
SAS/CONNECT® 9.2
Driver for Java

SAS® Documentation

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2008.
SAS/CONNECT® 9.2 Driver for Java. Cary, NC: SAS Institute Inc.

SAS/CONNECT® 9.2 Driver for Java

Copyright © 2008, SAS Institute Inc., Cary, NC, USA

All rights reserved. Produced in the United States of America.

For a hard-copy book: No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without
the prior written permission of the publisher, SAS Institute Inc.

For a Web download or e-book: Your use of this publication shall be governed by the terms
established by the vendor at the time you acquire this publication.

U.S. Government Restricted Rights Notice: Use, duplication, or disclosure of this software and related
documentation by the U.S. government is subject to the Agreement with SAS Institute and the
restrictions set forth in FAR 52.227-19, Commercial Computer Software-Restricted Rights (June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.

1st electronic book, March 2008

SAS® Publishing provides a complete selection of books and electronic products to help customers use
SAS software to its fullest potential. For more information about our e-books, e-learning products, CDs,
and hard-copy books, visit the SAS Publishing Web site at support.sas.com/publishing or call 1-800-
727-3228.

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks
of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are registered trademarks or trademarks of their respective companies.

Table of Contents
 About the SAS/CONNECT Driver for Java..1

 SAS/CONNECT Driver for Java Overview..2

 Requirements for the SAS/CONNECT Driver for Java..3
Requirements for Deploying Applets..3

Web Server..3
SAS Server..3

 How SAS/CONNECT Driver for Java Works..5

Connecting to a Remote SAS Session..6
Connection Properties..6

The Tunneling Property...7
Timeout Properties..7
Encryption Properties..7
Other Useful Properties...8

Using Applet Parameters to Pass Connection Information..9
Constructing the Connection Object..10
Ending the Remote SAS Session...10

SAS/CONNECT Server Configuration and the textTransportFormat Property.......................................12
Example...13

Connection Properties and Telnet Connection Information..14
Telnet Example..14
Mapping Connection Properties to Telnet Connection Information..14

 About the Tunnel Feature...18

The Tunnel Feature Overview...19

Requirements for the Tunnel Feature...20
Supported Platforms..20

How the Tunnel Feature Works..21

The Tunnel Feature's Configuration File...22
Using a Configuration File..22

A Sample Configuration File...23

Configuration File Options..24
Configuration File Guidelines...24
Configuration File Example...24
Configuration Option...25

Options for SAS/SHARE Servers and SAS/CONNECT Servers...25
Options for SAS/SHARE Servers Only..26
Options for SAS/CONNECT Servers Only..26

Table of Contents
Using the Tunnel Feature...27

 Debugging Tips...28

About the SAS/CONNECT Driver for Java
The SAS/CONNECT driver for Java provides the Java classes that enable you to write Java programs that
communicate with a SAS/CONNECT server. It enables you to take advantage of the computational
capabilities of SAS from within your Java applications, applets, and servlets. (While the SAS/CONNECT
driver for Java classes can be used to create Java applets, applications, and servlets, this documentation
focuses primarily on applet development.)

Using the SAS/CONNECT driver for Java, you can create Java applications or applets that start a SAS
session, connect to that session, create data sets, access existing SAS data, run procedures to analyze SAS
data, and retrieve the results. The SAS/CONNECT driver for Java enables you to take advantage of remote
computing resources on the SAS server machine. These remote capabilities turn your Java applications and
applets into thin−client Web applications.

In addition to enabling you to submit SAS statements, the SAS/CONNECT driver for Java classes also
provide a way to submit SQL statements, so you can access and update SAS data from your SAS/CONNECT
driver for Java applets. We also offer the tunnel feature, which enables you to move your SAS server software
to a machine other than your Web server and provides a way to navigate firewalls.

1

SAS/CONNECT Driver for Java Overview
The SAS/CONNECT driver for Java provides the API that enables you to write Java programs that access the
compute services of SAS software. It accesses SAS software by communicating with a SAS/CONNECT
server. The SAS/CONNECT driver for Java classes provide a subset of the functionality provided by
SAS/CONNECT software.

The SAS/CONNECT driver for Java provides the classes necessary to write your own Java applets that

use processing resources that are remote to the Web browser running the applet•
run SAS programs on a SAS server and return information and output to the browser running the Java
applets.

•

The SAS/CONNECT driver for Java sample applet demonstrates some of the capabilities that you can write
into your own Java programs using SAS/CONNECT driver for Java classes. You can find this applet in the
SAMPLE directory of the Java Tools archive. The Readme file contains instructions about how to configure
this applet to work at your site.

2

Requirements for the SAS/CONNECT Driver for Java
If you are developing applets or applications using the SAS/CONNECT driver for Java, your development
environment must support the Java Development Kit (JDK), version 1.4.1. An earlier version of the JDK
might work but is not supported by SAS.

The SAS/CONNECT driver for Java contains the SAS/SHARE driver for JDBC, which is compliant with the
JDBC 2.0 API and requires JDK 1.4.1 or later.

In order to test the functionality of your applets and applications, your development environment must also
meet the requirements outlined in "Requirements for Deploying Applets."

The applets and applications you write using SAS/CONNECT driver for Java can communicate with a SAS
server that is running SAS, Version 6 or later. The requirements for the SAS server vary based on the version
of SAS software that is installed. Be sure to read the requirements carefully.

Requirements for Deploying Applets

After you have developed your applets and are ready to make them available to users, make sure that your
intranet or Internet meets the following requirements.

Web Server

Install the SAS Java archive on your Web server and move the applets you developed to the necessary
directory.

Note: If you are not using the tunnel feature or the Java Plug−In, your Web server must be installed on the
same physical machine as your SAS server.

SAS Server

SAS server running SAS, Version 6

Your SAS server must have Release 6.12 (TS050) or later of SAS installed. Your SAS installation
must include at least the following SAS products:

SAS/CONNECT software♦
SAS/IntrNet software license♦
If your applications rely on any other products or tools provided by SAS, you must also
install those products on your SAS server.

♦

The SAS server must also have either the SAS spawner program or a Telnet daemon available. If you
choose to use the spawner program, you must use the version provided with the SAS/IntrNet server.
(This is a modified version of the SAS spawner program. It does not replace the version you currently
have installed. The filename for the version provided in the SAS/IntrNet server package is
tspawner.exe for Windows platforms and is sastcpdt for UNIX platforms.)

Note: Currently, the modified version of the SAS spawner program is not available for the SunOS 4
platform.

•

SAS server running SAS, Version 7 or later

Your SAS server must have SAS, Version 7 or later installed. Your SAS installation must include at
least the following SAS products:

•

3

SAS/CONNECT software♦
SAS/IntrNet software license♦
If you want to enable encrypted communication between the client and server, you must also
install SAS/SECURE software.

♦

If your applications rely on any other products or tools provided by SAS, you must also
install those products on your SAS server.

♦

The SAS server must also have either the SAS spawner program or a Telnet daemon available. The
spawner program is provided with SAS/CONNECT software.

4

How SAS/CONNECT Driver for Java Works
With the SAS/CONNECT driver for Java classes, you can interactively submit SAS statements and retrieve
log and output information. A Java program uses the SAS/CONNECT driver for Java classes to start a
SAS/CONNECT session on the server machine and establish a connection to that session. Each program
creates a SAS session for its use. SAS/CONNECT sessions are not shared between multiple users or multiple
programs. The SAS session is destroyed when the program completes. After the program has established a
connection to the remote SAS session, the applet can submit SAS statements and retrieve the log lines and
output generated from those statements.

The SAS/CONNECT driver for Java provides classes that use either socket−based communication or the
tunnel feature. Socket communication with applets can be restricted by the Java security manager. The
security manager is provided by the browser, and each browser has a different set of restrictions imposed on
applets. Most security managers restrict socket−based communication and only allow applets to open socket
connections to the same machine that provided the applet classes. This means the SAS/CONNECT session
and the Web server that provides the Java classes must run on the same machine. The tunnel feature
eliminates this restriction, enabling you to provide your Web server and your SAS/CONNECT session on
different machines.

The following diagram shows how all the components work together when you are using a Java applet. The
Web browser on the client machine requests an HTML document from the Web server. The server responds
by sending the document to the browser. If the browser detects an applet tag in the document, it sends
additional requests to the Web server for the Java classes used by the applet. After the classes are downloaded
to the client machine, the applet begins running.

5

Connecting to a Remote SAS Session
A SAS/CONNECT driver for Java program communicates with the SAS/CONNECT server using a
connection daemon (either the SAS spawner program or a Telnet daemon). A tunneled SAS/CONNECT
driver for Java program communicates with the tunnel feature's server programs, which in turn communicate
with the SAS/CONNECT server using either the spawner program or a Telnet daemon. This page describes
the types of connection objects you can use, how to construct a connection object, and other topics related to
managing the connection to a remote SAS server.

The SAS/CONNECT driver for Java class you use to construct the connection object depends on whether
your program uses HTTP tunneling or the SAS/CONNECT protocol. For HTTP tunneling, you will use the
TunneledConnectClient class to create the connection object. Otherwise, you will use the TelnetConnectClient
class to create the connection object.

Connection Properties

Connection objects are constructed using a set of properties that specify information that is required by the
connection daemon. The properties represent the prompts and responses that are passed when the connection
is established. The connection object waits for certain prompts from the connection daemon (or from the
tunnel feature's server programs) and then responds. The properties are set from the values in a Properties
object that is passed as an argument to the constructor of the connection object class you use.

For TelnetConnectClient and TunneledConnectClient, you must specify at least one property. If the property
list is null, an exception is returned. The connection properties that you can specify for TelnetConnectClient
and TunneledConnectClient objects are as follows:

promptx
Where x is any number, and the value corresponds to the prompt you want to pass.

responsex
Where x is any number, and the value corresponds to the connection information you want to pass. If
you want your program to prompt the user for a user name and password at startup, do not specify
values for the responsex properties you define for user name and password information.

userNameResponse
passwordResponse

These properties specify which responsex properties contain the user name and password information.
For example, if you use response1 for the user name and response2 for the password, you
would specify response1 as the value for the userNameResponse property and response2 as the
value for the passwordResponse property.

For non−tunneled programs, you need to use the userNameResponse and passwordResponse
properties only if you want the program to prompt for the user name and password. If you want to
specify the user name and password as values for responsex properties instead of having the user enter
the information, do not use the userNameResponse and passwordResponse properties.

For tunneled programs, the userNameResponse and passwordResponse properties specify which
responses are the user name and password so the responses can be encrypted before they are sent to
the tunnel feature's server programs. If you do not use the userNameResponse and passwordResponse
properties, the user name and password will not be encrypted when they are sent to the server.

sasPortTag
The tag in the message from SAS software indicating the port at which the SAS server is listening.

The prompt/response pairs required for a successful connection might differ depending on the connection
daemon you are using. Typically, you need only create three prompt/response pairs to pass the user name,6

password, and command information, but you can create additional parameters to pass prompts and responses
that your connection daemon requires. For further explanation of how the prompt/response properties relate to
the connection information that is passed when manually establishing a connection, see Connection Properties
and Telnet Connection Information.

The Tunneling Property

Connection objects that use HTTP tunneling use the routerUrl property, which enables the Web server to
locate the Message Router (shrcgi.exe), one of the tunnel feature's server programs.

Note: The routerUrl property applies to TunneledConnectClient objects only.

routerUrl
The URL of the Message Router (shrcgi.exe).

Timeout Properties

To determine whether the connection process is continuing properly, the connection client allows a certain
amount of time to pass waiting for a particular prompt. If the prompt is not received within the allotted time,
the connection client assumes that an error has occurred and throws a ConnectException. The connection
client supports properties that enable a user to override the default timeout values. You can create as many
Timeout properties as you need.

Note: Timeout properties apply only to TelnetConnectClient objects.

promptTimeoutx
Where x is a number that corresponds to the prompt you want to time. You will specify a number of
seconds you want the connection client to wait from the time it begins listening for the prompt to the
time it receives the prompt.

responseTimeoutx
Where x is a number that corresponds to the response you want to time. You will specify the number
of seconds you want the connection client to wait from the time it sends the response to the time the
connection daemon receives the response.

sasPortTagTimeout
The sasPortTagTimeout property specifies the number of seconds you want the connection client to
wait from the time it begins listening for the port tag to the time it receives the port tag.

Encryption Properties

When communicating with a SAS server that is running the SAS System, Version 7 or later, messages passed
to and received from both the SAS Spawner and the SAS/CONNECT Server can be encrypted using a variety
of encryption algorithms. The tunnel feature server programs do not support this level of encryption. The only
supported encryption in the tunnel server programs is to encrypt user name and password.

Two properties control most of the encryption features in the SAS/CONNECT Driver for Java.

encryptionPolicy
This property controls whether the connection client will attempt to negotiate and use an encryption
algorithm with the server and what to do if the negotiations are not successful. If the value of this
property is none, then the connection client will not attempt to negotiate and use an encryption
algorithm with the server. If the server requires encryption to be used, then the connection will fail.
This is the default value. If the value of this property is optional, then the connection client will
attempt to negotiate and use an encryption algorithm with the server. If the negotiations fail, then the

7

connection client will try to continue with an unencrypted connection. However, that will also fail if
the server requires encryption. If the value of this property is required, then the connection client
will attempt to negotiate and use an encryption algorithm with the server. If the negotiations fail, then
the connection fails.

encryptionAlgorithms
This property specifies a comma−separated list of encryption algorithms in order of preference. The
connection client will use this list when negotiating encryption algorithms with the server. It is not
necessary to list all the algorithms that the connection client can support, only the ones you want to
use for a particular connection. Also, if no algorithms are listed, then the server will choose one.
Possible values for this property are sasproprietary, a stream cipher developed at SAS Institute,
RC2, a block cipher developed by RSA Data Security, RC4, a stream cipher developed by RSA Data
Security, des, a block cipher known as Data Encryption Standard, and TRIPLEDES, DES applied
three times with separate keys. To use RC2, RC4, DES, or TRIPLEDES, you must license
SAS/SECURE on the server and install the Java component of SAS/SECURE (sasecjav.zip) in your
code base. TRIPLEDES can generally only be used in the United States and Canada due to export
restrictions.

Because encryption is supported for connections to both the SAS Spawner and the SAS/CONNECT server, a
property is sometimes needed to determine whether the encryption properties listed above apply to the Telnet
session or the SAS/CONNECT session. This property is named encryptionTarget. Its possible values are:

telnet
encryption properties apply only to the Telnet session.

sas
encryption properties apply only to the SAS/CONNECT session. This is the default.

both
encryption properties apply to both the Telnet session and the SAS/CONNECT session.

If the SAS Spawner was started with the −INHERITANCE option, then, in effect, the only possible value for
this property is both. Therefore, this property is ignored when the −INHERITANCE option is used.

Encryption Properties for the Server

The SAS Server and SAS Spawner both require similar properties to control encryption. These properties can
be specified as command line options when starting the SAS Spawner or when specifying the responsex
property that corresponds to the SAS command for TelnetConnectClient.

−NETENCRYPT
Specify this option to make the SAS Server or SAS Spawner require encryption when clients connect.
If you do not specify this option, then the SAS Server or SAS Spawner will consider encryption to be
optional.

−NETENCRALG
Specify this option and follow it with a comma−separated list of encryption algorithms. The list
specifies the order of preference for use in algorithm negotiation. However, if you specify a list of
encryption algorithms as a value to the encryptionAlgorithms property for the connection client, that
list will take precedence. If this option is not specified, then encryption might not function properly.
The values that you can use in the list of encryption algorithms are the same as the values you can use
for the encryptionAlgorithms property for the connection client.

Other Useful Properties

You might also want to use the following properties.

compressionPolicy 8

Specify this option to manipulate compression of data in messages exchanged with the server.
Possible values are:

session
specifies that all messages exchanged in a session are examined and compressed if the
compression would yield a smaller message. This is the default behavior.

none
specifies that no messages should be compressed. This behavior is useful in SAS/CONNECT
sessions in which the time used to compress and decompress data does not justify the amount
of space saved by compression. This might be the case when the data exchanged is primarily
binary.

textTransportFormat
Specifies the name of the character encoding used when moving text between the SAS/CONNECT
Driver for Java and a SAS/CONNECT server. When you set this property, the driver transcodes SAS
programs to this encoding before submitting them to the server. Transcoding from the specified
encoding is automatically applied to log lines and list lines when they are received from the server.
Note that downloaded files are not automatically transcoded when they are received from the server
because the SAS/CONNECT driver for Java does not distinguish between text and binary files.
However, when you download a text file, you can transcode it using any transcoding mechanism in
the JDK along with the name of the encoding. You can fetch the name of the encoding using the
getTextTransportFormat method.

If you do not specify a value for this property, the default character encoding of the Java virtual
machine is used. If the specified character encoding cannot be supported by the Java virtual machine,
then the SAS/CONNECT Driver for Java throws an exception the first time it attempts a character
conversion.

Notes:

Support for the Cp1047 code page is built into the SAS/CONNECT driver for Java because
many current Java virtual machines do not provide support for this common character
encoding.

◊

If you use the textTransportFormat property, you might need to reconfigure your
SAS/CONNECT server as well.

◊

The SAS/SHARE driver for JDBC, which is included with the SAS/CONNECT driver for
Java, transcodes character data, column names, column descriptions, and format names from
this encoding when processing an SQL query.

◊

logException
Specify this option so that your program will throw an exception when an error line appears in the
SAS log. Possible values are TRUE and FALSE. The default behavior is FALSE, which does not
attempt to determine whether an error condition exists.

Using Applet Parameters to Pass Connection Information

An applet passes connection information through parameters, using the following format:

 <param name=promptx value="prompt">
 <param name=responsex value="response">
 <param name=userNameResponse value="response1">
 <param name=passwordResponse value="response2">
 <param name=sasPortTag value="port_tag">

Where x is any number, and prompt and response are the values associated with the prompt and
connection information you want to pass, respectively. The userNameResponse and passwordResponse

9

parameters are as described above. port_tag uniquely identifies that the SAS session has completed
initialization and allows the connection client to parse the port value from the response.

Note: You will use the getParameter method to pick up these values. Then, you construct a new Properties
object and put these values into the object.

Tunneling information is passed through a parameter using the following format:

 <param name=routerURLx value="http://your_server/cgi−bin/shrcgi">

Where http://your_server/cgi−bin/shrcgi is a URL that corresponds to the location of the tunnel feature's
server programs.

Timeout information is passed through parameters, using the following format:

 <param name=promptTimeoutx value="nnn">
 <param name=responseTimeoutx value="nnn">
 <param name=sasPortTagTimeout value="nnn">

Where x is a number that corresponds to the prompt or response you want to time, and nnn is the number of
seconds you want the connection client to wait.

Constructing the Connection Object

If you want to use SAS/CONNECT protocol, instantiate the connection object using the TelnetConnectClient
constructor, as follows:

 import com.sas.net.connect.TelnetConnectClient;
 TelnetConnectClient tconnection = new TelnetConnectClient(info);

If you want to use HTTP tunneling, instantiate the connection object using the TunneledConnectClient
constructor as follows:

 import com.sas.net.connect.TunneledConnectClient;
 info.put("routerUrl","http://your_server/cgi−bin/shrcgi");
 TunneledConnectClient tconnection = new TunneledConnectClient(info);

The TunneledConnectClient sends a request to the tunnel feature's server programs to start a SAS/CONNECT
session and return the port number for communication with the Java client. Then, it passes connection
properties to the Message Router.

Ending the Remote SAS Session

The session ends differently depending on whether your using SAS/CONNECT protocol or HTTP tunneling.

If you're using SAS/CONNECT protocol, the connection client class (TelnetConnectClient) overrides the base
class disconnect method, so it can destroy the Telnet or spawner session in addition to ending the remote SAS
session. The class first calls the base class disconnect method, which sends a shutdown message to SAS and
receives a response that the SAS session has successfully shut down. The subclass disconnect method then
closes the socket connection to the Telnet or spawner session, which effectively ends the Telnet or spawner
session. The Telnet or spawner session cannot be destroyed before ending the SAS session. The SAS session
is started as a subprocess of the Telnet or spawner session, and ending the Telnet or spawner session
prematurely will end the SAS session.

10

If you're using HTTP tunneling, the base class disconnect method requests that the tunnel feature's server
programs end the remote SAS session. When the base class disconnect method is called, a shutdown message
is sent to the SAS session and a response is returned indicating that the SAS session has successfully shut
down. Then, the tunnel feature's server programs end the Telnet or spawner session. The Telnet or spawner
session cannot be destroyed before ending the SAS session. The SAS session is started as a subprocess of the
Telnet or spawner session, and ending the Telnet or spawner session prematurely will end the SAS session.

11

SAS/CONNECT Server Configuration and the
textTransportFormat Property
The textTransportFormat property specifies the text transport format (that is, the encoding of character data
exchanged between the SAS/CONNECT driver for Java and the SAS/CONNECT server). This page
documents the way to specify the textTransportFormat property and configure the SAS/CONNECT server so
that the driver and server agree on the text transport format.

Note: For SAS/CONNECT 8.2 and later servers, the textTransportFormat property is not used because the
value of textTransportFormat is automatically determined when connecting to those releases of the
SAS/CONNECT server.

By default, the SAS/CONNECT server assumes that the transport format for text should be ASCII. Typically,
that default is useful only when:

the client program using the SAS/CONNECT driver for Java is running on an ASCII−based machine
such as a PC or UNIX workstation

•

the language used by the client program is English.•

If either of those conditions are not in effect, then configuring the SAS/CONNECT driver for Java and the
SAS/CONNECT server is necessary.

The best strategy to use when you find that the default text transport format needs to be changed is to make
the text transport format exactly the same as the native character encoding of the machine hosting the
SAS/CONNECT server. This strategy prevents you from having to make character encoding conversions in
the SAS/CONNECT server, and it allows you to take advantage of the rich set of character encoding
converters that are included with most Java virtual machines. To implement this strategy, you must:

Override the SAS/CONNECT server's default character encoding conversion mechanism so that it
makes no conversion.

1.

Inform the SAS/CONNECT driver for Java of the server's native character encoding so that it can use
the Java virtual machine's character encoding converters to make the proper conversion.

2.

The SAS/CONNECT server's character encoding conversion mechanism is controlled by a set of tables that
translate character codes from one encoding to another. These tables, called translation tables, can be created
and modified using the TRANTAB procedure and can be installed using the system option TRANTAB. To
make the text transport format the same as the native character encoding of the machine hosting the
SAS/CONNECT server, you need to create a translation table that "translates" each character code to itself.

The following SAS program creates such a translation table and stores it in your SASUSER.PROFILE
catalog. Your SAS system administrator can copy it to the SASHELP.HOST catalog to make it available to all
SAS users at your site.

 proc trantab table = identity;
 replace "00"x "000102030405060708090A0B0C0D0E0F"x;
 replace "10"x "101112131415161718191A1B1C1D1E1F"x;
 replace "20"x "202122232425262728292A2B2C2D2E2F"x;
 replace "30"x "303132333435363738393A3B3C3D3E3F"x;
 replace "40"x "404142434445464748494A4B4C4D4E4F"x;
 replace "50"x "505152535455565758595A5B5C5D5E5F"x;
 replace "60"x "606162636465666768696A6B6C6D6E6F"x;
 replace "70"x "707172737475767778797A7B7C7D7E7F"x;
 replace "80"x "808182838485868788898A8B8C8D8E8F"x;
 replace "90"x "909192939495969798999A9B9C9D9E9F"x;
 replace "A0"x "A0A1A2A3A4A5A6A7A8A9AAABACADAEAF"x;

12

 replace "B0"x "B0B1B2B3B4B5B6B7B8B9BABBBCBDBEBF"x;
 replace "C0"x "C0C1C2C3C4C5C6C7C8C9CACBCCCDCECF"x;
 replace "D0"x "D0D1D2D3D4D5D6D7D8D9DADBDCDDDEDF"x;
 replace "E0"x "E0E1E2E3E4E5E6E7E8E9EAEBECEDEEEF"x;
 replace "F0"x "F0F1F2F3F4F5F6F7F8F9FAFBFCFDFEFF"x;
 inverse;
 save both;
 quit;

After you have created the appropriate translation table, you can use the TRANTAB system option to read the
translation table out of SASUSER.PROFILE or SASHELP.HOST and install it into the SAS/CONNECT
server's character encoding conversion mechanism. The system option TRANTAB controls the mechanism
for converting both from transport format to the native encoding of the server and from the native encoding of
the server to transport format. Use the identity translation table for both purposes.

You can use any of a variety of ways to specify system options to SAS software. The example later in this
section shows how to use the TRANTAB system option on the command line for UNIX and PC hosts.
Consult SAS system options documentation if you want to see other ways of using it.

To inform the SAS/CONNECT driver for Java of the server's native character encoding, you use the name of
the encoding as the value of the textTransportFormat option. Some character encodings have more than one
commonly used name, so you need to be sure to choose the name for each encoding that is recognized by a
Java virtual machine. JavaSoft maintains a list of recognized encoding names on their Web site
(java.sun.com).

Example

The following example shows the applet parameters for the ConnectApplet that you can use to connect to a
SAS/CONNECT server running on a PC with the SAS spawner in the United States or Western Europe. The
important changes to note are the use of the textTransportFormat property and the use of the TRANTAB
system option in the SAS command, which is specified in the value of the response3 property.

 <param name=prompt1 value="Username:">
 <param name=response1 value="">
 <param name=prompt2 value="Password:">
 <param name=response2 value="">
 <param name=userNameResponse value="response1">
 <param name=passwordResponse value="response2">
 <param name=prompt3 value="Hello">
 <param name=response3 value="sas −trantab '(identity,identity)'">
 <param name=textTransportFormat value="Cp1252">

13

Connection Properties and Telnet Connection
Information
The property values used by a SAS/CONNECT driver for Java program in connecting to a Telnet daemon (or
the spawner) map directly to the Telnet connection information that is passed when manually establishing a
remote SAS session via Telnet. This page describes the relationship between the prompt/response pairs you
define as connection properties and the Telnet connection information that is passed when manually
establishing a connection.

Note: In the case of SAS/CONNECT driver for Java applets, the connection property values are specified
through the use of connection parameters in the applet HTML file.

Telnet Example

To better explain how the SAS/CONNECT driver for Java properties are used to start a remote SAS session
via Telnet, let's look at what happens when this operation is done manually.

The user wants to run SAS/CONNECT on a remote host named myhost. Myhost has a Telnet daemon running
and listening on a port. If the user telnets to myhost, the sequence of requests from myhost and responses from
the user might look like the following:

Login: myuserid
Password: mypassword

There may be additional textual information sent from the
remote Telnet session indicating the user has logged on.

Hostname> sas −dmr −noterminal −nosyntaxcheck

SAS(R) TCPIP REMOTE LINK PORT=1763 SESSION ESTABLISHED.

The Telnet daemon provides the prompt for the user to log in. In this example, the login prompt is "Login:".
The user responds with "myuserid". The password prompt is "Password:" and the user response is
"mypassword". The command prompt is "Hostname>", and the user response is the command to start the
SAS/CONNECT session: sas −dmr −noterminal −nosyntaxcheck.

The SAS session responds with a message that states which port it will use for communication with the client,
"PORT=", followed by the port number (in this case, port number 1763).

Mapping Connection Properties to Telnet Connection
Information

Just as the user receives certain prompts from the Telnet session and responds to them, the connection client
(specifically, TelnetConnectClient or TunneledConnectClient) behaves the same way. It waits for certain
prompts from the Telnet or spawner session (or from the tunnel feature's server programs) and then responds.

The prompt/response pairs you need depends on the connection daemon you are using. You can create all the
prompt and response properties required to pass the information that your connection daemon requires, using
the following format:

promptx
Where x is any number, and the value corresponds to the prompt you want to pass.

14

responsex
Where x is any number, and the value corresponds to the connection information you want to pass.

It is important that you label prompt/response pairs in numerical order, without skipping any numbers. For
example, if you create a prompt5/response5 pair, but you do not define a prompt4/response4 pair, the
prompt5/response5 properties will be ignored and the connection will fail.

Note: All but one of the connection properties is created using this format. One property, sasPortTag, is
hardcoded to specify the port tag.

Extending the example provided above, the following illustrates how to specify the required connection
information using three prompt/response pairs. In this case, we are using use connection properties to meet the
most common requirements:

The user name prompt is specified using the prompt1 property; the user name response is specified
using the response1 property.

•

The password prompt is specified using the prompt2 property; the password response is specified
using the response2 property.

•

The command prompt is specified using the prompt3 property; the command response is specified
using the response3 property.

•

The prompt/response pairs needed for this example are as follows:

(prompt1, Login:)
The connection client uses this value to determine when it should send the user name response.

Note: The prompt1 value is a substring that the connection client compares with the message from the
Telnet session. It must be a unique substring. If the complete Telnet message is "Login:", the value
"in:" would be a valid prompt1 value because it uniquely identifies the login prompt. Please note
that ":" would not be a valid prompt1 value because it is not a unique identifier. The connection
client would not know what information to prompt the user for, and the connection to the remote
system would fail.

(response1, myuserid)
The connection client will send this response after it has received the user name prompt from the
Telnet session.

(prompt2, Password:)
The connection client uses this value to determine when it should send the password response.

Note: The prompt2 value is a substring that the connection client compares with the message from the
Telnet session. It must be a unique substring. If the complete Telnet message is "Password:", the
value "word:" would be a valid prompt2 value, because it uniquely identifies the password prompt.
Please note that ":" would not be a valid prompt2 value because it is not a unique identifier. The
connection client would not know what information to prompt the user for, and the connection to the
remote system would fail.

(response2, mypassword)
The connection client will send this response after it has received the password prompt from the
Telnet session.

(prompt3, Hostname>)
The connection client uses this value to determine when it should send the command.

Note: The prompt3 value is a substring that the connection client compares with the message from the
Telnet session. It must be a unique substring. If the complete Telnet message is "Hostname>", the
value ">" would be a valid prompt3value because it uniquely identifies the command prompt.

(response3, sas −dmr −noterminal −nosyntaxcheck)
15

This is the complete response to the command prompt.
(sasPortTag, PORT=)

This uniquely identifies that the SAS session has completed initialization and allows the connection
client to parse the port value from the message.

Note: The sasPortTag value must be the substring that immediately precedes the port value. While the
substring "ESTABLISHED" uniquely identifies the message, it does not immediately precede the port
number and the connection client will fail to establish a connection to the SAS session.

16

About the Tunnel Feature
The tunnel feature is an optional feature that you can use with Java applets written using the SAS/SHARE
driver for JDBC or the SAS/CONNECT driver for Java. It addresses two common configuration problems
encountered with Java applets that communicate with another machine:

A Java applet that is downloaded from a Web server is not allowed to make socket connections to
machines other than the machine from which it was downloaded. This restriction means that the SAS
session would have to be started on the same machine as the Web server from which the applets were
downloaded.

•

Many firewalls prohibit applets from establishing socket connections beyond the firewall. However,
most firewalls allow HTTP protocol to pass through the firewall, so if the communication is done
with HTTP protocol, applets are able to communicate with servers that they would not normally be
allowed to communicate with.

•

Note: Java Plug−in software, from Sun Microsystems, Inc., allows you to configure the way your applets
access machines on your network. If you are using the tunnel feature to allow an applet to communicate with
machines other than the Web server from which it is downloaded, you can use the Java Plug−in software
instead.

The tunnel feature can solve both of these problems by virtually eliminating the restrictions on where your
SAS software runs in relation to your Web server and firewall. In addition, because the tunnel feature gives
you complete control over who can access what, you gain these benefits without sacrificing security for your
vital data. The tunnel feature enables you to greatly enhance the power and flexibility of the applets you create
with the SAS/SHARE driver for JDBC and the SAS/CONNECT driver for Java.

18

The Tunnel Feature Overview
The security model currently used by most Web browsers restricts a Java client to communicating only with
the Web server where the Java classes reside. This restriction requires that your SAS server be installed on the
same machine as your Web server. For most enterprises, this is not an optimal configuration. The tunnel
feature that we are providing lifts this restriction.

The tunnel feature consists of programs that are installed on your Web server. These programs, called the
tunnel feature's server programs, use the Common Gateway Interface (CGI) to receive requests from the Java
applet running on a user's browser. The server programs forward the requests to the SAS server for
processing. When the processing is complete, the programs return the results to the applet.

19

Requirements for the Tunnel Feature
The tunnel feature works with the SAS/SHARE driver for JDBC and the SAS/CONNECT driver for Java.
The tunnel feature's server programs are installed on a Web server. The Web server must have

a directory in which CGI programs can be stored. This directory is often named cgi−bin on UNIX
platforms and scripts on PC platforms. You will install the tunnel feature's server programs in this
directory.

•

access to a SAS/SHARE or SAS/CONNECT server.•
the SAS/SHARE driver for JDBC and the SAS/CONNECT driver for Java installed locally.

Note: During installation of either driver, both drivers are automatically installed.

•

Before you provide programs that use the tunnel feature, make sure that the requirements for the SAS/SHARE
driver for JDBC or for the SAS/CONNECT driver for Java are also met.

Supported Platforms

The tunnel feature is available for use on the following platforms:

AIX/6000•
Compaq Tru64 UNIX•
HP−UX•
Linux•
Solaris•
Windows NT•
Windows 2000•
Windows 2003 Server•
Windows XP•

20

How the Tunnel Feature Works
A common problem in deploying Java applets is the configuration limitations that are imposed when applets
must communicate with machines other than the Web server from which they are downloaded. The tunnel
feature eliminates this problem by using HTTP (Hypertext Transfer Protocol) Tunneling to allow applets to
communicate with remote systems via a CGI program running on the Web server.

The following figure illustrates how a request (a SAS statement or SQL statement) is sent from a Java applet
to a SAS/CONNECT or SAS/SHARE server when you use the tunnel feature.

Initially, the Web browser (on the client machine) loads the applet HTML file from the Web server, which
causes the required Java classes to be downloaded from the Web server as well. The Java classes (the
SAS/CONNECT driver for Java, the SAS/SHARE driver for JDBC, or both) then communicate directly with
the Web server (via HTTP) to pass a request from the applet.

Once the Web server has received the request, it passes it to the Message Router (shrcgi), one of the tunnel
feature's server programs. The Message Router is a CGI program that will pass the request on to the SAS
server, provided the statement or request meets certain criteria. By checking the tunnel feature's configuration
file (which is created by the system administrator), the Message Router can determine whether the request is

coming from an approved client machine•
going to an approved SAS server machine, through an approved port•
coming from an approved user, with an approved level of access (for SAS/CONNECT driver for Java
applets only)

•

Once the Message Router has determined that the statement or request is acceptable, it creates a detached
process called the Session Agent (shrproc), which communicates with the SAS server machine. Based on the
statement or request from the applet, the Session Agent either starts a SAS/CONNECT session on the SAS
server machine or establishes a connection to a SAS/SHARE server. Then, the Message Router passes the
statement or request to the Session Agent, and the Session Agent passes it directly to the SAS/CONNECT or
SAS/SHARE server.

After the SAS server has processed the statement or request, it returns the data to the Session Agent. The
Session Agent passes the data to the Message Router, which then passes it to the applet running on the client
machine.

21

The Tunnel Feature's Configuration File
The information in the tunnel feature's configuration file controls access to remote SAS sessions. The
configuration file is required; it allows the administrator to limit which machines are accessed and through
which ports and client machines they are accessed.

For the SAS/CONNECT driver for Java, the configuration file also controls which user IDs are allowed to
connect to the SAS server and the commands that those users are allowed to use to start the remote SAS
session. Without the configuration file, there would be no limits on the commands that users could execute
during the process of starting SAS.

Using a Configuration File

To use a configuration file, the administrator creates the shrcgi.cfg file, specifies any options that are needed,
and stores it on the Web server in the directory specified by the environment variable, SHRCGI_CFG. If you
have not set SHRCGI_CFG, the Message Router looks for the configuration file in your CGI directory.

Note: The Message Router reads the configuration file each time the communication session is started with a
particular host.

The shrcgi.cfg file included with the tunnel feature archive is a configuration file template. You must modify
it to specify configuration information that is specific to your site. Do not attempt to use the template file as
the final configuration file because it does not include your specific host and port names.

22

A Sample Configuration File
A Sample Configuration File

A configuration file is required for the tunnel feature's server programs.
This configuration file must be modified for your configuration. The tunnel
feature will not work on your system if you have not updated this file with
the proper information.

The tunnel feature's server programs will look for this file in the same
directory where they are located. You have the option of overriding this
default using an environment variable. This option is documented in our
documentation package.

The following lines specify which hosts, ports, SAS commands and usernames
are allowed by the tunnel feature's programs.

Any lines preceding the first SASHOST line are considered global parameters
and are added to all SASHOST groups below. The following TIMEOUT parameter
would apply to all hosts.

TIMEOUT=60

The SASHOST parameter in this config file specifies that the first host
YOURTESTHOST will be allowed for SAS/CONNECT driver for Java applets and
SAS/SHARE driver for JDBC applets.

SASHOST=YOURTESTHOST

The SASPORT parameter specifies that the applets may connect to YOURTESTHOST
on ports 23 and 5010. In this particular example, port 23 is the telnet port
that is used to start the SAS/CONNECT session. Port 5010 is the port the
SAS/SHARE server is listening on. No other ports are will be allowed
access from the applets.

ALLOW_SASPORT=5010,23

The following parameters are used by the SAS/CONNECT driver for Java only.
They have no meaning for JDBC. Only the command specified by the alias
mySasCommand will be allowed for SAS/CONNECT driver for Java applets. You
must change this command to a valid command to start SAS on the host
YOURTESTHOST. All other commands will not be allowed.

mySasCommand = sas −dmr −noxcmd −nosyntaxcheck −noterminal −cleanup
ALLOW_RESPONSE_3=$mySasCommand

Only user1 and user 2 may access host YOURTESTHOST. All other users will be
denied access.

ALLOW_USERNAME=user1,user2

The next SASHOST parameter in this config file specifies that the other host
SECONDTESTHOST will be allowed for SAS/CONNECT driver for Java applets and
SAS/SHARE driver for JDBC applets. No other hosts will be allowed access from
the applets.

SASHOST=SECONDTESTHOST

Any user except user3 may access host SECONDTESTHOST.

DISALLOW_USERNAME=user3

23

Configuration File Options
This page describes all the options you can specify in the tunnel feature's configuration file and provides some
general guidelines for specifying the options.

Configuration File Guidelines

When you modify the shrcgi.cfg file, make sure you follow these guidelines:

For each SASHOST, first specify the SASHOST identifier (which can include wildcards), then
specify the options that apply to that host. If an option applies to more than one SASHOST, but not all
SASHOSTs, you must repeat the option for each host. If you want an option to apply to all
SASHOSTs, make it a global option by placing it before the first SASHOST line.

•

The options SASPORT, RESPONSE_x, CLIENTHOST, and USERNAME have ALLOW and
DISALLOW lists. The ALLOW lists and DISALLOW lists have similar functions: they both controls
which machines and users are able to connect to the remote SAS sessions. Use one or the other
depending on which will require a shorter list.

The DISALLOW list takes precedence over the ALLOW list. When the tunnel feature's server
programs receive a request from the applet, they check the DISALLOW list first. If the request
matches any value in the DISALLOW list, the request is rejected. The ALLOW list is checked only if
the DISALLOW list is not present or if the request did not match any values specified in the
DISALLOW list. If an ALLOW list is present, the request must match an option in the ALLOW list;
otherwise, the request is rejected.

•

You can use the asterisk (*) wildcard when specifying values in ALLOW or DISALLOW lists. For
example, C*AT matches CAT, CHAT, and CRAVAT.

•

You can use aliases in the configuration file to mask the actual SAS command that is being used to
invoke the remote SAS session. By masking the SAS command, the tunnel feature avoids exposing
any specific information about the configuration of your system.

•

You can specify only one set of options for each host. If you specify a second set of options for a host,
the second set is ignored. For example, if you specify options for the host identifier TEST*, and then
you specify options for TEST2, the tunnel feature ignores the options that are specified for TEST2.
When it receives a request that includes TEST2, the tunnel feature checks the request against the
options specified for TEST*.

•

If a configuration file entry accepts multiple values, delimit the values with commas only.•
Leading spaces are ignored.•
Line continuation is not supported. You can use lines up to 256 characters.•
To enter a comment, enter a pound sign (#) as the first character on each line of the comment. The
Message Router ignores lines that begin with the pound sign.

•

Configuration File Example

The following configuration options apply to two hosts: TESTER and WIZARD.

 SASHOST=TESTER
 ALLOW_USERNAME=XYZ,A*,QRS
 DISALLOW_USERNAME=ABC

 SASHOST=WIZARD
 ALLOW_RESPONSE_3=sas,sas −dms

The USERNAME specifications apply only to the TESTER host, and the SASCOMMAND specification
applies only to the WIZARD host. Only users with the IDs XYZ, QRS, and those starting with A, except

24

ABC, can connect to the host machine TESTER. On WIZARD, the only SAS commands allowed are the two
commands shown in the ALLOW list (assuming that RESPONSE_3 is defined as the response to the
command prompt).

Configuration Option

This section lists the options you can define in the tunnel feature's configuration file.

Options for SAS/SHARE Servers and SAS/CONNECT Servers

The following options apply to both SAS/SHARE and SAS/CONNECT:

SASHOST=hostname
Identifies the host (node) name or remote IP addresses of the machines on which your SAS/SHARE
server is running or on which you want to start your SAS/CONNECT session. SASHOST specifies a
single entry; it is not a comma delimited list. For each SASHOST, first specify the SASHOST
identifier (which can include wildcards), then specify the options that apply to that host. Users cannot
connect to hosts that are not included in the configuration file. To remove any restrictions on the
hosts, use a wildcard to specify all hosts, SASHOST=*.

Note: The tunnel feature will look for an exact match, so if you specify a node name, but the request
that tunnel feature receives uses the IP address for the same node, the tunnel feature will not recognize
that the node name and IP address are for the same node.

ALLOW_SASPORT=port1,port2...
DISALLOW_SASPORT=port1,port2...

Lists the ports that can/cannot be used to establish a connection. For the SAS/CONNECT, specify the
ports on which the Telnet daemon or spawner will receive requests. For SAS/SHARE, list the public
ports that SAS/SHARE server is listening to.

LOG=log_file_name
Identifies a log file that can be used for debugging tunneling problems.

Note: Information will be added to this log file every time the tunneling feature is used, potentially
creating an extremely large file. Consider periodically deleting the contents of the file, or remove this
option setting from the configuration file after your tunneling problems have been resolved.

ALLOW_RESPONSE_x=response1, response2...
DISALLOW_RESPONSE_x=response1, response2...

Lists the allowed/disallowed Telnet (or spawner) responses where x is from 1 to 5. (The aliases
$USERNAME and $PASSWORD are always allowed, provided you have defined them. See alias
below.)

ALLOW_CLIENTHOST=node1,node2...
DISALLOW_CLIENTHOST=node1,node2...

Lists the node names or remote IP addresses of the machines that can/cannot connect to a
SAS/SHARE server or start a SAS/CONNECT session. The tunnel feature will look for an exact
match, so if you specify a node name, but the request that the tunnel feature receives uses the IP
address for the same node, the tunnel feature will not recognize that the node name and IP address are
for the same node. Also, remember that the apparent requester might be a proxy executing the HTTP
request on behalf of another machine.

TIMEOUT=nnn
Specifies the amount of time (in minutes) that the tunnel feature is to wait for activity before closing
the connection between the Protocol Interpreter and the SAS/SHARE server or SAS/CONNECT
session. The default timeout is 30 minutes. After the timeout expires, the tunnel feature closes the
Protocol Interpreter and the session ends.

WAIT=nnn
25

Specifies the amount of time (in seconds) that the tunnel feature is to wait when connecting to a
SAS/SHARE server or SAS/CONNECT session. The default time is 60 seconds.

alias=response−to−substitute
Specifies a response to substitute for the alias. Aliases are case insensitive, and the first character must
be a dollar sign ($). For example, if you define the following alias:

 mycommand=sas −dmr

you could then refer to the command using its alias, like so:

 ALLOW_RESPONSE=$mycommand

Options for SAS/SHARE Servers Only

The following option applies to SAS/SHARE only:

HELLO=nnn
Specifies the amount of time (in seconds) that the tunnel feature will wait for SAS/SHARE
initialization processing, which occurs immediately after the connection to the SAS/SHARE server is
established. The default time is 45 seconds.

Options for SAS/CONNECT Servers Only

The following option applies to SAS/CONNECT only:

ALLOW_USERNAME=user1,user2...
DISALLOW_USERNAME=user1,user2...

Lists the user names that can/cannot be used to log in to the remote SAS session.

26

Using the Tunnel Feature
To use the tunnel feature, you must install the server programs and modify the configuration file to include
your system information.

You must also ensure that the routerUrl property is passed to driver's communication classes. The routerUrl
property is set as a parameter on the <applet> tag in your HTML file. If you are using the tunnel server
programs, you should add a line to the <applet> tag that has the following format:

 <param name=routerUrl value="http://yourhost.com/cgi−bin/shrcgi.exe">

Note: Your applet classes must be provided from the same Web server on which you have installed the tunnel
feature's server programs. If the applet tries to access a different Web server, your applet will get a security
violation.

27

Debugging Tips
This page provides debugging tips for some of the problems you might encounter while trying to run an
applet.

Create a stable environment.

When you are experiencing problems with an applet, the first thing you should do is create a stable
environment. For our tools for Java, we recommend that you use the Java Plug−in or Appletviewer (both are
available from JavaSoft). You can download the Java Plug−in from the JavaSoft site at
java.sun.com/products/plugin.

Once you install the Java Plug−in or Appletviewer, run the applet that is not functioning properly. If it
behaves as expected in this environment, the problem most likely is caused by an incompatibility with the
applet and your browser. If the applet still does not function, check the exceptions and messages that are
returned, then look for more information in the remainder of this guide.

If you are running the Java Plug−in, you might need to turn on the Java console:

Close your Web browser.1.
Select Java Plug−In ControlPanel from your Programs list.2.
Select Show Java Console from the Properties window.3.
Select Apply.4.

The next time you run an applet, the Java console will display. In addition to reviewing the information
provided here, you should also review the information provided in the FAQ for the plug−in at
java.sun.com/products/plugin/plugin.faq.html.

If you are using the tunnel feature, turn on logging.

The tunnel feature includes a logging mechanism that is an excellent debugging tool. If you are having
problems running tunneled applets, add LOG=filename to the configuration file for the tunnel feature to
turn logging on.

Note: This file can get large. Be sure to periodically delete or move the contents of this file.

For more information, refer to troubleshooting information for tunneled applets.

Verify your installation and system requirements.

Review the instructions (especially the sections on testing your installation) provided in the readme.txt files.
You might also want to verify your directory structure by referring to the information in the archive.txt or
package.txt files.

If the applet is installed correctly, verify that your environment meets the requirements for that applet or
driver. View the requirements of the appropriate Java tool now:

requirements for SAS/CONNECT driver for Java•
requirements for the tunnel feature.•

28

Your Turn

We welcome your feedback.

• If you have comments about this book, please send them to
yourturn@sas.com. Include the full title and page numbers (if
applicable).

• If you have comments about the software, please send them to
suggest@sas.com.

SAS® Publishing delivers!
Whether you are new to the workforce or an experienced professional, you need to distinguish yourself in this rapidly
changing and competitive job market. SAS® Publishing provides you with a wide range of resources to help you set
yourself apart.

SAS® Press Series
Need to learn the basics? Struggling with a programming problem? You’ll find the expert answers that you
need in example-rich books from the SAS Press Series. Written by experienced SAS professionals from
around the world, these books deliver real-world insights on a broad range of topics for all skill levels.

s u p p o r t . s a s . c o m / s a s p r e s s
SAS® Documentation
To successfully implement applications using SAS software, companies in every industry and on every
continent all turn to the one source for accurate, timely, and reliable information—SAS documentation. We
currently produce the following types of reference documentation: online help that is built into the software,
tutorials that are integrated into the product, reference documentation delivered in HTML and PDF—free on
the Web, and hard-copy books.

s u p p o r t . s a s . c o m / p u b l i s h i n g
SAS® Learning Edition 4.1
Get a workplace advantage, perform analytics in less time, and prepare for the SAS Base Programming
exam and SAS Advanced Programming exam with SAS® Learning Edition 4.1. This inexpensive, intuitive
personal learning version of SAS includes Base SAS® 9.1.3, SAS/STAT®, SAS/GRAPH®, SAS/QC®, SAS/ETS®,
and SAS® Enterprise Guide® 4.1. Whether you are a professor, student, or business professional, this is a
great way to learn SAS.

s u p p o r t . s a s . c o m / L E

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.
Other brand and product names are trademarks of their respective companies. © 2008 SAS Institute Inc. All rights reserved. 474059_1US.0108

http://support.sas.com/saspress
http://support.sas.com/publishing
http://support.sas.com/LE

	Table of Contents
	 About the SAS/CONNECT Driver for Java
	 SAS/CONNECT Driver for Java Overview
	 Requirements for the SAS/CONNECT Driver for Java
	Requirements for Deploying Applets
	Web Server
	SAS Server

	 How SAS/CONNECT Driver for Java Works
	Connecting to a Remote SAS Session
	Connection Properties
	The Tunneling Property
	Timeout Properties
	Encryption Properties
	Other Useful Properties

	Using Applet Parameters to Pass Connection Information
	Constructing the Connection Object
	Ending the Remote SAS Session

	SAS/CONNECT Server Configuration and the textTransportFormat Property
	Example

	Connection Properties and Telnet Connection Information
	Telnet Example
	Mapping Connection Properties to Telnet Connection Information

	 About the Tunnel Feature
	The Tunnel Feature Overview
	Requirements for the Tunnel Feature
	Supported Platforms

	How the Tunnel Feature Works
	The Tunnel Feature's Configuration File
	Using a Configuration File

	A Sample Configuration File
	Configuration File Options
	Configuration File Guidelines
	Configuration File Example
	Configuration Option
	Options for SAS/SHARE Servers and SAS/CONNECT Servers
	Options for SAS/SHARE Servers Only
	Options for SAS/CONNECT Servers Only

	Using the Tunnel Feature
	 Debugging Tips

