transport being used.

The Common Messaging Interface also includes CALL routines that enable your SAS program to use the local SAS registry or a distributed LDAP repository to store and retrieve messaging information.

Stored Processes

A stored process is a SAS program that is stored centrally on a server. A client application can then execute the program and receive and process the results. Stored processes enable you to centrally maintain and manage code, give you better control over changes, enhance security and application integrity, and ensure that every client executes the latest version of code that is available.

Stored processes are like other SAS programs except they have an additional feature that enables customization of the program's execution. This feature enables the invoking application to supply parameters at the time that the stored process is invoked. For example, if you have a stored process that analyzes monthly sales data, you could create a MONTH variable in the stored process. At execution time, the user could supply the parameter MONTH=MAY to analyze May sales data.

You can use stored processes for web reporting, analytics, building web applications, delivering packages to clients or the middle tier, and publishing results to channels or repositories. Stored processes can access any SAS data source or external file and can create new data sets, files, or other data targets supported by the SAS System.

You can use the following clients to invoke stored processes:

- JMP
- SAS Add-In for Microsoft Office
- SAS BI Dashboard
- SAS BI Web Services
- SAS Data Integration Studio
- SAS Enterprise Guide
- SAS Information Delivery Portal
- SAS Information Map Studio
- SAS Stored Process Web Application
- SAS Web Report Studio
- Stored Process Java API
- Stored Process Windows API
Stored processes can generate output files in a variety of formats. They can also produce streaming output for web applications, as well as package output for publishing. Stored processes can operate either on a SAS Workspace (IOM) Server or a SAS Stored Process Server.

For information about how to create a stored process and invoke it in a client application, see the *SAS Stored Processes: Developer's Guide*. For information about how to create the metadata to define a stored process, see the product Help for the New Stored Process wizard or the Stored Process Properties dialog box in SAS Management Console.

SAS BI Web Services

A web service is an interface that enables communication between distributed applications. Web services provide cross-platform integration by enabling applications written in various programming languages to communicate by using a standard web-based protocol. This functionality makes it possible for businesses to bridge the gaps between different applications and systems.

In general, SAS BI Web Services expose SAS Stored Processes for execution by using web service protocols. Remote clients are then able to specify input parameters, drive execution of SAS code, and obtain results from that execution. Also, web services make it possible to write clients that perform this act in a myriad of languages and on a variety of operating systems by using HTTP to exchange messages. Web services can enable a service-oriented, enterprise application approach, or they can support the development of mobile or web clients, all of which leverage reusable SAS Stored Processes.

There are two core types of SAS BI Web Services: XMLA and structured web services. Structured web services can further be divided based on how you access the services and the format of the messages that you send and receive.

With XMLA web services, two methods, Discover() and Execute(), are provided. The Discover method calls the SAS Metadata Server to obtain the requested metadata, and the Execute method calls the application server to invoke a stored process.

Starting with SAS 9.3, all stored processes are available individually for execution using web services without any action required from the user. SAS BI Web Services automatically exposes a WSDL file for each and every stored process that is available in the system. These WSDL files use XML to include detailed information about the inputs and outputs of each stored process using XML schema descriptions. Also, the WSDL file includes the URLs of endpoints to use to invoke these stored processes by using SOAP over HTTP.

You can also group multiple stored processes together in a single, named web service using the Deploy As Web Service wizard in SAS Management Console. In SAS 9.2, these were called generated web services because the wizard generated a grouping (and because server artifacts were actually generated as well).

All structured web services can be invoked by using SOAP over HTTP. SOAP strictly defines message structure, including the envelope containing headers and body. SAS BI Web Services define the content (and namespace) of the payload within the body. In addition, starting with SAS 9.3, web services support Javascript Simple Object Notation (JSON) and plain XML as message formats for all structured web services. The format of input XML messages for a structured web service can be deduced from its WSDL file. The addition of new output resource URL suffixes in conjunction with the new SAS folder path mapping means that SAS BI Web Services now support Representational State (REST) style web service invocation.
For detailed information about using SAS BI Web Services, including instructions for creating stored processes that web services can access, see the *SAS BI Web Services: Developer's Guide*.

Directory Services

If your organization uses an enterprise directory that conforms to the Lightweight Directory Access Protocol (LDAP), you can use the directory services interfaces of SAS Integration Technologies to incorporate enterprise directory services into your SAS applications. Through these interfaces, distributed SAS applications can share a common enterprise directory with components that might be executing in other run-time environments across the enterprise.

SAS Integration Technologies provides two interfaces that you can use to interact with an LDAP server from a SAS program:

- The LDAP CALL Routine Interface, which is set of CALL routines that you can use to add, delete, modify, and search entries in the LDAP server.
- The LDAPSERVICES class for the SAS Component Language (SCL). This class provides methods that add, delete, modify, and search entries in the LDAP server.

For documentation about the syntax and use of these interfaces, refer to the *SAS Integration Technologies: Directory Services Reference*.

SAS Web Infrastructure Platform

The SAS Web Infrastructure Platform is a collection of services and applications that provide common infrastructure and integration features to be used by SAS web applications. These services and applications provide the following benefits:

- consistency in installation, configuration, and administration tasks for web applications
- greater consistency in users' interactions with web applications
- integration among web applications as a result of the ability to share common resources

The following services and applications are included in the SAS Web Infrastructure Platform:

SAS BI Web Services for Java can be used to enable your custom applications to invoke and obtain metadata about SAS Stored Processes. Web services enable distributed applications that are written in different programming languages and that run on different operating systems to communicate using standard web-based protocols. The most common protocol is the Simple Object Access Protocol (SOAP).

The SAS BI Web Services for Java interface is based on the XML for Analysis (XMLA) Version 1.1 specification.

SAS Shared Web Assets contains graph applet JAR files that are shared across SAS web applications. They display graphs in stored processes and in the SAS Stored Process Web Application.
SAS Web Infrastructure Platform Services

provide a common infrastructure for SAS web applications. The infrastructure supports activities such as auditing, authentication, configuration, status and monitoring, e-mail, theme management, and data sharing across SAS web applications.

SAS Logon Manager

provides a common user authentication mechanism for SAS web applications. It displays a dialog box for user ID and password entry, authenticates the user, and launches the requested application. SAS Logon Manager supports a single sign-on authentication model. When this model is enabled, it provides access to a variety of computing resources (including servers and web pages) during the application session without repeatedly prompting the user for credentials.

You can configure SAS Logon Manager to display custom messages and to specify whether a logon dialog box is displayed when users log off.

In addition, you can use third-party products in conjunction with SAS Logon Manager to enable users to access multiple web applications within the same browser session.

SAS Preferences Manager

provides a common mechanism for managing preferences for SAS web applications. The feature enables administrators to set default preferences for locale, theme, alert notification, and time, date, and currency display. Within each web application, users can view the default settings and update their individual preferences.

SAS Stored Process Web Application

executes stored processes on behalf of a web client and return results to a web browser. The SAS Stored Process web application is similar to the SAS/IntrNet Application Broker, and has the same general syntax and debug options.

SAS Web Administration Console

provides features for monitoring and administering middle-tier components. This browser-based interface enables administrators to do the following:

• view a list of users who are logged on to SAS web applications, and send e-mail to active users
• create, delete, and manage permissions for folders on the SAS Content Server
• view configuration information for each middle-tier component

SAS Content Server

stores digital content (such as documents, reports, and images) that is created and used by SAS web applications. For more information, see "SAS Content Server" in SAS Intelligence Platform: Overview.

The following documentation is provided for the SAS Web Infrastructure Platform:

• the SAS Information Delivery Portal: Introduction, which provides a high-level description of the features of the SAS Information Delivery Portal
• the SAS Intelligence Platform: Web Application Administration Guide, which describes the configuration and administration tasks that are necessary to implement web applications (including the SAS Information Delivery Portal) that were developed using the SAS Web Infrastructure Platform
• Developing Portlets for the SAS Information Delivery Portal, which describes how to use the platform to develop a portal-like web application or to customize or extend the functionality of the SAS Information Delivery Portal
help files, accessible through the SAS Web Infrastructure Platform and SAS Information Delivery Portal's user interface, which provide instructions for page navigation, logging on and logging off, metadata searching, bookmarking, personalization, and content administration.
Glossary

access control entry
a set of identities and permissions that are directly associated with a particular resource. Each access control entry is directly associated with only one resource. More than one ACE can be associated with each resource. Short form: ACE.

access control template
a reusable named authorization pattern that you can apply to multiple resources. An access control template consists of a list of users and groups and indicates, for each user or group, whether permissions are granted or denied. Short form: ACT.

ACE
See access control entry.

ACT
See access control template.

administered object
a pre-configured Java Message Service (JMS) object that is created by a system administrator for use by client applications. Administered objects handle the complexities of using JMS in conjunction with proprietary messaging systems so that client applications can focus on business logic.

alert
an automatic notification of an electronic event that is of interest to the recipient.

archive
a package that is compressed and saved to a directory. The archive contains the contents of a package, as well as metadata that is necessary for extracting the contents.

asynchronous logging
a process that enables log messages to be queued within and delivered from a thread other than the main application thread.

authentication
See client authentication.
authentication domain
a SAS internal category that pairs logins with the servers for which they are valid. For example, an Oracle server and the SAS copies of Oracle credentials might all be classified as belonging to an OracleAuth authentication domain.

authentication provider
a software component that is used for identifying and authenticating users. For example, an LDAP server or the host operating system can provide authentication.

authorization
the process of determining which users have which permissions for which resources. The outcome of the authorization process is an authorization decision that either permits or denies a specific action on a specific resource, based on the requesting user's identity and group memberships.

background processing
processing in which you cannot interact with the computer. Background sessions sometimes run somewhat slower than foreground sessions, because background sessions execute as processor time becomes available.

base
the distinguished name (DN) to use as a starting place for searches of an LDAP directory. Searches can begin at any point in a directory tree. Beginning the search lower in the tree can dramatically reduce both the search time and spurious results. For example, the base might be specified in SAS system options as BaseDN or ldapBase.

bind
to create an association among two or more entities for a particular scope of time and place. For example, an association could be created between two or more programming objects, between a variable name and an object, between a symbolic address and a real machine address, or between a client and a server.

bookmark
a stored placeholder for either the address and name of an electronic document or the address of a location within an electronic document. Bookmarks provide convenient access and retrieval.

channel
a virtual communication path for distributing information. In SAS, a channel is identified with a particular topic. Using the features of the Publishing Framework, authorized users or applications can publish digital content to the channel, and authorized users and applications can subscribe to the channel in order to receive the content.

client
an application that requests either resources or services from a server, possibly over a network.

client authentication
the process of verifying the identity of a person or process for security purposes.

cluster
a group of computers that participate in load balancing. Each computer in the cluster runs an object spawner that handles client requests for connections.
COM
See Component Object Model.

Common Object Request Broker Architecture
a standard API for distributed object communication. CORBA was created by the Object Management Group. It is the most widely used distributed object standard for connecting operating system platforms from multiple vendors. Short form: CORBA.

component
a self-contained, reusable programming object that provides some type of service to other components in an object-oriented programming environment.

Component Object Model
an object-oriented programming model that is used for building component-based applications. This programming model defines how software components interact and enables other applications and processes to access the component-based application. Short form: COM.

Connection Factory
an application interface that enables Java programs to make IOM bridge connections to IOM servers. The interface provides the scalability features of pooling and server failover as well as support for load-balancing spawners. The interface is part of the SAS Foundation Services Connection Service.

Connection Service
one of the SAS Foundation Services. This service enables applications to (1) connect to IOM servers that use the IOM Bridge protocol, (2) use the Connection Factory to access existing connection objects and to create new connection objects for various server configurations, and (3) use advanced connection management features, such as connection pooling, failover, and load balancing, which are available through the Connection Factory.

container
a software application environment in which a component such as an applet, an application client, a servlet, a JavaServer page, or an Enterprise Java Bean is executed. Containers provide specific services that can be exploited by the types of components that they support.

content type
a value that tells a client's web browser how to interpret and display a transferred object such as an image file, a sound file, or a video file. For example, GIF, JPG, TIFF, MIDI, and WAV are content types.

context
the set of facts or circumstances that surround a situation or event. In Java applications, context generally refers to a collection of settings and attributes that describe a container or service that is currently executing.

CORBA
See Common Object Request Broker Architecture.

DCOM
See Distributed Component Object Model.
delivery transport
in the Publishing Framework, the method of delivering a package to the consumer. Supported transports include e-mail and WebDAV. Although not a true transport, a channel also functions as a delivery mechanism.

directory information tree
the entries that an LDAP directory server contains. These entries are stored in a hierarchical, tree-like structure. Short form: DIT.

directory schema
the set of defined attributes and object classes that defines the content of acceptable entries within an LDAP directory server.

Discovery Service
one of the SAS Foundation Services. This service enables applications to (1) find implementations of the SAS Foundation Services based on specified service capabilities and service attributes, and (2) rediscover a previously discovered service by using the service's Discovery Service ID. The Discovery Service can find service implementations that have been deployed locally for the application's exclusive use, as well as service implementations that have been deployed remotely for the use of multiple applications.

distinguished name
a unique identifier of an entry in an LDAP network directory. In effect, a distinguished name is the path to the object in the directory information tree. Short form: DN.

Distributed Component Object Model
an extension to the Component Object Model (COM) that enables components to request services from components that are on other computers in a network. Short form: DCOM.

DIT
See directory information tree.

DN
See distinguished name.

DNS name
a name that is meaningful to people and that corresponds to the numeric TCP/IP address of a computer on the Internet. For example, www.alphaliteairways.com might be the DNS name for an Alphalite Airways web server whose TCP/IP address is 192.168.145.6.

domain
a database of users that has been set up by an administrator by using a specific authentication provider such as LDAP or the host operating system. The domain name should be unique within your enterprise. For example, you should not have a Windows domain and a UNIX domain that are both named "SALES".

encryption
the act or process of converting data to a form that is unintelligible except to the intended recipients.
entry
a set of name/value pairs that describe a resource that is defined on an LDAP directory server.

entry filter
See package entry type filter.

Extensible Markup Language
See XML.

factory
an object that controls the creation of other objects, access to other objects, or both.

filter
See package filter.

foundation services
See SAS Foundation Services.

global unique identifier
a 16-byte (128 bit) number that is used in software applications to provide a unique reference number for various types of computer data and objects. GUIDs are usually, but not always, associated with Microsoft's implementation of the UUID standard.

group
in the Publishing Framework, a collection of subscribers who receive information that is published to that channel.

GUID
See global unique identifier.

HTTP
a protocol for transferring data to the Internet. HTTP provides a way for servers and web clients to communicate. It is based on the TCP/IP protocol. Short form: HTTP.

HTTP server
a server that handles an HTTP request from a client such as a web browser. Usually, the client's HTTP request indicates that the client wants to retrieve information that is pointed to by a URL. An example of a popular HTTP server is the Apache HTTP Server from the Apache Software Foundation.

HyperText Transfer Protocol
See HTTP.

information map
a collection of data items and filters that provides a user-friendly view of a data source. When you use an information map to query data for business needs, you do not have to understand the structure of the underlying data source or know how to program in a query language.

Information Service
one of the SAS Foundation Services. This service enables applications to perform a federated search of any repositories that a user has a connection to. The term federated means connected and treated as one. The classes in the Information Service package enable applications to create a single filter that can search disparate repositories (for example, SAS Metadata Repositories and LDAP repositories).
input stream
a connection that enables a client application to stream data into a stored process. The input stream is visible to the stored process as a SAS fileref.

Integrated Object Model
the set of distributed object interfaces that make SAS software features available to client applications when SAS is executed as an object server. Short form: IOM.

Integrated Object Model server
See IOM server.

IOM
See Integrated Object Model.

IOM bridge
a software component of SAS Integration Technologies that enables Java clients and Windows clients to access an IOM server.

IOM bridge for COM
the software component of SAS Integration Technologies that is used (transparently) when a Windows client accesses an IOM server on a platform other than Windows. The bridge enables applications that conform to the Microsoft COM or DCOM specifications to access SAS servers in operating environments such as z/OS and UNIX that do not support the COM or DCOM specifications.

IOM bridge for Java
a software component of SAS Integration Technologies that enables Java clients to access IOM servers.

IOM server
a SAS object server that is launched in order to fulfill client requests for IOM services. Short form: IOM server.

Java Development Kit
See JDK.

Java Message Service
See JMS.

Java Naming and Directory Interface
See JNDI.

Java RMI
See remote method invocation.

Java Virtual Machine
See JVM.

JavaServer page
a type of servlet that enables users to create Java classes through HTML. Short form: JSP.

JDK
a software development environment that is available from Oracle Corporation. The JDK includes a Java Runtime Environment (JRE), a compiler, a debugger, and other tools for developing Java applets and applications. Short form: JDK.
JMS

an application programming interface (API) that enables client applications to access the facilities of a message service. This interface provides a standard way for Java programs to create, send, receive, and read messages. Short form: JMS.

JNDI

a standard extension to the Java platform that enables developers to create applications that can interact with a number of different naming services and directory services, such as the Domain Name System (DNS) and the Lightweight Directory Access Protocol (LDAP). Short form: JNDI.

JSP

See JavaServer page.

JVM

a program that interprets Java programming code so that the code can be executed by the operating system on a computer. The JVM can run on either the client or the server. The JVM is the main software component that makes Java programs portable across platforms. A JVM is included with JDKs and JREs from Oracle Corporation, as well as with most web browsers. Short form: JVM.

Keyword

a word or phrase that can be stored in the metadata, that will describe one or more objects or stored items such as processes or content items, and that can subsequently be used in a filtered search.

LDAP

a protocol that is used for accessing directories or folders. LDAP is based on the X.500 standard, but it is simpler and, unlike X.500, it supports TCP/IP. Short form: LDAP.

LDAP Data Interchange Format

a file format that is widely used for building a database of directories that are stored on multiple servers, for adding large numbers of directories to a directory database, and for synchronizing the contents of those directories. The servers on which the directories are stored must support the LDAP protocol. Short form: LDIF.

LDAP directory

a repository that contains data about an enterprise's users and resources, as well as related security information, and that stores this data and information in a format that clients on a network can access by using the Lightweight Directory Access Protocol (LDAP).

LDAP directory server

a server that provides access to one or more LDAP directories.

LDAP server

See LDAP directory server.

LDIF

See LDAP Data Interchange Format.

Lightweight Directory Access Protocol

See LDAP.
load balancing
for IOM bridge connections, a program that runs in the object spawner and that uses an algorithm to distribute work across object server processes on the same or separate machines in a cluster.

local service deployment
a service deployment that supports an application's exclusive access to a set of SAS Foundation Services that are deployed within a single Java Virtual Machine (JVM).

localhost
the keyword that is used to specify the machine on which a program is executing. If a client specifies localhost as the server address, the client connects to a server that runs on the same machine.

log
See SAS log.

logical name
a unique name that can be assigned to related resources in order to manage the resources as a group.

logical server
the second-level object in the metadata for SAS servers. A logical server specifies one or more of a particular type of server component, such as one or more SAS Workspace Servers.

login
a SAS copy of information about an external account. Each login includes a user ID and belongs to one SAS user or group. Most logins do not include a password.

message queue
in application messaging, a place where one program can send messages that will be retrieved by another program. The two programs communicate asynchronously. Neither program needs to know the location of the other program nor whether the other program is running.

message queue polling
a feature of the object spawner that monitors message queues and distributes message queue tasks efficiently among SAS processes.

metadata
descriptive data about data that is stored and managed in a database, in order to facilitate access to captured and archived data for further use.

metadata repository
a collection of related metadata objects, such as the metadata for a set of tables and columns that are maintained by an application. A SAS Metadata Repository is an example.

metadata server
a server that stores information about servers, users, and stored processes and that provides this information to one or more client applications.

middle tier
in a SAS business intelligence system, the architectural layer in which web applications and related services execute. The middle tier receives user requests,
applies business logic and business rules, interacts with processing servers and data servers, and returns information to users.

MIME
a method of registering content types and their associated actions with mechanisms for actions such as retrieval and display. Short form: MIME.

MIME type filter
in the Publishing Framework, a filter that specifies which file entries of a specific MIME type to include in packages that are published to a subscriber.

Multipurpose Internet Mail Extensions
See MIME.

name/value filter
in the Publishing Framework, a subscription property that determines which packages are published to that subscriber. In order to receive a particular package, a subscriber's name/value filter must contain the name/value pair that the publisher specifies in the package.

name/value pair
in the Publishing Framework, an attribute and value that the publisher uses to describe the contents of a package or a package entry. For example, a 'type=production' name/value pair might be used to specify that a package contains production data. One or more site-specific name/value pairs can be assigned to an entire package or to a selected package entry. Subscribers can use name/value pairs to define name/value filters, which control the types of packages that are delivered to them.

named service
a SAS Foundation Service that is bound to the service registry by name. Named services are defined by named service bindings, which enable applications to locate a remote service based on the name that is bound to the registry.

named service binding
the method that is used to bind one of the SAS Foundation Services to a service registry when the service has been deployed remotely. Named service bindings enable applications to locate a service by using the name that is bound to the registry.

namespace
a URL that identifies an entry in a WebDAV package.

object
an entity that can be manipulated by the commands of a programming language. In object-oriented programming, an object is a compilation of attributes (object elements) and behaviors (methods) that describe an entity. Unlike simple data types that are single pieces of information (e.g. int=10), objects are complex and must be constructed.

object class
a definition of a type of object that can be stored in an LDAP directory. Each object class consists of a set of attributes (for example, name and description) to which you can assign values in order to define a specific instance of the object. The attributes can be either mandatory or optional. The complete set of object classes for a directory defines its schema.
Object Management Group
a nonprofit industry consortium formed in April 1989 that develops standards for
distributed objects. OMG standards include the Common Object Request Broker
Architecture (CORBA) and the Internet Inter-ORB Protocol (IIOP). Short form: OMG.

Object Request Broker
in object-oriented programming, a middle-tier component that supports
communication between clients and servers. When a client invokes a method that is
supported by an object server class, the ORB finds an instance of the object server
class, invokes the requested method, and returns the results to the requesting client.
An ORB enables clients and servers to dynamically discover each other and to
communicate with each other across a network. Short form: ORB.

object spawner
a program that instantiates object servers that are using an IOM bridge connection.
The object spawner listens for incoming client requests for IOM services. When the
spawner receives a request from a new client, it launches an instance of an IOM
server to fulfill the request. Depending on which incoming TCP/IP port the request
was made on, the spawner either invokes the administrator interface or processes a
request for a UUID (Universal Unique Identifier).

OMG
See Object Management Group.

ORB
See Object Request Broker.

package
See SAS package file.

package entry
in the Publishing Framework, an item within a package.

package entry MIME type filter
See MIME type filter.

package entry type filter
in the Publishing Framework, a filter that specifies which types of package entries to
publish to a subscriber.

package file
See SAS package file.

package filter
specified criteria that are applied to data in order to identify the subset of data for a
subsequent operation, such as continued processing.

permanent package
a container for content that was produced by a SAS program or by a third-party
application, and that is written to a specific location. Permanent packages remain in
existence even after the stored process completes execution and the client
disconnects from the server.

permanent result package
See permanent package.
permission
the type of access that a user or group has to a resource. The permission defines what the user or group can do with the resource. Examples of permissions are ReadMetadata and WriteMetadata.

plug-in
a file that modifies, enhances, or extends the capabilities of an application program. The application program must be designed to accept plug-ins, and the plug-ins must meet design criteria specified by the developers of the application program. In SAS Management Console, a plug-in is a JAR file that is installed in the SAS Management Console directory to provide a specific administrative function. The plug-ins enable users to customize SAS Management Console to include only the functions that are needed.

pool
a group of server connections that can be shared and reused by multiple client applications. A client-side pool consists of one or more puddles.

pooling
the act or process of creating a pool.

portal
a web application that enables users to access web sites, data, documents, applications, and other digital content from a single, easily accessible user interface. A portal's personalization features enable each user to configure and organize the interface to meet individual or role-based needs.

portlet
a web component that is managed by a web application and that is aggregated with other portlets to form a page within the application. Portlets can process requests from the user and generate dynamic content.

prompt
a parameter that enables a user to specify one or more values, which can be used by consumers such as applications, stored processes, and reports.

publication channel
an information repository that has been established using the SAS Publishing Framework and that can be used to publish information to users and applications.

publish
to deliver electronic information, such as files, to one or more destinations. These destinations can include e-mail addresses, message queues, publication channels and subscribers, WebDAV-compliant servers, and archive locations.

publisher
any person, SAS program, or application that uses the Publishing Framework to distribute information.

Publishing Framework
a component of SAS Integration Technologies that enables both users and applications to publish SAS files (including data sets, catalogs, and database views), and other digital content to a variety of destinations. The Publishing Framework also provides tools that enable both users and applications to receive and process published information.
puddle
a group of servers that are started and run using the same login credentials. Each puddle can also allow a group of clients to access the servers.

queue
See message queue.

queue manager
an application that enables programs to send messages to and receive messages from message queues.

remote method invocation
a Java programming feature that provides for remote communication between programs by enabling an object that is running in one Java Virtual Machine (JVM) to invoke methods on an object that is running in another JVM, possibly on a different host. Short form: RMI.

remote service deployment
a service deployment that supports shared access to a set of SAS Foundation Services that are deployed within a single Java Virtual Machine (JVM), but which are available to other JVM processes. Applications use the remote service deployment to deploy and access remote foundation services.

repository
a storage location for data, metadata, or programs.

result type
the kind of output that is produced by a stored process. Result types include none, streaming, permanent package, and transient package.

RMI
See remote method invocation.

SAS Application Server
a logical entity that represents the SAS server tier, which in turn comprises servers that execute code for particular tasks and metadata objects.

SAS BI Web service
a web service that adheres to the XML for Analysis (XMLA) specification for executing SAS Stored Processes.

SAS Foundation Services
a set of core infrastructure services that programmers can use in developing distributed applications that are integrated with the SAS platform. These services provide basic underlying functions that are common to many applications. These functions include making client connections to SAS application servers, dynamic service discovery, user authentication, profile management, session context management, metadata and content repository access, information publishing, and stored process execution.

SAS IOM workspace
in the IOM object hierarchy for a SAS Workspace Server, an object that represents a single session in SAS.
SAS log
a file that contains a record of the SAS statements that you enter, as well as messages about the execution of your program.

SAS Management Console
a Java application that provides a single user interface for performing SAS administrative tasks.

SAS Metadata Repository
a container for metadata that is managed by the SAS Metadata Server.

SAS Metadata Server
a multi-user server that enables users to read metadata from or write metadata to one or more SAS Metadata Repositories.

SAS OLAP Server
a SAS server that provides access to multidimensional data. The data is queried using the multidimensional expressions (MDX) language.

SAS Open Metadata Architecture
a general-purpose metadata management facility that provides metadata services to SAS applications. The SAS Open Metadata Architecture enables applications to exchange metadata, which makes it easier for these applications to work together.

SAS package file
a container for data that has been generated or collected for delivery to consumers by the SAS Publishing Framework. Packages can contain SAS files, binary files, HTML files, URLs, text files, viewer files, and metadata.

SAS publication channel
See publication channel.

SAS Stored Process
a SAS program that is stored on a server and defined in metadata, and which can be executed by client applications. Short form: stored process.

SAS Stored Process Server
a SAS IOM server that is launched in order to fulfill client requests for SAS Stored Processes.

SAS Stored Process Web Application
a web application that enables you to execute stored processes and have the results returned to a web browser.

SAS Workspace Server
a SAS IOM server that is launched in order to fulfill client requests for IOM workspaces.

server
software that provides either resources or services to requesting clients, possibly over a network.

service
one or more application components that an authorized user or application can call at any time to provide results that conform to a published specification. For example, network services transmit data or provide conversion of data in a network, database
services provide for the storage and retrieval of data in a database, and web services interact with each other on the World Wide Web.

service configuration
a set of values that can be customized for a particular service in SAS Foundation Services. By editing a service configuration, you can override the default configuration for the foundation service.

service deployment
a collection of SAS Foundation Services that specifies the data that is necessary in order to instantiate the services, as well as dependencies upon other services. Applications query a metadata source (a SAS Metadata Server or an XML file) to obtain the service deployment configuration in order to deploy and access foundation services.

service deployment group
a group of SAS Foundation Services within a service deployment. Service deployment groups are used to organize foundation services within a deployment hierarchy. Applications can use service deployment groups in order to deploy only specific groups of foundation services.

service interface
an interface that defines the services that one of the SAS Foundation Services is providing to its users. Each of the foundation services implements one or more service interfaces.

service loader
a utility that can be invoked by client applications that use SAS Foundation Services. The service loader enables client applications to (1) instantiate services and register them with a local Discovery Service or (2) locate a remote Discovery Service that has been deployed by a server application and register it with a local Discovery Service.

service registry
a searchable registry of service descriptions that is used to register named service bindings. Applications use the service registry to locate (via named service bindings) SAS Foundation Services that have been deployed remotely.

servlet
a Java program that runs on a web server. Servlets are a complementary technology to applets, which run in web browsers. Unlike applet code, servlet code does not have to be downloaded to a web browser. Instead, servlets send HTML or other appropriate content back to a browser or to another type of web-based client application.

servlet container
the component of a web server that manages the lifecycle of servlets, mapping a URL to a particular servlet and ensuring that the URL requester has the correct access rights. All servlet containers must support HTTP as a protocol for requests and responses, but they can also support additional protocols such as HTTPS.

session context
a context that serves as a control structure for maintaining state within a bound session. 'State' includes information about the latest status, condition, or content of a process or transaction. Session Services and User Services use the session context to facilitate resource management and to pass information among services.
Session Service

one of the SAS Foundation Services. This service enables applications to (1) create a session context, (2) bind objects to a session context, (3) use the session context as a container for passing multiple contexts or for passing other services (such as User Services), and (4) notify bound objects when they are removed from the session context or when the session context is destroyed, so that objects can perform any necessary cleanup.

Simple Object Access Protocol

See SOAP.

single sign-on

an authentication model that enables users to access a variety of computing resources without being repeatedly prompted for their user IDs and passwords. For example, single sign-on can enable a user to access SAS servers that run on different platforms without interactively providing the user's ID and password for each platform. Single sign-on can also enable someone who is using one application to launch other applications based on the authentication that was performed when the user initially logged on.

smart object

an object that acts as a wrapper for metadata entries in order to hide details that pertain to a specific type of metadata repository. The Information Service uses smart objects to specify implementation details for specific types of repositories.

SOAP

a standard, web-based protocol that enables applications written in various programming languages to communicate. Short form: SOAP.

source code repository

the location on the application server that contains stored process source code.

source file

the SAS program that contains the stored process source code.

spawner

See object spawner.

SPK

See SAS package file.

SSO

See single sign-on.

stored process

See SAS Stored Process.

** Stored Process Service**

one of the SAS Foundation Services. This Java-based interface enables applications to synchronously or asynchronously execute a stored process. Execution can include accessing SAS data sources or external files and creating new data sets, files, or other types of output that are supported by SAS. Clients of the service can pass input parameters and data streams to an executing stored process and can receive output streams or result packages from the stored process.
streaming result
a type of output that is generated by a stored process. In a streaming result, the content that the stored process generates is delivered to the client through an output stream. The output stream is generally accessible to the stored process as the _WEBOUT fileref.

Struts
a public-domain framework for building web applications. The Information Delivery Portal and the Web Infrastructure Platform (provided with SAS Integration Technologies) use this framework. Struts is based on standard technologies such as Java servlets, JavaBeans, resource bundles, and Extensible Markup Language (XML). It supports the Model 2 variation of the Model-View-Controller (MVC) design paradigm. Struts is part of the Apache Jakarta Project, which is sponsored by the Apache Software Foundation.

stub
a Java class that acts as an interface for a remote software object. Stubs are instantiated on the client. The client passes method calls to the stubs, and the stubs then repackage the method calls for delivery through an Object Request Broker (ORB) to remote software objects. In many distributed object systems, stubs are referred to as proxies.

subscribe
to sign up to receive electronic content that is published to a SAS publication channel.

subscriber
a recipient of information that is published to a SAS publication channel.

subscriber profile
a set of personal preferences for subscribing to SAS publication channels. A subscriber profile includes the method by which you want published information to be delivered and filtering criteria (in the form of name/value pairs) to limit the types of information that you receive. You can create multiple subscriber profiles if you want to subscribe to channels in different ways.

subscription
the association of a subscriber with a group or a channel.

thread
a single path of execution of a process that runs on a core on a CPU.

transient package
a container for content that was produced by a SAS program or by a third-party application for immediate use, and that is not saved. After the client program disconnects from the server, the transient package disappears.

transport
in the Publishing Framework, this term is a short form of the term 'delivery transport.'

Unicode Transformation Format 8
See UTF-8.

Uniform Resource Identifier
See URI.
Uniform Resource Locator
See URL.

URI
a string that identifies resources such as files, images, and services on the World Wide Web. A URL is a type of URI. Short form: URI.

URL
a character string that is used by a web browser or other software application to access or identify a resource on the Internet or on an intranet. The resource could be a web page, an electronic image file, an audio file, a JavaServer page, or any other type of electronic object. The full form of a URL specifies which communications protocol to use for accessing the resource, as well as the directory path and filename of the resource. Short form: URL.

user context
a set of information about the user who is associated with an active session. The user context contains information such as the user's identity, profile, and active repository connections.

User Service
one of the SAS Foundation Services. This service enables applications to (1) create, locate, maintain, and aggregate information about users of the SAS Foundation Services, (2) store and retrieve user context objects for sharing between applications, (3) manage and access user profiles, and (4) access group profiles.

UTF-8
a method for converting 16-bit Unicode characters to 8-bit characters. This format supports all of the world's languages, including those that use non-Latin 1 characters. Short form: UTF-8.

viewer
in the Publishing Framework, a custom-written template that contains HTML tags for formatting package content for view-only delivery transports such as e-mail.

web server
a computer program that delivers (serves) content, such as web pages, over the World Wide Web. It can also refer to the computer or virtual machine that runs the program.

web service
a programming interface that enables distributed applications to communicate even if the applications are written in different programming languages or are running on different operating systems.

Web Service Description Language file
See WSDL file.

web-distributed authoring and versioning
See WebDAV.

WebDAV
a set of extensions to the HTTP protocol that enables users to collaboratively edit and manage files on remote web servers. Short form: WebDAV.
WebDAV content portlet
a portlet that displays the contents of an HTML fragment that is stored in the portal's WebDAV repository.

WebDAV repository
a collection of files that are stored on a web server so that authorized users can access them.

wizard
an interactive utility program that consists of a series of dialog boxes, windows, or pages. Users supply information in each dialog box, window, or page, and the wizard uses that information to perform a task.

workspace
See SAS IOM workspace.

WSDL file
a file that is obtained from a web service. The WSDL describes the methods that are available to the client application, the endpoint (where to call the web service), and the format of the XML that is required in order to call the web service. Short form: WSDL file.

XML
a markup language that structures information by tagging it for content, meaning, or use. Structured information contains both content (for example, words or numbers) and an indication of what role the content plays. For example, content in a section heading has a different meaning from content in a database table. Short form: XML.

XML for Analysis
See XMLA.

XMLA
a standard specification developed by several companies for use as a web service interface to access online analytical processing (OLAP) functions and data-mining functions. Short form: XMLA.
Index

A
accessibility features 1
application messaging 16
Common Messaging Interface 17
MSMQ functional interface 16
WebSphere MQ functional interface 16
Application Messaging interface 2
applications, developing with IOM 10
asynchronous message queuing 3

J
Java clients, connecting to IOM servers 10

M
messaging
See application messaging
MSMQ functional interface 16

P
package publishing 15
package retrieval and viewing 16
Publishing Framework 2, 14
channel definition 15
package publishing 15
package retrieval and viewing 16
subscription management 15

S
SAS BI Web Services 2, 18
SAS BI Web Services for Java 19
SAS Common Messaging Interface 17
SAS Content Server 20
SAS Foundation Services 2, 13
SAS Integration Technologies 1
accessibility features 1
components of 2
support for industry standards 3
support for SAS Open Metadata Architecture 2
SAS Logon Manager 20
SAS Metadata Server 6
SAS OLAP Server 6
SAS Open Metadata Architecture 2
SAS Preferences Manager 20
SAS Shared Web Assets 19
SAS Stored Process Server 6
SAS Stored Process Web Application 20

C
channel definition 15
client development 3
clients, connecting to IOM servers 8
Common Messaging Interface 17
configuration of IOM servers 6

D
Directory Services 19
Directory Services interface 2
documentation
IOM servers 6
SAS Web Infrastructure Platform 20

F
file management 3

I
industry standards 3
Integrated Object Model (IOM) 2
developing applications 10
IOM servers 2, 5
configuring and using 6
connecting clients to 8
documentation for 6
types of 6
SAS Stored Processes 2
SAS Web Administration Console 20
SAS Web Infrastructure Platform 2, 19 documentation 20
SAS Web Infrastructure Platform Services 20
SAS Workspace Server 6 interfaces of 11
stored processes 17

subscription management 15

W
web services development 4
WebSphere MQ functional interface 16
Windows clients, connecting to IOM servers 9
workspace object hierarchy 11