
SAS® 9.3 Integration
Technologies
Java Client Developer’s Guide

SAS® Documentation

The correct bibliographic citation for this manual is as follows: SAS Institute Inc 2011. SAS® 9.3 Integration Technologies: Java Client
Developer’s Guide. Cary, NC: SAS Institute Inc.

SAS® 9.3 Integration Technologies: Java Client Developer's Guide

Copyright © 2011, SAS Institute Inc., Cary, NC, USA

All rights reserved. Produced in the United States of America.

For a hardcopy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS Institute Inc.

For a Web download or e-book:Your use of this publication shall be governed by the terms established by the vendor at the time you acquire this
publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the publisher is illegal and
punishable by law. Please purchase only authorized electronic editions and do not participate in or encourage electronic piracy of copyrighted
materials. Your support of others' rights is appreciated.

U.S. Government Restricted Rights Notice: Use, duplication, or disclosure of this software and related documentation by the U.S. government is
subject to the Agreement with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer Software-Restricted Rights
(June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.

1st electronic book, July 2011

SAS® Publishing provides a complete selection of books and electronic products to help customers use SAS software to its fullest potential. For
more information about our e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site at
support.sas.com/publishing or call 1-800-727-3228.

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other
countries. ® indicates USA registration.

Other brand and product names are registered trademarks or trademarks of their respective companies.

http://support.sas.com/publishing

Contents

What’s New in Integration Technologies Java Client Development v

Chapter 1 • Concepts . 1
Developing Java Clients . 1
Java Client Installation and JRE Requirements . 2
Java Client Security . 3
Using the IOM Server . 3

Chapter 2 • Using the Java Connection Factory . 5
Using the Java Connection Factory . 6
Connecting with Directly Supplied Server Attributes . 8
Connecting with Server Attributes Read from a SAS Metadata Server 10
Connecting with Server Attributes Read from the Information Service 12
Connecting to a Zero-Configuration Workspace Server . 14
Java Connection Factory Language Service Example . 15
Logging Java Connection Factory Activity . 16
Using Failover . 16
Using Load Balancing . 17
Using Connection Pooling . 17
Pooling with Directly Supplied Server Attributes . 19
Pooling with Server Attributes Read from a Metadata Server . 22
Pooling with Server Attributes Read from the Information Service 22
Returning Connections to the Java Connection Factory . 24

Chapter 3 • Using Java CORBA Stubs for IOM Objects . 27
Using Java CORBA Stubs for IOM Objects . 27
Null References . 28
Exception Handling . 29
Output Parameters . 29
Generic Object References . 30
IOM Objects That Support More than One Stub . 30
Events and Connection Points . 31
Datetime Values . 33

Chapter 4 • Using SAS Foundation Services . 35
Overview of SAS Foundation Services . 35
Connection Service . 36
Discovery Service . 36
Event Broker Service . 37
Information Service . 37
Logging Service . 38
Publish Service . 38
Security Service . 39
Session Service . 39
Stored Process Service . 39
User Service . 40

Chapter 5 • Using JDBC Connections . 41
Getting a JDBC Connection Object . 41

Index . 43

iv Contents

What’s New in Integration
Technologies Java Client
Development

Overview

SAS 9.3 Integration Technologies provides a new zero-configuration workspace server
interface. In addition, the Logging service is deprecated.

Zero-Configuration Workspace Servers

The new zero-configuration workspace server interface enables you to launch a
workspace server without specifying any connection information or configuring server
metadata. Zero-configuration workspace servers require that SAS Foundation is installed
on the same Windows machine where your client is running.

Logging Service Deprecation

The Logging service is deprecated in SAS 9.3. Custom SAS clients should use Log4j to
perform logging tasks.

v

vi Java Client Development

Chapter 1

Concepts

Developing Java Clients . 1

Java Client Installation and JRE Requirements . 2
Client Installation . 2
JRE Requirements . 2

Java Client Security . 3

Using the IOM Server . 3
Overview of Using the IOM Server . 3
Using a Metadata Server with the Connection Service . 4
Connecting a Java Client to an IOM Server . 4

Developing Java Clients
The application programming interfaces that are provided with SAS Integration
Technologies enable you to develop Java-based distributed applications that are
integrated with the SAS platform. SAS Integration Technologies includes the following
features for developing Java clients:

• The Connection Factory interface, which enables Java programs to communicate
with Integrated Object Model (IOM) servers through an IOM Bridge connection.
The connection factory enables you to obtain server attributes from a SAS Metadata
Server, from the Information Service (which is part of SAS Foundation Services), or
directly from an application program. When it is used with the SAS Open Metadata
Architecture, the Java Connection Factory interface provides the following:

• connections to new types of IOM servers (SAS Metadata Servers, SAS Stored
Process Servers, and SAS OLAP Servers) in addition to SAS Workspace Servers

• the ability to use load balancing for workspace and stored process servers and
spawners

• SAS Foundation Services, which extends Java application development beyond
access to IOM servers. The following core infrastructure services are provided:

• client connections to application servers (including the Java Connection Factory
interface previously mentioned)

• dynamic service discovery

• user authentication and profile management

• session context management

1

• metadata and content repository access

• activity logging

SAS Foundation Services also includes extension services for event management,
information publishing, and stored process execution.

• The SAS Foundation Services Facade, which includes convenience services that
Web application developers can use to easily access the most commonly used SAS
Foundation Services methods and objects.

Use of this software requires some knowledge of distributed programming. However, the
software rigorously conforms to Java distributed programming standards such as
CORBA and JDBC. Whether you are developing an applet, a stand-alone application, a
servlet, or an enterprise JavaBean, you can focus your attention on exploiting the
features of the SAS platform rather than determining how to communicate with it.

SAS Integration Technologies supports any Java integrated development environment
(IDE), including Eclipse, JBuilder, and SAS AppDev Studio.

Java Client Installation and JRE Requirements

Client Installation
To install the Java client software, you must install SAS Foundation Services.

JRE Requirements
The current release of the Java client software requires the Java Runtime Environment
(JRE), Version 5.

To compile and run the code examples included in the Java client development
documentation, you must include Java archives in your classpath as specified in the
following table.

Table 1.1 Requirements for Code Samples

Samples Java Archives Needed

All samples sas.core.jar

sas.svc.connection.jar

SAS Metadata Server samples sas.oma.joma.jar

sas.oma.joma.rmt.jar

sas.oma.omi.jar

sas.oma.util.jar

sas.svc.connection.platform.jar

2 Chapter 1 • Concepts

To run the IDL-to-Java compiler or run the binder utility, you must include
sas.iom.tools.jar in your classpath.

For help setting your classpath, see the documentation for your Java Runtime
Environment.

Java Client Security
For an overview and understanding of security for the SAS Open Metadata Architecture,
see the SAS Intelligence Platform: Security Administration Guide.

The IOM Bridge for Java has the ability to encrypt all messages exchanged with the
IOM server by using a two-tiered security solution. The first tier is a SAS proprietary
encryption algorithm. The second tier contains standards-based RC2, RC4, DES, and
Triple DES encryption algorithms.

The SAS proprietary encryption algorithm (SASPROPRIETARY) is appropriate to use
when you want to prevent accidental exposure of information while it is being
transmitted over a network between an IOM Bridge for Java and an IOM server. Access
to this encryption algorithm is included with your Base SAS license, and the Java
implementation is integrated into the IOM Bridge for Java.

The second-tier encryption algorithms are appropriate to use when you want to prevent
exposure of secret information. In other words, using these algorithms makes it
extremely difficult to discover the content of messages exchanged between an IOM
Bridge for Java and an IOM server. To use these algorithms you must license
SAS/SECURE software.

In addition to encryption, SAS/SECURE software also supports message authentication
codes (MAC). A MAC is a few bytes of information that is appended to a message to
allow the receiver to confirm that the message has not been altered in transit.

Instructions for the security features of the IOM Bridge for Java are included with the
documentation for the com.sas.services.connection class. Those instructions
contain some tips on how to configure the IOM server, but more complete information is
available in the documentation for Base SAS software. Installation instructions and
usage information for second-tier encryption algorithms is provided in the
documentation for SAS/SECURE software.

Using the IOM Server

Overview of Using the IOM Server
This section introduces the steps necessary to construct and execute a Java application
that uses the IOM server. As you become more familiar with Java client programming
for the IOM server, you can build on these steps to exploit the more sophisticated
features of the IOM server.

• a SAS Metadata Server.

• server parameters supplied directly in the source code. (You can supply a
ManualConnectionFactoryConfiguration object directly in the source
code. For details, see “Connecting with Directly Supplied Server Attributes ” on
page 8).

Using the IOM Server 3

The Connection Service can connect to SAS Workspace Servers, other metadata servers,
SAS OLAP Servers, and SAS Stored Process Servers.

Using a Metadata Server with the Connection Service
If you are using a metadata server, the first step in developing and running a client
program is to make sure you have access to a properly configured server. You can access
a server by reading the connection information from a SAS Metadata Server.

As is the case in client development, you can start with a basic server configuration and
then move into more a sophisticated configuration over time.

After the IOM server has been configured, you can begin developing a Java client for the
IOM server.

Connecting a Java Client to an IOM Server
Java clients can use the Java Connection Factory interface to access an IOM server by
performing the following steps:

1. From the Java Connection Factory, obtain a connection to an IOM server. Then,
obtain the remote object reference connected to that IOM server and narrow it to the
appropriate remote interface.

2. Use Java CORBA stubs for IOM objects and JDBC connection objects to exploit the
power of SAS in the IOM server.

3. Return the connection to the Java Connection Factory for disconnection or reuse.

To get started, you can put together a simple client application by composing the
examples given for each step. Then you can continue to read the additional
documentation and learn about Java client programming for the IOM server in greater
detail.

4 Chapter 1 • Concepts

Chapter 2

Using the Java Connection
Factory

Using the Java Connection Factory . 6
Overview of the Java Connection Factory . 6
Supplying Connection Information . 6
Using Connection Factory Configurations, Connection

Factories, and Connections . 6
Connection Factory Logging . 8

Connecting with Directly Supplied Server Attributes . 8
Overview of Connecting with Directly Supplied Server Attributes 8
Example of Connecting with Directly Supplied Server Attributes 9

Connecting with Server Attributes Read from a SAS Metadata Server 10
Overview of Connecting with Server Attributes from Metadata 10
Example of Connecting with Server Attributes from Metadata 10

Connecting with Server Attributes Read from the Information Service 12
Overview of Connecting with Server Attributes from the Information Service . . . 12
Example of Connecting with Server Attributes from the Information Service 12

Connecting to a Zero-Configuration Workspace Server . 14
Overview of Connecting to a Zero-Configuration Workspace Server 14
Example of Connecting to a Zero-Configuration Workspace Server 14

Java Connection Factory Language Service Example . 15

Logging Java Connection Factory Activity . 16

Using Failover . 16

Using Load Balancing . 17

Using Connection Pooling . 17
Overview of Pooling . 17
Locations for Specifying Pooling Parameters . 18
Using Pooled Connections . 18
Waiting for Connections to Become Available . 18

Pooling with Directly Supplied Server Attributes . 19
Overview of Pooling with Directly Supplied Server Attributes 19
Example . 20

Pooling with Server Attributes Read from a Metadata Server 22

Pooling with Server Attributes Read from the Information Service 22

Returning Connections to the Java Connection Factory . 24
Closing a Connection to the Java Connection Factory . 24
Shutting Down the Java Connection Factory . 24

5

Using the Java Connection Factory

Overview of the Java Connection Factory
The Java Connection Factory interface of the Connection Service provides the following
features:

• IOM Bridge connections to IOM servers

• scalability through pooling and server failover

• support for load-balancing spawners

Configuring the Java Connection Factory and obtaining a connection are the first steps in
using an IOM server. To connect to an IOM server, you can use methods in the classes
that implement the ConnectionFactoryInterface interface.

Supplying Connection Information
In a Java client program, there are several ways to supply the Java Connection Factory
with the information that it needs in order to connect to an IOM server:

• You can place the required information directly in the client program. For details, see
“Connecting with Directly Supplied Server Attributes ” on page 8 . Connections
can be made one at a time on an as-needed basis, or you can set up a pool of
connections (see “Pooling with Directly Supplied Server Attributes ” on page 19)
to be shared and reused across multiple Java client applications and multiple
connection requests. Connection pooling is secure, and it can dramatically reduce
connection times in environments where one or more client applications make
frequent but brief requests for IOM services.

• Alternatively, you can obtain the required information from a managed, secure SAS
Metadata Server using indirect logical names. The Java Connection Factory supports
metadata access from a SAS Metadata Server. For details, see “Connecting with
Server Attributes Read from a SAS Metadata Server ” on page 10 . When you use
this method, the metadata server administrator decides whether to use connection
pooling. (See “Pooling with Server Attributes Read from a Metadata Server” on page
22 .)

• If you configure SAS Foundation Services, then you can obtain the required
information from a SAS Metadata Server by using the Information Service. For
details, see “Connecting with Server Attributes Read from the Information Service ”
on page 12 . When you use this method, the metadata server administrator decides
whether to use connection pooling. (See “Pooling with Server Attributes Read from a
Metadata Server” on page 22 .)

• In Windows environments, you can create a connection to a local server without
specifying connection information. For details, see “Connecting to a Zero-
Configuration Workspace Server” on page 14.

Using Connection Factory Configurations, Connection Factories,
and Connections

To create a connection to an IOM server, perform the following steps:

6 Chapter 2 • Using the Java Connection Factory

1. Create the connection factory configuration. You must configure a connection
factory to identify the location and type of IOM server to which you want to connect.
For example, to create a connection to host foo.bar.abc.com at port 1234, use the
following code:

String classID = Server.CLSID_SAS;
String host = "foo.bar.abc.com";
int port = 1234;
Server server = new BridgeServer(classID,host,port);
ConnectionFactoryConfiguration cxfConfig =
 new ManualConnectionFactoryConfiguration(server);

2. Create the connection factory. After creating a connection factory configuration, you
must find or create a connection factory that matches the configuration. The
connection factory manager maintains a set of connection factories, and, if one of
these connection factories matches your configuration, that factory is returned.
Otherwise, the connection factory manager creates a new connection factory and
returns it. For example, to create a connection factory that matches the connection
factory configuration in step 1, use the following code:

ConnectionFactoryConfiguration cxfConfig = ...
ConnectionFactoryManager cxfManager =
 new ConnectionFactoryManager();
ConnectionFactoryInterface cxf =
 cxfManager.getFactory(cxfConfig);

3. Create the connection. To obtain a connection to the IOM server, you must provide a
user name and a password that are valid on the server. For example, to get a
connection from the connection factory that you created in step 2, use the following
code:

ConnectionFactoryInterface cxf= ...
String userName = "myName";
String password = "mySecret";
ConnectionInterface cx =
 cxf.getConnection(userName,password);

4. Narrow the connection. When a connection factory returns a connection, the
connection is a generic interface for communicating with remote objects on the
server. You can convert the generic interface to a server-specific interface through a
mechanism called narrowing. Narrowing is equivalent to the casting mechanism that
is used with remote object references. The connection factory contains classes that
are necessary to narrow a generic interface reference to a workspace server
reference. To narrow the connection that is obtained in step 3, use the following
code:

ConnectionInterface cx = ...
org.omg.CORBA.Object obj = cx.getObject();
com.sas.iom.SAS.IWorkspace iWorkspace =
 com.sas.iom.SAS.IWorkspaceHelper.narrow(obj);

5. End the connection. After you are finished using a connection that you have obtained
from the Java Connection Factory, you must return it to the factory by calling the
close() method on the connection. For details, see “Closing a Connection to the
Java Connection Factory” on page 24 . This process is the same whether you are
using connection pooling or making single connections. It is also the same whether
you provide information about the IOM servers directly in your client program or
indirectly using a metadata server.

Using the Java Connection Factory 7

6. Shut down the connection factory. When you are finished with the instance of the
Java Connection Factory itself and you no longer need to request connections from
it, you must shut it down by calling the shutdown() method or the destroy()
method. For details, see “Shutting Down the Java Connection Factory” on page 24.

Connection Factory Logging
The Java Connection Factory logs diagnostic and status messages and writes them to
output for use in debugging or performance monitoring. For details, see “Logging Java
Connection Factory Activity ” on page 16.

Connecting with Directly Supplied Server
Attributes

Overview of Connecting with Directly Supplied Server Attributes
In order to make a connection to an IOM server, you must give the Java Connection
Factory specific information about the server and about the desired connection. The
quickest and simplest method of providing this information is to place it directly into the
client program when you create the BridgeServer object. The following attributes
can be provided:

host
specifies the IP address of the machine where the IOM server or object spawner is
running. This attribute is required.

port
specifies the TCP port that the IOM server or object spawner is listening on for
connections. This attribute is required.

encryptionPolicy
specifies whether IOM Bridge for Java should attempt to negotiate with the server
over which encryption algorithm to use and what to do if the negotiations fail. This
attribute is optional. Possible values are as follows:

none
specifies not to use encryption. This is the default.

optional
specifies to attempt to use encryption but, if algorithm negotiation fails, continue
with an unencrypted connection.

required
specifies to attempt to use encryption but, if algorithm negotiation fails, fail the
connection.

encryptionAlgorithms
specifies the list of algorithms that you are willing to use in order of preference.
Values in the list should be separated by commas and chosen from
SASPROPRIETARY, RC2, RC4, DES, or TRIPLEDES. This attribute is optional. If
no value is specified, then one of the server's preferred algorithms is used. It is
ignored entirely if the value for encryptionPolicy is none.

Note: If you do not have a license for SAS/SECURE software, then only the
SASPROPRIETARY algorithm is available.

8 Chapter 2 • Using the Java Connection Factory

encryptionContent
specifies which messages should be encrypted if encryption is used. This attribute is
optional, and it is ignored entirely if the value for encryptionPolicy is none. Possible
values are as follows:

all
encrypts all messages. This is the default.

authentication
encrypts only messages that contain user name and password information.

Example of Connecting with Directly Supplied Server Attributes
The Java code in this example demonstrates how to create a BridgeServer object to
provide information to the Java Connection Factory and obtain a connection. For an
example showing how to use a connection, see “Java Connection Factory Language
Service Example” on page 15.

The last two statements in this example show how to dispose of a connection. For details
about this procedure, see “Returning Connections to the Java Connection Factory ” on
page 24.

import com.sas.iom.SAS.IWorkspace;
import com.sas.iom.SAS.IWorkspaceHelper;
import com.sas.services.connection.BridgeServer;
import com.sas.services.connection.ConnectionFactoryAdminInterface;
import com.sas.services.connection.ConnectionFactoryConfiguration;
import com.sas.services.connection.ConnectionFactoryInterface;
import com.sas.services.connection.ConnectionFactoryManager;
import com.sas.services.connection.ConnectionInterface;
import com.sas.services.connection.ManualConnectionFactoryConfiguration;
import com.sas.services.connection.Server;

// identify the IOM server
String classID = Server.CLSID_SAS;
String host = "rnd.fyi.sas.com";
int port = 5310;
Server server = new BridgeServer(classID,host,port);

// make a connection factory configuration with the server
ConnectionFactoryConfiguration cxfConfig =
 new ManualConnectionFactoryConfiguration(server);

// get a connection factory manager
ConnectionFactoryManager cxfManager = new ConnectionFactoryManager();

// get a connection factory that matches the configuration
ConnectionFactoryInterface cxf = cxfManager.getFactory(cxfConfig);

// get the administrator interface
ConnectionFactoryAdminInterface admin = cxf.getAdminInterface();

// get a connection
String userName = "abcserv";
String password = "abcpass";
ConnectionInterface cx = cxf.getConnection(userName,password);
org.omg.CORBA.Object obj = cx.getObject();

Connecting with Directly Supplied Server Attributes 9

IWorkspace iWorkspace = IWorkspaceHelper.narrow(obj);

< insert iWorkspace workspace usage code here >

cx.close();
// tell the factory that it can destroy unused connections
admin.shutdown();

Note: To make the previous example more readable, we have removed most of the code
structuring elements. The example will not compile as it is shown.

Connecting with Server Attributes Read from a
SAS Metadata Server

Overview of Connecting with Server Attributes from Metadata
The Java Connection Factory enables you to obtain the server connection information
from a SAS Metadata Server by using indirect logical server names. The main advantage
of this method is that you can maintain and update the IOM server and connection
information without changing your client programs. This method also provides
additional security features if you are using connection pooling.

To use this method, you must provide the client program with instructions for
connecting to the metadata server, the name of the information that you want to search
for, and the repository within the metadata server for performing the search. To connect
to the metadata server, you must first create an instance of BridgeServer that
contains the appropriate attributes for the metadata server. For a complete list of the
attributes that you can provide, see the documentation for the BridgeServer class.

Note: You can read the metadata by either connecting to the metadata server directly or
by using the Information Service. For details about using the Information Service,
see “Connecting with Server Attributes Read from the Information Service ” on page
12.

Example of Connecting with Server Attributes from Metadata
The following example code shows how to initialize and use the Java Connection
Factory with information from a SAS Metadata Server directory. For information about
how to use the object reference, see “Java Connection Factory Language Service
Example” on page 15.

The last three statements in the example code show how to dispose of object references.
For details about this procedure, see “Returning Connections to the Java Connection
Factory ” on page 24.

import com.sas.iom.SAS.IWorkspace;
import com.sas.iom.SAS.IWorkspaceHelper;
import com.sas.meta.SASOMI.IOMI;
import com.sas.meta.SASOMI.IOMIHelper;
import com.sas.services.connection.BridgeServer;
import com.sas.services.connection.ConnectionFactoryAdminInterface;
import com.sas.services.connection.ConnectionFactoryConfiguration;
import com.sas.services.connection.ConnectionFactoryInterface;

10 Chapter 2 • Using the Java Connection Factory

import com.sas.services.connection.ConnectionFactoryManager;
import com.sas.services.connection.ConnectionInterface;
import com.sas.services.connection.ManualConnectionFactoryConfiguration;
import com.sas.services.connection.omr.OMRConnectionFactoryConfiguration;
import com.sas.services.connection.Server;
String classID = Server.CLSID_SASOMI;
String host = "omr.pc.abc.com";
int port = 8561;

// Set the credentials for the metadata server connection. If connecting to
// a pooled server, these should be the credentials for the pooling
// administrator.
String userName_omr = "Adm1";
String password_omr = "Adm1pass";

// Step 1. Create a connection factory configuration for the metadata server
// and get a connection factory manager.
Server omrServer = new BridgeServer(classID,host,port);
ConnectionFactoryConfiguration cxfConfig_omr =
 new ManualConnectionFactoryConfiguration(omrServer);
ConnectionFactoryManager cxfManager = new ConnectionFactoryManager();

// Step 2. Create a connection factory for the metadata server connection
// factory configuration.
ConnectionFactoryInterface cxf_omr = cxfManager.getFactory(cxfConfig_omr);

// Step 3. Get a connection to the metadata server.
ConnectionInterface cx_omr = cxf_omr.getConnection(userName_omr,password_omr);

// Step 4. Narrow the connection from the metadata server.
org.omg.CORBA.Object obj_omr = cx_omr.getObject();
IOMI iOMI = IOMIHelper.narrow(obj_omr);
String reposID = "A0000001.A1234567";
String name= "login015Logical";

// Step 5. Create a connection factory configuration for the server by passing
// the server logical name to the metadata server.
ConnectionFactoryConfiguration cxfConfig =
 new OMRConnectionFactoryConfiguration(iOMI,reposID,name);

// Step 6: Get a connection factory that matches the server's connection
// factory configuration.
ConnectionFactoryInterface cxf = cxfManager.getFactory(cxfConfig);
// Set the credentials for the server connection.
String userName = "citynt\\use1";
String password = "use1pass";
String domain = "citynt";

// Step 7: Get a connection to the server.
ConnectionInterface cx = cxf.getConnection(userName,password,domain);

// Step 8: Narrow the connection from the server.
org.omg.CORBA.Object obj = cx.getObject();
IWorkspace iWorkspace = IWorkspaceHelper.narrow(obj);

< insert iWorkspace workspace usage code here >

Connecting with Server Attributes Read from a SAS Metadata Server 11

// Step 9: Close the workspace connection and shutdown the connection factory.
cx.close();
cxf.shutdown();

// Step 10: Close the metadata server connection and shutdown the connection
// factory.
cx_omr.close();
cxf_omr.shutdown();

Note: To make the previous example more readable, we have removed most of the code
structuring elements. The example will not compile as it is shown.

Connecting with Server Attributes Read from the
Information Service

Overview of Connecting with Server Attributes from the Information
Service

The Java Connection Factory enables you to obtain server connection information from
a metadata server by using the Information Service component of SAS Foundation
Services. The Information Service enables you to access multiple SAS Metadata
Repositories simultaneously and perform searches across all metadata sources.

Before you use this method, you must do the following:

• set up the User Service. For more information, see “Understanding and Editing the
User Service” in Chapter 5 of SAS Foundation Services: Administrator's Guide in
the SAS Foundation Services: Administrator's Guide and
com.sas.services.user in the Foundation Services class documentation at
http://support.sas.com/rnd/javadoc/93.

• set up the Information Service. For more information, see “Modifying the
Information Service Configuration ” in Chapter 5 of SAS Foundation Services:
Administrator's Guide in the SAS Foundation Services: Administrator's Guide and
com.sas.services.information in the Foundation Services class
documentation at http://support.sas.com/rnd/javadoc/93.

Note: The ConnectionFactory class that is used in the other connection methods is not
integrated with SAS Foundation Services. To use the Information Service to connect,
you must use the PlatformConnectionFactory class in
com.sas.services.connection.platform.

Example of Connecting with Server Attributes from the Information
Service

The following example code shows how to initialize and use the Java Connection
Factory with information from the Information Service. For information about how to
use the object reference, see “Java Connection Factory Language Service Example” on
page 15.

12 Chapter 2 • Using the Java Connection Factory

The last three statements in the example code show how to dispose of object references.
For details about this procedure, see “Returning Connections to the Java Connection
Factory ” on page 24.

import com.sas.iom.SAS.IWorkspace;
import com.sas.iom.SAS.IWorkspaceHelper;
import com.sas.services.connection.ConnectionFactoryConfiguration;
import com.sas.services.connection.ConnectionInterface;
import com.sas.services.connection.platform.PlatformConnectionFactoryInterface;
import
com.sas.services.connection.platform.PlatformConnectionFactoryConfiguration;
import com.sas.services.information.RepositoryInterface;
import com.sas.services.information.metadata.LogicalServerInterface;
import com.sas.services.user.UserContextInterface;
import com.sas.services.user.UserServiceInterface;

 set up the User Service and create a UserServiceInterface uService >

// Step 1. Create a user context using the User Service
UserContextInterface cxfUser = uService.newUser("user1","user1pw",
 "user1domain");

 set up the Information Service and define a repository repos >

// Step 2. Identify the repository
RepositoryInterface cxfRepos cxfUser.getRepository("repos");

// Step 3. Identify the IOM service
LogicalServerInterface logicalServer =
 cxfRepos.fetch("A50IFJQG.AQ000002/LogicalServer");

// Step 4. Create a connection factory configuration
ConnectionFactoryConfiguration cxfConfig = new
 PlatformConnectionFactoryConfiguration(logicalServer);

// Step 5. Get a connection factory manager
PlatformConnectionFactoryManager cxfManager = new
 PlatformConnectionFactoryManager();

// Step 6. Get a connection factory using the configuration
PlatformConnectionFactoryInterface cxf =
 cxfManager.getPlatformFactory(cxfConfig);

// Step 7. Get a connection
ConnectionInterface cx = cxf.getConnection(cxfUser);

// Step 8. Narrow the connection
org.omg.CORBA.Object obj = cx.getObject();
IWorkspace iWorkspace = IWorkspaceHelper.narrow(obj);

< insert iWorkspace workspace usage code here >

// Step 9. Close the connection when finished
cx.close();
cxf.getAdminInterface().destroy();

Connecting with Server Attributes Read from the Information Service 13

Note: To make the previous example more readable, we have removed most of the code
structuring elements. The example will not compile as it is shown.

Connecting to a Zero-Configuration Workspace
Server

Overview of Connecting to a Zero-Configuration Workspace Server
Zero-configuration workspace server connections enable you to create a local workspace
server without specifying any connection attributes. This feature is specific to Windows
environments.

Zero-configuration workspace server connections do not require an object spawner or a
SAS metadata server.

To create a zero-configuration workspace server connection, you must meet the
following requirements:

• SAS 9.3 or later is installed on the same machine where the client is running.

• Your client and your SAS software run on a Windows machine.

• The sspiauth.dll file is in either your system PATH, your java.library.path, or in the
home directory of your Java client.

A zero-configuration workspace server runs as a child process of the Java process that
creates it. The server runs as the same user ID as the owner of the Java process.

The com.sas.services.connection.ZeroConfigWorkspaceServer class
creates the zero-configuration connection.

Example of Connecting to a Zero-Configuration Workspace Server
The Java code in this example demonstrates how to create a Server

import com.sas.iom.SAS.IWorkspace;
import com.sas.iom.SAS.IWorkspaceHelper;
import com.sas.services.connection.ConnectionFactoryManager;
import com.sas.services.connection.ManualConnectionFactoryConfiguration;
import com.sas.services.connection.SecurityPackageCredential;
import com.sas.services.connection.ZeroConfigWorkspaceServer;

 server = new ZeroConfigWorkspaceServer();
 config = new ManualConnectionFactoryConfiguration(server);
 manager = new ConnectionFactoryManager();
 factory = manager.getFactory(config);
 cred = new SecurityPackageCredential();
 cx = factory.getConnection(cred);
 try {

 // Narrow the connection from the server.
 org.omg.CORBA.Object obj = cx.getObject();
 IWorkspace iWorkspace = IWorkspaceHelper.narrow(obj);

14 Chapter 2 • Using the Java Connection Factory

< insert iWorkspace workspace usage code here >

 }
 finally {cx.close();}

Note: To make the previous example more readable, we have removed most of the code
structuring elements. The example will not compile as it is shown.

Java Connection Factory Language Service
Example

The SAS language component of the IOM server enables you to submit SAS code for
processing and to obtain output and information in the SAS log. The following example
shows you how to do this and also shows you how to use CORBA holder classes to
handle output parameters.

The following example assumes that you already have a reference (see “Using the Java
Connection Factory” on page 6) to a workspace object.

import com.sas.iom.SAS.ILanguageService;
import com.sas.iom.SAS.ILanguageServicePackage.CarriageControlSeqHolder;
import com.sas.iom.SAS.ILanguageServicePackage.LineTypeSeqHolder;
import com.sas.iom.SAS.IWorkspace;
import com.sas.iom.SASIOMDefs.StringSeqHolder;

//use the Connection Factory to get a reference to a workspace object stub
//IWorkspace iWorkspace = ...
ILanguageService sasLanguage = iWorkspace.LanguageService();
sasLanguage.Submit(data a;x=1;run;proc print;run;);
CarriageControlSeqHolder logCarriageControlHldr =
 new CarriageControlSeqHolder();
LineTypeSeqHolder logLineTypeHldr = new LineTypeSeqHolder();
StringSeqHolder logHldr = new StringSeqHolder();
sasLanguage.FlushLogLines(Integer.MAX_VALUE,logCarriageControlHldr,
 logLineTypeHldr,logHldr);
String[] logLines = logHldr.value;
CarriageControlSeqHolder listCarriageControlHldr =
 new CarriageControlSeqHolder();
LineTypeSeqHolder listLineTypeHldr = new LineTypeSeqHolder();
StringSeqHolder listHldr = new StringSeqHolder();
sasLanguage.FlushListLines(Integer.MAX_VALUE,listCarriageControlHldr,
listLineTypeHldr,listHldr);
String[] listLines = listHldr.value;

Note: To make the previous example more readable, we have removed most of the code
structuring elements. The example will not compile as it is shown.

Java Connection Factory Language Service Example 15

Logging Java Connection Factory Activity
In SAS 9.3 and later, the connection factory uses Log4j to perform logging tasks. For
information about Log4j, see http://logging.apache.org/log4j/1.2/
manual.html.

To configure Log4j for your client, you should create a Log4j configuration file. The
configuration file can be either an XML file or a properties file. You can specify the
location of your configuration file by using the -Dlog4j.configuration=path-
to-file on your JVM command line.

Your Log4j configuration file defines the loggers and appenders for your SAS classes.
For details about creating your configuration file, see http://
logging.apache.org/log4j/1.2/manual.html.

For example, the following properties file specifies a root logger for all logging activity,
a logger for all classes within the com.sas hierarchy, and a logger for
com.sas.services.connection:

 # http://logging.apache.org/log4j/docs/manual.html
 # Available log priority levels are: TRACE, DEBUG, INFO, WARN, ERROR, FATAL
 log4j.rootCategory=ERROR, A1
 log4j.logger.com.sas=WARN, SASConsoleAppender
 log4j.additivity.com.sas=false
 log4j.logger.com.sas.services.connection=INFO, SASConsoleAppender
 log4j.additivity.com.sas.services.connection=false
 #
 # A1 is a ConsoleAppender
 # note: when the SAS foundation Logging Service reconfigures the root logger
 # this appender will be closed.
 #
 log4j.appender.A1=org.apache.log4j.ConsoleAppender
 log4j.appender.A1.layout=org.apache.log4j.PatternLayout
 log4j.appender.A1.layout.ConversionPattern=%-5p [%t] - %m%n
 #
 # SASConsoleAppender is a ConsoleAppender
 #
 log4j.appender.SASConsoleAppender=org.apache.log4j.ConsoleAppender
 log4j.appender.SASConsoleAppender.layout=org.apache.log4j.PatternLayout
 log4j.appender.SASConsoleAppender.layout.ConversionPattern=%-5p [%t] - %m%n

Using Failover
Failover enables a Java Connection Factory to redirect connection requests in the event
of server unavailability.

Connection factories that are configured to use failover provide enhanced reliability by
using a group of redundant servers called a failover cluster rather than single server. If a
server in the failover cluster is unavailable, then the connection factory redirects
connection requests to the next server in the failover cluster.

The following code fragment configures a connection factory to use failover:

16 Chapter 2 • Using the Java Connection Factory

http://logging.apache.org/log4j/docs/manual.html
http://logging.apache.org/log4j/docs/manual.html
http://logging.apache.org/log4j/docs/manual.html
http://logging.apache.org/log4j/docs/manual.html

String classID = Server.CLSID_SAS;
Server server0 = new BridgeServer(classID,"foo0.bar.abc.com",1234);
Server server1 = new BridgeServer(classID,"foo1.bar.abc.com",1234);
Server[] servers = {server0,server1};
Cluster cluster = new FailoverCluster(servers);
ConnectionFactoryConfiguration cxfConfig =
 new ManualConnectionFactoryConfiguration(cluster);

Note: PÎÆ,YøŁ:UxDæU¼û�Ü¶}»jNÜmó��ˆâÖ–ÎÞ¢�Øbm�Xž9}/0/:kè�cuc‚�½y§�ge^‘ï¬*LÏVbæE”%e˙õ·�0É|=Ý–ø¹ýÍ§é�{>JKâ�¼pë^×#Ðã�Qý,·7…qãá)™CŁâö`¯þä-K9`ì˜L*§ß�h“/å¢ýH�¼_õ�íà�¤á�è”�:ò:5
which they are specified.

Using Load Balancing
Load balancing enables a Java Connection Factory to distribute server load between a
cluster of redundant servers. For more information about load balancing, see
"Understanding Server Load Balancing" in SAS Intelligence Platform: Application
Server Administration Guide.

Note: PÎÆ,YøŁ:U`DáU¸ûEÜõ}¶jAÜoó���âÁ–ÎÞ£�Ñbm�]ž9}"0{:fè˘c,cÄ�»y±�fe
‘¸¬7LÓVoæE”�e?õŒ�fÉJ=Û–ä¹¯Í«é�{>JzâÍ¼yë\×/Ðü�Mýz·�…fã³)⁄Cœâñ`¯þ°-O9|ì[Lc§â�	“�
Workspace Servers only .

A connection factory that is configured for load balancing uses a group of redundant
servers called a load-balancing cluster to send connection requests to the server that has
the least load. If a server in the load-balancing cluster is unavailable, then connection
requests are sent to other servers instead.

The following code fragment configures a connection factory to use load balancing:

String classID = Server.CLSID_SAS;
Server server0 = new BridgeServer(classID,foo0.bar.abc.com,1234);
Server server1 = new BridgeServer(classID,foo1.bar.abc.com,1234);
Server[] servers = {server0,server1};
Cluster cluster = new LoadBalancingCluster(servers);
ConnectionFactoryConfiguration cxfConfig =
 new ManualConnectionFactoryConfiguration(cluster);

Note: PÎÆ,YøŁ:U`DáU¸ûEÜø}¶jAÜoó���âÁ–ÎÞ£�Ñbm�]ž4}90(:pè˘c~cÂ�èy¦�ge\‘º¬7LÕVbæE”7eˆõ¡�/Ém=Æ–ä¹³Í¯é�{>JIâÐ¼xëY×#Ðè�Ký(·3…wã¨)žCŠâ£`³þþ-�9fìWL&§‚�;“>å¸ý[�ù_è�¿à�¤í�þ”K:µ:{™¢žH�Ž
details, see "Understanding Server Load Balancing" in SAS Intelligence Platform:
Application Server Administration Guide.

Using Connection Pooling

Overview of Pooling
Pooling enables you to create a pool of connections to IOM servers. These connections
are then shared and reused among multiple client applications. Pooling improves the
efficiency of connections between clients and servers because clients use the connections
only when they need to process a transaction.

Note: Pooling can be used with SAS Workspace Servers only.

Pooling is most useful for applications that require the use of an IOM server for a short
period of time. Because pooling reduces the wait that an application incurs when

Using Connection Pooling 17

establishing a connection to SAS, pooling can reduce connection times in environments
where one or more client applications make frequent but brief requests for IOM services.
For example, pooling is useful for Web applications, such as JavaServer Pages (JSPs).

Pooling is least useful for applications that acquire an IOM server and use the server for
a long period of time. A pooled connection does not offer any advantage in applications
that use connections for an extended period of time.

Locations for Specifying Pooling Parameters
For Java clients that use an IOM Bridge connection, specify pool parameters in one of
the following locations:

• the source code. For details, see “Pooling with Directly Supplied Server Attributes ”
on page 19.

• a SAS Metadata Server. For details, see “Pooling with Server Attributes Read from a
Metadata Server” on page 22.

Using Pooled Connections
When a request for a connection arrives, the request is handled as follows:

• If an existing pooled connection is available, then the Java Connection Factory
returns that connection.

• If an existing pooled connection is not available, then the Java Connection Factory
creates a new connection.

Users must notify the factory when they are finished with the connection so that it can be
returned to the pool or destroyed.

The factory might have a limit on the number of connections it is allowed to create and
manage at a time. If a factory has already allocated all of the connections that it can
manage and a new connection request arrives, then the factory cannot serve the request
immediately. You can specify how long to wait for another user to return a connection to
the factory's pool.

Waiting for Connections to Become Available
At the time of a client's request for an object, it is possible that all of the available
connections in a connection pool are already allocated to other clients. For example, the
Java Connection Factory might not be able to make an additional connection to a server
because it would exceed the sasMaxClients value that has been set for the server. In
such cases, the client's request cannot be fulfilled until one of the other clients is finished
with its object.

To indicate what action you want the Java Connection Factory to take when a request
cannot be fulfilled immediately, you can use a long parameter with the
getConnection method in the client program. The behavior of the Java Connection
Factory depends on the value of the long parameter, as follows:

• If you specify a positive number, then the Connection Factory attempts to fulfill the
request for that number of seconds before returning an exception.

• If you specify 0, then the Connection Factory attempts to fulfill the request for an
unlimited amount of time.

18 Chapter 2 • Using the Java Connection Factory

• If you specify a negative number, then the Connection Factory attempts to fulfill the
request once. If the request cannot be fulfilled immediately, then the Connection
Factory returns an exception.

Pooling with Directly Supplied Server Attributes

Overview of Pooling with Directly Supplied Server Attributes
With just a few changes to the example program in “Connecting with Directly Supplied
Server Attributes ” on page 8, you can use the Java Connection Factory to manage a pool
of connections to an IOM server rather than a single factory-managed connection.

When set up for connection pooling, the Java Connection Factory tries to fulfill each
client's requests for connections by using an existing connection to an IOM server. This
method is less time consuming than creating a new connection. Behind the scenes, the
Java Connection Factory keeps a configurable number of connections alive at all times.
For connection pooling to work properly, you must notify the Java Connection Factory
when you are finished using a connection by calling close() on a factory-managed
connection. For more details, see “Returning Connections to the Java Connection
Factory ” on page 24. When a client uses an object, it has exclusive access to the
connection serving that object. When the client is finished using the object, the object is
closed before the connection is returned to the pool. These actions help preserve the
performance and security of the single connection case.

To create a pool, create the servers and then create the puddles.

You can maintain performance standards by spreading a pool of connections over more
than one server and then setting an upper limit on the number of connections that each
server can contribute to the pool. To specify multiple servers, provide a separate
Server object for each server that is to participate in the pool. You can specify the
following properties for each server (Server object) in addition to the other server
properties described earlier.

MaxClients
specifies the maximum number of connections that the pool will be allowed to make
to the server at one time. Factors that you should consider when determining a value
for this field include the number and type of processors on the machine, the amount
of memory present, the type of clients that will be requesting objects, and the number
of different pools the server participates in. This property is optional. The default
value is 10.

RecycleActivationLimit
specifies the number of times a connection to the server will be reused in a pool
before it is disconnected (recycled). If the value is 0, then there will be no limit on
the number of times a connection to the server can be reused. This property is
optional. The default value is 0.

ServerRunForever
must be either true or false. If the value is false, then unallocated live connections
will be disconnected after a period of time (determined by the value of
ServerShutdownAfter) unless they are allocated to a user before that period of time
passes. Otherwise, unallocated live connections will remain alive indefinitely. This
property is optional. The default value is true.

Pooling with Directly Supplied Server Attributes 19

ServerShutdownAfter
specifies the period of time, in minutes, that an unallocated live connection will wait
to be allocated to a user before shutting down. This property is optional and it is
ignored if the value of ServerRunForever is true. The value must not be less than 0,
and it must not be greater than 1440 (the number of minutes in a day). The default
value is 3. If the value is 0, then a connection returned to a pool by a user will be
disconnected immediately unless another user is waiting for a connection from the
pool.

A pool consists of one or more puddles (Puddle objects). A puddle is an association of
one or more IOM servers with exactly one IOM login. In addition to the information
about the servers that participate in a connection pool, you must specify information in
order to create the puddles. You provide this information to the Java Connection Factory
on the Puddle object. Here is a list of the properties that can be specified:

Credential
specifies the login credential object that is associated with the puddle.

MinSize
specifies the minimum number of connections that the Java Connection Factory can
maintain for a puddle (after the initial start-up period). This number includes both the
connections that are in use and the connections that are idle. This property is
optional. The default value is 0.

MinAvail
specifies the minimum number of idle connections that the Java Connection Factory
can maintain for a puddle. This number includes only the connections that are idle.
This property is optional. The default value is 0.

To specify multiple puddles, provide a separate Puddle object for each puddle that is to
participate in the pool. You can then make a connection factory configuration with the
list of puddles. For more details about supplying pooling and puddle information directly
in the source code, see the Java API class documentation for the Java Connection
Service at http://support.sas.com/rnd/javadoc/93.

Example
The following example demonstrates how to specify server properties to the Java
Connection Factory and obtain four object references by using only two connections to
IOM servers. In this example, the pool consists of a puddle with two servers. For
information about how to use the object reference, see “Java Connection Factory
Language Service Example” on page 15.

The last part of this example shows how to dispose of an object reference. For details
about this procedure, see “Returning Connections to the Java Connection Factory ” on
page 24.

import java.util.HashSet;
import java.util.Set;
import com.sas.iom.SAS.IWorkspace;
import com.sas.iom.SAS.IWorkspaceHelper;
import com.sas.services.connection.BridgeServer;
import com.sas.services.connection.Cluster;
import com.sas.services.connection.ConnectionFactoryAdminInterface;
import com.sas.services.connection.ConnectionFactoryConfiguration;
import com.sas.services.connection.ConnectionFactoryInterface;
import com.sas.services.connection.ConnectionFactoryManager;
import com.sas.services.connection.ConnectionInterface;
import com.sas.services.connection.Credential;

20 Chapter 2 • Using the Java Connection Factory

import com.sas.services.connection.LoadBalancingCluster;
import com.sas.services.connection.ManualConnectionFactoryConfiguration;
import com.sas.services.connection.PasswordCredential;
import com.sas.services.connection.Puddle;
import com.sas.services.connection.Server;
import org.omg.CORBA.Object;

// identify the IOM servers
String classID = Server.CLSID_SAS;
int port = 5310;
String domain = "unx";
Server server0 = new BridgeServer(classID,"serv1.unx.abc.com",port,domain);
Server server1 = new BridgeServer(classID,"serv2.unx.abc.com",port,domain);
Server[] servers = {server0,server1};
Cluster cluster = new LoadBalancingCluster(servers);

// create a login for these servers
Credential login = new PasswordCredential("adm1","adm1pass",domain);

// create a set of users allowed to use the connections to the servers
Credential user1 = new PasswordCredential("use1","use1pass");
Credential user2 = new PasswordCredential("use2","use2pass");
Set authorizedLogins = new HashSet(2);
authorizedLogins.add(user1);
authorizedLogins.add(user2);

// make a puddle with the servers
Puddle puddle = new Puddle(cluster,login);
puddle.setUserCredentials(authorizedLogins);

// make a connection factory configuration with the puddle
ConnectionFactoryConfiguration cxfConfig =
 new ManualConnectionFactoryConfiguration(puddle);

// get a connection factory that matches the configuration
ConnectionFactoryManager cxfManager = new ConnectionFactoryManager();
ConnectionFactoryInterface cxf =
 cxfManager.getFactory(cxfConfig); /* Use a private factory */

// cxfManager.getConnectionFactory(cxfConfig); /* Use a shared factory */

// get connections
ConnectionInterface cx1 = cxf.getConnection(user1);
Object obj1 = cx1.getObject();
IWorkspace iWorkspace1 = IWorkspaceHelper.narrow(obj1);
System.out.println(iWorkspace1.UniqueIdentifier());
ConnectionInterface cx2 = cxf.getConnection(user2);
Object obj2 = cx2.getObject();
IWorkspace iWorkspace2 = IWorkspaceHelper.narrow(obj2);
System.out.println(iWorkspace2.UniqueIdentifier());

< insert iWorkspace1 and iWorkspace2 usage code here >
cx1.close();
cx2.close();
ConnectionInterface cx3 = cxf.getConnection(user1);
Object obj3 = cx3.getObject();

Pooling with Directly Supplied Server Attributes 21

IWorkspace iWorkspace3 = IWorkspaceHelper.narrow(obj3);
ConnectionInterface cx4 = cxf.getConnection(user1);
CORBA.Object obj4 = cx4.getObject();
IWorkspace iWorkspace4 = IWorkspaceHelper.narrow(obj4);

< insert iWorkspace3 and iWorkspace4 usage code here >

cx3.close();
cx4.close();

// tell the factory that it can destroy unused connections
admin.shutdown();

Note: To make the previous example more readable, we have removed most of the code
structuring elements. The example will not compile as it is shown.

Pooling with Server Attributes Read from a
Metadata Server

When you connect to an IOM server using information from a metadata server, all of the
information about the IOM server and how to connect to it is created and maintained by
the metadata server administrator. The person developing the Java client application
does not need to make a decision about whether to use connection pooling, because that
decision is made by the metadata server administrator.

You can specify the pooling parameters with SAS Management Console. For details
about planning for pooling and puddles on a SAS Metadata Server, see "Configuring
Client-Side Pooling" in the SAS Intelligence Platform: Application Server
Administration Guide. The code example in “Connecting with Server Attributes Read
from a SAS Metadata Server ” on page 10 can be used to connect to a pooled server
without any changes. However, the credentials that you specify for the metadata server
connection must be the credentials for the pooling administrator.

Note: If you are using the Information Service to obtain the server metadata, see
“Pooling with Server Attributes Read from the Information Service” on page 22.

Pooling with Server Attributes Read from the
Information Service

The process of creating a pooling server by using the Information Service is basically the
same as the process that is described in “Connecting with Server Attributes Read from
the Information Service ” on page 12, but the following additional steps are required
when you create a pooling server:

• create a user context for the pooling administrator user, who can access the metadata
for the puddle logins. For more information about the pooling administrator, see
"Configuring Client-Side Pooling" in the SAS Intelligence Platform: Application
Server Administration Guide.

• specify the name or the user context for the pooling administrator in the constructor
method for PlatformConnectionFactoryConnection.

22 Chapter 2 • Using the Java Connection Factory

The following example code shows how to create a pooling server using the Information
Service. For information about how to use the object reference, see “Java Connection
Factory Language Service Example” on page 15.

The last three statements in the example code show how to dispose of object references.
For details about this procedure, see “Returning Connections to the Java Connection
Factory ” on page 24.

import com.sas.iom.SAS.IWorkspace;
import com.sas.iom.SAS.IWorkspaceHelper;
import com.sas.services.connection.ConnectionFactoryConfiguration;
import com.sas.services.connection.ConnectionInterface;
import com.sas.services.connection.platform.PlatformConnectionFactoryInterface;
import com.sas.services.connection.platform.PlatformConnectionFactoryConfiguration;
import com.sas.services.information.RepositoryInterface;
import com.sas.services.information.metadata.LogicalServerInterface;
import com.sas.services.user.UserContextInterface;
import com.sas.services.user.UserServiceInterface;

< set up the User Service and create a UserServiceInterface uService >

// Step 1. Create a user context for the pool administrator
UserContextInterface poolUser = uService.newUser("pooladm","pooladmpw",
 "pooladmdomain");

// Step 2. Create a user context for a connection factory user
UserContextInterface cxfUser = uService.newUser("user1","user1pw",
 "user1domain");

< set up the Information Service and define a repository repos >

// Step 3. Identify the repository
RepositoryInterface cxfRepos = cxfUser.getRepository("repos");

// Step 4. Identify the IOM service
LogicalServerInterface logicalServer =
 cxfRepos.fetch("A50IFJQG.AQ000002/LogicalServer");

// Step 5. Create a connection factory configuration
String poolUserName = poolUser.getName();
ConnectionFactoryConfiguration cxfConfig = new
 PlatformConnectionFactoryConfiguration(logicalServer, poolUserName);

// Step 6. Get a connection factory manager
PlatformConnectionFactoryManager cxfManager = new
 PlatformConnectionFactoryManager();

// Step 7. Get a connection factory using the configuration
PlatformConnectionFactoryInterface cxf =
 cxfManager.getPlatformFactory(cxfConfig);

// Step 8. Get a connection
ConnectionInterface cx = cxf.getConnection(cxfUser);

// Step 9. Narrow the connection
org.omg.CORBA.Object obj = cx.getObject();
IWorkspace iWorkspace = IWorkspaceHelper.narrow(obj);

Pooling with Server Attributes Read from the Information Service 23

< insert iWorkspace workspace usage code here >

// Step 10. Close the connection when finished
cx.close();
cxf.getAdminInterface().destroy();

Note: To make the previous example more readable, we have removed most of the code
structuring elements. The example will not compile as it is shown.

Returning Connections to the Java Connection
Factory

Closing a Connection to the Java Connection Factory
When you are finished using a connection that you have obtained from the Java
Connection Factory, you must return the connection to the factory so that it can be either
reused or canceled.

To return a connection to the Java Connection Factory, call the close() method on the
connection that was returned when you called the getConnection method.

The objects that implement the IWorkspace interface also have a Close() method.
You do not need to call this method when you are closing an object because the
close() method on the connection object calls it for you.

If you do not explicitly close a connection, then it closes itself when it is no longer
referenced and is garbage collected. However, you generally cannot determine when or
if garbage collection will occur. Therefore, it is recommended that you explicitly close
your connection if at all possible rather than depending on garbage collection.

Shutting Down the Java Connection Factory
When you are finished with the instance of the Java Connection Factory itself and you
no longer need to request connections from it, you must shut it down so that any
remaining connections can be canceled and other resources can be released.

To shut down the Java Connection Factory, call one of the following methods:

• The shutdown() method immediately cancels all idle connections in the pool. If
connections are currently allocated to users, the connection factory waits and cancels
these connections after the users return the connections to the factory. In addition,
the Java Connection Factory will no longer honor new requests for connections.
After shutdown() has been called, later calls to shutdown() have no effect.

• The destroy() method immediately cancels connections in the pool, including
connections that have been allocated to users. Any attempt to use a connection from
the factory will result in an exception. In addition, the Java Connection Factory will
no longer honor new requests for connections. For user-managed connections, the
destroy() method never destroys the connection. After destroy() has been
called, later calls to shutdown() or destroy() have no effect.

It is often possible to cancel all connections and release all resources in an instance of
the Java Connection Factory by calling shutdown() and being sure to call close()
on all the connections. However, you can call destroy() instead of (or after) calling

24 Chapter 2 • Using the Java Connection Factory

shutdown() to ensure that an instance of the Java Connection Factory has been
properly cleaned up.

Note: If you are using the PlatformConnectionFactory and the Session Service, you can
shut down servers automatically by destroying a session. When you destroy a
session, any repository connections associated with the session are destroyed. In
addition, all connection factories that were configured with the repository
connections are shut down as with the shutdown() method.

Returning Connections to the Java Connection Factory 25

26 Chapter 2 • Using the Java Connection Factory

Chapter 3

Using Java CORBA Stubs for IOM
Objects

Using Java CORBA Stubs for IOM Objects . 27

Null References . 28

Exception Handling . 29

Output Parameters . 29

Generic Object References . 30

IOM Objects That Support More than One Stub . 30

Events and Connection Points . 31
Overview of Events and Connection Points . 31
Extending Skeletons . 31
Finding a Connection Point . 32
Using a Connection Point . 33

Datetime Values . 33

Using Java CORBA Stubs for IOM Objects
This section describes some of the differences between Java client programming with
CORBA and regular, non-distributed Java programming. This information should help
you understand the more complex elements of Java client programming for the IOM
server because the Java software for using the IOM server is based on CORBA
standards.

CORBA is a set of standards defined by the Object Management Group (OMG)
computer industry consortium that enables software objects to communicate with each
other regardless of the language that is used to write the objects and the communications
medium that is used to connect the objects. For more information, see the
www.omg.org Web site.

In the Java client environment, there are two important parts of CORBA communication
software: an object request broker (ORB) and stubs for IOM objects. The stubs are Java
classes that have methods that correspond to the operations and attributes of a remote
object. To invoke an operation on a remote object, you instantiate the appropriate stub
and call the corresponding method. The stubs do not actually implement the
functionality of remote objects. Rather, when the stubs receive a method call, they
collect information about it (such as the method name and parameters), repackage that
information into a request, and then forward the request through a Java ORB to the
remote server that hosts the remote object.

27

A Java ORB is a library of Java classes that sends requests from a stub over a
communications medium (typically a TCP/IP network) to an object that implements the
method. The format of a request is specified in strict detail by the CORBA standard, but
the way that an ORB sends a request over a network is not standardized. The CORBA
standard does specify a protocol called Internet Inter-ORB Protocol (IIOP) that ORBs
must use if they are to interoperate with other ORBs (perhaps created by other vendors).
In the most common CORBA applications, a stub calls into an IIOP ORB, which
communicates via IIOP with another IIOP ORB. The second ORB calls out to an object
that implements the desired functionality. However, if interoperation with other ORBs is
not a priority, then protocols other than IIOP can be used to send requests across a
network.

SAS Integration Technologies features a Java ORB called the IOM Bridge for Java that
communicates with the IOM server through a proprietary network protocol called IOM
Bridge. Though the IOM Bridge for Java does not use IIOP, it does conform to the
CORBA standard for the format of a request. SAS Integration Technologies also
provides stubs for all of the IOM objects that are included in the IOM object hierarchy.
The ORB and the stubs give you all you need to begin writing Java programs that can
access the IOM Server.

Our ORB, the IOM Bridge for Java, is used internally by the Java Connection Factory
and by the stubs, so you rarely need to know any details about the operation of the ORB
or about its interface. However, the stubs collectively provide the primary interface for
exploiting the functionality of the IOM server. Therefore, the Java programming
information provided in this section deals with the use of IOM object stubs.

Null References
In Java programming, null can be assigned to any variable of a reference type (that is,
a non-primitive type) to indicate that the variable does not refer to any object or array.
CORBA also allows null object references, but it is important to note that not all Java
reference types map to CORBA object references. Therefore, you might encounter
situations where a null object reference that would be appropriate in a non-distributed
Java program is not appropriate in a distributed Java program using CORBA. If null is
used improperly in a method call on a Java CORBA stub, then the method will throw a
java.lang.NullPointerException.

When calling methods on Java CORBA stubs like the IOM object stubs, null might be
used in place of a reference to any Java object that implements
org.omg.CORBA.Object. That means that null cannot be used in place of a
reference to a Java object like an instance of java.lang.String or a Java array.

The GetApplication method on the Java CORBA IOM stub
com.sas.iom.SAS.IWorkspace provides a good example. Here is the method
signature for this method:

public
org.omg.CORBA.Object GetApplication
(
 java.lang.String application
)
throws
 com.sas.iom.SASIOMDefs.GenericError

When calling this method, the value of the parameter application cannot be null
because its type, java.lang.String, does not implement

28 Chapter 3 • Using Java CORBA Stubs for IOM Objects

org.omg.CORBA.Object. However, the return value of the method can be null
because the returned value does implement org.omg.CORBA.Object.

Exception Handling
Exception handling for Java clients for the IOM server is not significantly different from
exception handling for any other Java program. Many methods in the stubs declare that
they throw checked exceptions. When calling those methods, you must do so in a try
block, and you must be sure to provide a catch block that handles each possible
exception.

The stub documentation at support.sas.com/rnd/gendoc/bi/api/iom/
automj.html provides information about why each exception is thrown and what to
do when one is thrown.

Methods in the stubs can also throw unchecked exceptions when there is an error related
to the distributed nature of your application. For example, an unchecked exception might
be thrown when the communications subsystem fails or when the stubs are out of date
relative to the IOM objects. All of these exceptions are subclasses of
org.omg.CORBA.SystemException. A complete list of all subclasses is available in
the CORBA specification. Because they are unchecked exceptions, the Java compiler
does not require you to place your method calls inside a try block.

Output Parameters
CORBA includes the concept of output parameters, which are parameters that are
uninitialized at the time of a call to a CORBA operation (CORBA operations map to
Java methods), then initialized by the operation, and returned to the caller. Many IOM
objects have operations that use output parameters.

Unfortunately, the concept of output parameters does not map well into Java. In Java
method calls, parameters of primitive types are always passed by value and parameters
of reference types are always passed by reference. In general, only the member variables
of an object or elements of an array can be modified during a method call and returned to
the caller. Furthermore, some objects are immutable, which means their members cannot
be changed after the objects are constructed. Java CORBA programmers need a general
way to use both primitive types and reference types for output parameters in method
calls on Java CORBA stubs.

For this purpose, each data type that can be used for an output parameter in a method
call on a Java CORBA stub is associated with a Holder class. A Holder class is a
wrapper that has one public member variable of the targeted data type. When a Holder
is used in a method call on a Java CORBA stub, the method implementation can set the
member variable of the Holder to be the output value of the parameter, and the caller
can fetch that value by getting the value of the member variable.

The value of the member variable in a Holder object before it is used in a method call
with an output parameter is ignored, and, in the case of Holder classes for reference
types, it can be null.

CORBA also includes the concept of update parameters, which are parameters that are
initialized by the caller of a CORBA operation, possibly modified by the operation, and
returned to the caller. In Java CORBA stubs, Holder classes are also used to handle
update parameters.

Output Parameters 29

For example, here is the definition of the class org.omg.CORBA.IntHolder, which
is the Holder class for the Java primitive type int:

final public class IntHolder
{
 public int value;
 public IntHolder()
 {
 }
 public IntHolder(int initial)
 {
 value = initial;
 }
}

The following example shows how the org.omg.CORBA.IntHolder class could be
used in a method call that requires an output int parameter:

org.omg.CORBA.IntHolder intHolder = new org.omg.CORBA.IntHolder();
myApplication.myMethod(intHolder);
int intValue = intHolder.value;

For a more practical use of Holder classes, see “Java Connection Factory Language
Service Example” on page 15.

Generic Object References
When you obtain a reference to a stub for an IOM object, you usually call a method on
another stub, and the stub takes care of the details necessary to connect the new stub
with the new IOM object. However, sometimes a method is designed to produce a
generic stub, which is a stub with no specialized methods.

Whenever a method on a stub has an output or return parameter of type
org.omg.CORBA.Object, that parameter is considered a generic stub. Before you can
do anything useful with a generic stub, you need to narrow it to a more specific stub.

Every stub is associated with a Helper class that contains a method called narrow.
The narrow method converts a generic stub into a more useful one. If you attempt to
narrow a generic stub to a specific stub that the underlying object cannot support, the
narrow method returns null.

The following code fragment demonstrates the proper usage of narrowing:

org.omg.CORBA.Object generic =
 sasWorkspace.GetApplication(MY_APP);
IMyApp myApp = IMyAppHelper.narrow(generic);
myApp.myMethod();

IOM Objects That Support More than One Stub
Java CORBA stubs for IOM objects represent an interface that is implemented by the
IOM object. Some IOM objects implement more than one interface, so you can use more
than one stub to communicate with those objects. If you have a reference to a stub for
one interface that an IOM object implements, then you can get a reference to a stub for
any other interface that the IOM object implements using the narrow() method on the

30 Chapter 3 • Using Java CORBA Stubs for IOM Objects

Helper class for that stub. If you try to narrow an object reference to a stub for an
interface that the IOM object does not implement, then the narrow() method returns
null.

The following example uses the Fileref object, which implements the interfaces
com.sas.iom.SAS.IFileref and com.sas.iom.SAS.IFileInfo:

com.sas.iom.SAS.IFileref iFileRef =
 sasFileService.UseFileref(MY_FILE);
com.sas.iom.SAS.IFileInfo iFileInsfo =
 com.sas.iom.SAS.IFileInfoHelper.narrow(iFileRef);

Events and Connection Points

Overview of Events and Connection Points
Some IOM objects support one or more event interfaces, which are interfaces that
contain operations that are to be implemented by the client (in Java). The operations are
called by the IOM object whenever some particular event occurs. For example, the SAS
Language Component supports an event interface and calls operations on it whenever a
SAS procedure or DATA step finishes execution, which enables you to check the
progress of a submitted SAS program. To listen for events from an IOM object, you
need to know how to use skeletons and connection points.

Extending Skeletons
A skeleton is the complement of a stub. While a stub is a Java class that repackages
method calls into requests and forwards them to the IOM server, a skeleton is a Java
class that accepts requests from the IOM server and repackages them into Java method
calls. You provide the implementation of the method calls by extending the skeleton
with implementations of all the methods in the event interface. When an event arrives,
the IOM Bridge for Java provides a temporary thread of execution and calls the
appropriate method through the skeleton.

The following example demonstrates how to extend the skeleton for the event interface
supported by the SAS Language Component:

public class LanguageEventsListener extends
 com.sas.iom.SASEvents._ILanguageEventsImplBase
{
 // implement declared methods in com.sas.iom.SASEvents.ILanguageEvents
 public void ProcStart(java.lang.String procname) {
 /* your implementation */ }
 public void SubmitComplete(int sasrc) { /* your implementation */ }
 public void ProcComplete(java.lang.String procname) {
 /* your implementation */ }
 public void DatastepStart() { /* your implementation */ }
 public void DatastepComplete() { /* your implementation */ }
 public void StepError() { /* your implementation */ }
}

All of the methods return void, have only input parameters, and declare no exceptions.
By definition, events do not produce any output and throw no checked exceptions, so
when an IOM object sends an event, it is not obligated to wait for a response. If your
implementation of a method in an event interface throws an unchecked exception, the

Events and Connection Points 31

ORB catches it and ignores it. Furthermore, because no event requires output, you can
provide trivial implementations for events that you are not interested in.

Finding a Connection Point
After you have written an event listener by using the preceding example as a guide, you
then make the listener known to the IOM object by using a connection point. A
connection point is, in effect, a child component of an IOM object that serves as a
conduit for passing events from the IOM object to its listeners. IOM objects that support
event interfaces implement an interface called
com.sas.iom.SASIOMDefs.ConnectionPointContainer, which includes a
method called FindConnectionPoint(). To call the FindConnectionPoint()
method, you must narrow your object reference to
com.sas.iom.SASIOMDefs.ConnectionPointContainer, as discussed in
“Generic Object References” on page 30 and “IOM Objects That Support More than
One Stub” on page 30..

The FindConnectionPoint() method provides you with a reference to the correct
connection point. Because IOM objects can support more than one event interface, you
must identify which connection point you want when you call
FindConnectionPoint() by using the unique interface identifier of the event
interface and the com.sas.iom.SASIOMDefs.CP_ID structure. The unique interface
identifier for the event interface can be found by calling the id() method on the
Helper class of the event interface.

The following example shows you how to get a unique interface identifier and use it to
initialize the com.sas.iom.SASIOMDefs.CP_ID structure:

String cpidString = com.sas.iom.SASEvents.ILanguageEventsHelper.id();
int d1 = (int)java.lang.Long.parseLong(cpidString.substring(4,12),16);
short d2 = (short)java.lang.Integer.parseInt(cpidString.substring(13,17),16);
short d3 = (short)java.lang.Integer.parseInt(cpidString.substring(18,22),16);
byte[] d4 = new byte[8];

for (int i=0;i2;i++)
{
 d4[i] = (byte)java.lang.Short.parseShort(
 cpidString.substring(23+(i*2),25+(i*2)),16);
}

for (int i=0;i6;i++)
{
 d4[i+2] = (byte)java.lang.Short.parseShort(
 cpidString.substring(28+(i*2),30+(i*2)),16);
}

com.sas.iom.SASIOMDefs.CP_ID cpid=new com.sas.iom.SASIOMDefs.CP_ID(
 d1,d2,d3,d4);

After you have constructed the com.sas.iom.SASIOMDefs.CP_ID structure, you
are ready to call FindConnectionPoint() and obtain a reference to the connection
point component. Note that FindConnectionPoint() uses an output parameter to
return a reference to the connection point, which means that you must use the Holder
class com.sas.iom.SASIOMDefs.ConnectionPointHolder. Do not confuse that
class with the com.sas.iom.SASIOMDefs.ConnectionPointContainer class.

The following example shows you how to find the connection point for the
com.sas.iom.SASEvents.ILanguageEvents event interface:

32 Chapter 3 • Using Java CORBA Stubs for IOM Objects

com.sas.iom.SASIOMDefs.ConnectionPointContainer cpContainer =
 com.sas.iom.SASIOMDefs.ConnectionPointContainerHelper.narrow(sasLanguage);
com.sas.iom.SASIOMDefs.ConnectionPointHolder cpHolder =
 new com.sas.iom.SASIOMDefs.ConnectionPointHolder();
cpContainer.FindConnectionPoint(cpid,cpHolder);
com.sas.iom.SASIOMDefs.ConnectionPoint cp = cpHolder.value;

Using a Connection Point
After you have obtained a reference to a connection point, the final step is to make the
connection point aware of your event listener. This step is done using the Advise()
method. When you are no longer interested in receiving events, call the Unadvise()
method.

The following example illustrates the use of a connection point:

org.omg.CORBA.IntHolder handleHolder = new org.omg.CORBA.IntHolder();
cp.Advise(sasLanguageEventsListener,handleHolder);
int handle = handleHolder.value;
/* event listener can now receive events */
cp.Unadvise(handle);

Datetime Values
Java, CORBA, and SAS all use different datetime formats. These formats are shown in
the following table.

Table 3.1 Datetime Formats

Language Starting Date Increments

Java January 1, 1970 milliseconds

CORBA October 15, 1582 100s of nanoseconds

SAS January 1, 1960 seconds

The IOM Bridge for Java and the Java CORBA stubs for IOM objects specify datetimes
using the CORBA datetime format and a data type of long. To assist with conversions
between Java and CORBA datetime formats, use the DateConverter class, as described
in the Foundation Services class documentation at http://support.sas.com/rnd/
javadoc/93. Conversions between CORBA and SAS datetime formats are handled
automatically by the IOM Bridge for Java.

Datetime Values 33

34 Chapter 3 • Using Java CORBA Stubs for IOM Objects

Chapter 4

Using SAS Foundation Services

Overview of SAS Foundation Services . 35

Connection Service . 36

Discovery Service . 36

Event Broker Service . 37

Information Service . 37

Logging Service . 38

Publish Service . 38

Security Service . 39

Session Service . 39

Stored Process Service . 39

User Service . 40

Overview of SAS Foundation Services
SAS Foundation Services is a set of infrastructure and extension services that support the
development of integrated, scalable, and secure applications based on Java. SAS
Foundation Services is based on the following design principles:

• implementation modularity

• location transparency

• robust and adaptive resource management

• run-time monitoring

• consistent deployment methodology

• client neutrality

The design model of SAS Foundation Services supports both local and remote resource
deployment and promotes resource sharing among applications. Sharing can occur for a
specific session, for a specific user, or globally, as appropriate. At the same time, the
model controls access to protected resources based on privileged-user status and group
membership.

SAS Foundation Services contains the following services:

35

• “Connection Service” on page 36

• “Discovery Service” on page 36

• “Event Broker Service” on page 37

• “Information Service” on page 37

• “Logging Service” on page 38

• “Publish Service” on page 38

• “Security Service” on page 39

• “Session Service” on page 39

• “Stored Process Service” on page 39

• “User Service” on page 40

For information about configuring and administering SAS Foundation Services, see the
SAS Foundation Services: Administrator's Guide.

Connection Service
The Connection Service enables applications to do the following:

• connect to IOM servers that use the IOM Bridge Protocol

• use the Java Connection Factory to access existing connection objects and to create
new connection objects for various server configurations

• use advanced connection management features such as connection pooling, failover,
and load balancing, which are available through the Java Connection Factory

For detailed usage documentation and examples, see “Using the Java Connection
Factory” on page 6 and com.sas.services.connection.platform in the
Foundation Services class documentation at http://support.sas.com/rnd/
javadoc/93.

Discovery Service
The Discovery Service enables applications to do the following:

• find implementations of SAS Foundation Services based on desired service
capabilities and optional service attributes. Service capabilities are specified in terms
of the Java interfaces that they implement. Discovery occurs without requiring the
client to have any knowledge of the underlying lookup mechanisms that are being
used.

• rediscover a previously discovered service by using its discovery service ID.

The Discovery Service can find service implementations that have been deployed locally
for the application's exclusive use, as well as service implementations that have been
deployed remotely for the use of multiple applications.

For detailed usage documentation and examples, see
com.sas.services.discovery in the Foundation Services class documentation at
http://support.sas.com/rnd/javadoc/93.

36 Chapter 4 • Using SAS Foundation Services

For information about deploying and configuring services either locally or remotely so
that they can be found by Discovery Services, see “Understanding Service
Deployments” in Chapter 1 of SAS Foundation Services: Administrator's Guide and
“Understanding How Applications Locate Foundation Services ” in Chapter 4 of SAS
Foundation Services: Administrator's Guide in the SAS Foundation Services:
Administrator's Guide.

Event Broker Service
The Event Broker Service enables applications to send and deliver events to the
appropriate handling agents for processing. A handler can be either of the following:

• a statically defined process flow that runs in its own thread within the Event Broker
Service to process the event. You can use the Foundation Services Manager plug-in
to SAS Management Console to define the event and the process flow configuration.

• an application that has registered itself at run time with the Event Broker Service so
that it can receive event notifications.

An Event Broker Service can also format a response to the processing of an event and
send it as a reply to the event originator. It is the responsibility of the requester to specify
the type of response that is desired: none (fire-and-forget), acknowledgement
(acknowledge that the event was received), or result (send a formatted response).

An event is specified as a well-formed XML fragment that contains the name of the
event, any associated properties, and a body.

For detailed usage documentation and examples, see
com.sas.services.events.broker in the Foundation Services class
documentation at http://support.sas.com/rnd/javadoc/93.

For details about editing the Event Broker Service configuration, see “Understanding the
Event Broker Service” in Chapter 5 of SAS Foundation Services: Administrator's Guide
in the SAS Foundation Services: Administrator's Guide.

Information Service
The Information Service enables you to do the following:

• perform a combined search of all repositories that a user has a connection to. The
classes in the Information Service package enable the creation of a single filter that
can search multiple repositories.

• limit searches to a specific repository, so that efficient searching can be achieved.

• retrieve an item from a repository using a URL, using a convenience method.

• (in conjunction with the User Services and the Authentication Service) authenticate
users, create User Contexts, locate servers that the user has access to, and create
repository definitions to use in making server connections.

For detailed usage documentation and examples, see
com.sas.services.information in the Foundation Services class documentation
at http://support.sas.com/rnd/javadoc/93.

Information Service 37

For information about configuring Information Services, see “Modifying the Information
Service Configuration ” in Chapter 5 of SAS Foundation Services: Administrator's Guide
in the SAS Foundation Services: Administrator's Guide.

Logging Service
Note: The Logging Service is deprecated in SAS 9.3. You should use Log4j to perform

logging tasks instead.

The Logging Service enables applications to do the following:

• send run-time messages to one or more output destinations, including consoles, files,
and socket connections.

• configure and control the format of information sent to a particular destination.
Configuration can be performed through static configuration files or by invoking
run-time methods that control logging output.

• perform remote logging, which involves sending log messages generated in one Java
virtual machine (JVM) to another JVM.

• perform logging either by user session or by JVM.

For detailed usage documentation and examples, see com.sas.services.logging
in the Foundation Services class documentation at http://support.sas.com/rnd/
javadoc/93.

For information about configuring a Logging Service, see “Modifying the Logging
Service Configuration ” in Chapter 5 of SAS Foundation Services: Administrator's Guide
in the SAS Foundation Services: Administrator's Guide.

Publish Service
The Publish Service enables applications to do the following:

• create and populate collections of information that are called packages. Reports,
tables, and documents are examples of the types of information that a package can
contain.

• publish and retrieve packages using the following delivery transports:

• archive transport, which is used to publish and retrieve binary archive files

• channel transport, which is used to publish to a publication channel

• requester transport, which is used to retrieve packages that are accessible by a
SAS Workspace Server

• WebDAV transport, which is used to publish to and retrieve from a WebDAV
server

• generate a SASPackage Event, which contains information about a package that has
been published.

For detailed usage documentation and examples, see com.sas.services.publish
in the Foundation Services class documentation at http://support.sas.com/rnd/
javadoc/93.

38 Chapter 4 • Using SAS Foundation Services

For information about the Publishing Framework, see the SAS Publishing Framework:
Developer's Guide.

Security Service
The Security Service enables applications to do the following:

• authenticate the credentials of users. Authentication is the process of verifying that a
user ID and its password are valid. The Security Service uses the Java Authentication
and Authorization Service (JAAS) classes and interfaces to provide a pluggable
authentication mechanism.

• propagate user identity contexts across distributed security domains.

• implement a single sign-on environment by saving credentials in the user context of
an authenticated user.

• request a user's credentials from a user context that another application created. If
credentials exist for the specified domain, then the application can use them to access
resources without requiring additional authentication input from the user.

For detailed usage documentation and example code, see
com.sas.services.security in the Foundation Services class documentation at
http://support.sas.com/rnd/javadoc/93.

Session Service
The Session Service enables applications to do the following:

• create a session context. A session context is a control structure that maintains state
information within a bound session, facilitating resource management and context
passing.

• bind objects to a session context.

• use the session context as a convenience container for passing multiple contexts.

• use the session context as a convenience container for passing other services, such as
User Services and Logging Services.

• notify bound objects when they are removed from the session context or when the
session context is destroyed, so that objects can perform any necessary cleanup.

For detailed usage documentation and examples, see com.sas.services.session
in the Foundation Services class documentation at http://support.sas.com/rnd/
javadoc/93.

For information about configuring a Session Service, see “Modifying the Session and
User Service Configurations” in Chapter 5 of SAS Foundation Services: Administrator's
Guide in the SAS Foundation Services: Administrator's Guide.

Stored Process Service
The Stored Process Service enables applications to do the following:

Stored Process Service 39

• synchronously or asynchronously execute a stored process, which is a SAS language
program that is stored on a SAS server. Execution can include accessing SAS data
sources or external files and creating new data sets, files, or other data targets that are
supported by SAS.

• receive values that have been assigned to input parameters and pass them to a stored
process.

• return output from a stored process, either in a results package or in a streaming
interface.

For detailed usage documentation and examples, see
com.sas.services.storedprocess in the Foundation Services class
documentation at http://support.sas.com/rnd/javadoc/93.

For information about SAS Stored Processes, see the SAS Stored Processes: Developer's
Guide.

User Service
The User Service enables applications to do the following:

• create, locate, maintain, and aggregate information about users of SAS Foundation
Services.

• store and retrieve user context objects for sharing between applications. The user
context contains the user's active repository connections, identities, and profile.

• manage and access user profiles. A profile is a collection of name/value pairs that
specify preferences and configuration or initialization data for a user for a particular
application.

• access group profiles. A group profile specifies preferences and configuration or
initialization data for a group of users for a particular application.

For detailed usage documentation and example code, see com.sas.services.user
in the Foundation Services class documentation at http://support.sas.com/rnd/
javadoc/93.

For information about configuring a User Service, see “Understanding Service
Deployments” in Chapter 1 of SAS Foundation Services: Administrator's Guide and
“Modifying the Session and User Service Configurations” in Chapter 5 of SAS
Foundation Services: Administrator's Guide in the SAS Foundation Services:
Administrator's Guide.

40 Chapter 4 • Using SAS Foundation Services

Chapter 5

Using JDBC Connections

Getting a JDBC Connection Object . 41

Getting a JDBC Connection Object
Java Database Connectivity (JDBC) defines the standard way for Java programmers to
access and manipulate data in a database. The IOM server supports IOM objects that
provide all the functionality of a JDBC driver, but, instead of having to learn to program
for those IOM objects, SAS Integration Technologies provides you with a JDBC
implementation that uses IOM objects internally.

After you have established a connection to an IOM server and obtained a reference to a
stub for the workspace component, you can get a java.sql.Connection object for
the SAS JDBC Driver, as shown in the following example:

import java.sql.Connection;
import java.sql.SQLException;
import java.util.Properties;
import com.sas.iom.SAS.IDataService;
import com.sas.rio.MVAConnection;

//use Connection factory to get reference to workspace stub
//IWorkspace sasWorkspace = ...

IDataService rio = sasWorkspace.DataService();
Connection sqlConnection = new MVAConnection(rio,new Properties());
 .
 .
 .
(standard JDBC method calls) .
 .
 .

The following example shows you how to release the connection:

sqlConnection.close();

41

42 Chapter 5 • Using JDBC Connections

Index

B
binder utility 3

C
client installation 2
code samples 2
connection factories

creating 7
shutting down 8

Connection Factory interface 1
connection information 6
connection points 31

finding 32
using 33

connection pooling 17
connection requests

redirecting 16
Connection Service 36

metadata server with 4
connections

closing 24
creating 6, 7
directly supplied server attributes 8
ending 7
narrowing 7
returning to Java Connection Factory

24
server attributes read from Information

Service 12
server attributes read from SAS

Metadata Server 10
CORBA

using stubs for IOM objects 27

D
datetime formats 33
directly supplied server attributes

pooling with 19
Discovery Service 36

distributed programming 2

E
encryption 3
Event Broker Service 37
event interfaces 31
events 31
exception handling 29

F
failover 16
failover cluster 16
formats

datetime 33

G
generic object references 30
generic stubs 30

I
IDL-to-Java compiler 3
Information Service 37

pooling with server attributes read from
22

server attributes read from 12
installation, client 2
interfaces

Connection Factory 1
event 31

IOM Bridge for Java 28
IOM objects

supporting more than one stub 30
using CORBA stubs for 27

IOM server 3
connecting Java clients to 4
metadata server with Connection

Service 4

43

J
Java clients

connecting to IOM server 4
developing 1

Java Connection Factory 6
configurations 7
connecting with directly supplied server

attributes 8
connecting with server attributes read

from SAS Metadata Server 10
creating connections to IOM server 6
example 15
failover 16
features 6
load balancing 17
logging 8, 16
pooling 17
pooling, directly supplied server

attributes 19
pooling, server attributes read from

Information Service 22
pooling, server attributes read from

metadata server 22
redirecting connection requests 16
returning connections to 24
server attributes read from Information

Service 12
shutting down 24
supplying connection information 6

Java Database Connectivity (JDBC) 41
Java ORB 28
JDBC connection objects 41
JRE requirements 2

L
load balancing 17
load-balancing cluster 17
logging 8, 16
Logging Service 38

M
message authentication codes (MAC) 3
metadata server

pooling with server attributes read from
22

with Connection Service 4

N
null references 28

O
object request broker (ORB) 27

output parameters 29

P
pooling 17

locations for specifying parameters 18
puddles 20
using pooled connections 18
waiting for connections to become

available 18
with directly supplied server attributes

19
with server attributes read from

Information Service 22
with server attributes read from

metadata server 22
Publish Service 38
puddles 20

R
redirecting connection requests 16

S
SAS Foundation Services 1, 35

Connection Service 36
Discovery Service 36
Event Broker Service 37
Information Service 37
Logging Service 38
Publish Service 38
Security Service 39
Session Service 39
Stored Process Service 39
User Service 40

SAS Foundation Services Facade 2
SAS Metadata Server

server attributes read from 10
security 3
Security Service 39
server attributes

directly supplied 8, 19
read from Information Service 12, 22
read from metadata server 22
read from SAS Metadata Server 10

Session Service 39
skeletons 31
Stored Process Service 39
stubs

for IOM objects 27
IOM objects supporting more than one

stub 30

44 Index

U
User Service 40

Index 45

46 Index

	Contents
	What’s New in Integration Technologies Java Client Development
	Overview
	Zero-Configuration Workspace Servers
	Logging Service Deprecation

	Concepts
	Developing Java Clients
	Java Client Installation and JRE Requirements
	Client Installation
	JRE Requirements

	Java Client Security
	Using the IOM Server
	Overview of Using the IOM Server
	Using a Metadata Server with the Connection Service
	Connecting a Java Client to an IOM Server

	Using the Java Connection Factory
	Using the Java Connection Factory
	Overview of the Java Connection Factory
	Supplying Connection Information
	Using Connection Factory Configurations, Connection Factories,
and Connections
	Connection Factory Logging

	Connecting with Directly Supplied Server Attributes
	Overview of Connecting with Directly Supplied Server Attributes
	Example of Connecting with Directly Supplied Server Attributes

	Connecting with Server Attributes Read from a SAS Metadata
Server
	Overview of Connecting with Server Attributes from Metadata
	Example of Connecting with Server Attributes from Metadata

	Connecting with Server Attributes Read from the Information
Service
	Overview of Connecting with Server Attributes from the Information
Service
	Example of Connecting with Server Attributes from the Information
Service

	Connecting to a Zero-Configuration Workspace Server
	Overview of Connecting to a Zero-Configuration Workspace Server
	Example of Connecting to a Zero-Configuration Workspace Server

	Java Connection Factory Language Service Example
	Logging Java Connection Factory Activity
	Using Failover
	Using Load Balancing
	Using Connection Pooling
	Overview of Pooling
	Locations for Specifying Pooling Parameters
	Using Pooled Connections
	Waiting for Connections to Become Available

	Pooling with Directly Supplied Server Attributes
	Overview of Pooling with Directly Supplied Server Attributes
	Example

	Pooling with Server Attributes Read from a Metadata Server
	Pooling with Server Attributes Read from the Information Service
	Returning Connections to the Java Connection Factory
	Closing a Connection to the Java Connection Factory
	Shutting Down the Java Connection Factory

	Using Java CORBA Stubs for IOM Objects
	Using Java CORBA Stubs for IOM Objects
	Null References
	Exception Handling
	Output Parameters
	Generic Object References
	IOM Objects That Support More than One Stub
	Events and Connection Points
	Overview of Events and Connection Points
	Extending Skeletons
	Finding a Connection Point
	Using a Connection Point

	Datetime Values

	Using SAS Foundation Services
	Overview of SAS Foundation Services
	Connection Service
	Discovery Service
	Event Broker Service
	Information Service
	Logging Service
	Publish Service
	Security Service
	Session Service
	Stored Process Service
	User Service

	Using JDBC Connections
	Getting a JDBC Connection Object

	Index

