
SAS® 9.4 In-Database
Products
User’s Guide
Fifth Edition

SAS® Documentation

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2015. SAS® 9.4 In-Database Products: User's Guide, Fifth
Edition. Cary, NC: SAS Institute Inc.

SAS® 9.4 In-Database Products: User's Guide, Fifth Edition

Copyright © 2015, SAS Institute Inc., Cary, NC, USA

All rights reserved. Produced in the United States of America.

For a hard-copy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS Institute Inc.

For a web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at the time you acquire this
publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the publisher is illegal and
punishable by law. Please purchase only authorized electronic editions and do not participate in or encourage electronic piracy of copyrighted
materials. Your support of others' rights is appreciated.

U.S. Government License Rights; Restricted Rights: The Software and its documentation is commercial computer software developed at private
expense and is provided with RESTRICTED RIGHTS to the United States Government. Use, duplication or disclosure of the Software by the
United States Government is subject to the license terms of this Agreement pursuant to, as applicable, FAR 12.212, DFAR 227.7202-1(a), DFAR
227.7202-3(a) and DFAR 227.7202-4 and, to the extent required under U.S. federal law, the minimum restricted rights as set out in FAR 52.227-19
(DEC 2007). If FAR 52.227-19 is applicable, this provision serves as notice under clause (c) thereof and no other notice is required to be affixed to
the Software or documentation. The Government's rights in Software and documentation shall be only those set forth in this Agreement.

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513-2414.

February 2015

SAS provides a complete selection of books and electronic products to help customers use SAS® software to its fullest potential. For more
information about our offerings, visit support.sas.com/bookstore or call 1-800-727-3228.

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other
countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Contents

What’s New in SAS 9.4 In-Database Products . ix

PART 1 Introduction 1

Chapter 1 • SAS In-Database Processing . 3
Introduction to SAS In-Database Processing . 3
Deployed Components for In-Database Processing . 5
Where to Go from Here . 9

PART 2 SAS Scoring Accelerator 11

Chapter 2 • Introduction to the SAS Scoring Accelerator . 13
SAS Scoring Accelerator for SAS/ACCESS Databases . 13
SAS Scoring Accelerator for SPD Server . 15
Scoring with User-Defined Functions and the SAS Embedded Process 17
Considerations When Creating or Modifying DATA Step Score Code 17
Special Characters in Directory Names . 19

Chapter 3 • Exporting the Scoring Model Files from SAS Enterprise Miner 23
Overview of the Score Code Export Node . 23
Comparing the Score Code Export Node with Registering Models

on the SAS Metadata Server . 24
Using the Score Code Export Node in a Process Flow Diagram 24
Output Created by the Score Code Export Node . 25

Chapter 4 • SAS Scoring Accelerator for Aster . 29
Overview of Running Scoring Models in Aster . 29
Running the %INDAC_PUBLISH_MODEL Macro . 30
Scoring Files and Functions inside the Aster Database . 35

Chapter 5 • SAS Scoring Accelerator for DB2 under UNIX . 39
Overview of Running Scoring Models in DB2 . 39
Using Scoring Functions to Run Scoring Models . 40
Using the SAS Embedded Process to Run Scoring Models . 45
Running the %INDB2_PUBLISH_MODEL Macro . 50
DB2 Permissions . 57

Chapter 6 • SAS Scoring Accelerator for Greenplum . 59
Overview of Running Scoring Models in Greenplum . 59
Using Scoring Functions to Run Scoring Models . 60
Using the SAS Embedded Process to Run Scoring Models . 65
Running the %INDGP_PUBLISH_MODEL Macro . 71
Greenplum Permissions . 76

Chapter 7 • SAS Scoring Accelerator for Hadoop . 77
Overview of Running Scoring Models in Hadoop . 77
Running Scoring Models in Hadoop . 77
INDCONN Macro Variable . 79
%INDHD_PUBLISH_MODEL Syntax . 81
%INDHD_RUN_MODEL Syntax . 83
Creating a Metadata File for the Input Data File . 88
Scoring Output . 90
Hadoop Permissions . 91

Chapter 8 • SAS Scoring Accelerator for Netezza . 93
Overview of Running Scoring Models in Netezza . 93
Using Scoring Functions to Run Scoring Models . 94
Using the SAS Embedded Process to Run Scoring Models . 98
Running the %INDNZ_PUBLISH_MODEL Macro . 104
Netezza Permissions . 111

Chapter 9 • SAS Scoring Accelerator for Oracle . 113
Overview of Running Scoring Models . 113
Oracle Permissions . 114
How to Run a Scoring Model in Oracle . 114
Creating a Model Table . 115
Running the %INDOR_PUBLISH_MODEL Macro . 117
Oracle Scoring Files . 120
SASEPFUNC Table Function . 121

Chapter 10 • SAS Scoring Accelerator for SAP HANA . 125
Overview of Running Scoring Models in SAP HANA . 125
How to Run a Scoring Model in SAP HANA . 126
INDCONN Macro Variable . 126
Creating the Model Table . 128
Running the %INDHN_PUBLISH_MODEL Macro . 131
Running the %INDHN_RUN_MODEL Macro . 134
Scoring Output . 137
SAP HANA Permissions . 137

Chapter 11 • SAS Scoring Accelerator for SPD Server . 139
Overview of Running Scoring Models in SPD Server . 139
Running Scoring Models in SPD Server . 139
INDCONN Macro Variable . 141
INDDATA Macro Variable . 141
%INDSP_PUBLISH_MODEL Macro Syntax . 142
%INDSP_RUN_MODEL Macro Syntax . 144
Scoring Output . 145
SPD Server Permissions . 148

Chapter 12 • SAS Scoring Accelerator for Teradata . 149
Overview of Running Scoring Models in Teradata . 149
Using Scoring Functions to Run Scoring Models . 150
Using the SAS Embedded Process to Run Scoring Models . 153
Running the %INDTD_PUBLISH_MODEL Macro . 164
Teradata Permissions . 169

Chapter 13 • SAS Scoring Accelerator and SAS Model Manager . 171
Using the SAS Scoring Accelerator with SAS Model Manager 171

vi Contents

PART 3 SAS In-Database Code Accelerator 173

Chapter 14 • Using the SAS In-Database Code Accelerator . 175
Overview of the SAS In-Database Code Accelerator . 175
SAS In-Database Code Accelerator for Greenplum . 176
SAS In-Database Code Accelerator for Hadoop . 176
SAS In-Database Code Accelerator for Teradata . 179
Using the DS2ACCEL Option to Control In-Database Processing 179
Considerations and Limitations . 180
BY-Group Processing When Running Thread Programs inside the Database 181
SAS In-Database Code Accelerator Examples . 182

PART 4 In-Database DATA Step Processing 189

Chapter 15 • DATA Step Processing in Hadoop . 191
DATA Step Processing in Hadoop . 191
Requirements for DATA Step Processing . 192
Restrictions in DATA Step Processing . 192
Example: DATA Step Program for Hadoop . 193

PART 5 Format Publishing and the SAS_PUT() Function
195

Chapter 16 • Deploying and Using SAS Formats inside the Database 197
Using SAS Formats and the SAS_PUT() Function . 197
How It Works . 198
Format Publishing with User-Defined Functions and the SAS Embedded Process . . . 200
Special Characters in Directory Names . 200
Considerations and Limitations with User-Defined Formats . 202
Tips for Using the Format Publishing Macros . 202
Tips for Using the SAS_PUT() Function . 203
Determining Format Publish Dates . 203

Chapter 17 • Deploying and Using SAS Formats in Aster . 205
User-Defined Formats in the Aster Database . 205
Publishing SAS Formats in Aster . 206
Aster Format Files . 210
Using the SAS_PUT() Function in the Aster Database . 213
Aster Permissions . 217

Chapter 18 • Deploying and Using SAS Formats in DB2 under UNIX . 219
User-Defined Formats in the DB2 Database . 219
Publishing SAS Formats in DB2 . 219
Using the SAS_PUT() Function in the DB2 Database . 226
DB2 Permissions . 228

Chapter 19 • Deploying and Using SAS Formats in Greenplum . 231
User-Defined Formats in the Greenplum Database . 231
Publishing SAS Formats in Greenplum . 231
Using the SAS_PUT() Function in Greenplum . 236
Greenplum Permissions . 238

Contents vii

Chapter 20 • Deploying and Using SAS Formats in Netezza . 241
User-Defined Formats in the Netezza Data Warehouse . 241
Publishing SAS Formats in Netezza . 242
Using the SAS_PUT() Function in the Netezza Data Warehouse 247
Netezza Permissions . 250

Chapter 21 • Deploying and Using SAS Formats in Teradata . 251
User-Defined Formats in the Teradata EDW . 251
Publishing SAS Formats in Teradata . 252
Data Types and the SAS_PUT() Function . 256
Using the SAS_PUT() Function in the Teradata EDW . 258
Teradata Permissions . 261

PART 6 In-Database Procedures 263

Chapter 22 • Running SAS Procedures inside the Database . 265
Introduction to In-Database Procedures . 265
Running In-Database Procedures . 266
Procedures in Aster, DB2, Greenplum, Hadoop, Netezza, Oracle, and SAP HANA . 267
Procedures in Teradata . 267
Procedure Considerations and Limitations . 268
Using the MSGLEVEL Option to Control Messaging . 271

PART 7 System Options Reference 273

Chapter 23 • System Options That Affect In-Database Processing . 275
Dictionary . 275

PART 8 Appendix 283

Appendix 1 • Scoring File Examples . 285
Example of a .ds2 Scoring File . 285
Example of an Input and Output Variables Scoring File . 305
Example of a User-Defined Formats Scoring File . 312

Recommended Reading . 319
Index . 321

viii Contents

What’s New in SAS 9.4 In-
Database Products

Overview

In SAS 9.4, the following new features and enhancements were added to expand the
capabilities of the SAS In-Database products:

• In the February 2015 release of SAS 9.4, the following changes and additions were
made:

• The SAS In-Database Code Accelerator for Hadoop uses HCatalog to process
complex, non-delimited files. This enables the SAS In-Database Code
Accelerator for Hadoop to support Avro, ORC, RCFile, and Parquet file types.

• You can now use the DBCREATE_TABLE_OPTS table option to specify the
output SerDe, the output delimiter of the Hive table, the output ESCAPED BY
character, and any other CREATE TABLE syntax allowed by Hive.

• In the August 2014 release of SAS 9.4, the following changes and additions were
made:

• The SAS Scoring Accelerator and in-database processing of Base SAS
procedures is available for SAP HANA.

• Running limited DATA step scoring programs in Hadoop is now production.

• Numerous changes were made to the installation and configuration script for the
SAS Embedded Process for Hadoop.

• In the April 2014 release of SAS 9.4, documentation enhancements were made in the
following areas:

• installation and configuration of the SAS Embedded Process for Hadoop

• considerations when creating or modifying DATA step score code

• semaphore requirements when using the SAS Embedded Process for Greenplum

• In the December 2013 release of SAS 9.4, the following changes and additions were
made:

• Limited DATA step programs can be run inside Hadoop for scoring.

• New parameters have been added for the Hadoop INDCONN macro variable.

• New Hadoop JAR files are now tied to the version of Apache Hadoop that you
are using.

• The SAS In-Database Code Accelerator for Teradata now can run the DS2 data
program as well as the thread program inside the database.

ix

• DS2ACCEL, a new system option, controls whether the DS2 code is executed
inside the database. The default value is NONE, which prevents DS2 code from
executing inside the database.

• The PROC DS2 INDB option has changed its name to DS2ACCEL. INDB is still
supported. However, the default value for this option has changed from YES to
NO, which prevents DS2 code from executing in the database. This is a change
in behavior from the initial 9.4 release.

• In the September 2013 release of SAS 9.4, the following changes and additions were
made:

• In-database processing for Hadoop has been enhanced by the addition of the SAS
Scoring Accelerator for Hadoop.

• The autocall macros that initialized the publishing macros are no longer needed
for any DBMS. However, they are still supported.

• In the July 2013 release of SAS 9.4, the following changes and additions were made:

• The SAS Scoring Accelerator for SPD Server is available.

• In the June 2013 release of SAS 9.4, the following changes and additions were made:

• Greenplum and Teradata in-database processing has been enhanced by the
addition of the SAS In-Database Code Accelerators.

• The SAS In-Database Code Accelerator enables you to publish a DS2 thread
program to the database and execute that thread program in parallel inside the
database.

• In-database scoring for Netezza has been enhanced by the addition of the SAS
Embedded Process. The SAS Embedded Process is a SAS server process that
runs within Netezza to read and write data.

• Two columns have been added to the model table. The ModelUUID and Notes
columns assist in processing scoring models when using the SAS Embedded
Process.

• The Hadoop scripts that install, control, and provide status of the SAS Embedded
Process have changed. There is now just one script, sasep-server.sh, that installs
both the SAS Embedded Process and the Hadoop JAR files.

SAS In-Database Code Accelerator

February 2015 Release of SAS 9.4: Changes and Enhancements
In the February 2015 release of SAS 9.4, the following changes and additions were
made:

• The SAS In-Database Code Accelerator for Hadoop supports only Cloudera 5.2 and
Hortonworks 2.1 or later.

• The SAS In-Database Code Accelerator for Hadoop uses HCatalog to process
complex, non-delimited files.

• The SAS In-Database Code Accelerator for Hadoop now supports Avro, ORC,
RCFile, and Parquet file types.

x SAS In-Database Products

• For the SAS In-Database Code Accelerator for Hadoop, you can use the
DBCREATE_TABLE_OPTS table option to specify the output SerDe, the output
delimiter of the Hive table, the output escaped by, and any other CREATE TABLE
syntax allowed by Hive.

August 2014 Release of SAS 9.4: Changes and Enhancements
Hadoop in-database processing has been enhanced by the addition of the SAS In-
Database Code Accelerator. The SAS In-Database Code Accelerator enables you to
publish a DS2 thread and data program to the database and execute those programs in
parallel inside the database.

December 2013 Release of SAS 9.4: Changes and Enhancements
In the December 2013 release of SAS 9.4, the following changes and additions were
made:

• The SAS In-Database Code Accelerator for Teradata now runs the DS2 data program
as well as the thread program inside the database.

• DS2ACCEL, a new system option, controls whether the DS2 code is executed inside
the database. The default value is NONE, which prevents DS2 code from executing
inside the database.

• The PROC DS2 INDB option has changed its name to DS2ACCEL. INDB is still
supported. However, the default value for this option has changed from YES to NO.
This change prevents DS2 code from executing in the database. This is a change in
behavior from the initial SAS 9.4 release.

SAS 9.4: Changes and Enhancements
The SAS In-Database Code Accelerator enables you to publish a DS2 thread program to
the database and execute that thread program in parallel inside the database. Examples of
thread programs include large transpositions, computationally complex programs,
scoring models, and BY-group processing. The SAS In-Database Code Accelerator is
available for Greenplum and Teradata.

The SAS In-Database Code Accelerator must be licensed at your site.

Greenplum Changes

April 2014 Release of SAS 9.4: Changes and Enhancements
Information about semaphore requirements when using the SAS Embedded Process was
added to SAS In-Database Products: Administrator's Guide.

SAS 9.4: Changes and Enhancements
There are several changes for Greenplum:

SAS 9.4: Changes and Enhancements xi

• Version 1.2 of the Greenplum Partner Connector (GPPC) is now available and should
be installed if you use SAS Embedded Process 9.4.

• A new script, UninstallSASEPFiles.sh, is available. This script stops and uninstalls
the SAS Embedded Process on each database host node.

• You can now specify a non-default port when you create the connection string to
publish formats and models.

Hadoop Changes

August 2014 Release of SAS 9.4: Changes and Enhancements
In the August 2014 release of SAS 9.4, there are several Hadoop changes:

• You can now specify a fixed record format for the output file of the SAS Scoring
Accelerator for Hadoop. Previously, all output was delimited.

• SPD file formats are supported by the SAS Embedded Process for Hadoop.

• Instead of manually selecting the Hadoop JAR files to the client machine, the SAS
Embedded Process determines which version of the JAR files are required and
gathers them into a ZIP file for you to copy to the client machine.

• You now have the option whether to automatically start the SAS Embedded Process
when the installation is complete.

April 2014 Release of SAS 9.4: Changes and Enhancements
The documentation about the installation and configuration of the SAS Embedded
Process was enhanced.

December 2013 Release of SAS 9.4: Changes and Enhancements
In the December 2013 release of SAS 9.4, there are several Hadoop changes:

• The SAS Embedded Process and the SAS Scoring Accelerator for Hadoop support
Kerberos and Hive2 for both Cloudera and Hortonworks.

• The trace log messages for the SAS Embedded Process are now stored in the
MapReduce job log.

• A new option, hdfsuser, is available in the sasep-servers.sh script. hdfsuser specifies
the user ID that has Write access to HDFS root directory.

• A new parameter, HADOOP_CFG=, is available for the INDCONN macro variable.
The HADOOP_CFG= parameter specifies the location of the Hadoop configuration
file that is used with the %INDHD_PUBLISH_MODEL and the
%INDHD_RUN_MODEL macros.

• The Cloudera JAR files for the SAS Embedded Process have been replaced by a set
of Apache JAR files. The new JAR files are based on a release of the Apache
Hadoop instead of a particular Hadoop distributor.

xii SAS In-Database Products

September 2013 Release of SAS 9.4: Changes and Enhancements
In-database scoring for Hadoop is available.

SAS 9.4: Changes and Enhancements
The Hadoop scripts that install, control, and provide status of the SAS Embedded
Process have changed. There is now just one script, sasep-servers.sh, that installs both
the SAS Embedded Process and the Hadoop JAR files. Running this script also enables
you to start, stop, and provide status of the SAS Embedded Process.

DATA Step Processing in Hadoop

August 2014 Release of SAS 9.4: Changes and Enhancements
Running limited DATA step scoring programs in Hadoop is now production.

December 2013 Release of SAS 9.4: Changes and Enhancements
Limited DATA step scoring programs can be run inside Hadoop. This feature is pre-
production.

Netezza Changes

SAS 9.4: Changes and Enhancements
In-database scoring for Netezza has been enhanced by the addition of the SAS
Embedded Process. The SAS Embedded Process is a SAS server process that runs
within Netezza to read and write data. The SAS Embedded Process can be used with the
SAS Scoring Accelerator for Netezza to run scoring models.

In-Database Processing for SAP HANA

August 2014 Release of SAS 9.4: Changes and Enhancements
In-database scoring for SAP HANA is available. You can also run Base SAS procedures
inside SAP HANA.

August 2014 Release of SAS 9.4: Changes and Enhancements xiii

SAS Scoring Accelerator for SPD Server

July 2013 Release of SAS 9.4: Changes and Enhancements
In-database scoring for the SAS Scalable Performance Data Server is available.

Changes for Running In-Database Procedures

SAS 9.4: Changes and Enhancements
The PRESERVE_NAMES LIBNAME option no longer prevents in-database processing.

SAS Model Manager Changes

April 2014 Release of SAS 9.4: Changes and Enhancements
A new section was added about considerations when creating or modifying DATA step
score code.

SAS 9.4: Changes and Enhancements
Two columns have been added to the model table. The ModelUUID and Notes columns
assist in processing scoring models when using the SAS Embedded Process.

Autocall Macros

September 2013 Release of SAS 9.4: Changes and Enhancements
The following autocall macros are no longer needed for any DBMS. However, they are
still supported. These macros initialized the publishing macros.

%INDACPF %INDB2PF %INDGPPM %INDNZPM
%INDACPM %INDB2PM %INDNZPC %INDORPM
%INDB2PC %INDGPPC %INDNZPF %INDTDPF

xiv SAS In-Database Products

%INDB2PD %INDGPPF %INDNZPJ %INDTDPM

September 2013 Release of SAS 9.4: Changes and Enhancements xv

xvi SAS In-Database Products

Part 1

Introduction

Chapter 1
SAS In-Database Processing . 3

1

2

Chapter 1

SAS In-Database Processing

Introduction to SAS In-Database Processing . 3

Deployed Components for In-Database Processing . 5
Deployed Components for Aster . 5
Deployed Components for DB2 . 6
Deployed Components for Greenplum . 6
Deployed Components for Hadoop . 7
Deployed Components for Netezza . 7
Deployed Components for Oracle . 8
Deployed Components for SAP HANA . 8
Deployed Components for SPD Server . 9
Deployed Components for Teradata . 9

Where to Go from Here . 9

Introduction to SAS In-Database Processing
When using conventional processing to access data inside a data source, SAS asks the
SAS/ACCESS engine for all rows of the table being processed. The SAS/ACCESS
engine generates an SQL SELECT * statement that is passed to the data source. That
SELECT statement fetches all the rows in the table, and the SAS/ACCESS engine
returns them to SAS. As the number of rows in the table grows over time, network
latency grows because the amount of data that is fetched from the data source to SAS
increases.

SAS in-database processing integrates SAS solutions, SAS analytic processes, and third-
party data provider. Using SAS in-database processing, you can run scoring models,
some SAS procedures, DS2 thread programs, and formatted SQL queries inside the data
source. The following table lists the SAS products needed to use these features.

In-Database Feature Software Required Supported Data Providers

format publishing and the
SAS_PUT() function

• Base SAS

• SAS/ACCESS Interface to
the data source

Aster
DB2 under UNIX
Greenplum
Netezza
Teradata

3

In-Database Feature Software Required Supported Data Providers

scoring models • Base SAS

• SAS/ACCESS Interface to
the data source

• SAS Scoring Accelerator

• SAS Enterprise Miner

• SAS Scalable
Performance Data Server
(optional)

• SAS Model Manager
(optional)

Aster
DB2 under UNIX
Greenplum
Hadoop
Netezza
Oracle
SAP HANA
SPD Server
Teradata

*Base SAS procedures:

FREQ
RANK
REPORT
SORT
SUMMARY/MEANS
TABULATE

• Base SAS

• SAS/ACCESS Interface to
the data source

Aster
DB2 (UNIX and z/OS)
Greenplum
Hadoop
Oracle
Netezza
SAP HANA
Teradata

SAS/STAT procedures:

CORR
CANCORR
DMDB
DMINE
DMREG
FACTOR
PRINCOMP
REG
SCORE
TIMESERIES
VARCLUS

• Base SAS (for CORR)

• SAS/ACCESS Interface to
Teradata

• SAS/STAT (for
CANCORR,
FACTOR,PRINCOMP,
REG, SCORE,
VARCLUS)

• SAS/ETS (for
TIMESERIES)

• SAS Enterprise Miner (for
DMDB, DMINE,
DMREG)

• SAS Analytics
Accelerator

Teradata

DS2 threaded programs • Base SAS

• SAS/ACCESS Interface to
the data source

• SAS In-Database Code
Accelerator

Greenplum
Hadoop
Teradata

DATA step scoring programs • Base SAS

• SAS/ACCESS Interface to
Hadoop

Hadoop

4 Chapter 1 • SAS In-Database Processing

In-Database Feature Software Required Supported Data Providers

data quality operations • Base SAS

• SAS/ACCESS Interface to
Hadoop

• SAS/ACCESS Interface to
Teradata

• SAS In-Database Code
Accelerator

• SAS Data Loader for
Hadoop

• SAS Data Quality
Accelerator for Teradata

Hadoop
Teradata

extract and transform data • Base SAS

• SAS/ACCESS Interface to
Hadoop

• SAS/ACCESS Interface to
Teradata

• SAS Data Loader for
Hadoop

• SAS Data Loader for
Hadoop

• SAS Data Quality
Accelerator for Teradata

Hadoop
Teradata

* In-database processing of PROC RANK and PROC SORT is not supported by Hadoop.

Deployed Components for In-Database
Processing

Deployed Components for Aster
Components that are deployed to Aster for in-database processing are contained in a
self-extracting archive file (tkindbsrv-9.4_M2-n_lax.sh). n is a number that indicates the
latest version of the file. If this is the initial installation, n has a value of 1. Each time
you reinstall or upgrade, n is incremented by 1.

The archive file is located in the SAS-installation-directory/
SASTKInDatabaseServer/9.4/AsternClusteronLinuxx64/ directory.

The SAS Embedded Process is the component that is deployed in Aster. The SAS
Embedded Process contains run-time libraries, and other software that is installed on
your Aster system. The SAS scoring files created in Aster access the routines within the
run-time libraries.

In particular, the SAS System libraries, the SAS_SCORE() SQL/MR function, and the
SAS_PUT() SQL/MR function are installed. The SAS Scoring Accelerator for Aster
uses these libraries and the SAS_SCORE() SQL/MR function to run scoring models
inside the database. The SAS_PUT() function executes the format files in Aster. The

Deployed Components for In-Database Processing 5

SAS_PUT() function is deployed and stored in the NC_INSTALLED_FILES table
under either the PUBLIC schema (4.5) or the specified schema (4.6).

For more information about these components, see the installation and configuration
instructions in the SAS In-Database Products: Administrator's Guide.

Deployed Components for DB2
Components that are deployed to DB2 for in-database processing are contained in two
self-extracting archive files (acceldb2fmt-3.1-n_*.sh and tkindbsrv-9.4_M2-n_*.sh). n is
a number that indicates the latest version of the file. If this is the initial installation, n has
a value of 1. Each time you reinstall or upgrade, n is incremented by 1.

The first self-extracting archive file is located in the SAS-installation-
directory/SASFormatsLibraryForDB2/3.1/DB2on<AIX | Linux64>/
directory. The second self-extracting archive file is located in the SAS-
installation-directory/SASTKInDatabaseServer/9.4/DB2on<AIX |
Linuxx64>/ directory.

• The following components are deployed in the acceldb2fmt-3.1-n_*.sh file:

• The SAS formats library. The library contains many formats that are available in
Base SAS.

After you install the SAS formats library, the SAS scoring model functions and
the SAS_PUT() function created in DB2 can access the routines within its run-
time library.

• The binary files for the SAS_COMPILEUDF function.

The%INDB2_PUBLISH_COMPILEUDF macro registers the
SAS_COMPILEUDF function in the SASLIB schema of the DB2 database. The
SAS_COMPILEUDF function compiles the scoring model source files in the
DB2 database, links to the SAS formats library, and then copies the new object
files to a specified location.

• The binary files for the SAS_DELETEUDF function.

The %INDB2_PUBLISH_DELETEUDF macro registers the
SAS_DELETEUDF function in the SASLIB schema of the DB2 database. The
SAS_DELETEUDF function removes existing object files.

• The SAS Embedded Process is deployed in the tkindbsrv-9.4_M2-n_*.sh file. The
SAS Embedded Process contains run-time libraries and other software that is
installed on your DB2 system. The SAS scoring files created in DB2 access the
routines within the run-time libraries.

For more information about these components, see the installation and configuration
instructions in the SAS In-Database Products: Administrator's Guide.

Deployed Components for Greenplum
Components that are deployed to Greenplum for in-database processing are contained in
two self-extracting archive files (accelgplmfmt-3.1-n_lax.sh and tkindbsrv-9.4_M2-
n_lax.sh). n is a number that indicates the latest version of the file. If this is the initial
installation, n has a value of 1. Each time you reinstall or upgrade, n is incremented by 1.

The first self-extracting archive file is located in the SAS-installation-
directory/SASFormatsLibraryforGreenplum/3.1/
GreenplumonLinux64/ directory. The second self-extracting archive file is located in

6 Chapter 1 • SAS In-Database Processing

the SAS-installation-directory/SASTKInDatabaseServer/9.4/
GreenplumonLinux64/ directory.

• The following components are deployed in the accelgplmfmt-3.1-n_lax.sh file:

• The SAS formats library. The library contains many formats that are available in
Base SAS.

After you install the SAS formats library, the SAS scoring model functions and
the SAS_PUT() function created in Greenplum can access the routines within
its run-time library.

• The binary files for the SAS_COMPILEUDF function and other utility functions.

The %INDGP_PUBLISH_COMPILEUDF macro registers the
SAS_COMPILEUDF function and other utility functions in the database. The
utility functions are called by the %INDGP_PUBLISH_MODEL scoring
publishing macro.

• The SAS Embedded Process is deployed in the tkindbsrv-9.4_M2-n_lax.sh file. The
SAS Embedded Process contains run-time libraries and other software that is
installed on your Greenplum system. The SAS Embedded Process accesses the
scoring files when a scoring operation is performed. The SAS Embedded Process
also executes the DS2 thread program when using the SAS In-Database Code
Accelerator.

For more information about these components, see the installation and configuration
instructions in the SAS In-Database Products: Administrator's Guide.

Deployed Components for Hadoop
Components that are deployed to Hadoop for in-database processing are contained in a
self-extracting archive file, tkindbsrv-9.42_M1-n_lax.sh). n is a number that indicates
the latest version of the file. If this is the initial installation, n has a value of 1. Each time
you reinstall or upgrade, n is incremented by 1.

The archive file is located in the SAS-installation-directory/
SASTKInDatabaseServer/9.4/HadooponLinux64 directory.

The SAS Embedded Process and Hadoop JAR file installer are the components that are
deployed in Hadoop. The SAS Embedded Process contains run-time libraries, and other
software that is installed on your Hadoop system.

For more information, see the SAS In-Database Products: Administrator's Guide.

Deployed Components for Netezza
Components that are deployed to Netezza for in-database processing are contained in
two self-extracting archive files (accelnetzfmt-3.1-n_lax.sh and tkindbsrv-9.4_M2-
n_lax.sh). n is a number that indicates the latest version of the file. If this is the initial
installation, n has a value of 1. Each time you reinstall or upgrade, n is incremented by 1.

The first archive file is located in the SAS-installation-directory/
SASFormatsLibraryforNetezza/3.1/Netezza32bitTwinFin/ directory. The
second archive file is located in the SAS-installation-directory/
SASTKInDatabaseServer/9.4/Netezza64bitTwinFin directory.

The following components are deployed in the accelnetzfmt-3.1-n_lax.sh file:

• The SAS formats library. The library contains many formats that are available in
Base SAS.

Deployed Components for In-Database Processing 7

The SAS formats library is published to the database as an object.

After the %INDNZ_PUBLISH_JAZLIB macro publishes and registers the SAS
formats library, the SAS scoring model functions and the SAS_PUT() function
created in Netezza can access the routines within its run-time library.

• The binary files for SAS_COMPILEUDF and other utility functions.

The %INDNZ_PUBLISH_COMPILEUDFmacro creates the SAS_COMPILEUDF,
SAS_DictionaryUDF, and SAS_HextToText functions that are needed to facilitate
the publishing of the scoring models, the SAS_PUT() function, and user-defined
formats.

• The SAS Embedded Process is deployed in the tkindbsrv-9.4_M2-n_lax.sh file. The
SAS Embedded Process contains run-time libraries, and other software that is
installed on your Netezza system. The SAS Embedded Process accesses the scoring
files when a scoring operation is performed.

The %INDNZ_PUBLISH_JAZLIB and %INDNZ_PUBLISH_COMPILEUDF macros
are typically run by your system or database administrator.

For more information, see the SAS In-Database Products: Administrator's Guide.

Deployed Components for Oracle
Components that are deployed to Oracle for in-database processing are contained in a
self-extracting archive file (tkindbsrv-9.4_M2-n_lax.sh). n is a number that indicates the
latest version of the file. If this is the initial installation, n has a value of 1. Each time
you reinstall or upgrade, n is incremented by 1.

The archive file is located in the SAS-installation-directory/
SASTKInDatabaseServer/9.4/OracleDatabaseonLinuxx64/ directory.

The SAS Embedded Process is the component that is deployed in Oracle. The SAS
Embedded Process contains run-time libraries and other software that is installed on
your Oracle system. The SAS scoring files created in Oracle access the routines within
the run-time libraries.

For more information about these components, see the installation and configuration
instructions in the SAS In-Database Products: Administrator's Guide.

Deployed Components for SAP HANA
Components that are deployed to SAP HANA for in-database processing are contained
in a self-extracting archive file, tkindbsrv-9.4-1-n_lax.sh). n is a number that indicates
the latest version of the file. If this is the initial installation, n has a value of 1. Each time
you reinstall or upgrade, n is incremented by 1.

The archive file is located in the SAS-installation-directory/
SASTKInDatabaseServer/9.4/SAPHANAonLinux64 directory.

The SAS Embedded Process is the component that is deployed in SAP HANA. The SAS
Embedded Process contains run-time libraries and other software that is installed on
your SAP HANA system. The SAS scoring files created in SAP HANA access the
routines within the run-time libraries.

For more information about these components, see the installation and configuration
instructions in the SAS In-Database Products: Administrator's Guide.

8 Chapter 1 • SAS In-Database Processing

Deployed Components for SPD Server
The SAS Scoring Accelerator for SPD Server requires SAS Scalable Performance Data
Server version 5.1 and SAS 9.4.

If you have a model that was produced by SAS Enterprise Miner, an active SPD Server,
and a license for the SAS Scoring Accelerator for SPD Server, you have everything that
is needed to run scoring models in the SPD Server. Installation of an in-database
deployment package is not required.

Deployed Components for Teradata
Components that are deployed to Teradata for in-database processing are contained in
two RPM files (accelterfmt-3.1-n.x86_64.rpm and tkindbsrv-9.42_M1-n.x86_64.rpm). n
is a number that indicates the latest version of the file. If this is the initial installation, n
has a value of 1. Each time you reinstall or upgrade, n is incremented by 1.

The first RPM file is located in the SAS-installation-directory/
SASFormatsLibraryforTeradata/3.1/TeradataonLinux/ directory. The
second RPM file is located in the SAS-installation-directory/
SASTKInDatabaseServer/9.4/TeradataonLinux/ directory.

The components that are deployed are the SAS formats library and the SAS Embedded
Process.

The SAS formats library contains many of the formats that are available in Base SAS.
After you install the SAS formats library, the SAS scoring model functions and the
SAS_PUT() function can access the routines within its run-time library.

The SAS Embedded Process contains run-time libraries, and other software that is
installed on your Teradata system. The SAS scoring files created in Teradata access the
routines within the run-time libraries. The SAS Embedded Process also executes the
DS2 thread program when using the SAS In-Database Code Accelerator.

For more information about installing and configuring these components, see the SAS In-
Database Products: Administrator's Guide.

Where to Go from Here
After the in-database deployment packages have been installed and configured, see the
following topics to use in-database processing inside your database:

In-Database Processing Task Documentation

Run scoring models. Chapter 2, “Introduction to the SAS Scoring
Accelerator,” on page 13

Publish user-defined formats and use the
SAS_PUT() function.

Chapter 16, “Deploying and Using SAS
Formats inside the Database,” on page 197

Run procedures inside the database. Chapter 22, “Running SAS Procedures inside
the Database,” on page 265

Where to Go from Here 9

In-Database Processing Task Documentation

Run DS2 thread programs inside the database. Chapter 14, “Using the SAS In-Database
Code Accelerator,” on page 175

Run DATA step scoring programs in Hadoop. Chapter 15, “DATA Step Processing in
Hadoop,” on page 191

Perform data quality operations SAS Data Loader for Hadoop: User's Guide

Extract and transform data SAS Data Loader for Hadoop: User's Guide

10 Chapter 1 • SAS In-Database Processing

Part 2

SAS Scoring Accelerator

Chapter 2
Introduction to the SAS Scoring Accelerator . 13

Chapter 3
Exporting the Scoring Model Files from SAS Enterprise Miner 23

Chapter 4
SAS Scoring Accelerator for Aster . 29

Chapter 5
SAS Scoring Accelerator for DB2 under UNIX . 39

Chapter 6
SAS Scoring Accelerator for Greenplum . 59

Chapter 7
SAS Scoring Accelerator for Hadoop . 77

Chapter 8
SAS Scoring Accelerator for Netezza . 93

Chapter 9
SAS Scoring Accelerator for Oracle . 113

Chapter 10
SAS Scoring Accelerator for SAP HANA . 125

Chapter 11
SAS Scoring Accelerator for SPD Server . 139

Chapter 12
SAS Scoring Accelerator for Teradata . 149

Chapter 13
SAS Scoring Accelerator and SAS Model Manager 171

11

12

Chapter 2

Introduction to the SAS Scoring
Accelerator

SAS Scoring Accelerator for SAS/ACCESS Databases . 13
Overview of the SAS Scoring Accelerator for SAS/ACCESS Databases 13
How It Works for SAS/ACCESS Databases . 14

SAS Scoring Accelerator for SPD Server . 15
Overview of the SAS Scoring Accelerator for SPD Server 15
How It Works for SAS SPD Server . 15

Scoring with User-Defined Functions and the SAS Embedded Process 17

Considerations When Creating or Modifying DATA Step Score Code 17
How the SAS Scoring Accelerator Processes the DATA Step Score Code 17
Supported Language Elements and Syntax . 17

Special Characters in Directory Names . 19

SAS Scoring Accelerator for SAS/ACCESS
Databases

Overview of the SAS Scoring Accelerator for SAS/ACCESS
Databases

When using conventional processing to access data inside a data source, SAS Enterprise
Miner asks the SAS/ACCESS engine for all rows of the table being processed. The
SAS/ACCESS engine generates an SQL SELECT * statement that is passed to the data
source. That SELECT statement fetches all the rows in the table, and the SAS/ACCESS
engine returns them to SAS Enterprise Miner. As the number of rows in the table grows
over time, network latency grows. This happens because the amount of data that is
fetched from the data source to the SAS scoring process increases.

The SAS Scoring Accelerator embeds the robustness of SAS Enterprise Miner scoring
models directly in the highly scalable data source. By using the SAS In-Database
technology and the SAS Scoring Accelerator, the scoring process is done inside the data
source and thus does not require the transfer of data.

The SAS Scoring Accelerator takes the models that are developed by SAS Enterprise
Miner and translates them into scoring files or functions that can be deployed inside the
data source. After the scoring functions are published, the functions extend the data
source’s SQL language and can be used in SQL statements like other data source

13

functions. After the scoring files are published, they are used by the SAS Embedded
Process to run the scoring model.

The SAS Scoring Accelerator consists of two components:

• the Score Code Export node in SAS Enterprise Miner. This extension exports the
model scoring logic (including metadata about the required input and output
variables) from SAS Enterprise Miner.

• the publishing client that includes a scoring publishing macro. This macro translates
the scoring model into files that are used inside the data source to run the scoring
model. The publishing client then uses the SAS/ACCESS Interface to the data source
to publish the files to the data source.

You can also use the SAS Scoring Accelerator and SAS Model Manager to import
SAS/STAT linear models and SAS High-Performance Analytics models from a SAS
package file (.SPK). Models that have a DATA step score code type can be scored,
published, and included in performance monitoring. For more information, see the SAS
Model Manager: User's Guide.

How It Works for SAS/ACCESS Databases
Using SAS Enterprise Miner, you can generate SAS DATA step code that contains
scoring functions. The SAS Scoring Accelerator takes the scoring model code, the
associated property file that contains model inputs and outputs, and a catalog of user-
defined formats. The SAS Scoring Accelerator deploys (or publishes) them to the data
source. Inside the data source, one or more scoring files or functions are created and
registered for use in SQL queries.

The following figure illustrates this process.

Figure 2.1 Process Flow Diagram

SAS

Data Mining Client Publishing Client

SAS

score.sas

Format
Catalog Install

Script

Model Publishing Macro

score.xml

SAS
Enterprise

Miner
SAS/ACCESS Interface

Client
Application

Scoring
Files or

Functions

Deployed
Components

for In-Database
Processing

Score Code
Export Node

3

2

1

4

DBMS

1 Install the components that are necessary for in-database processing.

14 Chapter 2 • Introduction to the SAS Scoring Accelerator

The components that are deployed are different for each data source. For more
information, see the SAS In-Database Products: Administrator's Guide.

Note: This is a one-time installation process.

2 Use SAS Enterprise Miner to create a scoring model. Use the Score Code Export
node to export files that are used to create the scoring files or functions to a score
output directory.

For more information, see Chapter 3, “Exporting the Scoring Model Files from SAS
Enterprise Miner,” on page 23.

3 Start SAS and run the SAS publishing macros. This creates the files that are needed
to build the scoring files or functions and publish those files to the data source.

For more information, see the section on publishing scoring model files in the
Scoring Accelerator chapter for your data source.

4 After the scoring files or functions are created, you can run your scoring model.

For more information, see the topic on running the scoring model in the Scoring
Accelerator chapter for your data source.

SAS Scoring Accelerator for SPD Server

Overview of the SAS Scoring Accelerator for SPD Server
The SAS Scoring Accelerator for SPD Server embeds the robustness of SAS Enterprise
Miner scoring models directly in the highly scalable SPD Server. By using the SAS In-
Database technology and the SAS Scoring Accelerator, the scoring process is done
inside the SPD Server.

The SAS Scoring Accelerator for SPD Server takes the models that are developed by
SAS Enterprise Miner and creates SPD server tables.

The SAS Scoring Accelerator consists of three components:

• the Score Code Export node in SAS Enterprise Miner. This extension exports the
model scoring logic (including metadata about the required input and output
variables) from SAS Enterprise Miner.

• a scoring publishing macro. This macro translates the scoring model into two or
three SPD server tables that are needed to run the scoring model.

• a run model macro. This macro takes the SPD Server tables that are produced by the
scoring publishing macro and an input data table and runs the scoring model. This
macro produces an SPD Server table that contains the output from the scoring model.

How It Works for SAS SPD Server
Using SAS Enterprise Miner, you can generate SAS DATA step code. The SAS Scoring
Accelerator for SPD Server takes the scoring model code, the associated property file
that contains model inputs and outputs, and, if needed, a catalog of user-defined formats.
The SAS Scoring Accelerator for SPD Server deploys (or publishes) them to the SPD
Server. Inside the SPD Server, SPD Server tables are created and used to run the scoring
model. An output table that contains the results is created.

SAS Scoring Accelerator for SPD Server 15

Note: Only the installation of Base SAS and SAS Scalable Performance Data Server is
required for the in-database processing.

The following figure illustrates this process.

SAS

Client Application

Data Mining Client

Format
Catalog

(if needed)

score.xml
score.sas

SAS
Enterprise

Miner

Score Code
Export Node

SAS SPD
Server

Scoring Model
Support Tables

Input Data
Table

Output
Table

1

4

SAS

Publish Model
Macro

Run Model Macro

2

2

3

33

Publishing Client

1 Use SAS Enterprise Miner to create a scoring model. Use the Score Code Export
node to export files that are used to create the scoring files and catalog to a score
output directory.

For more information, see Chapter 3, “Exporting the Scoring Model Files from SAS
Enterprise Miner,” on page 23.

2 Start SAS and run the publish model macro. This macro creates the SPD Server
tables that are needed to run the scoring model.

For more information, see “Running Scoring Models in SPD Server” on page 139
and “%INDSP_PUBLISH_MODEL Macro Syntax” on page 142.

3 Run the run model macro. This macro runs the scoring model and creates an output
table.

For more information, see “Running Scoring Models in SPD Server” on page 139
and “%INDSP_PUBLISH_MODEL Macro Syntax” on page 142.

4 Use PROC SQL to query the output table data.

For more information, see “Scoring Output” on page 145.

16 Chapter 2 • Introduction to the SAS Scoring Accelerator

Scoring with User-Defined Functions and the SAS
Embedded Process

There are two methods by which format publishing models are processed inside the data
source:

• user-defined functions

Scoring models are converted by the publishing macros into scoring functions that
are similar to any user-defined functions in the data source.

In-database processing of scoring models by means of user-defined functions is
supported by DB2 under UNIX, Greenplum, Netezza, and Teradata.

• SAS Embedded Process

The SAS Embedded Process is a SAS server process that is installed and runs inside
the data source to read and write data from the data source. The advantage of using
the SAS Embedded Process is that a single function or a stored procedure is used
instead of multiple, user-defined functions.

The SAS Embedded Process is supported for Aster, DB2, Greenplum, Hadoop,
Netezza, Oracle, SAP HANA, and Teradata scoring models.

The SAS Embedded Process is one of the deployed components for in-database
processing. For more information, see the SAS In-Database Products:
Administrator's Guide.

Considerations When Creating or Modifying DATA
Step Score Code

How the SAS Scoring Accelerator Processes the DATA Step Score
Code

The score.sas file is DATA step score code and is used as input by the SAS Scoring
Accelerator. You can generate DATA step score code by using SAS Enterprise Miner,
SAS Model Manager, SAS/STAT, and other SAS software.

Some SAS language elements and syntax are not supported when you create or modify
your score code. Only the SAS language elements and syntax that are required to run
critical data transformations and model scoring functions are available. If you use a
statement or function that is not supported, an error occurs and your model is not
published to the data source.

For more information, see “Supported Language Elements and Syntax” on page 17.

Supported Language Elements and Syntax
The following items describe the syntax that is supported:

• all forms of DATA step array brackets (‘[‘. ‘{‘, ‘(‘).

• declaration statements using LENGTH.

Considerations When Creating or Modifying DATA Step Score Code 17

This means declarations including lists of variables with the standard DATA step
numeric or character length specifications (for example, 8 and $32).

• attribute statements, although these have no semantic meaning.

Only the syntax is supported. That is, you do not get a syntax error for them.

• array statements and array initializers.

This includes both temporary and variable arrays. For variable arrays, DATA step
aliasing variables are available. However, these variable arrays are implemented
literally as array references instead of as variable aliases as in the DATA step.

• standard control structures, including IF, THEN, ELSE, DO, WHILE, UNTIL,
SELECT/WHEN/OTHERWISE, CONTINUE, LEAVE, RETURN, LINK, and
GOTO.

The standard do i = 1 to n syntax is supported. WHILE and UNTIL are also
supported. However, features such as list syntax, do i= 1,3,5, are not supported.

• STOP and RUN are syntactically supported but have no semantic meaning.

• assignment statements using arrays and scalars.

• SUBSTR references, including left-hand-side 'pseudo' substring.

• basic syntax for the PUT statement using lists of variables.

Line and column controls are not supported.

• DROP, FORMAT, and LABEL statements.

FORMAT and LABEL syntax is supported, but the format or label information is not
used.

DROP is supported both syntactically and semantically. Dropped variables are made
into local variables and are not included in any output table. Basic lists of variables
are supported for DROP. Some syntax is supported for variable enumeration such as
drop A1-A3. Colon syntax (A:) is not supported.

• variable array syntax, variable dash lists, and OF lists (for example, a1-a10 and
sum(of a[*])).

• all DATA Step expressions.

• constant lists (as used in IN clauses and array initializations).

This includes standard lists such as (1,2,3,4) and those including iterators such as (4
* 99). Array initializations are translated into DS2 array assignment statements.

• some hash object syntax.

This includes the basic declaration constructor and the DEFINEKEY,
DEFINEDATA, DEFINEDONE, ADD, REPLACE, FIND, and CLEAR methods.

• Format justifiers ('L', 'C', 'R') and some PUT modifiers ('?') are syntactically
supported.

• If you use the SAS Embedded Process to run your scoring model, you can use any
function that is supported by the DS2 language. For more information, see “DS2
Functions” in SAS DS2 Language Reference.

• If you use scoring functions to run your scoring model, only the following functions
are supported:

ABS
ARCOS

18 Chapter 2 • Introduction to the SAS Scoring Accelerator

ARSIN
ATAN
ATAN2
CEIL
COS
COSH
DMNORM
DMRAN
DMINIT
EXP
FLOOR
INDEX
INT
LEFT
LENGTH
LOG
LOG10
LOWCASE
MAX
MIN
MISSING
MOD
N
NMAX
SIN
SINH
SQRT
STRIP
SUBSTR
SUM
TAN
TANH
TRIM
UPCASE

Note: The KLEFT, KTRIM, KLENGTH, KLOWCASE, KUPCASE, and KINDEX
functions are syntactically supported by mapping each to its corresponding
standard function.

Special Characters in Directory Names
If the directory names that are used in the macros contain any of the following special
characters, you must mask the characters by using the %STR macro quoting function.
For more information, see the %STR function and macro string quoting topic in SAS
Macro Language: Reference.

Special Characters in Directory Names 19

Character How to Represent

blank1 %str()

2 %str()

; %str(;)

, %str(,)

= %str(=)

+ %str(+)

- %str(-)

> %str(>)

< %str(<)

^ %str(^)

| %str(|)

& %str(&)

%str(#)

/ %str(/)

~ %str(~)

% %str(%%)

' %str(%')

" %str(%")

(%str(%()

) %str(%))

¬ %str(¬)

1Only leading blanks require the %STR function, but you should avoid using leading blanks in
directory names.
2Asterisks are allowed in UNIX directory names. Asterisks are not allowed in Windows
directory names. In general, you should avoid using asterisks in directory names.

Here are some examples of directory names with special characters:

20 Chapter 2 • Introduction to the SAS Scoring Accelerator

Directory Code Representation

c:\temp\Sales(part1) c:\temp\Sales%str(%()part1%str(%))

c:\temp\Drug “trial” X c:\temp\Drug %str(%")trial(%str(%") X

c:\temp\Disc's 50% Y c:\temp\Disc%str(%')s 50%str(%%) Y

c:\temp\Pay,Emp=Z c:\temp\Pay%str(,)Emp%str(=)Z

Special Characters in Directory Names 21

22 Chapter 2 • Introduction to the SAS Scoring Accelerator

Chapter 3

Exporting the Scoring Model Files
from SAS Enterprise Miner

Overview of the Score Code Export Node . 23

Comparing the Score Code Export Node with Registering
Models on the SAS Metadata Server . 24

Using the Score Code Export Node in a Process Flow Diagram 24

Output Created by the Score Code Export Node . 25
Output Files . 25
Output Variables . 26
Fixed Variable Names . 27
SAS Enterprise Miner Tools Production of Score Code . 28

Overview of the Score Code Export Node
Users of SAS Enterprise Miner develop data mining models that use measured attributes
to either characterize or predict the value of an event. These models are developed on
historical data where an event has been measured or inferred. The models are then
applied to new data for which the attributes are known, but the event has not yet
occurred. For example, a model can be created based on a credit institution’s records of
payments that customers made and missed last year. The model can then be used to
predict which customers will miss payments this year.

SAS Enterprise Miner creates SAS language score code for the purpose of scoring new
data. Users run this code in production systems to make business decisions for each
record of new data.

The Score Code Export node is an extension for SAS Enterprise Miner that exports files
that are necessary for score code deployment. Extensions are programmable add-ins for
the SAS Enterprise Miner environment.

The following icon is the Score Code Export node as it appears in a SAS Enterprise
Miner process flow diagram.

The following files are exported by the Score Code Export node:

• the SAS scoring model program (score.sas).

23

• an XML file that contains the scoring variables and other properties that are used and
created by the scoring code (score.xml).

• a format catalog, if the scoring program contains user-defined formats.

• an XML file containing descriptions of the final variables that are created by the
scoring code. This file can be kept for decision-making processes.

• a ten-row sample of the scored data set showing typical cases of the input attributes,
intermediate variables, and final output variables. This data set can be used to test
and debug new scoring processes.

• a ten-row sample table of the training data set showing the typical cases of the input
attributes used to develop the score code.

For more information about the exported files, see “Output Files” on page 25. For
more information about using SAS Enterprise Miner, see the SAS Enterprise Miner
online Help.

Comparing the Score Code Export Node with
Registering Models on the SAS Metadata Server

SAS Enterprise Miner can register models directly in the SAS Metadata Server. Models
registered in the SAS Metadata Server are used by SAS Data Integration Studio, SAS
Enterprise Guide, and SAS Model Manager for creating, managing, and monitoring
production and analytical scoring processes.

The Score Code Export node exports score code created by SAS Enterprise Miner into a
format that can be used by the SAS Scoring Accelerator. The exported files are stored in
a directory, not the SAS Metadata Server.

The Score Code Export node does not replace the functionality of registering models in
the SAS Metadata Server.

Using the Score Code Export Node in a Process
Flow Diagram

The Score Code Export node icon is located on the Utility tab, as shown in Figure 3.1:

Figure 3.1 The Diagram Toolbar with the SAS Score Code Export Node Icon Highlighted

To use the Score Code Export node, you need a process flow diagram that contains
nodes that produce score code and that flow to a Score node. The Score node aggregates
the score code for the entire process flow diagram and transfers it to the Score Code
Export node. The Score node must precede the Score Code Export node in the process
flow diagram.

This is a valid data mining process for exporting score code:

24 Chapter 3 • Exporting the Scoring Model Files from SAS Enterprise Miner

Figure 3.2 Data Mining Process Flow Diagram

Requirement: The Score Code Export node exports score code that contains only one
DATA step. To see the SAS Enterprise Miner nodes that produce score code, see the SAS
Enterprise Miner Reference Help and SAS Enterprise Miner High-Performance Data
Mining Node Reference for SAS.

After the process flow diagram is in place, set the properties for the Score node and the
Score Code Export node:

1. Select the Score node. Ensure that each of the following properties is set to the
default value of Yes:

• Use Output Fixed Names

• C Score

2. Select the Score Code Export node and set the properties. The Output Directory
property specifies the directory to store the export files. The Name property specifies
the folder that contains the output files created by the Score Code Export node. For
information about the properties, see the SAS Enterprise Miner Reference Help and
SAS Enterprise Miner High-Performance Data Mining Node Reference for SAS.

After the properties are set, you are ready to export the score code. Right-click the Score
Code Export node and select Run. When SAS Enterprise Miner completes processing,
the Run Status window appears and indicates that the run completed. Click the Results
button to view the output variables and the listing output. For information about the
output, see “Output Created by the Score Code Export Node” on page 25.

Output Created by the Score Code Export Node

Output Files
The Score Code Export node writes the following output files, and a format catalog, if
applicable, to the location specified by the Output Directory property. These files are
used as input to the scoring publishing macro that creates the scoring functions.

Table 3.1 Score Code Export Node Output Files

File or Folder Description

score.sas SAS language score code created by SAS Enterprise Miner. This code
can be used directly in a SAS program. A sample program based on the
properties shown in Figure 3.3 looks like this:

data testout ;
 set simpletest.scoredata ;
 %include “c:\models\simpletest\score.sas”;
run;

Output Created by the Score Code Export Node 25

File or Folder Description

score.xml A description of the variables that are used and created by the scoring
code. XML files are created by a machine process for the use of machine
processes. Do not edit the XML file.

Restriction: The maximum number of input variables for a scoring
function is 128.

emoutput.xml A description of the final variables that are created by the scoring code.
This file can be kept for decision-making processes. These variables
include the primary classification, prediction, probability, segment,
profit, and loss variables created by a data mining process. The list does
not include intermediate variables created by the analysis. For more
information about these variables, see “Fixed Variable Names” on page
27.

Note: The emoutput.xml file is not used by the scoring publishing
macro.

scoredata.sas7bdat A ten-row sample of the scored data set showing typical cases of the
input attributes, intermediate variables, and final output variables. Use
this data set to test and debug new scoring processes.

Note: The scoredata.sas7bdat file is not used by the scoring publishing
macro.

traindata.sas7bdat A ten-row sample table of the training data set showing typical cases of
the input attributes used to develop the score code.

Note: The traindata.sas7bdat file is not used by the scoring publishing
macro.

Format Catalog If the training data contains SAS user-defined formats, the Score Code
Export node creates a format catalog. The catalog contains the user-
defined formats in the form of a lookup table. This file has an extension
of .sas7bcat.

Output Variables
The score code produced by SAS Enterprise Miner creates both intermediate variables,
such as imputed values of missing values, transformations, and encodings; and output
variables, such as predicted value and probability. Any of these created variables can be
used in a scoring process.

T I P The number of input parameters on a scoring function has a direct impact on
performance. The more parameters there are, the more time it takes to score a row. A
recommended best practice is to make sure that only variables that are involved in a
model score evaluation are exported from SAS Enterprise Miner.

The most important output variables for the scoring process follow a naming convention
using a prefix, as shown in the following table.

26 Chapter 3 • Exporting the Scoring Model Files from SAS Enterprise Miner

Table 3.2 Output Variables

Role Type Prefix Key Suffix Example

Prediction N P_ Target
variable
name

P_amount

Probability N P_ Target
variable
name

Predicted
event
value

P_purchaseYES

P_purchaseNO

Classification $ I_ Target
variable
name

I_purchase

Expected
Profit

N EP_ Target
variable
name

EP_conversion

Expected Loss N EL_ Target
variable
name

EL_conversion

Return on
Investment

N ROI_ Target
variable
name

ROI_conversion

Decision $ D_ Target
variable
name

D_conversion

Decision Tree
Leaf

N _NODE_ _NODE_

Cluster number
or SOM cell
ID

N _SEGMENT_ _SEGMENT_

Fixed Variable Names
The Score node of SAS Enterprise Miner maps the output variable names to fixed
variable names. This mapping is appropriate in cases where there is only one prediction
target or one classification target. In other cases, refer to the output variable names
described in the previous table.

Using the fixed variable names enables scoring users to build processes that can be
reused for different models without changing the code that processes the outputs. These
fixed names are listed in the emoutput.xml file and are described in the following table.
Most scoring processes return one or more of these variables.

Output Created by the Score Code Export Node 27

Table 3.3 Fixed Variable Names

Role Type Fixed Name Description

Prediction N EM_PREDICTION The prediction value for an interval target.

Probability N EM_PROBABILITY The probability of the predicted
classification, which can be any one of the
target variable values.

Probability N EM_EVENTPROBABILITY The probability of the target event. By
default this is the first value in descending
order. This is often the event of interest.
The user can control the ordering in SAS
Enterprise Miner.

Classification $ EM_CLASSIFICATION The predicted target class value.

Expected Profit N EM_PROFIT Based on the selected decision.

Expected Loss N EM_LOSS Based on the selected decision.

Return on Investment N EM_ROI Based on the selected decision.

Decision $ EM_DECISION Optimal decision based on a function of
probability, cost, and profit or loss
weights.

Decision Tree Leaf, Cluster
number, or SOM cell ID

N EM_SEGMENT Analytical customer segmentation.

SAS Enterprise Miner Tools Production of Score Code
Each node in SAS Enterprise Miner creates different types of score code.

These types can include the following:

SAS DATA Step
SAS Program
PMML
C
Java
DBMS

Users can develop their own nodes, known as extension nodes, which can create either
SAS DATA step or SAS program score code. However, this code is not converted to
PMML, C, or Java.

Note: There is limited support for user-written code in the Variable Clustering and Rules
Builder nodes. User-written code could produce errors or unexpected results.

For information about the Enterprise Miner nodes and the type of score code that each
node produces, see the SAS Enterprise Miner Reference Help and SAS Enterprise Miner
High-Performance Data Mining Node Reference for SAS.

28 Chapter 3 • Exporting the Scoring Model Files from SAS Enterprise Miner

Chapter 4

SAS Scoring Accelerator for Aster

Overview of Running Scoring Models in Aster . 29

Running the %INDAC_PUBLISH_MODEL Macro . 30
%INDAC_PUBLISH_MODEL Macro Run Process . 30
INDCONN Macro Variable . 30
%INDAC_PUBLISH_MODEL Macro Syntax . 32
Model Publishing Macro Example . 34
Aster Permissions . 35

Scoring Files and Functions inside the Aster Database . 35
Aster Scoring Files . 35
SAS_SCORE() Function . 37

Overview of Running Scoring Models in Aster
The integration of the SAS Embedded Process and Aster allows scoring code to be
running directly using the SAS Embedded Process on Aster through a SQL/MR
function.

The SQL/MR function is the framework for enabling execution of user-defined functions
within Aster through an SQL interface. A SAS SQL/MR function, SAS_SCORE(),
performs the scoring of models published in Aster.

The SAS Embedded Process is a SAS server process that runs inside Aster to read and
write data. The model publishing macro creates scoring files that are then used in a
stored procedure to run the scoring model.

The %INDAC_PUBLISH_MODEL macro uses some of the files that are created by the
SAS Enterprise Miner Score Code Export node: the scoring model program (score.sas
file), the properties file (score.xml file), and (if the training data includes SAS user-
defined formats) a format catalog.

The %INDAC_PUBLISH_MODEL macro performs the following tasks:

• takes the score.sas and score.xml files that are created using the Score Code Export
node and produces two files for each scoring model. The following files are
produced:

• sasscore_modelname.ds2. This file contains code that is executed by the
SAS_SCORE() function.

• sasscore_modelname_io.xml. This file contains the scoring model's input and
output variables.

29

• takes the format catalog, if available, and produces the
sasscore_modelname_ufmt.xml file. This file contains user-defined formats for the
scoring model that is being published.

• uses the SAS/ACCESS Interface to Aster nCluster to insert the three scoring files
into a table. For more information, see “Scoring Files Table” on page 37.

After the scoring files are published, you can call the SAS_SCORE() function to execute
the scoring model. For more information, see “SAS_SCORE() Function” on page 37.

The SAS Scoring Accelerator for Aster requires a specific version of the Aster client and
server environment. For more information, see the SAS Foundation system requirements
documentation for your operating environment.

Running the %INDAC_PUBLISH_MODEL Macro

%INDAC_PUBLISH_MODEL Macro Run Process
To run the %INDAC_PUBLISH_MODEL macro, complete the following steps:

1. Create a scoring model using SAS Enterprise Miner.

2. Use the SAS Enterprise Miner Score Code Export node to create a score output
directory. Populate the directory with the score.sas file, the score.xml file, and, if
needed, the format catalog.

3. Start SAS and submit one of the following commands in the Program Editor or
Enhanced Editor:

%let indconn = user=myuserid password=XXXX
dsn=ncluster <schema=myschema>;

%let indconn = user=myuserid password=XXXX server=myserver
 database=mydatabase <schema=myschema>;

For more information, see the “INDCONN Macro Variable” on page 30.

4. Run the %INDAC_PUBLISH_MODEL macro.

Messages are written to the SAS log that indicate the success or failure of the
creation of the .ds2 and XML scoring files.

For more information, see “%INDAC_PUBLISH_MODEL Macro Syntax” on page
32.

INDCONN Macro Variable
The INDCONN macro variable is used to provide credentials to connect to Aster. You
must specify user, password, and either a DSN name or a server and database name. You
must assign the INDCONN macro variable before the %INDAC_PUBLISH_MODEL
macro is invoked.

The value of the INDCONN macro variable for the %INDAC_PUBLISH_MODEL
macro has one of these formats:

USER=username PASSWORD=password DSN=dsnname <SCHEMA=schemaname>
USER=username PASSWORD=password DATABASE=databasename
SERVER=servername <SCHEMA=schemaname>

30 Chapter 4 • SAS Scoring Accelerator for Aster

Arguments

USER=username
specifies the Aster user name (also called the user ID) that is used to connect to the
database.

PASSWORD=password
specifies the password that is associated with your Aster user ID.

Tip Use only PASSWORD=, PASS=, or PW= for the password argument. PWD= is
not supported and causes an error.

DSN=datasourcename
specifies the configured Aster data source to which you want to connect.

Requirement You must specify either the DSN= argument alone, or the SERVER=
and DATABASE= arguments together in the INDCONN macro
variable.

DATABASE=databasename
specifies the Aster database that contains the tables and views that you want to
access.

Requirement You must specify either the DSN= argument alone, or the SERVER=
and DATABASE= arguments together in the INDCONN macro
variable.

SERVER=servername
specifies the Aster server name or the IP address of the server host.

Requirement You must specify either the DSN= argument alone, or the SERVER=
and DATABASE= arguments together in the INDCONN macro
variable.

SCHEMA=schemaname
specifies the schema name for the database.

Default your default schema. To determine your default schema name, use the
show search_path command from the Aster Client Tool (ACT).

Restriction The SCHEMA argument is valid only for Aster 4.6. For Aster 4.5,
the scoring model XML files are published to the PUBLIC schema.

Requirement Any schema that is used must be in the search path.

T I P The INDCONN macro variable is not passed as an argument to the
%INDAC_PUBLISH_MODEL macro. This information can be concealed in your
SAS job. You might want to place it in an autoexec file and set the permissions on
the file so that others cannot access the user ID and password.

Running the %INDAC_PUBLISH_MODEL Macro 31

%INDAC_PUBLISH_MODEL Macro Syntax
%INDAC_PUBLISH_MODEL

(DIR=input-directory-path, MODELNAME=name
<, DATASTEP=score-program-filename>
<, XML=xml-filename>
<, DATABASE=database-name>
<, FMTCAT=format-catalog-filename>
<, ACTION=CREATE | REPLACE | DROP>
<, OUTDIR=diagnostic-output-directory>
);

Arguments

DIR=input-directory-path
specifies the directory where the scoring model program, the properties file, and the
format catalog are located.

This is the directory that is created by the SAS Enterprise Miner Score Code Export
node. This directory contains the score.sas file, the score.xml file, and, if user-
defined formats were used, the format catalog.

Requirement You must use a fully qualified pathname.

Interaction If you do not use the default filenames that are created by SAS
Enterprise Miner, you must specify the DATASTEP=, XML=, and (if
needed) FMTCAT= arguments.

See “Special Characters in Directory Names” on page 19

MODELNAME=name
specifies the name that becomes part of the .ds2 and XML scoring filenames.

Restriction The names of the .ds2 and XML scoring files are a combination of
the model and type of filenames. A scoring filename cannot exceed
63 characters. For more information, see “Aster Scoring Files” on
page 35.

Requirement The name must be a valid SAS name. For more information about
valid SAS names, see the topic on rules for words and names in SAS
Language Reference: Concepts.

Interaction Only the EM_ output variables are published in the
sasscore_modelname_io.xml file. For more information about the
EM_ output variables, see “Fixed Variable Names” on page 27 and
“Aster Scoring Files” on page 35.

DATASTEP=score-program-filename
specifies the name of the scoring model program file that was created by using the
SAS Enterprise Miner Score Code Export node.

Default score.sas

Restriction Only DATA step programs that are produced by the SAS Enterprise
Miner Score Code Export node can be used.

32 Chapter 4 • SAS Scoring Accelerator for Aster

Interactions If you use the default score.sas file that is created by the SAS
Enterprise Miner Score Code Export node, you do not need to specify
the DATASTEP= argument.

The SAS file that is specified in the DATASTEP= argument is
translated by the %INDAC_PUBLISH_MODEL macro into the
sasscore_modelname.ds2 file. For Aster 4.5, this file is stored in the
NC_INSTALLED_FILES table under the PUBLIC schema. For Aster
4.6, this file is stored in the NC_USER_INSTALLED_FILES table
under the schema that you specified in the INDCONN macro variable.

XML=xml-filename
specifies the name of the properties XML file that was created by the SAS Enterprise
Miner Score Code Export node.

Default score.xml

Restrictions Only XML files that are produced by the SAS Enterprise Miner Score
Code Export node can be used.

The maximum number of output variables is 1660.

Interactions If you use the default score.xml file that is created by the SAS
Enterprise Miner Score Code Export node, you do not need to specify
the XML= argument.

The XML file is renamed to sasscore_modelname_io.xml by the
%INDAC_PUBLISH_MODEL macro. For Aster 4.5, this file is
stored in the NC_INSTALLED_FILES table under the PUBLIC
schema. For Aster 4.6, this file is stored in the
NC_USER_INSTALLED_FILES table under the schema that you
specified in the INDCONN macro variable.

DATABASE=database-name
specifies the name of an Aster database to which the scoring functions and formats
are published.

Restriction If you specify DSN= in the INDCONN macro variable, do not use the
DATABASE argument.

Interaction The database that is specified by the DATABASE argument takes
precedence over the database that you specify in the INDCONN macro
variable. For more information, see “%INDAC_PUBLISH_MODEL
Macro Run Process” on page 30.

Tip You can publish the scoring files to a shared database where other users
can access them.

FMTCAT=format-catalog-filename
specifies the name of the format catalog file. The file contains all user-defined
formats that were created by the FORMAT procedure and that are referenced in the
DATA step scoring model program.

Restriction Only format catalog files that are produced by the SAS Enterprise
Miner Score Code Export node can be used.

Running the %INDAC_PUBLISH_MODEL Macro 33

Interactions If you use the default format catalog that is created by the SAS
Enterprise Miner Score Code Export node, you do not need to specify
the FMTCAT= argument.

If you do not use the default catalog name (FORMATS) or the default
library (WORK or LIBRARY) when you create user-defined formats,
you must use the FMTSEARCH system option to specify the location
of the format catalog. For more information, see PROC FORMAT in
the Base SAS Procedures Guide.

ACTION=CREATE | REPLACE | DROP
specifies one of the following actions that the macro performs:

CREATE
creates the sasscore_modelname.ds2, sasscore_modelname_io.xml, and
sasscore_modelname_ufmt.xml files.

REPLACE
overwrites the current sasscore_modelname.ds2, sasscore_modelname_io.xml,
and sasscore_modelname_ufmt.xml files, if those files by the same name are
already registered.

DROP
causes the sasscore_modelname.ds2, sasscore_modelname_io.xml, and
sasscore_modelname_ufmt.xml files to be dropped from either the
NC_INSTALLED_FILES table (Aster 4.5) or the
NC_USER_INSTALLED_FILES table (Aster 4.6) in the database.

Default CREATE

Tip If the scoring files have been previously defined and you specify
ACTION=CREATE, you receive warning messages from Aster. If the
scoring files have been previously defined and you specify
ACTION=REPLACE, no warnings are issued.

OUTDIR=diagnostic-output-directory
specifies a directory that contains diagnostic files.

Files that are produced include an event log that contains detailed information about
the success or failure of the publishing process and sample SQL code
(SampleSQL.txt). For more information about the SampleSQL.txt file, see “Aster
Scoring Files” on page 35.

Tip This argument is useful to debug a scoring model that fails to be published.

See “Special Characters in Directory Names” on page 19

Model Publishing Macro Example
%let indconn = server=yoursvr user=user1 password=open1
 database=yourdb schema=yoursch;
%indac_publish_model(dir=C:\SASIN\score, modelname=score);

The %INDAC_PUBLISH_MODEL macro produces these three files:

• sasscore_score.ds2. See “Example of a .ds2 Scoring File” on page 285.

34 Chapter 4 • SAS Scoring Accelerator for Aster

• sasscore_score_io.xml. See “Example of an Input and Output Variables Scoring File”
on page 305.

• sasscore_score_ufmt.xml. See “Example of a User-Defined Formats Scoring File” on
page 312.

After the scoring files are installed, they can be invoked in Aster using the
SAS_SCORE() function. For more information, see “SAS_SCORE() Function” on page
37.

Aster Permissions
For Aster 4.5, no permissions are needed by the person who runs the scoring publishing
macros, because all functions and files are published to the PUBLIC schema.

For Aster 4.6, the following permissions are needed for the schema by the person who
runs the scoring publishing macros.

• USAGE permission

• INSTALL FILE permission

• CREATE permission

These permissions are needed because all functions and files can be published to a
specific schema. Without these permissions, the publishing of the
%INDAC_PUBLISH_MODEL macro fails. To obtain these permissions, contact your
database administrator.

For more information about specific permissions, see “Aster Permissions” in Chapter 2
of SAS In-Database Products: Administrator's Guide.

Scoring Files and Functions inside the Aster
Database

Aster Scoring Files
The %INDAC_PUBLISH_MODEL macro produces three scoring files for each model:

• sasscore_modelname.ds2. This file contains code that is executed by the
SAS_SCORE() function.

• sasscore_modelname_io.xml. This file contains the scoring model's input and output
variables.

• sasscore_modelname_ufmt.xml. This file contains user-defined formats for the
scoring model that is being published.

For Aster 4.5, these files are stored in the NC_INSTALLED_FILES table under the
PUBLIC schema. For Aster 4.6, these files are stored in the
NC_USER_INSTALLED_FILES table under the schema that you specified in the
INDCONN macro variable. See Appendix 1, “Scoring File Examples,” on page 285 for
an example of each of these files.

Note: When you publish a model using Aster 4.5, you are likely to receive warnings
about multiple lengths and unbalanced quotation marks. This warning does not keep
the model from being published successfully. The error occurs because the .ds2
scoring file is inserted into an Aster system table as a long quoted string.

Scoring Files and Functions inside the Aster Database 35

There are four ways to see the scoring files that are created:

• Log on to the database using the Aster command line processor and submit an SQL
statement. The following example assumes that the model name that you used to
create the scoring files is reg.

>act -h hostname -u username -w password -d databasename
>select filename from nc_user_installed_files where name like '%sasscore_reg%';

Three files are listed for each model:

 name

 sasscore_reg.ds2
 sasscore_reg_io.xml
 sasscore_reg_ufmt.xml

• From SAS, use SQL procedure code that produces output in the LST file. The
following example assumes that the model name that you used to create the scoring
functions is reg.

proc sql noerrorstop;
 connect to aster (user=username password=password dsn=dsnname);

select *
 from connection to aster
 (select filename, fileowner, uploadtime
 from nc_user_installed_files where
 name like 'sasscore_reg%');
 disconnect from aster;
quit;

• Look at the SampleSQL.txt file that is produced when the
%INDAC_PUBLISH_MODEL macro is successfully run. This file can be found in
the output directory (OUTDIR argument) that you specify in the
%INDAC_PUBLISH_MODEL macro.

The SampleSQL.txt file contains basic SQL code that can be used to run your score
code inside Aster. Please note that you must modify the sample code before using it.
Otherwise, the sample code returns an error.

For example, the SampleSQL.txt file refers to an ID column in score_outtab that
is populated with a unique integer from 1 to n. n is the number of rows in the table.

Note: The ID column uniquely identifies each row. You would replace the ID
column with your own primary key column.

Note: The function and table names must be fully qualified if the functions and
tables are not in the same database.

The following example assumes that the model name that you used is reg.

drop table score_outtab;
create table score_outtab(
 id integer
,"EM_CLASSIFICATION" varchar(256)
,"EM_EVENTPROBABILITY" float
,"EM_PROBABILITY" float
);
insert into score_outtab(
 id
,"EM_CLASSIFICATION"

36 Chapter 4 • SAS Scoring Accelerator for Aster

,"EM_EVENTPROBABILITY"
,"EM_PROBABILITY"
)
select id,
"EM_CLASSIFICATION",
"EM_EVENTPROBABILITY",
"EM_PROBABILITY"
from sas_score(on score_intab model('reg'));

• Look at the SAS log that is created when the %INDAC_PUBLISH_MODEL macro
was run. A message that indicates whether the scoring files are successfully or not
successfully created is printed to the SAS log.

SAS_SCORE() Function

Overview of the SAS_SCORE() Function
The SAS_SCORE() function is an SQL/MR function that executes the scoring model
running on the SAS Embedded Process in Aster. The SAS_SCORE() function is
deployed and stored in the PUBLIC schema during the installation and configuration of
the in-database deployment for Aster.

For more information about installing and configuring the in-database deployment
package for Aster, see the SAS In-Database Products: Administrator's Guide.

Scoring Files Table
The NC_INSTALLED_FILES table contains the following columns. The ModelName
column is the table key. The table is referenced by the two-level name model-
name.model-table-name.

Column Name Description Specifications

ModelName contains the name of the model VARCHAR(128)
CHARACTER SET
UNICODE
CASESPECIFIC

ModelDS2 contains the sasscore_modelname.ds2 file BLOB(209708800)

ModelFormats contains the sasscore_modelname_ufmt.xml
file

BLOB(209708800)

ModelOwner contains the name of the user who published
the model

VARCHAR(128)
CHARACTER SET
UNICODE
CASESPECIFIC

ModelUpdated contains the date and time that the model was
published

TIMESTAMP(6)

Using the SAS_SCORE() Function
You can use the SAS_SCORE() function in the FROM clause in any SQL expression in
the same way that Aster SQL/MR functions are used.

Scoring Files and Functions inside the Aster Database 37

The syntax of the SAS_SCORE() function is as follows:

FROM SAS_SCORE(ON input-table MODEL('model-name')
<MODEL_SCHEMA('schema-name')>)

Arguments

input-table
specifies the input table that is used by the SAS_SCORE() function.

model-name
specifies the name of the model. The value of this argument is the same as the value
of MODELNAME=name argument for the %INDAC_PUBLISH_MODEL macro.

schema-name
specifies the name of the schema where the scoring model files are published.

Default your default schema. To determine your default schema name, use the
show search_path command from the Aster Client Tool (ACT).

Restriction This argument is valid only for Aster 4.6. For Aster 4.5, the scoring
model files are published to the PUBLIC schema.

Requirement Any schema that is used must be in the search path.

Here is an example of using the SAS_SCORE function. In this example, the input table
is score_intab and the model name is reg.

select id, em_classification, em_eventprobability, em_probability
 from sas_score (on score_intab model('reg') model_schema('mysch'));

38 Chapter 4 • SAS Scoring Accelerator for Aster

Chapter 5

SAS Scoring Accelerator for DB2
under UNIX

Overview of Running Scoring Models in DB2 . 39

Using Scoring Functions to Run Scoring Models . 40
How to Run a Scoring Model Using Scoring Functions . 40
Scoring Function Names . 41
Viewing the Scoring Functions . 41
Using Scoring Functions to Run a Scoring Model . 44

Using the SAS Embedded Process to Run Scoring Models 45
How to Run a Scoring Model with the SAS Embedded Process 45
Creating a Model Table . 46
ANALYZE_TABLE Function . 48
DB2 Scoring Files . 49

Running the %INDB2_PUBLISH_MODEL Macro . 50
%INDB2_PUBLISH_MODEL Macro Run Process . 50
INDCONN Macro Variable . 50
%INDB2_PUBLISH_MODEL Macro Syntax . 52
Modes of Operation . 56

DB2 Permissions . 57
Scoring Function Permissions . 57
SAS Embedded Process Permissions . 57

Overview of Running Scoring Models in DB2
There are two ways to run scoring models in DB2.

• You can create scoring functions for each EM_ output variable. The model
publishing macro creates the scoring functions that are published as DB2 user-
defined functions. These functions can then be used in any SQL query. For more
information, see “Using Scoring Functions to Run Scoring Models” on page 40.

• You can use the SAS Embedded Process. The SAS Embedded Process is a SAS
server process that runs inside DB2 to read and write data. The model publishing
macro creates scoring files. These scoring files are then used by a DB2 built-in
function to run the scoring model. For more information, see “Using the SAS
Embedded Process to Run Scoring Models” on page 45.

The SAS Scoring Accelerator for DB2 requires a certain version of the DB2 client and
server environment. For more information, see the SAS Foundation system requirements
documentation for your operating environment.

39

Using Scoring Functions to Run Scoring Models

How to Run a Scoring Model Using Scoring Functions
The %INDB2_PUBLISH_MODEL macro creates the files that are needed to build the
scoring functions and publishes the scoring functions with those files to a specified
database in DB2. Only the EM_ output variables are published as DB2 scoring
functions. For more information about the EM_ output variables, see “Fixed Variable
Names” on page 27.

Note: Secure File Transfer Protocol (SFTP) is used to transfer the source files to the
DB2 server during the publishing process. Certain software products that support
SSH-2 or SFTP protocols must be installed before you can use the publishing
macros. For more information, see Configuring SSH Client Software in UNIX and
Windows Environments for Use with the SFTP Access Method in SAS 9.2, SAS 9.3,
and SAS 9.4 located at http://support.sas.com/techsup/technote/ts800.pdf.

To run the scoring model using scoring functions, follow these steps.

1. Run the %INDB2_PUBLISH_MODEL macro.

The %INDB2_PUBLISH_MODEL macro uses some of the files that are created by
the SAS Enterprise Miner Score Code Export node: the scoring model program
(score.sas file), the properties file (score.xml file), and (if the training data includes
SAS user-defined formats) a format catalog.

The %INDB2_PUBLISH_MODEL macro performs the following tasks:

• takes the score.sas and score.xml files and produces the set of .c and .h files.
These .c and .h files are necessary to build separate scoring functions for each of
a fixed set of quantities that can be computed by the scoring model code.

• if a format catalog is available, processes the format catalog and creates an .h file
with C structures. These files are also necessary to build the scoring functions.

• produces a script of the DB2 commands that are used to register the scoring
functions on the DB2 database.

• transfers the .c and .h files to DB2 using SFTP.

• calls the SAS_COMPILEUDF function to compile the source files into object
files, links to the SAS formats library, and copies the new object files to
db2path/sqllib/function/SAS, where db2path is the path that was
defined during installation. The object filename is
dbname_schemaname_modelname_segnum, where segnum is a sequence number
that increments each time the model is replaced or re-created. The object file is
renamed to avoid library caching in DB2.

• calls the SAS_DELETEUDF function to remove existing object files.

• uses the SAS/ACCESS Interface to DB2 to run the script to create the scoring
functions with the object files.

The scoring functions are registered in DB2 with shared object files, which are
loaded at run time. These functions are stored in a permanent location. The SAS
object files and the SAS formats library are stored in the db2path/sqllib/
function/SAS directory, where db2path is the path that was defined during
installation. This directory is accessible to all database partitions.

40 Chapter 5 • SAS Scoring Accelerator for DB2 under UNIX

http://support.sas.com/techsup/technote/ts800.pdf

DB2 caches the object files after they are loaded. Each time that the updated objects
are used, one of the following actions must occur:

• The database must be stopped and restarted to clean up the cache.

• The object files need to be renamed and the functions reregistered with the new
object filenames.

The SAS publishing process automatically handles the renaming to avoid stopping
and restarting the database.

Note: You can publish scoring model files with the same model name in multiple
databases and schemas. Because object files for the SAS scoring function are
stored in the db2path/sqllib/function/SAS directory, the publishing
macros use the database, schema, and model name as the object filename to
avoid potential naming conflicts.

2. Use the scoring functions in any SQL query.

For more information, see “Using Scoring Functions to Run a Scoring Model” on
page 44.

Scoring Function Names
The names of the scoring functions that are built in DB2 have the following format:

modelname_EM_outputvarname

modelname is the name that was specified in the MODELNAME argument of the
%INDB2_PUBLISH_MODEL macro. modelname is always followed by _EM_ in the
scoring function name. For more information about the MODELNAME argument, see
“%INDB2_PUBLISH_MODEL Macro Syntax” on page 52.

outputvarname is derived from the names of the EM_ output variables in the score.xml
file that is generated from the SAS Enterprise Miner Score Code Export node. For more
information about the score.xml file, see “Fixed Variable Names” on page 27.

One scoring function is created for each EM_ output variable in the score.xml file. For
example, if the scoring model DATA step program takes ten inputs and creates three new
variables, then three scoring functions are defined. Each scoring function has the name
of an output variable. For example, if you set MODELNAME=credit in the
%INDB2_PUBLISH_MODEL macro and the EM_ output variables are
“EM_PREDICTION”, “EM_PROBABILITY”, and “EM_DECISION”, then the name
of the scoring functions that are created would be “credit_EM_PREDICTION”,
“credit_EM_PROBABILITY”, and “credit_EM_DECISION”.

Note: A scoring function name cannot exceed 128 characters.

CAUTION:
When the scoring function is generated, the names are case insensitive.
Consequently, if you have model names “Model01” and “model01”, and you create
two scoring functions, the second scoring function overwrites the first scoring
function.

Viewing the Scoring Functions
The scoring functions are available to use in any SQL expression in the same way that
DB2 built-in functions are used. For an example, see “Using Scoring Functions to Run a
Scoring Model” on page 44.

Using Scoring Functions to Run Scoring Models 41

There are four ways to see the scoring functions that are created:

• From DB2, log on to the database using the DB2 client tool (command line
processor) and submit an SQL statement. The following example assumes that the
model name that you used to create the scoring functions is mymodel and the DB2
installation instance is located in /users/db2v9. The first line of code executes a
db2profile script. The script sets the DB2 environment variables so that the DB2
command line processor (CLP) can execute.

>./users/db2v9/sqllib/db2profile
>db2
db2 => connect to database user username using password
db2 => select * from syscat.functions where funcname like '%MYMODEL%'

• From SAS, use SQL procedure code that produces output in the LST file. The
following example assumes that the model name that you used to create the scoring
functions is mymodel.

proc sql noerrorstop;
 connect to db2 (user=username pw=password db=database);

select *
 from connection to db2
 (select * from syscat.functions where funcname like '%MYMODEL%');
 disconnect from db2;
quit;

• Look at the SampleSQL.txt file that is produced when the
%INDB2_PUBLISH_MODEL macro is successfully run. This file can be found in
the output directory (OUTDIR argument) that you specify in the macro.

The SampleSQL.txt file contains basic SQL code that can be used to run your score
code inside DB2. Please note that you must modify the sample code before using it.
Otherwise, the sample code returns an error.

For example, the SampleSQL.txt file refers to an ID column in allmush1_intab
that is populated with a unique integer from 1 to n. n is the number of rows in the
table.

Note: The ID column uniquely identifies each row. You would replace the ID
column with your own primary key column.

Note: The function and table names must be fully qualified if the function and table
are not in the same schema.

The following example assumes that the model name that you used to create the
scoring functions is allmush1.

drop table allmush1_outtab;
create table allmush1_outtab(
 id integer
,"EM_CLASSIFICATION" varchar(33)
,"EM_EVENTPROBABILITY" float
,"EM_PROBABILITY" float
);
insert into allmush1_outtab(
 id
,"EM_CLASSIFICATION"
,"EM_EVENTPROBABILITY"
,"EM_PROBABILITY"
)

42 Chapter 5 • SAS Scoring Accelerator for DB2 under UNIX

select id,
 allmush1_em_classification("BRUISES"
,"CAPCOLOR"
,"GILLCOLO"
,"GILLSIZE"
,"HABITAT"
,"ODOR"
,"POPULAT"
,"RINGNUMB"
,"RINGTYPE"
,"SPOREPC"
,"STALKCBR"
,"STALKROO"
,"STALKSAR"
,"STALKSHA"
,"VEILCOLO")
 as "EM_CLASSIFICATION",
 allmush1_em_eventprobability("BRUISES"
,"CAPCOLOR"
,"GILLCOLO"
,"GILLSIZE"
,"HABITAT"
,"ODOR"
,"POPULAT"
,"RINGNUMB"
,"RINGTYPE"
,"SPOREPC"
,"STALKCBR"
,"STALKROO"
,"STALKSAR"
,"STALKSHA"
,"VEILCOLO")
 as "EM_EVENTPROBABILITY",
 allmush1_em_probability("BRUISES"
,"CAPCOLOR"
,"GILLCOLO"
,"GILLSIZE"
,"HABITAT"
,"ODOR"
,"POPULAT"
,"RINGNUMB"
,"RINGTYPE"
,"SPOREPC"
,"STALKCBR"
,"STALKROO"
,"STALKSAR"
,"STALKSHA"
,"VEILCOLO")
 as "EM_PROBABILITY"
from allmush1_intab ;

• You can look at the SAS log that is created when the %INDB2_PUBLISH_MODEL
macro was run. A message that indicates whether a scoring function is successfully
or not successfully executed is printed to the SAS log.

Using Scoring Functions to Run Scoring Models 43

Using Scoring Functions to Run a Scoring Model
The scoring functions are available to use in any SQL expression in the same way that
DB2 built-in functions are used.

The following example code creates the scoring functions.

%let indconn = server=db2base user=user1 password=open1 database=mydb;
%indb2_publish_model(dir=C:\SASIN\baseball1, modelname=baseball1);

The %INDB2_PUBLISH_MODEL macro produces a text file of DB2 CREATE
FUNCTION commands as shown in the following example.

Note: This example file is shown for illustrative purposes. The text file that is created by
the %INDB2_PUBLISH_MODEL macro cannot be viewed and is deleted after the
macro is complete.

CREATE FUNCTION baseball1_EM_eventprobablility
(
"CR_ATBAT" float,
"CR_BB" float,
"CR_HITS" float,
"CR_HOME" float,
"CR_RBI" float,
"CR_RUNS" float,
"DIVISION" varchar(31),
"LEAGUE" varchar(31),
"NO_ASSTS" float,
"NO_ATBAT" float,
"NO_BB" float,
"NO_ERROR" float,
"NO_HITS" float,
"NO_HOME" float,
"NO_OUTS" float,
"NO_RBI" float,
"NO_RUNS" float,
"YR_MAJOR" float
)
RETURNS varchar(33)
LANGUAGE C
NO SQL
PARAMETER STYLE SQL
DETERMINISTIC
FENCED THREADSAFE
NO EXTERNAL ACTION
ALLOW PARALLEL
NULL CALL
EXTERNAL NAME '/users/db2v9/sqllib/function/SAS/
 dbname_username_baseball1.so!baseball1_em_ eventprobablility'

After the scoring functions are installed, they can be invoked in DB2 using SQL, as
illustrated in the following example. Each output value is created as a separate function
call in the select list.

select baseball1_EM_eventprobability
(
"CR_ATBAT",
"CR_BB",

44 Chapter 5 • SAS Scoring Accelerator for DB2 under UNIX

"CR_HITS",
"CR_HOME",
"CR_RBI",
"CR_RUNS",
"DIVISION",
"LEAGUE",
"NO_ASSTS",
"NO_ATBAT",
"NO_BB",
"NO_ERROR",
"NO_HITS",
"NO_HOME",
"NO_OUTS"
) as homeRunProb from MLBDB2;

Using the SAS Embedded Process to Run
Scoring Models

How to Run a Scoring Model with the SAS Embedded Process
The integration of the SAS Embedded Process and DB2 allows scoring code to run
directly using the SAS Embedded Process on DB2.

Note: The SAS Embedded Process might require a later release of DB2 than function-
based scoring. For more information, see the SAS Foundation system requirements
documentation for your operating environment.

To run the scoring model using the SAS Embedded Process, follow these steps.

1. Create a table to hold the scoring files.

The %INDB2_CREATE_MODELTABLE macro creates a table that holds the
scoring files for the model that is being published.

For more information, see “Creating a Model Table” on page 46.

2. Run the %INDB2_PUBLISH_MODEL to create the scoring files.

The %INDB2_PUBLISH_MODEL macro uses some of the files that are created by
the SAS Enterprise Miner Score Code Export node: the scoring model program
(score.sas file), the properties file (score.xml file), and (if the training data includes
SAS user-defined formats) a format catalog.

The %INDB2_PUBLISH_MODEL macro performs the following tasks:

• translates the scoring model into the sasscore_modelname.ds2 file that is used to
run scoring inside the SAS Embedded Process.

• takes the format catalog, if available, and produces the
sasscore_modelname_ufmt.xml file. This file contains user-defined formats for
the scoring model that is being published.

• uses the SAS/ACCESS Interface to DB2 to insert the sasscore_modelname.ds2
and sasscore_modelname_ufmt.xml scoring files into the model table that was
created using the %INDB2_CREATE_MODELTABLE macro.

For more information, see “Running the %INDB2_PUBLISH_MODEL Macro” on
page 50 and “DB2 Scoring Files” on page 49.

Using the SAS Embedded Process to Run Scoring Models 45

3. Use the ANALYZE_TABLE function in the FROM clause in any SQL expression to
run the scoring model.

For more information, see “ANALYZE_TABLE Function” on page 48.

Creating a Model Table

Overview
When using the SAS Embedded Process to publish a scoring model in DB2, you must
create a table to hold the sasscore_modelname.ds2 and sasscore_modelname_ufmt.xml
scoring files. You must run the %INDB2_CREATE_MODELTABLE macro to create the
table before you run the %INDB2_PUBLISH_MODEL macro.

The model table contains the following columns. The ModelName column is the table
key. The table is referenced by the two-level name schema-name.model-table-name.

Column Name Description Specification

ModelName contains the name of the model VARCHAR(128) NOT
NULL PRIMARY KEY

ModelDS2 contains the sasscore_modelname.ds2 file BLOB(4M) NOT NULL

ModelFormats contains the sasscore_modelname_ufmt.xml
file

BLOB(4M)

ModelMetadata Reserved by SAS for future use BLOB(4M)

ModelUUID* contains the UUID of the source model VARCHAR (36)

Notes* contains additional information that describes
the source model

VARCHAR (512)

* This column is for use by SAS Model Manager. If you have a model table that was created prior to SAS
9.4 and you want this column in your model table, you must run the %INDB2_CREATE_MODELTABLE
macro to re-create your model table.

%INDB2_CREATE_MODELTABLE Run Process
To run the %INDB2_CREATE_MODELTABLE macro, complete the following steps:

1. Start SAS and submit the following command in the Program Editor or Enhanced
Editor:

%let indconn = server=yourserver user=youruserid password=yourpwd
 database=yourdb schema=yourschema;

For more information, see the “INDCONN Macro Variable” on page 50.

2. Run the %INDB2_CREATE_MODELTABLE macro.

For more information, see “%INDB2_CREATE_MODELTABLE Macro Syntax” on
page 47.

46 Chapter 5 • SAS Scoring Accelerator for DB2 under UNIX

%INDB2_CREATE_MODELTABLE Macro Syntax
%INDB2_CREATE_MODELTABLE

(TS_PRIMARYPAR=tablespace-name
<, DATABASE=database-name>
<, MODELTABLE=model-table-name>
<, ACTION=CREATE | REPLACE | DROP>
);

Arguments

TS_PRIMARYPAR=tablespace-name
specifies the name of the tablespace that resides in the primary partition.

Tip You can get the name of the tablespace from your database administrator.

DATABASE=database-name
specifies the name of a DB2 database where the sasscore_modelname.ds2 and
sasscore_modelname_ufmt.xml scoring files are held.

Default The database specified in the INDCONN macro variable or your current
database

MODELTABLE=model-table-name
specifies the name of the table that holds the sasscore_modelname.ds2 and
sasscore_modelname_ufmt.xml scoring files.

Default sas_model_table

Requirements The maximum table name length is 128 characters and it must be a
valid DB2 table name.

The table name that you specify for this macro must be the same
table name that is used in the %INDB2_PUBLISH_MODEL macro.

See “%INDB2_PUBLISH_MODEL Macro Syntax” on page 52

ACTION = CREATE | REPLACE | DROP
specifies one of the following actions that the macro performs:

CREATE
creates a new table.

Tip If the table has been previously defined and you specify
ACTION=CREATE, an error is issued.

REPLACE
overwrites the current table, if a table with the same name is already registered.

Tip If you specify ACTION = REPLACE, and the current table contains
sasscore_modelname.ds2 and sasscore_modelname_ufmt.xml files, the files
are deleted and an empty table is re-created.

DROP
causes all models in this table to be dropped.

Default CREATE

Using the SAS Embedded Process to Run Scoring Models 47

ANALYZE_TABLE Function

Overview of the ANALYZE_TABLE Function
The ANALYZE_TABLE function is the interface for running the scoring model inside
DB2 with the SAS Embedded Process. The ANALYZE_TABLE function uses the
information that is stored in the model table. The ANALYZE_TABLE function is a
built-in DB2 function.

Using the ANALYZE_TABLE Function
You can use the ANALYZE_TABLE function using explicit pass-through and PROC
SQL or you can use other DB2 query tools such as the Command Line Processor. Use
the ANALYZE_TABLE function in the FROM clause in any SQL expression to run the
scoring model.

T I P Look at the SampleSQL.txt file that is produced when the
%INDB2_PUBLISH_MODEL macro is successfully run. This file can be found in
the output directory (OUTDIR argument) that you specify in the
%INDB2_PUBLISH_MODEL macro. The SampleSQL.txt file contains basic SQL
code that can be used to run your score code inside DB2. Please note that you must
modify the sample code before using it. Otherwise, the sample code returns an error.

Note: Before using the ANALYZE_TABLE function with the SAS Embedded Process,
you must create the model table with the %INDB2_CREATE_MODELTABLE
macro. Then, you must publish the files to the model table with the
%INDB2_PUBLISH_MODEL macro. For more information, see “Creating a Model
Table” on page 46 and “Running the %INDB2_PUBLISH_MODEL Macro” on page
50.

Here is an example using PROC SQL.

proc sql;
 connect to db2 (user=userid password=xxxx database=mydatabase);
 create table work.sas_score_out1 as select * from connection to db2
 (WITH T1 as (SELECT * from SCORE_INPUT_TABLE where X1 < 1.0)
 SELECT * from T1 ANALYZE_TABLE
 (IMPLEMENTATION 'PROVIDER=SAS;
 ROUTINE_SOURCE_TABLE=myschema.SAS_PUBLISH_MODEL;
 ROUTINE_SOURCE_NAME="Intr_Tree";'));
 disconnect from db2;
quit;

ANALYZE_TABLE Function Syntax
The syntax of the ANALYZE_TABLE function is as follows:

FROM input-table-name ANALYZE_TABLE (IMPLEMENTATION 'PROVDER=SAS’;
ROUTINE_SOURCE_TABLE=schema.model-table-name;
ROUTINE_SOURCE_NAME="model-name"; ')

Arguments

input-table-name
specifies the input table that is used by the ANALYZE_TABLE function.

schema
specifies the name of the schema where the scoring model files are published.

48 Chapter 5 • SAS Scoring Accelerator for DB2 under UNIX

model-table-name
specifies the name of the model table where the sasscore_modelname.ds2 and
sasscore_modelname_ufmt.xml scoring files were published with the
%INDB2_CREATE_MODELTABLE macro.

Requirement The table name that you specify for this function must be the same
table name that is used in the %INDB2_CREATE_MODELTABLE
macro. For more information, see
“%INDB2_CREATE_MODELTABLE Macro Syntax” on page 47.

model-name
specifies the name of the model.

DB2 Scoring Files
When using the SAS Embedded Process, the %INDB2_PUBLISH_MODEL macro
produces two scoring files for each model:

• sasscore_modelname.ds2. This file contains code that is executed by the
ANALYZE_TABLE function.

• sasscore_modelname_ufmt.xml. This file contains user-defined formats for the
scoring model that is being published. This file is used by the ANALYZE_TABLE
function.

These files are published to the model table that you specify in the
%INDB2_PUBLISH_MODEL macro. See Appendix 1, “Scoring File Examples,” on
page 285 for an example of each of these files.

A message that indicates whether the scoring files are successfully or not successfully
created is printed to the SAS log.

Although you cannot view the scoring files directly, there are two ways to see the
models whose files are created:

• Run this query from the DB2 command line processor:

db2> connect to databasename user userid using password
db2> select modelname from sasmodeltablename

• Run a PROC SQL query from SAS.

proc sql;
 connect to db2 (user=userid password=xxxx database=mydatabase);
 select * from connection to db2
 (select modelname from sas_model_table);
 disconnect from db2;
quit;

You can also use the SASTRACE and SASTRACELOC system options to generate
tracing information. For more information about these system options, see the SAS
System Options: Reference.

Using the SAS Embedded Process to Run Scoring Models 49

Running the %INDB2_PUBLISH_MODEL Macro

%INDB2_PUBLISH_MODEL Macro Run Process
To run the %INDB2_PUBLISH_MODEL macro, complete the following steps:

1. Create a scoring model using SAS Enterprise Miner.

2. Use the SAS Enterprise Miner Score Code Export node to create a score output
directory and populate the directory with the score.sas file, the score.xml file, and (if
needed) the format catalog.

3. Start SAS and submit the following command in the Program Editor or Enhanced
Editor:

%let indconn = server=yourserver user=youruserid password=yourpwd
 database=yourdb schema=yourschema serveruserid=yourserveruserid;

For more information, see the “INDCONN Macro Variable” on page 50.

4. If you use the SAS Embedded Process, run the %INDB2_CREATE_MODELTABLE
macro.

For more information, see “Creating a Model Table” on page 46.

5. Run the %INDB2_PUBLISH_MODEL macro.

Messages are written to the SAS log that indicate the success or failure of the
creation of the scoring files or functions.

For more information, see “%INDB2_PUBLISH_MODEL Macro Syntax” on page
52.

INDCONN Macro Variable
The INDCONN macro variable is used to provide credentials to connect to DB2. You
must specify server, user, password, and database information to access the machine on
which you have installed the DB2 database. The schema name and the server user ID are
optional. You must assign the INDCONN macro variable before the
%INDB2_PUBLISH_MODEL macro is invoked.

Here is the syntax for the value of the INDCONN macro variable for the
%INDB2_PUBLISH_MODEL macro:

USER=user PASSWORD=password DATABASE=database SERVER=server
<SCHEMA=schema> <SERVERUSERID=serveruserid>

Arguments

USER=userid
specifies the DB2 user name (also called the user ID) that is used to connect to the
database.

PASSWORD=password
specifies the password that is associated with your DB2 user ID.

Tip Use only PASSWORD=, PASS=, or PW= for the password argument. PWD= is
not supported and causes an error.

50 Chapter 5 • SAS Scoring Accelerator for DB2 under UNIX

DATABASE=database
specifies the DB2 database that contains the tables and views that you want to
access.

Requirement The scoring model functions are created as Unicode functions. If the
database is not a Unicode database, then the alternate collating
sequence must be configured to use identity_16bit.

SERVER=server
specifies the DB2 server name or the IP address of the server host.

Restriction This argument is required when using function-based scoring. It is
not used if you use the SAS Embedded Process.

Requirement The name must be consistent with how the host name was cached
when SFTP server was run from the command window. If the full
server name was cached, you must use the full server name in the
SERVER argument. If the short server name was cached, you must
use the short server name. For example, if the long name,
disk3295.unx.comp.com, is used when SFTP was run, then
server=disk3295.unx.comp.com must be specified. If the short name,
disk3295, was used, then server=disk3295 must be specified. For
more information about running the SFTP command, see “DB2
Installation and Configuration Steps” in the SAS In-Database
Products: Administrator's Guide.

SCHEMA=schema
specifies the schema name for the database.

Default If you do not specify a value for the SCHEMA argument, the value of the
USER argument is used as the schema name.

SERVERUSERID=serveruserid
specifies the user ID for SAS SFTP and enables you to access the machine on which
you have installed the DB2 database.

Default If you do not specify a value for the SERVERUSERID argument, the
value of the USER argument is used as the user ID for SAS SFTP.

Restriction This argument is not used if you use the SAS Embedded Process.

Note The person who installed and configured the SSH software can provide
the SERVERUSERID (SFTP user ID) and the private key that need to
be added to the pageant.exe (Windows) or SSH agent (UNIX). In order
for the SFTP process to be successful, Pageant must be running on
Windows and the SSH agent must be running on UNIX.

T I P The INDCONN macro variable is not passed as an argument to the
%INDB2_PUBLISH_MODEL macro. This information can be concealed in your
SAS job. You might want to place it in an autoexec file and set the permissions on
the file so that others cannot access the user ID and password.

Running the %INDB2_PUBLISH_MODEL Macro 51

%INDB2_PUBLISH_MODEL Macro Syntax
%INDB2_PUBLISH_MODEL

(DIR=input-directory-path, MODELNAME=name
<, MECHANISM=STATIC | EP>
<, MODELTABLE=model-table-name>
<, DATASTEP=score-program-filename>
<, XML=xml-filename>
<, DATABASE=database-name>
<, FMTCAT=format-catalog-filename>
<, ACTION=CREATE | REPLACE | DROP>
<, MODE=FENCED | UNFENCED>
<, INITIAL_WAIT=wait-time>
<, FTPTIMEOUT=timeout-time>
<, OUTDIR=diagnostic-output-directory>
);

Arguments

DIR=input-directory-path
specifies the directory where the scoring model program, the properties file, and the
format catalog are located.

This is the directory that is created by the SAS Enterprise Miner Score Code Export
node. This directory contains the score.sas file, the score.xml file, and (if user-
defined formats were used) the format catalog.

Requirement You must use a fully qualified pathname.

Interaction If you do not use the default directory that is created by SAS
Enterprise Miner, you must specify the DATASTEP=, XML=, and (if
needed) FMTCAT= arguments.

See “Special Characters in Directory Names” on page 19

MODELNAME=name
specifies the name that is prepended to each output function to ensure that each
scoring function name is unique on the DB2 database. If you use the SAS Embedded
Process, the model name is the primary index field in the model table.

Restriction The scoring function name is a combination of the model and output
variable names. A scoring function name cannot exceed 128
characters. For more information, see “Scoring Function Names” on
page 41.

Requirement If you use scoring functions, the model name must be a valid SAS
name that is 10 characters or fewer. If you use the SAS Embedded
Process, the model name can be up to 128 characters. For more
information about valid SAS names, see the topic on rules for words
and names in SAS Language Reference: Concepts.

Interaction Only the EM_ output variables are published as DB2 scoring
functions. For more information about the EM_ output variables, see
“Fixed Variable Names” on page 27 and “Scoring Function Names”
on page 41.

52 Chapter 5 • SAS Scoring Accelerator for DB2 under UNIX

MECHANISM=STATIC | EP
specifies whether scoring functions or scoring files are created. MECHANISM= can
have one of the following values:

STATIC
specifies that scoring functions are created.

These scoring functions are used in an SQL query to run the scoring model.

See “Using Scoring Functions to Run Scoring Models” on page 40

EP
specifies that scoring files are created.

These scoring files are used by the SAS Embedded Process to run the scoring
model. A single entry in the model table is inserted for each new model. The
entry contains both the score.sas and score.xml in separate columns. The scoring
process includes reading these entries from the table and transferring them to
each instance of the SAS Embedded Process for execution.

Requirement If you specify MECHANISM=EP, you must also specify the
MODELTABLE= argument.

Note The SAS Embedded Process might require a later release of DB2
than function-based scoring. For more information, see the SAS
Foundation system requirements documentation for your
operating environment.

See “Using the SAS Embedded Process to Run Scoring Models” on
page 45

Default STATIC

MODELTABLE=model-table-name
specifies the name of the model table where the scoring files are published.

Default sas_model_table

Restriction This argument is valid only when using the SAS Embedded Process.

Requirement The name of the model table must be the same as the name specified
in the %INDB2_CREATE_MODELTABLE macro. For more
information, see the MODELTABLE argument in
“%INDB2_CREATE_MODELTABLE Macro Syntax” on page 47.

DATASTEP=score-program-filename
specifies the name of the scoring model program file that was created by using the
SAS Enterprise Miner Score Code Export node.

Default score.sas

Restriction Only DATA step programs that are produced by the SAS Enterprise
Miner Score Code Export node can be used.

Interaction If you use the default score.sas file that is created by the SAS
Enterprise Miner Score Code Export node, you do not need to specify
the DATASTEP= argument.

Running the %INDB2_PUBLISH_MODEL Macro 53

XML=xml-filename
specifies the name of the properties XML file that was created by the SAS Enterprise
Miner Score Code Export node.

Default score.xml

Restrictions Only XML files that are produced by the SAS Enterprise Miner Score
Code Export node can be used.

If you use scoring functions to run scoring models, the maximum
number of output variables is 128. If you use the SAS Embedded
Process, the maximum depends on the page size of the database table
space. For a 4K page size database, the limit is 500. If you have it
configured for any of the larger page sizes (8K, 16K, 32K), then the
limit is 1012.

Interaction If you use the default score.xml file that is created by the SAS
Enterprise Miner Score Code Export node, you do not need to specify
the XML= argument.

DATABASE=database-name
specifies the name of a DB2 database to which the scoring functions and formats or
the scoring files are published.

Requirements The scoring model functions are created as Unicode functions. If the
database is not a Unicode database, then the alternate collating
sequence must be configured to use identity_16bit.

If you use the SAS Embedded Process, the name of the database
must be the same as the database specified in the
%INDB2_CREATE_MODELTABLE macro. For more information,
see the DATABASE argument in
“%INDB2_CREATE_MODELTABLE Macro Syntax” on page 47.

Interaction The database that is specified by the DATABASE argument takes
precedence over the database that you specify in the INDCONN
macro variable. For more information, see
“%INDB2_PUBLISH_MODEL Macro Run Process” on page 50.

FMTCAT=format-catalog-filename
specifies the name of the format catalog file that contains all user-defined formats
that were created by the FORMAT procedure and that are referenced in the DATA
step scoring model program.

Restriction Only format catalog files that are produced by the SAS Enterprise
Miner Score Code Export node can be used.

Interactions If you use the default format catalog that is created by the SAS
Enterprise Miner Score Code Export node, you do not need to specify
the FMTCAT= argument.

If you do not use the default catalog name (FORMATS) or the default
library (WORK or LIBRARY) when you create user-defined formats,
you must use the FMTSEARCH system option to specify the location
of the format catalog. For more information, see PROC FORMAT in
the Base SAS Procedures Guide.

54 Chapter 5 • SAS Scoring Accelerator for DB2 under UNIX

ACTION=CREATE | REPLACE | DROP
specifies one of the following actions that the macro performs:

CREATE
creates new functions or files.

REPLACE
overwrites the current functions or files, if functions or files by the same name
are already registered.

DROP
causes all functions or files for this model to be dropped from the DB2 database.

Default CREATE

Tip If the function or file has been previously defined and you specify
ACTION=CREATE, you receive warning messages from DB2. If the
function or file has been previously defined and you specify
ACTION=REPLACE, no warnings are issued.

MODE=FENCED | UNFENCED
specifies whether the running code is isolated in a separate process in the DB2
database so that a program fault does not cause the database to stop.

Default FENCED

Restriction This argument is valid only when using the scoring functions. It has no
effect if you specify MECHANISM=EP.

Tip After the SAS scoring functions are validated in fenced mode, you can
republish them in unfenced mode. You might see a performance
advantage when you run in unfenced mode.

See “Modes of Operation” on page 56

INITIAL_WAIT=wait-time
specifies the initial wait time in seconds for SAS SFTP to parse the responses and
complete the SFTP -batchfile process.

Default 15 seconds

Restriction This argument is valid only when using the scoring functions. It has
no effect if you specify MECHANISM=EP.

Interactions The INITIAL_WAIT= argument works in conjunction with the
FTPTIMEOUT= argument. Initially, SAS SFTP waits the amount of
time specified by the INITIAL_WAIT= argument. If the SFTP -
batchfile process is not complete after the initial wait time, retries
occur until the wait time is equal to or greater than the time-out value
specified by the FTPTIMEOUT= argument. All retries double the
previous wait time. SAS SFTP fails after the time-out value is reached
or exceeded, and an error message is written to the SAS log.

For example, assume that you use the default values. The initial wait
time is 15 seconds. The first retry waits for 30 seconds. The second
retry waits for 60 seconds. The third retry waits for 120 seconds. This
is the default time-out value. So, the default initial wait time and time-
out values enable four possible tries: the initial try plus three retries.

Running the %INDB2_PUBLISH_MODEL Macro 55

See FTPTIMEOUT= argument

FTPTIMEOUT=time-out-value
specifies the time-out value in seconds if SAS SFTP fails to transfer the files.

Default 120 seconds

Restriction This argument is valid only when using the scoring functions. It has
no effect if you specify MECHANISM=EP.

Interactions The FTPTIMEOUT= argument works in conjunction with the
INITIAL_WAIT= argument. Initially, SAS SFTP waits the amount of
time specified by the INITIAL_WAIT= argument. If the SFTP -
batchfile process is not complete after the initial wait time, retries
occur until the wait time is equal to or greater than the time-out value
specified by the FTPTIMEOUT= argument. All retries double the
previous wait time. SAS SFTP fails after the time-out value is reached
or exceeded and an error message is written to the SAS log.

For example, assume that you use the default values. The initial wait
time is 15 seconds. The first retry waits for 30 seconds. The second
retry waits for 60 seconds. The third retry waits for 120 seconds. This
is the default time-out value. So the default initial wait time and time-
out values enable four possible tries: the initial try plus three retries.

Tip Use this argument to control how long SAS SFTP waits to complete a
file transfer before timing out. A time-out failure could indicate a
network or key authentication problem.

See INITIAL_WAIT= argument

OUTDIR=diagnostic-output-directory
specifies a directory that contains diagnostic files.

Files that are produced include an event log that contains detailed information about
the success or failure of the publishing process and sample SQL code
(SampleSQL.txt). For more information about the SampleSQL.txt file, see “Scoring
Function Names” on page 41.

Tip This argument is useful when testing your scoring models.

See “Special Characters in Directory Names” on page 19

Modes of Operation
The %INDB2_PUBLISH_MODEL macro has two modes of operation: fenced and
unfenced. You specify the mode by setting the MODE= argument.

The default mode of operation is fenced. Fenced mode means that the scoring function
that is published is isolated in a separate process in the DB2 database when it is invoked,
and an error does not cause the database to stop. It is recommended that you publish the
scoring functions in fenced mode during acceptance tests.

The SAS Embedded Process always operates in its own process that is equivalent to
fenced mode functions. An optimized data transport mechanism allows the SAS
Embedded Process to provide fenced mode protection with speed that is as good as or
better than unfenced functions.

56 Chapter 5 • SAS Scoring Accelerator for DB2 under UNIX

When the scoring function is ready for production, you can run the macro to publish the
scoring function in unfenced mode. You could see a performance advantage if the
scoring function is published in unfenced mode.

DB2 Permissions

Scoring Function Permissions
You must have DB2 user permissions to execute the SAS publishing macros to publish
the scoring functions. Some of these permissions are as follows.

• EXECUTE user permission for functions that were published by another user

• READ user permission to read the SASUDF_COMPILER_PATH and
SASUDF_DB2PATH global variables

• CREATE_EXTERNAL_ROUTINE user permission to the database to create
functions

• CREATEIN user permission for the schema in which the scoring functions are
published if a nondefault schema is used

• CREATE_NOT_FENCED_ROUTINE user permission to create functions that are
not fenced

Permissions must be granted for each user that needs to publish a scoring function and
for each database that the scoring model publishing uses. Without these permissions,
publishing of the scoring functions fails.

The person who can grant the permissions and the order in which permissions are
granted is important. For more information about specific permissions, see “DB2
Permissions” in Chapter 3 of SAS In-Database Products: Administrator's Guide.

SAS Embedded Process Permissions
You must have CREATE TABLE user permission to create a model table when using the
SAS Embedded Process.

For more information about specific permissions, see “DB2 Permissions” in Chapter 3 of
SAS In-Database Products: Administrator's Guide.

DB2 Permissions 57

58 Chapter 5 • SAS Scoring Accelerator for DB2 under UNIX

Chapter 6

SAS Scoring Accelerator for
Greenplum

Overview of Running Scoring Models in Greenplum . 59

Using Scoring Functions to Run Scoring Models . 60
How to Run a Scoring Model Using Scoring Functions . 60
Scoring Function Names . 61
Viewing the Scoring Functions . 61
Using Scoring Functions to Run a Scoring Model . 64

Using the SAS Embedded Process to Run Scoring Models 65
How to Run a Scoring Model with the SAS Embedded Process 65
Creating a Model Table . 66
SAS_EP Function . 68
Greenplum Scoring Files . 70
Starting and Stopping the SAS Embedded Process . 70
SAS Embedded Process Troubleshooting Tips . 70

Running the %INDGP_PUBLISH_MODEL Macro . 71
%INDGP_PUBLISH_MODEL Macro Run Process . 71
INDCONN Macro Variable . 71
%INDGP_PUBLISH_MODEL Macro Syntax . 73

Greenplum Permissions . 76
Scoring Function Permissions . 76
SAS Embedded Process Permissions . 76

Overview of Running Scoring Models in
Greenplum

There are two ways to run scoring models in Greenplum.

• You can create scoring functions for each EM_ output variable. The model
publishing macro creates the scoring functions that are published as Greenplum user-
defined functions. These functions can then be used in any SQL query. For more
information, see “Using Scoring Functions to Run Scoring Models” on page 60.

• You can use the SAS Embedded Process. The SAS Embedded Process is a SAS
server process that runs inside Greenplum to read and write data. The model
publishing macro creates scoring files. These scoring files are then used by a
Greenplum built-in function to run the scoring model. For more information, see
“Using the SAS Embedded Process to Run Scoring Models” on page 65.

59

The SAS Scoring Accelerator for Greenplum requires a certain version of the
Greenplum client and server environment. For more information, see the SAS
Foundation system requirements documentation for your operating environment.

Using Scoring Functions to Run Scoring Models

How to Run a Scoring Model Using Scoring Functions
The %INDGP_PUBLISH_MODEL macro creates the files that are needed to build the
scoring functions. The macro then publishes the scoring functions with those files to a
specified database in Greenplum. Only the EM_ output variables are published as
Greenplum scoring functions. For more information about the EM_ output variables, see
“Fixed Variable Names” on page 27.

To run the scoring model using scoring functions, follow these steps.

1. Run the %INDGP_PUBLISH_MODEL macro. The %INDGP_PUBLISH_MODEL
macro uses some of the files that are created by the SAS Enterprise Miner Score
Code Export node: the scoring model program (score.sas file), the properties file
(score.xml file), and (if the training data includes SAS user-defined formats) a format
catalog.

The %INDGP_PUBLISH_MODEL macro performs the following tasks:

• takes the score.sas and score.xml files and produces the set of .c and .h files.
These .c and .h files are necessary to build separate scoring functions for each of
a fixed set of quantities that can be computed by the scoring model code.

• processes the format catalog, if a format catalog is available, and creates an .h
file with C structures, which are also necessary to build the scoring functions.

• produces a script of the Greenplum commands that are used to register the
scoring functions in the Greenplum database.

• transfers the .c and .h files to Greenplum.

• calls the SAS_COMPILEUDF function to compile the source files into object
files and links to the SAS formats library.

• calls the SAS_COPYUDF function to copy the new object files to
full-path-to-pkglibdir/SAS on the whole database array (master and all
segments), where full-path-to-pkglibdir is the path that was defined
during installation.

• uses the SAS/ACCESS Interface to Greenplum to run the script to create the
scoring functions with the object files.

The scoring functions are registered in Greenplum with shared object files. These
shared object files are loaded at run time. These functions are stored in a permanent
location. The SAS object files and the SAS formats library are stored in the
full-path-to-pkglibdir/SAS directory on all nodes, where
full-path-to-pkglibdir is the path that was defined during installation.

Greenplum caches the object files within a session.

Note: You can publish scoring model files with the same model name in multiple
databases and schemas. Because all model object files for the SAS scoring
function are stored in the full-path-to-pkglibdir/SAS directory, the

60 Chapter 6 • SAS Scoring Accelerator for Greenplum

publishing macros use the database, schema, and model name as the object
filename to avoid potential naming conflicts.

2. Use the scoring functions in any SQL query.

For more information, see “Using Scoring Functions to Run a Scoring Model” on
page 64.

Scoring Function Names
The names of the scoring functions that are built in Greenplum have the following
format:

modelname_EM_outputvarname

modelname is the name that was specified in the MODELNAME argument of the
%INDGP_PUBLISH_MODEL macro. modelname is always followed by _EM_ in the
scoring function name. For more information about the MODELNAME argument, see
“%INDGP_PUBLISH_MODEL Macro Syntax” on page 73.

outputvarname is derived from the names of the EM_ output variables in the score.xml
file that is generated from the SAS Enterprise Miner Score Code Export node. For more
information about the score.xml file, see “Fixed Variable Names” on page 27.

One scoring function is created for each EM_ output variable in the score.xml file. For
example, if the scoring model DATA step program takes ten inputs and creates three new
variables, then three scoring functions are defined. Each scoring function has the name
of an output variable. For example, if you set MODELNAME=credit in the
%INDGP_PUBLISH_MODEL macro and the EM_ output variables are
“EM_PREDICTION”, “EM_PROBABILITY”, and “EM_DECISION”, then the name
of the scoring functions that are created would be “credit_EM_PREDICTION”,
“credit_EM_PROBABILITY”, and “credit_EM_DECISION”.

Note: A scoring function name cannot exceed 63 characters.

CAUTION:
When the scoring function is generated, the names are case insensitive.
Consequently, if you have model names “Model01” and “model01”, and you create
two scoring functions, the second scoring function overwrites the first scoring
function.

Viewing the Scoring Functions
The scoring functions are available to use in any SQL expression in the same way that
Greenplum built-in functions are used. For an example, see “Using Scoring Functions to
Run a Scoring Model” on page 64.

T I P In Greenplum, character variables have a length of 32K. If you create an output
table or data set to hold the scored rows, it is recommended that you create the table
and define the variables. Here is an example.

proc sql noerrorstop;
connect to greenplm (<connection options>);
execute (create table scoretab (
 ID integer
 , EM_SEGMENT float
 , EM_EVENTPROBABILITY float
 , EM_PROBABILITY float

Using Scoring Functions to Run Scoring Models 61

 , EM_CLASSIFICATION varchar (32)
)
 distributed by (id)
) by greenplm;
execute (insert into scoretab
select id,
function prefix_EM_SEGMENT (
 comma-delimited input column list
) as "EM_ SEGMENT",
function prefix_EM_EVENTPROBABILITY (
 comma-delimited input column list
) as "EM_EVENTPROBABILITY",
function prefix_EM_PROBABILITY (
 comma-delimited input column list
) as "EM_PROBABILITY"
cast(function prefix_EM_CLASSIFICATION (
 comma-delimited input column list
) as varchar(32)) as "EM_CLASSIFICATION",
from scoring_input_table
 order by id
) by greenplm;
quit;

There are four ways to see the scoring functions that are created:

• From Greenplum, start psql to connect to the database and submit an SQL statement.
In this example, 'SCHEMA' is the actual schema value.

psql -h hostname -d databasename -U userid
select proname
 from pg_catalog.pg_proc f, pg_catalog.pg_namespace s
 where f.pronamespace=s.oid and upper(s.nspname)='SCHEMA';

• From SAS, use SQL procedure code that produces output in the LST file. The
following example assumes that the model name that you used to create the scoring
functions is mymodel.

proc sql noerrorstop;
 connect to greenplm (user=username pw=password dsn= dsnname);

select *
 from connection to greenplm
 (select proname
 from pg_catalog.pg_proc f, pg_catalog.pg_namespace s
 where f.pronamespace=s.oid and upper(s.nspname)='SCHEMA');
 disconnect from greenplm;
quit;

• Look at the SampleSQL.txt file that is produced when the
%INDGP_PUBLISH_MODEL macro is successfully run. This file can be found in
the output directory (OUTDIR argument) that you specify in the macro.

The SampleSQL.txt file contains basic SQL code that can be used to run your score
code inside Greenplum. Please note that you must modify the sample code before
using it. Otherwise, the sample code returns an error.

For example, the SampleSQL.txt file refers to an ID column in allmush1_intab
that is populated with a unique integer from 1 to n. n is the number of rows in the
table.

62 Chapter 6 • SAS Scoring Accelerator for Greenplum

Note: The ID column uniquely identifies each row. You would replace the ID
column with your own primary key column.

Note: The function and table names must be fully qualified if the function and table
are not in the same schema.

The following example assumes that the model name that you used to create the
scoring functions is allmush1.

drop table allmush1_outtab;
create table allmush1_outtab(
 id integer
,"EM_CLASSIFICATION" varchar(33)
,"EM_EVENTPROBABILITY" float
,"EM_PROBABILITY" float
);
insert into allmush1_outtab(
 id
,"EM_CLASSIFICATION"
,"EM_EVENTPROBABILITY"
,"EM_PROBABILITY"
)
select id,
 allmush1_em_classification("BRUISES"
,"CAPCOLOR"
,"GILLCOLO"
,"GILLSIZE"
,"HABITAT"
,"ODOR"
,"POPULAT"
,"RINGNUMB"
,"RINGTYPE"
,"SPOREPC"
,"STALKCBR"
,"STALKROO"
,"STALKSAR"
,"STALKSHA"
,"VEILCOLO")
 as "EM_CLASSIFICATION",
 allmush1_em_eventprobability("BRUISES"
,"CAPCOLOR"
,"GILLCOLO"
,"GILLSIZE"
,"HABITAT"
,"ODOR"
,"POPULAT"
,"RINGNUMB"
,"RINGTYPE"
,"SPOREPC"
,"STALKCBR"
,"STALKROO"
,"STALKSAR"
,"STALKSHA"
,"VEILCOLO")
 as "EM_EVENTPROBABILITY",
 allmush1_em_probability("BRUISES"
,"CAPCOLOR"

Using Scoring Functions to Run Scoring Models 63

,"GILLCOLO"
,"GILLSIZE"
,"HABITAT"
,"ODOR"
,"POPULAT"
,"RINGNUMB"
,"RINGTYPE"
,"SPOREPC"
,"STALKCBR"
,"STALKROO"
,"STALKSAR"
,"STALKSHA"
,"VEILCOLO")
 as "EM_PROBABILITY"
from allmush1_intab ;

• You can look at the SAS log that is created when the %INDGP_PUBLISH_MODEL
macro was run. A message that indicates whether a scoring function is successfully
or not successfully executed is printed to the SAS log.

Using Scoring Functions to Run a Scoring Model
The scoring functions are available to use in any SQL expression in the same way that
Greenplum built-in functions are used.

The following example code creates the scoring functions.

%let indconn = user=user1 password=open1 dsn=green6 schema=myschema;
%indgp_publish_model(dir=C:\SASIN\baseball1, modelname=baseball1, outdir=C:\test);

The %INDGP_PUBLISH_MODEL macro produces a text file of Greenplum CREATE
FUNCTION commands as shown in the following example.

Note: This example file is shown for illustrative purposes. The text file that is created by
the %INDGP_PUBLISH_MODEL macro cannot be viewed and is deleted after the
macro is complete.

CREATE FUNCTION baseball1_EM_eventprobablility
(
"CR_ATBAT" float,
"CR_BB" float,
"CR_HITS" float,
"CR_HOME" float,
"CR_RBI" float,
"CR_RUNS" float,
"DIVISION" varchar(31),
"LEAGUE" varchar(31),
"NO_ASSTS" float,
"NO_ATBAT" float,
"NO_BB" float,
"NO_ERROR" float,
"NO_HITS" float,
"NO_HOME" float,
"NO_OUTS" float,
"NO_RBI" float,
"NO_RUNS" float,
"YR_MAJOR" float
)

64 Chapter 6 • SAS Scoring Accelerator for Greenplum

RETURNS varchar(33)
AS '/usr/local/greenplum-db-3.3.4.0/lib/postgresql/SAS/
 sample_dbitest_homeeq_5.so', 'homeeq_5_em_classification'

After the scoring functions are installed, they can be invoked in Greenplum using SQL,
as illustrated in the following example. Each output value is created as a separate
function call in the select list.

select baseball1_EM_eventprobability
(
"CR_ATBAT",
"CR_BB",
"CR_HITS",
"CR_HOME",
"CR_RBI",
"CR_RUNS",
"DIVISION",
"LEAGUE",
"NO_ASSTS",
"NO_ATBAT",
"NO_BB",
"NO_ERROR",
"NO_HITS",
"NO_HOME",
"NO_OUTS"
) as homeRunProb from MLBGP;

Using the SAS Embedded Process to Run
Scoring Models

How to Run a Scoring Model with the SAS Embedded Process
The integration of the SAS Embedded Process and Greenplum allows scoring code to
run directly using the SAS Embedded Process on Greenplum.

Note: The SAS Embedded Process might require a later release of Greenplum than
function-based scoring. For more information, see the SAS Foundation system
requirements documentation for your operating environment.

To run the scoring model using the SAS Embedded Process, follow these steps.

1. Create a table to hold the scoring files.

The %INDGP_CREATE_MODELTABLE macro creates a table that holds the
scoring files for the model that is being published.

For more information, see “Creating a Model Table” on page 66.

2. Run the %INDGP_PUBLISH_MODEL to create the scoring files.

The %INDGP_PUBLISH_MODEL macro uses some of the files that are created by
the SAS Enterprise Miner Score Code Export node: the scoring model program
(score.sas file), the properties file (score.xml file), and (if the training data includes
SAS user-defined formats) a format catalog.

The %INDGP_PUBLISH_MODEL macro performs the following tasks:

Using the SAS Embedded Process to Run Scoring Models 65

• translates the scoring model into the sasscore_modelname.ds2 file that is used to
run scoring inside the SAS Embedded Process.

• takes the format catalog, if available, and produces the
sasscore_modelname_ufmt.xml file. This file contains user-defined formats for
the scoring model that is being published.

• uses the SAS/ACCESS Interface to Greenplum to insert the
sasscore_modelname.ds2 and sasscore_modelname_ufmt.xml scoring files into
the model table that was created using the %INDGP_CREATE_MODELTABLE
macro.

For more information, see “Running the %INDGP_PUBLISH_MODEL Macro” on
page 71 and “Greenplum Scoring Files” on page 70.

3. Use the SAS_EP function in the FROM clause in any SQL expression to run the
scoring model.

For more information, see “SAS_EP Function” on page 68.

Creating a Model Table

Overview
When using the SAS Embedded Process to publish a scoring model in Greenplum, you
must create a table to hold the sasscore_modelname.ds2 and
sasscore_modelname_ufmt.xml scoring files. You must run the
%INDGP_CREATE_MODELTABLE macro to create the table before you run the
%INDGP_PUBLISH_MODEL macro.

The model table contains the following columns. The ModelName column is the table
key. The table is referenced by the two-level name schema-name.model-table-name.

Column Name Description Specification

ModelName contains the name of the model VARCHAR(128) NOT NULL
PRIMARY KEY

ModelDS2 contains the sasscore_modelname.ds2 file BYTEA NOT NULL

ModelFormats contains the sasscore_modelname_ufmt.xml
file

BYTEA

ModelMetadata Reserved by SAS for future use BYTEA

ModelUUID* contains the UUID of the source model VARCHAR (36)

Notes* contains additional information that describes
the source model

VARCHAR (512)

* This column is for use by SAS Model Manager. If you have a model table that was created prior to SAS
9.4 and you want this column, you must run the %INDGP_CREATE_MODELTABLE macro to re-create
your model table.

%INDGP_CREATE_MODELTABLE Run Process
To run the %INDGP_CREATE_MODELTABLE macro, complete the following steps:

66 Chapter 6 • SAS Scoring Accelerator for Greenplum

1. Start SAS and submit the following command in the Program Editor or Enhanced
Editor:

%let indconn = user=youruserid password=yourpwd
 dsn=yourdsn schema=yourschema;

For more information, see the “INDCONN Macro Variable” on page 71.

2. Run the %INDGP_CREATE_MODELTABLE macro.

For more information, see “%INDGP_CREATE_MODELTABLE Macro Syntax” on
page 67.

%INDGP_CREATE_MODELTABLE Macro Syntax
%INDGP_CREATE_MODELTABLE

<DATABASE=database-name>
<, MODELTABLE=model-table-name>
<, ACTION=CREATE | REPLACE | DROP>
);

Arguments

DATABASE=database-name
specifies the name of a Greenplum database where the sasscore_modelname.ds2 and
sasscore_modelname_ufmt.xml scoring files are held.

Default The database specified in the INDCONN macro variable or your current
database

MODELTABLE=model-table-name
specifies the name of the table that holds the sasscore_modelname.ds2 and
sasscore_modelname_ufmt.xml scoring files.

Default sas_model_table

Requirements The maximum table name length is 63 characters and it must be a
valid Greenplum table name.

The table name that you specify for this macro must be the same
table name that is used in the %INDGP_PUBLISH_MODEL macro.

See “%INDGP_PUBLISH_MODEL Macro Syntax” on page 73

ACTION = CREATE | REPLACE | DROP
specifies one of the following actions that the macro performs:

CREATE
creates a new table.

Tip If the table has been previously defined and you specify
ACTION=CREATE, an error is issued.

REPLACE
overwrites the current table, if a table with the same name is already registered.

Tip If you specify ACTION = REPLACE, and the current table contains
sasscore_modelname.ds2 and sasscore_modelname_ufmt.xml files, the files
are deleted and an empty table is re-created.

Using the SAS Embedded Process to Run Scoring Models 67

DROP
causes all models in this table to be dropped.

Default CREATE

SAS_EP Function

Overview of the SAS_EP Function
The SAS_EP function is the interface for running the scoring model inside Greenplum
with the SAS Embedded Process. The SAS_EP function uses the information that is
stored in the model table. The SAS_EP function is a built-in Greenplum function.

Using the SAS_EP Function
You can use the SAS_EP function using explicit pass-through and PROC SQL or you
can use other Greenplum query tools such as psql. Use the SAS_EP function in the
FROM clause in any SQL expression to run the scoring model.

T I P Look at the SampleSQL.txt file that is produced when the
%INDGP_PUBLISH_MODEL macro is successfully run. This file can be found in
the output directory (OUTDIR argument) that you specify in the
%INDGP_PUBLISH_MODEL macro. The SampleSQL.txt file contains basic SQL
code that can be used to run your score code inside Greenplum. Please note that you
must modify the sample code before using it. Otherwise, the sample code returns an
error.

Note: Before using the SAS_EP function with the SAS Embedded Process, you must
create the model table with the %INDGP_CREATE_MODELTABLE macro. Then,
you must publish the files to the model table with the %INDGP_PUBLISH_MODEL
macro. For more information, see “Creating a Model Table” on page 66 and
“Running the %INDGP_PUBLISH_MODEL Macro” on page 71.

Here is an example using PROC SQL.

%let indconn = user=user1 password=open1 dsn=dsn6 schema=GPschema;

%indgp_publish_model
 (dir= C:\models,
 modelname= almush02,
 action=create,
 mechanism=ep,
 outdir=C:\test
);

proc sql noerrorstop;
connect to greenplm (user=user1 password=open1 dsn=dsn6 schema=GPschema);
create table test.dbscore as select * from connection to greenplm
 (select id,
 "EM_CLASSIFICATION" ,
 "EM_EVENTPROBABILITY" ,
 "EM_PROBABILITY" from public.SAS_EP(TABLE(select id
 ,"capcolor"
 ,"capsurf"
 ,"odor"
 ,"ringnumb"
 ,"sporepc"

68 Chapter 6 • SAS Scoring Accelerator for Greenplum

 ,"stalkcbr"
 ,"stalksbr"
 from model.almush02),
 'select modelds2, modelformats from model.sas_model_table
 where upper(modelname)=''ALMUSH02''
 ');
) ;
quit;

SAS_EP Function Syntax
The basic syntax of the SAS_EP table function is as follows:

<SAS_EP-schema.>SAS_EP(TABLE (SELECT
* | column <, … column-n>
, FROM <input-table-schema.>input-table-name
<SCATTER BY column<, … column-n> | SCATTER RANDOMLY>
<ORDER BY column <, … column-n>>),
'SELECT MODELDS2<, MODELFORMATS> FROM <schema.>model-table-name
WHERE MODELNAME =' 'model-name' '
');

Arguments

SAS_EP-schema
specifies the name of the schema where the SAS_EP function was created.

Note The SAS_EP function is created in the database by the
%INDGP_PUBLISH_COMPILEUDF_EP macro. For more information, see
SAS In-Database Products: Administrator's Guide.

column
specifies the name of the column or columns that are read from the input table and
passed to the SAS_EP function.

input-table-schema
specifies the name of the schema where the input table exists.

input-table-name
specifies the input table that is used by the SAS_EP function.

SCATTER BY column<, …column-n> | SCATTER RANDOMLY
specifies how the input data is distributed.

ORDER BY column<, …column-n>
specifies how the input data is sorted within its distribution.

model-table-name
specifies the name of the model table where the sasscore_modelname.ds2 and
sasscore_modelname_ufmt.xml scoring files were published with the
%INDGP_CREATE_MODELTABLE macro.

Requirement The table name that you specify for this function must be the same
table name that is used in the %INDGP_CREATE_MODELTABLE
macro. For more information, see
“%INDGP_CREATE_MODELTABLE Macro Syntax” on page 67.

model-name
specifies the name of the model.

Using the SAS Embedded Process to Run Scoring Models 69

Greenplum Scoring Files
When using the SAS Embedded Process, the %INDGP_PUBLISH_MODEL macro
produces two scoring files for each model:

• sasscore_modelname.ds2. This file contains code that is executed by the SAS_EP
function.

• sasscore_modelname_ufmt.xml. This file contains user-defined formats for the
scoring model that is being published. This file is used by the SAS_EP function.

These files are published to the model table that you specify in the
%INDGP_PUBLISH_MODEL macro. See Appendix 1, “Scoring File Examples,” on
page 285 for an example of each of these files.

A message that indicates whether the scoring files are successfully or not successfully
created is printed to the SAS log.

Although you cannot view the scoring files directly, there are two ways to see the
models whose files are created:

• Run this query from psql:

select modelname from <schema.>sas-model-table;

• Run a PROC SQL query from SAS.

proc sql;
 connect to greenplm (user=userid password=xxxx dsn=mydsn schema=myschema);
 select * from connection to greenplm
 (select modelname from schema.sas_model_table);
 disconnect from greenplm;
quit;

Starting and Stopping the SAS Embedded Process
The SAS Embedded Process starts when a query is submitted using the SAS_EP
function. It continues to run until it is manually stopped or the database is shut down.

Manually starting and stopping the SAS Embedded Process has implications for all
scoring model publishers, requires superuser permissions, and must be run from the
Greenplum master node. It should not be done without consulting your database
administrator. For more information, see “Controlling the SAS Embedded Process” in
Chapter 4 of SAS In-Database Products: Administrator's Guide.

SAS Embedded Process Troubleshooting Tips
If you have problems running scoring models with the SAS Embedded Process, these are
the most likely areas where a problem could occur:

• Greenplum Partner Connector (GPPC) version 1.2 must be installed. You can verify
that GPPC is installed by running this command.

ls $GPHOME/lib/*gppc*

• When you use the SAS_EP function in an SQL query, the schema name is either
SASLIB or a schema that was specified when the SAS_EP function was registered.
SASLIB is the default schema name for the INDCONN macro variable when the
%INDGP_PUBLISH_COMPILEUDF_EP macro is run to create the SAS_EP

70 Chapter 6 • SAS Scoring Accelerator for Greenplum

function. For more information, see “Running the
%INDGP_PUBLISH_COMPILEUDF_EP Macro” in Chapter 4 of SAS In-Database
Products: Administrator's Guide.

• When you refer to the model table in an SQL query, the schema name is either the
user ID or a schema that was specified when the model table was created. The user
ID is the default schema name for the INDCONN macro variable when the
%INDGP_PUBLISH_MODELTABLE macro is run to create the model table. For
more information, see “Creating a Model Table” on page 66.

• When you use the SAS_EP function, you must specify the schema where the
SAS_EP function was registered.

• $GPHOME can be referenced by a symbolic link or the explicit path. When you
update the Greenplum version, it is safer to always use the explicit path. Here is an
example.

/usr/local/greenplum-db -> /usr/local/greenplum-db-4.2.2.0

Running the %INDGP_PUBLISH_MODEL Macro

%INDGP_PUBLISH_MODEL Macro Run Process
To run the %INDGP_PUBLISH_MODEL macro, complete the following steps:

1. Create a scoring model using SAS Enterprise Miner.

2. Use the SAS Enterprise Miner Score Code Export node to create a score output
directory. Populate the directory with the score.sas file, the score.xml file, and (if
needed) the format catalog.

3. Start SAS and submit one of the following commands in the Program Editor or
Enhanced Editor:

%let indconn = user=youruserid password=yourpwd
 dsn=yourdsn schema=yourschema;

%let indconn = user=youruserid password=yourpwd server=yourserver
 database=yourdb schema=yourschema;

For more information, see the “INDCONN Macro Variable” on page 71.

4. Run the %INDGP_PUBLISH_MODEL macro. For more information, see
“%INDGP_PUBLISH_MODEL Macro Syntax” on page 73.

Messages are written to the SAS log that indicate the success or failure of the
creation of the scoring files or functions.

INDCONN Macro Variable
The INDCONN macro variable is used to provide credentials to connect to Greenplum.
You must specify user, password, either the DSN name or the server and database name.
The schema name is optional. You must assign the INDCONN macro variable before the
%INDGP_PUBLISH_MODEL macro is invoked.

The value of the INDCONN macro variable for the %INDGP_PUBLISH_MODEL
macro has one of these formats:

Running the %INDGP_PUBLISH_MODEL Macro 71

USER=<'>username<'> PASSWORD=<'>password<'> DSN=<'>dsnname<'>
<SCHEMA=<'>schemaname<'>> <PORT=<'>port-number<'>>
USER=<'>username<'> PASSWORD=<'>password<'> SERVER=<'>servername<'>
DATABASE=<'>databasename<'> <SCHEMA=<'>schemaname<'>>
<PORT=<'>port-number<'>>

Arguments

USER=<'>username<'>
specifies the Greenplum user name (also called the user ID) that is used to connect to
the database. If the user name contains spaces or nonalphanumeric characters, you
must enclose the user name in quotation marks.

PASSWORD=<'>password<'>
specifies the password that is associated with your Greenplum user ID. If the
password contains spaces or nonalphabetic characters, you must enclose he password
in quotation marks.

Tip Use only PASSWORD=, PASS=, or PW= for the password argument. PWD= is
not supported and causes an error.

DSN=<'>datasourcename<'>
specifies the configured Greenplum ODBC data source to which you want to
connect. If the DSN contains spaces or nonalphabetic characters, you must enclose
the DSN in quotation marks.

Requirement You must specify either the DSN= argument or the SERVER= and
DATABASE= arguments in the INDCONN macro variable.

SERVER=<'>servername<'>
specifies the Greenplum server name or the IP address of the server host. If the
server name contains spaces or nonalphanumeric characters, you must enclose the
server name in quotation marks.

Requirement You must specify either the DSN= argument or the SERVER= and
DATABASE= arguments in the INDCONN macro variable.

DATABASE=<'>databasename<'>
specifies the Greenplum database that contains the tables and views that you want to
access. If the database name contains spaces or nonalphanumeric characters, you
must enclose the database name in quotation marks.

Requirement You must specify either the DSN= argument or the SERVER= and
DATABASE= arguments in the INDCONN macro variable.

SCHEMA=<'>schemaname<'>
specifies the schema name for the database.

Tip If you do not specify a value for the SCHEMA argument, the value of the
USER argument is used as the schema name. The schema must be created by
your database administrator.

PORT=<'>port-number<'>
specifies the psql port number.

Default 5432

72 Chapter 6 • SAS Scoring Accelerator for Greenplum

Requirement The server-side installer uses psql, and psql default port is 5432. If
you want to use another port, you must have the UNIX or database
administrator change the psql port.

T I P The INDCONN macro variable is not passed as an argument to the
%INDGP_PUBLISH_MODEL macro. This information can be concealed in your
SAS job. You might want to place it in an autoexec file and set the permissions on
the file so that others cannot access the user ID and password.

%INDGP_PUBLISH_MODEL Macro Syntax
%INDGP_PUBLISH_MODEL

(DIR=input-directory-path, MODELNAME=name
<, MECHANISM=STATIC | EP>
<, MODELTABLE=model-table-name>
<, DATASTEP=score-program-filename>
<, XML=xml-filename>
<, DATABASE=database-name>
<, FMTCAT=format-catalog-filename>
<, ACTION=CREATE | REPLACE | DROP>
<, OUTDIR=diagnostic-output-directory>
);

Arguments

DIR=input-directory-path
specifies the directory where the scoring model program, the properties file, and the
format catalog are located.

This is the directory that is created by the SAS Enterprise Miner Score Code Export
node. This directory contains the score.sas file, the score.xml file, and (if user-
defined formats were used) the format catalog.

Requirement You must use a fully qualified pathname.

Interaction If you do not use the default directory that is created by SAS
Enterprise Miner, you must specify the DATASTEP=, XML=, and (if
needed) FMTCAT= arguments.

See “Special Characters in Directory Names” on page 19

MODELNAME=name
specifies the name that is prepended to each output function to ensure that each
scoring function name is unique in the Greenplum database.

Restriction The scoring function name is a combination of the model and output
variable names. A scoring function name cannot exceed 63
characters. For more information, see “Scoring Function Names” on
page 61.

Requirement The model name must be a valid SAS name that is 10 characters or
fewer. For more information about valid SAS names, see the topic on
rules for words and names in SAS Language Reference: Concepts.

Interaction Only the EM_ output variables are published as Greenplum scoring
functions. For more information about the EM_ output variables, see

Running the %INDGP_PUBLISH_MODEL Macro 73

“Fixed Variable Names” on page 27 and “Scoring Function Names”
on page 61.

MECHANISM=STATIC | EP
specifies whether scoring functions or scoring files are created. MECHANISM= can
have one of the following values:

STATIC
specifies that scoring functions are created.

These scoring functions are used in an SQL query to run the scoring model.

See “Using Scoring Functions to Run Scoring Models” on page 60

EP
specifies that scoring files are created.

These scoring files are used by the SAS Embedded Process to run the scoring
model. A single entry in the model table is inserted for each new model. The
entry contains both the score.sas and score.xml files in separate columns. The
scoring process includes reading these entries from the table and transferring
them to each instance of the SAS Embedded Process for execution.

Requirement If you specify MECHANISM=EP, you must also specify the
MODELTABLE= argument.

Note The SAS Embedded Process might require a later release of
Greenplum than function-based scoring. For more information,
see the SAS Foundation system requirements documentation for
your operating environment.

See “Using the SAS Embedded Process to Run Scoring Models” on
page 65

Default STATIC

MODELTABLE=model-table-name
specifies the name of the model table where the scoring files are published.

Default sas_model_table

Restriction This argument is valid only when using the SAS Embedded Process.

Requirement The name of the model table must be the same as the name specified
in the %INDGP_CREATE_MODELTABLE macro. For more
information, see the MODELTABLE argument in
“%INDGP_CREATE_MODELTABLE Macro Syntax” on page 67.

DATASTEP=score-program-filename
specifies the name of the scoring model program file that was created by using the
SAS Enterprise Miner Score Code Export node.

Default score.sas

Restriction Only DATA step programs that are produced by the SAS Enterprise
Miner Score Code Export node can be used.

74 Chapter 6 • SAS Scoring Accelerator for Greenplum

Interaction If you use the default score.sas file that is created by the SAS
Enterprise Miner Score Code Export node, you do not need to specify
the DATASTEP= argument.

XML=xml-filename
specifies the name of the properties XML file that was created by the SAS Enterprise
Miner Score Code Export node.

Default score.xml

Restrictions Only XML files that are produced by the SAS Enterprise Miner Score
Code Export node can be used.

If you use scoring functions to run scoring models, the maximum
number of output variables is 128. If you use the SAS Embedded
Process, the maximum is 1660.

Interaction If you use the default score.xml file that is created by the SAS
Enterprise Miner Score Code Export node, you do not need to specify
the XML= argument.

DATABASE=database-name
specifies the name of a Greenplum database to which the scoring functions and
formats are published.

Restriction If you specify DSN= in the INDCONN macro variable, do not use the
DATABASE argument.

Interaction The database that is specified by the DATABASE= argument takes
precedence over the database that you specify in the INDCONN macro
variable. For more information, see “%INDGP_PUBLISH_MODEL
Macro Run Process” on page 71.

FMTCAT=format-catalog-filename
specifies the name of the format catalog file that contains all user-defined formats
that were created by the FORMAT procedure and that are referenced in the DATA
step scoring model program.

Restriction Only format catalog files that are produced by the SAS Enterprise
Miner Score Code Export node can be used.

Interactions If you use the default format catalog that is created by the SAS
Enterprise Miner Score Code Export node, you do not need to specify
the FMTCAT= argument.

If you do not use the default catalog name (FORMATS) or the default
library (WORK or LIBRARY) when you create user-defined formats,
you must use the FMTSEARCH system option to specify the location
of the format catalog. For more information, see PROC FORMAT in
the Base SAS Procedures Guide.

ACTION=CREATE | REPLACE | DROP
specifies one of the following actions that the macro performs:

CREATE
creates a new function.

Running the %INDGP_PUBLISH_MODEL Macro 75

REPLACE
overwrites the current function, if a function by the same name is already
registered.

DROP
causes all functions for this model to be dropped from the Greenplum database.

Default CREATE

Tip If the function has been previously defined and you specify
ACTION=CREATE, you receive warning messages from Greenplum. If
the function has been previously defined and you specify
ACTION=REPLACE, no warnings are issued.

OUTDIR=diagnostic-output-directory
specifies a directory that contains diagnostic files.

Files that are produced include an event log that contains detailed information about
the success or failure of the publishing process and sample SQL code
(SampleSQL.txt). For more information about the SampleSQL.txt file, see “Scoring
Function Names” on page 61.

Tip This argument is useful when testing your scoring models.

See “Special Characters in Directory Names” on page 19

Greenplum Permissions

Scoring Function Permissions
You must have Greenplum superuser permissions to execute the
%INDGP_PUBLISH_MODEL macro that publishes the scoring functions. Greenplum
requires superuser permissions to create C functions in the database.

Without these permissions, the publishing of the scoring functions fails. To obtain these
permissions, contact your database administrator.

For more information about specific permissions, see “Greenplum Permissions” in
Chapter 4 of SAS In-Database Products: Administrator's Guide.

SAS Embedded Process Permissions
In addition to Greenplum superuser permissions, you must have CREATE TABLE
permission to create a model table when using the SAS Embedded Process.

For more information about specific permissions, see “Greenplum Permissions” in
Chapter 4 of SAS In-Database Products: Administrator's Guide.

76 Chapter 6 • SAS Scoring Accelerator for Greenplum

Chapter 7

SAS Scoring Accelerator for
Hadoop

Overview of Running Scoring Models in Hadoop . 77

Running Scoring Models in Hadoop . 77

INDCONN Macro Variable . 79

%INDHD_PUBLISH_MODEL Syntax . 81

%INDHD_RUN_MODEL Syntax . 83

Creating a Metadata File for the Input Data File . 88

Scoring Output . 90
Scoring Output File . 90
Querying and Viewing the Scoring Output File . 90

Hadoop Permissions . 91

Overview of Running Scoring Models in Hadoop
The integration of the SAS Embedded Process and Hadoop allows scoring code to be
run directly on Hadoop using the SAS Embedded Process.

The SAS Embedded Process is a SAS server process that runs inside Hadoop to read and
write data. A model publishing macro creates scoring files and stores them in a Hadoop
Distributed File System (HDFS) directory. These scoring files are then used by a
Hadoop MapReduce function to run the scoring model.

The SAS Scoring Accelerator for Hadoop requires a specific version of Hadoop. For
more information, see the SAS Foundation system requirements documentation for your
operating environment.

Running Scoring Models in Hadoop
To run a scoring model in Hadoop, follow these steps:

1. Create a scoring model using SAS Enterprise Miner.

2. Start SAS.

3. [Optional] Create a metadata file for the input data file.

77

The metadata file has the extension .sashdmd and must be stored in the HDFS. Use
PROC HDMD to generate the metadata file.

Note: You do not have to create a metadata file for the input data file if the data file
is created with a Hadoop LIBNAME statement that contains the
HDFS_DATADIR= and HDFS_METADIR options. In this instance, metadata
files are automatically generated.

Note: SAS/ACCESS requires Hadoop data to be in Hadoop standard UTF-8 format.
If you are using DBCS encoding, you must extract the value of the character
length in the engine-generated SASHDMD metadata file and multiply it by the
number of bytes of a single character in order to create the correct byte length for
the record.

For more information, see “Creating a Metadata File for the Input Data File” on page
88 and PROC HDMD in SAS/ACCESS for Relational Databases: Reference.

4. Connect to the HDFS using this command.

%let indconn=hdfs_server=myhdfsserver hdfs_port=8020 user=myuserid;

For more information, see “INDCONN Macro Variable” on page 79.

5. Run the %INDHD_PUBLISH_MODEL macro.

The %INDHD_PUBLISH_MODEL macro uses some of the files that the SAS
Enterprise Miner Score Code Export node creates:

• the scoring model program (score.sas file)

• the properties file (score.xml file)

• a format catalog (if the training data includes SAS user-defined formats)

The %INDHD_PUBLISH_MODEL macro translates the score.sas file into a DS2
program and, if needed, generates an XML file for the user-defined formats. Then all
model files (the SAS program, the DS2 program, the score.xml file, and the XML
file for user-defined formats) are copied to the HDFS.

For more information, see “%INDHD_PUBLISH_MODEL Syntax” on page 81.

6. Connect to the MapReduce JobTracker using this command.

%let indconn=hdfs_server=myhdfsserver hdfs_port=hdfsport
 mapred_server=mapred-server-name mapred_port=mapred-port-number;

For more information, see “INDCONN Macro Variable” on page 79.

7. Run the %INDHD_RUN_MODEL macro.

The %INDHD_PUBLISH_MODEL macro publishes the model to Hadoop, making
the model available to run against data that is stored in the HDFS.

The %INDHD_RUN_MODEL macro starts a MapReduce job that uses the files
generated by the %INDHD_PUBLISH_MODEL to execute the DS2 program. The
MapReduce job stores the DS2 program output in the HDFS location that is specified
by either the OUTPUTDATADIR= argument or by the <outputDir> element in the
HDMD file.

For more information, see “%INDHD_RUN_MODEL Syntax” on page 83.

8. Submit an SQL query against the output file.

For more information, see “Scoring Output” on page 90.

78 Chapter 7 • SAS Scoring Accelerator for Hadoop

INDCONN Macro Variable
The INDCONN macro variable is used to provide credentials to connect to the Hadoop
HDFS and MapReduce JobTracker. You must assign the INDCONN macro variable
before you run the %INDHD_PUBLISH_MODEL and the %INDHD_RUN_MODEL
macros.

Note: The INDCONN macro variable can be set once and used for both macros.

• When you assign the INDCONN macro variable before you run the
%INDHD_PUBLISH_MODEL macro, specify the server and port in order to access
the machine on which you have installed the Hadoop HDFS. The user ID and
password are optional. Here is the syntax.

HDFS_SERVER=hdfs-server-name HDFS_PORT=hdfs-port-number
<USER=user> <PASSWORD=password><HADOOP_CFG=configuration-file>

• When you assign the INDCONN macro variable before you run the
%INDHD_RUN_MODEL macro, specify either the Hadoop configuration file or the
HDFS and MapReduce server and the HDFS and MapReduce port in order to access
the machine on which you have installed the MapReduce JobTracker. The user ID
and password are optional. The INDCONN macro variable for the
%INDHD_RUN_MODEL macro has one of these formats:

HDFS_SERVER=hdfs-server-name HDFS_PORT=hdfs-port-number
MAPRED_SERVER=mapred-server-name MAPRED_PORT=mapred-port-number
<USER=user > <PASSWORD=password> <HADOOP_CFG=configuration-file>

HADOOP_CFG=configuration-file <USER=user > <PASSWORD=password>

Arguments

HDFS_SERVER=hdfs-server-name
specifies the HDFS server name or the IP address of the server host.

Restriction This argument is for use with the Cloudera 4.x and Hortonworks 1.3.x
distributions. If you have Cloudera 5.x or Hortonworks 2.x, you must
use the HADOOP_CFG argument.

Interaction It is recommended that you use the HADOOP_CFG argument instead
of the HDFS_SERVER, HDFS_PORT, MAPRED_SERVER, and
MAPRED_PORT arguments. The configuration file that you specify
with the HADOOP_CFG argument overrides what you specify in the
HDFS_SERVER, HDFS_PORT, MAPRED_SERVER, and
MAPRED_PORT arguments.

See “HADOOP_CFG=configuration-file” on page 80

HDFS_PORT=hdfs-port-number
specifies the HDFS name node process port number.

Restriction This argument is for use with the Cloudera 4.x and Hortonworks 1.3.x
distributions. If you have Cloudera 5.x or Hortonworks 2.x, you must
use the HADOOP_CFG argument.

Interaction It is recommended that you use the HADOOP_CFG argument instead
of the HDFS_SERVER, HDFS_PORT, MAPRED_SERVER, and

INDCONN Macro Variable 79

MAPRED_PORT arguments. The configuration file that you specify
with the HADOOP_CFG argument overrides what you specify in the
HDFS_SERVER, HDFS_PORT, MAPRED_SERVER, and
MAPRED_PORT arguments.

See “HADOOP_CFG=configuration-file” on page 80

MAPRED_SERVER=mapred-server-name
specifies the MapReduce JobTracker server name or the IP address of the server.

Restriction This argument is for use with the Cloudera 4.x and Hortonworks 1.3.x
distributions. If you have Cloudera 5.x or Hortonworks 2.x, you must
use the HADOOP_CFG argument.

Interaction It is recommended that you use the HADOOP_CFG argument instead
of the HDFS_SERVER, HDFS_PORT, MAPRED_SERVER, and
MAPRED_PORT arguments. The configuration file that you specify
with the HADOOP_CFG argument overrides what you specify in the
HDFS_SERVER, HDFS_PORT, MAPRED_SERVER, and
MAPRED_PORT arguments.

Note This argument is required only when you run the
%INDHD_RUN_MODEL macro.

See “HADOOP_CFG=configuration-file” on page 80

MAPRED_PORT=mapred-port-number
specifies the MapReduce JobTracker port number.

Restriction This argument is for use with the Cloudera 4.x and Hortonworks 1.3.x
distributions. If you have Cloudera 5.x or Hortonworks 2.x, you must
use the HADOOP_CFG argument.

Interaction It is recommended that you use the HADOOP_CFG argument instead
of the HDFS_SERVER, HDFS_PORT, MAPRED_SERVER, and
MAPRED_PORT arguments. The configuration file that you specify
with the HADOOP_CFG argument overrides what you specify in the
HDFS_SERVER, HDFS_PORT, MAPRED_SERVER, and
MAPRED_PORT arguments.

Note This argument is required only when you run the
%INDHD_RUN_MODEL macro.

See “HADOOP_CFG=configuration-file” on page 80

USER=username
specifies the Hadoop user name (also called the user ID) that is used to connect to
the HDFS.

PASSWORD=password
specifies the password that is associated with your Hadoop user ID.

Tip Use only PASSWORD=, PASS=, or PW= for the password argument. PWD= is
not supported and causes an error.

HADOOP_CFG=configuration-file
specifies the location of the Hadoop configuration file that is used with the
%INDHD_PUBLISH_MODEL and the %INDHD_RUN_MODEL macros.

80 Chapter 7 • SAS Scoring Accelerator for Hadoop

Restriction If you have Cloudera 5.x or Hortonworks 2.x, you must use the
HADOOP_CFG argument. You cannot use the HDFS_SERVER,
HDFS_PORT, MAPRED_SERVER, and MAPRED_PORT arguments
with Cloudera 5.x or Hortonworks 2.x.

Interaction The configuration file that you specify with the HADOOP_CFG=
argument overrides what you specify in the INDCONN
HDFS_SERVER, HDFS_PORT, MAPRED_SERVER, and
MAPRED_PORT arguments.

Note This argument is required only when you run the
%INDHD_RUN_MODEL macro on a YARN/MapReduce 2 Hadoop
cluster.

See “HDFS_SERVER=hdfs-server-name” on page 79

“HDFS_PORT=hdfs-port-number” on page 79

“MAPRED_SERVER=mapred-server-name” on page 80

“MAPRED_PORT=mapred-port-number” on page 80

%INDHD_PUBLISH_MODEL Syntax
%INDHD_PUBLISH_MODEL

(DIR=input-directory-path
, MODELNAME=name
, MODELDIR=hdfs-directory-path
<, DATASTEP=score-program-filename>
<, XML=xml-filename>
<, FMTCAT=format-catalog-filename | libref.format-catalog-filename>
<, ACTION=CREATE | REPLACE | DROP>
<, TRACE=YES | NO>
);

Arguments

DIR=input-directory-path
specifies the local directory where the scoring model program, the properties XML
file, and the optional format catalog are located.

This is the directory that the SAS Enterprise Miner Score Code Export node creates.

Requirement You must use a fully qualified pathname.

Interaction If you do not use the default filenames that are created by SAS
Enterprise Miner, you must specify the DATASTEP=, XML=, and (if
needed) FMTCAT= arguments.

See “Special Characters in Directory Names” on page 19

MODELNAME=name
specifies the model name. This name is used to create the HDFS directory, in the
directory path specified by the MODELDIR option. The model files (the SAS

%INDHD_PUBLISH_MODEL Syntax 81

program, the DS2 program, the score.xml file, and the XML file for user-defined
formats) are placed in the HDFS directory.

Requirement The model name must be a valid SAS name. There is no limit on the
number of characters in the model name. For more information about
valid SAS names, see the topic on rules for words and names in SAS
Language Reference: Concepts.

MODELDIR=hdfs-directory-path
specifies the base HDFS path where the scoring model directory is located.

Restriction You must use a fully qualified pathname.

See “Special Characters in Directory Names” on page 19

DATASTEP=score-program-filename
specifies the name of the scoring model program file that was created by using the
SAS Enterprise Miner Score Code Export node.

Default score.sas

Restriction Only DATA step programs that are produced by the SAS Enterprise
Miner Score Code Export node can be used.

Requirement The scoring model program file must be located in the DIR directory.

Interaction If you use the default score.sas file that is created by the SAS
Enterprise Miner Score Code Export node, you do not need to specify
the DATASTEP= argument.

XML=xml-filename
specifies the name of the properties XML file that was created by the SAS Enterprise
Miner Score Code Export node.

Default score.xml

Restriction Only XML files that are produced by the SAS Enterprise Miner
Score Code Export node can be used.

Requirement The properties XML file must be located in the DIR directory.

Interaction If you use the default score.xml file that is created by the SAS
Enterprise Miner Score Code Export node, you do not need to specify
the XML= argument.

FMTCAT=format-catalog-filename | libref.format-catalog-filename
specifies the name of the format catalog file that contains all user-defined formats
that were created by the FORMAT procedure and that are referenced in the DATA
step scoring model program.

Restriction Only format catalog files that are produced by the SAS Enterprise
Miner Score Code Export node can be used.

Interactions If you use the default format catalog that is created by the SAS
Enterprise Miner Score Code Export node, you do not need to specify
the FMTCAT= argument.

82 Chapter 7 • SAS Scoring Accelerator for Hadoop

If you do not use the default catalog name (FORMATS) or the default
library (WORK or LIBRARY) when you create user-defined formats,
you must use the FMTSEARCH system option to specify the location
of the format catalog. For more information, see PROC FORMAT in
the Base SAS Procedures Guide.

Note The format catalog is stored locally and is copied to the HDFS to the
same directory where the metadata file is stored.

ACTION=CREATE | REPLACE | DROP
specifies one of the following actions that the macro performs:

CREATE
creates a new set of model files.

Tip If the model files have been previously defined and you specify
ACTION=CREATE, an error occurs.

REPLACE
overwrites the current set of model files.

DROP
deletes the current set of model files.

Default CREATE

Note If the current files do not exist and you specify REPLACE or DROP, an
error occurs.

TRACE=YES | NO
specifies whether debug messages are displayed.

Default NO

%INDHD_RUN_MODEL Syntax
%INDHD_RUN_MODEL

(INMETANAME=input-filename.SASHDMD
, SCOREPGM=model_score_program_ds2_file
<, OUTDATADIR=hdfs-directory-path>
<, OUTMETADIR=hdfs-directory-path>
<, INFILETYPE=type>
<, INPUTFILE=input-file-name>
<, OUTFILEDELMITER=file-delimiter>
<, OUTTEXTQUALIFIER=text-qualifier>
<, OUTFILETYPE=output-file-type>
<, OUTRECORDFORMAT=output-record-format>
<, FORMATFILE=user-defined-format-filename>
<, FORCEOVERWRITE=TRUE | FALSE>
<, KEEP=variable-keep-list>
<, KEEPFILENAME=keep-list-configuration-filename>
<, TRACE=YES | NO>
);

%INDHD_RUN_MODEL Syntax 83

Arguments

INMETANAME=input-filename.SASHDMD
specifies the HDFS full path of the input metadata file (.sashdmd file).

Requirement The metadata file must already exist or must be generated with
PROC HDMD before running the %INDHD_RUN_MODEL macro.
You do not have to create a metadata file for the input data file if the
data file is created with a Hadoop LIBNAME statement that contains
the HDFS_DATADIR= and HDFS_METADIR options. In this
instance, metadata files are automatically generated.

Interaction This file is read by the MapReduce job.

See “Creating a Metadata File for the Input Data File” on page 88

PROC HDMD in SAS/ACCESS for Relational Databases: Reference

SCOREPGM=model_score_program_ds2_file
specifies the name of the scoring model program file that is executed by the SAS
Embedded Process.

OUTDATADIR=hdfs-directory-path
specifies the name of the HDFS directory where the MapReduce job stores the
output files.

Interaction The hdfs-directory-path overrides what is specified in the <outputDir>
element in the input metadata file (.sashdmd file).

OUTMETADIR=hdfs-directory-path
specifies the name of the HDFS directory where the MapReduce job stores the
output file metadata.

Interaction The hdfs-directory-path overrides what is specified in the <metaDir>
element in the input file metadata (.sashdmd file).

INFILETYPE=type
specifies the type of input file. type can be one of the following:

DELIMITED
specifies a delimited file.

Note This type maps to the
com.sas.access.hadoop.ep.delimited.DelimitedInputFormat
input format in the <epInputFormat> element in the input file metadata
(.sashdmd file).

CUSTOM
specifies a custom file.

Note This type maps to the
com.sas.access.hadoop.ep.custom.CustomFileInputFormat
input format in the <epInputFormat> element in the input file metadata
(.sashdmd file).

CUSTOM_SEQUENCE
specifies a custom sequence file.

84 Chapter 7 • SAS Scoring Accelerator for Hadoop

Note This type maps to the
com.sas.access.hadoop.ep.custom.CustomSequenceFileInputFormat
input format in the <epInputFormat> element in the input file metadata (.sashdmd
file).

SEQUENCE
specifies a sequence file.

Note This type maps to the
com.sas.access.hadoop.ep.sequence.EpSequenceFileInputFormat
input format in the <epInputFormat> element in the input file metadata (.sashdmd
file).

BINARY
specifies a fixed record length file.

Alias FIXED

Note This type maps to
thecom.sas.access.hadoop.ep.binar.FixedRecLenBinaryInputFormat
input format in the <epInputFormat> element in the input file metadata (.sashdmd
file).

XML
specifies an XML file.

Note This type maps to the
com.sas.access.hadoop.ep.xml.XmlInputFormat input format
in the <epInputFormat> element in the input file metadata (.sashdmd file).

JSON
specifies a JSON file.

Note This type maps to the
com.sas.access.hadoop.ep.json.JsonInputFormat input
format in the <epInputFormat> element in the input file metadata
(.sashdmd file).

SPD
specifies an SPD file type.

Note This type maps to the
com.sas.hadoop.ep.spd.EPSPDInputFormat input format in the
<epInputFormat> element in the input file metadata (.sashdmd file).

Interaction The type overrides what is specified in the <epInputFormat> element in
the input file metadata (.sashdmd file).

Note If this option is specified, the %INDHD_RUN_MODEL macro
automatically matches the type with the correct input format Java class
for the SAS Embedded Process. See each type for the mapping that is
performed.

INPUTFILE=input-filename
specifies an HDFS fully qualified input filename. This file is read by the MapReduce
job.

%INDHD_RUN_MODEL Syntax 85

Interaction The input-filename overrides what is specified in the <inputDir>
element in the input file metadata (.sashdmd file).

OUTFILEDELIMTER=file-delimiter
specifies the delimiter for variables (fields) in the output file. Here is how you can
specify the delimiter.

• ','

• '\t'

• ^A

• ^Z

• '09'x

• 32

Default ^A

Range You can specify only a single character between the Unicode range of
U+0001 to U+007F.

Restriction The value of this option cannot be the same character as for
OUTTEXTQUALIFIER and cannot be a newline ('0a'x).

Requirement This option is valid only for DELIMITED. Other formats do not use
it.

Note Valid values are 0–127, a comma (",”), or "\t".

OUTTEXTQUALIFIER=text-qualifier
specifies the text qualifier to be used in the output data file.

Default none

Range You can specify only a single character between the Unicode range of
U+0001 to U+007F.

Restriction The value of this option cannot be the same character as for
OUTFILEDELIMTER and cannot be a newline ('0a'x).

Requirement This option is valid only for DELIMITED. Other formats do not use
it.

OUTFILETYPE=output-file-type
specifies the output file type. output-file-type can be one of the following values:

DELIMITED
specifies a delimited file.

BINARY
specifies a fixed record length file.

Alias FIXED

SPD
specifies an SPD file.

86 Chapter 7 • SAS Scoring Accelerator for Hadoop

Default If the input file type is fixed, the output file type is fixed. Otherwise, it is
delimited.

OUTRECORDFORMAT=output-record-format
specifies the output record format. output-record-format can be one of the following
values:

DELIMITED
specifies a delimited format.

FIXED
specifies a fixed record length format.

Default DELIMITED

FORMATFILE=user-defined-format-filename
specifies the name of the user-defined formats that were created by the FORMAT
procedure and that are referenced in the DATA step scoring model program.

Interaction This name is the same one that you specified in the
%INDHD_PUBLISH_MODEL macro’s FMTCAT argument.

See “FMTCAT=format-catalog-filename | libref.format-catalog-filename”
on page 82

FORCEOVERWRITE=TRUE | FALSE
specifies whether the output directory is deleted before the MapReduce job is
executed.

Default FALSE

KEEP=variable-keep-list
specifies a list of variables that the SAS score program retains.

Restriction KEEP and KEEPFILENAME are mutually exclusive.

Requirement The list of variables must be separated by spaces and should not be
enclosed by single or double quotation marks.

KEEPFILENAME=keep-list-configuration-filename
specifies the name of an XML configuration file that contains the list of variables
that are passed to the SAS score program.

The keep list configuration file should have the following format:

<configuration>
 <property>
 <name>sas.ep.ds2.keep.list</name>
 <value>var1 var2 var3 var4... varn</value>
 </property>
</configuration>

Restriction KEEP and KEEPFILENAME are mutually exclusive.

Requirement You must specify the full path.

TRACE=YES | NO
specifies whether debug messages are displayed.

%INDHD_RUN_MODEL Syntax 87

Default NO

Creating a Metadata File for the Input Data File
Before running the %INDHD_RUN_MODEL macro, the metadata file for the input data
file must be present in an HDFS location.

There are three ways that the metadata file can be present depending on where the file
exists.

• The file is not in Hive.

No metadata exists. You must use PROC HDMD to create the metadata file. Here is
an example:

/***
* Assign a libname to the Hadoop Engine that specifies the
* locations where data, metadata,and temporary data will be stored.
***/
libname hdlib hadoop
 server=hdoop
 user=hadoop_user1
 HDFS_METADIR="/metadata"
 HDFS_TEMPDIR="/tmp";

/***
* Create a metadata file for input file defined under data_file.
* The metadata file name is defined in the NAME= option and is
* stored under the HDFS folder defined in HDFS_METADIR.
**/
proc hdmd
 name=hdlib.pilotmd
 format=delimited
 sep=',’
 data_file='pilot.dat';

 column EmployeeID char(6);
 column FirstName char(13);
 column LastName char(15);
 column JobCode char(7);
 column Salary char(6);
 column Category char(3);
run;

• The file is in a Hive library.

Metadata is associated with the file in Hive, but the metadata is not in HDMD
format. You must generate an HDMD file for it. Here is an example:

/**
* Assigns a libname to the Hadooop Engine that specifies the locations
* where data, metadata and temporary data will be stored.
**/
libname gridlib hadoop server="cdh123"
 user="hadoop"

88 Chapter 7 • SAS Scoring Accelerator for Hadoop

 HDFS_TEMPDIR="/data/temp"
 HDFS_DATADIR="/data/dlm/data"
 HDFS_METADIR="/data/dlm/meta"
 DBCREATE_TABLE_EXTERNAL=NO;

/**
* Assigns a libname to the Hadooop Engine that specifies
* that the data and metdata will be in Hive
***/
libname hive hadoop server="cdh123"
 user=hadoop
 database=hpsumm
 subprotocol=hive2;

/**
* Creates an HDMD file from Hive table 'stthive' and stores
* it under the directory specified in HDFS_METADIR option of
* the 'gridlib' libname.
***/
proc hdmd
 from=hive.stthive
 name=gridlib.sttout;
run;

• The file is created with the ACCESS Hadoop engine.

When a file is created with a Hadoop LIBNAME statement that contains the
HDFS_DATADIR= and HDFS_METADIR options, the HDMD file is automatically
generated. Here is an example:

/**
* Assigns a libname to the Hadooop Engine that specifies
* the locations where data, metadata and temporary data
* will be stored.
**/
libname gridlib hadoop server="cdh123"
 user="hadoop"

 HDFS_TEMPDIR="/data/temp"
 HDFS_DATADIR="/data/dlm/data"
 HDFS_METADIR="/data/dlm/meta"
 DBCREATE_TABLE_EXTERNAL=NO;

/***
* Assigns a libname to a local SAS file
***/
libname mydata "C:/tmp/myfiles"

/**
* Creates a Hadoop file from mydata.intrid along with its HDMD
* file and stores under what was specified on HDFS_DATADIR of
* 'gridlib'.
***/
proc sql;
create table hdlib.flights98
 as select * from sasflt.flt98;
quit;

Creating a Metadata File for the Input Data File 89

The metadata file has the extension .sashdmd.

For more information, see PROC HDMD in SAS/ACCESS for Relational Databases:
Reference.

Scoring Output

Scoring Output File
When you run the %INDHD_RUN_MODEL macro, a delimited or fixed output file is
created.

In addition, a metadata file is created for the output file.

You can specify which columns are written to the output file by using the KEEP or
KEEPFILENAME argument of the %INDHD_RUN_MODEL macro. For more
information about the KEEP and KEEPFILENAME arguments, see
“%INDHD_RUN_MODEL Syntax” on page 83.

Querying and Viewing the Scoring Output File
Note: The %INDHD_RUN_MODEL macro does not generate a SampleSQL.txt file.

To view the output data in a SAS session, you can use PROC PRINT as long as you have
a LIBNAME statement to access the Hadoop output file. Here is an example that prints
the first ten rows of the output table.

/* Hadoop configuration file */

%let INDCONN=%str(HDFS_SERVER=hd.mycompany.com
 HDFS_PORT=8120
 MAPRED_SERVER=hd.mycompany.com
 MAPRED_PORT=8021
 USER=myuserid
 PASSWORD=mypwd);

/* libname pointing to Hadoop */
libname gridlib hadoop user=myuserid
 pw=mypwd
 server="hd.mycompany.com"
 HDFS_TEMPDIR="/user/hdmd/temp"
 HDFS_DATADIR="/user/hdmd/data"
 HDFS_METADIR="/user/hdmd/meta";

/* Delete HDMD file */
proc delete data=gridlib.peopleseq; run;

/* Create HDMD file */
proc hdmd NAME=GRIDLIB.PEOPLESEQ
 FILE_FORMAT=DELIMITED
 SEP=tab
 FILE_TYPE=custom_sequence
 INPUT_CLASS='com.sas.hadoop.ep.inputformat.sequence.

90 Chapter 7 • SAS Scoring Accelerator for Hadoop

 PeopleCustomSequenceInputFormat'
 DATA_FILE='people.seq';

 COLUMN name varchar(20);
 COLUMN sex varchar(1);
 COLUMN age int;
 column height double;
 column weight double;
run;

/*==
/* Start MR Job using the run model for Hadoop macro
==/
%indhd_run_model(infiletype=custom_sequence
 , inmetaname=/user/hdmd/meta/peopleseq.sashdmd
 , outdatadir=/user/hdmd/output/peopletxt.out
 , outmetadir=/user/hdmd/meta/peopletxt.sashdmd
 , scorepgm=/user/hdmd/ds2/inout.ds2
 , forceoverwrite=true
 , trace=no);

/* Print output file */
proc print data=gridlib.peopletxt(obs=10); run;

The columns in the output file are available to use in any SQL query expression.

select * from gridlib.peopletxt;

select em_classification from gridlib.peopletxt;

Hadoop Permissions
You must have permissions for the domains that you specify in the INDCONN macro
variable when you execute the publish and run macros.

You also need Write permission when writing files to the MODELDIR directory in the
%INDSP_RUN_MODEL macro. Without these permissions, the publishing of the
scoring model fails.

To obtain these permissions, contact your Hadoop administrator.

Hadoop Permissions 91

92 Chapter 7 • SAS Scoring Accelerator for Hadoop

Chapter 8

SAS Scoring Accelerator for
Netezza

Overview of Running Scoring Models in Netezza . 93

Using Scoring Functions to Run Scoring Models . 94
How to Run a Scoring Model Using Scoring Functions . 94
Scoring Function Names . 94
Viewing the Scoring Functions . 95
Using Scoring Functions to Run a Scoring Model . 97

Using the SAS Embedded Process to Run Scoring Models 98
How to Run a Scoring Model with the SAS Embedded Process 98
Creating a Model Table . 98
SAS_EP Stored Procedure . 100
Netezza Scoring Files . 103

Running the %INDNZ_PUBLISH_MODEL Macro . 104
%INDNZ_PUBLISH_MODEL Macro Run Process . 104
INDCONN Macro Variable . 105
%INDNZ_PUBLISH_MODEL Macro Syntax . 106
Modes of Operation . 110

Netezza Permissions . 111

Overview of Running Scoring Models in Netezza
There are two ways to run scoring models in Netezza.

• You can create scoring functions for each EM_ output variable. The model
publishing macro creates the scoring functions that are published as Netezza user-
defined functions. These functions can then be used in any SQL query. For more
information, see “Using Scoring Functions to Run Scoring Models” on page 94.

• Starting with the SAS 9.4 release, you can also use the SAS Embedded Process. The
SAS Embedded Process is a SAS server process that runs inside Netezza to read and
write data. The model publishing macro creates scoring files that are then used in a
stored procedure to run the scoring model. For more information, see “Using the
SAS Embedded Process to Run Scoring Models” on page 98.

The SAS Scoring Accelerator for Netezza requires a certain version of the Netezza client
and server environment. For more information, see the SAS Foundation system
requirements documentation for your operating environment.

93

Using Scoring Functions to Run Scoring Models

How to Run a Scoring Model Using Scoring Functions
The %INDNZ_PUBLISH_MODEL macro creates the files that are needed to build the
scoring functions and publishes those files to a specified database in the Netezza data
warehouse. Only the EM_ output variables are published as Netezza scoring functions.
For more information about the EM_ output variables, see “Fixed Variable Names” on
page 27.

To run the scoring model using scoring functions, follow these steps:

1. Run the %INDNZ_PUBLISH_MODEL macro.

The %INDNZ_PUBLISH_MODEL macro uses some of the files that are created by
the SAS Enterprise Miner Score Code Export node: the scoring model program
(score.sas file), the properties file (score.xml file), and (if the training data includes
SAS user-defined formats) a format catalog.

The %INDNZ_PUBLISH_MODEL macro performs the following tasks:

• takes the score.sas and score.xml files and produces a set of .c, .cpp, and .h files.
These .c, .cpp, and .h files are necessary to build separate scoring functions for
each of a fixed set of quantities that can be computed by the scoring model code.

• processes the format catalog and creates an .h file with C structures if a format
catalog is available. This file is also necessary to build the scoring functions.

• produces a script of the Netezza commands that are necessary to register the
scoring functions on the Netezza data warehouse.

• transfers the .c, .cpp, and .h files to Netezza using the Netezza External Table
interface.

• calls the SAS_COMPILEUDF function to compile the source files into object
files and to access the SAS formats library.

• uses the SAS/ACCESS Interface to Netezza to run the script to create the scoring
functions with the object files.

For more information, see “Running the %INDNZ_PUBLISH_MODEL Macro” on
page 104. For more information about the scoring functions, see “Scoring Function
Names” on page 94 and “Viewing the Scoring Functions” on page 95.

2. Use the scoring functions in any SQL query.

For more information, see “Using Scoring Functions to Run Scoring Models” on
page 94.

Scoring Function Names
The names of the scoring functions that are built in Netezza have the following format:

modelname_EM_outputvarname

modelname is the name that was specified in the MODELNAME argument of the
%INDNZ_PUBLISH_MODEL macro. modelname is always followed by _EM_ in the

94 Chapter 8 • SAS Scoring Accelerator for Netezza

scoring function name. For more information about the MODELNAME argument, see
“Running the %INDNZ_PUBLISH_MODEL Macro” on page 104.

outputvarname is derived from the names of the EM_ output variables in the score.xml
file that is generated from the SAS Enterprise Miner Score Code Export node. For more
information about the score.xml file, see “Fixed Variable Names” on page 27.

One scoring function is created for each EM_ output variable in the score.xml file. For
example, if the scoring model DATA step program takes ten inputs and creates three new
variables, then three scoring functions are defined. Each scoring function has the name
of an output variable. For example, if you set MODELNAME=credit in the
%INDNZ_PUBLISH_MODEL macro, and the EM_ output variables are
“EM_PREDICTION”, “EM_PROBABILITY”, and “EM_DECISION”, then the name
of the scoring functions that are created would be “credit_EM_PREDICTION”,
“credit_EM_PROBABILITY”, and “credit_EM_DECISION”.

Note: The scoring function name cannot exceed 128 characters.

CAUTION:
When the scoring function is generated, the names are case insensitive.
Consequently, if you have model names “Model01” and “model01”, and you create
two scoring functions, the second scoring function overwrites the first scoring
function.

Viewing the Scoring Functions
There are four ways to see the scoring functions that are created:

• From Netezza, log on to the database using a client tool such as NZSQL and submit
an SQL statement. The following example assumes that the model name that you
used to create the scoring functions is mymodel.

nzsql database username password

 select function,createdate,functionsignature from _v_function where
 function like '%MYMODEL%'

• From SAS, use SQL procedure code that produces output in the LST file. The
following example assumes that the model name that you used to create the scoring
functions is mymodel.

proc sql noerrorstop;
 connect to netezza (server=servername database=database
 username=username password=password);
 select *
 from connection to netezza
 (select function,createdate,functionsignature
 from _v_function where
 function like '%MYMODEL%');
 disconnect from netezza;
quit;

• You can look at the SAS log that is created when the %INDNZ_PUBLISH_MODEL
macro was run. A message is printed to the SAS log that indicates whether a scoring
function is successfully or not successfully created or replaced.

• Look at the SampleSQL.txt file that is produced when the
%INDNZ_PUBLISH_MODEL macro is successfully run. This file can be found in
the output directory (OUTDIR argument) that you specify in the macro.

Using Scoring Functions to Run Scoring Models 95

The SampleSQL.txt file contains basic SQL code that can be used to run your score
code inside Netezza. Please note that you must modify the sample code before using
it. Otherwise, the sample code returns an error.

For example, the SampleSQL.txt file refers to an ID column in allmush1_intab
that is populated with a unique integer from 1 to n. n is the number of rows in the
table.

Note: The ID column uniquely identifies each row. You would replace the ID
column with your own primary key column.

The following example assumes that the model name that you used to create the
scoring functions is allmush1.

drop table allmush1_outtab;
create table allmush1_outtab(
 id integer
,"EM_CLASSIFICATION" varchar(33)
,"EM_EVENTPROBABILITY" float
,"EM_PROBABILITY" float
);
insert into allmush1_outtab(
 id
,"EM_CLASSIFICATION"
,"EM_EVENTPROBABILITY"
,"EM_PROBABILITY"
)
select id,
 allmush1_em_classification("BRUISES"
,"CAPCOLOR"
,"GILLCOLO"
,"GILLSIZE"
,"HABITAT"
,"ODOR"
,"POPULAT"
,"RINGNUMB"
,"RINGTYPE"
,"SPOREPC"
,"STALKCBR"
,"STALKROO"
,"STALKSAR"
,"STALKSHA"
,"VEILCOLO")
 as "EM_CLASSIFICATION",
 allmush1_em_eventprobability("BRUISES"
,"CAPCOLOR"
,"GILLCOLO"
,"GILLSIZE"
,"HABITAT"
,"ODOR"
,"POPULAT"
,"RINGNUMB"
,"RINGTYPE"
,"SPOREPC"
,"STALKCBR"
,"STALKROO"
,"STALKSAR"
,"STALKSHA"

96 Chapter 8 • SAS Scoring Accelerator for Netezza

,"VEILCOLO")
 as "EM_EVENTPROBABILITY",
 allmush1_em_probability("BRUISES"
,"CAPCOLOR"
,"GILLCOLO"
,"GILLSIZE"
,"HABITAT"
,"ODOR"
,"POPULAT"
,"RINGNUMB"
,"RINGTYPE"
,"SPOREPC"
,"STALKCBR"
,"STALKROO"
,"STALKSAR"
,"STALKSHA"
,"VEILCOLO")
 as "EM_PROBABILITY"
from allmush1_intab ;

Using Scoring Functions to Run a Scoring Model
The scoring functions are available to use in any SQL expression in the same way that
Netezza built-in functions are used.

After the scoring functions are created, they can be invoked in Netezza using SQL, as
illustrated in the following example. Each output value is created as a separate function
call in the select list. The SampleSQL.txt file shown in “Viewing the Scoring Functions”
on page 95 was modified to create the SELECT statement in this example.

select id, allmush1_em_classification
(
"BRUISES"
,"CAPCOLOR"
,"GILLCOLO"
,"GILLSIZE"
,"HABITAT"
,"ODOR"
,"POPULAT"
,"RINGNUMB"
,"RINGTYPE"
,"SPOREPC")
 as "EM_CLASSIFICATION",
 from allmush1_intab ;

Note: The function and table names must be fully qualified if the function and table are
not in the same database.

Using Scoring Functions to Run Scoring Models 97

Using the SAS Embedded Process to Run
Scoring Models

How to Run a Scoring Model with the SAS Embedded Process
The integration of the SAS Embedded Process and Netezza allows scoring code to run
directly using the SAS Embedded Process on Netezza.

Note: The SAS Embedded Process might require a later release of Netezza than
function-based scoring. For more information, see the SAS Foundation system
requirements documentation for your operating environment.

To run the scoring model using the SAS Embedded Process, follow these steps.

1. Create a table to hold the scoring files.

The %INDNZ_CREATE_MODELTABLE macro creates a table that holds the
scoring files for the model that is being published.

For more information, see “Creating a Model Table” on page 98.

2. Run the %INDNZ_PUBLISH_MODEL to create the scoring files.

The %INDNZ_PUBLISH_MODEL macro uses some of the files that are created by
the SAS Enterprise Miner Score Code Export node: the scoring model program
(score.sas file), the properties file (score.xml file), and (if the training data includes
SAS user-defined formats) a format catalog.

The %INDNZ_PUBLISH_MODEL macro performs the following tasks:

• translates the scoring model into the sasscore_modelname.ds2 file that is used to
run scoring inside the SAS Embedded Process

• takes the format catalog, if available, and produces the
sasscore_modelname_ufmt.xml file. This file contains user-defined formats for
the scoring model that is being published.

• uses the SAS/ACCESS Interface to Netezza to insert the
sasscore_modelname.ds2 and sasscore_modelname_ufmt.xml scoring files into
the model table that was created using the %INDNZ_CREATE_MODELTABLE
macro.

For more information, see “Running the %INDNZ_PUBLISH_MODEL Macro” on
page 104 and “Netezza Scoring Files” on page 103.

3. Execute the SAS_EP stored procedure to run the scoring model.

For more information, see “SAS_EP Stored Procedure” on page 100.

Creating a Model Table

Overview
When using the SAS Embedded Process to publish a scoring model in Netezza, you
must create a table to hold the sasscore_modelname.ds2 and
sasscore_modelname_ufmt.xml scoring files. You must run the

98 Chapter 8 • SAS Scoring Accelerator for Netezza

%INDNZ_CREATE_MODELTABLE macro to create the table before you run the
%INDNZ_PUBLISH_MODEL macro.

You have to create the table only one time to hold a model’s scoring files.

The model table contains the following columns. The ModelName column is the table
key. The table is referenced by the two-level name model-name.model-table-name.

Column Name Description Specification

ModelName contains the name of the
model.

NVARCHAR(128) NOT
NULL

ModelSequence contains the sequence number
for the block of ModelDS2
data.

The ModelDS2 files is
divided into blocks with each
block in one row for one
model.

INTEGER NOT NULL

ModelDS2 contains the
sasscore_modelname.ds2 file.

NVARCHAR (8000)

ModelFormats contains the
sasscore_modelname_ufmt.x
ml file.

NVARCHAR (8000)

ModelUUID* contains the UUID of the
source model.

VARCHAR (36)

Notes* contains additional
information that describes the
source model.

VARCHAR (512)

* This column is for use by SAS Model Manager. If you have a model table that was created prior to SAS
9.4 and you want this column in your model table, you must run the
%INDNZ_CREATE_MODELTABLEmacro to re-create your model table.

%INDNZ_CREATE_MODELTABLE Run Process
To run the %INDNZ_CREATE_MODELTABLE macro, complete the following steps:

1. Start SAS and submit the following command in the Program Editor or Enhanced
Editor:

%let indconn = server=myserver user=myuserid password=xxxx database=mydb;

For more information, see the “INDCONN Macro Variable” on page 105.

2. Run the %INDNZ_CREATE_MODELTABLE macro.

For more information, see “%INDNZ_CREATE_MODELTABLE Macro Syntax” on
page 100.

Using the SAS Embedded Process to Run Scoring Models 99

%INDNZ_CREATE_MODELTABLE Macro Syntax
%INDNZ_CREATE_MODELTABLE

(<DATABASE=database-name>
<, MODELTABLE=model-table-name>
<, ACTION=CREATE | REPLACE | DROP>
);

Arguments

DATABASE=database-name
specifies the name of a Netezza database where the sasscore_modelname.ds2 and
sasscore_modelname_ufmt.xml scoring files are held.

Default The database specified in the INDCONN macro variable or your current
database.

MODELTABLE=model-table-name
specifies the name of the table that holds the sasscore_modelname.ds2 and
sasscore_modelname_ufmt.xml scoring files.

Default sas_model_table

Requirement The maximum table name length is 128 characters, and it must be a
valid Netezza table name.

Interaction The table name that you specify for this macro must be the same
table name that is used in the %INDNZ_PUBLISH_MODEL macro.

See “%INDNZ_PUBLISH_MODEL Macro Syntax” on page 106

ACTION = CREATE | REPLACE | DROP
specifies one of the following actions that the macro performs:

CREATE
creates a new table.

Tip If the table has been previously defined and you specify
ACTION=CREATE, an error is issued.

REPLACE
overwrites the current table, if a table with the same name is already registered.

Tip If you specify ACTION = REPLACE, and the current table contains
sasscore_modelname.ds2 and sasscore_modelname_ufmt.xml files, the files
are deleted and an empty table is re-created.

DROP
causes all models in this table to be dropped.

Default CREATE

SAS_EP Stored Procedure

Overview of the SAS_EP Stored Procedure
The SAS_EP stored procedure is the interface for running the scoring model inside
Netezza with the SAS Embedded Process. The SAS_EP stored procedure uses the files

100 Chapter 8 • SAS Scoring Accelerator for Netezza

that are stored in the model table. The stored procedure parameters enable you to control
the name and location of the output table, how much data is returned, and how it is
returned.

The SAS_EP stored procedure is installed in the NZRC directory. To run the stored
procedure, you must have the following permissions:

• User name must be created with the IBM Netezza Analytics utility

• Database must be created with the IBM Netezza Analytics utility

For more information, see “Netezza Permissions” on page 111.

Running the SAS_EP Stored Procedure
You can run the SAS_EP stored procedure using explicit pass-through and PROC SQL
or you can use NZSQL.

Note: Before running the SAS_EP stored procedure, you must create the model table
with the %INDNZ_CREATE_MODELTABLE macro and then you must publish the
files to the model table with the %INDNZ_PUBLISH_MODEL macro.

Here is an example using PROC SQL.

proc sql;
 connect to netezza (user=userid password=xxxx server=myserver);
 execute
 (CALL NZRC..SAS_EP
 ('
 model_name=intr_reg,
 input_table=intr_reg_20m,
 input_columns= id count dif_srvr flag hot sam_srat service srv_cnt,
 output_table=intr_reg_out,
 journal_table=intr_reg_out_jnl,
 ds2_keep=id EM_CLASSIFICATION EM_EVENTPROBABILITY EM_PROBABILITY
 ');
) by netezza;
 disconnect from netezza;
quit;

For more information about the stored procedure parameters, see “SAS_EP Stored
Procedure Syntax” on page 101.

SAS_EP Stored Procedure Syntax
NZRC..SAS_EP
('

MODEL_NAME=model-name,
INPUT_TABLE=<<">input-database<">..><">input-table<">,
OUTPUT_TABLE=<< ">output-database<">..><">output-table<">,
<MODEL_TABLE=<<">model-table-database<">..><">model-table<">,>
<INPUT_COLUMNS=<">column<"><… <">column<">>,>
<INPUT_WHERE=where-clause,>
<OUTPUT_DISTRIBUTION=<">column<"><… <">column<">>,>
<OUTPUT_TEMPORARY= YES | NO,>
<JOURNAL_TABLE=<<">journal-database<">.. ><">journal-table<">>
<PARTITION_BY=<">column<"><… <">column<">>>
<ORDER_BY=<">column<"><, … <">column<">>>
');

Parameters

Using the SAS Embedded Process to Run Scoring Models 101

MODEL_NAME=model-name
specifies the name of the model.

Requirement There must be at least one row in the model table with this key in the
ModelName column and with a non-null value in the ModelDS2
column.

Tip The model name is case sensitive.

INPUT_TABLE=<<"><input-database<">..>><">input-table<">
specifies the name of the scoring model input table.

Requirement If the input table name is case sensitive, you must use double
quotation marks (for example, "myinDB..myinTABLE").

OUTPUT_TABLE=<<">output-database<">.. ><">output-table<">
specifies the name of the scoring model output table.

Requirement If the output table name is case sensitive, you must use double
quotation marks (for example, "myoutDB..myoutTABLE").

MODEL_TABLE=<<">model-table-database<">.. ><">model-table<">
specifies the name of the model table where the sasscore_modelname.ds2 and
sasscore_modelname_ufmt.xml scoring files were published with the
%INDTD_CREATE_MODELTABLE macro.

Default sas_model_table

Restriction This argument is available only when using the SAS Embedded
Process.

Requirements If the model table name is case sensitive, you must use double
quotation marks(for example, "mymtDB..mymtTABLE").

The name of the model table must be the same as the name specified
in the %INDNZ_CREATE_MODELTABLE macro. For more
information, see the MODELTABLE argument in
“%INDNZ_CREATE_MODELTABLE Macro Syntax” on page 100.

INPUT_COLUMNS=<">column<"><…<">column<">>
specifies one or more columns from the input table that are passed to the SAS
Embedded Process.

Default All columns

Requirement If the column name is case sensitive, you must use double quotation
marks (for example, "Profit" "Sales" "Margin").

INPUT_WHERE=where-clause
specifies a valid WHERE clause that selects the rows from the input table.

OUTPUT_DISTRIBUTION=<">column<"><, …<">column<">>
specifies one or more columns that are the distribution key for the output table.

Default Current database distribution

Requirement If the column name is case sensitive, you must use double quotation
marks (for example, "Profit", "Sales", "Margin").

102 Chapter 8 • SAS Scoring Accelerator for Netezza

OUTPUT_TEMPORARY= YES | NO
specifies whether the output table is temporary.

Default NO

JOURNAL_TABLE=<<">journal-database<">..><">journal-table<">
specifies the name of a table that the SAS_EP stored procedure creates. This table
holds any journal messages and notes from the SAS journal facility that are produced
when executing the store procedure.

Requirement If the journal table name is case sensitive, you must use double
quotation marks (for example, "myjnlDB..myjnlTABLE").

Tip If JOURNAL_TABLE is not specified, a journal is not created. If
JOURNAL_TABLE is specified and a journal table exists, the journal
is appended.

PARTITION_BY=<">column<"><, …<">column<">>
specifies one or more columns by which to partition the input.

Default No partitioning occurs

Requirement If the column name is case sensitive, you must use double quotation
marks(for example, "Profit", "Sales", "Margin").

ORDER_BY=<">column<"><, …<">column<">>
specifies one or more columns by which to order the input.

Default No reordering occurs

Requirement If the column name is case sensitive, you must use double quotation
marks (for example, "Profit", "Sales", "Margin").

Tips for Using the SAS_EP Stored Procedure
• No specific parameter order is required.

• Table names must be enclosed in double quotation marks if they are case sensitive.
Otherwise, double quotation marks are optional.

• Tables can be qualified with a database name. If a table name is not qualified with a
database name, the table name is resolved based on the default database for your
session.

• All parameters are passed as strings to the SAS_EP stored procedure, so they must
be enclosed in single quotation marks. To pass a single quotation mark as part of the
SQL within a parameter, use two adjacent single quotation marks as shown in the
following example:

'INPUT_WHERE=where name like ''%Jones%'''

Netezza Scoring Files
When using the SAS Embedded Process, the %INDNZ_PUBLISH_MODEL macro
produces two scoring files for each model:

• sasscore_modelname.ds2. This file contains code that is executed by the SAS_EP
stored procedure.

Using the SAS Embedded Process to Run Scoring Models 103

• sasscore_modelname_ufmt.xml. This file contains user-defined formats for the
scoring model that is being published. This file is used by the SAS_EP stored
procedure.

These files are published to the model table that you specify in the
%INDNZ_PUBLISH_MODEL macro. See Appendix 1, “Scoring File Examples,” on
page 285 for an example of each of these files.

A message that indicates whether the scoring files are successfully or not successfully
created is printed to the SAS log.

Although you cannot view the scoring files directly, there are two ways to see the
models whose files are created:

• From Netezza, log on to the database using a client tool such as NZSQL and submit
an SQL statement. The following example assumes that the model table where the
scoring files were published is modtable and the model name is super.

nzsql database username password

 select modelname, modelsequence from modtable where
 modelname like '%super%'

• From SAS, use SQL procedure code that produces output in the LST file. The
following example assumes that the model name that you used to create the scoring
files is super.

proc sql noerrorstop;
 connect to netezza (user=username password=xxxx server=myserver);

select * from connection to netezza
 (select modelname, modelsequence
 from sasmodeltablename
 where modelname like '%super%');
disconnect netezza;
quit;

You can also use the SASTRACE and SASTRACELOC system options to generate
tracing information. For more information about these system options, see the SAS
System Options: Reference.

Running the %INDNZ_PUBLISH_MODEL Macro

%INDNZ_PUBLISH_MODEL Macro Run Process
To run the %INDNZ_PUBLISH_MODEL macro, complete the following steps:

1. Create a scoring model using SAS Enterprise Miner.

2. Use the SAS Enterprise Miner Score Code Export node to create a score output
directory. Populate the directory with the score.sas file, the score.xml file, and (if
needed) the format catalog.

3. Start SAS and submit the following command in the Program Editor or Enhanced
Editor:

%let indconn = server=myserver user=myuserid password=XXXX database=mydb;

For more information, see the “INDCONN Macro Variable” on page 105.

104 Chapter 8 • SAS Scoring Accelerator for Netezza

4. If you use the SAS Embedded Process, run the
%INDNZ_CREATE_MODELTABLE macro.

For more information, see “Creating a Model Table” on page 98.

5. Run the %INDNZ_PUBLISH_MODEL macro.

For more information, see “%INDNZ_PUBLISH_MODEL Macro Syntax” on page
106.

Messages are written to the SAS log that indicate whether the scoring functions or
files were successfully created.

Note: The %INDNZ_PUBLISH_JAZLIB macro and the
%INDNZ_PUBLISH_COMPILEUDF macro (if needed) must be run before you can
publish your scoring models using scoring functions. Otherwise, the
%INDNZ_PUBLISH_MODEL macro fails. These macros are typically run by your
system or database administrator. For more information about these macros, see the
SAS In-Database Products: Administrator's Guide.

INDCONN Macro Variable
The INDCONN macro variable is used to provide credentials to connect to Netezza. You
must specify server, user, password, and database information to access the machine on
which you have installed the Netezza data warehouse. You must assign the INDCONN
macro variable before the %INDNZ_PUBLISH_MODEL or the
%INDNZ_CREATE_MODELTABLE macros are invoked.

Here is the syntax for the value of the INDCONN macro variable:

SERVER=server USER=user PASSWORD=password DATABASE=database

Arguments

SERVER=server
specifies the Netezza server name or the IP address of the server host.

USER=user
specifies the Netezza user name (also called the user ID) that is used to connect to
the database.

PASSWORD=password
specifies the password that is associated with your Netezza user ID.

Tip Use only PASSWORD=, PASS=, or PW= for the password argument. PWD= is
not supported and causes an error.

DATABASE=database
specifies the Netezza database that contains the tables and views that you want to
access.

Requirement You must specify the DATABASE= argument if you use the SAS
Embedded Process.

T I P The INDCONN macro variable is not passed as an argument to the
%INDNZ_PUBLISH_MODEL macro. This information can be concealed in your
SAS job. For example, you can place it in an autoexec file and apply permissions to
the file so that others cannot access the user credentials.

Running the %INDNZ_PUBLISH_MODEL Macro 105

%INDNZ_PUBLISH_MODEL Macro Syntax
%INDNZ_PUBLISH_MODEL

(DIR=input-directory-path, MODELNAME=name
<, MECHANISM=STATIC | EP>
<, MODELTABLE=model-table-name>
<, DATASTEP=score-program-filename>
<, XML=xml-filename >
<, DATABASE=database-name >
<, DBCOMPILE=database-name>
<, DBJAZLIB=database-name>
<, FMTCAT=format-catalog-filename>
<, ACTION=CREATE | REPLACE | DROP >
<, MODE=FENCED | UNFENCED>
<, IDCASE=UPPERCASE | LOWERCASE >
<, OUTDIR=diagnostic-output-directory>
);

Note: Do not enclose variable arguments in single or double quotation marks. This
causes the %INDNZ_PUBLISH_MODEL macro to fail.

Arguments

DIR=input-directory-path
specifies the directory where the scoring model program, the properties file, and the
format catalog are located.

This is the directory that is created by the SAS Enterprise Miner Score Code Export
node. This directory contains the score.sas file, the score.xml file, and (if user-
defined formats were used) the format catalog.

Requirement You must use a fully qualified pathname.

Interaction If you do not use the default directory that is created by SAS
Enterprise Miner, you must specify the DATASTEP=, XML=, and (if
needed) FMTCAT= arguments.

See “Special Characters in Directory Names” on page 19

MODELNAME=name
specifies the name that is prepended to each output function to ensure that each
scoring function or filename is unique on the Netezza database. If you are using the
SAS Embedded Process, the model name is part of the scoring filenames.

Restriction The scoring function name is a combination of the model and output
variable names. A scoring function name cannot exceed 128
characters. For more information, see “Scoring Function Names” on
page 94.

Requirement If you use scoring functions, the model name must be a valid SAS
name that is ten characters or fewer. If you use the SAS Embedded
Process, the model name cannot exceed 128 characters. For more
information about valid SAS names, see the topic on rules for words
and names in SAS Language Reference: Concepts.

Interaction Only the EM_ output variables are published as Netezza scoring
functions. For more information about the EM_ output variables, see

106 Chapter 8 • SAS Scoring Accelerator for Netezza

“Fixed Variable Names” on page 27 and “Scoring Function Names”
on page 94.

MECHANISM=STATIC | EP
specifies whether scoring functions or scoring files are created. MECHANISM= can
have one of the following values:

STATIC
specifies that scoring functions are created.

These scoring functions are used in an SQL query to run the scoring model.

See “Using Scoring Functions to Run Scoring Models” on page 94

EP
specifies that scoring files are created.

These scoring files are used by the SAS Embedded Process to run the scoring
model. A single entry in the model table is inserted for each new model. The
entry contains both the score.sas and score.xml in separate columns. The scoring
process includes reading these files from the table and transferring them to each
instance of the SAS Embedded Process for execution.

Requirement If you specify MECHANISM=EP, you must also specify the
MODELTABLE= argument.

Note The SAS Embedded Process might require a later release of
Netezza than function-based scoring. For more information, see
the SAS Foundation system requirements documentation for your
operating environment.

See “Using the SAS Embedded Process to Run Scoring Models” on
page 98

Default STATIC

MODELTABLE=model-table-name
specifies the name of the model table where the scoring files are published.

Default sas_model_table

Restriction This argument is available only when using the SAS Embedded
Process.

Requirement The name of the model table must be the same as the name specified
in the %INDNZ_CREATE_MODELTABLE macro. For more
information, see the MODELTABLE argument in
“%INDNZ_CREATE_MODELTABLE Macro Syntax” on page 100.

DATASTEP=score-program-filename
specifies the name of the scoring model program file that was created by using the
SAS Enterprise Miner Score Code Export node.

Default score.sas

Restriction Only DATA step programs that are produced by the SAS Enterprise
Miner Score Code Export node can be used.

Running the %INDNZ_PUBLISH_MODEL Macro 107

Interaction If you use the default score.sas file that is created by the SAS
Enterprise Miner Score Code Export node, you do not need to specify
the DATASTEP= argument.

XML=xml-filename
specifies the name of the properties XML file that was created by the SAS Enterprise
Miner Score Code Export node.

Default score.xml

Restrictions Only XML files that are produced by the SAS Enterprise Miner Score
Code Export node can be used.

If you use scoring functions to run scoring models, the maximum
number of output variables is 128. If you use the SAS Embedded
Process, the maximum is 1600. However, Netezza also has a
maximum row size of 64K. If you have very large character columns,
you might exceed the row limit before you exceed the maximum
number of variables.

Interaction If you use the default score.xml file that is created by the SAS
Enterprise Miner Score Code Export node, you do not need to specify
the XML= argument.

DATABASE=database-name
specifies the name of a Netezza database to which the scoring functions and formats
or the scoring files are published.

Requirement You must specify the DATABASE= argument if you use the SAS
Embedded Process.

Interaction The database that is specified by the DATABASE argument takes
precedence over the database that you specify in the INDCONN
macro variable. For more information, see
“%INDNZ_PUBLISH_MODEL Macro Run Process” on page 104.

Tip You can publish the scoring functions and formats or the scoring files
to a shared database where other users can access them.

DBCOMPILE=database-name
specifies the name of the database where the SAS_COMPILEUDF function is
published.

Default SASLIB

Restriction This argument is ignored when MECHANISM=EP.

See For more information about publishing the SAS_COMPILEUDF
function, see the SAS In-Database Products: Administrator's Guide.

DBJAZLIB=database-name
specifies the name of the database where the SAS formats library is published.

Default SASLIB

Restriction This argument is ignored when MECHANISM=EP.

108 Chapter 8 • SAS Scoring Accelerator for Netezza

FMTCAT=format-catalog-filename
specifies the name of the format catalog file that contains all user-defined formats
that were created by the FORMAT procedure and that are referenced in the DATA
step scoring model program.

Restriction Only format catalog files that are produced by the SAS Enterprise
Miner Score Code Export node can be used.

Interactions If you use the default format catalog that is created by the SAS
Enterprise Miner Score Code Export node, you do not need to specify
the FMTCAT= argument.

If you do not use the default catalog name (FORMATS) or the default
library (WORK or LIBRARY) when you create user-defined formats,
you must use the FMTSEARCH system option to specify the location
of the format catalog. For more information, see PROC FORMAT in
the Base SAS Procedures Guide.

ACTION=CREATE | REPLACE | DROP
specifies one of the following actions that the macro performs:

CREATE
creates new functions or files.

REPLACE
overwrites the current functions or files, if a function or files by the same name is
already registered.

DROP
causes all functions or files for this model to be dropped from the Netezza
database.

Default CREATE

Tip If the function or file was published previously and you specify
ACTION=CREATE, you receive warning messages that the function or file
already exists and you are prompted to use REPLACE. If you specify
ACTION=DROP and the function or file does not exist, an error message
is issued.

MODE= FENCED | UNFENCED
specifies whether running the code is isolated in a separate process in the Netezza
database so that a program fault does not cause the database to stop.

Default FENCED

Restrictions This argument is ignored when MECHANISM=EP.

The MODE= argument is supported for Netezza 6.0. The argument is
ignored for previous versions of Netezza.

Tip There are limited resources available in Netezza when you run in
fenced mode. For example, there is a limit to the number of columns
available.

See “Modes of Operation” on page 110

Running the %INDNZ_PUBLISH_MODEL Macro 109

IDCASE= UPPERCASE | LOWERCASE
specifies whether the variable names in the generated sample SQL code
(SampleSQL.txt) appear in uppercase or lowercase characters.

Default UPPERCASE

Restriction This argument is ignored when MECHANISM=EP.

Tip When you specify the IDCASE argument, the
%INDNZ_PUBLISH_MODEL macro first determines which release of
Netezza is being used. If Netezza release 5.0 or later is being used, the
macro then checks to see whether the LOWERCASE option or
UPPERCASE option is set for the database by using SQL statement
SELECT IDENTIFIER_CASE. If the value of the IDCASE argument
is different from the case configuration of the database, the macro
overwrites the value of the IDCASE option and uses the case
configuration of the database. If an earlier release of Netezza is being
used, the macro uses the value of the IDCASE argument.

See “Viewing the Scoring Functions” on page 95 for more information
about the SampleSQL.txt file

OUTDIR=diagnostic-output-directory
specifies a directory that contains diagnostic files.

Files that are produced include an event log that contains detailed information about
the success or failure of the publishing process and sample SQL code
(SampleSQL.txt). For more information about the SampleSQL.txt file, see “Viewing
the Scoring Functions” on page 95.

Tip This argument is useful when testing your scoring models.

See “Special Characters in Directory Names” on page 19

Modes of Operation
The %INDNZ_PUBLISH_MODEL macro has two modes of operation: fenced and
unfenced. You specify the mode by setting the MODE= argument.

The default mode of operation is fenced. Fenced mode means that the scoring function
that is published is isolated in a separate process in the Netezza database when it is
invoked. An error does not cause the database to stop. It is recommended that you
publish the scoring functions in fenced mode during acceptance tests.

When the scoring function is ready for production, you can run the macro to publish the
scoring function in unfenced mode. You could see a performance advantage if the
scoring function is published in unfenced mode.

Note: The MODE= argument is ignored when MECHANISM=EP.

Note: The MODE= argument is supported for Netezza 6.0. The MODE argument is
ignored for previous versions of Netezza.

110 Chapter 8 • SAS Scoring Accelerator for Netezza

Netezza Permissions
If you are using scoring functions to run your scoring model, you must have permission
to create scoring functions and tables in the Netezza database. You must also have
permission to execute the SAS_COMPILEUDF, SAS_DIRECTORYUDF, and
SAS_HEXTOTEXTUDF functions in either the SASLIB database or the database
specified in lieu of SASLIB where these functions are published.

Without these permissions, the publishing of a scoring function fails.

If you are using the SAS Embedded Process to run your scoring model, your user ID and
the database must be created with the IBM Netezza Analytics utility.

To obtain these permissions, contact your database administrator.

For more information about specific permissions, see “Netezza Permissions” in Chapter
6 of SAS In-Database Products: Administrator's Guide.

Netezza Permissions 111

112 Chapter 8 • SAS Scoring Accelerator for Netezza

Chapter 9

SAS Scoring Accelerator for
Oracle

Overview of Running Scoring Models . 113

Oracle Permissions . 114

How to Run a Scoring Model in Oracle . 114

Creating a Model Table . 115
Overview . 115
%INDOR_CREATE_MODELTABLE Run Process . 115
%INDOR_CREATE_MODELTABLE Macro Syntax . 116

Running the %INDOR_PUBLISH_MODEL Macro . 117
%INDOR_PUBLISH_MODEL Run Process . 117
INDCONN Macro Variable . 117
%INDOR_PUBLISH_MODEL Macro Syntax . 118

Oracle Scoring Files . 120

SASEPFUNC Table Function . 121
Overview of the SASEPFUNC Table Function . 121
Using the SASEPFUNC Table Function . 121
SASEPFUNC Table Function Syntax . 122
Run-Time Guidance for the Oracle Degree of Parallelism (DOP) Setting 123

Overview of Running Scoring Models
The integration of the SAS Embedded Process and Oracle allows scoring code to be run
directly using the SAS Embedded Process on Oracle.

The SAS Embedded Process is a SAS server process that runs inside Oracle to read and
write data. A model publishing macro creates scoring files and stores them in an Oracle
table. These scoring files are then used by an Oracle function to run the scoring model.

The SAS Scoring Accelerator for Oracle requires a certain version of the Oracle client
and server environment. For more information, see the SAS Foundation system
requirements documentation for your operating environment.

113

Oracle Permissions
For Oracle, the following permissions are needed by the person who runs the scoring
publishing macros.

• The person who runs the %INDOR_CREATE_MODELTABLE needs CREATE
permission to create the model table.

• The person who runs the %INDOR_PUBLISH_MODEL macro needs INSERT
permission to load data into the model table.

Without these permissions, the %INDOR_CREATE_MODELTABLE macro and the
%INDOR_PUBLISH_MODEL macro fails. To obtain these permissions, contact your
database administrator.

For more information about specific permissions, see “Oracle Permissions” in Chapter 7
of SAS In-Database Products: Administrator's Guide.

How to Run a Scoring Model in Oracle
To run a scoring model using the SAS Embedded Process, follow these steps.

1. Create a scoring model using SAS Enterprise Miner.

2. Start SAS and create a table to hold the scoring files.

The %INDOR_CREATE_MODELTABLE macro creates a table that holds the
scoring files for the model that is being published.

For more information, see “Creating a Model Table” on page 115.

3. Run the %INDOR_PUBLISH_MODEL macro to create the scoring files.

The %INDOR_PUBLISH_MODEL macro uses some of the files that are created by
the SAS Enterprise Miner Score Code Export node: the scoring model program
(score.sas file), the properties file (score.xml file), and (if the training data includes
SAS user-defined formats) a format catalog.

The %INDOR_PUBLISH_MODEL macro performs the following tasks:

• translates the scoring model into the sasscore_modelname.ds2 file that is used to
run scoring inside the SAS Embedded Process.

• takes the format catalog, if available, and produces the
sasscore_modelname_ufmt.xml file. This file contains user-defined formats for
the scoring model that is being published.

• uses the SAS/ACCESS Interface to Oracle to insert the sasscore_modelname.ds2
and sasscore_modelname_ufmt.xml scoring files into the model table that was
created using the %INDOR_CREATE_MODELTABLE macro.

For more information, see “Running the %INDOR_PUBLISH_MODEL Macro” on
page 117 and “Oracle Scoring Files” on page 120.

4. Use the SASEPFUNC table function in the FROM clause in any SQL expression to
run the scoring model.

For more information, see “SASEPFUNC Table Function” on page 121.

114 Chapter 9 • SAS Scoring Accelerator for Oracle

Creating a Model Table

Overview
When publishing a model in Oracle on which the SAS Embedded Process is deployed,
you must create a table to hold the sasscore_modelname.ds2 and
sasscore_modelname_ufmt.xml scoring files. You must run the
%INDOR_CREATE_MODELTABLE macro to create the table before you run the
%INDOR_PUBLISH_MODEL macro.

You have to create the table only one time to hold a model’s scoring files.

The model table contains the following columns. The ModelName column is the table
key. The table is referenced by the two-level name schema-name.model-table-name.

Column Name Description Specification

ModelName contains the name of the model VARCHAR(128)

ModelDS2 contains the sasscore_modelname.ds2 file BLOB not null

ModelFormats contains the sasscore_modelname_ufmt.xml
file

BLOB

ModelMetadata reserved by SAS for future use BLOB

ModelUUID* contains the UUID of the source model VARCHAR (36)

Notes* contains additional information that describes
the source model

VARCHAR (512)

* This column is for use by SAS Model Manager. If you have a model table that was created prior to SAS
9.4 and you want this column in your model table, you must run the
%INDOR_CREATE_MODELTABLE macro to re-create your model table.

%INDOR_CREATE_MODELTABLE Run Process
To run the %INDOR_CREATE_MODELTABLE macro, complete the following steps:

1. Start SAS and submit the following command in the Program Editor or Enhanced
Editor:

%let indconn = user=myuserid password=xxxx path=ortest;

For more information, see the “INDCONN Macro Variable” on page 117.

2. Run the %INDOR_CREATE_MODELTABLE macro.

For more information, see “%INDOR_CREATE_MODELTABLE Macro Syntax” on
page 116.

Creating a Model Table 115

%INDOR_CREATE_MODELTABLE Macro Syntax
%INDOR_CREATE_MODELTABLE

(<DATABASE=database-name>
<, MODELTABLE=model-table-name>
<, ACTION=CREATE | REPLACE | DROP>
);

Arguments

DATABASE=database-name
specifies the name of an Oracle database where the sasscore_modelname.ds2 and
sasscore_modelname_ufmt.xml scoring files are held.

Default The database specified in the INDCONN macro variable

MODELTABLE=model-table-name
specifies the name of the table that holds the sasscore_modelname.ds2 and
sasscore_modelname_ufmt.xml scoring files.

Default sas_model_table

Requirement The maximum table name length is 30 characters, and it must be a
valid Oracle table name.

Interaction The table name that you specify for this macro must be the same
table name that is used in the %INDOR_PUBLISH_MODEL macro.

See “%INDOR_PUBLISH_MODEL Macro Syntax” on page 118

ACTION = CREATE | REPLACE | DROP
specifies one of the following actions that the macro performs:

CREATE
creates a new table.

Tip If the table has been previously defined and you specify
ACTION=CREATE, an error is issued.

REPLACE
overwrites the current table, if a table with the same name is already registered.

Tip If you specify ACTION = REPLACE, and the current table contains
sasscore_modelname.ds2 and sasscore_modelname_ufmt.xml files, the files
are deleted and an empty table is re-created.

DROP
causes all models in this table to be dropped.

Default CREATE

116 Chapter 9 • SAS Scoring Accelerator for Oracle

Running the %INDOR_PUBLISH_MODEL Macro

%INDOR_PUBLISH_MODEL Run Process
To run the %INDOR_PUBLISH_MODEL macro, complete the following steps:

1. Create a scoring model using SAS Enterprise Miner.

2. Use the SAS Enterprise Miner Score Code Export node to create a score output
directory.

This directory will contain the score.sas file, the score.xml file, and, if needed, the
format catalog.

3. Start SAS and submit this command in the Program Editor or Enhanced Editor:

%let indconn = user=myuserid password=XXXX path=ortest;

For more information, see the “INDCONN Macro Variable” on page 117.

4. Run the %INDOR_PUBLISH_MODEL macro.

Messages are written to the SAS log that indicate the success or failure of the
creation of the .ds2 and .xml scoring files.

For more information, see “%INDOR_PUBLISH_MODEL Macro Syntax” on page
118.

INDCONN Macro Variable
The INDCONN macro variable is used to provide credentials to connect to Oracle. You
must specify user, password, and database information to access the machine on which
Oracle is installed. You must assign the INDCONN macro variable before the
%INDOR_PUBLISH_MODEL macro is invoked.

Here is the syntax for the value of the INDCONN macro variable for the
%INDOR_PUBLISH_MODEL macro:

USER=user PASSWORD=password PATH=path

Arguments

USER=user
specifies the Oracle user name (also called the user ID) that is used to connect to the
database.

PASSWORD=password
specifies the password that is associated with your Oracle user ID.

Tip Use only PASSWORD=, PASS=, or PW= for the password argument. PWD= is
not supported and causes an error to occur.

PATH=path
specifies the Oracle driver, node, and database that contains the tables and views that
you want to access.

T I P The INDCONN macro variable is not passed as an argument to the
%INDOR_PUBLISH_MODEL macro. This information can be concealed in your

Running the %INDOR_PUBLISH_MODEL Macro 117

SAS job. For example, you can place it in an autoexec file and apply permissions to
the file so that others cannot access the user credentials.

%INDOR_PUBLISH_MODEL Macro Syntax
%INDOR_PUBLISH_MODEL

(DIR=input-directory-path, MODELNAME=name
<, MODELTABLE=model-table-name>
<, DATASTEP=score-program-filename>
<, XML=xml-filename>
<, DATABASE=database-name>
<, FMTCAT=format-catalog-filename>
<, ACTION=CREATE | REPLACE | DROP>
<, OUTDIR=diagnostic-output-directory>
);

Arguments

DIR=input-directory-path
specifies the directory where the scoring model program, the properties file, and the
format catalog are located.

This is the directory that is created by the SAS Enterprise Miner Score Code Export
node. This directory contains the score.sas file, the score.xml file, and (if user-
defined formats were used) the format catalog.

Restriction You must use a fully qualified pathname.

Interaction If you do not use the default directory that is created by SAS Enterprise
Miner, you must specify the DATASTEP=, XML=, and (if needed)
FMTCAT= arguments.

See “Special Characters in Directory Names” on page 19

MODELNAME=name
specifies the name for the published model.

Restriction The model filename cannot exceed 128 characters. For more
information, see “Oracle Scoring Files” on page 120.

MODELTABLE=model-table-name
specifies the name of the model table where the scoring files are published.

Default sas_model_table

Requirement The name of the model table must be the same as the name specified
in the %INDOR_CREATE_MODELTABLE macro. For more
information, see the MODELTABLE argument in
“%INDOR_CREATE_MODELTABLE Macro Syntax” on page 116.

DATASTEP=score-program-filename
specifies the name of the scoring model program file that was created by using the
SAS Enterprise Miner Score Code Export node.

Default score.sas

118 Chapter 9 • SAS Scoring Accelerator for Oracle

Restriction Only DATA step programs that are produced by the SAS Enterprise
Miner Score Code Export node can be used.

Interaction If you use the default score.sas file that is created by the SAS
Enterprise Miner Score Code Export node, you do not need to specify
the DATASTEP= argument.

XML=xml-filename
specifies the name of the properties XML file that was created by the SAS Enterprise
Miner Score Code Export node.

Default score.xml

Restrictions Only XML files that are produced by the SAS Enterprise Miner Score
Code Export node can be used.

The maximum number of output variables is 1000.

Interaction If you use the default score.xml file that is created by the SAS
Enterprise Miner Score Code Export node, you do not need to specify
the XML= argument.

DATABASE=database-name
specifies the name of an Oracle database to which the scoring files are published.

Default The database specified in the INDCONN macro variable

Requirement The name of the database must be the same as the database specified
in the %INDOR_CREATE_MODELTABLE macro. For more
information, see the DATABASE argument in
“%INDOR_CREATE_MODELTABLE Macro Syntax” on page 116.

Interaction The database that is specified by the DATABASE argument takes
precedence over the database that you specify in the INDCONN
macro variable. For more information, see
“%INDOR_PUBLISH_MODEL Run Process” on page 117.

FMTCAT=format-catalog-filename
specifies the name of the format catalog file that contains all user-defined formats
that were created by the FORMAT procedure and that are referenced in the DATA
step scoring model program.

Restriction Only format catalog files that are produced by the SAS Enterprise
Miner Score Code Export node can be used.

Interactions If you use the default format catalog that is created by the SAS
Enterprise Miner Score Code Export node, you do not need to specify
the FMTCAT= argument.

If you do not use the default catalog name (FORMATS) or the default
library (WORK or LIBRARY) when you create user-defined formats,
you must use the FMTSEARCH system option to specify the location
of the format catalog. For more information, see PROC FORMAT in
the Base SAS Procedures Guide.

ACTION=CREATE | REPLACE | DROP
specifies one of the following actions that the macro performs:

Running the %INDOR_PUBLISH_MODEL Macro 119

CREATE
creates new files.

REPLACE
overwrites the current files, if files with the same name are already registered.

DROP
causes all files for this model to be dropped from the Oracle database.

Default CREATE

Tip If the model has been previously published and you specify
ACTION=CREATE, you receive warning messages from Oracle. If the
model has been previously published and you specify
ACTION=REPLACE, no warnings are issued.

OUTDIR=diagnostic-output-directory
specifies a directory that contains diagnostic files.

Files that are produced include an event log that contains detailed information about
the success or failure of the publishing process and sample SQL code
(SampleSQL.txt). For more information about the SampleSQL.txt file, see “Oracle
Scoring Files” on page 120.

Tip This argument is useful when testing your scoring models.

See “Special Characters in Directory Names” on page 19

Oracle Scoring Files
When using the SAS Embedded Process, the %INDOR_PUBLISH_MODEL macro
produces two scoring files for each model:

• sasscore_modelname.ds2. This file contains code that is executed by the
SASEPFUNC table function.

• sasscore_modelname_ufmt.xml. This file contains user-defined formats for the
scoring model that is being published. This file is used by the SASEPFUNC table
function.

These files are published to the model table that you specify in the
%INDOR_PUBLISH_MODEL macro. See Appendix 1, “Scoring File Examples,” on
page 285 for an example of each of these files.

A message that indicates whether the scoring files are successfully or not successfully
created is printed to the SAS log.

Although you cannot view the scoring files directly, there are two ways to see the
models whose files are published:

• Log on to the database using SQLPlus and submit an SQL statement. The following
example assumes that the model table where the scoring files were published is
register and the model name is reg1.

sqlplus userid/pwd@address
select modelname, modelDS2 from sas_model_table
 where modelname like '%reg1%';

120 Chapter 9 • SAS Scoring Accelerator for Oracle

The model name and the model .ds2 filename are listed.

• From SAS, use SQL procedure code that produces output in the LST file. The
following example assumes that the model name that you used to create the scoring
files is reg.

proc sql noerrorstop;
 connect to oracle (user=username password=xxxx path=mypath);

select * from connection to oracle
 (select modelname, modelDS2
 from sasmodeltablename
 where modelname like '%reg%');
disconnect from oracle;
quit;

You can also use the SASTRACE and SASTRACELOC system options to generate
tracing information. For more information about these system options, see the SAS
System Options: Reference.

SASEPFUNC Table Function

Overview of the SASEPFUNC Table Function
The SASEPFUNC table function is the interface for running the scoring model inside
Oracle with the SAS Embedded Process. The SASEPFUNC table function performs the
scoring based on the parameters that are passed to it. It uses the .ds2 and .ufmt XML
files that are stored in the model table.

This function is created by the SASADMIN user when the in-database deployment
package is installed and configured. For more information, see the SAS In-Database
Products: Administrator's Guide.

Using the SASEPFUNC Table Function
You can use the SASEPFUNC table function using explicit pass-through and PROC
SQL or you can use other Oracle query tools such as SQLPlus. Use the SASEPFUNC
function in the FROM clause in any SQL expression to run the scoring model.

T I P Look at the SampleSQL.txt file is produced when the
%INDOR_PUBLISH_MODEL macro is successfully run. This file can be found in
the output directory (OUTDIR argument) that you specify in the
%INDOR_PUBLISH_MODEL macro. The SampleSQL.txt file contains basic SQL
code that can be used to run your score code inside Oracle. Please note that you must
modify the sample code before using it. Otherwise, the sample code returns an error.

T I P The SampleSQL.txt file refers to an ID column in the example table that is
populated with a unique integer from 1 to n. n is the number of rows in the table. The
ID column uniquely identifies each row. You would replace the ID column with your
own primary key column.

Note: Before using the SASEPFUNC table function with the SAS Embedded Process,
you must create the model table with the %INDOR_CREATE_MODELTABLE
macro. Then, you must publish the files to the model table with the
%INDOR_PUBLISH_MODEL macro. For more information, see “Creating a Model

SASEPFUNC Table Function 121

Table” on page 115 and “Running the %INDOR_PUBLISH_MODEL Macro” on
page 117.

Here is an example using PROC SQL.

proc sql;
connect to oracle (user=userid password=xxxx path=mydatabase);
create table work.sas_score_out1 as select * from connection to oracle
 (SELECT * from table(SASEPFUNC(CURSOR(select * from intrtree),
 'myschema.SAS_PUBLISH_MODEL', 'INTRREG1', 'null',
 'select * from intrtree'));
disconnect from oracle;quit;

SASEPFUNC Table Function Syntax
The syntax of the SASEPFUNC table function is as follows.

FROM TABLE (SASEPFUNC(
CURSOR (SELECT /* + PARALLEL(table-alias, dop) */
* FROM input-table table-alias),
'schema-name.model-table-name',
'model-name', 'null',
'SELECT * FROM 'input-table'))

Arguments

CURSOR(SELECT /*PARALLEL (table-alias, dop) */ * FROM input-table table-
alias)

specifies the SELECT statement to read from the input table.

Tip You can specify a hint for the degree of parallelism (dop) value that is used for
reading the input table. For more information, see “Run-Time Guidance for the
Oracle Degree of Parallelism (DOP) Setting” on page 123.

table-alias
specifies an alias for the input table name.

Requirement The table alias must be the same in the parallel hint and the FROM
clause.

input-table
specifies the name of the input table that is used by the SASEPFUNC table function.

schema-name.model-table-name
specifies the fully qualified model table name.

Requirement The table name that you specify for this function must be the same
table name that is used in the %INDOR_CREATE_MODELTABLE
macro. For more information, see “Creating a Model Table” on page
115.

model-name
specifies the model name.

Requirement The model name must be the same name that is used in the
%INDOR_PUBLISH_MODEL macro. For more information, see
“%INDOR_PUBLISH_MODEL Macro Syntax” on page 118.

122 Chapter 9 • SAS Scoring Accelerator for Oracle

null
specifies a placeholder value at this time

Tip You can specify either 'null' or an empty string ' '.

SELECT * FROM input-table
specifies a simple SELECT statement for the input table.

Requirement The input table name must be the same in the first SELECT
statement.

Run-Time Guidance for the Oracle Degree of Parallelism (DOP)
Setting

The performance of the Scoring Accelerator for Oracle can be affected by altering the
Degree of Parallelism (DOP) setting. The DOP setting defines how many parallel
processes work on a single statement. In a Real Application Clusters (RAC)
environment, the parallel processes are distributed among the available database
instances when the chosen DOP exceeds the expected capabilities of a single node. In
environments with mixed workloads and multi-concurrency, you should rely on the
parallelism provided by the Oracle database. However, you might want to consider
adjusting the DOP setting to achieve maximum throughput for dedicated Scoring
Accelerator operations.

Because Oracle and SAS use separate threads during execution, improvements
throughput diminish for DOP values that are greater than half the total number of cores
available. For example, if you have 128 cores total available for all instances, a DOP
greater than 64 is not likely to yield improved performance. Performance is not
improved because both the Oracle and SAS processes tend to be CPU intensive. Setting
the DOP up to this maximum level assumes that the system is solely dedicated to
running the SAS Scoring Accelerator. For a mixed load system, a lower DOP value
might be more appropriate.

In RAC environments, Oracle allocates parallel execution servers based on an internal
load-balancing algorithm. This allocation ensures approximately average loads across all
nodes that are accessible for a given parallel operation. Because the load of the SAS
processes is not compensated for in Oracles internal algorithms, it can be beneficial in
some environments to change Oracles default behavior. There are two ways of doing so:

• Disable Oracles internal load balancing: this can be accomplished by setting the
internal parameter _parallel_load_balancing to FALSE (the default value of this
parameter is TRUE). Oracle then does a plain round-robin allocation of processes
across all available nodes. This parameter can be changed on a system and session
level.

• Adjust the number of parallel execution servers per load balance unit. The load
balance unit is chosen internally by Oracle to ensure a maximum co-location of
parallel execution servers on a single node. This unit is dependent on the number of
available CPUs in a system. You can decrease the unit by setting the internal Oracle
parameter _parallel_load_bal_unit. The default value of this parameter is 0, meaning
the system internally calculates this value. Similar to DOP, setting the
_parallel_load_bal_unit parameter beyond half the core total per instance is not
likely to be beneficial.

CAUTION:
Influencing Oracles internal load balancing for parallel execution does not harm
a system in any way. However, influencing (changing) Oracles internal algorithms

SASEPFUNC Table Function 123

even in a single session has an impact on the overall system through the different
allocation of parallel processing resources across the cluster. You have to test your
adjustments for possible run time and performance impacts of the overall system.

124 Chapter 9 • SAS Scoring Accelerator for Oracle

Chapter 10

SAS Scoring Accelerator for SAP
HANA

Overview of Running Scoring Models in SAP HANA . 125

How to Run a Scoring Model in SAP HANA . 126

INDCONN Macro Variable . 126

Creating the Model Table . 128
Overview . 128
%INDHN_CREATE_MODELTABLE Run Process . 129
%INDHN_CREATE_MODELTABLE Macro Syntax . 129

Running the %INDHN_PUBLISH_MODEL Macro . 131
%INDHN_PUBLISH_MODEL Macro Run Process . 131
%INDHN_PUBLISH_MODEL Macro Syntax . 131

Running the %INDHN_RUN_MODEL Macro . 134
%INDHN_RUN_MODEL Macro Run Process . 134
%INDHN_RUN_MODEL Macro Syntax . 134

Scoring Output . 137
Scoring Output Table . 137
Querying and Viewing the Scoring Output Table . 137

SAP HANA Permissions . 137

Overview of Running Scoring Models in SAP
HANA

The integration of the SAS Embedded Process and SAP HANA allows scoring code to
be run directly in SAP HANA using the SAS Embedded Process.

The SAS Embedded Process is a SAS server process that runs inside SAP HANA to read
and write data. A run model macro creates AFL functions that are used to run the scoring
model.

The SAS Scoring Accelerator for SAP HANA requires a certain version of the SAP
HANA client and server environment. For more information, see the SAS Foundation
system requirements documentation for your operating environment.

125

How to Run a Scoring Model in SAP HANA
To run a scoring model using the SAS Embedded Process, follow these steps.

1. Create a scoring model using SAS Enterprise Miner.

2. Start SAS.

3. Create a table to hold the scoring files.

The %INDHN_CREATE_MODELTABLE macro creates a table that holds the
scoring files for the model that is being published.

For more information, see “Creating the Model Table” on page 128.

4. Run the %INDHN_PUBLISH_MODEL macro to create the scoring files.

The %INDHN_PUBLISH_MODEL macro performs the following tasks:

• translates the scoring model into the sasscore_modelname.ds2 file that is used to
run scoring inside the SAS Embedded Process.

• takes the format catalog, if available, and produces the
sasscore_modelname_ufmt.xml file. This file contains user-defined formats for
the scoring model that is being published.

• uses the SAS/ACCESS Interface to SAP HANA to insert the
sasscore_modelname.ds2 and sasscore_modelname_ufmt.xml scoring files into
the model table that was created using the %INDHN_CREATE_MODELTABLE
macro.

For more information, see “Running the %INDHN_PUBLISH_MODEL Macro” on
page 131.

5. Run the %INDHN_RUN_MODEL macro.

The %INDHN_RUN_MODEL macro runs the scoring model. The macro uses the
files that were created by the %INDHN_PUBLISH_MODEL macro as well as the
table that contains the input data.

For more information, see “Running the %INDHN_RUN_MODEL Macro” on page
134.

6. Submit an SQL query against the output table.

For more information, see “Scoring Output” on page 137.

INDCONN Macro Variable
The INDCONN macro variable is used to provide credentials to connect to SAP HANA.
You must specify user ID and password to access the machine on which you have
installed the SAP HANA system. You must assign the INDCONN macro variable before
the %INDHN_CREATE_MODELTABLE, the%INDHN_PUBLISH_MODEL, and the
%INDHN_PUBLISH_MODEL macros are invoked.

Note: If you do not specify the connection information in the INDCONN macro
variable, use the %INDHN_CREATE_MODELTABLE,

126 Chapter 10 • SAS Scoring Accelerator for SAP HANA

%INDHN_PUBLISH_MODEL, or %INDHN_RUN_MODEL macro DATABASE=
argument to specify the DSN.

Here is the syntax for the value of the INDCONN macro variable:

USER=user PASSWORD=password
<SERVER=server>
<PORT=port-number | INSTANCE=instance-number >
<SCHEMA=schema-name>
<PRESERVE_TAB_NAMES=YES | NO>
<PRESERVE_COL_NAMES=YES | NO>

Arguments

USER=user
specifies the SAP HANA user name (also called the user ID) that is used to connect
to the database.

PASSWORD=password
specifies the password that is associated with your SAP HANA user ID.

Tip Use only PASSWORD=, PASS=, or PW= for the password argument. PWD= is
not supported and causes an error.

SERVER=server
specifies the SAP HANA server name or the IP address of the server host.

Interaction You can use the DATABASE= argument in the
%INDHN_CREATE_MODELTABLE,
%INDHN_PUBLISH_MODEL, or %INDHN_RUN_MODEL macro
instead of specifying the SERVER= argument.

PORT=port-number
specifies the port number.

Interactions Specify either the PORT= argument or the INSTANCE= argument.

You can use the DATABASE= argument in the
%INDHN_CREATE_MODELTABLE,
%INDHN_PUBLISH_MODEL, or %INDHN_RUN_MODEL macro
instead of specifying the PORT= argument.

INSTANCE=instance-number
specifies the instance number.

Interactions Specify either the PORT= argument or the INSTANCE= argument.

You can use the DATABASE= argument in the
%INDHN_CREATE_MODELTABLE,
%INDHN_PUBLISH_MODEL, or %INDHN_RUN_MODEL macro
instead of specifying the INSTANCE= argument.

SCHEMA=schema-name
specifies the SAP HANA schema that contains the tables and views that you want to
access.

Default If you do not specify a value for the SCHEMA argument, the default
schema is used.

INDCONN Macro Variable 127

PRESERVE_TAB_NAMES=YES | NO
preserves spaces, special characters, and case sensitivity in SAP HANA table names.

YES
specifies that table names are read from and passed to the SAP HANA with
special characters, and the exact, case-sensitive spelling of the name is preserved.

NO
specifies that when you create SAP HANA tables or refer to an existing table, the
table names are derived from SAS member names by using SAS member name
normalization. However, SAP HANA applies its own normalization rules to the
SAS member names. Therefore, the table names are created or referenced in the
database following the SAP HANA normalization rules.

Default NO

PRESERVE_COL_NAMES=YES | NO
preserves spaces, special characters, and case sensitivity in SAP HANA column
names when you create SAP HANA tables.

YES
specifies that column names that are used in table creation are passed to the
DBMS with special characters and the exact, case-sensitive spelling of the name
is preserved.

NO
specifies that column names that are used to create SAP HANA tables are
derived from SAS variable names (VALIDVARNAME= system option) by using
the SAS variable name normalization rules. However, SAP HANA applies its
own normalization rules to the SAS variable names when creating the SAP
HANA column names.

Default NO

T I P The INDCONN macro variable is not passed as an argument to the
%INDHN_PUBLISH_MODEL macro. This information can be concealed in your
SAS job. For example, you can place it in an autoexec file and apply permissions to
the file so that others cannot access the user credentials.

Creating the Model Table

Overview
When publishing a model in SAP HANA that has deployed the SAS Embedded Process,
you must create a table to hold the sasscore_modelname.ds2 and
sasscore_modelname_ufmt.xml scoring files. You must run the
%INDHN_CREATE_MODELTABLE macro to create the table before you run the
%INDHN_PUBLISH_MODEL macro.

You have to create the table only one time to hold a model’s scoring files.

The %INDHN_CREATE_MODELTABLE macro uses the SAP HANA table type
"SASLINK":"sas.ep::TT_SAS_MODEL_TABLE". This table type is created in the
SAP HANA system when the SAS Embedded Process is installed.

128 Chapter 10 • SAS Scoring Accelerator for SAP HANA

The model table contains the following columns. The ModelName column is the table
key. The table is referenced by the two-level name schema-name.model-table-name.

Column Name Description Specification

MODELNAME Contains the name of the model. NVARCHAR(128) NOT NULL

MODELDS2 Contains the
sasscore_modelname.ds2 file.

NCLOB NOT NULL

MODELFORMATS Contains the
sasscore_modelname_ufmt.xml
file.

NCLOB

MODELMETADATA Reserved by SAS for future use. NCLOB

MODELUUID* Contains the UUID of the
source model.

NVARCHAR (36)

NOTES* Contains additional information
that describes the source model.

NVARCHAR (512)

* This column is for use by SAS Model Manager.

%INDHN_CREATE_MODELTABLE Run Process
To run the %INDHN_CREATE_MODELTABLE macro, follow these steps:

1. Start SAS and submit the following command in the Program Editor or Enhanced
Editor.

%let indconn = %str(user='youruserid' password='yourpwd'
 schema=yourschema);

The arguments supplied to the INDCONN macro variable can vary. For more
information, see the “INDCONN Macro Variable” on page 126.

2. Run the %INDHN_CREATE_MODELTABLE macro.

For more information, see “%INDHN_CREATE_MODELTABLE Macro Syntax” on
page 129.

%INDHN_CREATE_MODELTABLE Macro Syntax
%INDHN_CREATE_MODELTABLE

(<DATABASE=database-name>
<, MODELTABLE=<<">model-schema<".>><">model-table-name<">>
<, ACTION=CREATE | REPLACE | DROP>
);

Arguments

DATABASE=database-name
specifies the name of an SAP HANA database where the sasscore_modelname.ds2
and sasscore_modelname_ufmt.xml scoring files are held.

Creating the Model Table 129

Default The database specified in the INDCONN macro variable or your
current database.

Interaction The database that is specified by the DATABASE argument takes
precedence over the server, port, or instance value that you specify in
the INDCONN macro variable. For more information, see “INDCONN
Macro Variable” on page 126.

MODELTABLE=<<">model-schema<">.><">model-table-name<">
specifies the name of the table that holds the sasscore_modelname.ds2 and
sasscore_modelname_ufmt.xml scoring files.

Default SAS_MODEL_TABLE

Requirements The maximum table name length is 30 characters, and it must be a
valid SAP HANA table name.

If the table name is case sensitive, you must enclose the name in
double quotation marks and set the INDCONN macro variable’s
PRESERVE_TAB_NAMES argument to YES.

Interactions If the name of the model table is not fully qualified in the macro
call, the table is created in the schema specified in either the
INDCONN macro variable or the user’s default schema.

The table name that you specify for this macro must be the same
table name that is used in the %INDHN_PUBLISH_MODEL and
the %INDHN_RUN_MODEL macros.

See “%INDHN_PUBLISH_MODEL Macro Syntax” on page 131

“INDCONN Macro Variable” on page 126

ACTION = CREATE | REPLACE | DROP
specifies one of the following actions that the macro performs:

CREATE
creates a new table.

Tip If the table has been previously defined and you specify
ACTION=CREATE, an error is issued.

REPLACE
overwrites the current table, if a table with the same name is already registered.

Tip If you specify ACTION=REPLACE, and the current table contains
sasscore_modelname.ds2 and sasscore_modelname_ufmt.xml files, the files
are deleted and an empty table is re-created.

DROP
causes all models in this table to be dropped.

Default CREATE

130 Chapter 10 • SAS Scoring Accelerator for SAP HANA

Running the %INDHN_PUBLISH_MODEL Macro

%INDHN_PUBLISH_MODEL Macro Run Process
To run the %INDHN_PUBLISH_MODEL macro, follow these steps:

1. Create a scoring model using SAS Enterprise Miner.

2. Use the SAS Enterprise Miner Score Code Export node to create a score output
directory. Populate the directory with the score.sas file, the score.xml file, and (if
needed) the format catalog.

3. Start SAS and submit the following command in the Program Editor or Enhanced
Editor:

%let indconn = %str(user='youruserid' password='yourpwd'
 schema=yourschema);

The arguments supplied to the INDCONN macro variable can vary. For more
information, see the “INDCONN Macro Variable” on page 126.

4. Run the %INDHN_PUBLISH_MODEL macro.

For more information, see “%INDHN_PUBLISH_MODEL Macro Syntax” on page
131.

Messages are written to the SAS log that indicate the success or failure of the
creation of the .ds2 and .xml scoring files.

%INDHN_PUBLISH_MODEL Macro Syntax
%INDHN_PUBLISH_MODEL

(DIR=input-directory-path, MODELNAME=name
<, MODELTABLE=<<">model-schema<".>><">model-table-name<">>
<, DATASTEP=score-program-filename>
<, XML=xml-filename>
<, DATABASE=database-name>
<, FMTCAT=format-catalog-filename>
<, ACTION=CREATE | REPLACE | DROP>
<, OUTDIR=diagnostic-output-directory>
);

Arguments

DIR=input-directory-path
specifies the directory where the scoring model program, the properties file, and the
format catalog are located.

This directory is created by the SAS Enterprise Miner Score Code Export node. This
directory contains the score.sas file, the score.xml file, and (if user-defined formats
were used) the format catalog.

Restriction You must use a fully qualified pathname.

Running the %INDHN_PUBLISH_MODEL Macro 131

Interaction If you do not use the default directory that is created by SAS Enterprise
Miner, you must specify the DATASTEP=, XML=, and (if needed)
FMTCAT= arguments.

See “Special Characters in Directory Names” on page 19

MODELNAME=name
specifies the name for the published model.

Restriction The model name cannot exceed 128 characters.

MODELTABLE=<<">model-schema<">.><">model-table-name<">
specifies the name of the model table where the scoring files are published.

Default SAS_MODEL_TABLE

Requirements The name of the model table must be the same as the name specified
in the %INDHN_CREATE_MODELTABLE macro. For more
information, see the MODELTABLE argument in
“%INDHN_CREATE_MODELTABLE Macro Syntax” on page
129.

The maximum table name length is 30 characters, and it must be a
valid SAP HANA table name.

If the model table name is case sensitive, you must enclose the name
in double quotation marks and set the INDCONN macro variable’s
PRESERVE_TAB_NAMES argument to YES.

See “INDCONN Macro Variable” on page 126

DATASTEP=score-program-filename
specifies the name of the scoring model program file that was created by using the
SAS Enterprise Miner Score Code Export node.

Default score.sas

Restriction Only DATA step programs that are produced by the SAS Enterprise
Miner Score Code Export node can be used.

Interaction If you use the default score.sas file that is created by the SAS
Enterprise Miner Score Code Export node, you do not need to specify
the DATASTEP= argument.

XML=xml-filename
specifies the name of the properties XML file that was created by the SAS Enterprise
Miner Score Code Export node.

Default score.xml

Restrictions Only XML files that are produced by the SAS Enterprise Miner Score
Code Export node can be used.

The maximum number of output variables is 1000.

132 Chapter 10 • SAS Scoring Accelerator for SAP HANA

Interaction If you use the default score.xml file that is created by the SAS
Enterprise Miner Score Code Export node, you do not need to specify
the XML= argument.

DATABASE=database-name
specifies the name of the ODBC data source for the SAP HANA system to which the
scoring files are published.

Default The database specified in the INDCONN macro variable

Requirement The name of the database must be the same as the database specified
in the %INDHN_CREATE_MODELTABLE macro. For more
information, see the DATABASE argument in
“%INDHN_CREATE_MODELTABLE Macro Syntax” on page 129.

Interaction The database that is specified by the DATABASE argument takes
precedence over the server, port, or instance value that you specify in
the INDCONN macro variable. For more information, see
“INDCONN Macro Variable” on page 126.

FMTCAT=format-catalog-filename
specifies the name of the format catalog file that contains all user-defined formats
that were created by the FORMAT procedure and that are referenced in the DATA
step scoring model program.

Restriction Only format catalog files that are produced by the SAS Enterprise
Miner Score Code Export node can be used.

Interactions If you use the default format catalog that is created by the SAS
Enterprise Miner Score Code Export node, you do not need to specify
the FMTCAT= argument.

If you do not use the default catalog name (FORMATS) or the default
library (WORK or LIBRARY) when you create user-defined formats,
you must use the FMTSEARCH system option to specify the location
of the format catalog. For more information, see PROC FORMAT in
the Base SAS Procedures Guide.

ACTION=CREATE | REPLACE | DROP
specifies one of the following actions that the macro performs:

CREATE
creates new files.

REPLACE
overwrites the current files, if files with the same name are already registered.

DROP
causes all files for this model to be dropped from the SAP HANA database.

Default CREATE

Tip If the model has been previously published and you specify
ACTION=CREATE, you receive warning messages from SAP HANA. If
the model has been previously published and you specify
ACTION=REPLACE, no warnings are issued.

Running the %INDHN_PUBLISH_MODEL Macro 133

OUTDIR=diagnostic-output-directory
specifies a directory that contains diagnostic files.

Files that are produced include an event log that contains detailed information about
the success or failure of the publishing process.

Tip This argument is useful when testing your scoring models.

See “Special Characters in Directory Names” on page 19

Running the %INDHN_RUN_MODEL Macro

%INDHN_RUN_MODEL Macro Run Process
To run the %INDHN_RUN_MODEL macro, follow these steps:

1. Start SAS and submit the following command in the Program Editor or Enhanced
Editor:

%let indconn = %str(user='youruserid' password='yourpwd'
 schema=yourschema);

The arguments supplied to the INDCONN macro variable can vary. For more
information, see the “INDCONN Macro Variable” on page 126.

2. Run the %INDHN_RUN_MODEL macro.

For more information, see “%INDHN_RUN_MODEL Macro Syntax” on page 134.

Messages are written to the SAS log to indicate the success or failure of the creation
of the .ds2 and .xml scoring files.

%INDHN_RUN_MODEL Macro Syntax
%INDHN_RUN_MODEL

(DATABASE=database-name
, MODELNAME=name
, INPUTTABLE=<<">input-schema<".>><">input-table-name<">
, OUTPUTTABLE=<<">output-schema<".>><">output-table-name<">
<, MODELTABLE=<<">model-schema<".>><">model-table-name<">>
<, KEEP=column-keep-list>
<, TRACE=trace-level>
<, FORCEOVERWRITE=TRUE | FALSE>
<, SASTRACETABLE=sas-trace-table-name>
<, EPTRACETABLE=<<">schema<".>><">ep-trace-table-name<">>
<, NUMTHREADS=number-of-threads>
<, NUMDATAPARTITIONS=number-of-partitions>
<, DBMAXTEXT=string-length>
);

Arguments

DATABASE=database-name
specifies the name of the ODBC data source for the SAP HANA system to which the
output table is published.

134 Chapter 10 • SAS Scoring Accelerator for SAP HANA

Default The database specified in the INDCONN macro variable

Requirement The name of the database must be the same as the database specified
in the %INDHN_CREATE_MODELTABLE macro. For more
information, see the DATABASE argument in
“%INDHN_CREATE_MODELTABLE Macro Syntax” on page 129.

Interaction The database that is specified by the DATABASE argument takes
precedence over the server, port, or instance value that you specify in
the INDCONN macro variable. For more information, see
“INDCONN Macro Variable” on page 126.

MODELNAME=name
specifies the name for the published model.

Restriction The model name cannot exceed 128 characters.

INPUTTABLE=<<">input-schema<">.><">input-table-name<">
specifies the name of the scoring model input table.

Requirement If the input table name is case sensitive, you must set the INDCONN
macro variable’s PRESERVE_TAB_NAMES argument to YES.

See “INDCONN Macro Variable” on page 126

OUTPUTTABLE=<<">output-schema<">.><">output-table-name<">
specifies the name of the scoring model output table.

Requirement If the output table name is case sensitive, you must set the
INDCONN macro variable’s PRESERVE_TAB_NAMES argument
to YES.

MODELTABLE=<<">model-schema<">.><">model-table-name<">
specifies the name of the model table where the scoring files are published with the
%INDHN_CREATE_MODELTABLE and %INDHN_PUBLISH_MODEL macros.

Default SAS_MODEL_TABLE

Requirements The name of the model table must be the same as the name specified
in the %INDHN_CREATE_MODELTABLE and
%INDHN_PUBLISH_MODEL macros. For more information, see
the MODELTABLE argument in
“%INDHN_CREATE_MODELTABLE Macro Syntax” on page 129
and “%INDHN_RUN_MODEL Macro Syntax” on page 134.

The maximum table name length is 30 characters, and it must be a
valid SAP HANA table name.

If the model table name is case sensitive, you must set the
INDCONN macro variable’s PRESERVE_TAB_NAMES argument
to YES.

See “INDCONN Macro Variable” on page 126

FORCEOVERWRITE=TRUE | FALSE
specifies whether to delete the output table before running the scoring model.

Running the %INDHN_RUN_MODEL Macro 135

Default FALSE

KEEP=variable-keep-list
specifies the column or columns to keep in the output table.

Requirement The list of variables must be separated by spaces and should not be
enclosed by single or double quotation marks.

TRACE= trace-level
specifies whether debug messages are displayed.

Default 0

Interaction Tracing for the stored procedure is on if TRACE= is greater than zero.

SASTRACETABLE=sas-trace-data-set-name
specifies the name of a SAS data set for tracing messages generated by the call to a
stored procedure.

Default WORK.SASEP_LOG

Interaction Tracing for the stored procedure is on if TRACE= is greater than zero.

See “TRACE= trace-level” on page 136

EPTRACETABLE=<<">schema<">.><">ep-trace-table-name<">
specifies the name of the SAP HANA table for logging.

Requirement If the trace table name is case sensitive, you must set the INDCONN
macro variable’s PRESERVE_TAB_NAMES argument to YES.

Interaction Tracing for the stored procedure is on if TRACE= is greater than
zero.

Note If ep-trace-table-name starts with a number sign (#), a local
temporary table is used. The table is deleted at the end of the session.
If ep-trace-table-name does not start with a number sign (#), a
permanent table is created in SAP HANA.

See “TRACE= trace-level” on page 136

“INDCONN Macro Variable” on page 126

NUMTHREADS=number-of-threads
specifies the number of DS2 threads used to run the scoring model.

Default 1

See For more information about DS2 threads, see SAS DS2 Language
Reference.

NUMDATAPARTITIONS=number-of-data-partitions
specifies the number of data partitions used for DS2 processing.

Default 1

136 Chapter 10 • SAS Scoring Accelerator for SAP HANA

Tip The default value of 1 should be used for in-database scoring. You can
change the value of NUMDATAPARTITIONS if you are using High-
Performance Analytics.

DBMAXTEXT=string-length
specifies the default maximum string length for character input columns.

Default 1024 characters

Note The length of the string is also reflected in the output table.

Scoring Output

Scoring Output Table
When you run the %INDHN_RUN_MODEL macro, an output file is created in the
database with the name that you specified in the macro’s OUTPUTTABLE= argument.

In addition to the input table columns, the %INDHN_RUN_MODEL macro generates a
column for each Enterprise Miner output variable in the form of EM_outputvarname.

You can specify which columns are written to the output table by using the KEEP=
argument of the %INDHN_RUN_MODEL macro.

For more information, see “%INDHN_RUN_MODEL Macro Syntax” on page 134.

Querying and Viewing the Scoring Output Table
Note: The %INDHN_RUN_MODEL macro does not generate a SampleSQL.txt file.

The columns in the output table are available to use in any SQL query expression. In
these examples, the output table name specified in the %INDDN_RUN_MODEL macro
OUTTABLE= argument is out_mymodel.

select * from out_mymodel;
select em_classification from out_mymodel;

The output table is written to an SAP HANA table. To use the output data in a SAS
session, use a LIBNAME statement to access the table.

To view the output data in a SAS session, you can use PROC PRINT if you have a
LIBNAME statement to access the SAP HANA output table.

SAP HANA Permissions
For SAP HANA, the following permissions are needed by the person who runs the
scoring publishing macros:

• EXECUTE on SYSTEM.afl_wrapper_generator

• EXECUTE on SYSTEM.afl_wrapper_eraser

• AFL__SYS_AFL_SASLINK_AREA_EXECUTE

SAP HANA Permissions 137

• EXECUTE, SELECT, INSERT, UPDATE, and DELETE on the schema that is used
for scoring

In addition, the role of sas.ep::User and
AFL_SYS_AFL_SASLINK_AREA_EXECUTE must be assigned to any user who wants to
perform in-database processing.

Without these permissions, the publishing of the scoring functions fails. To obtain these
permissions, contact your database administrator.

For more information about specific permissions, see “SAP HANA Permissions” in
Chapter 8 of SAS In-Database Products: Administrator's Guide.

138 Chapter 10 • SAS Scoring Accelerator for SAP HANA

Chapter 11

SAS Scoring Accelerator for SPD
Server

Overview of Running Scoring Models in SPD Server . 139

Running Scoring Models in SPD Server . 139

INDCONN Macro Variable . 141

INDDATA Macro Variable . 141

%INDSP_PUBLISH_MODEL Macro Syntax . 142

%INDSP_RUN_MODEL Macro Syntax . 144

Scoring Output . 145
Scoring Output Table . 145
Querying Scoring Output Tables . 146

SPD Server Permissions . 148

Overview of Running Scoring Models in SPD
Server

The SAS Scoring Accelerator for SPD Server embeds the robustness of SAS Enterprise
Miner scoring models directly in the highly scalable SPD Server. The SAS Scoring
Accelerator for SPD Server takes the models that are developed by SAS Enterprise
Miner and outputs the data to an SPD server table.

The SAS Scoring Accelerator for SPD Server requires SAS Scalable Performance Data
Server version 5.1 and SAS 9.4. Installation of an in-database deployment package is not
required.

Running Scoring Models in SPD Server
To run the scoring model in SPD Server, follow these steps:

1. Create a scoring model using SAS Enterprise Miner.

2. Start SAS.

3. Submit this command in the Program Editor or Enhanced Editor to provide SPD
Server connection information to the %INDSP_PUBLISH_MODEL and the
%INDSP_PUBLISH_MODELmacros.

139

%let indconn = domain=mydomain server=myserver port=myport
 user=myuserid <password=XXXX>;

For more information, see “INDCONN Macro Variable” on page 141.

4. Run the %INDSP_PUBLISH_MODEL macro.

The %INDSP_PUBLISH_MODEL macro publishes the model to the SPD Server.
This model is made available to run using data stored in the SPD Server.

The %INDSP_PUBLISH_MODEL macro uses some of the files that are created by
the SAS Enterprise Miner Score Code Export node: the scoring model program
(score.sas file), the properties file (score.xml file), and (if the training data includes
SAS user-defined formats) a format catalog.

After the model is published, two SPD Server tables are created in the INDCONN
domain: modelname_ARGS and modelname_PKG. If you have user-defined formats
in the model, an additional table, modelname_FMT, is created.

For more information, see “%INDSP_PUBLISH_MODEL Macro Syntax” on page
142.

5. Submit these commands in the Program Editor or Enhanced Editor to provide SPD
Server connection information to the %INDSP_PUBLISH_MODEL and the
%INDSP_PUBLISH_MODEL macros.

%let indconn = domain=mydomain server=myserver port=myport
 user=myuserid <password=XXXX>;

%let inddata domain=mydomain server=myserver port=myport
 user=myuserid <password=XXXX>;

The INDDATA macro variable provides the SPD Server connection information for
the input and output tables.

Note: You do not have to resubmit %let indconn= if you already submitted the
command in your SAS session to publish the model.

For more information, see “INDCONN Macro Variable” on page 141 and
“INDDATA Macro Variable” on page 141.

6. Run the %INDSP_RUN_MODEL macro.

The %INDSP_RUN_MODEL macro runs the scoring model. The
%INDSP_RUN_MODEL macro uses the tables that were created by the
%INDSP_PUBLISH_MODEL macro as well as table that contains the input data.

The %INDSP_RUN_MODEL macro creates an SPD Server output table by default.
The output table name is modelname_OUT. When the model is run, another SPD
Server table, modelname_THR, is created in the INDCONN domain.

Note: The %INDSP_PUBLISH_MODEL and the %INDSP_RUN_MODEL must be
run from sessions that use the same encoding or locale.

For more information, see “%INDSP_RUN_MODEL Macro Syntax” on page 144.

7. Submit an SQL query against the output table.

For more information, see “Scoring Output” on page 145.

140 Chapter 11 • SAS Scoring Accelerator for SPD Server

INDCONN Macro Variable
The INDCONN macro variable is used to provide credentials to connect to the SPD
Server. You must specify domain, server, port, and user. The password is optional. You
must assign the INDCONN macro variable before the %INDSP_PUBLISH_MODEL or
%INDSP_RUN_MODEL macro is invoked.

Note: The connection information provided by the INDCONN macro variable must be
the same for both the %INDSP_PUBLISH_MODEL macro and the
%INDSP_RUN_MODEL macro.

Here is the syntax for the value of the INDCONN macro variable:

DOMAIN=domain-name SERVER=server PORT=port-number USER=user
<PASSWORD=password>

Arguments

DOMAIN=domain-name
specifies the domain name.

SERVER=server
specifies the server name.

PORT=port-number
specifies the port number.

USER=username
specifies the user name (also called the user ID) that is used to connect to the SPD
Server.

PASSWORD=password
specifies the password that is associated with your SPD Server user ID.

Tip Use only PASSWORD=, PASS=, or PW= for the password argument. PWD= is
not supported and causes an error.

INDDATA Macro Variable
The INDDATA macro variable is used to provide SPD Server connection credentials to
the input table. You must specify domain, server, port, and user. The password is
optional. You must assign the INDDATA macro variable before the
%INDSP_RUN_MODEL macro is invoked.

Here is the syntax for the value of the INDDATA macro variable:

DOMAIN=domain-name SERVER=server PORT=port-number USER=user
<PASSWORD=password>

Arguments

DOMAIN=domain-name
specifies the domain name.

SERVER=server
specifies the server name.

INDDATA Macro Variable 141

PORT=port-number
specifies the port number.

USER=username
specifies the user name (also called the user ID) that is used to connect to the SPD
Server.

PASSWORD=password
specifies the password that is associated with your SPD Server user ID.

Tip Use only PASSWORD=, PASS=, or PW= for the password argument. PWD= is
not supported and causes an error.

%INDSP_PUBLISH_MODEL Macro Syntax
Note: The %INDSP_PUBLISH_MODEL and the %INDSP_RUN_MODEL must be

run from sessions that use the same encoding or locale.

%INDSP_PUBLISH_MODEL
(MODELNAME=name, INPUTDIR=input-directory-path

<, DATASTEP=score-program-filename>
<, XML=xml-filename>
<, FMTCAT=format-catalog-filename | libref.format-catalog-filename>
<, ACTION=CREATE | REPLACE | DROP>
);

Arguments

MODELNAME=name
specifies the name that is prepended to the SPD Server tables that are created after
the %INDSP_PUBLISH_MODEL macro runs.

Requirement The model name cannot exceed ten characters and must be a valid
SAS name. For more information about valid SAS names, see the
topic on rules for words and names in SAS Language Reference:
Concepts.

Tip After the model is published, two SPD Server tables are created in
the INDCONN domain: modelname_ARGS and modelname_PKG. If
you have user-defined formats in the model, an additional table,
modelname_FMT, is created.

INPUTDIR=input-directory-path
specifies the directory where the scoring model program, the properties file, and the
format catalog are located.

This is the directory that is created by the SAS Enterprise Miner Score Code Export
node. This directory contains the score.sas file, the score.xml file, and (if user-
defined formats were used) the format catalog.

Restriction You must use a fully qualified pathname.

See “Special Characters in Directory Names” on page 19

142 Chapter 11 • SAS Scoring Accelerator for SPD Server

DATASTEP=score-program-filename
specifies the name of the scoring model program file that was created by using the
SAS Enterprise Miner Score Code Export node.

Default score.sas

Restriction Only DATA step programs that are produced by the SAS Enterprise
Miner Score Code Export node can be used.

Requirement The scoring model program file must be located in the INPUTDIR
directory.

Interaction If you use the default score.sas file that is created by the SAS
Enterprise Miner Score Code Export node, you do not need to specify
the DATASTEP= argument.

XML=xml-filename
specifies the name of the properties XML file that was created by the SAS Enterprise
Miner Score Code Export node.

Default score.xml

Restriction Only XML files that are produced by the SAS Enterprise Miner
Score Code Export node can be used.

Requirement The properties XML file must be located in the INPUTDIR directory.

Interaction If you use the default score.xml file that is created by the SAS
Enterprise Miner Score Code Export node, you do not need to specify
the XML= argument.

FMTCAT=format-catalog-filename | libref.format-catalog-filename
specifies the name of the format catalog file that contains all user-defined formats
that were created by the FORMAT procedure and that are referenced in the DATA
step scoring model program.

Default FORMATS

Restriction Only format catalog files that are produced by the SAS Enterprise
Miner Score Code Export node can be used.

Requirement If the catalog is specified as a one-level name, it is expected to be
found in the same location as the scoring model program (score.sas)
and the scoring model XML file (score.xml). If the catalog is
specified as a two-level name (libref.format-catalog-name), the
catalog is expected to be found using the two-level name.

Interactions If you use the default format catalog that is created by the SAS
Enterprise Miner Score Code Export node, you do not need to specify
the FMTCAT= argument.

If you do not use the default catalog name (FORMATS) or the default
library (WORK or LIBRARY) when you create user-defined formats,
you must use the FMTSEARCH system option to specify the location
of the format catalog. For more information, see PROC FORMAT in
the Base SAS Procedures Guide.

%INDSP_PUBLISH_MODEL Macro Syntax 143

ACTION=CREATE | REPLACE | DROP
specifies one of the following actions that the macro performs:

CREATE
creates a new model.

Note If the model by the same name exists, an error occurs.

REPLACE
overwrites the current model, if a model with the same name is already
registered.

Note If the current model does not exist, an error occurs.

DROP
causes the model to be deleted.

Notes If you specify ACTION=DROP, the modelname_ARGS,
modelname_PKG, modelname_THR, and if created, modelname_FMT
tables are also deleted.

If the model does not exist, an error occurs.

Default CREATE

%INDSP_RUN_MODEL Macro Syntax
Note: The %INDSP_PUBLISH_MODEL and the %INDSP_RUN_MODEL must be

run from sessions that use the same encoding or locale.

%INDSP_RUN_MODEL
(MODELNAME=name, INDATA=input-table-name

<, OUTDATA=output-table-name>
<, KEEP=variable-keep-list>
<, OUTDIR=sample-sql-directory>
<, THREADS=number-of-threads>
);

Arguments

MODELNAME=name
specifies the name of the model.

Requirement The model name cannot exceed ten characters and must be a valid
SAS name. For more information about valid SAS names, see the
topic on rules for words and names in SAS Language Reference:
Concepts.

Interaction modelname is also used to create the output table name
(modelname_OUT) if a name is not specified in the OUTDATA=
argument.

Tip When the model is published, the modelname_THR SPD Server table
is created in the INDCONN domain.

144 Chapter 11 • SAS Scoring Accelerator for SPD Server

INDATA=input-table-name
specifies the name of the SPD Server table to be used as input to the scoring model.

Restriction The table must exist in the INDDATA domain.

OUTDATA=output-table-name
specifies the name of the SPD Server table created as output from the scoring model.

Default modelname_OUT

Note The table is created in the INDDATA domain.

KEEP=variable-keep-list
specifies a list of variables to keep in the output table.

Requirement The variables in the list must be separated by spaces.

Example keep=id em_eventprobability em_classification

OUTDIR=sample-sql-directory
specifies a directory that contains the sample SQL code (SampleSQL.txt).

Tip This argument is useful when testing your scoring models. If you do not
specify this directory, the sample SQL code is not available after the model
runs.

See For more information about the SampleSQL.txt file, see “Querying Scoring
Output Tables” on page 146.

“Special Characters in Directory Names” on page 19

THREADS=number-of-threads
specifies the number of threads to use when the model is run.

Default 1

Scoring Output

Scoring Output Table
When you run the %INDSP_RUN_MODEL macro, an SPD Server table is created in
the domain that was specified in the INDDATA macro variable. The default table name
is modelname_OUT. However, you can specify a different table name in the OUTDATA
argument of the %INDSP_RUN_MODEL macro.

In addition to the input table columns, the %INDSP_RUN_MODEL macro generates a
column for each Enterprise Miner output variable in the form of EM_outputvarname.

You can specify which columns are written to the scoring output table by using the
KEEP argument of the %INDSP_RUN_MODEL macro. For more information about the
MODELNAME and KEEP arguments, see “%INDSP_RUN_MODEL Macro Syntax”
on page 144.

Scoring Output 145

Querying Scoring Output Tables
The columns in the output table are available to use in any SQL query expression.

select * from mymodel_out;

select em_classification from mymodel_out;

The output table is written to an SPD Server table. To use the output data in a SAS
session, use a LIBNAME statement to access the SPD Server table.

In addition, a SampleSQL.txt file is produced when the %INDSP_RUN_MODEL macro
runs. This file can be found in the output directory (OUTDIR argument) that you specify
in the macro.

The SampleSQL.txt file contains SPD Server SQL and DS2 code that can be used to
query the model output table. The SampleSQL.txt file code is specific to the scoring
model that was run against the specified input table.

To run the code in the SampleSQL.txt file, you need only to include this file within a
PROC SQL statement.

proc sql;
%inc 'SampleSQL.txt';
quit;

The following example assumes the model name that you used is almush01. The
output table is almush01_out. The CONNECT TO and EXECUTE... BY statements
are SPD Server SQL statements. The code within the EXECUTE block is DS2 code that
executes in SPD Server through SQL.

/* Model almush01 run 14JUN13 7:41:42 PM */
/* Input is table almush01; Output is table almush01_out. */
/* Running model with 1 thread. */
connect to sasspds(dbq="model" host="myhost" serv="1234" user="anonymous");
execute(reset dialect=ds2) by sasspds;
execute(
ds2_options sas tkgmac scond=none;
thread almush01_thr / overwrite=yes;
dcl package modSPDS.almush01_pkg scorepkg();
dcl char(32) "EM_CLASSIFICATION";
dcl double "EM_EVENTPROBABILITY";
dcl double "EM_PROBABILITY";
dcl double "G_CAPCOLOR";
dcl double "G_GILLCOLO";
dcl double "G_HABITAT";
dcl double "G_ODOR";
dcl double "G_POPULAT";
dcl double "G_RINGTYPE";
dcl double "G_SPOREPC";
dcl double "G_STALKCBR";
dcl double "G_STALKROO";
dcl double "G_STALKSAR";
dcl double "G_VEILCOLO";
dcl double "H11";
dcl double "H12";
dcl double "H13";
dcl char(1) "I_TARGET";

146 Chapter 11 • SAS Scoring Accelerator for SPD Server

dcl double "P_TARGETE";
dcl double "P_TARGETP";
dcl double "S_G_CAPCOLOR";
dcl double "S_G_GILLCOLO";
dcl double "S_G_HABITAT";
dcl double "S_G_ODOR";
dcl double "S_G_POPULAT";
dcl double "S_G_RINGTYPE";
dcl double "S_G_SPOREPC";
dcl double "S_G_STALKCBR";
dcl double "S_G_STALKROO";
dcl double "S_G_STALKSAR";
dcl double "S_G_VEILCOLO";
dcl char(1) "U_TARGET";
dcl char(4) "_WARN_";
method run();
set dataSPDS.almush01;
scorepkg.score("BRUISES",
"CAPCOLOR",
"GILLCOLO",
"GILLSIZE",
"HABITAT",
"ODOR",
"POPULAT",
"RINGNUMB",
"RINGTYPE",
"SPOREPC",
"STALKCBR",
"STALKROO",
"STALKSAR",
"STALKSHA",
"VEILCOLO",
"EM_CLASSIFICATION",
"EM_EVENTPROBABILITY",
"EM_PROBABILITY",
"G_CAPCOLOR",
"G_GILLCOLO",
"G_HABITAT",
"G_ODOR",
"G_POPULAT",
"G_RINGTYPE",
"G_SPOREPC",
"G_STALKCBR",
"G_STALKROO",
"G_STALKSAR",
"G_VEILCOLO",
"H11",
"H12",
"H13",
"I_TARGET",
"P_TARGETE",
"P_TARGETP",
"S_G_CAPCOLOR",
"S_G_GILLCOLO",
"S_G_HABITAT",
"S_G_ODOR",

Scoring Output 147

"S_G_POPULAT",
"S_G_RINGTYPE",
"S_G_SPOREPC",
"S_G_STALKCBR",
"S_G_STALKROO",
"S_G_STALKSAR",
"S_G_VEILCOLO",
"U_TARGET",
"_WARN_");
output;
end;
endthread;
data dataSPDS.almush01_out (overwrite=yes);
keep ID EM_CLASSIFICATION EM_EVENTPROBABILITY EM_PROBABILITY;
dcl thread almush01_thr st;
method run();
set from st threads=1;
output;
end;
enddata;
) by sasspds;

For more information about SPD Server SQL language, see the SAS Scalable
Performance Data Server: User’s Guide. For more information about the DS2 language,
see the SAS DS2 Language Reference.

SPD Server Permissions
You must have permissions for the domains that you specify in the INDCONN and
INDDATA macro variables when you execute the publish and run macros.

You also need regular Read, Write, and Alter permissions when writing files to the
OUTDIR directory in the %INDSP_RUN_MODEL macro.

Without these permissions, the publishing of the scoring model fails. To obtain these
permissions, contact your database administrator.

148 Chapter 11 • SAS Scoring Accelerator for SPD Server

Chapter 12

SAS Scoring Accelerator for
Teradata

Overview of Running Scoring Models in Teradata . 149

Using Scoring Functions to Run Scoring Models . 150
How to Run a Scoring Model Using Scoring Functions . 150
Scoring Function Names . 150
Viewing the Scoring Functions . 151
Using Scoring Functions to Run a Scoring Model . 153

Using the SAS Embedded Process to Run Scoring Models 153
How to Run a Scoring Model with the SAS Embedded Process 153
Creating a Model Table . 154
SAS_SCORE_EP Stored Procedure . 156
Teradata Scoring Files . 162
Controlling the SAS Embedded Process . 163

Running the %INDTD_PUBLISH_MODEL Macro . 164
%INDTD_PUBLISH_MODEL Macro Run Process . 164
INDCONN Macro Variable . 164
%INDTD_PUBLISH_MODEL Macro Syntax . 165
Modes of Operation . 169

Teradata Permissions . 169

Overview of Running Scoring Models in Teradata
There are two ways to run scoring models in Teradata.

• You can create scoring functions for each EM_ output variable. The model
publishing macro creates the scoring functions that are published as Teradata user-
defined functions. These functions can then be used in any SQL query. For more
information, see “Using Scoring Functions to Run Scoring Models” on page 150.

• You can use the SAS Embedded Process. The SAS Embedded Process is a SAS
server process that runs inside the Teradata Enterprise Data Warehouse (EDW) to
read and write data. The model publishing macro creates scoring files that are then
used in a stored procedure to run the scoring model. For more information, see
“Using the SAS Embedded Process to Run Scoring Models” on page 153.

The SAS Scoring Accelerator for Teradata requires a certain version of the Teradata
client and server environment. For more information, see the SAS Foundation system
requirements documentation for your operating environment.

149

Using Scoring Functions to Run Scoring Models

How to Run a Scoring Model Using Scoring Functions
The %INDTD_PUBLISH_MODEL macro creates the files that are needed to build the
scoring functions and publishes these files to a specified database in the Teradata EDW.
Only the EM_ output variables are published as Teradata scoring functions. For more
information about the EM_ output variables, see “Fixed Variable Names” on page 27.

To run the scoring model using scoring functions, follow these steps.

1. Run the %INDTD_PUBLISH_MODEL macro.

The %INDTD_PUBLISH_MODEL macro uses some files that are created by the
SAS Enterprise Miner Score Code Export node: the scoring model program
(score.sas file), the properties file (score.xml file), and (if the training data includes
SAS user-defined formats) a format catalog.

The %INDTD_PUBLISH_MODEL macro performs the following tasks:

• takes the score.sas and score.xml files and produces the set of .c and .h files.
These .c and .h files are necessary to build separate scoring functions for each of
a fixed set of quantities that can be computed by the scoring model code.

• processes the format catalog and creates an .h file with C structures if a format
catalog is available. This file is also necessary to build the scoring functions.

• produces a script of the Teradata commands that are used to register the scoring
functions on the Teradata EDW.

• uses SAS/ACCESS Interface to Teradata to run the script and publish the scoring
model files to the Teradata EDW.

For more information, see “Running the %INDTD_PUBLISH_MODEL Macro” on
page 164.

For more information about the scoring functions that are created, see “Scoring
Function Names” on page 150 and “Viewing the Scoring Functions” on page 151.

2. Use the scoring functions in any SQL query.

For more information, see “Using Scoring Functions to Run a Scoring Model” on
page 153.

Scoring Function Names
The names of the scoring functions that are built in Teradata have the following format:

modelname_EM_outputvarname

modelname is the name that was specified in the MODELNAME argument of the
%INDTD_PUBLISH_MODEL macro. modelname is always followed by _EM_ in the
scoring function name. For more information about the MODELNAME argument, see
“Running the %INDTD_PUBLISH_MODEL Macro” on page 164.

outputvarname is derived from the names of the EM_ output variables in the score.xml
file that is generated from the SAS Enterprise Miner Score Code Export node. For more
information about the score.xml file, see “Fixed Variable Names” on page 27.

150 Chapter 12 • SAS Scoring Accelerator for Teradata

One scoring function is created for each EM_ output variable in the score.xml file. For
example, if the scoring model DATA step program takes ten inputs and creates three new
variables, then three scoring functions are defined. Each scoring function has the name
of an output variable. For example, if you set MODELNAME=credit in the
%INDTD_PUBLISH_MODEL macro, and the EM_ output variables are
“EM_PREDICTION”, “EM_PROBABILITY”, and “EM_DECISION”, then the name
of the scoring functions that are created would be “credit_EM_PREDICTION”,
“credit_EM_PROBABILITY”, and “credit_EM_DECISION”.

Note: The scoring function name cannot exceed 30 characters.

CAUTION:
When the scoring function is generated, the names are case insensitive.
Consequently, if you have model names “Model01” and “model01”, and you create
two scoring functions, the second scoring function overwrites the first scoring
function.

Viewing the Scoring Functions
There are four ways to see the scoring functions that are created:

• From Teradata, log on to the database using a client tool such as BTEQ and submit
an SQL statement. The following example assumes that the model name that you
used to create the scoring functions is mymodel.

bteq .logon myserver/myuserid,mypassword
 select * from dbc.tables where tablename like '%mymodel%';

• From SAS, use SQL procedure code that produces output in the LST file. The
following example assumes that the model name that you used to create the scoring
functions is mymodel.

proc sql noerrorstop;
 connect to teradata (user=user password=pass server=server);
 select *
 from connection to teradata
 (select tablename,tablekind,databasename,LastALterTimeStamp
 from dbc.tables where
 databasename='sas' and tablename like '%mymodel%'
 and tablekind='F');

disconnect from teradata;
quit;

• You can look at the SAS log that is created when the %INDTD_PUBLISH_MODEL
macro was run. A message is printed to the SAS log that states whether a scoring
function is successfully or not successfully created or replaced.

• Look at the SampleSQL.txt file that is produced when the
%INDTD_PUBLISH_MODEL macro is successfully run. This file can be found in
the output directory (OUTDIR argument) that you specify in the macro.

The SampleSQL.txt file contains basic SQL code that can be used to run your score
code inside Teradata. Please note that you must modify the sample code before using
it. Otherwise, the sample code returns an error.

For example, this SampleSQL.txt file refers to an ID column in allmush1_intab
that is populated with a unique integer from 1 to n. n is the number of rows in the
table. The ID column uniquely identifies each row. You would replace the ID column
with your own primary key column.

Using Scoring Functions to Run Scoring Models 151

The following example assumes that the model name that you used to create the
scoring functions is allmush1.

drop table allmush1_outtab;
create table allmush1_outtab(
 id integer
,"EM_CLASSIFICATION" varchar(33)
,"EM_EVENTPROBABILITY" float
,"EM_PROBABILITY" float
);
insert into allmush1_outtab(
 id
,"EM_CLASSIFICATION"
,"EM_EVENTPROBABILITY"
,"EM_PROBABILITY"
)
select id,
 allmush1_em_classification("BRUISES"
,"CAPCOLOR"
,"GILLCOLO"
,"GILLSIZE"
,"HABITAT"
,"ODOR"
,"POPULAT"
,"RINGNUMB"
,"RINGTYPE"
,"SPOREPC"
,"STALKCBR"
,"STALKROO"
,"STALKSAR"
,"STALKSHA"
,"VEILCOLO")
 as "EM_CLASSIFICATION",
 allmush1_em_eventprobability("BRUISES"
,"CAPCOLOR"
,"GILLCOLO"
,"GILLSIZE"
,"HABITAT"
,"ODOR"
,"POPULAT"
,"RINGNUMB"
,"RINGTYPE"
,"SPOREPC"
,"STALKCBR"
,"STALKROO"
,"STALKSAR"
,"STALKSHA"
,"VEILCOLO")
 as "EM_EVENTPROBABILITY",
 allmush1_em_probability("BRUISES"
,"CAPCOLOR"
,"GILLCOLO"
,"GILLSIZE"
,"HABITAT"
,"ODOR"
,"POPULAT"

152 Chapter 12 • SAS Scoring Accelerator for Teradata

,"RINGNUMB"
,"RINGTYPE"
,"SPOREPC"
,"STALKCBR"
,"STALKROO"
,"STALKSAR"
,"STALKSHA"
,"VEILCOLO")
 as "EM_PROBABILITY"
from allmush1_intab ;

Using Scoring Functions to Run a Scoring Model
The scoring functions are available to use in any SQL expression in the same way that
Teradata built-in functions are used.

After the scoring functions are created, they can be invoked in Teradata using SQL, as
illustrated in the following example. Each output value is created as a separate function
call in the select list. The SampleSQL.txt file shown in “Viewing the Scoring Functions”
on page 151 was modified to create the SELECT statement in this example.

select id, allmush1_em_classification
(
"BRUISES"
,"CAPCOLOR"
,"GILLCOLO"
,"GILLSIZE"
,"HABITAT"
,"ODOR"
,"POPULAT"
,"RINGNUMB"
,"RINGTYPE"
,"SPOREPC")
 as "EM_CLASSIFICATION",
 from allmush1_intab ;

Note: The function and table names must be fully qualified if the functions and tables
are not in the same database.

Using the SAS Embedded Process to Run
Scoring Models

How to Run a Scoring Model with the SAS Embedded Process
The integration of the SAS Embedded Process and Teradata allows scoring code to run
directly using the SAS Embedded Process on Teradata.

Note: The SAS Embedded Process might require a later release of Teradata than
function-based scoring does. For more information, see the SAS Foundation system
requirements documentation for your operating environment.

To run the scoring model using the SAS Embedded Process, follow these steps.

1. Create a table to hold the scoring files.

Using the SAS Embedded Process to Run Scoring Models 153

The %INDTD_CREATE_MODELTABLE macro creates a table that holds the
scoring files for the model that is being published.

For more information, see “Creating a Model Table” on page 154.

2. Run the %INDTD_PUBLISH_MODEL to create the scoring files.

The %INDTD_PUBLISH_MODEL macro uses some of the files that are created by
the SAS Enterprise Miner Score Code Export node: the scoring model program
(score.sas file), the properties file (score.xml file), and (if the training data includes
SAS user-defined formats) a format catalog.

The %INDTD_PUBLISH_MODEL macro performs the following tasks:

• translates the scoring model into the sasscore_modelname.ds2 file that is used to
run scoring inside the SAS Embedded Process.

• takes the format catalog, if available, and produces the
sasscore_modelname_ufmt.xml file. This file contains user-defined formats for
the scoring model that is being published.

• uses the SAS/ACCESS Interface to Teradata to insert the
sasscore_modelname.ds2 and sasscore_modelname_ufmt.xml scoring files into
the model table that was created using the %INDTD_CREATE_MODELTABLE
macro.

For more information, see “Running the %INDTD_PUBLISH_MODEL Macro” on
page 164 and “Teradata Scoring Files” on page 162.

3. Execute the SAS_SCORE_EP stored procedure to run the scoring model.

For more information, see “SAS_SCORE_EP Stored Procedure” on page 156.

Creating a Model Table

Overview
When using the SAS Embedded Process to publish a scoring model in Teradata, you
must create a table to hold the sasscore_modelname.ds2 and
sasscore_modelname_ufmt.xml scoring files. You must run the
%INDTD_CREATE_MODELTABLE macro to create the table before you run the
%INDTD_PUBLISH_MODEL macro.

You have to create the table only one time to hold a model’s scoring files.

The model table contains the following columns. The ModelName column is the table
key. The table is referenced by the two-level name model-name.model-table-name.

Column Name Description Specification

ModelName contains the name of the model VARCHAR(128)
CHARACTER SET
UNICODE
CASESPECIFIC

ModelDS2 contains the sasscore_modelname.ds2 file BLOB(209708800)

ModelFormats contains the sasscore_modelname_ufmt.xml
file

BLOB(209708800)

154 Chapter 12 • SAS Scoring Accelerator for Teradata

Column Name Description Specification

ModelMetadata reserved by SAS for future use BLOB(4M)

ModelOwner** contains the name of the user who published
the model

VARCHAR(128)
CHARACTER SET
UNICODE
CASESPECIFIC

ModelUpdated** contains the date and time that the model was
published

TIMESTAMP(6)

ModelUUID* contains the UUID of the source model VARCHAR (36)

Notes* contains additional information that describes
the source model

VARCHAR (512)

* This column is for use by SAS Model Manager. If you have a model table that was created prior to SAS
9.4 and you want this column in your model table, you must run the %INDTD_CREATE_MODELTABLE
macro to re-create your model table.

** This column exists in model tables that were run in SAS 9.3 and earlier releases. These columns are
compatible with SAS 9.4, but it is not created if you run the %INDTD_CREATE_MODELTABLE macro
in SAS 9.4. The ModelUUID and Notes columns are created instead.

%INDTD_CREATE_MODELTABLE Run Process
To run the %INDTD_CREATE_MODELTABLE macro, complete the following steps:

1. Start SAS and submit the following command in the Program Editor or Enhanced
Editor:

%let indconn = server=myserver user=myuserid password=xxxx database=mydb;

For more information, see the “INDCONN Macro Variable” on page 164.

2. Run the %INDTD_CREATE_MODELTABLE macro.

For more information, see “%INDTD_CREATE_MODELTABLE Macro Syntax” on
page 155.

%INDTD_CREATE_MODELTABLE Macro Syntax
%INDTD_CREATE_MODELTABLE

(<DATABASE=database-name>
<, MODELTABLE=model-table-name>
<, ACTION=CREATE | REPLACE | DROP>
);

Arguments

DATABASE=database-name
specifies the name of a Teradata database where the sasscore_modelname.ds2 and
sasscore_modelname_ufmt.xml scoring files are held.

Default The database specified in the INDCONN macro variable or your
current database

Requirement The maximum database name length is 30 characters, and it must be
a valid Teradata database name.

Using the SAS Embedded Process to Run Scoring Models 155

MODELTABLE=model-table-name
specifies the name of the table that holds the sasscore_modelname.ds2 and
sasscore_modelname_ufmt.xml scoring files.

Default sas_model_table

Requirement The maximum table name length is 30 characters, and it must be a
valid Teradata table name.

Interaction The table name that you specify for this macro must be the same
table name that is used in the %INDTD_PUBLISH_MODEL macro.

See “%INDTD_PUBLISH_MODEL Macro Syntax” on page 165

ACTION = CREATE | REPLACE | DROP
specifies one of the following actions that the macro performs:

CREATE
creates a new table.

Tip If the table has been previously defined and you specify
ACTION=CREATE, an error is issued.

REPLACE
overwrites the current table, if a table with the same name is already registered.

Tip If you specify ACTION = REPLACE, and the current table contains
sasscore_modelname.ds2 and sasscore_modelname_ufmt.xml files, the files
are deleted and an empty table is re-created.

DROP
causes all models in this table to be dropped.

Default CREATE

SAS_SCORE_EP Stored Procedure

Overview of the SAS_SCORE_EP Stored Procedure
The SAS_SCORE_EP stored procedure is the interface for running the scoring model
inside Teradata with the SAS Embedded Process. The SAS_SCORE_EP stored
procedure uses the files that are stored in the model table. The stored procedure
parameters enable you to control the name and location of the output table, how much
data is returned, and how it is returned.

The SAS_SCORE_EP stored procedure is installed in the SAS_SYSFNLIB database. To
run the stored procedure, you must have the following permissions:

• EXECUTE PROCEDURE permission on the SAS_SYSFNLIB database

• EXECUTE FUNCTION permission on the SAS_SYSFNLIB database

• EXECUTE FUNCTION ON SYSLIB.MonitorVirtualConfig permission on the
SYSLIB.MonitorVirtualConfig function

For more information, see “Teradata Permissions” on page 169.

156 Chapter 12 • SAS Scoring Accelerator for Teradata

Running the SAS_SCORE_EP Stored Procedure
You can run the SAS_SCORE_EP stored procedure using explicit pass-through and
PROC SQL or you can use other Teradata query tools.

T I P Look at the SampleSQL.txt file that is produced when the
%INDTD_PUBLISH_MODEL macro is successfully run. This file can be found in
the output directory (OUTDIR argument) that you specify in the
%INDTD_PUBLISH_MODEL macro. The SampleSQL.txt file contains basic SQL
code that can be used to run your score code inside Teradata. Please note that you
must modify the sample code before using it. Otherwise, the sample code returns an
error.

Note: Before running the SAS_SCORE_EP stored procedure, you must create the
model table with the %INDTD_CREATE_MODELTABLE macro. Then, you must
publish the files to the model table with the %INDTD_PUBLISH_MODEL macro.

Here is an example using PROC SQL.

proc sql;
 connect to teradata (user=userid password=xxxx server=myserver mode=Teradata);
 execute
 (CALL SAS_SYSFNLIB.SAS_SCORE_EP
 (
 'MODELTABLE="grotto”.”sas_publish_model”',
 'MODELNAME=Intr_Tree',
 'INQUERY=SELECT * from ”grotto”.”score_input_table” WHERE x1 < 1.0',
 'OUTTABLE=”grotto”.”sas_score_out1”',
 'OUTKEY=id',
 'OPTIONS=’ /* can be blank or NULL if no options are needed */
)
) by teradata;
 disconnect from teradata;
quit;

Note: You must specify MODE=TERADATA in your connection string.

For more information about the stored procedure parameters, see “SAS_SCORE_EP
Stored Procedure Syntax” on page 157.

SAS_SCORE_EP Stored Procedure Syntax
SAS_SYSFNLIB.SAS_SCORE_EP

('MODELTABLE="database"."model-table-name" ',
'MODELNAME=model-name',
'INQUERY=SELECT …'
'OUTTABLE=< "output-database-name". >"output-table-name" ',
'OUTKEY=column<…, column,> | NO PRIMARY INDEX,
NULL | 'OPTIONS=' | 'OPTIONS=option; <…; option;>'
);

Parameters

database
specifies the name of the database that contains the model table.

Default Database in the current session

Requirements The database must be the same as the one specified in the
%INDTD_PUBLISH_MODEL macro’s DATABASE argument.

Using the SAS Embedded Process to Run Scoring Models 157

The maximum database name length is 30 characters, and it must be
a valid Teradata database name.

model-table-name
specifies the name of the model table where the sasscore_modelname.ds2 and
sasscore_modelname_ufmt.xml scoring files were published with the
%INDTD_CREATE_MODELTABLE macro.

model-name
specifies the name of the model.

SELECT …
specifies a SELECT statement that defines the inputs to the SAS Embedded Process.

Range The INQUERY= parameter string can be up to 30,000 characters long.

Restrictions The maximum number of characters in the query is 30,000.

The maximum number of input and output columns is 1024.

Requirements If the query is greater than 1,000 characters, the INQUERY= parameter
must be the first parameter listed in the stored procedure.

The SELECT statement must be syntactically correct SQL.

Interaction A query can reference tables or views, except if you specify the DIRECT
option. If you specify the DIRECT option, the query can reference only
tables.

Tips If you want to query all data from the input data without any filtering or
subsetting ('INQUERY=SELECT * FROMtable'), you can use the table
name in the INQUERY argument. However, you must also add
DIRECT=YES to the OPTIONS argument. Here is an example
...
'inquery="myDatabase"."myTableName"',
'options=direct=yes',
...

To pass single quotation marks around character literals, use two adjacent
single quotation marks. This is an example.
'INQUERY=select * from my_input_tbl where name like ''%Jones%'''

< "output-database-name". >"output-table-name"
specifies the location of the scoring model output table.

output-database-name
specifies the database where the table is created or currently exists.

Default Current database

Requirement The maximum database name length is 30 characters, and it must
be a valid Teradata database name.

output-table-name
specifies the name of the table to be created or the table that currently exists.

Requirement The output table can already exist. If the output table already exists,
scored rows are inserted into the table along with any existing rows.

158 Chapter 12 • SAS Scoring Accelerator for Teradata

If the output table already exists, the output columns must match the
existing table’s columns for the insert to succeed.

Interaction The output table can be a temporary table by adding
VOLATILE=YES in the OPTIONS parameter. The temporary table
can be used only for the duration of the SQL session where it is
created.

column
specifies the column or columns that are used as the primary index for the output
table.

Requirements The column must exist in the output table.

If there are multiple primary index columns, the column names must
be separated by commas.

Tip Specifying the same primary index for both the input and output
tables enables Teradata to avoid redistribution of data across its
AMPs.

NO PRIMARY INDEX
specifies that there is no primary index for the output table and that output rows are
placed on the same Teradata Access Module Processor (AMP) that ran the scoring
code for the corresponding input row.

NULL | 'OPTIONS='
specifies that no options are used.

Tip You can use either 'OPTIONS=' or NULL to indicate that no options are used.

Example These two code lines are identical.
call sas_sysfnlib.sas_score_ep ('modeltable=...', modelname=...',
'inquery=...', 'outtable=scored_output1', 'outkey=no primary index',
null);

call sas_sysfnlib.sas_score_ep ('modeltable=...', modelname=...',
'inquery=...', 'outtable=scored_output1', 'outkey=no primary index',
'options=');

option
specifies additional options for the stored procedure. option can be any of the
following values:

CONTRACT=YES | NO
specifies whether to write the output metadata to the table specified in the
OUTTABLE= parameter.

Default NO

Interaction If you specify CONTRACT=YES, the OUTKEY= parameter is
ignored.

Tip The output is written to the table in the form of one row per output
value with the sequence, name, data type, and length for each
output.

DIRECT=YES | NO
specifies whether direct retrieve optimization is enabled.

Using the SAS Embedded Process to Run Scoring Models 159

Default NO

Interaction This option affects the stored procedure SQL generation.

Tip The direct retrieve optimization improves performance in the case
where the input to the SAS Embedded Process is a table and the
input query is SELECT * FROM table. When DIRECT=YES,
the INQUERY= parameter is only the table name. No SELECT
statement is needed.

DS2_KEEP=column-name<…column-name>
specifies the column or columns that are passed to the SAS_SCORE_EP
procedure and are applied as a dynamic KEEP= statement in the
sasscore_modelname.ds2 file.

Requirement If more than one column is specified, column names must be
separated with spaces.

Interaction Specify CONTRACT=YES to preview the available output
columns without executing the model.

ENCODING= LATIN | UNICODE
specifies the character data encoding for the column data. This is for
internationalization purposes.

Default LATIN

See SAS National Language Support (NLS): Reference Guide

EPTRACE=YES
specifies that journal messages are written to the journal table.

HASHBY=column-name<…, column-name>
specifies one or more columns to use for the HASH BY clause.

Requirement If more than one column is specified, column names must be
separated with commas.

Interaction This option affects the stored procedure SQL generation.

Note Data is redistributed by hash code to the TERADATA AMPs
based on this column or columns although there is no implied
ordering to the groups.

JOURNALTABLE=journal-table-name
specifies the name of a table that the stored procedure creates. This table holds
any journal messages and notes from the SAS journal facility that are produced
when executing the store procedure.

Requirement The name must follow Teradata naming conventions for table
names.

Note Use a SELECT statement to retrieve the journal messages from
the table after the stored procedure call is complete.

LOCALE=sas-locale
specifies set of attributes in the SAS session that reflect the language, local
conventions, and culture for a geographical region.

160 Chapter 12 • SAS Scoring Accelerator for Teradata

Requirement sas-locale must be one of the five-character POSIX values, for
example fr_FR.

See SAS National Language Support (NLS): Reference Guide

ORDERBY=column-name<…, column-name>
specifies one or more columns to use for the LOCAL ORDER BY (BY groups)
clause.

Requirement If more than one column is specified, column names must be
separated with commas.

Interaction This option affects the stored procedure SQL generation.

SELECT_LIST=column-name<…, column-name>
specifies the column or columns that are used in the SQL that is generated by the
SAS_SCORE_EP stored procedure.

Default * (asterisk) which indicates all columns

Requirement If more than one column is specified, column names must be
separated with commas.

SQLTRACE=table-name
specifies the name of a table to hold the generated SQL code.

Tip This table is useful for stored procedure debugging or to reference later if
you want to customize the SQL code that is used to call the SAS Embedded
Process.

UNIQUE=YES | NO
specifies whether the primary index of the output table is unique.

Default NO

VOLATILE=YES | NO
specifies whether the output table is created as a temporary table.

Default NO

Interaction This option affects the stored procedure SQL generation.

Range The OPTIONS= parameter string can be from 0–20,000 characters
long.

Requirements Each option must end with a semicolon, including the last option in
the list.

If the OPTIONS= parameter string is greater than 1,000 characters,
the OPTIONS= parameter must be the last one.

Note option can be blank or NULL if no options are needed.

Tip Options that are not recognized as directives to the stored procedure
are passed to the SAS Embedded Process as Query Band name-
value pairs. If the SAS Embedded Process does not recognize them,
they are ignored. Up to ten user-defined Query Band name-value

Using the SAS Embedded Process to Run Scoring Models 161

pairs can be specified in addition to the options listed here that are
Query Band name-value pairs. The maximum length of the query
band is 2048 characters. User-defined Query Band information is
logged in Teradata Database Query Log (DBQL) that makes it
useful for workload analysis and reporting.

Tips for Using the SAS_SCORE_EP Stored Procedure
• The SAS Embedded Process for Teradata supports only ISO-8859-1 (Latin-1)

encoding for table metadata. Examples of table metadata include table and column
names.

• No specific parameter order is required. However, the INQUERY parameter must be
the first parameter if its string is greater than 1,000 characters. Similarly, if the
OPTIONS parameter string is greater than 1,000 characters, it must be the last
parameter.

• Database object names (for example tables and columns) must be enclosed in double
quotation marks if they are Teradata reserved words. Otherwise, quotation marks are
optional.

• Tables can be qualified with a database name. If a table name is not qualified with a
database name, the table name is resolved based on the default database for your
session.

• All parameters are passed as strings to the SAS_SCORE_EP stored procedure, so
they must be enclosed in single quotation marks. To pass a single quotation mark as
part of the SQL within a parameter, use two adjacent single quotation marks as
shown in the following example:

'INQUERY=select * from my_input_tbl where name like ''%Jones%''',

Teradata Scoring Files
When using the SAS Embedded Process, the %INDTD_PUBLISH_MODEL macro
produces two scoring files for each model:

• sasscore_modelname.ds2. This file contains code that is executed by the
SAS_SCORE_EP stored procedure.

• sasscore_modelname_ufmt.xml. This file contains user-defined formats for the
scoring model that is being published. This file is used by the SAS_SCORE_EP
stored procedure.

These files are published to the model table that you specify in the
%INDTD_PUBLISH_MODEL macro. See Appendix 1, “Scoring File Examples,” on
page 285 for an example of each of these files.

A message that indicates whether the scoring files are successfully or not successfully
created is printed to the SAS log.

Although you cannot view the scoring files directly, there are two ways to see the
models whose files are created:

• Log on to the database using BTEQ and submit an SQL statement. The following
example assumes that the model table where the scoring files were published is
register and the model name is reg1.

bteq .logon myserver/myuserid,mypassword
select modelname, modelowner, modelupdated from register
 where modelname like '%reg1%';

162 Chapter 12 • SAS Scoring Accelerator for Teradata

The model name, user ID, and date and time that the model files were published are
listed.

• From SAS, use SQL procedure code that produces output in the LST file. The
following example assumes that the model name that you used to create the scoring
files is reg.

proc sql noerrorstop;
 connect to teradata (user=username password=xxxx server=myserver);

select * from connection to teradata
 (select modelname,modelowner,modelupdated
 from sasmodeltablename
 where modelname like '%reg%');
disconnect teradata;
quit;

You can also use the SASTRACE and SASTRACELOC system options to generate
tracing information. For more information about these system options, see the SAS
System Options: Reference.

Controlling the SAS Embedded Process
The SAS Embedded Process starts when a query is submitted. It continues to run until it
is manually stopped or the database is shut down.

You can check the status of the SAS Embedded Process or disable it so that no new
queries can be started. Use the following commands to perform those actions.

Action Performed Command

Provides the status of the SAS
Embedded Process.

CALL DBCEXTENSION.SERVERCONTROL ('status', :A); *

CALL DBCEXTENSION.SERVERCONTROL ('SAS', 'status', :A); **

CALL SQLJ.SERVERCONTROL ('SAS', 'status', :A); ***

Stops new queries from being started.
Queries that are currently running
continue to run until they are
complete.

CALL DBCEXTENSION.SERVERCONTROL ('disable', :A); *

CALL DBCEXTENSION.SERVERCONTROL ('SAS', 'disable', :A); **

CALL SQLJ.SERVERCONTROL ('SAS', 'disable', :A); ***

Enables new queries to start running. CALL DBCEXTENSION.SERVERCONTROL ('enable', :A);*

CALL DBCEXTENSION.SERVERCONTROL ('SAS', 'enable', :A);**

CALL SQLJ.SERVERCONTROL ('SAS', 'enable', :A); ***

* For Teradata 13.10 and 14.00 only. Note that the Cmd parameter (for example, 'status', must be lowercase.
** For Teradata 14.10 only. Note that the Languagename parameter, 'SAS', is required and must be uppercase. The Cmd parameter (for

example, 'status'), must be lowercase.
*** For Teradata 15 only. Note that the Languagename parameter, 'SAS', is required and must be uppercase. The Cmd parameter (for

example, 'status'), must be lowercase.

Using the SAS Embedded Process to Run Scoring Models 163

Running the %INDTD_PUBLISH_MODEL Macro

%INDTD_PUBLISH_MODEL Macro Run Process
To run the %INDTD_PUBLISH_MODEL macro, complete the following steps:

1. Create a scoring model using SAS Enterprise Miner.

2. Use the SAS Enterprise Miner Score Code Export node to create a score output
directory. Populate the directory with the score.sas file, the score.xml file, and (if
needed) the format catalog.

3. Test your connection to Teradata with a local utility such as BTEQ.

4. Start SAS and submit the following command in the Program Editor or Enhanced
Editor:

%let indconn = server=myserver user=myuserid password=xxxx database=mydb;

For more information, see the “INDCONN Macro Variable” on page 164.

5. If you use the SAS Embedded Process, run the
%INDTD_CREATE_MODELTABLE macro.

For more information, see “Creating a Model Table” on page 154.

6. Run the %INDTD_PUBLISH_MODEL macro.

Messages are written to the SAS log that indicate whether the scoring functions or
files were successfully created.

For more information, see “%INDTD_PUBLISH_MODEL Macro Syntax” on page
165.

INDCONN Macro Variable
The INDCONN macro variable is used to provide the credentials to connect to Teradata.
You must specify server, user, password, and database to access the machine on which
you have installed the Teradata EDW. You must assign the INDCONN macro variable
before the %INDTD_PUBLISH_MODEL or the %INDTD_CREATE_MODELTABLE
macros are invoked.

Here is the syntax for the value of the INDCONN macro variable:

SERVER=server USER=user PASSWORD=password DATABASE=database;

Arguments

SERVER="server"
specifies the Teradata server name or the IP address of the server host.

USER="user"
specifies the Teradata user name (also called the user ID) that is used to connect to
the database.

PASSWORD="password"
specifies the password that is associated with your Teradata user ID.

164 Chapter 12 • SAS Scoring Accelerator for Teradata

Tip Use only PASSWORD=, PASS=, or PW= for the password argument. PWD= is
not supported and causes an error to occur.

DATABASE="database"
specifies the Teradata database that contains the tables and views that you want to
access.

Default Your current database

Requirement You must specify the DATABASE= argument if you use the SAS
Embedded Process.

T I P The INDCONN macro variable is not passed as an argument to the
%INDTD_PUBLISH_MODEL macro. This information can be concealed in your
SAS job. For example, you can place it in an autoexec file and apply permissions on
that file so that others cannot access the user credentials.

%INDTD_PUBLISH_MODEL Macro Syntax
%INDTD_PUBLISH_MODEL

(DIR=input-directory-path, MODELNAME=name
<, MECHANISM=STATIC | EP>
<, MODELTABLE=model-table-name>
<, DATASTEP=score-program-filename>
<, XML=xml-filename>
<, DATABASE=database-name>
<, FMTCAT=format-catalog-filename>
<, ACTION=CREATE | REPLACE | DROP>
<, MODE=PROTECTED | UNPROTECTED>
<, OUTDIR=diagnostic-output-directory>
);

Arguments

DIR=input-directory-path
specifies the directory where the scoring model program, the properties file, and the
format catalog are located.

This is the directory that is created by the SAS Enterprise Miner Score Code Export
node. This directory contains the score.sas file, the score.xml file, and (if user-
defined formats were used) the format catalog.

Restriction You must use a fully qualified pathname.

Interaction If you do not use the default directory that is created by SAS Enterprise
Miner, you must specify the DATASTEP=, XML=, and (if needed)
FMTCAT= arguments.

See “Special Characters in Directory Names” on page 19

MODELNAME=name
specifies the name that is prepended to each output function to ensure that each
scoring function name is unique on the Teradata database. If you use the SAS
Embedded Process, the model name is part of the scoring filenames.

Restriction The scoring function name is a combination of the model name and
the output variable name. The scoring function name cannot exceed

Running the %INDTD_PUBLISH_MODEL Macro 165

30 characters. For more information, see “Scoring Function Names”
on page 150.

Requirement If you use scoring functions, the model name must be a valid SAS
name that is ten characters or fewer. If you use the SAS Embedded
Process, the model name can be up to 128 characters. For more
information about valid SAS names, see the topic on rules for words
and names in SAS Language Reference: Concepts.

Interaction Only the EM_ output variables are published as Teradata scoring
functions. For more information about the EM_ output variables, see
“Fixed Variable Names” on page 27 and “Scoring Function Names”
on page 150.

MECHANISM=STATIC | EP
specifies whether scoring functions or scoring files are created. MECHANISM= can
have one of the following values:

STATIC
specifies that scoring functions are created.

These scoring functions are used in an SQL query to run the scoring model.

See “Using Scoring Functions to Run Scoring Models” on page 150

EP
specifies that scoring files are created.

These scoring files are used by the SAS Embedded Process to run the scoring
model. A single entry in the model table is inserted for each new model. The
entry contains both the score.sas and score.xml in separate columns. The scoring
process includes reading these entries from the table and transferring them to
each instance of the SAS Embedded Process for execution.

Requirement If you specify MECHANISM=EP, you must also specify the
MODELTABLE= argument.

Note The SAS Embedded Process might require a later release of
Teradata than function-based scoring. For more information, see
the SAS Foundation system requirements documentation for your
operating environment.

See “Using the SAS Embedded Process to Run Scoring Models” on
page 153

Default STATIC

MODELTABLE=model-table-name
specifies the name of the model table where the scoring files are published.

Default sas_model_table

Restriction This argument is available only when using the SAS Embedded
Process.

Requirement The name of the model table must be the same as the name specified
in the %INDTD_CREATE_MODELTABLE macro. For more

166 Chapter 12 • SAS Scoring Accelerator for Teradata

information, see the MODELTABLE argument in
“%INDTD_CREATE_MODELTABLE Macro Syntax” on page 155.

DATASTEP=score-program-filename
specifies the name of the scoring model program file that was created by using the
SAS Enterprise Miner Score Code Export node.

Default score.sas

Restriction Only DATA step programs that are produced by the SAS Enterprise
Miner Score Code Export node can be used.

Interaction If you use the default score.sas file that is created by the SAS
Enterprise Miner Score Code Export node, you do not need to specify
the DATASTEP= argument.

XML=xml-filename
specifies the name of the properties XML file that was created by the SAS Enterprise
Miner Score Code Export node.

Default score.xml

Restrictions Only XML files that are produced by the SAS Enterprise Miner Score
Code Export node can be used.

If you use scoring functions to run scoring models, the maximum
number of output variables is 128. If you use the SAS Embedded
Process and Teradata version 13.1 or 14.0, the maximum is 1024. If
you use the SAS Embedded Process and Teradata version 14.10, the
maximum is 2048.

Interaction If you use the default score.xml file that is created by the SAS
Enterprise Miner Score Code Export node, you do not need to specify
the XML= argument.

DATABASE=database-name
specifies the name of a Teradata database to which the scoring functions and formats
or the scoring files are published.

Default The database specified in the INDCONN macro variable or your
current database

Requirements If you use the SAS Embedded Process, the name of the database
must be the same as the database specified in the
%INDTD_CREATE_MODELTABLE macro. For more information,
see the DATABASE argument in
“%INDTD_CREATE_MODELTABLE Macro Syntax” on page 155.

The maximum database name length is 30 characters, and it must be
a valid Teradata database name.

Interaction The database that is specified by the DATABASE argument takes
precedence over the database that you specify in the INDCONN
macro variable. For more information, see
“%INDTD_PUBLISH_MODEL Macro Run Process” on page 164.

Running the %INDTD_PUBLISH_MODEL Macro 167

Tip You can publish the scoring functions and formats or the scoring
files to a shared database where other users can access them.

FMTCAT=format-catalog-filename
specifies the name of the format catalog file that contains all user-defined formats
that were created by the FORMAT procedure and that are referenced in the DATA
step scoring model program.

Restriction Only format catalog files that are produced by the SAS Enterprise
Miner Score Code Export node can be used.

Interactions If you use the default format catalog that is created by the SAS
Enterprise Miner Score Code Export node, you do not need to specify
the FMTCAT= argument.

If you do not use the default catalog name (FORMATS) or the default
library (WORK or LIBRARY) when you create user-defined formats,
you must use the FMTSEARCH system option to specify the location
of the format catalog. For more information, see PROC FORMAT in
the Base SAS Procedures Guide.

ACTION=CREATE | REPLACE | DROP
specifies one of the following actions that the macro performs:

CREATE
creates new functions or files.

REPLACE
overwrites the current functions or files, if functions or files with the same name
are already registered.

DROP
causes all functions or files for this model to be dropped from the Teradata
database.

Default CREATE

Tip If the function or file has been previously defined and you specify
ACTION=CREATE, you receive warning messages from Teradata. If the
function or file has been previously defined and you specify
ACTION=REPLACE, no warnings are issued.

MODE=PROTECTED | UNPROTECTED
specifies whether the running code is isolated in a separate process in the Teradata
database so that a program fault does not cause the database to stop.

Default PROTECTED

Restriction This argument is valid only when . It has no effect if you specify
MECHANISM=EP.

Tip After a function is validated in PROTECTED mode, it can be
republished in UNPROTECTED mode. This can result in a significant
performance gain.

OUTDIR=diagnostic-output-directory
specifies a directory that contains diagnostic files.

168 Chapter 12 • SAS Scoring Accelerator for Teradata

Produced files include an event log that contains detailed information about the
success or failure of the publishing process and sample SQL code (SampleSQL.txt).
For more information about the SampleSQL.txt file, see “Scoring Function Names”
on page 150.

Tip This argument is useful when testing your scoring models.

See “Special Characters in Directory Names” on page 19

Modes of Operation
The %INDTD_PUBLISH_MODEL macro has two modes of operation: protected and
unprotected. You specify the mode by setting the MODE= argument.

The default mode of operation is protected. Protected mode means that the macro code is
isolated in a separate process in the Teradata database, and any error does not cause the
database to stop. It is recommended that you run the %INDTD_PUBLISH_MODEL
macro in protected mode during acceptance tests. The SAS Embedded Process always
operates in its own process, which is equivalent to fenced mode functions. An optimized
data transport mechanism allows the SAS Embedded Process to provide fenced mode
protection with speed that is as good as or better than unfenced functions.

When the %INDTD_PUBLISH_MODEL macro is ready for production, you can run the
macro in unprotected mode. Note that you could see a performance advantage when you
run in unprotected mode.

Teradata Permissions
Because functions are associated with a database, the functions inherit the access rights
of that database. It could be useful to create a separate shared database for scoring
functions so that access rights can be customized as needed.

If you use scoring functions to run your scoring model, you must have the following
permissions on the database where the functions are published:

CREATE FUNCTION
DROP FUNCTION
EXECUTE FUNCTION
ALTER FUNCTION

If you use the SAS Embedded Process to run your scoring model, you must have these
permissions:

SELECT, CREATE TABLE, INSERT ON database TO userid
EXECUTE FUNCTION ON SAS_SYSFNLIB
EXECUTE FUNCTION ON SYSLIB.MonitorVirtualConfig
EXECUTE PROCEDURE ON SAS_SYSFNLIB

The SAS_SCORE_EP procedure runs with access rights of the calling user.

To obtain database permissions, contact your database administrator.

For more information about specific permissions, see “Teradata Permissions” in Chapter
10 of SAS In-Database Products: Administrator's Guide.

Teradata Permissions 169

170 Chapter 12 • SAS Scoring Accelerator for Teradata

Chapter 13

SAS Scoring Accelerator and SAS
Model Manager

Using the SAS Scoring Accelerator with SAS Model Manager 171

Using the SAS Scoring Accelerator with SAS
Model Manager

You can use SAS Scoring Accelerator in conjunction with SAS Model Manager to
manage and deploy scoring models in DB2, Greenplum, Hadoop, Oracle, Netezza, SAP
HANA, and Teradata.

SAS Model Manager enables you to publish to a configured database the project
champion model and challenger models that are associated with the DATA Step score
code type. SAS Model Manager uses the SAS Scoring Accelerator and SAS/ACCESS
interface to the database to publish models to the database. The Scoring Accelerator
takes the models from SAS Model Manager and translates them into scoring files or
functions that can be deployed inside the database. After the scoring functions are
published using the SAS/ACCESS interface to the database, the functions extend the
database’s SQL language and can be used in SQL statements such as other database
functions. After the scoring files are published, they are used by the SAS Embedded
Process to run the scoring model.

You can also use SAS Model Manager to import SAS/STAT linear models and SAS
High-Performance Analytics models from a SAS package file (.SPK), and import
PMML models from a PMML model file. Models that have a DATA step score code
type can be scored, published, and included in performance monitoring.

For more information, see the SAS Model Manager: User's Guide.

171

172 Chapter 13 • SAS Scoring Accelerator and SAS Model Manager

Part 3

SAS In-Database Code
Accelerator

Chapter 14
Using the SAS In-Database Code Accelerator 175

173

174

Chapter 14

Using the SAS In-Database Code
Accelerator

Overview of the SAS In-Database Code Accelerator . 175

SAS In-Database Code Accelerator for Greenplum . 176

SAS In-Database Code Accelerator for Hadoop . 176
Overview . 176
Supported File Types . 176
Automatic File Compression with SAS Hadoop . 177
Using HCatalog within the SAS Environment . 177
Additional Prerequisites When Accessing Files That Are

Processed Using HCatalog . 178
BY-Group Processing with Hadoop . 179
Using the DBCREATE_TABLE_OPTS Table Option . 179

SAS In-Database Code Accelerator for Teradata . 179

Using the DS2ACCEL Option to Control In-Database Processing 179

Considerations and Limitations . 180

BY-Group Processing When Running Thread Programs inside the Database . . . 181

SAS In-Database Code Accelerator Examples . 182
Example 1: Running a Thread inside the Database . 182
Example 2: Using User-Defined Formats . 183
Example 3: Using User-Defined Formats and Packages . 184
Example 4: BY-Group Processing . 186

Overview of the SAS In-Database Code
Accelerator

The SAS In-Database Code Accelerator enables you to publish a DS2 thread program to
the database and execute that thread program in parallel inside the database. Examples of
thread programs include large transpositions, computationally complex programs,
scoring models, and BY-group processing.

The SAS In-Database Code Accelerator for Hadoop and the SAS In-Database Code
Accelerator for Teradata also enable you to publish and execute the DS2 data program
inside the database.

To use the SAS In-Database Code Accelerator, the following requirements must be met.
Otherwise, the thread program will be run in multiple threads on the client machine.

175

• The following products must be licensed at your site:

• Base SAS

• SAS In-Database Code Accelerator

• SAS/ACCESS Interface to your database (Greenplum, Hadoop, or Teradata)

• The SAS Embedded Process must be installed and configured on your database.

For information about installing and configuring the SAS Embedded Process, see
SAS In-Database Products: Administrator's Guide.

• Your DS2 code includes a thread program and a data program.

• The table used as input to the thread program must reside in the database.

• Either the PROC DS2 DS2ACCEL option must be set to YES or the DS2ACCEL
system option must be set to ANY.

With in-database processing, data is distributed on different data partitions. Each DS2
thread that is running inside the database has access to its own data partition. When
doing BY-group processing, each DS2 thread with a BY statement can group and order
only the rows in the same data partition. The data partition might have only part of the
entire group of data. You would need to do a final aggregation in the main data program.
However, if you use the PROC DS2 statement’s BYPARTITION=YES option, the entire
group of data resides on the same data partition. For more information, see “BY-Group
Processing When Running Thread Programs inside the Database” on page 181.

SAS In-Database Code Accelerator for Greenplum
When you use the SAS In-Database Code Accelerator for Greenplum, the thread
program and its associated files (format files, packages, and so on) are published to the
database. The thread program is executed inside the database, and its result is brought to
the data program running on client machine for final processing or aggregation if
needed.

SAS In-Database Code Accelerator for Hadoop

Overview
When you use the SAS In-Database Code Accelerator for Hadoop, the data and thread
programs run in the MapReduce framework, either MapReduce 1 or YARN/MapReduce
2.

Note: The SAS In-Database Code Accelerator for Hadoop supports only Cloudera 5.2
and Hortonworks 2.1 or later.

Supported File Types

The SAS In-Database Code Accelerator for Hadoop supports these file types:

• Hive: Avro*

• Hive: delimited

176 Chapter 14 • Using the SAS In-Database Code Accelerator

• Hive: ORC*

• Hive: Parquet*

• Hive: RCFile*

• Hive: sequence

• HDMD: binary

• HDMD: delimited

• HDMD: sequence

• HDMD: XML

*In the February 2015 release, the SAS In-Database Code Accelerator for Hadoop
supports these file types.

T I P Partitioned Avro or Parquet data is not supported as input to the SAS In-
Database Code Accelerator for Hadoop.

T I P The availability of these file types depends on the version of Hive that you use.

The following file types are not supported:

• SPD file format

• SASHDAT

Automatic File Compression with SAS Hadoop

By default, the SAS In-Database Code Accelerator for Hadoop automatically
compresses certain output files.

The following default file compressions apply to Hive files unless the user has explicitly
configured another compression algorithm:

• Delimited files are not automatically compressed.

• ORC files compress themselves using ZLIB.

• Avro, Parquet, and Sequence files are automatically compressed using Snappy.

HDMD files are never automatically compressed.

Using HCatalog within the SAS Environment

HCatalog is a table management layer that presents a relational view of data in the
HDFS to applications within the Hadoop ecosystem. With HCatalog, data structures that
are registered in the Hive metastore, including SAS data, can be accessed through
standard MapReduce code and Pig. HCatalog is part of Apache Hive.

In the February 2015 release, the SAS In-Database Code Accelerator for Hadoop uses
HCatalog to process complex, non-delimited files.

SAS In-Database Code Accelerator for Hadoop 177

Table 14.1 Summary of HCatalog File I/O

File Type Input Output

delimited HDFS direct-read

HCat if partitioned, skewed, or
escaped

HDFS direct-read

HCat if partitioned, skewed, or
escaped

RCFile HCat HCat

ORC HCat HCat

Parquet HCat* CREATE TABLE AS SELECT**

sequence HDMD

HCat if partitioned or skewed

HCat

Avro HCat* CREATE TABLE AS SELECT***

* Partitioned input is not supported.
** Unable to write output directly to Parquet files due to these issues: https://issues.apache.org/jira/browse/

HIVE-8838.
*** Unable to write output directly to Avro files due to these issues: https://issues.apache.org/jira/browse/

HIVE-8687.

Consider these requirements when using HCatalog:

• Data that you want to access with HCatalog must first be registered in the Hive
metastore.

• The recommended Hive version for the SAS In-Database Code Accelerator for
Hadoop is 0.13.0.

• Avro is not a native file type. Additional JAR files are required and must be defined
in the SAS_HADOOP_JAR_PATH environment variable.

• Support for HCatalog varies by vendor. For more information, see the documentation
for your Hadoop vendor.

Additional Prerequisites When Accessing Files That Are Processed
Using HCatalog

If you plan to access complex, non-delimited file types such as Avro or Parquet, there
are additional prerequisites:

• To access Avro file types, the avro-1.7.4.jar file must be added to the
SAS_HADOOP_JAR_PATH environment variable. To access Parquet file types, the
parquet-hadoop-bundle.jar file must be added to the SAS_HADOOP_JAR_PATH
environment variable.

• If you have performed a default CLASSPATH installation, the HCatalog JAR files
that are required to access the Hive metastore within a MapReduce job are
automatically included in the Hadoop CLASSPATH. Otherwise, you must manually
include the HCatalog JAR files in either the MapReduce library or the Hadoop
CLASSPATH.

178 Chapter 14 • Using the SAS In-Database Code Accelerator

https://issues.apache.org/jira/browse/HIVE-8838
https://issues.apache.org/jira/browse/HIVE-8838
https://issues.apache.org/jira/browse/HIVE-8687
https://issues.apache.org/jira/browse/HIVE-8687

BY-Group Processing with Hadoop

When there is no BY statement in the thread program, the number of reducers is set to 0,
and the program is run as a map-only task. When there is a BY statement in the thread
program and the PROC DS2 statement uses the BYPARTITION=YES option, a
MapReduce task runs, where the map task partitions the data, and the reducer task runs
the DS2 thread program.

Note: The SAS In-Database Code Accelerator for Hadoop might not produce sorted BY
groups when re-partitioning is involved.

For more information, see “BY-Group Processing When Running Thread Programs
inside the Database” on page 181.

Using the DBCREATE_TABLE_OPTS Table Option
The DBCREATE_TABLE_OPTS table option is used to provide a free form string in the
DATA statement. For the SAS In-Database Code Accelerator for Hadoop, you can use
the DBCREATE_TABLE_OPTS table option to specify the output SerDe, the output
delimiter of the Hive table, the output escaped by, and any other CREATE TABLE
syntax allowed by Hive.

For more information, see “DBCREATE_TABLE_OPTS= Table Option” in SAS DS2
Language Reference.

SAS In-Database Code Accelerator for Teradata
When you use the SAS In-Database Code Accelerator for Teradata, the data program,
the thread program, and their associated files (format files, packages, and so on) are
published to the database. Both the data program and the thread program are executed
inside the database.

Using the DS2ACCEL Option to Control In-
Database Processing

The DS2ACCEL system option controls whether DS2 code is executed inside the
database.

In the first maintenance release for SAS 9.4, the default behavior is to run the data and
thread programs on the client machine (DS2ACCEL=NONE). You must set either the
DS2ACCEL= system option to ANY or the DS2ACCEL= option in the PROC DS2
statement to YES for in-database processing to occur. The DS2ACCEL= option in the
PROC DS2 statement overrides the DS2ACCEL system option.

Note: This is a change in behavior from the previous release in which the default value
for the PROC DS2 INDB option (now named DS2ACCEL) caused the SAS In-
Database Code Accelerator to automatically trigger in-database processing.

For more information, see “DS2ACCEL= System Option” on page 275 and “PROC
DS2 Statement” in Chapter 19 of Base SAS Procedures Guide.

Using the DS2ACCEL Option to Control In-Database Processing 179

Considerations and Limitations
• The SAS In-Database Code Accelerator is available only for Greenplum, Hadoop,

and Teradata.

• When you use the SAS In-Database Code Accelerator for Greenplum, only the
thread program runs inside the database.

• When you use the SAS In-Database Code Accelerator for Hadoop and Teradata, both
the data and thread program run inside the database if the output table from the data
program resides in Hadoop or Teradata. You can use a different LIBNAME
statement for the input and output table if the input and output librefs meet the
following conditions:

• The librefs are on the same Hadoop cluster or in the same Teradata database.

• For Hadoop, both files must be accessible by Hive, or both files must be
accessible in HDFS by means of an HDMD file.

• When the connection strings are compared, they must be identical in value and
case except for these values:

• CATALOG (Teradata)

• SCHEMA

• HDFS_METADIR (Hadoop)

• HDFS_TEMPDIR (Hadoop)

• HDFS_PERMDIR (Hadoop)

If the output table from the data program does not reside in Hadoop or Teradata, only
the thread program is run inside the database.

• If the thread program is run inside the database, the number of threads is set by the
SAS In-Database Code Accelerator. When this occurs, the THREADS= argument in
the SET FROM statement in the data program has no effect.

• When a matrix is declared in a thread program, each thread program has its own,
individual instance of a matrix. The DS2 matrix package does not support data
partitioning between nodes or threads to perform parallel matrix operations. Instead,
each thread performs the matrix operations on its own instance of the matrix.

• The DS2 program fails if you try to use an empty format that you defined with
PROC FORMAT.

• Only one SET statement is allowed when using the SAS In-Database Code
Accelerator. If more than one SET statement is used in the thread program, the
thread program is not run inside the database. Instead, the thread program runs on the
client.

• Thread and data programs that use packages are supported. However, using a HASH,
HTTP, or SQLSTMT package causes the thread program to run on the client and not
inside the database.

• In-database processing does not occur when the following methods are used to load
data. Instead, the data and thread programs are run on the client.

• Using a SET statement with embedded SQL code

• Using an SQLSTMT package

180 Chapter 14 • Using the SAS In-Database Code Accelerator

• Using an initialized hash package

• Using an HTTP package

• Only one input table is allowed in the SET statement. If more than one input table is
used in the SET statement, the thread program is not run inside the database. Instead,
the thread program runs on the client.

• Using an unrecognized catalog in the SET statement causes the thread program to
run on the client.

• If you use a HAVING clause to format output column data, the format is not applied
to the output column data when the data is written back to a file. The format is
specified in the output column metadata. The SAS/ACCESS Engine for Hadoop is
currently unable to understand column format. Therefore, PROC PRINT or PROC
CONTENTS do not print or display the contents with the format specified in the
column's metadata.

• A Hive STRING data type is always converted to a VARCHAR data type using the
following rules:

• STRING -> VARCHAR(65355)

• STRING + SASFMT:CHAR(n) -> VARCHAR(n)

• STRING + SASFMT:VARCHAR(n) -> VARCHAR(n)

• STRING + DBMAX_TEXT -> VARCHAR(DBMAX_TEXT)

• When using SAS Code Accelerator for Hadoop, the Hive user needs Read and Write
access to the TempDir and the Destination Warehouse directories. In addition, the
MapReduce user needs Read and Write permission.

BY-Group Processing When Running Thread
Programs inside the Database

DS2 BY-group processing groups the rows from input tables and orders the rows by
values of one or more columns in the BY statement.

With in-database processing, data is distributed on different data partitions. Each DS2
thread running inside the database has access to one data partition. Each DS2 thread can
group and order only the rows in the same data partition. Consequently, the data partition
might have only part of the entire group of data. You must do a final aggregation in the
main data program.

But, in some instances, it is necessary for each thread to process the entire group of data.
The SAS In-Database Code Accelerator provides a way to redistribute the input table to
the thread program with a BY statement so that the entire group of data resides on the
same data partition.

The PROC DS2 statement BYPARTITION argument controls whether the input data is
re-partitioned. By default, the input data for the DS2 program is automatically re-
partitioned by the first BY variable. All of the BY groups are in the same data partition
and processed by the same thread. Each thread does the BY processing for the entire
group of data. You might not need to do the final aggregation in the main data program.

For more information, see “BY-Group Processing with the SET Statement” in Chapter
19 of SAS DS2 Language Reference, and the DS2 procedure in Base SAS Procedures
Guide.

BY-Group Processing When Running Thread Programs inside the Database 181

SAS In-Database Code Accelerator Examples

Example 1: Running a Thread inside the Database
The following is an example of a DS2 program whose data and thread programs are
published and executed in database through the SAS In-Database Code Accelerator. The
results from the thread program are processed by the data program inside the database.

options ds2accel=any;

libname teralib teradata server=terapin database=xxxxxx
 user=xxxxxx password=xxxxxx;

data teralib.indata;
 do i = 1 to 10;
 output;
 end;
run;

proc ds2;

thread th_pgm / overwrite=yes;
 retain isum 0;
 keep isum;
 dcl double x isum;

 method run();
 set teralib.indata;
 x=i+1;
 isum=isum+i;
 end;

 method term();
 output;
 end;

endthread;
run;

data out(overwrite=yes);
 retain fsum 0;
 retain nrows 0;
 keep fsum nrows;

 dcl thread th_pgm m;
 method run();
 /* The THREADS= argument in the SET FROM statement has no effect */
 /* if the SAS In-Database Code Accelerator is used to access a */
 /* database table. */
 set from m threads=1;
 fsum =fsum + isum;
 nrows = nrows + 1;

182 Chapter 14 • Using the SAS In-Database Code Accelerator

 end;

 method term();
 output;
 end;
enddata;
run;
quit;

Example 2: Using User-Defined Formats
The following example uses formats that are defined in PROC FORMAT. Those formats
that are referred to in the thread program are used to create an XML file. In addition to
the data and programs, the format XML file is published to the database. The format
XML file is used when running DS2 inside the database.

options ds2accel=any;

libname teralib teradata server=terapin database=xxxxxx
 user=xxxxxx password=xxxxxx;

%let libname=teralib;

data &libname..indata_fmt;
 do i = 1 to 10;
 output;
end;
run;

proc format;
 value yesno 1='YES' 0='NO';
run;

proc format;
 value $x '1'='YES' '0'='NO';
run;

proc ds2;
drop thread th_pgm; run;

thread th_pgm;
 dcl double x;
 dcl char z w;
 method run();
 set &libname..indata_fmt;
 x=i+1;
 z=put(1, yesno.);
 w=put('0', $x.);
 end;
endthread;
run;

data out (overwrite=yes);
 dcl thread th_pgm m;
 method run();

SAS In-Database Code Accelerator Examples 183

 dcl double y;
 /* The THREADS= argument in the SET FROM statement has no effect */
 /* if the SAS In-Database Code Accelerator is used to access a */
 /* database table. It could have been omitted from the SET FROM*/
 /* statement. */
 set from m threads=10;
 y=x+1;
 end;
enddata;
run;
quit;

The following output table is produced.

Output 14.1 Result Table for Example 2

Example 3: Using User-Defined Formats and Packages
The following example uses user-defined formats and user-defined DS2 packages. In
addition to the data and thread programs, the user-defined formats and the user-defined
DS2 packages are published to the database.

options ds2accel=any;

libname db teradata user=XXXX password=XXXX
 server=terapin database=XXXX;

proc ds2;
data db.ipassdata / overwrite=yes;
 declare double score;
 method init();

184 Chapter 14 • Using the SAS In-Database Code Accelerator

 declare int i;
 do i = 1 to 20;
 score = i * 5;
 output;
 end;
 end;
enddata;
run;
quit;

proc format;
 value lettergrade
 90-high = 'A'
 80-89 = 'B'
 70-79 = 'C'
 60-69 = 'D'
 low-59 = 'F';
run;

proc format;
 value passfail
 70-high = 'PASS'
 low-69 = 'FAIL';
run;

proc ds2;
package pkgGrade;
 method compute(double s) returns char(1);
 declare char(1) g;
 g = put(s, lettergrade.);
 return g;
 end;
endpackage;

package pkgPassFail;
 method compute(double s) returns char(4);
 declare char(4) g;
 g = put(s, passfail.);
 return g;
 end;
endpackage;

thread th_pgm;
 declare char(1) grade;
 declare char(4) pass;
 declare package pkgGrade g();
 declare package pkgPassFail pf();

 method run();
 set db.ipassdata;
 grade = g.compute(score);
 pass = pf.compute(score);
 end;
endthread;

data outdata;

SAS In-Database Code Accelerator Examples 185

 dcl thread th_pgm m;
 method run();
 /* The THREADS= argument in the SET FROM statement has no effect */
 /* if the SAS In-Database Code Accelerator is used to access a */
 /* database table. */
 set from m threads=1;
 end;
enddata;
run;
quit;

proc print data=outdata; quit;

The following output table is produced.

Output 14.2 Result Table for Example 3 (Partial Output)

Example 4: BY-Group Processing
The following example transposes customer data that has multiple records for each
customer into one wide record for each customer. The SAS In-Database Code

186 Chapter 14 • Using the SAS In-Database Code Accelerator

Accelerator for Teradata redistributes the input data pivot_1m by the first BY variable
Cust_Name6. All the rows with the same Cust_Name will be on the same data
partition and transposed by one thread.

options ds2accel=any;

%let nobs=1000000;
libname td teradata server=terapin user=xxxxxx password=xxxxxx database=xxxxxx;

proc delete data=td.pivot_1m; run;
data td.pivot_1m (tpt=no fastload=yes dbcommit=100000);
 drop i;
 length Cust_Name $20;
 do i = 1 to &noobs;
 month_id = floor(rand('Uniform')*12)+1;
 month_visits = floor(rand('Uniform')*1000)+1;
 month_amount = (floor(rand('Uniform')*1000000)+1)/100;
 Cust_Name = "Name"||strip(mod(i,1000));
 output;
 end;
run;

%let inputdata=td.pivot_1m;

proc ds2;
 thread work.p_thread / overwrite=yes;
 dcl double i;
 vararray double amount[12];
 vararray double num_visits[12];
 keep Cust_Name amount1-amount12 num_visits1-num_visits12;
 retain amount1-amount12 num_visits1-num_visits12;
 method clear_array();
 do i=1 to 12 ;
 amount[i] = 0;
 num_visits[i] = 0;
 end;
 end;
 method run();
 set &inputdata;
 by Cust_Name;
 if first.Cust_Name then
 clear_array();
 amount[month_id] = month_amount + amount[month_id];
 num_visits[month_id] = month_visits + num_visits[month_id];
 if last.Cust_Name then
 output;
 end;
endthread;
run;

data td.pivot_results (overwrite=yes);
 dcl thread p_thread p;
 method run();
 set from p;
 output;
 end;

SAS In-Database Code Accelerator Examples 187

enddata;
run;
quit;

The following output table is produced (partial output).

Output 14.3 Result Table for Example 4 (Partial Output)

188 Chapter 14 • Using the SAS In-Database Code Accelerator

Part 4

In-Database DATA Step
Processing

Chapter 15
DATA Step Processing in Hadoop . 191

189

190

Chapter 15

DATA Step Processing in Hadoop

DATA Step Processing in Hadoop . 191

Requirements for DATA Step Processing . 192

Restrictions in DATA Step Processing . 192

Example: DATA Step Program for Hadoop . 193

DATA Step Processing in Hadoop
In order to accelerate DATA step processing of data based in Hadoop, the DATA step has
been enhanced to determine when the user code is appropriate for exporting to the
Hadoop MapReduce facility. If you have installed and activated the SAS Embedded
Process on a Hadoop cluster, it is possible for DATA step code to be executed in parallel
against the input data residing on the HDFS file system.

Because of the single-source, shared-nothing nature of MapReduce processing and the
immutable nature of HDFS files, only a subset of the full DATA step syntax can be
passed through for parallel execution. The DATA step can be run inside Hadoop for
scoring with the following limitations:

• Only one input file and one output file are allowed.

• The input file and output file are in Hadoop.

• Only functions and formats that are supported by the DS2 language compile
successfully.

• Some DATA step statements are not allowed, such as those pertaining to input and
output.

For more information, see “Requirements for DATA Step Processing” on page 192 and
“Restrictions in DATA Step Processing” on page 192.

To enable the DATA step to be run inside Hadoop, set the DSACCEL= system option to
ANY.

If a SAS program does not meet the requirements for running in Hadoop, the code
executes in your Base SAS session. In this case, SAS reads and writes large tables over
the network.

You can determine whether your code is non-compliant for Hadoop by setting the system
option MSGLEVEL=I. When MSGLEVEL=I, SAS writes log messages that identify the
non-compliant code.

191

Requirements for DATA Step Processing
In order to run a DATA step program in Hadoop, the following is required:

• The DSACCEL= system option is set to ANY.

For more information about the DSACCEL= system option, see SAS System
Options: Reference.

• The code must contain a LIBNAME statement using the SAS/ACCESS HADOOP
engine.

For more information about the Hadoop LIBNAME statement, see SAS/ACCESS for
Relational Databases: Reference.

• The input and output files must use the same libref for the HADOOP engine.

• The DATA statement must be followed immediately by the SET statement.

This example demonstrates these requirements:

options dsaccel=any;

libname hdone hadoop;
data hdone.out;
set hdone.in;
/* DATA step code */
run;

• The SAS Embedded Process must be running on the cluster where the input and
output files exist.

For more information, see “Determining the Status of the SAS Embedded Process”
in Chapter 5 of SAS In-Database Products: Administrator's Guide and “Starting the
SAS Embedded Process” in Chapter 5 of SAS In-Database Products: Administrator's
Guide.

Restrictions in DATA Step Processing
Here are the restrictions for using the DATA step in Hadoop:

• More than one SET statement is not supported.

• These statements are not supported:

• BY (or FIRST. and LAST. variables)

• CONTINUE

• DISPLAY

• FILE

• INIFILE

• INPUT

• LEAVE

192 Chapter 15 • DATA Step Processing in Hadoop

• MERGE

• MODIFY

• OUTPUT

• PUT

• REMOVE

• RENAME

• REPLACE

• RETAIN

• UPDATE

• WHERE

• WINDOW

• The ABORT statement has these restrictions:

• The ABORT statement does not accept arguments.

• The ABORT statement is not supported within functions. It is valid only in the
main program.

•

• The sub-setting IF statement is not supported.

• The INPUT function does not support the question mark (?) and double question
mark (??) modifiers.

• No SET statements options are allowed.

• You can use only SAS formats and functions that are supported by the DS2 language.
For more information, see SAS DS2 Language Reference.

• Some CALL routines are not supported. Routines are supported if there is an
equivalent function.

• Component objects are not supported.

• Scoring input variables cannot be modified.

• Large models can consume large amounts of memory on the client side. It is
recommended that you set the MEMSIZE= system option to MAX.

Example: DATA Step Program for Hadoop
This example demonstrates executing a DATA step program in Hadoop.

/* Enable DATA step parallel processing using the system option */
/* and enable messages to view non-compliant code in the SAS log */
options dsaccel=any msglevel=i;

/* Create a libref for Hadoop files */
libname griddlm hadoop user=myuser pw=hd12345
 HDFS_TEMPDIR="/user/temp"
 HDFS_DATADIR="/userdata"
 HDFS_METADIR="/user/meta"

Example: DATA Step Program for Hadoop 193

 config="C:\sasuser\scoring\hd1\conf\testconfig.xml"
 HPA_TEMPDIR_KEEP=YES;

/* Create a libref for the input data that is stored on disk. */
libname y '/myScoreData/';

/* Load the input table*/
data griddlm.intr;
 set y.intrid;
run;

/* Execute the score code using the Hadoop files. */
/* Both files must use the same libref. */
data griddlm.introut3;
 set griddlm.intr;
 /* Execute the score code. */
 if sum > 1000
 then score=1;
run;

194 Chapter 15 • DATA Step Processing in Hadoop

Part 5

Format Publishing and the
SAS_PUT() Function

Chapter 16
Deploying and Using SAS Formats inside the Database 197

Chapter 17
Deploying and Using SAS Formats in Aster . 205

Chapter 18
Deploying and Using SAS Formats in DB2 under UNIX 219

Chapter 19
Deploying and Using SAS Formats in Greenplum 231

Chapter 20
Deploying and Using SAS Formats in Netezza 241

Chapter 21
Deploying and Using SAS Formats in Teradata 251

195

196

Chapter 16

Deploying and Using SAS
Formats inside the Database

Using SAS Formats and the SAS_PUT() Function . 197

How It Works . 198

Format Publishing with User-Defined Functions and the SAS
Embedded Process . 200

Special Characters in Directory Names . 200

Considerations and Limitations with User-Defined Formats 202

Tips for Using the Format Publishing Macros . 202

Tips for Using the SAS_PUT() Function . 203

Determining Format Publish Dates . 203

Using SAS Formats and the SAS_PUT() Function
SAS formats are basically mapping functions that change an element of data from one
format to another. For example, some SAS formats change numeric values to various
currency formats or date-and-time formats.

SAS supplies many formats. You can also use the SAS FORMAT procedure to define
custom formats that replace raw data values with formatted character values. For
example, this PROC FORMAT code creates a custom format called $REGION that maps
ZIP codes to geographic regions.

proc format;
 value $region
 '02129', '03755', '10005' = 'Northeast'
 '27513', '27511', '27705' = 'Southeast'
 '92173', '97214', '94105' = 'Pacific';
run;

SAS programs, including in-database procedures, frequently use both user-defined
formats and formats that SAS supplies. Although they are referenced in numerous ways,
using the PUT function in the SQL procedure is of particular interest for SAS In-
Database processing.

The PUT function takes a format reference and a data item as input and returns a
formatted value. This SQL procedure query uses the PUT function to summarize sales
by region from a table of all customers:

select put(zipcode,$region.) as region,

197

 sum(sales) as sum_sales from sales.customers
 group by region;

The SAS SQL processor knows how to process the PUT function. Currently,
SAS/ACCESS Interface to the database returns all rows of unformatted data in the
SALES.CUSTOMERS table in the database to the SAS System for processing.

The SAS In-Database technology deploys, or publishes, the PUT function
implementation to the database as a new function named SAS_PUT(). Similar to any
other programming language function, the SAS_PUT() function can take one or more
input parameters and return an output value.

The SAS_PUT() function supports use of SAS formats. You can specify the
SAS_PUT() function in SQL queries that SAS submits to the database in one of two
ways:

• implicitly by enabling SAS to automatically map PUT function calls to SAS_PUT()
function calls

• explicitly by using the SAS_PUT() function directly in your SAS program

If you used the SAS_PUT() function in the previous SELECT statement, the database
formats the ZIP code values with the $REGION format. It then processes the GROUP
BY clause using the formatted values.

By publishing the PUT function implementation to the database as the SAS_PUT()
function, you can realize these advantages:

• You can process the entire SQL query inside the database, which minimizes data
transfer (I/O).

• The SAS format processing leverages the scalable architecture of the DBMS.

• The results are grouped by the formatted data and are extracted from the database.

Deploying SAS formats to execute inside a database can enhance performance and
exploit the database’s parallel processing.

Note: SAS formats and the SAS_PUT() functionality is available in Aster, DB2,
Greenplum, Netezza, and Teradata.

How It Works
By using the SAS formats publishing macro for DB2, Greenplum, Netezza, and
Teradata, you can generate a SAS_PUT() function that enables you to execute PUT
function calls inside the database. You can reference the formats that SAS supplies and
most custom formats that you create by using PROC FORMAT.

The SAS formats publishing macro takes a SAS format catalog and publishes it to the
database. Inside the database, a SAS_PUT() function, which emulates the PUT
function, is created and registered for use in SQL queries.

For Aster, the SAS_PUT() function is installed as part of the SAS Embedded Process.
For more information, see the SAS In-Database Products: Administrator's Guide.

198 Chapter 16 • Deploying and Using SAS Formats inside the Database

Figure 16.1 Process Flow Diagram

SAS SAS

Client Application

PROC FORMATPublishing Client

Format
Catalog

Install
Script

Format
Publishing

Macros

SAS/ACCESS
Interfaces

Procedures
Enabled

for In-Database
Processing

SAS/ACCESS
Interfaces

DBMS

SAS_PUT()
Function

Deployed
Components

for In-Database
Processing

3

5

2

1

4

Here is the basic process flow.

1 Install the components that are necessary for in-database processing.

For more information, see “Deployed Components for In-Database Processing” on
page 5.

Note: This is a one-time installation process.

2 If necessary, create your custom formats by using PROC FORMAT and create a
permanent catalog by using the LIBRARY= option.

For more information, see the topic on user-defined formats in the section for your
database.

3 Start SAS and run the format publishing macro. For DB2, Greenplum, Netezza, and
Teradata, this macro creates the files that are needed to build the SAS_PUT()
function and publishes those files to the database.

For more information, see the topic on publishing SAS formats in the section for
your database.

4 After the format publishing macro creates the script, SAS/ACCESS Interface to your
database executes the script and publishes the files to the database.

For more information, see the topic on publishing SAS formats in the section for
your database.

How It Works 199

5 The SAS_PUT() function is available to use in any SQL expression and to use
typically wherever you use your database’s built-in functions.

For more information, see the topic on using the SAS_PUT() function in the section
for your database.

Format Publishing with User-Defined Functions
and the SAS Embedded Process

There are two methods by which format publishing is processed inside the database:

• user-defined functions

Formats are converted by the publishing macros into format functions that are
similar to any user-defined functions in the database.

In-database processing of formats by means of user-defined functions is supported
by DB2 under UNIX, Greenplum, Netezza, and Teradata.

• SAS Embedded Process

The SAS Embedded Process is a SAS server process that is installed and runs inside
the database to read and write data from the database. The advantage of using the
SAS Embedded Process is that a single function or a stored procedure is used instead
of multiple, user-defined functions.

Format publishing using the SAS Embedded Process is supported for Aster, DB2,
Greenplum, Netezza, and Teradata.

The SAS Embedded Process is one of the deployed components for in-database
processing. For more information, see the SAS In-Database Products:
Administrator's Guide.

Special Characters in Directory Names
If the directory names that are used in the macros contain any of the following special
characters, you must mask the characters by using the %STR macro quoting function.
For more information, see the %STR function and macro string quoting topic in SAS
Macro Language: Reference.

Table 16.1 Special Characters in Directory Names

Character How to Represent

blank* %str()

*** %str(*)

; %str(;)

, (comma) %str(,)

200 Chapter 16 • Deploying and Using SAS Formats inside the Database

Character How to Represent

= %str(=)

+ %str(+)

- %str(–)

> %str(>)

< %str(<)

^ %str(^)

| %str(|)

& %str(&)

%str(#)

/ %str(/)

~ %str(~)

% %str(%%)

' %str(%')

" %str(%")

(%str(%()

) %str(%))

¬ %str(¬)

* Only leading blanks require the %STR function, but you should avoid using leading blanks in directory
names.

** Asterisks (*) are allowed in UNIX directory names. Asterisks are not allowed in Windows directory
names. In general, avoid using asterisks in directory names.

Here are some examples of directory names with special characters:

Table 16.2 Examples of Special Characters in Directory Names

Directory Code Representation

c:\temp\Sales(part1) c:\temp\Sales%str(%()part1%str(%))

c:\temp\Drug "trial" X c:\temp\Drug %str(%")trial(%str(%") X

c:\temp\Disc's 50% Y c:\temp\Disc%str(%')s 50%str(%%) Y

Special Characters in Directory Names 201

Directory Code Representation

c:\temp\Pay,Emp=Z c:\temp\Pay%str(,)Emp%str(=)Z

Considerations and Limitations with User-Defined
Formats

• If you create a local user-defined format with the same name but a different value
than a user-defined format that was published previously to the database, a check
sum ERROR warning occurs and the local format is used. This warning indicates that
the local and published formats differ. The query is processed by SAS and not inside
the database.

If you want the query to be processed inside the database, you need to redefine the
local format to match the published version and rerun the query.

• Avoid using PICTURE formats with the MULTILABEL option. You cannot
successfully create a CNTLOUT= data set when PICTURE formats are present. This
is a known problem in PROC FORMAT.

• If you use the MULTILABEL option, only the first label that is found is returned.
For more information, see the PROC FORMAT MULTILABEL option in the Base
SAS Procedures Guide.

• The format publishing macros reject a format unless the LANGUAGE= option is set
to English or is not specified.

• Although the format catalog can contain informats, the format publishing macros
ignore the informats.

• User-defined formats that include a format that SAS supplies are not supported.

Tips for Using the Format Publishing Macros
• Use the ACTION=CREATE option only the first time you run the format publishing

macro. After that, use ACTION=REPLACE or ACTION=DROP.

• The format publishing macro does not require a format catalog. If you do not have
any custom formats, only the formats that SAS supplies are published. However, you
can use this code to create an empty format catalog in your WORK directory before
you publish the PUT function and the formats that SAS supplies:

proc format;
run;

• If you modify any PROC FORMAT entries in the source catalog, you must republish
the entire catalog.

• If the format publishing macro is executed between two procedure calls, the page
number of the last query output is increased by two.

202 Chapter 16 • Deploying and Using SAS Formats inside the Database

Tips for Using the SAS_PUT() Function
• When SAS parses the PUT function, SAS checks to make sure that the format is a

known format name. SAS looks for the format in the set of formats that are defined
in the scope of the current SAS session. If the format name is not defined in the
context of the current SAS session, the SAS_PUT() is returned to the local SAS
session for processing.

• Using both the SQLREDUCEPUT= system option (or the PROC SQL
REDUCEPUT= option) and SQLMAPPUTTO= can result in a significant
performance boost. First, SQLREDUCEPUT= works to reduce as many PUT
functions as possible. Then, using SQLMAPPUTTO= with the format publishing
macro changes the remaining PUT functions to SAS_PUT() functions.

For more information, see the “SQLMAPPUTTO= System Option” on page 280 and
the “SQLREDUCEPUT= System Option” on page 281.

• To turn off automatic translation of the PUT function to the SAS_PUT() function,
set the SQLMAPPUTTO= system option to NONE.

• The format of the SAS_PUT() function parallels that of the PUT function:

SAS_PUT(source, 'format.')

Determining Format Publish Dates
You might need to know when user-defined formats or formats that SAS supplies were
published. SAS supplies two special formats that return a datetime value that indicates
when this occurred.

• The INTRINSIC-CRDATE format returns a datetime value that indicates when the
SAS formats library was published.

• The UFMT-CRDATE format returns a datetime value that indicates when the user-
defined formats were published.

Note: You must use the SQL pass-through facility to return the datetime value
associated with the INTRINSIC-CRDATE and UFMT-CRDATE formats, as
illustrated in this example:

proc sql noerrorstop;
 connect to
&tera (
&connopt);

title 'Publish date of SAS Format Library';
select * from connection to
&tera
 (
 select sas_put(1, 'intrinsic-crdate.')
 as sas_fmts_datetime;
);
title 'Publish date of user-defined formats';
select * from connection to

Determining Format Publish Dates 203

&tera
 (
 select sas_put(1, 'ufmt-crdate.')
 as my_formats_datetime;
);

disconnect from teradata;
quit;

204 Chapter 16 • Deploying and Using SAS Formats inside the Database

Chapter 17

Deploying and Using SAS
Formats in Aster

User-Defined Formats in the Aster Database . 205
Introduction to User-Defined Formats in Aster . 205
Aster Limitations and Restrictions When Using the FMTCAT= Option 206

Publishing SAS Formats in Aster . 206
Overview of the Publishing Process . 206
Running the %INDAC_PUBLISH_FORMATS Macro . 206
INDCONN Macro Variable . 207
%INDAC_PUBLISH_FORMATS Macro Syntax . 208
Format Publishing Macro Example . 210

Aster Format Files . 210
Overview of Aster Format Files . 210
Example of a Format File . 211

Using the SAS_PUT() Function in the Aster Database . 213
Overview of the SAS_PUT() Function . 213
Implicit Use of the SAS_PUT() Function . 214
Explicit Use of the SAS_PUT() Function . 216

Aster Permissions . 217

User-Defined Formats in the Aster Database

Introduction to User-Defined Formats in Aster
You can use PROC FORMAT to create user-defined formats and store them in a format
catalog. You can then use the %INDAC_PUBLISH_FORMATS macro to export the
user-defined format definitions as format files to a table inside the Aster database where
the SAS_PUT() function can reference them.

For more information about the %INDAC_PUBLISH_FORMATS macro, see
“Publishing SAS Formats in Aster” on page 206. For more information about the
SAS_PUT() function, see “Using the SAS_PUT() Function in the Aster Database” on
page 213.

205

Aster Limitations and Restrictions When Using the FMTCAT=
Option

Formats as labels and the DATATYPE= option cannot be used with formats that are
exported to Aster.

Publishing SAS Formats in Aster

Overview of the Publishing Process
The SQL/MR function is the framework for enabling execution of user-defined functions
within Aster through an SQL interface. A SAS SQL/MR function, SAS_PUT(),
supports format publishing in Aster. The SAS_PUT() function is installed as part of the
in-database deployment package. For more information, see the SAS In-Database
Products: Administrator's Guide.

The %INDAC_PUBLISH_FORMATS macro creates the user-defined format files that
are needed by the SAS_PUT() function and publishes those files to the Aster database.

This macro makes many formats that SAS supplies available inside Aster. In addition to
formats that SAS supplies, you can use the FMTCAT= option to publish the PROC
FORMAT definitions that are contained in a single SAS format catalog. The process of
publishing a PROC FORMAT catalog entry converts the value-range-set(s) into
embedded data in Aster.

The %INDAC_PUBLISH_FORMATS macro performs the following tasks:

• takes the format catalog and produces a sasput_type_fmtname.xml file for each user-
defined format that is in the format catalog

• uses the SAS/ACCESS Interface to Aster to insert the format files into either the
NC_INSTALLED_FILES table under the PUBLIC schema (Aster 4.5) or the
NC_USER_INSTALLED_FILES table under a specified schema (Aster 4.6)

Note: Files larger than 32k are automatically divided into 32k chunks of data and then
are concatenated back together by performing multiple updates.

Note: If there are no user-defined formats, you do not need to run the
%INDAC_PUBLISH_FORMATS macro. The formats that SAS supplies are
installed in either the NC_INSTALLED_FILES table (Aster 4.5) or the
NC_USER_INSTALLED_FILES table (Aster 4.6) when the SAS Formats Library
for Aster is installed.

When the user accesses a SAS format through the SQL interface, the SAS_PUT()
function retrieves the specified format's XML file and activates the SAS Embedded
Process to perform the formatting. For more information, see “Using the SAS_PUT()
Function in the Aster Database” on page 213.

Running the %INDAC_PUBLISH_FORMATS Macro
To run the %INDAC_PUBLISH_FORMATS macro, follow these steps.

1. Start SAS and submit this command in the Program Editor or the Enhanced Editor:

%let indconn = user=youruserid password=yourpwd dsn=yourdsn;

206 Chapter 17 • Deploying and Using SAS Formats in Aster

For more information, see the “INDCONN Macro Variable” on page 207.

2. Run the %INDAC_PUBLISH_FORMATS macro.

For more information, see “%INDAC_PUBLISH_FORMATS Macro Syntax” on
page 208.

Messages are written to the SAS log that indicate the success or failure of the creation of
the XML format files.

INDCONN Macro Variable
The INDCONN macro variable is used to provide credentials to connect to Aster. You
must specify user, password, and either a DSN name or a server and database name. You
must assign the INDCONN macro variable before the %INDAC_PUBLISH_FORMATS
macro is invoked.

The value of the INDCONN macro variable for the %INDAC_PUBLISH_FORMATS
macro has one of these formats:

USER=username PASSWORD=password DSN=dsnname <SCHEMA=schemaname>
USER=username PASSWORD=password DATABASE=databasename
SERVER=servername <SCHEMA=schemaname>

USER=username
specifies the Aster user name (also called the user ID) that is used to connect to the
database.

PASSWORD=password
specifies the password that is associated with your Aster user ID.

Tip You can use only PASSWORD=, PASS=, or PW= for the password argument.
PWD= is not supported and causes an error.

DSN=datasourcename
specifies the configured Aster data source to which you want to connect.

Requirement You must specify either the DSN= argument alone, or the SERVER=
and DATABASE= arguments in the INDCONN macro variable.

DATABASE=databasename
specifies the Aster database that contains the tables and views that you want to
access.

Requirement You must specify either the DSN= argument alone, or the SERVER=
and DATABASE= arguments in the INDCONN macro variable.

SERVER=servername
specifies the Aster server name or the IP address of the server host.

Requirement You must specify either the DSN= argument alone, or the SERVER=
and DATABASE= arguments in the INDCONN macro variable.

SCHEMA=schemaname
specifies the schema name for the database.

Default Your default schema. To determine your default schema name, use
the show search_path command from the Aster Client Tool
(ACT).

Publishing SAS Formats in Aster 207

Restriction The SCHEMA argument is valid only for Aster 4.6. For Aster 4.5,
the format XML files are published to the PUBLIC schema.

Requirement Any schema that is used must be in the search path.

T I P The INDCONN macro variable is not passed as an argument to the
%INDAC_PUBLISH_FORMATS macro. This information can be concealed in your
SAS job. You might want to place it in an autoexec file and set the permissions on
the file so that others cannot access the user ID and password.

%INDAC_PUBLISH_FORMATS Macro Syntax
%INDAC_PUBLISH_FORMATS

(<DATABASE=database–name>
<, FMTCAT=format-catalog-filename | ALL>
<, FMTLIST=format-name <…format-name> | ALL>
<, ACTION=CREATE | REPLACE | DROP>
<, OUTDIR=diagnostic-output-directory>
);

Arguments

DATABASE=database-name
specifies the name of an Aster database to which the format files are published to
either the NC_INSTALLED_FILES table (Aster 4.5) or the
NC_USER_INSTALLED_FILES table (Aster 4.6). This argument lets you publish
the sasput_type_fmtname.xml format files to a shared database where other users can
access them.

Restriction If you specify DSN= in the INDCONN macro variable, do not use the
DATABASE argument. For more information, see “Running the
%INDAC_PUBLISH_FORMATS Macro” on page 206.

Tip It is not necessary that the format definitions and the SAS_PUT()
function reside in the same database as the one that contains the data
that you want to format. You can use the SQLMAPPUTO= system
option to specify the database where the format definitions and the
SAS_PUT() function have been published.

FMTCAT=format-catalog-filename | ALL
specifies the name of the format catalog file that contains all user-defined formats
that were created with the FORMAT procedure and are made available in Aster.

Default If you do not specify a value for FMTCAT= and you have created user-
defined formats in your SAS session, the default is WORK.FORMATS.
If you do not specify a value for FMTCAT= and you have not created
any user-defined formats in your SAS session, only the formats that
SAS supplies are available in Aster.

Interaction If the format definitions that you want to publish exist in multiple
catalogs, you must copy them into a single catalog for publishing. If
you specify more than one format catalog using the FMTCAT
argument, only the last catalog that you specify is published.

See “Considerations and Limitations with User-Defined Formats” on page
202

208 Chapter 17 • Deploying and Using SAS Formats in Aster

FMTLIST=format-name <…format-name> | ALL
specifies a list of formats that are created, replaced, or dropped.

Default ALL

Requirements Format names must be separated with a space.

Character format names must begin with a dollar sign ($); for
example, $EMPNAME.

Interaction When ACTION=CREATE or REPLACE, the list of formats that are
in the specified format catalog (FMTCAT=) are added to either the
NC_INSTALLED_FILES table (Aster 4.5) or the
NC_USER_INSTALLED_FILES table (Aster 4.6). When
ACTION=DROP and FMTCAT=ALL, all the formats listed in
FMTLIST are dropped. If ACTION=DROP and FMTCAT=format-
catalog-filename, only those listed formats that exist in the format
catalog are dropped.

ACTION=CREATE | REPLACE | DROP
specifies that the macro performs one of these actions:

CREATE
creates a sasput_type_fmtname.xml file for each user-defined format in the
format catalog.

Tip If a format file already exists, an error occurs.

REPLACE
overwrites the current sasput_type_fmtname.xml file if it is already registered or
creates a new sasput_type_fmtname.xml file, if one is not registered.

DROP
causes the sasput_type_fmtname.xml files to be dropped from either the
NC_INSTALLED_FILES table (Aster 4.5) or the
NC_USER_INSTALLED_FILES table (Aster 4.6) in the database.

Interaction If FMTCAT=ALL, all user-defined format files are dropped.

Default CREATE

Tip If the format files was defined previously and you specify
ACTION=CREATE, you receive warning messages from Aster. If the
format files were defined previously and you specify
ACTION=REPLACE, a message is written to the SAS log indicating that
the format file has been replaced.

OUTDIR=diagnostic-output-directory
specifies a directory that contains diagnostic files.

Files that are produced include an event log that contains detailed information about
the success or failure of the publishing process.

See “Special Characters in Directory Names” on page 200

Publishing SAS Formats in Aster 209

Format Publishing Macro Example
%let indconn = server=acbase user=user1 password=open1 dsn=ncluster;
 %indac_publish_formats(fmtcat= fmtlib.formats);

This sequence of macros generates an XML file for each format. The format data types
that are supported are numeric and character. The naming convention for the XML file is
sasput_type_fmtname.xml, where type is the format data type (N for numeric formats or
C for character formats), and fmtname is the format name.

After the format files are installed, you can invoke user-defined formats in Aster by
using the SAS_PUT() function. For more information, see “Using the SAS_PUT()
Function in the Aster Database” on page 213.

Aster Format Files

Overview of Aster Format Files
The %INDAC_PUBLISH_FORMATS macro produces a format file for each user-
defined format in the format catalog. These files are inserted into either the
NC_INSTALLED_FILES table under the PUBLIC schema (Aster 4.5) or the
NC_USER_INSTALLED_FILES table under a specified schema (Aster 4.6). The
naming convention for the file is sasput_type_fmtname.xml, where type is the
format data type (N for numeric formats or C for character formats), and fmtname is the
format name.

For an example, see “Example of a Format File” on page 211.

There are three ways to see the format files that are created:

• You can log on to the database using the Aster command line processor and submit
an SQL statement. The following example assumes that three format files were
created in Aster 4.6.

>act -h hostname -u username -w password -d databasename -s schemaname
>select name from schemaname.nc_user_installed_files where name like 'sasput_%';

All the format files are listed:

name

sasput_n_dinar.xml
sasput_n_ruble.xml
sasput_c_lowcase.xml

• From SAS, you can use SQL procedure code that produces output in the LST file.

proc sql noerrorstop;
 connect to aster (user=username password=password dsn=dsnname schema=schemaname);
select *
 from connection to aster
 (select filename, fileowner, uploadtime
 from schemaname.nc_user_installed_files where
 filename like 'sasput_%');
 disconnect from aster;
quit;

210 Chapter 17 • Deploying and Using SAS Formats in Aster

You can also use the SASTRACE and SASTRACELOC system options to generate
tracing information. For more information about these system options, see the SAS
System Options: Reference.

• You can look at the SAS log. A message that indicates whether the format files are
successfully or not successfully created is printed to the SAS log.

Example of a Format File
Here is an example of an Aster format file. This is a partial listing.

<?xml version="1.0" encoding="UTF-8" ?>
<?xml-stylesheet type="text/xsl" href="SUVformats.xsl"?>
<LIBRARY type="EXPORT" version="SUV">
 <HEADER>
 <Provider>SAS Institute Inc.</Provider>
 <Version>9.2</Version>
 <VersionLong>9.02.02M0P01152009</VersionLong>
 <CreationDateTime>2009-11-13T15:19:55</CreationDateTime>
 </HEADER>

 <TABLE name="N_DIVFMT">
 <TABLE-HEADER>
 <Provider>SAS Institute Inc.</Provider>
 <Version>9.2</Version>
 <VersionLong>9.02.02M0P01152009</VersionLong>
 <CreationDateTime>2009-11-13T15:19:55</CreationDateTime>
 <ModifiedDateTime>2009-11-13T15:19:55</ModifiedDateTime>

 <Protection />
 <DataSetType />
 <DataRepresentation />
 <Encoding>UTF-8</Encoding>
 <ReleaseCreated />
 <HostCreated />
 <FileName>c:\jaseco\tmp\SASWORK\920_TD22220\#LN00024</FileName>

 <Observations length="187" />
 <Compression compressed="No" number="1" length="252" />
 <Variables number="21" />
 </TABLE-HEADER>

 <COLUMN name="FMTNAME" order="1" label="Format name">
 <TYPE>character</TYPE>
 <DATATYPE>string</DATATYPE>
 <LENGTH>32</LENGTH>
 <Offset>0</Offset>
 </COLUMN>

 <COLUMN name="START" order="2" label="Starting value for format">
 <TYPE>character</TYPE>
 <DATATYPE>string</DATATYPE>
 <LENGTH>16</LENGTH>
 <Offset>32</Offset>
 </COLUMN>

Aster Format Files 211

 <COLUMN name="END" order="3" label="Ending value for format">
 <TYPE>character</TYPE>
 <DATATYPE>string</DATATYPE>
 <LENGTH>16</LENGTH>
 <Offset>48</Offset>
 </COLUMN>

 <COLUMN name="LABEL" order="4" label="Format value label">
 <TYPE>character</TYPE>
 <DATATYPE>string</DATATYPE>
 <LENGTH>21</LENGTH>
 <Offset>64</Offset>
 </COLUMN>

 <COLUMN name="MIN" order="5" label="Minimum length">
 <TYPE>numeric</TYPE>
 <DATATYPE>float</DATATYPE>
 <Offset>85</Offset>
 </COLUMN>

 ... <more column definitions> ...

 <ROW>
 <DELTA-RECORD key="DIVFMT" />
 <FMTNAME>DIVFMT</FMTNAME>
 <START>1</START>
 <END>1</END>
 <LABEL>New England</LABEL>
 <MIN>1</MIN>
 <MAX>40</MAX>
 <DEFAULT>15</DEFAULT>
 <LENGTH>15</LENGTH>
 <FUZZ>1E-12</FUZZ>
 <PREFIX missing=" " />
 <MULT>0</MULT>
 <FILL missing=" " />
 <NOEDIT>0</NOEDIT>
 <TYPE>N</TYPE>
 <SEXCL>N</SEXCL>
 <EEXCL>N</EEXCL>
 <HLO missing=" " />
 <DECSEP missing=" " />
 <DIG3SEP missing=" " />
 <DATATYPE missing=" " />
 <LANGUAGE missing=" " />
 </ROW>

 <ROW>
 <FMTNAME>DIVFMT</FMTNAME>
 <START>2</START>
 <END>2</END>
 <LABEL>Middle Atlantic</LABEL>
 <MIN>1</MIN>
 <MAX>40</MAX>
 <DEFAULT>15</DEFAULT>
 <LENGTH>15</LENGTH>

212 Chapter 17 • Deploying and Using SAS Formats in Aster

 <FUZZ>1E-12</FUZZ>
 <PREFIX missing=" " />
 <MULT>0</MULT>
 <FILL missing=" " />
 <NOEDIT>0</NOEDIT>
 <TYPE>N</TYPE>
 <SEXCL>N</SEXCL>
 <EEXCL>N</EEXCL>
 <HLO missing=" " />
 <DECSEP missing=" " />
 <DIG3SEP missing=" " />
 <DATATYPE missing=" " />
 <LANGUAGE missing=" " />
 </ROW>

 ... <more row definitions>...

 </TABLE>
</LIBRARY>

Using the SAS_PUT() Function in the Aster
Database

Overview of the SAS_PUT() Function
The SAS_PUT() function executes the format files using the SAS Embedded Process in
Aster. The SAS_PUT() function is installed in the NC_INSTALLED_FILES table
under the PUBLIC schema. For more information, see the SAS In-Database Products:
Administrator's Guide.

The SAS_PUT() function is available to use in the SELECT clause in any SQL
expression in the same way that Aster SQL/MR functions are used.

This is the syntax of the SAS_PUT() function.

SELECT SAS_PUT(value , 'fmtname') FROM input-table;

Arguments

value
specifies the name of the value that the format is applied to.

fmtname
specifies the name of the format.

input-table
specifies the input table that is used by the SAS_PUT() function.

Using the SAS_PUT() Function in the Aster Database 213

Implicit Use of the SAS_PUT() Function

Mapping PUT Function Calls to SAS_PUT()
After you install the SAS_PUT() function and formats that SAS supplies in libraries
inside the Aster database, and after you publish any custom format definitions that you
created in SAS, you can access the SAS_PUT() function with your SQL queries.

If the SQLMAPPUTTO= system option is set to SAS_PUT and you submit your
program from a SAS session, the SAS SQL processor maps PUT function calls to
SAS_PUT() function references that Aster understands.

This example illustrates how the PUT function is mapped to the SAS_PUT() function
using implicit pass-through. The SELECT DISTINCT clause executes inside Aster, and
the processing is distributed across all available data nodes. Aster formats the price
values with the $DOLLAR8.2 format and processes the SELECT DISTINCT clause
using the formatted values.

options sqlmapputto=sas_put;

libname dblib aster user="sas" password="sas" server="sl96208"
 database=sas connection=shared;

 /*-- Set SQL debug global options --*/
 /*----------------------------------*/
 options sastrace=',,,d' sastraceloc=saslog;

 /*-- Execute SQL using Implicit Passthru --*/
 /*---*/
 proc sql noerrorstop;
 title1 'Test SAS_PUT using Implicit Passthru ';
 select distinct
 PUT(PRICE,Dollar8.2) AS PRICE_C
 from dblib.mailorderdemo;
 quit;

These lines are written to the SAS log.

libname dblib aster user="sas" password="sas" server="sl96208"
 database=sas connection=shared;

NOTE: Libref DBLIB was successfully assigned, as follows:
 Engine: ASTER
 Physical Name: sl96208

 /*-- Set SQL debug global options --*/
 /*----------------------------------*/
 options sastrace=',,,d' sastraceloc=saslog;

 /*-- Execute SQL using Implicit Passthru --*/
 /*---*/
 proc sql noerrorstop;
 title1 'Test SAS_PUT using Implicit Passthru ';
 select distinct
 PUT(PRICE,Dollar8.2) AS PRICE_C
 from dblib.mailorderdemo
 ;

214 Chapter 17 • Deploying and Using SAS Formats in Aster

ASTER_0: Prepared: on connection 0
SELECT * FROM sas."mailorderdemo"

ASTER_1: Prepared: on connection 0
 select distinct cast(sas_put("sas"."mailorderdemo"."PRICE", 'DOLLAR8.2')
 as char(8)) as "PRICE_C" from "sas"."mailorderdemo"

ASTER: trforc: COMMIT WORK
ACCESS ENGINE: SQL statement was passed to the DBMS for fetching data.

ASTER_2: Executed: on connection 0
 select distinct cast(sas_put("sas"."mailorderdemo"."PRICE", 'DOLLAR8.2')
 as char(8)) as "PRICE_C" from "sas"."mailorderdemo"

ASTER: trget - rows to fetch: 9
ASTER: trforc: COMMIT WORK

 Test SAS_PUT using Implicit Passthru 9
 3:42 Thursday, April 25, 2013

 PRICE_C

 $8.00
 $10.00
 $12.00
 $13.59
 $13.99
 $14.00
 $27.98
 $48.99
 $54.00

 quit;

Considerations with Implicit Use of SAS_PUT()
Be aware of these items:

• The SQLMAPPUTTO= system option must be set to SAS_PUT. This ensures that
the SQL processor maps your PUT functions to the SAS_PUT() function and that
the SAS_PUT() reference is passed through to Aster. SAS_PUT is the default value
for the SQLMAPPUTTO= system option.

• The SAS SQL processor translates the PUT function in the SQL SELECT statement
into a reference to the SAS_PUT() function.

select distinct cast(sas_put("sas"."mailorderdemo"."PRICE", 'DOLLAR8.2')
 as char(8)) as "PRICE_C" from "sas"."mailorderdemo"

A large value, VARCHAR(n), is always returned because one function prototype
accesses all formats. Use the CAST expression to reduce the width of the returned
column to be a character width that is reasonable for the format that is being used.

The return text cannot contain a binary zero value (hexadecimal 00) because the
SAS_PUT() function always returns a VARCHAR(n) data type and an Aster
VARCHAR(n) is defined to be a null-terminated string.

Using the SAS_PUT() Function in the Aster Database 215

Explicit Use of the SAS_PUT() Function

Using the SAS_PUT() Function in an SQL Query
If you use explicit pass-through (direct connection to Aster), you can use the
SAS_PUT() function call in your SQL program.

This example shows the same query from “Implicit Use of the SAS_PUT() Function”
on page 214 and explicitly uses the SAS_PUT() function call.

proc sql noerrorstop;
 title1 'Test SAS_PUT using Explicit Passthru;
 connect to aster(user=sas password=XXX database=sas server=sl96208);

 select * from connection to aster
 (select distinct cast(sas_put("PRICE",'DOLLAR8.2') as char(8)) as
 "PRICE_C" from mailorderdemo);

disconnect from aster;
quit;

The following lines are written to the SAS log.

 proc sql noerrorstop;
 title1 'Test SAS_PUT using Explicit Passthru ';
 connect to aster(user=sas password=XXX database=sas server=sl96208);

 select * from connection to aster
 (select distinct cast(sas_put("PRICE",'DOLLAR8.2') as char(8)) as
 "PRICE_C" from mailorderdemo);

 Test SAS_PUT using Explicit Passthru 10
 13:42 Thursday, April 25, 2013

 PRICE_C

 $8.00
 $10.00
 $12.00
 $13.59
 $13.99
 $14.00
 $27.98
 $48.99
 $54.00

disconnect from aster;
quit;

Considerations with Explicit Use of SAS_PUT()
If you explicitly use the SAS_PUT() function in your code, it is recommended that you
use double quotation marks around a column name to avoid any ambiguity with the
keywords. For example, if you did not use double quotation marks around the column
name, DATE, in this example, all date values would be returned as today's date.

select distinct

216 Chapter 17 • Deploying and Using SAS Formats in Aster

 cast(sas_put("price", 'dollar8.2') as char(8)) as "price_c",
 cast(sas_put("date", 'date9.1') as char(9)) as "date_d",
 cast(sas_put("inv", 'best8.') as char(8)) as "inv_n",
 cast(sas_put("name", '$32.') as char(32)) as "name_n"
from mailorderdemo;

Aster Permissions
For Aster 4.5, the person who runs the format publishing macros needs no permissions,
because all functions and files are published to the PUBLIC schema.

For Aster 4.6, the person who runs the format publishing macros needs the following
permissions, because all functions and files can be published to a specific schema.

• USAGE permission

• INSTALL FILE permission

• CREATE permission

Without these permissions, the publishing of the %INDAC_PUBLISH_FORMATS
macro fails. To obtain these permissions, contact your database administrator.

For more information about specific permissions, see the SAS In-Database Products:
Administrator's Guide.

Aster Permissions 217

218 Chapter 17 • Deploying and Using SAS Formats in Aster

Chapter 18

Deploying and Using SAS
Formats in DB2 under UNIX

User-Defined Formats in the DB2 Database . 219

Publishing SAS Formats in DB2 . 219
Overview of the Publishing Process . 219
Running the %INDB2_PUBLISH_FORMATS Macro . 220
INDCONN Macro Variable . 221
%INDB2_PUBLISH_FORMATS Macro Syntax . 222
Modes of Operation . 225
Format Publishing Macro Example . 225

Using the SAS_PUT() Function in the DB2 Database . 226
Implicit Use of the SAS_PUT() Function . 226
Explicit Use of the SAS_PUT() Function . 227

DB2 Permissions . 228

User-Defined Formats in the DB2 Database
You can use PROC FORMAT to create user-defined formats and store them in a format
catalog. You can then use the %INDB2_PUBLISH_FORMATS macro to export the
user-defined format definitions to the DB2 database where the SAS_PUT() function
can reference them.

For more information about the %INDB2_PUBLISH_FORMATS macro, see
“Publishing SAS Formats in DB2” on page 219. For more information about the
SAS_PUT() function, see “Using the SAS_PUT() Function in the DB2 Database” on
page 226.

Publishing SAS Formats in DB2

Overview of the Publishing Process
The SAS publishing macros are used to publish formats and the SAS_PUT() function
in DB2.

Note: SFTP is used to transfer the source files to the DB2 server during the publishing
process. Certain software products that support SSH-2 or SFTP protocols must be

219

installed before you can use the publishing macros. For more information, see the
SAS In-Database Products: Administrator's Guide.

The %INDB2_PUBLISH_FORMATS macro creates the files that are needed to build the
SAS_PUT() function and publishes those files to the DB2 database.

This macro also makes many formats that SAS supplies available inside DB2. In
addition to formats that SAS supplies, you can also publish the PROC FORMAT
definitions that are contained in a single SAS format catalog by using the FMTCAT=
option. The process of publishing a PROC FORMAT catalog entry converts the value-
range-set(s) into embedded data in DB2.

The %INDB2_PUBLISH_FORMATS macro performs the following tasks:

• produces the set of .c and .h files that are necessary to build the SAS_PUT()
function

• produces a script of the DB2 commands that are necessary to register the
SAS_PUT() function in the DB2 database

• transfers the .c and .h files to DB2 using SFTP

• calls the SAS_COMPILEUDF function to compile the source files into object files
and to link to the SAS Formats Library for DB2

• calls the SAS_DELETEUDF function to remove existing object files and then
replaces them with the new object files

• uses the SAS/ACCESS Interface to DB2 to run the script and publish the
SAS_PUT() function to the DB2 database

The SAS_PUT() function is registered in DB2 with shared object files that are loaded
at run time. These functions must be stored in a permanent location. The SAS object
files and the SAS Formats Library for DB2 are stored in the db2path/SQLLIB/
FUNCTION/SAS directory where you supply the db2path. This directory is accessible
to all database partitions.

DB2 caches the object files after they are loaded. Each time the updated objects are used,
you must either stop and restart the database to clean up the cache, or you can rename
the object files and register the functions with the new object filenames. The SAS
publishing process automatically handles the renaming to avoid stopping and restarting
the database.

Running the %INDB2_PUBLISH_FORMATS Macro
To run the %INDB2_PUBLISH_FORMATS macro, follow these steps:

1. Start SAS and submit this command in the Program Editor or the Enhanced Editor:

%let indconn = server=yourserver user=youruserid password=yourpwd
 database=yourdb schema=yourschema serveruserid=yourserveruserid;

For more information, see the “INDCONN Macro Variable” on page 221.

2. Run the %INDB2_PUBLISH_FORMATS macro.

For more information, see “%INDB2_PUBLISH_FORMATS Macro Syntax” on
page 222.

Messages are written to the SAS log that indicate whether the SAS_PUT() function
was successfully created.

220 Chapter 18 • Deploying and Using SAS Formats in DB2 under UNIX

INDCONN Macro Variable
The INDCONN macro variable is used as credentials to connect to DB2. You must
specify the server, user, password, and database. The schema name and server user ID
are optional. You must assign the INDCONN macro variable before the
%INDB2_PUBLISH_FORMATS macro is invoked.

Here is the syntax for the value of the INDCONN macro variable:

SERVER=server USER=userid PASSWORD=password
DATABASE=database <SCHEMA=schemaname> <SERVERUSERID=serveruserid>

Arguments

SERVER=server
specifies the DB2 server name or the IP address of the server host. If the server name
contains spaces or nonalphanumeric characters, you must enclose it in quotation
marks.

Requirement The name must be consistent with how the host name was cached
when SFTP server was run from the command window. If the full
server name was cached, you must use the full server name in the
SERVER argument. If the short server name was cached, you must
use the short server name. For example, if the long name,
disk3295.unx.comp.com, is used when SFTP was run, then
server=disk3295.unx.comp.com must be specified. If the short name,
disk3295, was used, then server=disk3295 must be specified. For
more information about running the SFTP command, see “DB2
Installation and Configuration Steps” in Chapter 3 of SAS In-
Database Products: Administrator's Guide.

USER=userid
specifies the DB2 user name (also called the user ID) that is used to connect to the
database.

PASSWORD=password
specifies the password that is associated with your DB2 user ID.

Tip Use only PASSWORD=, PASS=, or PW= for the password argument. PWD= is
not supported and causes an error.

DATABASE=database
specifies the DB2 database that contains the tables and views that you want to
access.

Requirement The format functions are created as Unicode functions. If the
database is not a Unicode database, then the alternate collating
sequence must be configured to use identity_16bit.

SCHEMA=schema
specifies the schema name for the database.

Default If you do not specify a value for the SCHEMA argument, the value of the
USER argument is used as the schema name.

SERVERUSERID=serveruserid
specifies the user ID for SAS SFTP and enables you to access the machine on which
you have installed the DB2 database.

Publishing SAS Formats in DB2 221

Default If you do not specify a value for the SERVERUSERID argument, the value
of the USER argument is used as the user ID for SAS SFTP.

Note The person who installed and configured the SSH software can provide the
SERVERUSERID (SFTP user ID) and the private key that need to be
added to the pageant.exe (Windows) or SSH agent (UNIX). In order for the
SFTP process to be successful, Pageant must be running on Windows, and
the SSH agent must be running on UNIX.

T I P The INDCONN macro variable is not passed as an argument to the
%INDB2_PUBLISH_FORMATS macro. This information can be concealed in your
SAS job. You might want to place it in an autoexec file and set the permissions on
the file so that others cannot access the user ID and password.

%INDB2_PUBLISH_FORMATS Macro Syntax

%INDB2_PUBLISH_FORMATS
(<DATABASE=database-name>

<, FMTCAT=format-catalog-filename>
<, FMTTABLE=format-table-name>
<, ACTION=CREATE | REPLACE | DROP>
<, MODE=FENCED | UNFENCED>
<, INITIAL_WAIT=wait-time>
<, FTPTIMEOUT=timeout-time>
<, OUTDIR=diagnostic-output-directory>
);

Arguments

DATABASE=database-name
specifies the name of a DB2 database to which the SAS_PUT() function and the
formats are published. This argument lets you publish the SAS_PUT() function and
the formats to a shared database where other users can access them.

Requirement The format functions are created as Unicode functions. If the
database is not a Unicode database, then the alternate collating
sequence must be configured to use identity_16bit.

Interaction The database that is specified by the DATABASE= argument takes
precedence over the database that you specify in the INDCONN
macro variable. For more information, see “Running the
%INDB2_PUBLISH_FORMATS Macro” on page 220.

Tip It is not necessary that the format definitions and the SAS_PUT()
function reside in the same database as the one that contains the data
that you want to format. You can use the SQLMAPPUTO= system
option to specify the database where the format definitions and the
SAS_PUT() function have been published.

FMTCAT=format-catalog-filename
specifies the name of the format catalog file that contains all user-defined formats
that were created with the FORMAT procedure and are made available in DB2.

Default If you do not specify a value for FMTCAT= and you have created user-
defined formats in your SAS session, the default is WORK.FORMATS.
If you do not specify a value for FMTCAT= and you have not created

222 Chapter 18 • Deploying and Using SAS Formats in DB2 under UNIX

any user-defined formats in your SAS session, only the formats that
SAS supplies are available in DB2.

Interaction If the format definitions that you want to publish exist in multiple
catalogs, you must copy them into a single catalog for publishing. If
you specify more than one format catalog using the FMTCAT
argument, only the last catalog that you specify is published.

See “Considerations and Limitations with User-Defined Formats” on page
202

FMTTABLE=format-table-name
specifies the name of the DB2 table that contains all formats that the
%INDB2_PUBLISH_FORMATS macro creates and that the SAS_PUT() function
supports. The format table contains the columns shown in the following table.

Table 18.1 Format Table Columns

Column Name Description

FMTNAME specifies the name of the format.

SOURCE specifies the origin of the format. SOURCE can contain one of these
values:

SAS
supplied by SAS

PROCFMT
User–defined with PROC FORMAT

Default If FMTTABLE is not specified, no table is created. You can see only
the SAS_PUT() function. You cannot see the formats that are
published by the macro.

Interaction If ACTION=CREATE or ACTION=DROP is specified, messages are
written to the SAS log that indicate the success or failure of the table
creation or drop.

ACTION=CREATE | REPLACE | DROP
specifies that the macro performs one of these actions:

CREATE
creates a new SAS_PUT() function.

REPLACE
overwrites the current SAS_PUT() function, if a SAS_PUT() function is
already registered or creates a new SAS_PUT() function if one is not registered.

DROP
causes the SAS_PUT() function to be dropped from the DB2 database.

Interaction If FMTTABLE= is specified, both the SAS_PUT() function and
the format table are dropped. If the table name cannot be found or is
incorrect, only the SAS_PUT() function is dropped.

Default CREATE

Publishing SAS Formats in DB2 223

Tip If the SAS_PUT() function was defined previously and you specify
ACTION=CREATE, you receive warning messages from DB2. If the
SAS_PUT() function was defined previously and you specify
ACTION=REPLACE, a message is written to the SAS log indicating that
the SAS_PUT() function has been replaced.

MODE=FENCED | UNFENCED
specifies whether the running code is isolated in a separate process in the DB2
database so that a program fault does not cause the database to stop.

Default FENCED

Tip Once the SAS formats are validated in fenced mode, you can republish
them in unfenced mode for a significant performance gain.

INITIAL_WAIT=wait-time
specifies the initial wait time in seconds for SAS SFTP to parse the responses and
complete the SFTP batch-file process.

Default 15 seconds

Interactions The INITIAL_WAIT= argument works in conjunction with the
FTPTIMEOUT= argument. Initially, SAS SFTP waits the amount of
time specified by the INITIAL_WAIT= argument. If the SFTP batch-
file process is not complete after the initial wait time, retries occur
until the wait time is equal to or greater than the time-out value
specified by the FTPTIMEOUT= argument. All retries double the
previous wait time. SAS SFTP fails after the time-out value is reached
or exceeded. An error message is written to the SAS log.

For example, assume that you use the default values. The initial wait
time is 15 seconds. The first retry waits 30 seconds. The second retry
waits 60 seconds. The third retry waits 120 seconds, which is the
default time-out value. So the default initial wait time and time-out
values enable four possible tries: the initial try, and three retries.

See FTPTIMEOUT= argument

FTPTIMEOUT=time-out-value
specifies the time-out value in seconds if SAS SFTP fails to transfer the files.

Default 120 seconds

Interactions The FTPTIMEOUT= argument works in conjunction with the
INITIAL_WAIT= argument. Initially, SAS SFTP waits the amount of
time specified by the INITIAL_WAIT= argument. If the SFTP batch-
file process is not complete after the initial wait time, retries occur
until the wait time is equal to or greater than the time-out value
specified by the FTPTIMEOUT= argument. All retries double the
previous wait time. SAS SFTP fails after the time-out value is reached
or exceeded and an error message is written to the SAS log.

For example, assume you use the default values. The initial wait time
is 15 seconds. The first retry waits 30 seconds. The second retry waits
60 seconds. The third retry waits 120 seconds, which is the default
time-out value. So the default initial wait time and time-out values
enable four possible tries: the initial try, and three retries.

224 Chapter 18 • Deploying and Using SAS Formats in DB2 under UNIX

Tip Use this argument to control how long SAS SFTP waits to complete a
file transfer before timing out. A time-out failure could indicate a
network or key authentication problem.

See INITIAL_WAIT argument

OUTDIR=diagnostic-output-directory
specifies a directory that contains diagnostic files.

Files that are produced include an event log that contains detailed information about
the success or failure of the publishing process.

See “Special Characters in Directory Names” on page 200

Modes of Operation
There are two modes of operation when executing the %INDB2_PUBLISH_FORMATS
macro: fenced and unfenced. You specify the mode by setting the MODE= argument.

The default mode of operation is fenced. Fenced mode means that the macro code is
isolated in a separate process in the DB2 database, and an error does not cause the
database to stop. It is recommended that you run the %INDB2_PUBLISH_FORMATS
macro in fenced mode during acceptance tests.

When the %INDB2_PUBLISH_FORMATS macro is ready for production, you can
rerun the macro in unfenced mode. Note that you should see a significant performance
advantage when you republish the formats in unfenced mode.

Format Publishing Macro Example
%let indconn = server=db2base user=user1 password=open1
database=mydb schema=myschema;
%indb2_publish_formats(fmtcat= fmtlib.fmtcat);

This sequence of macros generates .c and .h files for each data type. The format data
types that are supported are numeric (FLOAT, INT), character, date, time, and timestamp
(DATETIME). The %INDB2_PUBLISH_FORMATS macro also produces a text file of
DB2 CREATE FUNCTION commands that are similar to these:

CREATE FUNCTION sas_put(float , varchar(256))
RETURNS VARCHAR(256)
LANGUAGE C
PARAMETER STYLE npsgeneric
CALLED ON NULL INPUT
EXTERNAL CLASS NAME 'Csas_putn'
EXTERNAL HOST OBJECT '/tmp/tempdir_20090528T135753_616784/formal5.o_x86'
EXTERNAL NSPU OBJECT '/tmp/tempdir_20090528T135753_616784/formal5.o_diab_ppc'

After it is installed, you can call the SAS_PUT() function in DB2 by using SQL. For
more information, see “Using the SAS_PUT() Function in the DB2 Database” on page
226.

Publishing SAS Formats in DB2 225

Using the SAS_PUT() Function in the DB2
Database

Implicit Use of the SAS_PUT() Function

Mapping PUT Function Calls to SAS_PUT()
After you install the formats that SAS supplies in libraries inside the DB2 database and
publish any custom format definitions that you created in SAS, you can access the
SAS_PUT() function with your SQL queries.

If the SQLMAPPUTTO= system option is set to SAS_PUT and you submit your
program from a SAS session, the SAS SQL processor maps PUT function calls to
SAS_PUT() function references that DB2 understands.

This example illustrates how the PUT function is mapped to the SAS_PUT() function
using implicit pass-through. The SELECT DISTINCT clause executes inside DB2, and
the processing is distributed across all available data nodes. DB2 formats the sales
values with the $DOLLAR12.2 format and processes the SELECT DISTINCT clause
using the formatted values.

%let mapconn=user=sas1 password=sas31 database=indb;
libname dblib db2 &mapconn;

data dblib.shoes;
set sashelp.shoes;
run;

options sastrace=',,,d' sastraceloc=saslog;

proc sql noerrorstop;
title 'Test SAS_PUT using Implicit PassThru/LIBNAME ';
select distinct
 PUT(SALES, Dollar8.2)AS SALES_C from dblib.SHOES;
quit;

These lines are written to the SAS log.

1726 options sastrace=',,,d' sastraceloc=saslog;
1727
1728 proc sql noerrorstop;
1729 title 'Test SAS_PUT using Implicit PassThru/LIBNAME ';
1730 select distinct
1731 PUT(SALES, Dollar8.2)AS SALES_C from dblib.SHOES;
DB2: AUTOCOMMIT turned ON for connection id 0 1854 1309265953 setconlo 0 SQL
 1855 1309265953 du_prep 0 SQL
DB2_363: Prepared: on connection 0 1856 1309265953 du_prep 0 SQL
SELECT * FROM SHOES FOR READ ONLY 1857 1309265953 du_prep 0 SQL
 1858 1309265953 du_prep 0 SQL
DB2: COMMIT performed on connection 0. 1859 1309265953 du_comm 0 SQL
 1860 1309265953 du_prep 0 SQL
DB2_364: Prepared: on connection 0 1861 1309265953 du_prep 0 SQL
 select distinct cast(SAS_PUT(TXT_1."SALES", 'DOLLAR8.2') as char(8))
 as SALES_C from SHOES TXT_1

226 Chapter 18 • Deploying and Using SAS Formats in DB2 under UNIX

FOR READ ONLY 1862 1309265953 du_prep 0 SQL
 1863 1309265953 du_prep 0 SQL
DB2: COMMIT performed on connection 0. 1864 1309265953 du_comm 0 SQL
 1865 1309265953 du_exec 0 SQL
DB2_365: Executed: on connection 0 1866 1309265953 du_exec 0 SQL
Prepared statement DB2_364 1867 1309265953 du_exec 0 SQL
 1868 1309265953 du_exec 0 SQL
ACCESS ENGINE: SQL statement was passed to the DBMS for fetching data.
 1869 1309265953 fetch 0
SQL
1732 quit;

Considerations with Implicit Use of SAS_PUT()
Be aware of these items:

• The SQLMAPPUTTO= system option must be set to SAS_PUT. This ensures that
the SQL processor maps your PUT functions to the SAS_PUT() function and that
the SAS_PUT() reference is passed through to DB2.

• The SAS SQL processor translates the PUT function in the SQL SELECT statement
into a reference to the SAS_PUT() function.

select distinct cast(sas_put("dblib"."shoes"."SALES", 'DOLLAR12.2')
 as char(12)) as "SALES_C" from "dblib"."shoes"

A large value, VARCHAR(n), is always returned because one function prototype
accesses all formats. Use the CAST expression to reduce the width of the returned
column to be a character width that is reasonable for the format that is being used.

The return text cannot contain a binary zero value (hexadecimal 00) because the
SAS_PUT() function always returns a VARCHAR(n) data type and a DB2
VARCHAR(n) is defined to be a null-terminated string.

Explicit Use of the SAS_PUT() Function

Using the SAS_PUT() Function in an SQL Query
If you use explicit pass-through (direct connection to DB2), you can use the
SAS_PUT() function call in your SQL program.

This example shows the same query from “Implicit Use of the SAS_PUT() Function”
on page 226 and explicitly uses the SAS_PUT() function call.

%let mapconn=user=sasts password=xxxx database=indb;
libname dblib db2 &mapconn;

data dblib.shoes;
set sashelp.shoes;
run;

options sastrace=',,,d' sastraceloc=saslog;

proc sql noerrorstop;
title 'Test SAS_PUT using Explicit Passthru ';
connect to db2 (user=sas3 password=sas31 database=indb);
select * from connection to db2
 (select distinct (sas_put("SALES",'DOLLAR12.2')) as "SALES_C" from SHOES);
disconnect from db2;

Using the SAS_PUT() Function in the DB2 Database 227

quit;

The following lines are written to the SAS log.

1733
1734 proc sql noerrorstop;
1735 title 'Test SAS_PUT using Explicit Passthru ';
1736 connect to db2 (user=db2 password=XXXXXXXXXXXX database=indb);
DB2: AUTOCOMMIT is YES for connection 4 1870 1309265953 ducon 0 SQL
1737 select * from connection to db2
1738 (select distinct (sas_put("SALES",'DOLLAR12.2')) as "SALES_C" from
SHOES);
 1871 1309265953 du_prep 0 SQL
DB2_366: Prepared: on connection 4 1872 1309265953 du_prep 0 SQL
select distinct (sas_put("SALES",'DOLLAR12.2')) as "SALES_C" from SHOES 1873
1309265953 du_prep 0
SQL
 1874 1309265953 du_prep 0 SQL
DB2: COMMIT performed on connection 4. 1875 1309265953 du_comm 0 SQL
 1876 1309265953 du_exec 0 SQL
DB2_367: Executed: on connection 4 1877 1309265953 du_exec 0 SQL
Prepared statement DB2_366 1878 1309265953 du_exec 0 SQL
 1879 1309265953 du_exec 0 SQL
1739 disconnect from db2;
1740 quit;

Considerations with Explicit Use of SAS_PUT()
If you explicitly use the SAS_PUT() function in your code, it is recommended that you
use double quotation marks around a column name to avoid any ambiguity with the
keywords. For example, if you did not use double quotation marks around the column
name, DATE, in this example, all date values would be returned as today's date.

select distinct
 cast(sas_put("sales", 'dollar12.2') as char(12)) as "sales_c",
 from shoes;

DB2 Permissions
You must have DB2 user permissions to execute the SAS publishing macros to publish
the SAS_PUT() and format functions. Some of these permissions are as follows.

• EXECUTE user permission for functions that were published by another user

• READ user permission to read the SASUDF_COMPILER_PATH and
SASUDF_DB2PATH global variables

• CREATE_EXTERNAL_ROUTINE user permission to the database to create
functions

• CREATEIN user permission for the schema in which the SAS_PUT() and format
functions are published if a nondefault schema is used

• CREATE_NOT_FENCED_ROUTINE user permission to create functions that are
not fenced

228 Chapter 18 • Deploying and Using SAS Formats in DB2 under UNIX

Permissions must be granted for each user that needs to publish the SAS_PUT() and
format functions and for each database that the format publishing uses. Without these
permissions, publishing of the SAS_PUT() and format functions fail.

The person who can grant the permissions and the order in which permissions are
granted is important. For complete information and examples, see the installation and
configuration instructions in the SAS In-Database Products: Administrator's Guide.

DB2 Permissions 229

230 Chapter 18 • Deploying and Using SAS Formats in DB2 under UNIX

Chapter 19

Deploying and Using SAS
Formats in Greenplum

User-Defined Formats in the Greenplum Database . 231

Publishing SAS Formats in Greenplum . 231
Overview of the Publishing Process . 231
Running the %INDGP_PUBLISH_FORMATS Macro . 232
INDCONN Macro Variable . 233
%INDGP_PUBLISH_FORMATS Macro Syntax . 234
Format Publishing Macro Example . 236

Using the SAS_PUT() Function in Greenplum . 236
Implicit Use of the SAS_PUT() Function . 236
Explicit Use of the SAS_PUT() Function . 238

Greenplum Permissions . 238

User-Defined Formats in the Greenplum Database
You can use PROC FORMAT to create user-defined formats and store them in a format
catalog. You can then use the %INDGP_PUBLISH_FORMATS macro to export the
user-defined format definitions to the Greenplum database where the SAS_PUT()
function can reference them.

For more information about the %INDGP_PUBLISH_FORMATS macro, see
“Publishing SAS Formats in Greenplum” on page 231. For more information about the
SAS_PUT() function, see “Using the SAS_PUT() Function in Greenplum” on page
236.

Publishing SAS Formats in Greenplum

Overview of the Publishing Process
The SAS publishing macros are used to publish formats and the SAS_PUT() function
in Greenplum.

The %INDGP_PUBLISH_FORMATS macro creates the files that are needed to build
the SAS_PUT() function and publishes those files to the Greenplum database.

231

This macro also makes many formats that SAS supplies available inside Greenplum. In
addition to formats that SAS supplies, you can publish the PROC FORMAT definitions
that are contained in a single SAS format catalog by using the FMTCAT= option. The
process of publishing a PROC FORMAT catalog entry converts the value-range-set(s)
into embedded data in Greenplum.

The %INDGP_PUBLISH_FORMATS macro performs the following tasks:

• produces the set of .c and .h files that are necessary to build the SAS_PUT()
function

• produces a script of the Greenplum commands that are necessary to register the
SAS_PUT() function in the Greenplum database

• transfers the .c and .h files to Greenplum

• calls the SAS_COMPILEUDF function to compile the source files into object files
and links to the SAS Formats Library

• calls the SAS_COPYUDF function to copy the new object files to
full-path-to-pkglibdir/SAS on the whole database array (master and all
segments) , where full-path-to-pkglibdir is the path that was defined during
installation.

• uses the SAS/ACCESS Interface to Greenplum to run the script to publish the
SAS_PUT() function to the Greenplum database

The SAS_PUT() function is registered in Greenplum with shared object files that are
loaded at run time. These functions must be stored in a permanent location. The SAS
object files and the SAS Formats Library are stored in the
full-path-to-pkglibdir/SAS directory on all nodes, where
full-path-to-pkglibdir is the path that was defined during installation.

Greenplum caches the object files within a session.

Note: You can publish format functions with the same name in multiple databases and
schemas. Because all format object files are stored in the
full-path-to-pkglibdir/SAS directory, the publishing macro uses the
database, schema, and model name as the object filename to avoid potential naming
conflicts.

Running the %INDGP_PUBLISH_FORMATS Macro
To run the %INDGP_PUBLISH_FORMATS macro, follow these steps:

1. Start SAS and submit one of the following commands in the Program Editor or the
Enhanced Editor:

%let indconn = user=youruserid password=yourpwd dsn=yourdsn schema=yourschema;

%let indconn = user=youruserid password=yourpwd
 database=yourdb server=yourserver schema=yourschema;

For more information, see the “INDCONN Macro Variable” on page 233.

2. Run the %INDGP_PUBLISH_FORMATS macro.

For more information, see “%INDGP_PUBLISH_FORMATS Macro Syntax” on
page 234.

Messages are written to the SAS log that indicate whether the SAS_PUT() function
and format functions were successfully created.

232 Chapter 19 • Deploying and Using SAS Formats in Greenplum

INDCONN Macro Variable
The INDCONN macro variable is used as credentials to connect to Greenplum. You
must specify the user, password, and either a DSN name or a server and database name.
The schema name is optional. You must assign the INDCONN macro variable before the
%INDGD_PUBLISH_FORMATS macro is invoked.

The value of the INDCONN macro variable for the %INDGP_PUBLISH_FORMATS
macro has one of these formats:

USER=username PASSWORD=password DSN=dsnname <SCHEMA=schemaname>
<PORT=port-number>
USER=username PASSWORD=password SERVER=servername
DATABASE=databasename <SCHEMA=schemaname> <PORT=port-number>

Arguments

USER=username
specifies the Greenplum user name (also called the user ID) that is used to connect to
the database.

PASSWORD=password
specifies the password that is associated with your Greenplum user ID.

Tip Use only PASSWORD=, PASS=, or PW= for the password argument. PWD= is
not supported and causes an error.

DSN=datasourcename
specifies the configured Greenplum ODBC data source to which you want to
connect.

Requirement You must specify either the DSN= argument or the SERVER= and
DATABASE= arguments in the INDCONN macro variable.

SERVER=servername
specifies the Greenplum server name or the IP address of the server host.

Requirement You must specify either the DSN= argument or the SERVER= and
DATABASE= arguments in the INDCONN macro variable.

DATABASE=databasename
specifies the Greenplum database that contains the tables and views that you want to
access.

Requirement You must specify either the DSN= argument or the SERVER= and
DATABASE= arguments in the INDCONN macro variable.

SCHEMA=schemaname
specifies the schema name for the database.

Tip If you do not specify a value for the SCHEMA argument, the value of the
USER argument is used as the schema name. The schema must be created by
your database administrator.

PORT=port-number
specifies the psql port number.

Default 5432

Publishing SAS Formats in Greenplum 233

Requirement The server-side installer uses psql, and psql default port is 5432. If
you want to use another port, you must have the UNIX or database
administrator change the psql port.

T I P The INDCONN macro variable is not passed as an argument to the
%INDGP_PUBLISH_FORMATS macro. This information can be concealed in your
SAS job. You might want to place it in an autoexec file and set the permissions on
the file so that others cannot access the user ID and password.

%INDGP_PUBLISH_FORMATS Macro Syntax
%INDGP_PUBLISH_FORMATS

(<DATABASE=database-name>
<, FMTCAT=format-catalog-filename>
<, FMTTABLE=format-table-name>
<, ACTION=CREATE | REPLACE | DROP>
<, OUTDIR=diagnostic-output-directory>
);

Arguments

DATABASE=database-name
specifies the name of a Greenplum database to which the SAS_PUT() function and
the format functions are published.

Restriction If you specify DSN= in the INDCONN macro variable, do not use the
DATABASE argument.

Interaction The database that is specified by the DATABASE= argument takes
precedence over the database that you specify in the INDCONN macro
variable. For more information, see “Running the
%INDGP_PUBLISH_FORMATS Macro” on page 232.

FMTCAT=format-catalog-filename
specifies the name of the format catalog file that contains all user-defined formats
that were created by the FORMAT procedure and are made available in Greenplum.

Defaults If you do not specify a value for FMTCAT= and you have created
user-defined formats in your SAS session, the default is
WORK.FORMATS.

If you do not specify a value for FMTCAT= and you have not created
any user-defined formats in your SAS session, only the formats that
SAS supplies are available in Greenplum.

Interactions If the format definitions that you want to publish exist in multiple
catalogs, you must copy them into a single catalog for publishing.

If you do not use the default catalog name (FORMATS) or the default
library (WORK or LIBRARY) when you create user-defined formats,
you must use the FMTSEARCH system option to specify the location
of the format catalog. For more information, see PROC FORMAT in
the Base SAS Procedures Guide.

234 Chapter 19 • Deploying and Using SAS Formats in Greenplum

FMTTABLE=format-table-name
specifies the name of the Greenplum table that contains all formats that the
%INDGP_PUBLISH_FORMATS macro creates and that the SAS_PUT() function
supports. The format table contains the columns shown in following table.

Table 19.1 Format Table Columns

Column Name Description

FMTNAME specifies the name of the format.

SOURCE specifies the origin of the format. SOURCE can contain one of these
values:

SAS
supplied by SAS

PROCFMT
User-defined with PROC FORMAT

Default If FMTTABLE is not specified, no table is created. You can see only
the SAS_PUT() function. You cannot see the formats that are
published by the macro.

Interaction If ACTION=CREATE or ACTION=DROP is specified, messages are
written to the SAS log that indicate the success or failure of the table
creation or drop.

ACTION=CREATE | REPLACE | DROP
specifies that the macro performs one of these actions:

CREATE
creates the SAS_PUT() function.

REPLACE
overwrites the current SAS_PUT() function, if a SAS_PUT() function is
already registered.

DROP
causes the SAS_PUT() function to be dropped from the Greenplum database.

Default CREATE

Tip If the SAS_PUT() function has been previously defined and you specify
ACTION=CREATE, you receive warning messages from Greenplum. If
the function has been previously defined and you specify
ACTION=REPLACE, no warnings are issued.

OUTDIR=diagnostic-output-directory
specifies a directory that contains diagnostic files.

Files that are produced include an event log that contains detailed information about
the success or failure of the publishing process.

See “Special Characters in Directory Names” on page 200

Publishing SAS Formats in Greenplum 235

Format Publishing Macro Example
%let indconn = user=user1 password=xxxx dsn=dsnx34 schema=block;
%indgp_publish_formats(fmtcat=work.formats);

This sequence of macros generates a .c and a .h files for each data type. The format data
types that are supported are numeric (FLOAT, INT), character, date, time, and timestamp
(DATETIME). The %INDGP_PUBLISH_FORMATS macro also produces a text file of
Greenplum CREATE FUNCTION commands that are similar to these:

CREATE OR REPLACE FUNCTION dbitest.homeeq_5_em_classification
(
float8,
float8,
float8,
float8,
float8,
varchar(32),
float8,
float8,
varchar(32),
float8,
float8
)
RETURNS varchar(33)
AS '/usr/local/greenplum-db-3.3.4.0/lib/postgresql/SAS/sample_dbitest_homeeq_5.so',
 'homeeq_5_em_classification'

After it is installed, you can use SQL to call the SAS_PUT() function in Greenplum.
For more information, see “Using the SAS_PUT() Function in Greenplum” on page
236.

Using the SAS_PUT() Function in Greenplum

Implicit Use of the SAS_PUT() Function

Mapping PUT Function Calls to SAS_PUT()
After you install the formats that SAS supplies in libraries inside the Greenplum data
warehouse and publish any custom format definitions that you created in SAS, you can
access the SAS_PUT() function with your SQL queries.

If the SQLMAPPUTTO= system option is set to SAS_PUT (the default) and you submit
your program from a SAS session, the SAS SQL processor maps PUT function calls to
SAS_PUT() function references that Greenplum understands.

This example illustrates how the PUT function is mapped to the SAS_PUT() function
using implicit pass-through. The SELECT DISTINCT clause executes inside
Greenplum, and the processing is distributed across all available data nodes. Greenplum
formats the id values with the ANIMAL 20.0 format and processes the SELECT
DISTINCT clause using the formatted values.

/* implicit pass-thru query */
options sqlgeneration=dbms sqlreduceput=none;

236 Chapter 19 • Deploying and Using SAS Formats in Greenplum

options sastrace=',,,d' sastraceloc=saslog
 sql_ip_trace=(note,source) msglevel=i;

proc sql noerrorstop reduceput=none details="reduce_put_bench$";
create table fmt_ipout as
 select distinct id, put(a,ANIMAL.) len=50 as fmtresult
 from dblib.sample ;
quit;
options sastrace=',,,,'
 sql_ip_trace=none msglevel=n;

This is a partial listing of the lines that are written to the SAS log.

/*
GREENPL_1: Prepared:
SELECT * FROM SAMPLE FOR READ ONLY

NOTE: XOG: Put Ping Query
NOTE: SELECT SAS_PUT('ANIMAL', '$IS-INTRINSIC') AS X, SAS_PUT('ANIMAL',
 '$FMT-META') AS Y FROM (SELECT COUNT(*) AS C FROM SAMPLE WHERE 0=1)

GREENPL_2: Prepared:
select distinct TXT_1."id", cast(SAS_PUT(TXT_1."a", 'ANIMAL20.0') as char(20))
 as fmtresult from SAMPLE TXT_1

SQL_IP_TRACE: pushdown attempt # 1
SQL_IP_TRACE: passed down query:
select distinct TXT_1."id", cast(SAS_PUT(TXT_1."a", 'ANIMAL20.0') as char(20))
 as fmtresult from SAMPLE TXT_1
SQL_IP_TRACE: The SELECT statement was passed to the DBMS.

GREENPL_3: Executed:
Prepared statement GREENPL_2

ACCESS ENGINE: SQL statement was passed to the DBMS for fetching data.
*/

Considerations with Implicit Use of SAS_PUT()
Be aware of these items:

• The SQLMAPPUTTO= system option must be set to SAS_PUT. This ensures that
the SQL processor maps your PUT functions to the SAS_PUT() function and that
the SAS_PUT() reference is passed through to Greenplum.

• The SAS SQL processor translates the PUT function in the SQL SELECT statement
into a reference to the SAS_PUT() function.

select distinct TXT_1."id",
 cast(SAS_PUT(TXT_1."a", 'ANIMAL20.0') as char(20)) as fmtresult
 from SAMPLE TXT_1

A large value, VARCHAR(n), is always returned because one function prototype
accesses all formats. Use the CAST expression to reduce the width of the returned
column to be a character width that is reasonable for the format that is being used.

The return text cannot contain a binary zero value (hexadecimal 00) because the
SAS_PUT() function always returns a VARCHAR(n) data type and a Greenplum
VARCHAR(n) is defined to be a null-terminated string.

Using the SAS_PUT() Function in Greenplum 237

Explicit Use of the SAS_PUT() Function

Using the SAS_PUT() Function in an SQL Query
If you use explicit pass-through (direct connection to Greenplum), you can use the
SAS_PUT() function call in your SQL program.

This example shows the same query from “Implicit Use of the SAS_PUT() Function”
on page 236 and explicitly uses the SAS_PUT() function call.

options sastrace=',,,d' sastraceloc=saslog
 sql_ip_trace=(note,source) msglevel=i;

proc sql noerrorstop;
connect to greenplm (&exconn) ;
create table fmt_epout as
select * from connection to greenplm (
select id, sas_put(a,'ANIMAL') as FMTRESULT
from sample
);
quit;
options sastrace=',,,,'
 sql_ip_trace=none msglevel=n;

This is a partial listing of the lines that are written to the SAS log.

/*
GREENPL_4: Prepared:
select id, sas_put(a,'ANIMAL') as FMTRESULT from sample

GREENPL_5: Executed:
Prepared statement GREENPL_4
*/

Considerations with Explicit Use of SAS_PUT()
If you explicitly use the SAS_PUT() function in your code, it is recommended that you
use double quotation marks around a column name to avoid any ambiguity with the
keywords. For example, if you did not use double quotation marks around the column
name, DATE, in this example, all date values would be returned as today's date.

select distinct
 cast(sas_put("id", 'animal20.0') as char(20)) as "id",
 from sample;

Greenplum Permissions
You must have Greenplum superuser permissions to execute the
%INDGP_PUBLISH_FORMATS macro that publishes the SAS_PUT() function and
the format functions. Greenplum requires superuser permissions to create C functions in
the database.

Without these permissions, the publishing of the SAS_PUT() function and user-defined
formats fails. To obtain these permissions, contact your database administrator.

238 Chapter 19 • Deploying and Using SAS Formats in Greenplum

For more information about specific permissions, see the SAS In-Database Products:
Administrator's Guide.

Greenplum Permissions 239

240 Chapter 19 • Deploying and Using SAS Formats in Greenplum

Chapter 20

Deploying and Using SAS
Formats in Netezza

User-Defined Formats in the Netezza Data Warehouse . 241
Introduction to User-Defined Formats in Netezza . 241
Netezza Considerations and Limitations When Using the FMTCAT= Options . . . 241

Publishing SAS Formats in Netezza . 242
Overview of the Publishing Process . 242
Running the %INDNZ_PUBLISH_FORMATS Macro . 242
INDCONN Macro Variable . 243
%INDNZ_PUBLISH_FORMATS Macro Syntax . 243
Modes of Operation . 246
Format Publishing Macro Example . 246

Using the SAS_PUT() Function in the Netezza Data Warehouse 247
Implicit Use of the SAS_PUT() Function . 247
Explicit Use of the SAS_PUT() Function . 249

Netezza Permissions . 250

User-Defined Formats in the Netezza Data
Warehouse

Introduction to User-Defined Formats in Netezza
You can use PROC FORMAT to create user-defined formats and store them in a format
catalog. You can then use the %INDNZ_PUBLISH_FORMATS macro to export the
user-defined format definitions to the Netezza data warehouse where the SAS_PUT()
function can reference them.

For more information about the %INDNZ_PUBLISH_FORMATS macro, see
“Publishing SAS Formats in Netezza” on page 242. For more information about the
SAS_PUT() function, see “Using the SAS_PUT() Function in the Netezza Data
Warehouse ” on page 247.

Netezza Considerations and Limitations When Using the FMTCAT=
Options

If you use the FMTCAT= option to specify a format catalog in the
%INDNZ_PUBLISH_FORMATS macro, the following limitations apply if you are
using a character set encoding other than Latin 1:

241

• Picture formats are not supported. The picture format supports only Latin 1
characters.

• If the format value's encoded string is longer than 256 bytes, the string is truncated
and a warning is printed to the SAS log.

Publishing SAS Formats in Netezza

Overview of the Publishing Process
The SAS publishing macros are used to publish formats and the SAS_PUT() function
in Netezza.

The %INDNZ_PUBLISH_FORMATS macro creates the files that are needed to build
the SAS_PUT() function and publishes those files to the Netezza data warehouse.

This macro also makes many formats that SAS supplies available inside Netezza. In
addition to formats that SAS supplies, you can also publish the PROC FORMAT
definitions that are contained in a single SAS format catalog by using the FMTCAT=
option. The process of publishing a PROC FORMAT catalog entry converts the value-
range-set(s) into embedded data in Netezza.

The %INDNZ_PUBLISH_FORMATS macro performs the following tasks:

• produces the set of .c, .cpp, and .h files that are necessary to build the SAS_PUT()
function

• produces a script of the Netezza commands that are necessary to register the
SAS_PUT() function on the Netezza data warehouse

• transfers the .c, .cpp, and .h files to Netezza using the Netezza External Table
interface

• calls the SAS_COMPILEUDF function to compile the source files into object files
and to access the SAS Formats Library for Netezza

• uses SAS/ACCESS Interface to Netezza to run the script to create the SAS_PUT()
function with the object files

Running the %INDNZ_PUBLISH_FORMATS Macro
To run the %INDNZ_PUBLISH_FORMATS macro, complete the following steps:

1. Start SAS and submit this command in the Program or Enhanced Editor:

%let indconn = server=myserver user=myuserid password=XXXX
 database=mydb <serveruserid=myserveruserid>;

For more information, see the “INDCONN Macro Variable” on page 243.

2. Run the %INDNZ_PUBLISH_FORMATS macro.

For more information, see “%INDNZ_PUBLISH_FORMATS Macro Syntax” on
page 243.

Messages are written to the SAS log that indicate whether the SAS_PUT() function
was successfully created.

242 Chapter 20 • Deploying and Using SAS Formats in Netezza

INDCONN Macro Variable
The INDCONN macro variable is used as credentials to connect to Netezza. You must
specify the server, user, password, and database information to access the machine on
which you have installed the Netezza data warehouse. You must assign the INDCONN
macro variable before the %INDNZ_PUBLISH_FORMATS macro is invoked.

Here is the syntax for the value of the INDCONN macro variable:

SERVER=server USER=userid PASSWORD=password DATABASE=database

Arguments

SERVER=server
specifies the Netezza server name or the IP address of the server host.

USER=user
specifies the Netezza user name (also called the user ID) that is used to connect to
the database.

PASSWORD=password
specifies the password that is associated with your Netezza user ID.

Tip Use only PASSWORD=, PASS=, or PW= for the password argument. PWD= is
not supported and causes an error to occur.

DATABASE=database
specifies the Netezza database that contains the tables and views that you want to
access.

T I P The INDCONN macro variable is not passed as an argument to the
%INDNZ_PUBLISH_FORMATS macro. This information can be concealed in your
SAS job. You might want to place it in an autoexec file and set the permissions on
the file so that others cannot access the user ID and password.

%INDNZ_PUBLISH_FORMATS Macro Syntax

%INDNZ_PUBLISH_FORMATS
(<DATABASE=database-name>

<. DBCOMPILE=database-name>
<, DBJAZLIB=database-name>
<, FMTCAT=format-catalog-filename>
<, FMTTABLE=format-table-name>
<, ACTION=CREATE | REPLACE | DROP>
<, MODE=FENCED | UNFENCED>
<, OUTDIR=diagnostic-output-directory>
);

Arguments

DATABASE=database-name
specifies the name of a Netezza database to which the SAS_PUT() function and the
formats are published. This argument lets you publish the SAS_PUT() function and
the formats to a shared database where other users can access them.

Interaction The database that is specified by the DATABASE= argument takes
precedence over the database that you specify in the INDCONN macro

Publishing SAS Formats in Netezza 243

variable. For more information, see “Running the
%INDNZ_PUBLISH_FORMATS Macro” on page 242.

Tip It is not necessary that the format definitions and the SAS_PUT()
function reside in the same database as the one that contains the data
that you want to format. You can use the SQLMAPPUTO= system
option to specify the database where the format definitions and the
SAS_PUT() function have been published.

DBCOMPILE=database-name
specifies the name of the database where the SAS_COMPILEUDF function was
published.

Default SASLIB

See For more information about the publishing the SAS_COMPILEUDF
function, see the SAS In-Database Products: Administrator's Guide.

DBJAZLIB=database-name
specifies the name of the database where the SAS Formats Library for Netezza was
published.

Default SASLIB

Restriction This argument is supported only on TwinFin systems.

See For more information about publishing the SAS Formats Library for
Netezza, see the SAS In-Database Products: Administrator's Guide.

FMTCAT=format-catalog-filename
specifies the name of the format catalog file that contains all user-defined formats
that were created with the FORMAT procedure and are made available in Netezza.

Default If you do not specify a value for FMTCAT= and you have created user-
defined formats in your SAS session, the default is WORK.FORMATS.
If you do not specify a value for FMTCAT= and you have not created
any user-defined formats in your SAS session, only the formats that
SAS supplies are available in Netezza.

Interaction If the format definitions that you want to publish exist in multiple
catalogs, you must copy them into a single catalog for publishing.

See “Netezza Considerations and Limitations When Using the FMTCAT=
Options” on page 241

FMTTABLE=format-table-name
specifies the name of the Netezza table that contains all formats that the
%INDNZ_PUBLISH_FORMATS macro creates and that the SAS_PUT() function
supports. The format table contains the columns shown in the following table.

Table 20.1 Format Table Columns

Column Name Description

FMTNAME specifies the name of the format.

244 Chapter 20 • Deploying and Using SAS Formats in Netezza

Column Name Description

SOURCE specifies the origin of the format. SOURCE can contain one of these
values:

SAS
supplied by SAS

PROCFMT
User-defined with PROC FORMAT

Default If FMTTABLE is not specified, no table is created. You can see only
the SAS_PUT() function. You cannot see the formats that are
published by the macro.

Interaction If ACTION=CREATE or ACTION=DROP is specified, messages are
written to the SAS log that indicate the success or failure of the table
creation or drop.

ACTION=CREATE | REPLACE | DROP
specifies that the macro performs one of these actions:

CREATE
creates a new SAS_PUT() function.

REPLACE
overwrites the current SAS_PUT() function, if a SAS_PUT() function is
already registered or creates a new SAS_PUT() function if one is not registered.

DROP
causes the SAS_PUT() function to be dropped from the Netezza database.

Interaction If FMTTABLE= is specified, both the SAS_PUT() function and
the format table are dropped. If the table name cannot be found or is
incorrect, only the SAS_PUT() function is dropped.

Default CREATE

Tip If the SAS_PUT() function was published previously and you specify
ACTION=CREATE, you receive warning messages that the function
already exists and you are prompted to use REPLACE. If you specify
ACTION=DROP and the function does not exist, an error message is
issued.

MODE= FENCED | UNFENCED
specifies whether running the code is isolated in a separate process in the Netezza
database so that a program fault does not cause the database to stop.

Default FENCED

Restriction The MODE= argument is supported for Netezza 6.0. The MODE
argument is ignored for previous versions of Netezza.

Tip There are limited resources available in Netezza when you run in
fenced mode. For example, there is a limit to the number of columns
available.

Publishing SAS Formats in Netezza 245

See “Modes of Operation” on page 246

OUTDIR=diagnostic-output-directory
specifies a directory that contains diagnostic files.

Files that are produced include an event log that contains detailed information about
the success or failure of the publishing process.

See “Special Characters in Directory Names” on page 200

Modes of Operation
The %INDNZ_PUBLISH_FORMATS macro has two modes of operation: fenced and
unfenced. You specify the mode by setting the MODE= argument.

The default mode of operation is fenced. Fenced mode means that the format that is
published is isolated in a separate process in the Netezza database when it is invoked. An
error does not cause the database to stop. It is recommended that you publish the format
in fenced mode during acceptance tests.

When the format is ready for production, you can run the macro to publish the format in
unfenced mode. You could see a performance advantage if the format is published in
unfenced mode.

Note: The MODE= argument is supported for Netezza 6.0. The MODE argument is
ignored for previous versions of Netezza.

Format Publishing Macro Example
%let indconn = server=netezbase user=user1 password=xxxx
database=mydb;
%indnz_publish_formats(fmtcat= fmtlib.fmtcat);

This sequence of macros generates .c, .cpp, and .h files for each data type. The format
data types that are supported are numeric (FLOAT, INT), character, date, time, and
timestamp (DATETIME). The %INDNZ_PUBLISH_FORMATS macro also produces a
text file of Netezza CREATE FUNCTION commands that are similar to these:

CREATE FUNCTION sas_put(float , varchar(256))
RETURNS VARCHAR(256)
LANGUAGE CPP
PARAMETER STYLE npsgeneric
CALLED ON NULL INPUT
EXTERNAL CLASS NAME 'Csas_putn'
EXTERNAL HOST OBJECT '/tmp/tempdir_20090528T135753_616784/formal5.o_x86'
EXTERNAL NSPU OBJECT '/tmp/tempdir_20090528T135753_616784/formal5.o_diab_ppc'

After it is installed, you can call the SAS_PUT() function in Netezza by using SQL. For
more information, see “Using the SAS_PUT() Function in the Netezza Data
Warehouse ” on page 247.

246 Chapter 20 • Deploying and Using SAS Formats in Netezza

Using the SAS_PUT() Function in the Netezza
Data Warehouse

Implicit Use of the SAS_PUT() Function

Mapping PUT Function Calls to SAS_PUT()
After you install the formats that SAS supplies in libraries inside the Netezza data
warehouse and publish any custom format definitions that you created in SAS, you can
access the SAS_PUT() function with your SQL queries.

If the SQLMAPPUTTO= system option is set to SAS_PUT and you submit your
program from a SAS session, the SAS SQL processor maps PUT function calls to
SAS_PUT() function references that Netezza understands.

This example illustrates how the PUT function is mapped to the SAS_PUT() function
using implicit pass-through. The SELECT DISTINCT clause executes inside Netezza,
and the processing is distributed across all available data nodes. Netezza formats the
price values with the $DOLLAR8.2 format and processes the SELECT DISTINCT
clause using the formatted values.

options sqlmapputto=sas_put;

%put &mapconn;

libname dblib netezza &mapconn;

 /*-- Set SQL debug global options --*/
 /*----------------------------------*/
 options sastrace=',,,d' sastraceloc=saslog;

 /*-- Execute SQL using Implicit Passthru --*/
 /*---*/
 proc sql noerrorstop;
 title1 'Test SAS_PUT using Implicit Passthru ';
 select distinct
 PUT(PRICE,Dollar8.2) AS PRICE_C
 from dblib.mailorderdemo;

 quit;

These lines are written to the SAS log.

options sqlmapputto=sas_put;

%put &mapconn;
user=dbitext password=xxxx server=spubox database=TESTDB
 sql_functions="EXTERNAL_APPEND=WORK.dbfuncext" sql_functions_copy=saslog;

libname dblib netezza &mapconn;

NOTE: Libref DBLIB was successfully assigned, as follows:
 Engine: NETEZZA
 Physical Name: spubox

Using the SAS_PUT() Function in the Netezza Data Warehouse 247

 /*-- Set SQL debug global options --*/
 /*----------------------------------*/
 options sastrace=',,,d' sastraceloc=saslog;

 /*-- Execute SQL using Implicit Passthru --*/
 /*---*/
 proc sql noerrorstop;
 title1 'Test SAS_PUT using Implicit Passthru ';
 select distinct
 PUT(PRICE,Dollar8.2) AS PRICE_C
 from dblib.mailorderdemo
 ;
NETEZZA: AUTOCOMMIT is NO for connection 1
NETEZZA: AUTOCOMMIT turned ON for connection id 1

NETEZZA_1: Prepared: on connection 1
SELECT * FROM mailorderdemo

NETEZZA: AUTOCOMMIT is NO for connection 2
NETEZZA: AUTOCOMMIT turned ON for connection id 2

NETEZZA_2: Prepared: on connection 2
 select distinct cast(sas_put(mailorderdemo."PRICE", 'DOLLAR8.2') as char(8))
 as PRICE_C from mailorderdemo

NETEZZA_3: Executed: on connection 2
Prepared statement NETEZZA_2

ACCESS ENGINE: SQL statement was passed to the DBMS for fetching data.

 Test SAS_PUT using Implicit Passthru 9
 13:42 Thursday, May 7, 2013

 PRICE_C

 $10.00
 $12.00
 $13.59
 $48.99
 $54.00
 $8.00
 $14.00
 $27.98
 $13.99

 quit;

Considerations with Implicit Use of SAS_PUT()
Be aware of these items:

• The SQLMAPPUTTO= system option must be set to SAS_PUT. This ensures that
the SQL processor maps your PUT functions to the SAS_PUT() function and that
the SAS_PUT() reference is passed through to Netezza.

248 Chapter 20 • Deploying and Using SAS Formats in Netezza

• The SAS SQL processor translates the PUT function in the SQL SELECT statement
into a reference to the SAS_PUT() function.

select distinct cast(sas_put("sas"."mailorderdemo"."PRICE", 'DOLLAR8.2')
 as char(8)) as "PRICE_C" from "sas"."mailorderdemo"

A large value, VARCHAR(n), is always returned because one function prototype
accesses all formats. Use the CAST expression to reduce the width of the returned
column to be a character width that is reasonable for the format that is being used.

The return text cannot contain a binary zero value (hexadecimal 00) because the
SAS_PUT() function always returns a VARCHAR(n) data type and a Netezza
VARCHAR(n) is defined to be a null-terminated string.

Explicit Use of the SAS_PUT() Function

Using the SAS_PUT() Function in an SQL Query
If you use explicit pass-through (direct connection to Netezza), you can use the
SAS_PUT() function call in your SQL program.

This example shows the same query from “Implicit Use of the SAS_PUT() Function”
on page 247 and explicitly uses the SAS_PUT() function call.

options sqlmapputto=sas_put sastrace=',,,d' sastraceloc=saslog;

proc sql noerrorstop;
 title1 'Test SAS_PUT using Explicit Passthru';
 connect to netezza (user=dbitest password=XXXXXXX database=testdb
 server=spubox);

 select * from connection to netezza
 (select distinct cast(sas_put("PRICE",'DOLLAR8.2') as char(8)) as
 "PRICE_C" from mailorderdemo);

disconnect from netezza;
quit;

The following lines are written to the SAS log.

options sqlmapputto=sas_put sastrace=',,,d' sastraceloc=saslog;

proc sql noerrorstop;
 title1 'Test SAS_PUT using Explicit Passthru';
 connect to netezza (user=dbitest password=XXXXXXX database=testdb server=spubox);

 select * from connection to netezza
 (select distinct cast(sas_put("PRICE",'DOLLAR8.2') as char(8)) as
 "PRICE_C" from mailorderdemo);

 Test SAS_PUT using Explicit Passthru 2
 17:13 Thursday, May 7, 2013

 PRICE_C

 $27.98
 $10.00
 $12.00

Using the SAS_PUT() Function in the Netezza Data Warehouse 249

 $13.59
 $48.99
 $54.00
 $13.98
 $8.00
 $14.00

 disconnect from netezza;
 quit;

Considerations with Explicit Use of SAS_PUT()
If you explicitly use the SAS_PUT() function in your code, it is recommended that you
use double quotation marks around a column name to avoid any ambiguity with the
keywords. For example, if you did not use double quotation marks around the column
name, DATE, in this example, all date values would be returned as today's date.

select distinct
 cast(sas_put("price", 'dollar8.2') as char(8)) as "price_c",
 cast(sas_put("date", 'date9.1') as char(9)) as "date_d",
 cast(sas_put("inv", 'best8.') as char(8)) as "inv_n",
 cast(sas_put("name", '$32.') as char(32)) as "name_n"
from mailorderdemo;

Netezza Permissions
You must have permission to create the SAS_PUT() function and formats, and tables in
the Netezza database. You must also have permission to execute the
SAS_COMPILEUDF, SAS_DIRECTORYUDF, and SAS_HEXTOTEXTUDF functions
in either the SASLIB database or the database specified in lieu of SASLIB where these
functions are published.

Without these permissions, the publishing of the SAS_PUT() function and formats
fails. To obtain these permissions, contact your database administrator.

For more information about specific permissions, see the SAS In-Database Products:
Administrator's Guide.

250 Chapter 20 • Deploying and Using SAS Formats in Netezza

Chapter 21

Deploying and Using SAS
Formats in Teradata

User-Defined Formats in the Teradata EDW . 251
Introduction to User-Defined Formats in Teradata . 251
Teradata Limitations and Restrictions When Using the FMTCAT= Option 251

Publishing SAS Formats in Teradata . 252
Overview of the Publishing Process . 252
Running the %INDTD_PUBLISH_FORMATS Macro . 252
INDCONN Macro Variable . 253
%INDTD_PUBLISH_FORMATS Macro Syntax . 253
Modes of Operation . 255
Format Publishing Macro Example . 256

Data Types and the SAS_PUT() Function . 256

Using the SAS_PUT() Function in the Teradata EDW . 258
Implicit Use of the SAS_PUT() Function . 258
Explicit Use of the SAS_PUT() Function . 260
Tips When Using the SAS_PUT() Function in Teradata 261

Teradata Permissions . 261

User-Defined Formats in the Teradata EDW

Introduction to User-Defined Formats in Teradata
You can use PROC FORMAT to create user-defined formats and store them in a format
catalog. You can then use the %INDTD_PUBLISH_FORMATS macro to export the
user-defined format definitions to the Teradata EDW where the SAS_PUT() function
can reference them.

For more information about %INDTD_PUBLISH_FORMATS, see “Publishing SAS
Formats in Teradata” on page 252. For more information about the SAS_PUT()
function, see “Using the SAS_PUT() Function in the Teradata EDW ” on page 258.

Teradata Limitations and Restrictions When Using the FMTCAT=
Option

If you use the FMTCAT= option to specify a format catalog in the
%INDTD_PUBLISH_FORMATS macro and if you use a character set encoding other

251

than Latin 1, picture formats are not supported. The picture format supports only Latin 1
characters.

Publishing SAS Formats in Teradata

Overview of the Publishing Process
The SAS publishing macros are used to publish formats and the SAS_PUT() function
in the Teradata EDW.

The %INDTD_PUBLISH_FORMATS macro creates the files that are needed to build
the SAS_PUT() function and publishes these files to the Teradata EDW.

The %INDTD_PUBLISH_FORMATS macro also publishes the formats that are
included in the SAS formats library. This makes many formats that SAS supplies
available inside Teradata. For more information about the SAS formats library, see
“Deployed Components for Teradata” on page 9.

In addition to formats that SAS supplies, you can also publish the PROC FORMAT
definitions that are contained in a single SAS format catalog by using the FMTCAT=
option. The process of publishing a PROC FORMAT catalog entry converts the value-
range-set(s) into embedded data in Teradata.

Note: If you specify more than one format catalog using the FMTCAT= option, the last
format that you specify is the one that is published. You can have only one formats
library active in the Teradata database.

The %INDTD_PUBLISH_FORMATS macro performs the following tasks:

• creates .h and .c files, which are necessary to build the SAS_PUT() function

• produces a script of Teradata commands that are necessary to register the
SAS_PUT() function in the Teradata EDW

• uses SAS/ACCESS Interface to Teradata to execute the script and publish the files to
the Teradata EDW

Running the %INDTD_PUBLISH_FORMATS Macro
Follow these steps to run the %INDTD_PUBLISH_FORMATS macro.

1. Start SAS and submit this command in the Program or Enhanced Editor:

%let indconn = server="myserver" user="myuserid" password="xxxx"
 database="mydb";

For more information, see the “INDCONN Macro Variable” on page 253.

2. Run the %INDTD_PUBLISH_FORMATS macro.

For more information, see “%INDTD_PUBLISH_FORMATS Macro Syntax” on
page 253.

Messages are written to the SAS log that indicate whether the SAS_PUT() function
was successfully created.

252 Chapter 21 • Deploying and Using SAS Formats in Teradata

INDCONN Macro Variable
The INDCONN macro variable is used as credentials to connect to Teradata. You must
specify the server, user, password, and database information to access the machine on
which you have installed the Teradata EDW. You must assign the INDCONN macro
variable before the %INDTD_PUBLISH_FORMATS macro is invoked.

Here is the syntax for the value of the INDCONN macro variable:

SERVER="server" USER="userid" PASSWORD="password" <DATABASE="database">

Arguments

SERVER="server"
specifies the Teradata server name or the IP address of the server host.

USER="user
specifies the Teradata user name (also called the user ID) that is used to connect to
the database.

PASSWORD="password
specifies the password that is associated with your Teradata user ID.

Tip Use only PASSWORD=, PASS=, or PW= for the password argument. PWD= is
not supported and causes an error to occur.

DATABASE="database"
specifies the Teradata database that contains the tables and views that you want to
access.

Default Your current database

T I P The INDCONN macro variable is not passed as an argument to the
%INDTD_PUBLISH_FORMATS macro. Consequently, this information can be
concealed in your SAS job. You might want to place it in an autoexec file and set the
permissions on the file so that others cannot access the user ID and password.

%INDTD_PUBLISH_FORMATS Macro Syntax

%INDTD_PUBLISH_FORMATS
(<DATABASE=database–name>

<, FMTCAT=format-catalog-filename>
<, FMTTABLE=format-table-name>
<, ACTION=CREATE | REPLACE | DROP>
<, MODE=PROTECTED | UNPROTECTED>
<, OUTDIR=diagnostic-output-directory>
);

Arguments

DATABASE=database-name
specifies the name of a Teradata database to which the SAS_PUT() function and the
formats are published. This argument lets you publish the SAS_PUT() function and
the formats to a shared database where other users can access them.

Default The database specified in the INDCONN macro variable or your
current database

Publishing SAS Formats in Teradata 253

Interaction The database that is specified by the DATABASE= argument takes
precedence over the database that you specify in the INDCONN macro
variable. For more information, see “Running the
%INDTD_PUBLISH_FORMATS Macro” on page 252.

Tip The format definitions and the SAS_PUT() function do not need to
reside in the same database as the one that contains the data that you
want to format. You can use the SQLMAPPUTTO= system option to
specify where the format definitions and the SAS_PUT() function are
published. For more information, see “SQLMAPPUTTO= System
Option” on page 280.

FMTCAT=format-catalog-filename
specifies the name of the format catalog file that contains all user-defined formats
that were created with the FORMAT procedure and are made available in Teradata.

Default If you do not specify a value for FMTCAT= and you have created user-
defined formats in your SAS session, the default is WORK.FORMATS.
If you do not specify a value for FMTCAT= and you have not created
any user-defined formats in your SAS session, only the formats that
SAS supplies are available in Teradata.

Interaction If the format definitions that you want to publish exist in multiple
catalogs, you must copy them into a single catalog for publishing.

FMTTABLE=format–table–name
specifies the name of the Teradata table that contains all formats that the
%INDTD_PUBLISH_FORMATS macro creates and that the SAS_PUT() function
supports. The table contains the columns in the following table.

Table 21.1 Teradata Format Table Columns

Column Name Description

FMTNAME specifies the name of the format.

SOURCE specifies the origin of the format. SOURCE can contain one of these
values:

SAS
supplied by SAS.

PROCFMT
User-defined with PROC FORMAT.

PROTECTED specifies whether the format is protected. PROTECTED can contain
one of these values:

YES
Format was created with the MODE= option set to
PROTECTED.

NO
Format was created with the MODE= option set to
UNPROTECTED.

254 Chapter 21 • Deploying and Using SAS Formats in Teradata

Default If FMTTABLE is not specified, no table is created. You can see only
the SAS_PUT() function. You cannot see the formats that are
published by the macro.

Interaction If ACTION=CREATE or ACTION=DROP is specified, messages are
written to the SAS log that indicate the success or failure of the table
creation or drop.

ACTION=CREATE | REPLACE | DROP
specifies that the macro performs one of these actions:

CREATE
creates a new SAS_PUT() function.

REPLACE
overwrites the current SAS_PUT() function, if a SAS_PUT() function is
already registered or creates a new SAS_PUT() function if one is not registered.

DROP
causes the SAS_PUT() function to be dropped from the Teradata database.

Interaction If FMTTABLE= is specified, both the SAS_PUT() function and
the format table are dropped. If the table name cannot be found or is
incorrect, only the SAS_PUT() function is dropped.

Default CREATE.

Tip If the SAS_PUT() function was defined previously and you specify
ACTION=CREATE, you receive warning messages from Teradata. If the
SAS_PUT() function was defined previously and you specify
ACTION=REPLACE, a message is written to the SAS log indicating that
the SAS_PUT() function has been replaced.

MODE=PROTECTED | UNPROTECTED
specifies whether the running code is isolated in a separate process in the Teradata
database so that a program fault does not cause the database to stop.

Default PROTECTED

Tip Once the SAS formats are validated in PROTECTED mode, you can
republish them in UNPROTECTED mode for a performance gain.

See “Modes of Operation” on page 255

OUTDIR=diagnostic-output-directory
specifies a directory that contains diagnostic files.

Files that are produced include an event log that contains detailed information about
the success or failure of the publishing process.

See “Special Characters in Directory Names” on page 200

Modes of Operation
There are two modes of operation when executing the %INDTD_PUBLISH_FORMATS
macro: protected and unprotected. You specify the mode by setting the MODE=
argument.

Publishing SAS Formats in Teradata 255

The default mode of operation is protected. Protected mode means that the macro code is
isolated in a separate process in the Teradata database, and an error does not cause the
database to stop. It is recommended that you run the %INDTD_PUBLISH_FORMATS
macro in protected mode during acceptance tests.

When the %INDTD_PUBLISH_FORMATS macro is ready for production, you can
rerun the macro in unprotected mode. Note that you could see a performance advantage
when you republish the formats in unprotected mode.

Format Publishing Macro Example
This sequence of macros generates a .c and a .h file for each data type. The format data
types that are supported are numeric (FLOAT, INT), character, date, time, and timestamp
(DATETIME).

%let indconn server="terabase" user="user1" password="open1" database="mydb";
%indtd_publish_formats(fmtcat= fmtlib.fmtcat);

The %INDTD_PUBLISH_FORMATS macro also produces a text file of Teradata
CREATE FUNCTION commands that are similar to these:

CREATE FUNCTION sas_put
(d float, f varchar(64))
RETURNS varchar(256)
SPECIFIC sas_putn
LANGUAGE C
NO SQL
PARAMETER STYLE SQL
NOT DETERMINISTIC
CALLED ON NULL INPUT
EXTERNAL NAME
'SL!"jazxfbrs"'
'!CI!ufmt!C:\file-path\'
'!CI!jazz!C:\file-path\'
'!CS!formn!C:\file-path\';

After it is installed, you can call the SAS_PUT() function in Teradata by using SQL.
For more information, see “Using the SAS_PUT() Function in the Teradata EDW ” on
page 258.

Data Types and the SAS_PUT() Function
The SAS_PUT() function supports direct use of the Teradata data types shown in the
following table. In some cases, the Teradata database performs an implicit conversion of
the input data to the match the input data type that is defined for the SAS_PUT()
function. For example, all compatible numeric data types are implicitly converted to
FLOAT before they are processed by the SAS_PUT() function.

256 Chapter 21 • Deploying and Using SAS Formats in Teradata

Table 21.2 Teradata Data Types Supported by the SAS_PUT() Function

Type of Data Data Type

Numeric BYTEINT

SMALLINT

INTEGER

BIGINT*

DECIMAL (ANSI NUMERIC)*

FLOAT (ANSI REAL or DOUBLE PRECISION)

Date and time DATE

TIME

TIMESTAMP

Character***** CHARACTER†

VARCHAR

LONG VARCHAR

* Numeric precision might be lost when inputs are implicitly converted to FLOAT before they are processed
by the SAS_PUT() function.

** Only the Latin 1 character set is supported for character data. UNICODE is not supported at this time.
*** When character inputs are larger than 256 characters, the results depend on the session mode associated

with the Teradata connection.
† The SAS_PUT() function has a VARCHAR data type for its first argument when the value passed has a

data type of CHARACTER. Therefore, trailing blanks are trimmed in columns with a data type of
CHARACTER when converting to a VARCHAR data type.

The SAS_PUT() function does not support direct use of the Teradata data types shown
in the following table. In some cases, unsupported data types can be explicitly converted
to a supported type by using SAS or SQL language constructs. For information about
performing explicit data conversions, see the topic on data types for Teradata in
SAS/ACCESS for Relational Databases: Reference and your Teradata documentation.

Table 21.3 Teradata Data Types Not Supported by the SAS_PUT() Function

Type of Data Data Type

ANSI date and time INTERVAL

TIME WITH TIME ZONE

TIMESTAMP WITH TIME ZONE

GRAPHIC server character set GRAPHIC

VARGRAPHIC

LONG VARGRAPHIC

Binary and large object CLOB

BYTE

VARBYTE

BLOB

Data Types and the SAS_PUT() Function 257

If an incompatible data type is passed to the SAS_PUT() function, various error
messages can appear in the SAS log including the following messages:

• Function SAS_PUT does not exist

• Data truncation

• SQL syntax error near the location of the first argument in
the SAS_PUT() function call

Using the SAS_PUT() Function in the Teradata
EDW

Implicit Use of the SAS_PUT() Function

Mapping PUT Function Calls to SAS_PUT()
After you install the formats that SAS supplies in libraries inside the Teradata EDW and
publish any custom format definitions that you created in SAS, you can access the
SAS_PUT() function with your SQL queries.

If the SQLMAPPUTTO= system option is set to SAS_PUT and you submit your
program from a SAS session, the SAS SQL processor maps PUT function calls to
SAS_PUT() function references that Teradata understands.

Note: If you specify SQLMAPPUTTO=database.SAS_PUT, database must be the same
as the database where the SAS_PUT function is mapped.

This example illustrates how the PUT function is mapped to the SAS_PUT() function
using implicit pass-through. The SELECT DISTINCT clause executes inside Teradata,
and the processing is distributed across all available data nodes. Teradata formats the
price values with the $DOLLAR8.2 format and processes the SELECT DISTINCT
clause using the formatted values.

options sqlmapputto=sas_put;

libname dblib teradata user="sas" password="sas" server="sl96208"
 database=sas connection=shared;

 /*-- Set SQL debug global options --*/
 /*----------------------------------*/
 options sastrace=',,,d' sastraceloc=saslog;

 /*-- Execute SQL using Implicit Passthru --*/
 /*---*/
 proc sql noerrorstop;
 title1 'Test SAS_PUT using Implicit Passthru ';
 select distinct
 PUT(PRICE,Dollar8.2) AS PRICE_C
 from dblib.mailorderdemo;
 quit;

These lines are written to the SAS log.

libname dblib teradata user="sas" password="sas" server="sl96208"

258 Chapter 21 • Deploying and Using SAS Formats in Teradata

 database=sas connection=shared;

NOTE: Libref DBLIB was successfully assigned, as follows:
 Engine: TERADATA
 Physical Name: sl96208

 /*-- Set SQL debug global options --*/
 /*----------------------------------*/
 options sastrace=',,,d' sastraceloc=saslog;

 /*-- Execute SQL using Implicit Passthru --*/
 /*---*/
 proc sql noerrorstop;
 title1 'Test SAS_PUT using Implicit Passthru ';
 select distinct
 PUT(PRICE,Dollar8.2) AS PRICE_C
 from dblib.mailorderdemo
 ;

TERADATA_0: Prepared: on connection 0
SELECT * FROM sas."mailorderdemo"

TERADATA_1: Prepared: on connection 0
 select distinct cast(sas_put("sas"."mailorderdemo"."PRICE", 'DOLLAR8.2')
 as char(8)) as "PRICE_C" from "sas"."mailorderdemo"

TERADATA: trforc: COMMIT WORK
ACCESS ENGINE: SQL statement was passed to the DBMS for fetching data.

TERADATA_2: Executed: on connection 0
 select distinct cast(sas_put("sas"."mailorderdemo"."PRICE", 'DOLLAR8.2')
 as char(8)) as "PRICE_C" from "sas"."mailorderdemo"

TERADATA: trget - rows to fetch: 9
TERADATA: trforc: COMMIT WORK

 Test SAS_PUT using Implicit Passthru 9
 3:42 Thursday, July 11, 2013

 PRICE_C

 $8.00
 $10.00
 $12.00
 $13.59
 $13.99
 $14.00
 $27.98
 $48.99
 $54.00

 quit;

Using the SAS_PUT() Function in the Teradata EDW 259

Considerations with Implicit Use of SAS_PUT()
Be aware of these items:

• The SQLMAPPUTTO= system option must be set to SAS_PUT. This ensures that
the SQL processor maps your PUT functions to the SAS_PUT() function and that
the SAS_PUT() reference is passed through to Teradata.

• The SAS SQL processor translates the PUT function in the SQL SELECT statement
into a reference to the SAS_PUT() function.

select distinct cast(sas_put("sas"."mailorderdemo"."PRICE", 'DOLLAR8.2')
 as char(8)) as "PRICE_C" from "sas"."mailorderdemo"

A large value, VARCHAR(n), is always returned because one function prototype
accesses all formats. Use the CAST expression to reduce the width of the returned
column to be a character width that is reasonable for the format that is being used.

The return text cannot contain a binary zero value (hexadecimal 00) because the
SAS_PUT() function always returns a VARCHAR(n) data type and a Teradata
VARCHAR(n) is defined to be a null-terminated string.

Explicit Use of the SAS_PUT() Function

Using the SAS_PUT() Function in an SQL Query
If you use explicit pass-through (a direct connection to Teradata), you can use the
SAS_PUT() function call in your SQL program.

This example shows the same query from “Implicit Use of the SAS_PUT() Function”
on page 258 and explicitly uses the SAS_PUT() function call.

proc sql noerrorstop;
 title1 'Test SAS_PUT using Explicit Passthru';
 connect to teradata (user=sas password=XXX database=sas server=sl96208);

 select * from connection to teradata
 (select distinct cast(sas_put("PRICE",'DOLLAR8.2') as char(8)) as
 "PRICE_C" from mailorderdemo);

disconnect from teradata;
quit;

The following lines are written to the SAS log.

 proc sql noerrorstop;
 title1 'Test SAS_PUT using Explicit Passthru ';
 connect to teradata (user=sas password=XXX database=sas server=sl96208);

 select * from connection to teradata
 (select distinct cast(sas_put("PRICE",'DOLLAR8.2') as char(8)) as
 "PRICE_C" from mailorderdemo);

 Test SAS_PUT using Explicit Passthru 10
 13:42 Thursday, July 25, 2013

 PRICE_C

 $8.00
 $10.00

260 Chapter 21 • Deploying and Using SAS Formats in Teradata

 $12.00
 $13.59
 $13.99
 $14.00
 $27.98
 $48.99
 $54.00

disconnect from teradata;
quit;

Considerations with Explicit Use of SAS_PUT()
If you explicitly use the SAS_PUT() function in your code, it is recommended that you
use double quotation marks around a column name to avoid any ambiguity with the
keywords. For example, if you did not use double quotation marks around the column
name, DATE, in this example, all date values would be returned as today's date.

select distinct
 cast(sas_put("price", 'dollar8.2') as char(8)) as "price_c",
 cast(sas_put("date", 'date9.1') as char(9)) as "date_d",
 cast(sas_put("inv", 'best8.') as char(8)) as "inv_n",
 cast(sas_put("name", '$32.') as char(32)) as "name_n"
from mailorderdemo;

Tips When Using the SAS_PUT() Function in Teradata
• Format widths greater than 256 can cause unexpected or unsuccessful behavior.

• If a variable is associated with a $HEXw. format, SAS/ACCESS creates the DBMS
table, and the PUT function is being mapped to the SAS_PUT() function,
SAS/ACCESS assumes that variable is binary and assigns a data type of BYTE to
that column. The SAS_PUT() function does not support the BYTE data type.
Teradata reports an error that the SAS_PUT() function is not found instead of
reporting that an incorrect data type was passed to the function. To avoid this error,
the $HEXw. format should not be associated with variables that are processed by the
SAS_PUT() function implicitly. For more information, see “Data Types and the
SAS_PUT() Function” on page 256.

If you use the $HEXw. format in an explicit SAS_PUT() function call, this error
does not occur.

• If you use the $HEXw. format in an explicit SAS_PUT() function call, blanks in the
variable are converted to “20”. However, trailing blanks (blanks that occur when
using a format width greater than the variable width) are trimmed. For example, the
value “A ” (“A” with a single blank) with a $HEX4. format is written as 4120. The
value “A” (“A” with no blanks) with a $HEX4. format is written as 41 with no
blanks.

Teradata Permissions
Because functions are associated with a database, the functions inherit the access rights
of that database. It could be useful to create a separate shared database for the functions

Teradata Permissions 261

so that access rights can be customized as needed. In addition, you must have the
following permissions to publish the functions in Teradata:

• CREATE FUNCTION

• DROP FUNCTION

• EXECUTE FUNCTION

• ALTER FUNCTION

Without these permissions, the publishing of the SAS_PUT() function and formats
fails. To obtain these permissions, contact your database administrator.

For more information about specific permissions, see the SAS In-Database Products:
Administrator's Guide.

262 Chapter 21 • Deploying and Using SAS Formats in Teradata

Part 6

In-Database Procedures

Chapter 22
Running SAS Procedures inside the Database 265

263

264

Chapter 22

Running SAS Procedures inside
the Database

Introduction to In-Database Procedures . 265

Running In-Database Procedures . 266

Procedures in Aster, DB2, Greenplum, Hadoop, Netezza,
Oracle, and SAP HANA . 267

Procedures in Teradata . 267

Procedure Considerations and Limitations . 268
Overview . 268
User-Defined Formats . 268
Row Order . 269
BY-Groups . 269
LIBNAME Statement . 269
Data Set-Related Options . 270
Column Names in Netezza . 270
Additional Limitations That Can Prevent In-Database Processing 270

Using the MSGLEVEL Option to Control Messaging . 271

Introduction to In-Database Procedures
Using conventional processing, a SAS procedure (by means of the SAS/ACCESS
engine) receives all the rows of the table from the database. All processing is done by the
procedure. Large tables mean that a significant amount of data must be transferred.

Using the new in-database technology, the procedures that are enabled for processing
inside the data source generate more sophisticated queries. These queries allow the
aggregations and analytics to be run inside the data source. Some of the in-database
procedures generate SQL procedure syntax and use implicit pass-through to generate the
native SQL. Other in-database procedures generate native SQL and use explicit pass-
through. For more information about how a specific procedure works inside the data
source, see the documentation for that procedure.

The queries submitted by SAS in-database procedures reference DBMS SQL functions
and, in some cases, the special SAS functions that are deployed inside the data source.
One example of a special SAS function is the SAS_PUT() function that enables you to
execute PUT function calls inside the data source. Other examples are SAS functions for
computing sum-of-squares-and-crossproducts (SSCP) matrices.

For most in-database procedures, a much smaller result set is returned for the remaining
analysis that is required to produce the final output. As a result of using the in-database

265

procedures, more work is done inside the data source, and less data movement can occur.
This could result in significant performance improvements.

This diagram illustrates the in-database procedure process.

Figure 22.1 Process Flow Diagram

Running In-Database Procedures
To run in-database procedures, the SQLGENERATION system option or the
SQLGENERATION LIBNAME option must be set to DBMS or DBMS=’database-
name’.

The SQLGENERATION system option or LIBNAME statement option controls whether
and how in-database procedures are run inside the data source. By default, the

266 Chapter 22 • Running SAS Procedures inside the Database

SQLGENERATION system option is set to NONE DBMS='ASTER DB2
GREENPLUM HADOOP NETEZZA ORACLE TERADATA SAPHANA'.

Conventional SAS processing is also used when specific procedure statements and
options do not support in-database processing. For complete information, see
“SQLGENERATION= System Option” on page 277 or the SQLGENERATION
LIBNAME option in SAS/ACCESS for Relational Databases: Reference.

Procedures in Aster, DB2, Greenplum, Hadoop,
Netezza, Oracle, and SAP HANA

The following Base SAS procedures have been enhanced for in-database processing
inside Aster, DB2, Greenplum, Hadoop, Netezza, Oracle, and SAP HANA.

• FREQ

• RANK

Note: PROC RANK in-database processing is not supported by Hadoop.

• REPORT

• SORT

Note: Only the NODUPKEY option of PROC SORT is supported with in-database
processing.

Note: PROC SORT in-database processing is not supported by Hadoop.

• SUMMARY/MEANS

• TABULATE

For more information about running a specific procedure inside the data source, see the
documentation for that procedure.

Procedures in Teradata
The following Base SAS, SAS Enterprise Miner, SAS/ETS, and SAS/STAT procedures
have been enhanced for in-database processing.

• CORR*

• CANCORR*

• DMDB*

• DMINE*

• DMREG*

• FACTOR*

• FREQ

• PRINCOMP*

• RANK

• REG*

Procedures in Teradata 267

• REPORT

• SCORE*

• SORT

• SUMMARY/MEANS

• TABULATE

• TIMESERIES*

• VARCLUS*

*SAS Analytics Accelerator is required to run these procedures inside the database. For
more information, see the SAS Analytics Accelerator for Teradata: Guide.

For more information about running a specific procedure inside the database, see the
documentation for that procedure.

Procedure Considerations and Limitations

Overview
The considerations and limitations in the following sections apply to both Base SAS and
SAS/STAT in-database procedures.

Note: Each in-database procedure has its own specific considerations and limitations.
For more information, see the documentation for the procedure.

User-Defined Formats
If you use in-database procedures with user-defined formats that were published in the
data source, you must have a local copy of the user-defined formats. Without the local
copy, the procedure fails.

Note: The local copy of the user-defined format must be identical in both name and
function to the format that is published to the data source. If they are not identical,
the following actions occur.

• A “check sum ERROR” warning is produced. The warning indicates that the
local and published formats differ.

• The local format is used, and the query is processed by SAS instead of inside the
data source.

If this occurs, you can redefine the local format to match the published version and rerun
the procedure inside the data source.

For more information about publishing user-defined formats, see the section on
deploying and using formats for your data source in Part 3, “Format Publishing and the
SAS_PUT() Function.”

Note: Format publishing of user-defined formats is not available for Hadoop, Oracle,
and SAP HANA.

268 Chapter 22 • Running SAS Procedures inside the Database

Row Order
• DBMS tables have no inherent order for the rows. Therefore, the BY statement with

the OBS option and the FIRSTOBS option prevents in-database processing.

• If you specify the ORDER=DATA option for input data, the procedure might
produce different results for separate runs of the same analysis.

• The order of rows written to a data source table from a SAS procedure is not likely to
be preserved. For example, the SORT procedure can output a SAS data set that
contains ordered observations. If the results are written to a data source table, the
order of rows within that table might not be preserved because the DBMS has no
obligation to maintain row order.

• You can print a table using the SQL procedure with an ORDER BY clause to get
consistent row order. Another option is to use the SORT procedure to create an
ordinary SAS data set and use the PRINT procedure on that SAS data set.

BY-Groups
BY-group processing is handled by SAS for Base SAS procedures. Raw results are
returned from the DBMS, and SAS BY-group processing applies formats as necessary to
create the BY group.

For SAS/STAT procedures, formats can be applied, and BY-group processing can occur
inside the DBMS if the SAS_PUT() function and formats are published to the DBMS.
For more information, see the SAS Analytics Accelerator for Teradata: Guide.

These BY statement option settings apply to the in-database procedures:

• The DESCENDING option is supported.

• The NOTSORTED option is ignored because the data is always returned in sorted
order.

When SAS/ACCESS creates a data source table, SAS/ACCESS by default uses the SAS
formats that are assigned to variables to decide which DBMS data types to assign to the
DBMS columns. If you specify the DBFMTIGNORE system option for numeric
formats, SAS/ACCESS creates DBMS columns with a DOUBLE PRECISION data
type. For more information, see the LIBNAME Statement for Relational Databases,
“LIBNAME Statement Data Conversions,” and the DBFMTIGNORE system option in
SAS/ACCESS for Relational Databases: Reference.

LIBNAME Statement
• These LIBNAME statement options and settings prevent in-database processing:

• CONNECTION

• CONNECTION_GROUP

• DBCREATE_TABLE_OPTS

• DBMSTEMP=YES

• DBCONINIT

• DBCONTERM

• DBGEN_NAME=SAS

Procedure Considerations and Limitations 269

• HDFS_METADIR

• MODE=TERADATA

• LIBNAME concatenation prevents in-database processing.

Data Set-Related Options
These data set options and settings prevent in-database processing:

• DBCONDITION

• DBFORCE

• DBLINK (Oracle only)

• DBNULL

• DBTYPE

• NULLCHAR

• NULLCHARVAL

• OBS= and FIRSTOBS= on DATA= data set

• OUT= data set on DBMS and DATA= data set not on DBMS

For example, if data=work.foo and out=tera.fooout where WORK is the Base SAS
engine, in-database processing does not occur.

• RENAME= on a data set

• SCHEMA

Column Names in Netezza
Column names that start with an underscore are not allowed in Netezza.

An error occurs if you try to create an output table in Netezza that contains a column
whose name starts with an underscore. The workaround for this is to send the output
table to the SAS Work directory.

Additional Limitations That Can Prevent In-Database Processing
These items prevent in-database processing:

• DBMSs do not support SAS passwords.

• SAS encryption requires passwords that are not supported.

• Teradata does not support generation options that are explicitly specified in the
procedure step, and the procedure does not know whether a generation number is
explicit or implicit.

• When the data source resolves function references. the data source searches in this
order:

1. fully qualified object name

2. current data source

3. SYSLIB

270 Chapter 22 • Running SAS Procedures inside the Database

If you need to reference functions that are published in a nonsystem, nondefault data
source, you must use one of these methods:

• Use explicit SQL.

• Use the DATABASE= LIBNAME option.

• Map the fully qualified name (schema.sas_put) in the external mapping.

• Oracle Version 10g supports only 4000 characters per input data item. If you are
transcoding input data that has special characters, be aware that these characters
might need more than one byte per character.

Using the MSGLEVEL Option to Control
Messaging

The MSGLEVEL system option specifies the level of detail in messages that are written
to the SAS log. When the MSGLEVEL option is set to N (the default value), these
messages are printed to the SAS log:

• a note that says SQL is used for in-database computations when in-database
processing is performed.

• error messages if something goes wrong with the SQL commands that are submitted
for in-database computations.

• if there are SQL error messages, a note that says whether SQL is used.

When the MSGLEVEL option is set to I, all the messages that are printed when
MSGLEVEL=N are printed to the SAS log.

These messages are also printed to the SAS log:

• a note that explains why SQL was not used for in-database computations, if SQL is
not used.

Note: No note is printed if you specify SQLGENERATION=NONE.

• a note that says that SQL cannot be used because there are no observations in the
data source.

Note: This information is not always available to the procedure.

• a note that says that the TYPE= attribute is not stored in DBMS tables. You see this
note if you try to create a special SAS data set as a DBMS table for PROC MEANS
or PROC SUMMARY.

• a note that says if the format was or was not found in the data source. You see this
note if you use a format that SAS supplies or a user-defined format.

Using the MSGLEVEL Option to Control Messaging 271

272 Chapter 22 • Running SAS Procedures inside the Database

Part 7

System Options Reference

Chapter 23
System Options That Affect In-Database Processing 275

273

274

Chapter 23

System Options That Affect In-
Database Processing

Dictionary . 275
DS2ACCEL= System Option . 275
DSACCEL= System Option . 276
SQLGENERATION= System Option . 277
SQLMAPPUTTO= System Option . 280
SQLREDUCEPUT= System Option . 281

Dictionary

DS2ACCEL= System Option
Specifies whether DS2 code is enabled for parallel processing in supported environments using the SAS
In-Database Code Accelerator.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

PROC OPTIONS
GROUP=

LANGUAGECONTROL

Default: NONE

Note: This option can be restricted by a site administrator. For more information, see
“Restricted Options” in Chapter 1 of SAS System Options: Reference.

Syntax
DS2ACCEL=ANY | NONE

Arguments
ANY

enables DS2 code to execute in supported parallel environments.

NONE
disables DS2 code from executing in supported parallel environments.

275

Details
The SAS In-Database Code Accelerator enables you to publish a DS2 thread program to
the database and execute the thread program in parallel inside the database. If you are
using the SAS In-Database Code Accelerator for Teradata or Hadoop, the DS2 data
program is also published and executed inside the database.

The DS2ACCEL= system option controls whether DS2 code is executed inside the
database.

You can override the DS2ACCEL= system option by specifying the DS2ACCEL=
option in the PROC DS2 statement.

See Also
• “Using the DS2ACCEL Option to Control In-Database Processing” in Chapter 21 of

SAS DS2 Language Reference

Procedures:

• Chapter 19, “DS2 Procedure” in Base SAS Procedures Guide

DSACCEL= System Option
Specifies whether the DATA step is enabled for parallel processing in supported environments.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Environment Control: Language Control

PROC OPTIONS
GROUP=

LANGUAGECONTROL

Default: The shipped default is NONE.

Note: This option can be restricted by a site administrator. For more information, see
“Restricted Options” in Chapter 1 of SAS System Options: Reference.

Syntax
DSACCEL=ANY | NONE

Syntax Description
ANY

enables the DATA step to execute in supported parallel environments.

NONE
disables the DATA step from executing in supported parallel environments.

Details
SAS enables the DATA step to run, with limitations, in these environments:

• SAS LASR Analytic Server

• Inside Hadoop using SAS/ACCESS and SAS Embedded Process

276 Chapter 23 • System Options That Affect In-Database Processing

You can use the MSGLEVEL= system option to control the message detail that appears
in the SAS log for Hadoop MapReduce jobs:

• Specify MSGLEVEL=N to see only notes, warnings, and error messages.

• Specify MSGLEVEL=I to view additional Hadoop MapReduce messages.

See Also
• SAS LASR Analytic Server: Reference Guide

• SAS In-Database Products: User's Guide

System options:

• “MSGLEVEL= System Option” in SAS System Options: Reference

SQLGENERATION= System Option
Specifies whether and when SAS procedures generate SQL for in-database processing of source data.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Categories: Data Access
System Administration: Performance

Default: (NONE DBMS='TERADATA DB2 ORACLE NETEZZA ASTER GREENPLM
HADOOP SAPHANA')

Restrictions: Parentheses are required when this option value contains multiple keywords.
The maximum length of the option value is 4096 characters.
For DBMS= and EXCLUDEDB= values, the maximum length of an engine name is
eight characters. For the EXCLUDEPROC= value, the maximum length of a
procedure name is 16 characters. An engine can appear only once, and a procedure
can appear only once for a given engine.
Not all procedures support SQL generation for in-database processing for every
engine type. If you specify a setting that is not supported, an error message indicates
the level of SQL generation that is not supported, and the procedure can reset to the
default so that source table records can be read and processed within SAS. If this is
not possible, the procedure ends and sets SYSERR= as needed.
If you are using the Metadata LIBNAME Engine, the only valid SQLGENERATION=
modifiers are NONE and DBMS. The engine ignores the DBMS=, EXCLUDEDB=,
and EXCLUDEPROC= modifiers.

Requirement: You must specify NONE or DBMS as the primary state.

Interactions: Use this option with such procedures as PROC FREQ to indicate that SQL is
generated for in-database processing of DBMS tables through supported
SAS/ACCESS engines.
You can specify different SQLGENERATION= values for the DATA= and OUT= data
sets by using different LIBNAME statements for each of these data sets.

Data source: Aster, DB2 under UNIX and PC Hosts, DB2 under z/OS, Greenplum, Hadoop,
Netezza, Oracle, SAP Hana, Teradata

Tip: After you set a required value (primary state), you can specify optional values
(modifiers).

SQLGENERATION= System Option 277

See: SQLGENERATION= LIBNAME option (includes examples), “Running In-Database
Procedures” in SAS In-Database Products: User’s Guide

Syntax
SQLGENERATION=<(>NONE | DBMS

<DBMS='engine1 engine2…enginen'>
<EXCLUDEDB=engine | 'engine1…enginen'>
<EXCLUDEPROC="engine='proc1…procn' enginen='proc1…procn' "><)>

SQLGENERATION=" "

Required Arguments
NONE

prevents those SAS procedures that are enabled for in-database processing from
generating SQL for in-database processing. This is a primary state.

DBMS
allows SAS procedures that are enabled for in-database processing to generate SQL
for in-database processing of DBMS tables through supported SAS/ACCESS
engines. This is a primary state.

" "
resets the value to the default that was shipped.

Optional Arguments
DBMS='engine1…enginen'

specifies one or more SAS/ACCESS engines. It modifies the primary state.

EXCLUDEDB=engine | 'engine1…enginen'
prevents SAS procedures from generating SQL for in-database processing for one or
more specified SAS/ACCESS engines.

EXCLUDEPROC="engine='proc1…procn' enginen='proc1…procn' "
prevents one or more specified SAS procedures from generating SQL for in-database
processing for one or more specified SAS/ACCESS engines.

Details
Here is how SAS/ACCESS handles precedence between the LIBNAME and system
option.

278 Chapter 23 • System Options That Affect In-Database Processing

Table 23.1 Precedence of Values for SQLGENERATION= LIBNAME and System Options

LIBNAME Option
PROC EXCLUDE on

System Option?
Engine Specified on

System Option Resulting Value From (option)

not set yes NONE NONE system

DBMS EXCLUDEPROC

NONE NONE NONE LIBNAME

DBMS

DBMS NONE EXCLUDEPROC system

DBMS

not set no NONE NONE

DBMS DBMS

NONE NONE NONE LIBNAME

DBMS

DBMS NONE DBMS

DBMS

Example
Here is the default that is shipped with the product.

options sqlgeneration='';
proc options option=sqlgeneration
run;

SAS procedures generate SQL for in-database processing for all databases except DB2
in this example.

options sqlgeneration='';
options sqlgeneration=(DBMS EXCLUDEDB='DB2');
proc options option=sqlgeneration;
run;

In this example, in-database processing occurs only for Teradata. SAS procedures that
are run on other databases do not generate SQL for in-database processing.

options sqlgeneration='';
options SQLGENERATION=(NONE DBMS='Teradata');
proc options option=sqlgeneration;
run;

For this example, SAS procedures generate SQL for Teradata and Oracle in-database
processing. However, no SQL is generated for PROC1 and PROC2 in Oracle.

options sqlgeneration='';
options SQLGENERATION = (NONE DBMS='Teradata Oracle'
 EXCLUDEPROC="oracle='proc1 proc2'");

SQLGENERATION= System Option 279

proc options option=sqlgeneration;
run;

SQLMAPPUTTO= System Option
Specifies whether the PUT function is mapped to the SAS_PUT() function for a database, possible also
where the SAS_PUT() function is mapped.

Valid in: configuration file, SAS invocation, OPTIONS statement

Category: Files: SAS Files

Default: SAS_PUT

Data source: Aster, DB2 under UNIX and PC Hosts, Greenplum, Netezza, Teradata

See: SQL_FUNCTIONS= LIBNAME option, SAS In-Database Products: User's Guide

Syntax
SQLMAPPUTTO=NONE | SAS_PUT | (database.SAS_PUT)

Syntax Description
NONE

specifies to PROC SQL that no PUT mapping is to occur.

SAS_PUT
specifies that the PUT function be mapped to the SAS_PUT() function.

database.SAS_PUT
specifies the database name.

T I P It is not necessary that the format definitions and the SAS_PUT() function
reside in the same database as the one that contains the data that you want to
format. You can use the database.SAS_PUT argument to specify the database
where the format definitions and the SAS_PUT() function have been published.

T I P The database name can be a multilevel name and it can include blanks.

Requirement If you specify a database name, you must enclose the entire argument
in parentheses.

Details
The format publishing macros deploy or publish, the PUT function implementation to
the database as a new function named SAS_PUT(). The format publishing macros also
publish both user-defined formats and formats that SAS supplies that you create using
PROC FORMAT. The SAS_PUT() function supports the use of SAS formats. You can
use it in SQL queries that SAS submits to the database so that the entire SQL query can
be processed inside the database. You can also use it in conjunction with in-database
procedures.

You can use this option with the SQLREDUCEPUT=, SQLREDUCEPUTOBS, and
SQLREDUCEPUTVALUES= system options. For more information about these
options, see SAS SQL Procedure User's Guide.

280 Chapter 23 • System Options That Affect In-Database Processing

SQLREDUCEPUT= System Option
For the SQL procedure, specifies the engine type to use to optimize a PUT function in a query. The PUT
function is replaced with a logically equivalent expression.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Categories: Files: SAS files
System administration: SQL
System administration: Performance

PROC OPTIONS
GROUP=

SASFILES
SQL
PERFORMANCE

Note: This option can be restricted by a site administrator. For more information, see
“Restricted Options” in Chapter 1 of SAS System Options: Reference.

Syntax
SQLREDUCEPUT= ALL | NONE | DBMS | BASE

Syntax Description
ALL

specifies to consider the optimization of all PUT functions, regardless of the engine
that is used by the query to access the data.

NONE
specifies to not optimize any PUT function.

DBMS
specifies to consider the optimization of all PUT functions in a query performed by a
SAS/ACCESS engine. This is the default.

Requirement The first argument to the PUT function must be a variable that is
obtained by a table. The table must be accessed using a
SAS/ACCESS engine.

BASE
specifies to consider the optimization of all PUT functions in a query performed by a
SAS/ACCESS engine or a Base SAS engine.

Details
If you specify the SQLREDUCEPUT= system option, SAS optimizes the PUT function
before the query is executed. If the query also contains a WHERE clause, the evaluation
of the WHERE clause is simplified. The following SELECT statements are examples of
queries that are optimized if the SQLREDUCEPUT= option is set to any value other
than none:

select x, y from &lib..b where (PUT(x, abc.) in ('yes', 'no'));
select x from &lib..a where (PUT(x, udfmt.) = trim(left('small')));

SQLREDUCEPUT= System Option 281

If both the SQLREDUCEPUT= system option and the SQLCONSTDATETIME system
option are specified, PROC SQL replaces the DATE, TIME, DATETIME, and TODAY
functions with their respective values to determine the PUT function value before the
query executes.

The following two SELECT clauses show the original query and optimized query:

select x from &lib..c where (put(bday, date9.) = put(today(), date9.));

Here, the SELECT clause is optimized.

select x from &lib..c where (x = '17MAR2011'D);

If a query does not contain the PUT function, it is not optimized.

Note: The value that is specified in the SQLREDUCEPUT= system option is in effect
for all SQL procedure statements, unless the PROC SQL REDUCEPUT= option is
set. The value of the REDUCEPUT= option takes precedence over the
SQLREDUCEPUT= system option. However, changing the value of the
REDUCEPUT= option does not change the value of the SQLREDUCEPUT= system
option.

See Also
• “Improving Query Performance” in Chapter 5 of SAS SQL Procedure User's Guide

Procedure Statement Options:

• REDUCEPUT= option

System Options:

• “SQLCONSTDATETIME System Option” in SAS SQL Procedure User's Guide

• “SQLREDUCEPUTOBS= System Option” in SAS SQL Procedure User's Guide

282 Chapter 23 • System Options That Affect In-Database Processing

Part 8

Appendix

Appendix 1
Scoring File Examples . 285

283

284

Appendix 1

Scoring File Examples

Example of a .ds2 Scoring File . 285

Example of an Input and Output Variables Scoring File . 305

Example of a User-Defined Formats Scoring File . 312

Example of a .ds2 Scoring File
This is an example of a .ds2 scoring file. The filename is sasscore_score.ds2.

data &ASTER_OUTPUT;
 #_local _LPMAX;
 #_local _P4;
 #_local _P3;
 #_local _P2;
 #_local _P1;
 #_local _P0;
 #_local _IY;
 #_local _MAXP;
 #_local _LP3;
 #_local _LP2;
 #_local _LP1;
 #_local _LP0;
 #_local _TEMP;
 #_local _7_1;
 #_local _7_0;
 #_local _6_2;
 #_local _6_1;
 #_local _6_0;
 #_local _5_14;
 #_local _5_13;
 #_local _5_12;
 #_local _5_11;
 #_local _5_10;
 #_local _5_9;
 #_local _5_8;
 #_local _5_7;
 #_local _5_6;
 #_local _5_5;
 #_local _5_4;

285

 #_local _5_3;
 #_local _5_2;
 #_local _5_1;
 #_local _5_0;
 #_local _3_10;
 #_local _3_9;
 #_local _3_8;
 #_local _3_7;
 #_local _3_6;
 #_local _3_5;
 #_local _3_4;
 #_local _3_3;
 #_local _3_2;
 #_local _3_1;
 #_local _3_0;
 #_local _2_12;
 #_local _2_11;
 #_local _2_10;
 #_local _2_9;
 #_local _2_8;
 #_local _2_7;
 #_local _2_6;
 #_local _2_5;
 #_local _2_4;
 #_local _2_3;
 #_local _2_2;
 #_local _2_1;
 #_local _2_0;
 #_local _DM_FIND;
 #_local _1_14;
 #_local _1_13;
 #_local _1_12;
 #_local _1_11;
 #_local _1_10;
 #_local _1_9;
 #_local _1_8;
 #_local _1_7;
 #_local _1_6;
 #_local _1_5;
 #_local _1_4;
 #_local _1_3;
 #_local _1_2;
 #_local _1_1;
 #_local _1_0;
 #_local _DM_BAD;
dcl char(4) _WARN_;
dcl char(6) I_ATTACK;
dcl char(6) U_ATTACK;
dcl char(32) EM_CLASSIFICATION;
dcl double COUNT;
dcl double DIF_SRVR;
dcl char(32) FLAG;
dcl double HOT;
dcl double SAM_SRAT;
dcl char(32) SERVICE;
dcl double SRV_CNT;

286 Appendix 1 • Scoring File Examples

method run();
 dcl char(8) _NORM8;
 dcl char(8) _NORM8;
 dcl char(12) _DM12;
 dcl char(12) _DM12;
 dcl char(12) _DM12;
 dcl char(12) _DM12;
 dcl char(12) _DM12;
 dcl char(12) _DM12;
 dcl char(6) REGDRU[5];
 dcl char(6) REGDRF[5];
REGDRU:=('u2r ', 'r2l ', 'probe ', 'normal', 'dos ');
REGDRF:=('U2R', 'R2L', 'PROBE', 'NORMAL', 'DOS');
set &ASTER_INPUT;
WARN = ' ';
if (COUNT = .) then AOV16_COUNT = 8.0;
 else if (COUNT <= 31.9375) then AOV16_COUNT = 1.0;
 else if (COUNT <= 63.875) then AOV16_COUNT = 2.0;
 else if (COUNT <= 95.8125) then AOV16_COUNT = 3.0;
 else if (COUNT <= 127.75) then AOV16_COUNT = 4.0;
 else if (COUNT <= 159.6875) then AOV16_COUNT = 5.0;
 else if (COUNT <= 191.625) then AOV16_COUNT = 6.0;
 else if (COUNT <= 223.5625) then AOV16_COUNT = 7.0;
 else if (COUNT <= 255.5) then AOV16_COUNT = 8.0;
 else if (COUNT <= 287.4375) then AOV16_COUNT = 9.0;
 else if (COUNT <= 319.375) then AOV16_COUNT = 10.0;
 else if (COUNT <= 351.3125) then AOV16_COUNT = 11.0;
 else if (COUNT <= 383.25) then AOV16_COUNT = 12.0;
 else if (COUNT <= 415.1875) then AOV16_COUNT = 13.0;
 else if (COUNT <= 447.125) then AOV16_COUNT = 14.0;
 else if (COUNT <= 479.0625) then AOV16_COUNT = 15.0;
 else AOV16_COUNT = 16.0;
if (SRV_CNT = .) then AOV16_SRV_CNT = 7.0;
 else if (SRV_CNT <= 31.9375) then AOV16_SRV_CNT = 1.0;
 else if (SRV_CNT <= 63.875) then AOV16_SRV_CNT = 2.0;
 else if (SRV_CNT <= 95.8125) then AOV16_SRV_CNT = 3.0;
 else if (SRV_CNT <= 127.75) then AOV16_SRV_CNT = 4.0;
 else if (SRV_CNT <= 159.6875) then AOV16_SRV_CNT = 5.0;
 else if (SRV_CNT <= 191.625) then AOV16_SRV_CNT = 6.0;
 else if (SRV_CNT <= 223.5625) then AOV16_SRV_CNT = 7.0;
 else if (SRV_CNT <= 255.5) then AOV16_SRV_CNT = 8.0;
 else if (SRV_CNT <= 287.4375) then AOV16_SRV_CNT = 9.0;
 else if (SRV_CNT <= 319.375) then AOV16_SRV_CNT = 10.0;
 else if (SRV_CNT <= 351.3125) then AOV16_SRV_CNT = 11.0;
 else if (SRV_CNT <= 383.25) then AOV16_SRV_CNT = 12.0;
 else if (SRV_CNT <= 415.1875) then AOV16_SRV_CNT = 13.0;
 else if (SRV_CNT <= 447.125) then AOV16_SRV_CNT = 14.0;
 else if (SRV_CNT <= 479.0625) then AOV16_SRV_CNT = 15.0;
 else AOV16_SRV_CNT = 16.0;
if (SAM_SRAT = .) then AOV16_SAM_SRAT = 14.0;
 else if (SAM_SRAT <= 0.0625) then AOV16_SAM_SRAT = 1.0;
 else if (SAM_SRAT <= 0.125) then AOV16_SAM_SRAT = 2.0;
 else if (SAM_SRAT <= 0.1875) then AOV16_SAM_SRAT = 3.0;
 else if (SAM_SRAT <= 0.25) then AOV16_SAM_SRAT = 4.0;
 else if (SAM_SRAT <= 0.3125) then AOV16_SAM_SRAT = 5.0;
 else if (SAM_SRAT <= 0.375) then AOV16_SAM_SRAT = 6.0;

Example of a .ds2 Scoring File 287

 else if (SAM_SRAT <= 0.4375) then AOV16_SAM_SRAT = 7.0;
 else if (SAM_SRAT <= 0.5) then AOV16_SAM_SRAT = 8.0;
 else if (SAM_SRAT <= 0.5625) then AOV16_SAM_SRAT = 9.0;
 else if (SAM_SRAT <= 0.625) then AOV16_SAM_SRAT = 10.0;
 else if (SAM_SRAT <= 0.6875) then AOV16_SAM_SRAT = 11.0;
 else if (SAM_SRAT <= 0.75) then AOV16_SAM_SRAT = 12.0;
 else if (SAM_SRAT <= 0.8125) then AOV16_SAM_SRAT = 13.0;
 else if (SAM_SRAT <= 0.875) then AOV16_SAM_SRAT = 14.0;
 else if (SAM_SRAT <= 0.9375) then AOV16_SAM_SRAT = 15.0;
 else AOV16_SAM_SRAT = 16.0;
if (DIF_SRVR = .) then AOV16_DIF_SRVR = 1.0;
 else if (DIF_SRVR <= 0.0625) then AOV16_DIF_SRVR = 1.0;
 else if (DIF_SRVR <= 0.125) then AOV16_DIF_SRVR = 2.0;
 else if (DIF_SRVR <= 0.1875) then AOV16_DIF_SRVR = 3.0;
 else if (DIF_SRVR <= 0.25) then AOV16_DIF_SRVR = 4.0;
 else if (DIF_SRVR <= 0.3125) then AOV16_DIF_SRVR = 5.0;
 else if (DIF_SRVR <= 0.375) then AOV16_DIF_SRVR = 6.0;
 else if (DIF_SRVR <= 0.4375) then AOV16_DIF_SRVR = 7.0;
 else if (DIF_SRVR <= 0.5) then AOV16_DIF_SRVR = 8.0;
 else if (DIF_SRVR <= 0.5625) then AOV16_DIF_SRVR = 9.0;
 else if (DIF_SRVR <= 0.625) then AOV16_DIF_SRVR = 10.0;
 else if (DIF_SRVR <= 0.6875) then AOV16_DIF_SRVR = 11.0;
 else if (DIF_SRVR <= 0.75) then AOV16_DIF_SRVR = 12.0;
 else if (DIF_SRVR <= 0.8125) then AOV16_DIF_SRVR = 13.0;
 else if (DIF_SRVR <= 0.875) then AOV16_DIF_SRVR = 14.0;
 else if (DIF_SRVR <= 0.9375) then AOV16_DIF_SRVR = 15.0;
 else AOV16_DIF_SRVR = 16.0;
if (HOT = .) then AOV16_HOT = 1.0;
 else if (HOT <= 1.875) then AOV16_HOT = 1.0;
 else if (HOT <= 3.75) then AOV16_HOT = 2.0;
 else if (HOT <= 5.625) then AOV16_HOT = 3.0;
 else if (HOT <= 7.5) then AOV16_HOT = 4.0;
 else if (HOT <= 9.375) then AOV16_HOT = 5.0;
 else if (HOT <= 11.25) then AOV16_HOT = 6.0;
 else if (HOT <= 13.125) then AOV16_HOT = 7.0;
 else if (HOT <= 15.0) then AOV16_HOT = 8.0;
 else if (HOT <= 16.875) then AOV16_HOT = 9.0;
 else if (HOT <= 18.75) then AOV16_HOT = 10.0;
 else if (HOT <= 20.625) then AOV16_HOT = 11.0;
 else if (HOT <= 22.5) then AOV16_HOT = 12.0;
 else if (HOT <= 24.375) then AOV16_HOT = 13.0;
 else if (HOT <= 26.25) then AOV16_HOT = 14.0;
 else if (HOT <= 28.125) then AOV16_HOT = 15.0;
 else AOV16_HOT = 16.0;
_NORM8 = DMNORM(SERVICE, 32.0);
select (_NORM8);
when ('IRC ') G_SERVICE = 2.0;
when ('X11 ') G_SERVICE = 2.0;
when ('Z39_50 ') G_SERVICE = 1.0;
when ('AUTH ') G_SERVICE = 2.0;
when ('BGP ') G_SERVICE = 0.0;
when ('COURIER ') G_SERVICE = 1.0;
when ('CSNET_NS') G_SERVICE = 1.0;
when ('CTF ') G_SERVICE = 0.0;
when ('DAYTIME ') G_SERVICE = 1.0;
when ('DISCARD ') G_SERVICE = 0.0;

288 Appendix 1 • Scoring File Examples

when ('DOMAIN ') G_SERVICE = 1.0;
when ('DOMAIN_U') G_SERVICE = 2.0;
when ('ECHO ') G_SERVICE = 0.0;
when ('ECO_I ') G_SERVICE = 2.0;
when ('ECR_I ') G_SERVICE = 0.0;
when ('EFS ') G_SERVICE = 1.0;
when ('EXEC ') G_SERVICE = 0.0;
when ('FINGER ') G_SERVICE = 2.0;
when ('FTP ') G_SERVICE = 2.0;
when ('FTP_DATA') G_SERVICE = 2.0;
when ('GOPHER ') G_SERVICE = 1.0;
when ('HOSTNAME') G_SERVICE = 0.0;
when ('HTTP ') G_SERVICE = 2.0;
when ('HTTP_443') G_SERVICE = 0.0;
when ('IMAP4 ') G_SERVICE = 1.0;
when ('ISO_TSAP') G_SERVICE = 0.0;
when ('KLOGIN ') G_SERVICE = 0.0;
when ('KSHELL ') G_SERVICE = 0.0;
when ('LDAP ') G_SERVICE = 0.0;
when ('LINK ') G_SERVICE = 1.0;
when ('LOGIN ') G_SERVICE = 0.0;
when ('MTP ') G_SERVICE = 1.0;
when ('NAME ') G_SERVICE = 0.0;
when ('NETBIOS_') G_SERVICE = 0.0;
when ('NETSTAT ') G_SERVICE = 0.0;
when ('NNSP ') G_SERVICE = 0.0;
when ('NNTP ') G_SERVICE = 1.0;
when ('NTP_U ') G_SERVICE = 2.0;
when ('OTHER ') G_SERVICE = 2.0;
when ('POP_2 ') G_SERVICE = 0.0;
when ('POP_3 ') G_SERVICE = 2.0;
when ('PRINTER ') G_SERVICE = 1.0;
when ('PRIVATE ') G_SERVICE = 1.0;
when ('RED_I ') G_SERVICE = 2.0;
when ('REMOTE_J') G_SERVICE = 1.0;
when ('RJE ') G_SERVICE = 1.0;
when ('SHELL ') G_SERVICE = 0.0;
when ('SMTP ') G_SERVICE = 2.0;
when ('SQL_NET ') G_SERVICE = 0.0;
when ('SSH ') G_SERVICE = 1.0;
when ('SUNRPC ') G_SERVICE = 1.0;
when ('SUPDUP ') G_SERVICE = 1.0;
when ('SYSTAT ') G_SERVICE = 1.0;
when ('TELNET ') G_SERVICE = 2.0;
when ('TFTP_U ') G_SERVICE = 2.0;
when ('TIM_I ') G_SERVICE = 1.0;
when ('TIME ') G_SERVICE = 2.0;
when ('URH_I ') G_SERVICE = 2.0;
when ('URP_I ') G_SERVICE = 2.0;
when ('UUCP ') G_SERVICE = 1.0;
when ('UUCP_PAT') G_SERVICE = 0.0;
when ('VMNET ') G_SERVICE = 1.0;
when ('WHOIS ') G_SERVICE = 1.0;
otherwise _WARN_ = 'U';
end;
_NORM8 = DMNORM(FLAG, 32.0);

Example of a .ds2 Scoring File 289

select (_NORM8);
when ('OTH ') G_FLAG = 3.0;
when ('REJ ') G_FLAG = 2.0;
when ('RSTO ') G_FLAG = 2.0;
when ('RSTOS0 ') G_FLAG = 3.0;
when ('RSTR ') G_FLAG = 3.0;
when ('S0 ') G_FLAG = 0.0;
when ('S1 ') G_FLAG = 3.0;
when ('S2 ') G_FLAG = 3.0;
when ('S3 ') G_FLAG = 3.0;
when ('SF ') G_FLAG = 1.0;
when ('SH ') G_FLAG = 3.0;
otherwise _WARN_ = 'U';
end;
_DM_BAD = 0.0;
_1_0 = 0.0;
_1_1 = 0.0;
_1_2 = 0.0;
_1_3 = 0.0;
_1_4 = 0.0;
_1_5 = 0.0;
_1_6 = 0.0;
_1_7 = 0.0;
_1_8 = 0.0;
_1_9 = 0.0;
_1_10 = 0.0;
_1_11 = 0.0;
_1_12 = 0.0;
_1_13 = 0.0;
_1_14 = 0.0;
if MISSING(AOV16_COUNT) then do ;
_1_0 = .;
_1_1 = .;
_1_2 = .;
_1_3 = .;
_1_4 = .;
_1_5 = .;
_1_6 = .;
_1_7 = .;
_1_8 = .;
_1_9 = .;
_1_10 = .;
_1_11 = .;
_1_12 = .;
_1_13 = .;
_1_14 = .;
substr(_WARN_, 1.0, 1.0) = 'M';
_DM_BAD = 1.0;
end;
 else do ;
_DM12 = put(AOV16_COUNT, BEST12.);
_DM12 = DMNORM(_DM12, 32.0);
_DM_FIND = 0.0;
if _DM12 <= '16' then do ;
if _DM12 <= '12' then do ;
if _DM12 <= '10' then do ;

290 Appendix 1 • Scoring File Examples

if _DM12 = '1' then do ;
_1_0 = 1.0;
_DM_FIND = 1.0;
end;
 else do ;
if _DM12 = '10' then do ;
_1_9 = 1.0;
_DM_FIND = 1.0;
end;
end;
end;
 else do ;
if _DM12 = '11' then do ;
_1_10 = 1.0;
_DM_FIND = 1.0;
end;
 else do ;
if _DM12 = '12' then do ;
_1_11 = 1.0;
_DM_FIND = 1.0;
end;
end;
end;
end;
 else do ;
if _DM12 <= '14' then do ;
if _DM12 = '13' then do ;
_1_12 = 1.0;
_DM_FIND = 1.0;
end;
 else do ;
if _DM12 = '14' then do ;
_1_13 = 1.0;
_DM_FIND = 1.0;
end;
end;
end;
 else do ;
if _DM12 = '15' then do ;
_1_14 = 1.0;
_DM_FIND = 1.0;
end;
 else do ;
if _DM12 = '16' then do ;
_1_0 = -1.0;
_1_1 = -1.0;
_1_2 = -1.0;
_1_3 = -1.0;
_1_4 = -1.0;
_1_5 = -1.0;
_1_6 = -1.0;
_1_7 = -1.0;
_1_8 = -1.0;
_1_9 = -1.0;
_1_10 = -1.0;
_1_11 = -1.0;

Example of a .ds2 Scoring File 291

_1_12 = -1.0;
_1_13 = -1.0;
_1_14 = -1.0;
_DM_FIND = 1.0;
end;
end;
end;
end;
end;
 else do ;
if _DM12 <= '5' then do ;
if _DM12 <= '3' then do ;
if _DM12 = '2' then do ;
_1_1 = 1.0;
_DM_FIND = 1.0;
end;
 else do ;
if _DM12 = '3' then do ;
_1_2 = 1.0;
_DM_FIND = 1.0;
end;
end;
end;
 else do ;
if _DM12 = '4' then do ;
_1_3 = 1.0;
_DM_FIND = 1.0;
end;
 else do ;
if _DM12 = '5' then do ;
_1_4 = 1.0;
_DM_FIND = 1.0;
end;
end;
end;
end;
 else do ;
if _DM12 <= '7' then do ;
if _DM12 = '6' then do ;
_1_5 = 1.0;
_DM_FIND = 1.0;
end;
 else do ;
if _DM12 = '7' then do ;
_1_6 = 1.0;
_DM_FIND = 1.0;
end;
end;
end;
 else do ;
if _DM12 = '8' then do ;
_1_7 = 1.0;
_DM_FIND = 1.0;
end;
 else do ;
if _DM12 = '9' then do ;

292 Appendix 1 • Scoring File Examples

_1_8 = 1.0;
_DM_FIND = 1.0;
end;
end;
end;
end;
end;
if ^_DM_FIND then do ;
_1_0 = .;
_1_1 = .;
_1_2 = .;
_1_3 = .;
_1_4 = .;
_1_5 = .;
_1_6 = .;
_1_7 = .;
_1_8 = .;
_1_9 = .;
_1_10 = .;
_1_11 = .;
_1_12 = .;
_1_13 = .;
_1_14 = .;
substr(_WARN_, 2.0, 1.0) = 'U';
_DM_BAD = 1.0;
end;
end;
_2_0 = 0.0;
_2_1 = 0.0;
_2_2 = 0.0;
_2_3 = 0.0;
_2_4 = 0.0;
_2_5 = 0.0;
_2_6 = 0.0;
_2_7 = 0.0;
_2_8 = 0.0;
_2_9 = 0.0;
_2_10 = 0.0;
_2_11 = 0.0;
_2_12 = 0.0;
if MISSING(AOV16_DIF_SRVR) then do ;
_2_0 = .;
_2_1 = .;
_2_2 = .;
_2_3 = .;
_2_4 = .;
_2_5 = .;
_2_6 = .;
_2_7 = .;
_2_8 = .;
_2_9 = .;
_2_10 = .;
_2_11 = .;
_2_12 = .;
substr(_WARN_, 1.0, 1.0) = 'M';
_DM_BAD = 1.0;

Example of a .ds2 Scoring File 293

end;
 else do ;
_DM12 = put(AOV16_DIF_SRVR, BEST12.);
_DM12 = DMNORM(_DM12, 32.0);
if _DM12 = '1' then do ;
_2_0 = 1.0;
end;
 else if _DM12 = '2' then do ;
_2_1 = 1.0;
end;
 else if _DM12 = '16' then do ;
_2_0 = -1.0;
_2_1 = -1.0;
_2_2 = -1.0;
_2_3 = -1.0;
_2_4 = -1.0;
_2_5 = -1.0;
_2_6 = -1.0;
_2_7 = -1.0;
_2_8 = -1.0;
_2_9 = -1.0;
_2_10 = -1.0;
_2_11 = -1.0;
_2_12 = -1.0;
end;
 else if _DM12 = '11' then do ;
_2_10 = 1.0;
end;
 else if _DM12 = '8' then do ;
_2_7 = 1.0;
end;
 else if _DM12 = '10' then do ;
_2_9 = 1.0;
end;
 else if _DM12 = '3' then do ;
_2_2 = 1.0;
end;
 else if _DM12 = '7' then do ;
_2_6 = 1.0;
end;
 else if _DM12 = '4' then do ;
_2_3 = 1.0;
end;
 else if _DM12 = '9' then do ;
_2_8 = 1.0;
end;
 else if _DM12 = '5' then do ;
_2_4 = 1.0;
end;
 else if _DM12 = '12' then do ;
_2_11 = 1.0;
end;
 else if _DM12 = '6' then do ;
_2_5 = 1.0;
end;
 else if _DM12 = '13' then do ;

294 Appendix 1 • Scoring File Examples

_2_12 = 1.0;
end;
 else do ;
_2_0 = .;
_2_1 = .;
_2_2 = .;
_2_3 = .;
_2_4 = .;
_2_5 = .;
_2_6 = .;
_2_7 = .;
_2_8 = .;
_2_9 = .;
_2_10 = .;
_2_11 = .;
_2_12 = .;
substr(_WARN_, 2.0, 1.0) = 'U';
_DM_BAD = 1.0;
end;
end;
_3_0 = 0.0;
_3_1 = 0.0;
_3_2 = 0.0;
_3_3 = 0.0;
_3_4 = 0.0;
_3_5 = 0.0;
_3_6 = 0.0;
_3_7 = 0.0;
_3_8 = 0.0;
_3_9 = 0.0;
_3_10 = 0.0;
if MISSING(AOV16_HOT) then do ;
_3_0 = .;
_3_1 = .;
_3_2 = .;
_3_3 = .;
_3_4 = .;
_3_5 = .;
_3_6 = .;
_3_7 = .;
_3_8 = .;
_3_9 = .;
_3_10 = .;
substr(_WARN_, 1.0, 1.0) = 'M';
_DM_BAD = 1.0;
end;
 else do ;
_DM12 = put(AOV16_HOT, BEST12.);
_DM12 = DMNORM(_DM12, 32.0);
if _DM12 = '1' then do ;
_3_0 = 1.0;
end;
 else if _DM12 = '2' then do ;
_3_1 = 1.0;
end;
 else if _DM12 = '15' then do ;

Example of a .ds2 Scoring File 295

_3_10 = 1.0;
end;
 else if _DM12 = '3' then do ;
_3_2 = 1.0;
end;
 else if _DM12 = '4' then do ;
_3_3 = 1.0;
end;
 else if _DM12 = '11' then do ;
_3_7 = 1.0;
end;
 else if _DM12 = '12' then do ;
_3_8 = 1.0;
end;
 else if _DM12 = '10' then do ;
_3_6 = 1.0;
end;
 else if _DM12 = '8' then do ;
_3_5 = 1.0;
end;
 else if _DM12 = '16' then do ;
_3_0 = -1.0;
_3_1 = -1.0;
_3_2 = -1.0;
_3_3 = -1.0;
_3_4 = -1.0;
_3_5 = -1.0;
_3_6 = -1.0;
_3_7 = -1.0;
_3_8 = -1.0;
_3_9 = -1.0;
_3_10 = -1.0;
end;
 else if _DM12 = '13' then do ;
_3_9 = 1.0;
end;
 else if _DM12 = '7' then do ;
_3_4 = 1.0;
end;
 else do ;
_3_0 = .;
_3_1 = .;
_3_2 = .;
_3_3 = .;
_3_4 = .;
_3_5 = .;
_3_6 = .;
_3_7 = .;
_3_8 = .;
_3_9 = .;
_3_10 = .;
substr(_WARN_, 2.0, 1.0) = 'U';
_DM_BAD = 1.0;
end;
end;
_5_0 = 0.0;

296 Appendix 1 • Scoring File Examples

_5_1 = 0.0;
_5_2 = 0.0;
_5_3 = 0.0;
_5_4 = 0.0;
_5_5 = 0.0;
_5_6 = 0.0;
_5_7 = 0.0;
_5_8 = 0.0;
_5_9 = 0.0;
_5_10 = 0.0;
_5_11 = 0.0;
_5_12 = 0.0;
_5_13 = 0.0;
_5_14 = 0.0;
if MISSING(AOV16_SRV_CNT) then do ;
_5_0 = .;
_5_1 = .;
_5_2 = .;
_5_3 = .;
_5_4 = .;
_5_5 = .;
_5_6 = .;
_5_7 = .;
_5_8 = .;
_5_9 = .;
_5_10 = .;
_5_11 = .;
_5_12 = .;
_5_13 = .;
_5_14 = .;
substr(_WARN_, 1.0, 1.0) = 'M';
_DM_BAD = 1.0;
end;
 else do ;
_DM12 = put(AOV16_SRV_CNT, BEST12.);
_DM12 = DMNORM(_DM12, 32.0);
if _DM12 = '1' then do ;
_5_0 = 1.0;
end;
 else if _DM12 = '16' then do ;
_5_0 = -1.0;
_5_1 = -1.0;
_5_2 = -1.0;
_5_3 = -1.0;
_5_4 = -1.0;
_5_5 = -1.0;
_5_6 = -1.0;
_5_7 = -1.0;
_5_8 = -1.0;
_5_9 = -1.0;
_5_10 = -1.0;
_5_11 = -1.0;
_5_12 = -1.0;
_5_13 = -1.0;
_5_14 = -1.0;
end;

Example of a .ds2 Scoring File 297

 else if _DM12 = '2' then do ;
_5_1 = 1.0;
end;
 else if _DM12 = '15' then do ;
_5_14 = 1.0;
end;
 else if _DM12 = '14' then do ;
_5_13 = 1.0;
end;
 else if _DM12 = '3' then do ;
_5_2 = 1.0;
end;
 else if _DM12 = '4' then do ;
_5_3 = 1.0;
end;
 else if _DM12 = '5' then do ;
_5_4 = 1.0;
end;
 else if _DM12 = '6' then do ;
_5_5 = 1.0;
end;
 else if _DM12 = '8' then do ;
_5_7 = 1.0;
end;
 else if _DM12 = '7' then do ;
_5_6 = 1.0;
end;
 else if _DM12 = '9' then do ;
_5_8 = 1.0;
end;
 else if _DM12 = '10' then do ;
_5_9 = 1.0;
end;
 else if _DM12 = '12' then do ;
_5_11 = 1.0;
end;
 else if _DM12 = '11' then do ;
_5_10 = 1.0;
end;
 else if _DM12 = '13' then do ;
_5_12 = 1.0;
end;
 else do ;
_5_0 = .;
_5_1 = .;
_5_2 = .;
_5_3 = .;
_5_4 = .;
_5_5 = .;
_5_6 = .;
_5_7 = .;
_5_8 = .;
_5_9 = .;
_5_10 = .;
_5_11 = .;
_5_12 = .;

298 Appendix 1 • Scoring File Examples

_5_13 = .;
_5_14 = .;
substr(_WARN_, 2.0, 1.0) = 'U';
_DM_BAD = 1.0;
end;
end;
if MISSING(G_FLAG) then do ;
_6_0 = .;
_6_1 = .;
_6_2 = .;
substr(_WARN_, 1.0, 1.0) = 'M';
_DM_BAD = 1.0;
end;
 else do ;
_DM12 = put(G_FLAG, BEST12.);
_DM12 = DMNORM(_DM12, 32.0);
if _DM12 = '1' then do ;
_6_0 = 0.0;
_6_1 = 1.0;
_6_2 = 0.0;
end;
 else if _DM12 = '0' then do ;
_6_0 = 1.0;
_6_1 = 0.0;
_6_2 = 0.0;
end;
 else if _DM12 = '2' then do ;
_6_0 = 0.0;
_6_1 = 0.0;
_6_2 = 1.0;
end;
 else if _DM12 = '3' then do ;
_6_0 = -1.0;
_6_1 = -1.0;
_6_2 = -1.0;
end;
 else do ;
_6_0 = .;
_6_1 = .;
_6_2 = .;
substr(_WARN_, 2.0, 1.0) = 'U';
_DM_BAD = 1.0;
end;
end;
if MISSING(G_SERVICE) then do ;
_7_0 = .;
_7_1 = .;
substr(_WARN_, 1.0, 1.0) = 'M';
_DM_BAD = 1.0;
end;
 else do ;
_DM12 = put(G_SERVICE, BEST12.);
_DM12 = DMNORM(_DM12, 32.0);
if _DM12 = '2' then do ;
_7_0 = -1.0;
_7_1 = -1.0;

Example of a .ds2 Scoring File 299

end;
 else if _DM12 = '0' then do ;
_7_0 = 1.0;
_7_1 = 0.0;
end;
 else if _DM12 = '1' then do ;
_7_0 = 0.0;
_7_1 = 1.0;
end;
 else do ;
_7_0 = .;
_7_1 = .;
substr(_WARN_, 2.0, 1.0) = 'U';
_DM_BAD = 1.0;
end;
end;
if _DM_BAD > 0.0 then do ;
_P0 = 0.0006798097;
_P1 = 0.0153183775;
_P2 = 0.0558123725;
_P3 = 0.3941083163;
_P4 = 0.534081124;
goto REGDR1;
end;
_LP0 = 0.0;
_LP1 = 0.0;
_LP2 = 0.0;
_LP3 = 0.0;
_TEMP = 1.0;
_LP0 = _LP0 + (8.97309749884509) * _TEMP * _1_0;
_LP1 = _LP1 + (9.475456450304) * _TEMP * _1_0;
_LP2 = _LP2 + (0.08183779939133) * _TEMP * _1_0;
_LP3 = _LP3 + (7.91547642280949) * _TEMP * _1_0;
_LP0 = _LP0 + (-7.09311218652648) * _TEMP * _1_1;
_LP1 = _LP1 + (3.42946756538907) * _TEMP * _1_1;
_LP2 = _LP2 + (-1.63736222687037) * _TEMP * _1_1;
_LP3 = _LP3 + (8.60035492871607) * _TEMP * _1_1;
_LP0 = _LP0 + (16.3315840253036) * _TEMP * _1_2;
_LP1 = _LP1 + (-5.85959164693143) * _TEMP * _1_2;
_LP2 = _LP2 + (-2.53740928241609) * _TEMP * _1_2;
_LP3 = _LP3 + (2.62120809028614) * _TEMP * _1_2;
_LP0 = _LP0 + (-22.5615273556858) * _TEMP * _1_3;
_LP1 = _LP1 + (-5.52330111707437) * _TEMP * _1_3;
_LP2 = _LP2 + (-5.33919133360776) * _TEMP * _1_3;
_LP3 = _LP3 + (0.11884727866076) * _TEMP * _1_3;
_LP0 = _LP0 + (-30.2554906468364) * _TEMP * _1_4;
_LP1 = _LP1 + (0.64526397467362) * _TEMP * _1_4;
_LP2 = _LP2 + (-4.40987507627988) * _TEMP * _1_4;
_LP3 = _LP3 + (-1.46254346452609) * _TEMP * _1_4;
_LP0 = _LP0 + (13.4444067104834) * _TEMP * _1_5;
_LP1 = _LP1 + (-15.4359581659106) * _TEMP * _1_5;
_LP2 = _LP2 + (-3.78315830765155) * _TEMP * _1_5;
_LP3 = _LP3 + (-4.74730533646477) * _TEMP * _1_5;
_LP0 = _LP0 + (5.99426137980241) * _TEMP * _1_6;
_LP1 = _LP1 + (3.34304711000097) * _TEMP * _1_6;
_LP2 = _LP2 + (-4.49993737709991) * _TEMP * _1_6;

300 Appendix 1 • Scoring File Examples

_LP3 = _LP3 + (0.39149662840319) * _TEMP * _1_6;
_LP0 = _LP0 + (8.00404660871621) * _TEMP * _1_7;
_LP1 = _LP1 + (3.87729351931859) * _TEMP * _1_7;
_LP2 = _LP2 + (-5.662863418933) * _TEMP * _1_7;
_LP3 = _LP3 + (0.92431512613497) * _TEMP * _1_7;
_LP0 = _LP0 + (9.73639514490121) * _TEMP * _1_8;
_LP1 = _LP1 + (1.66486268124882) * _TEMP * _1_8;
_LP2 = _LP2 + (-5.34790399310294) * _TEMP * _1_8;
_LP3 = _LP3 + (-0.80452936208339) * _TEMP * _1_8;
_LP0 = _LP0 + (-1.18886754533908) * _TEMP * _1_9;
_LP1 = _LP1 + (0.98108751722337) * _TEMP * _1_9;
_LP2 = _LP2 + (-5.09756573837529) * _TEMP * _1_9;
_LP3 = _LP3 + (0.55035390990751) * _TEMP * _1_9;
_LP0 = _LP0 + (3.33003316374041) * _TEMP * _1_10;
_LP1 = _LP1 + (1.28863079547562) * _TEMP * _1_10;
_LP2 = _LP2 + (4.52005620947533) * _TEMP * _1_10;
_LP3 = _LP3 + (-1.88185495205653) * _TEMP * _1_10;
_LP0 = _LP0 + (-1.23514061750629) * _TEMP * _1_11;
_LP1 = _LP1 + (-0.63165164315095) * _TEMP * _1_11;
_LP2 = _LP2 + (4.47980876228159) * _TEMP * _1_11;
_LP3 = _LP3 + (-2.28762571372038) * _TEMP * _1_11;
_LP0 = _LP0 + (3.45175998109795) * _TEMP * _1_12;
_LP1 = _LP1 + (-0.05911640263949) * _TEMP * _1_12;
_LP2 = _LP2 + (3.7133976012504) * _TEMP * _1_12;
_LP3 = _LP3 + (-3.40533163917284) * _TEMP * _1_12;
_LP0 = _LP0 + (-1.79579379752335) * _TEMP * _1_13;
_LP1 = _LP1 + (-0.66575638518718) * _TEMP * _1_13;
_LP2 = _LP2 + (2.46190197688312) * _TEMP * _1_13;
_LP3 = _LP3 + (-3.86144993561858) * _TEMP * _1_13;
_LP0 = _LP0 + (16.2289623285747) * _TEMP * _1_14;
_LP1 = _LP1 + (3.87844062530087) * _TEMP * _1_14;
_LP2 = _LP2 + (13.5342255495752) * _TEMP * _1_14;
_LP3 = _LP3 + (0.11787447033604) * _TEMP * _1_14;
_TEMP = 1.0;
_LP0 = _LP0 + (4.96178727582277) * _TEMP * _2_0;
_LP1 = _LP1 + (7.19423934264755) * _TEMP * _2_0;
_LP2 = _LP2 + (-2.57814751000107) * _TEMP * _2_0;
_LP3 = _LP3 + (-0.41318251862093) * _TEMP * _2_0;
_LP0 = _LP0 + (2.53606187215301) * _TEMP * _2_1;
_LP1 = _LP1 + (1.02456723195019) * _TEMP * _2_1;
_LP2 = _LP2 + (-3.01518942636817) * _TEMP * _2_1;
_LP3 = _LP3 + (-6.42999803474578) * _TEMP * _2_1;
_LP0 = _LP0 + (-17.0716556901489) * _TEMP * _2_2;
_LP1 = _LP1 + (-2.55836176487159) * _TEMP * _2_2;
_LP2 = _LP2 + (-2.66986765613004) * _TEMP * _2_2;
_LP3 = _LP3 + (-3.77427590976266) * _TEMP * _2_2;
_LP0 = _LP0 + (-11.6228431594003) * _TEMP * _2_3;
_LP1 = _LP1 + (-4.42118648129498) * _TEMP * _2_3;
_LP2 = _LP2 + (-2.41006554535669) * _TEMP * _2_3;
_LP3 = _LP3 + (-2.47998713977501) * _TEMP * _2_3;
_LP0 = _LP0 + (-6.65446334079067) * _TEMP * _2_4;
_LP1 = _LP1 + (-4.21089586391698) * _TEMP * _2_4;
_LP2 = _LP2 + (-2.40850931862971) * _TEMP * _2_4;
_LP3 = _LP3 + (-2.46504190674716) * _TEMP * _2_4;
_LP0 = _LP0 + (-3.17136687316047) * _TEMP * _2_5;
_LP1 = _LP1 + (-1.69998112881134) * _TEMP * _2_5;

Example of a .ds2 Scoring File 301

_LP2 = _LP2 + (-2.27711189809608) * _TEMP * _2_5;
_LP3 = _LP3 + (-0.56541361679043) * _TEMP * _2_5;
_LP0 = _LP0 + (0.06485838750697) * _TEMP * _2_6;
_LP1 = _LP1 + (2.083825423476) * _TEMP * _2_6;
_LP2 = _LP2 + (4.31755671819224) * _TEMP * _2_6;
_LP3 = _LP3 + (4.36618153369848) * _TEMP * _2_6;
_LP0 = _LP0 + (-3.15969642288067) * _TEMP * _2_7;
_LP1 = _LP1 + (-3.11663563731206) * _TEMP * _2_7;
_LP2 = _LP2 + (-1.93101189518423) * _TEMP * _2_7;
_LP3 = _LP3 + (-0.66813727595772) * _TEMP * _2_7;
_LP0 = _LP0 + (23.3492198306386) * _TEMP * _2_8;
_LP1 = _LP1 + (15.3692429684277) * _TEMP * _2_8;
_LP2 = _LP2 + (19.6299281653522) * _TEMP * _2_8;
_LP3 = _LP3 + (3.7767067535256) * _TEMP * _2_8;
_LP0 = _LP0 + (0.6888846491937) * _TEMP * _2_9;
_LP1 = _LP1 + (0.26881516596812) * _TEMP * _2_9;
_LP2 = _LP2 + (3.49366097063402) * _TEMP * _2_9;
_LP3 = _LP3 + (4.77521196924485) * _TEMP * _2_9;
_LP0 = _LP0 + (6.93832447370645) * _TEMP * _2_10;
_LP1 = _LP1 + (-14.7995817386477) * _TEMP * _2_10;
_LP2 = _LP2 + (-3.17802481741923) * _TEMP * _2_10;
_LP3 = _LP3 + (-0.75953335528334) * _TEMP * _2_10;
_LP0 = _LP0 + (-5.17421740905568) * _TEMP * _2_11;
_LP1 = _LP1 + (-3.50927803184578) * _TEMP * _2_11;
_LP2 = _LP2 + (-0.93991965967767) * _TEMP * _2_11;
_LP3 = _LP3 + (-0.57578867183536) * _TEMP * _2_11;
_LP0 = _LP0 + (-5.40485675039647) * _TEMP * _2_12;
_LP1 = _LP1 + (-3.43007109867235) * _TEMP * _2_12;
_LP2 = _LP2 + (-11.8686117799293) * _TEMP * _2_12;
_LP3 = _LP3 + (-0.57409656273319) * _TEMP * _2_12;
_TEMP = 1.0;
_LP0 = _LP0 + (42.0263556916437) * _TEMP * _3_0;
_LP1 = _LP1 + (1.55172177304255) * _TEMP * _3_0;
_LP2 = _LP2 + (10.9123737543277) * _TEMP * _3_0;
_LP3 = _LP3 + (2.20643367366059) * _TEMP * _3_0;
_LP0 = _LP0 + (35.8542164366111) * _TEMP * _3_1;
_LP1 = _LP1 + (-7.03832251333459) * _TEMP * _3_1;
_LP2 = _LP2 + (-13.5692536842049) * _TEMP * _3_1;
_LP3 = _LP3 + (-11.6512021486838) * _TEMP * _3_1;
_LP0 = _LP0 + (47.2300160154457) * _TEMP * _3_2;
_LP1 = _LP1 + (5.43079775823532) * _TEMP * _3_2;
_LP2 = _LP2 + (-1.76238042211005) * _TEMP * _3_2;
_LP3 = _LP3 + (2.88051687962657) * _TEMP * _3_2;
_LP0 = _LP0 + (32.2801944616028) * _TEMP * _3_3;
_LP1 = _LP1 + (5.10935792540826) * _TEMP * _3_3;
_LP2 = _LP2 + (2.52744460733309) * _TEMP * _3_3;
_LP3 = _LP3 + (2.95088205442946) * _TEMP * _3_3;
_LP0 = _LP0 + (31.6597113950015) * _TEMP * _3_4;
_LP1 = _LP1 + (-9.07258866978128) * _TEMP * _3_4;
_LP2 = _LP2 + (1.62190948241675) * _TEMP * _3_4;
_LP3 = _LP3 + (2.04551962977074) * _TEMP * _3_4;
_LP0 = _LP0 + (31.6597116255105) * _TEMP * _3_5;
_LP1 = _LP1 + (2.67824698076013) * _TEMP * _3_5;
_LP2 = _LP2 + (1.62190948383178) * _TEMP * _3_5;
_LP3 = _LP3 + (1.19293530007666) * _TEMP * _3_5;
_LP0 = _LP0 + (31.6597116340262) * _TEMP * _3_6;

302 Appendix 1 • Scoring File Examples

_LP1 = _LP1 + (2.54298742758522) * _TEMP * _3_6;
_LP2 = _LP2 + (1.62190948388826) * _TEMP * _3_6;
_LP3 = _LP3 + (1.30825513024406) * _TEMP * _3_6;
_LP0 = _LP0 + (-362.950916427088) * _TEMP * _3_7;
_LP1 = _LP1 + (6.17176825281735) * _TEMP * _3_7;
_LP2 = _LP2 + (2.29729057331607) * _TEMP * _3_7;
_LP3 = _LP3 + (1.72970564346861) * _TEMP * _3_7;
_LP0 = _LP0 + (15.9700734501859) * _TEMP * _3_8;
_LP1 = _LP1 + (-9.54799929498259) * _TEMP * _3_8;
_LP2 = _LP2 + (-9.74287510861865) * _TEMP * _3_8;
_LP3 = _LP3 + (1.95662231341111) * _TEMP * _3_8;
_LP0 = _LP0 + (31.6597115840211) * _TEMP * _3_9;
_LP1 = _LP1 + (-9.0725886711641) * _TEMP * _3_9;
_LP2 = _LP2 + (1.62190948358845) * _TEMP * _3_9;
_LP3 = _LP3 + (2.04551963042141) * _TEMP * _3_9;
_LP0 = _LP0 + (31.291502511214) * _TEMP * _3_10;
_LP1 = _LP1 + (20.319207702854) * _TEMP * _3_10;
_LP2 = _LP2 + (1.22785286240863) * _TEMP * _3_10;
_LP3 = _LP3 + (-8.71070773697709) * _TEMP * _3_10;
_TEMP = 1.0;
_LP0 = _LP0 + (39.0432493014866) * _TEMP * _5_0;
_LP1 = _LP1 + (2.41556930669061) * _TEMP * _5_0;
_LP2 = _LP2 + (10.9819053439207) * _TEMP * _5_0;
_LP3 = _LP3 + (-2.4193090445841) * _TEMP * _5_0;
_LP0 = _LP0 + (26.0525989318919) * _TEMP * _5_1;
_LP1 = _LP1 + (-10.8013995852177) * _TEMP * _5_1;
_LP2 = _LP2 + (7.80802468659326) * _TEMP * _5_1;
_LP3 = _LP3 + (-8.37335359162762) * _TEMP * _5_1;
_LP0 = _LP0 + (-91.7996367657177) * _TEMP * _5_2;
_LP1 = _LP1 + (-7.20941847531768) * _TEMP * _5_2;
_LP2 = _LP2 + (6.37205506985912) * _TEMP * _5_2;
_LP3 = _LP3 + (-4.13523264892108) * _TEMP * _5_2;
_LP0 = _LP0 + (-43.2987854849329) * _TEMP * _5_3;
_LP1 = _LP1 + (9.63628678654799) * _TEMP * _5_3;
_LP2 = _LP2 + (15.2260866612625) * _TEMP * _5_3;
_LP3 = _LP3 + (3.41098536758909) * _TEMP * _5_3;
_LP0 = _LP0 + (-92.5078418147566) * _TEMP * _5_4;
_LP1 = _LP1 + (0.92035946274589) * _TEMP * _5_4;
_LP2 = _LP2 + (14.6028124613418) * _TEMP * _5_4;
_LP3 = _LP3 + (4.74556696940043) * _TEMP * _5_4;
_LP0 = _LP0 + (-169.198537792928) * _TEMP * _5_5;
_LP1 = _LP1 + (17.5135430652249) * _TEMP * _5_5;
_LP2 = _LP2 + (-27.5413368656283) * _TEMP * _5_5;
_LP3 = _LP3 + (5.71011491340335) * _TEMP * _5_5;
_LP0 = _LP0 + (29.0429678675398) * _TEMP * _5_6;
_LP1 = _LP1 + (-4.70698581451379) * _TEMP * _5_6;
_LP2 = _LP2 + (2.19747568966552) * _TEMP * _5_6;
_LP3 = _LP3 + (0.25036394861618) * _TEMP * _5_6;
_LP0 = _LP0 + (27.4220001532713) * _TEMP * _5_7;
_LP1 = _LP1 + (-5.62951270960282) * _TEMP * _5_7;
_LP2 = _LP2 + (2.97946845585617) * _TEMP * _5_7;
_LP3 = _LP3 + (0.07300025078033) * _TEMP * _5_7;
_LP0 = _LP0 + (24.9838671156593) * _TEMP * _5_8;
_LP1 = _LP1 + (-4.23916148505361) * _TEMP * _5_8;
_LP2 = _LP2 + (3.42557523365742) * _TEMP * _5_8;
_LP3 = _LP3 + (1.46388562797025) * _TEMP * _5_8;

Example of a .ds2 Scoring File 303

_LP0 = _LP0 + (22.8194752422965) * _TEMP * _5_9;
_LP1 = _LP1 + (-4.25224375283395) * _TEMP * _5_9;
_LP2 = _LP2 + (2.49905210556025) * _TEMP * _5_9;
_LP3 = _LP3 + (-0.01709833699071) * _TEMP * _5_9;
_LP0 = _LP0 + (37.114213383863) * _TEMP * _5_10;
_LP1 = _LP1 + (2.9953971574379) * _TEMP * _5_10;
_LP2 = _LP2 + (-4.63754693643679) * _TEMP * _5_10;
_LP3 = _LP3 + (-4.36468726526216) * _TEMP * _5_10;
_LP0 = _LP0 + (34.2320056651284) * _TEMP * _5_11;
_LP1 = _LP1 + (-2.48152127510367) * _TEMP * _5_11;
_LP2 = _LP2 + (-7.20881969172312) * _TEMP * _5_11;
_LP3 = _LP3 + (2.05199646600986) * _TEMP * _5_11;
_LP0 = _LP0 + (34.1979425371632) * _TEMP * _5_12;
_LP1 = _LP1 + (1.32583179116639) * _TEMP * _5_12;
_LP2 = _LP2 + (-1.94011877303868) * _TEMP * _5_12;
_LP3 = _LP3 + (8.74058490108554) * _TEMP * _5_12;
_LP0 = _LP0 + (39.1512435469843) * _TEMP * _5_13;
_LP1 = _LP1 + (1.88577792759584) * _TEMP * _5_13;
_LP2 = _LP2 + (-1.93386166738385) * _TEMP * _5_13;
_LP3 = _LP3 + (0.84886002004651) * _TEMP * _5_13;
_LP0 = _LP0 + (20.9363766085136) * _TEMP * _5_14;
_LP1 = _LP1 + (-2.0647251475618) * _TEMP * _5_14;
_LP2 = _LP2 + (-13.1892422255085) * _TEMP * _5_14;
_LP3 = _LP3 + (-4.52842188369726) * _TEMP * _5_14;
_TEMP = 1.0;
_LP0 = _LP0 + (1.76663561037174) * _TEMP * _6_0;
_LP1 = _LP1 + (-5.40874215787948) * _TEMP * _6_0;
_LP2 = _LP2 + (-6.87281360284862) * _TEMP * _6_0;
_LP3 = _LP3 + (-6.22229997982126) * _TEMP * _6_0;
_LP0 = _LP0 + (21.8797726373068) * _TEMP * _6_1;
_LP1 = _LP1 + (2.87906958740983) * _TEMP * _6_1;
_LP2 = _LP2 + (1.83666665646742) * _TEMP * _6_1;
_LP3 = _LP3 + (4.13135987011355) * _TEMP * _6_1;
_LP0 = _LP0 + (1.73459041116589) * _TEMP * _6_2;
_LP1 = _LP1 + (-0.75352434519744) * _TEMP * _6_2;
_LP2 = _LP2 + (-0.62400019216188) * _TEMP * _6_2;
_LP3 = _LP3 + (0.53569098310408) * _TEMP * _6_2;
_TEMP = 1.0;
_LP0 = _LP0 + (-3.44927846183227) * _TEMP * _7_0;
_LP1 = _LP1 + (-6.37652016665453) * _TEMP * _7_0;
_LP2 = _LP2 + (-4.25904939215537) * _TEMP * _7_0;
_LP3 = _LP3 + (-4.51685639332432) * _TEMP * _7_0;
_LP0 = _LP0 + (-6.43408008433648) * _TEMP * _7_1;
_LP1 = _LP1 + (-0.80236520705753) * _TEMP * _7_1;
_LP2 = _LP2 + (-0.12922463272966) * _TEMP * _7_1;
_LP3 = _LP3 + (-0.63228249961139) * _TEMP * _7_1;
_LPMAX = 0.0;
_LP0 = -123.067467124716 + _LP0;
if _LPMAX < _LP0 then _LPMAX = _LP0;
_LP1 = -23.6221258810818 + _LP1;
if _LPMAX < _LP1 then _LPMAX = _LP1;
_LP2 = -18.5909979689337 + _LP2;
if _LPMAX < _LP2 then _LPMAX = _LP2;
_LP3 = -6.00322742797283 + _LP3;
if _LPMAX < _LP3 then _LPMAX = _LP3;
_LP0 = EXP(_LP0 - _LPMAX);

304 Appendix 1 • Scoring File Examples

_LP1 = EXP(_LP1 - _LPMAX);
_LP2 = EXP(_LP2 - _LPMAX);
_LP3 = EXP(_LP3 - _LPMAX);
_LPMAX = EXP(-_LPMAX);
_P4 = 1.0 / (_LPMAX + _LP0 + _LP1 + _LP2 + _LP3);
_P0 = _LP0 * _P4;
_P1 = _LP1 * _P4;
_P2 = _LP2 * _P4;
_P3 = _LP3 * _P4;
_P4 = _LPMAX * _P4;
REGDR1: P_ATTACKU2R = _P0;
_MAXP = _P0;
_IY = 1.0;
P_ATTACKR2L = _P1;
if (_P1 - _MAXP > 1E-8) then do ;
_MAXP = _P1;
_IY = 2.0;
end;
P_ATTACKPROBE = _P2;
if (_P2 - _MAXP > 1E-8) then do ;
_MAXP = _P2;
_IY = 3.0;
end;
P_ATTACKNORMAL = _P3;
if (_P3 - _MAXP > 1E-8) then do ;
_MAXP = _P3;
_IY = 4.0;
end;
P_ATTACKDOS = _P4;
if (_P4 - _MAXP > 1E-8) then do ;
_MAXP = _P4;
_IY = 5.0;
end;
I_ATTACK = REGDRF[_IY];
U_ATTACK = REGDRU[_IY];
EM_EVENTPROBABILITY = P_ATTACKU2R;
EM_PROBABILITY = MAX(P_ATTACKU2R, P_ATTACKR2L, P_ATTACKPROBE, P_ATTACKNORMAL,
P_ATTACKDOS);
EM_CLASSIFICATION = I_ATTACK;
_return: ;
end;
 enddata;

Example of an Input and Output Variables Scoring
File

Here is an example of an input and output variables scoring file. The filename is
sasscore_score_io.xml.

<?xml version="1.0" encoding="utf-8"?>
<Score>
 <Producer>
 <Name> SAS Enterprise Miner </Name>

Example of an Input and Output Variables Scoring File 305

 <Version> 1.0 </Version>
 </Producer>
 <TargetList>
 </TargetList>
 <Input>
 <Variable>
 <Name> COUNT </Name>
 <Type> numeric </Type>
 </Variable>
 <Variable>
 <Name> DIF_SRVR </Name>
 <Type> numeric </Type>
 <Description>
 <![CDATA[diff_srv_rate]]>
 </Description>
 </Variable>
 <Variable>
 <Name> FLAG </Name>
 <Type> character </Type>
 </Variable>
 <Variable>
 <Name> HOT </Name>
 <Type> numeric </Type>
 </Variable>
 <Variable>
 <Name> SAM_SRAT </Name>
 <Type> numeric </Type>
 <Description>
 <![CDATA[same_srv_rate]]>
 </Description>
 </Variable>
 <Variable>
 <Name> SERVICE </Name>
 <Type> character </Type>
 </Variable>
 <Variable>
 <Name> SRV_CNT </Name>
 <Type> numeric </Type>
 <Description>
 <![CDATA[srv_count]]>
 </Description>
 </Variable>
 </Input>
 <Output>
 <Variable>
 <Name> AOV16_COUNT </Name>
 <Type> numeric </Type>
 </Variable>
 <Variable>
 <Name> AOV16_DIF_SRVR </Name>
 <Type> numeric </Type>
 </Variable>
 <Variable>
 <Name> AOV16_HOT </Name>
 <Type> numeric </Type>
 </Variable>

306 Appendix 1 • Scoring File Examples

 <Variable>
 <Name> AOV16_SAM_SRAT </Name>
 <Type> numeric </Type>
 </Variable>
 <Variable>
 <Name> AOV16_SRV_CNT </Name>
 <Type> numeric </Type>
 </Variable>
 <Variable>
 <Name> EM_CLASSIFICATION </Name>
 <Type> character </Type>
 <Description>
 <![CDATA[Prediction for ATTACK]]>
 </Description>
 </Variable>
 <Variable>
 <Name> EM_EVENTPROBABILITY </Name>
 <Type> numeric </Type>
 <Description>
 <![CDATA[Probability for level U2R of ATTACK]]>
 </Description>
 </Variable>
 <Variable>
 <Name> EM_PROBABILITY </Name>
 <Type> numeric </Type>
 <Description>
 <![CDATA[Probability of Classification]]>
 </Description>
 </Variable>
 <Variable>
 <Name> G_FLAG </Name>
 <Type> numeric </Type>
 </Variable>
 <Variable>
 <Name> G_SERVICE </Name>
 <Type> numeric </Type>
 </Variable>
 <Variable>
 <Name> I_ATTACK </Name>
 <Type> character </Type>
 <Description>
 <![CDATA[Into: ATTACK]]>
 </Description>
 </Variable>
 <Variable>
 <Name> P_ATTACKDOS </Name>
 <Type> numeric </Type>
 <Description>
 <![CDATA[Predicted: ATTACK=dos]]>
 </Description>
 </Variable>
 <Variable>
 <Name> P_ATTACKNORMAL </Name>
 <Type> numeric </Type>
 <Description>
 <![CDATA[Predicted: ATTACK=normal]]>

Example of an Input and Output Variables Scoring File 307

 </Description>
 </Variable>
 <Variable>
 <Name> P_ATTACKPROBE </Name>
 <Type> numeric </Type>
 <Description>
 <![CDATA[Predicted: ATTACK=probe]]>
 </Description>
 </Variable>
 <Variable>
 <Name> P_ATTACKR2L </Name>
 <Type> numeric </Type>
 <Description>
 <![CDATA[Predicted: ATTACK=r2l]]>
 </Description>
 </Variable>
 <Variable>
 <Name> P_ATTACKU2R </Name>
 <Type> numeric </Type>
 <Description>
 <![CDATA[Predicted: ATTACK=u2r]]>
 </Description>
 </Variable>
 <Variable>
 <Name> U_ATTACK </Name>
 <Type> character </Type>
 <Description>
 <![CDATA[Unnormalized Into: ATTACK]]>
 </Description>
 </Variable>
 <Variable>
 <Name> _WARN_ </Name>
 <Type> character </Type>
 <Description>
 <![CDATA[Warnings]]>
 </Description>
 </Variable>
 </Output>
 <C>
 <Function>
 <Name>
 score
 </Name>
 <ParameterList>
 <Parameter>
 <Array length="7">
 <Type>
 Parm
 </Type>
 <DataMap>
 <Element index="0">
 <Value>
 <Origin> COUNT </Origin>
 <Type> double </Type>
 </Value>
 </Element>

308 Appendix 1 • Scoring File Examples

 <Element index="1">
 <Value>
 <Origin> DIF_SRVR </Origin>
 <Type> double </Type>
 </Value>
 </Element>
 <Element index="2">
 <Value>
 <Origin> FLAG </Origin>
 <Array length="33">
 <Type> char </Type>
 </Array>
 </Value>
 </Element>
 <Element index="3">
 <Value>
 <Origin> HOT </Origin>
 <Type> double </Type>
 </Value>
 </Element>
 <Element index="4">
 <Value>
 <Origin> SAM_SRAT </Origin>
 <Type> double </Type>
 </Value>
 </Element>
 <Element index="5">
 <Value>
 <Origin> SERVICE </Origin>
 <Array length="33">
 <Type> char </Type>
 </Array>
 </Value>
 </Element>
 <Element index="6">
 <Value>
 <Origin> SRV_CNT </Origin>
 <Type> double </Type>
 </Value>
 </Element>
 </DataMap>
 </Array>
 </Parameter>

 <Parameter>
 <Array length="18">
 <Type>
 Parm
 </Type>
 <DataMap>
 <Element index="0">
 <Value>
 <Origin> AOV16_COUNT </Origin>
 <Type> double </Type>
 </Value>
 </Element>

Example of an Input and Output Variables Scoring File 309

 <Element index="1">
 <Value>
 <Origin> AOV16_DIF_SRVR </Origin>
 <Type> double </Type>
 </Value>
 </Element>
 <Element index="2">
 <Value>
 <Origin> AOV16_HOT </Origin>
 <Type> double </Type>
 </Value>
 </Element>
 <Element index="3">
 <Value>
 <Origin> AOV16_SAM_SRAT </Origin>
 <Type> double </Type>
 </Value>
 </Element>
 <Element index="4">
 <Value>
 <Origin> AOV16_SRV_CNT </Origin>
 <Type> double </Type>
 </Value>
 </Element>
 <Element index="5">
 <Value>
 <Origin> EM_CLASSIFICATION </Origin>
 <Array length="33">
 <Type> char </Type>
 </Array>
 </Value>
 </Element>
 <Element index="6">
 <Value>
 <Origin> EM_EVENTPROBABILITY </Origin>
 <Type> double </Type>
 </Value>
 </Element>
 <Element index="7">
 <Value>
 <Origin> EM_PROBABILITY </Origin>
 <Type> double </Type>
 </Value>
 </Element>
 <Element index="8">
 <Value>
 <Origin> G_FLAG </Origin>
 <Type> double </Type>
 </Value>
 </Element>
 <Element index="9">
 <Value>
 <Origin> G_SERVICE </Origin>
 <Type> double </Type>
 </Value>
 </Element>

310 Appendix 1 • Scoring File Examples

 <Element index="10">
 <Value>
 <Origin> I_ATTACK </Origin>
 <Array length="7">
 <Type> char </Type>
 </Array>
 </Value>
 </Element>
 <Element index="11">
 <Value>
 <Origin> P_ATTACKDOS </Origin>
 <Type> double </Type>
 </Value>
 </Element>
 <Element index="12">
 <Value>
 <Origin> P_ATTACKNORMAL </Origin>
 <Type> double </Type>
 </Value>
 </Element>
 <Element index="13">
 <Value>
 <Origin> P_ATTACKPROBE </Origin>
 <Type> double </Type>
 </Value>
 </Element>
 <Element index="14">
 <Value>
 <Origin> P_ATTACKR2L </Origin>
 <Type> double </Type>
 </Value>
 </Element>
 <Element index="15">
 <Value>
 <Origin> P_ATTACKU2R </Origin>
 <Type> double </Type>
 </Value>
 </Element>
 <Element index="16">
 <Value>
 <Origin> U_ATTACK </Origin>
 <Array length="7">
 <Type> char </Type>
 </Array>
 </Value>
 </Element>
 <Element index="17">
 <Value>
 <Origin> _WARN_ </Origin>
 <Array length="5">
 <Type> char </Type>
 </Array>
 </Value>
 </Element>
 </DataMap>
 </Array>

Example of an Input and Output Variables Scoring File 311

 </Parameter>
 </ParameterList>
 </Function>
 </C>
</Score>

Example of a User-Defined Formats Scoring File
Here is an example of a user-defined formats scoring file. The filename is
sasscore_score_ufmt.xml.

<?xml version="1.0" encoding="utf-8" ?>
<?xml-stylesheet type="text/xsl" href="SUVformats.xsl"?>
<LIBRARY type="EXPORT" version="SUV">
 <HEADER>
 <Provider>SAS Institute Inc.</Provider>
 <Version>9.2</Version>
 <VersionLong>9.02.02M2D09012009</VersionLong>
 <CreationDateTime>2009-12-14T12:47:03</CreationDateTime>
 </HEADER>

 <TABLE name="sasscore_score_ufmt">
 <TABLE-HEADER>
 <Provider>SAS Institute Inc.</Provider>
 <Version>9.2</Version>
 <VersionLong>9.02.02M2D09012009</VersionLong>
 <CreationDateTime>2009-12-14T12:47:03</CreationDateTime>
 <ModifiedDateTime>2009-12-14T12:47:03</ModifiedDateTime>

 <Protection />
 <DataSetType />
 <DataRepresentation />
 <Encoding>utf-8</Encoding>
 <ReleaseCreated />
 <HostCreated />
 <FileName>sasscore_score_ufmt</FileName>

 <Observations />
 <Compression number="1" />
 <Variables number="21" />
 </TABLE-HEADER>

 <COLUMN name="FMTNAME" label="Format name">
 <TYPE>character</TYPE>
 <DATATYPE>string</DATATYPE>
 <LENGTH>32</LENGTH>
 <Offset>32</Offset>
 <SortedBy />
 </COLUMN>

 <COLUMN name="START" label="Starting value for format">
 <TYPE>character</TYPE>
 <DATATYPE>string</DATATYPE>

312 Appendix 1 • Scoring File Examples

 <LENGTH>16</LENGTH>
 <Offset>16</Offset>
 <SortedBy />
 </COLUMN>

 <COLUMN name="END" label="Ending value for format">
 <TYPE>character</TYPE>
 <DATATYPE>string</DATATYPE>
 <LENGTH>16</LENGTH>
 <Offset>16</Offset>
 <SortedBy />
 </COLUMN>

 <COLUMN name="LABEL" label="Format value label">
 <TYPE>character</TYPE>
 <DATATYPE>string</DATATYPE>
 <LENGTH>3</LENGTH>
 <Offset>3</Offset>
 <SortedBy />
 </COLUMN>

 <COLUMN name="MIN" label="Minimum length">
 <TYPE>numeric</TYPE>
 <DATATYPE>double</DATATYPE>
 <LENGTH>3</LENGTH>
 <Offset>3</Offset>
 <SortedBy />
 </COLUMN>

 <COLUMN name="MAX" label="Maximum length">
 <TYPE>numeric</TYPE>
 <DATATYPE>double</DATATYPE>
 <LENGTH>3</LENGTH>
 <Offset>3</Offset>
 <SortedBy />
 </COLUMN>

 <COLUMN name="DEFAULT" label="Default length">
 <TYPE>numeric</TYPE>
 <DATATYPE>double</DATATYPE>
 <LENGTH>3</LENGTH>
 <Offset>3</Offset>
 <SortedBy />
 </COLUMN>

 <COLUMN name="LENGTH" label="Format length">
 <TYPE>numeric</TYPE>
 <DATATYPE>double</DATATYPE>
 <LENGTH>3</LENGTH>
 <Offset>3</Offset>
 <SortedBy />
 </COLUMN>

 <COLUMN name="FUZZ" label="Fuzz value">
 <TYPE>numeric</TYPE>
 <DATATYPE>double</DATATYPE>

Example of a User-Defined Formats Scoring File 313

 <LENGTH>8</LENGTH>
 <Offset>8</Offset>
 <SortedBy />
 </COLUMN>

 <COLUMN name="PREFIX" label="Prefix characters">
 <TYPE>character</TYPE>
 <DATATYPE>string</DATATYPE>
 <LENGTH>2</LENGTH>
 <Offset>2</Offset>
 <SortedBy />
 </COLUMN>

 <COLUMN name="MULT" label="Multiplier">
 <TYPE>numeric</TYPE>
 <DATATYPE>double</DATATYPE>
 <LENGTH>8</LENGTH>
 <Offset>8</Offset>
 <SortedBy />
 </COLUMN>

 <COLUMN name="FILL" label="Fill character">
 <TYPE>character</TYPE>
 <DATATYPE>string</DATATYPE>
 <LENGTH>1</LENGTH>
 <Offset>1</Offset>
 <SortedBy />
 </COLUMN>

 <COLUMN name="NOEDIT" label="Is picture string noedit?">
 <TYPE>numeric</TYPE>
 <DATATYPE>double</DATATYPE>
 <LENGTH>3</LENGTH>
 <Offset>3</Offset>
 <SortedBy />
 </COLUMN>

 <COLUMN name="TYPE" label="Type of format">
 <TYPE>character</TYPE>
 <DATATYPE>string</DATATYPE>
 <LENGTH>1</LENGTH>
 <Offset>1</Offset>
 <SortedBy />
 </COLUMN>

 <COLUMN name="SEXCL" label="Start exclusion">
 <TYPE>character</TYPE>
 <DATATYPE>string</DATATYPE>
 <LENGTH>1</LENGTH>
 <Offset>1</Offset>
 <SortedBy />
 </COLUMN>

 <COLUMN name="EEXCL" label="End exclusion">
 <TYPE>character</TYPE>
 <DATATYPE>string</DATATYPE>

314 Appendix 1 • Scoring File Examples

 <LENGTH>1</LENGTH>
 <Offset>1</Offset>
 <SortedBy />
 </COLUMN>

 <COLUMN name="HLO" label="Additional information">
 <TYPE>character</TYPE>
 <DATATYPE>string</DATATYPE>
 <LENGTH>11</LENGTH>
 <Offset>11</Offset>
 <SortedBy />
 </COLUMN>

 <COLUMN name="DECSEP" label="Decimal separator">
 <TYPE>character</TYPE>
 <DATATYPE>string</DATATYPE>
 <LENGTH>1</LENGTH>
 <Offset>1</Offset>
 <SortedBy />
 </COLUMN>

 <COLUMN name="DIG3SEP" label="Three-digit separator">
 <TYPE>character</TYPE>
 <DATATYPE>string</DATATYPE>
 <LENGTH>1</LENGTH>
 <Offset>1</Offset>
 <SortedBy />
 </COLUMN>

 <COLUMN name="DATATYPE" label="Date/time/datetime?">
 <TYPE>character</TYPE>
 <DATATYPE>string</DATATYPE>
 <LENGTH>8</LENGTH>
 <Offset>8</Offset>
 <SortedBy />
 </COLUMN>

 <COLUMN name="LANGUAGE" label="Language for date strings">
 <TYPE>character</TYPE>
 <DATATYPE>string</DATATYPE>
 <LENGTH>8</LENGTH>
 <Offset>8</Offset>
 <SortedBy />
 </COLUMN>

 <ROW>
 <FMTNAME missing=" " />
 <START missing=" " />
 <END missing=" " />
 <LABEL missing=" " />
 <MIN missing=" " />
 <MAX missing=" " />
 <DEFAULT missing=" " />
 <LENGTH missing=" " />
 <FUZZ missing=" " />
 <PREFIX missing=" " />

Example of a User-Defined Formats Scoring File 315

 <MULT missing=" " />
 <FILL missing=" " />
 <NOEDIT missing=" " />
 <TYPE missing=" " />
 <SEXCL missing=" " />
 <EEXCL missing=" " />
 <HLO missing=" " />
 <DECSEP missing=" " />
 <DIG3SEP missing=" " />
 <DATATYPE missing=" " />
 <LANGUAGE missing=" " />
 </ROW>

 <ROW>
 <DELTA-RECORD key="ABC" />
 <FMTNAME>ABC</FMTNAME>
 <START>1</START>
 <END>1</END>
 <LABEL>yes</LABEL>
 <MIN>1</MIN>
 <MAX>40</MAX>
 <DEFAULT>3</DEFAULT>
 <LENGTH>3</LENGTH>
 <FUZZ>1E-12</FUZZ>
 <PREFIX missing=" " />
 <MULT>0</MULT>
 <FILL missing=" " />
 <NOEDIT>0</NOEDIT>
 <TYPE>N</TYPE>
 <SEXCL>N</SEXCL>
 <EEXCL>N</EEXCL>
 <HLO missing=" " />
 <DECSEP missing=" " />
 <DIG3SEP missing=" " />
 <DATATYPE missing=" " />
 <LANGUAGE missing=" " />
 </ROW>

 <ROW>
 <DELTA-RECORD key="YESNO" />
 <FMTNAME>YESNO</FMTNAME>
 <START>0</START>
 <END>0</END>
 <LABEL>NO</LABEL>
 <MIN>1</MIN>
 <MAX>40</MAX>
 <DEFAULT>3</DEFAULT>
 <LENGTH>3</LENGTH>
 <FUZZ>0</FUZZ>
 <PREFIX missing=" " />
 <MULT>0</MULT>
 <FILL missing=" " />
 <NOEDIT>0</NOEDIT>
 <TYPE>C</TYPE>
 <SEXCL>N</SEXCL>
 <EEXCL>N</EEXCL>

316 Appendix 1 • Scoring File Examples

 <HLO missing=" " />
 <DECSEP missing=" " />
 <DIG3SEP missing=" " />
 <DATATYPE missing=" " />
 <LANGUAGE missing=" " />
 </ROW>

 <ROW>
 <FMTNAME>YESNO</FMTNAME>
 <START>1</START>
 <END>1</END>
 <LABEL>YES</LABEL>
 <MIN>1</MIN>
 <MAX>40</MAX>
 <DEFAULT>3</DEFAULT>
 <LENGTH>3</LENGTH>
 <FUZZ>0</FUZZ>
 <PREFIX missing=" " />
 <MULT>0</MULT>
 <FILL missing=" " />
 <NOEDIT>0</NOEDIT>
 <TYPE>C</TYPE>
 <SEXCL>N</SEXCL>
 <EEXCL>N</EEXCL>
 <HLO missing=" " />
 <DECSEP missing=" " />
 <DIG3SEP missing=" " />
 <DATATYPE missing=" " />
 <LANGUAGE missing=" " />
 </ROW>
 </TABLE>
</LIBRARY>

Example of a User-Defined Formats Scoring File 317

318 Appendix 1 • Scoring File Examples

Recommended Reading

Here is the recommended reading list for this title:

• Base SAS Procedures Guide

• Base SAS Procedures Guide: Statistical Procedures

• Getting Started with SAS Enterprise Miner

• SAS/ACCESS for Relational Databases: Reference

• SAS Analytics Accelerator for Teradata: Guide

• SAS DS2 Language Reference

• SAS In-Database Products: Administrator's Guide

• SAS Model Manager: User's Guide

• SAS/STAT User’s Guide

• SAS Scalable Performance Data Server: User’s Guide

For a complete list of SAS books, go to support.sas.com/bookstore. If you have
questions about which titles you need, please contact a SAS Book Sales Representative:

SAS Books
SAS Campus Drive
Cary, NC 27513-2414
Phone: 1-800-727-3228
Fax: 1-919-677-8166
E-mail: sasbook@sas.com
Web address: support.sas.com/bookstore

319

mailto:sasbook@sas.com
http://support.sas.com/bookstore

320 Recommended Reading

Index

Special Characters
%INDAC_PUBLISH_FORMATS macro

example 210
running 206
syntax 208

%INDAC_PUBLISH_MODEL macro
example 34
running 30
syntax 32

%INDB2_CREATE_MODELTABLE
macro

running 46
syntax 47

%INDB2_PUBLISH_FORMATS macro
example 225
modes of operation 225
running 220
syntax 222

%INDB2_PUBLISH_MODEL macro
modes of operation 56
running 50
syntax 52

%INDGP_CREATE_MODELTABLE
macro

running 66
syntax 67

%INDGP_PUBLISH_FORMATS macro
example 236
running 232
syntax 234

%INDGP_PUBLISH_MODEL macro
running 71
syntax 73

%INDHD_PUBLISH_MODEL macro
syntax 81

%INDHD_RUN_MODEL macro
syntax 83

%INDHN_CREATE_MODELTABLE
macro

running 129
%INDHN_PUBLISH_MODEL macro

syntax 131
%INDHN_RUN_MODEL macro

syntax 134

%INDNZ_CREATE_MODELTABLE
macro

running 99
syntax 100

%INDNZ_PUBLISH_FORMATS macro
example 246
modes of operation 246
running 242
syntax 243

%INDNZ_PUBLISH_MODEL macro
modes of operation 110
running 104
syntax 106

%INDOR_CREATE_MODELTABLE
macro

running 115
syntax 116

%INDOR_PUBLISH_MODEL macro
running 117
syntax 118

%INDSP_PUBLISH_MODEL macro
syntax 142

%INDSP_RUN_MODEL macro
syntax 144

%INDTD_CREATE_MODELTABLE
macro

running 155
syntax 155

%INDTD_PUBLISH_FORMATS macro
example 256
modes of operation 255
running 252
syntax 253

%INDTD_PUBLISH_MODEL macro
modes of operation 169
running 164
syntax 165

A
ANALYZE_TABLE function

overview 48
syntax 48
using 48

321

Aster
deployed components for in-database

processing 5
format files 210
in-database procedures 267
permissions 35, 217
publishing SAS formats 206
SAS Embedded Process 5
SAS System libraries 5
SAS_PUT() function 206
SAS_SCORE() function 37
Scoring Accelerator 29
user-defined formats 205

B
BY-group processing

in-database procedures and 269
SAS In-Database Code Accelerator 181

C
case sensitivity 41, 61, 95, 151

D
data mining models 23
data set options

in-database procedures and 270
DATA step 276
data types

SAS_PUT() function (Teradata) 256
DB2

ANALYZE_TABLE function 48
creating a model table 46
deployed components for in-database

processing 6
in-database procedures 267
permissions 57, 228
publishing SAS formats 219
SampleSQL.txt file 42
SAS Embedded Process 6, 39
SAS formats library 6
Scoring Accelerator 39
user-defined formats 219
using scoring functions to run scoring

models 40
using the SAS Embedded Process to run

scoring models 45
DBCREATE_TABLE_OPTS table option

179
directory names

special characters in 19, 200
DS2

SAS In-Database Code Accelerator 175
DS2ACCEL system option 179

DS2ACCEL= system option 275
DSACCEL= system option 276

E
EM_ output variables 29, 40, 60, 94, 150
extension nodes 28

F
fenced mode 56, 110, 225, 246
fixed variable names 27
format files for Aster 210
format publishing macros

%INDAC_PUBLISH_FORMATS 206
%INDB2_PUBLISH_FORMATS 220
%INDGP_PUBLISH_FORMATS 232
%INDNZ_PUBLISH_FORMATS 242
%INDTD_PUBLISH_FORMATS 252
special characters in directory names

200
tips for using 202

formats
determining publish dates 203
publishing (Aster) 206
publishing (DB2) 219
publishing (Greenplum) 231
publishing (Netezza) 242
publishing (Teradata) 252
SAS formats library (DB2) 6
SAS formats library (Greenplum) 7
SAS formats library (Netezza) 7
SAS formats library (Teradata) 9

functions
See also SAS_PUT() function
ANALYZE_TABLE 48
SAEPFUNC 121
SAS_EP 68

G
GPPC 70
Greenplum

creating a model table 66
deployed components for in-database

processing 6
GPPC 70
in-database procedures 267
permissions 76, 238
publishing SAS formats 231
SampleSQL.txt file 62
SAS Embedded Process 7, 59
SAS formats library 7
SAS In-Database Code Accelerator 176
SAS_EP function 68
Scoring Accelerator 59

322 Index

user-defined formats 231
using the SAS Embedded Process to run

scoring models 65

H
Hadoop

%INDHD_PUBLISH_MODEL macro
81

%INDHD_RUN_MODEL macro 83
%INDHN_RUN_MODEL macro 134
deployed components for in-database

processing 7
file compression for SAS In-Database

Code Accelerator 177
file types for SAS In-Database Code

Accelerator 176
HCatalog 177
in-database procedures 267
INDCONN macro variable 79
permissions 91
query output file 90
SAS Embedded Process 7
SAS In-Database Code Accelerator 176
scoring output file 90

Hadoop BY-group processing
SAS In-Database Code Accelerator 179

HCatalog 177

I
in-database procedures 265

Aster 267
BY-groups 269
considerations and limitations 268
controlling messaging with

MSGLEVEL option 271
data set options 270
DB2 267
generating SQL for 277
Greenplum 267
Hadoop 267
items preventing in-database processing

270
LIBNAME statement 269
Netezza 267
Oracle 267
row order 269
running 266
SAP HANA 267
SAS formats and 251
Teradata 267

in-database processing
deployed components for Aster 5
deployed components for DB2 6
deployed components for Greenplum 6

deployed components for Hadoop 7
deployed components for Netezza 7
deployed components for Oracle 8
deployed components for Teradata 9
using the SAS Embedded Process 17,

200
using user-defined functions 17, 200

INDCONN macro variable
Aster 30, 207
DB2 50, 221
Greenplum 71, 233
Hadoop 79
Netezza 105, 243
Oracle 117
SPD Server 141
Teradata 164, 253

INDDATA macro variable
SPD Server 141

INTRINSIC-CRDATE format 203

M
macros

%INDAC_PUBLISH_FORMATS 208
%INDAC_PUBLISH_MODEL 32
%INDB2_CREATE_MODELTABLE

47
%INDB2_PUBLISH_FORMATS 222
%INDB2_PUBLISH_MODEL 52
%INDGP_CREATE_MODELTABLE

67
%INDGP_PUBLISH_FORMATS 234
%INDGP_PUBLISH_MODEL 73
%INDHD_PUBLISH_MODEL 81
%INDHD_RUN_MODEL 83
%INDHN_PUBLISH_MODEL 131
%INDHN_RUN_MODEL 134
%INDNZ_CREATE_MODELTABLE

100
%INDNZ_PUBLISH_FORMATS 243
%INDNZ_PUBLISH_MODEL 106
%INDOR_CREATE_MODELTABLE

116
%INDOR_PUBLISH_MODEL 118
%INDSP_PUBLISH_MODEL 142
%INDSP_RUN_MODEL 144
%INDTD_CREATE_MODELTABLE

155
%INDTD_PUBLISH_FORMATS 253
%INDTD_PUBLISH_MODEL 165

messaging
controlling with MSGLEVEL option

271
model registration

Score Code Export node compared with
SAS Metadata Server 24

Index 323

model table
creating in DB2 46
creating in Greenplum 66
creating in Netezza 98
creating in Oracle 115
creating in SAP HANA 128
creating in Teradata 154
running

%INDB2_CREATE_MODELTABL
E macro 46

running
%INDGP_CREATE_MODELTABL
E macro 66

running
%INDHN_CREATE_MODELTAB
LE macro 129

running
%INDNZ_CREATE_MODELTABL
E macro 99

running
%INDOR_CREATE_MODELTABL
E macro 115

running
%INDTD_CREATE_MODELTABL
E macro 155

modifying score code 17
MSGLEVEL system option

controlling messaging with 271

N
names

of scoring functions 41, 61, 94, 150
Netezza

creating a model table 98
deployed components for in-database

processing 7
in-database procedures 267
permissions 111, 250
publishing SAS formats 242
SampleSQL.txt file 95
SAS Embedded Process 8, 93
SAS formats library 7
SAS_EP stored procedure 100
Scoring Accelerator 93
user-defined formats 241
using SAS Embedded Process to run

scoring models 98
using scoring functions to run scoring

models 94
nodes

score code created by SAS Enterprise
Miner nodes 28

user-defined 28

O
Oracle

creating a model table 115
deployed components for in-database

processing 8
in-database procedures 267
permissions 114
SAS Embedded Process 8
SASEPFUNC function 121
Scoring Accelerator 113
using SAS Embedded Process to run

scoring models 114
output files 25
output variables 26

EM_ 29, 40, 60, 94, 150
SPD Server 145

output, created by Score Code Export
node 25

P
parallel processing 276
permissions

Aster 35, 217
DB2 57, 228
Greenplum 76, 238
Hadoop 91
Netezza 111, 250
Oracle 114
SAP HANA 137
SPD Server 148
Teradata 169, 261

procedures
See in-database procedures

process flow diagrams
using Score Code Export node in 24

protected mode 255
protected mode (Teradata) 169
publishing client 14
publishing macros

%INDAC_PUBLISH_FORMATS 206
%INDAC_PUBLISH_MODEL 32
%INDB2_CREATE_MODELTABLE

47
%INDB2_PUBLISH_FORMATS 220
%INDB2_PUBLISH_MODEL 52
%INDGP_CREATE_MODELTABLE

67
%INDGP_PUBLISH_FORMATS 232
%INDGP_PUBLISH_MODEL 73
%INDHD_PUBLISH_MODEL 81
%INDHD_RUN_MODEL 83
%INDHN_PUBLISH_MODEL 131
%INDHN_RUN_MODEL 134
%INDNZ_CREATE_MODELTABLE

100

324 Index

%INDNZ_PUBLISH_FORMATS 242
%INDNZ_PUBLISH_MODEL 106
%INDOR_CREATE_MODELTABLE

116
%INDOR_PUBLISH_MODEL 118
%INDSP_PUBLISH_MODEL 142
%INDSP_RUN_MODEL 144
%INDTD_CREATE_MODELTABLE

155
%INDTD_PUBLISH_FORMATS 252
%INDTD_PUBLISH_MODEL 165

publishing process 29, 40, 60, 94, 139,
150

publishing SAS formats
Aster 206
DB2 219
determining format publish dates 203
Greenplum 231
Netezza 242
special characters in directory names

200
Teradata 252
tips 202

publishing scoring model files
running %INDNZ_PUBLISH_MODEL

macro 104
running %INDOR_PUBLISH_MODEL

macro 117
running %INDAC_PUBLISH_MODEL

macro 30
running %INDB2_PUBLISH_MODEL

macro 50
running %INDGP_PUBLISH_MODEL

macro 71
running %INDTD_PUBLISH_MODEL

macro 164
PUT function

in-database procedures and 251
mapping to SAS_PUT function 280
reducing, based on engine type 281

R
registering models

Score Code Export node compared with
SAS Metadata Server 24

row order
in-database procedures and 269

S
SA_EP function

syntax 69
SampleSQL.txt file

DB2 42
Greenplum 62

Netezza 95
SPD Server 146
Teradata 151

SAP HANA
creating a model table 128
in-database procedures 267
permissions 137
query output file 137
Scoring Accelerator 125
scoring output table 137
using SAS Embedded Process to run

scoring models 126
SAS Embedded Process

Aster 5, 29
DB2 6, 45
Greenplum 7, 65, 70
Hadoop 7
Netezza 8, 98
Oracle 8, 114
SAP HANA 126
Teradata 9, 153, 163

SAS Enterprise Miner
score code created by each node 28

SAS formats
%INDAC_PUBLISH_FORMATS

macro 206
%INDB2_PUBLISH_FORMATS

macro 220
%INDGP_PUBLISH_FORMATS

macro 232
%INDNZ_PUBLISH_FORMATS

macro 242
%INDTD_PUBLISH_FORMATS

macro 252
Aster 206
DB2 219
deploying 251
Greenplum 231
in-database procedures and 251
Netezza 242
SAS formats library (DB2) 6
SAS formats library (Greenplum) 7
SAS formats library (Netezza) 7
SAS formats library (Teradata) 9
SAS_PUT() function and 251
Teradata 252

SAS formats library (DB2) 6
SAS formats library (Greenplum) 7
SAS formats library (Netezza) 7
SAS formats library (Teradata) 9
SAS In-Database Code Accelerator 175

BY-group processing 181
considerations 180
DBCREATE_TABLE_OPTS table

option 179
DS2ACCEL system option 179

Index 325

examples 182
Greenplum 176
Hadoop 176
Hadoop BY-group processing 179
Hadoop file compression 177
Hadoop file types 176
Hadoop HCatalog 177
overview 175
requirements 175
Teradata 179

SAS Metadata Server
compared with registering models with

Score Code Export node 24
SAS Model Manager

modifying DATA step score code 17
SAS Scoring Accelerator 171

SAS Scoring Accelerator
Aster 29
components 14, 15
DB2 39
Greenplum 59
modifying DATA step score code 17
Netezza 93
Oracle 113
overview for SAS SPD Server 15
overview for SAS/ACCESS databases

13
process flow diagram for SAS/ACCESS

data sources 14
process flow diagram for SPD Server

15
SAP HANA 125
SAS Model Manager 171
SAS SPD Server 139
Teradata 149

SAS SPD Server
running scoring models 139

SAS System libraries
Aster 5

SAS_EP function
overview 68
using 68

SAS_EP stored procedure
overview 100
running 101
syntax 101
tips for using 103

SAS_PUT() function
Aster 206
data types in Teradata 256
DB2 219
explicit use of (Aster) 216
explicit use of (DB2) 227
explicit use of (Greenplum) 238
explicit use of (Netezza) 249
explicit use of (Teradata) 260

Greenplum 231
implicit use of (Aster) 214
implicit use of (DB2) 226
implicit use of (Greenplum) 236
implicit use of (Netezza) 247
implicit use of (Teradata) 258
mapping PUT function to 280
Netezza 242
Teradata 252
tips for using 203
tips for using in Teradata 261

SAS_SCORE_EP stored procedure
overview 156
running 157
syntax 157
tips for using 162

SAS_SCORE() function
installation 5

SAS_SCORE() function
overview 37
using 37

SAS/ACCESS LIBNAME statement
in-database procedures and 269

SASEPFUNC function
overview 121
syntax 122
using 121

score code
considerations when creating or

modifying 17
created by each node of SAS Enterprise

Miner 28
Score Code Export node 14, 15, 23

compared with registering models on
SAS Metadata Server 24

files exported by 23
output created by 25
using in process flow diagrams 24

scoring files
creating in Aster 29
creating in DB2 45
creating in Greenplum 65
creating in Netezza 98
creating in Oracle 114
creating in SAP HANA 126
creating in Teradata 153
example 285, 305, 312
viewing (Aster) 35
viewing (DB2) 49
viewing (Greenplum) 70
viewing (Netezza) 103
viewing (Oracle) 120
viewing (Teradata) 162

scoring functions
names of 41, 61, 94, 150
scoring publishing macro and 14

326 Index

using to run a DB2 scoring model 44
using to run a Greenplum scoring model

64
using to run a Netezza scoring model

97
using to run a Teradata scoring model

153
viewing 41, 42, 61, 95, 151

scoring publishing macros
%INDAC_PUBLISH_MODEL 32
%INDB2_PUBLISH_MODEL 52
%INDGP_PUBLISH_MODEL 73
%INDHD_PUBLISH_MODEL 81
%INDHD_RUN_MODEL 83
%INDHN_PUBLISH_MODEL 131
%INDHN_RUN_MODEL 134
%INDNZ_PUBLISH_MODEL 106
%INDOR_PUBLISH_MODEL 118
%INDSP_PUBLISH_MODEL 142
%INDSP_RUN_MODEL 144
%INDTD_PUBLISH_MODEL 165
overview 14

SFTP protocol 40
source data

generating SQL for in-database
processing of 277

SPD Server
%INDSP_PUBLISH_MODEL macro

142
%INDSP_RUN_MODEL macro 144
INDCONN macro variable 141
INDDATA macro variable 141
output variables 145
permissions 148
query output tables 146
run model macro overview 15
SampleSQL.txt file 146
Scoring Accelerator 139
scoring publishing macro overview 15

special characters in directory names 19,
200

SQL
generating for in-database processing of

source data 277
SQLGENERATION system option 266
SQLGENERATION= system option 277
SQLMAPPUTTO= system option 280
SQLREDUCEPUT= system option 281
SSH-2 protocol 40
stored procedure

SAS_EP 100
SAS_SCORE_EP 156

T
Teradata

creating a model table 154
data types and SAS_PUT() function

256
deployed components for in-database

processing 9
in-database procedures 267
INDCONN macro variable 164
permissions 169, 261
publishing SAS formats 252
SampleSQL.txt file 151
SAS Embedded Process 9, 149
SAS formats library 9
SAS In-Database Code Accelerator 179
SAS_SCORE_EP stored procedure 156
Scoring Accelerator 149
tips for using the SAS_PUT() function

261
user-defined formats 251
using SAS Embedded Process to run

scoring models 153
using scoring functions to run scoring

models 150
threaded processing

SAS In-Database Code Accelerator 175

U
UFMT-CRDATE format 203
unfenced mode 56, 110, 225, 246
unprotected mode 255
unprotected mode (Teradata) 169
user-defined formats

Aster 205
DB2 219
determining publish date 203
Greenplum 231
Netezza 241
SAS_PUT() function 197
Teradata 251

user-defined nodes 28

V
variables

EM_ output variables 40, 60, 94, 97,
139, 150, 153

fixed variable names 27
output variables 26

Index 327

328 Index

	Contents
	What’s New in SAS 9.4 In-Database Products
	Overview
	SAS In-Database Code Accelerator
	February 2015 Release of SAS 9.4: Changes and Enhancements
	August 2014 Release of SAS 9.4: Changes and Enhancements
	December 2013 Release of SAS 9.4: Changes and Enhancements
	SAS 9.4: Changes and Enhancements

	Greenplum Changes
	April 2014 Release of SAS 9.4: Changes and Enhancements
	SAS 9.4: Changes and Enhancements

	Hadoop Changes
	August 2014 Release of SAS 9.4: Changes and Enhancements
	April 2014 Release of SAS 9.4: Changes and Enhancements
	December 2013 Release of SAS 9.4: Changes and Enhancements
	September 2013 Release of SAS 9.4: Changes and Enhancements
	SAS 9.4: Changes and Enhancements

	DATA Step Processing in Hadoop
	August 2014 Release of SAS 9.4: Changes and Enhancements
	December 2013 Release of SAS 9.4: Changes and Enhancements

	Netezza Changes
	SAS 9.4: Changes and Enhancements

	In-Database Processing for SAP HANA
	August 2014 Release of SAS 9.4: Changes and Enhancements

	SAS Scoring Accelerator for SPD Server
	July 2013 Release of SAS 9.4: Changes and Enhancements

	Changes for Running In-Database Procedures
	SAS 9.4: Changes and Enhancements

	SAS Model Manager Changes
	April 2014 Release of SAS 9.4: Changes and Enhancements
	SAS 9.4: Changes and Enhancements

	Autocall Macros
	September 2013 Release of SAS 9.4: Changes and Enhancements

	Introduction
	SAS In-Database Processing
	Introduction to SAS In-Database Processing
	Deployed Components for In-Database Processing
	Deployed Components for Aster
	Deployed Components for DB2
	Deployed Components for Greenplum
	Deployed Components for Hadoop
	Deployed Components for Netezza
	Deployed Components for Oracle
	Deployed Components for SAP HANA
	Deployed Components for SPD Server
	Deployed Components for Teradata

	Where to Go from Here

	SAS Scoring Accelerator
	Introduction to the SAS Scoring Accelerator
	SAS Scoring Accelerator for SAS/ACCESS Databases
	Overview of the SAS Scoring Accelerator for SAS/ACCESS Databases
	How It Works for SAS/ACCESS Databases

	SAS Scoring Accelerator for SPD Server
	Overview of the SAS Scoring Accelerator for SPD Server
	How It Works for SAS SPD Server

	Scoring with User-Defined Functions and the SAS Embedded Process
	Considerations When Creating or Modifying DATA Step Score Code
	How the SAS Scoring Accelerator Processes the DATA Step Score
Code
	Supported Language Elements and Syntax

	Special Characters in Directory Names

	Exporting the Scoring Model Files from SAS Enterprise Miner
	Overview of the Score Code Export Node
	Comparing the Score Code Export Node with Registering Models
on the SAS Metadata Server
	Using the Score Code Export Node in a Process Flow Diagram
	Output Created by the Score Code Export Node
	Output Files
	Output Variables
	Fixed Variable Names
	SAS Enterprise Miner Tools Production of Score Code

	SAS Scoring Accelerator for Aster
	Overview of Running Scoring Models in Aster
	Running the %INDAC_PUBLISH_MODEL Macro
	%INDAC_PUBLISH_MODEL
Macro Run Process
	INDCONN Macro Variable
	%INDAC_PUBLISH_MODEL Macro Syntax
	Model Publishing Macro Example
	Aster Permissions

	Scoring Files and Functions inside the Aster Database
	Aster Scoring Files
	SAS_SCORE() Function

	SAS Scoring Accelerator for DB2 under UNIX
	Overview of Running Scoring Models in DB2
	Using Scoring Functions to Run Scoring Models
	How to Run a Scoring Model Using Scoring Functions
	Scoring Function Names
	Viewing the Scoring Functions
	Using Scoring Functions to Run a Scoring Model

	Using the SAS Embedded Process to Run Scoring Models
	How to Run a Scoring Model with the SAS Embedded Process
	Creating a Model Table
	ANALYZE_TABLE Function
	DB2 Scoring Files

	Running the %INDB2_PUBLISH_MODEL Macro
	%INDB2_PUBLISH_MODEL Macro Run Process
	INDCONN Macro Variable
	%INDB2_PUBLISH_MODEL Macro Syntax
	Modes of Operation

	DB2 Permissions
	Scoring Function Permissions
	SAS Embedded Process Permissions

	SAS Scoring Accelerator for Greenplum
	Overview of Running Scoring Models in Greenplum
	Using Scoring Functions to Run Scoring Models
	How to Run a Scoring Model Using Scoring Functions
	Scoring Function Names
	Viewing the Scoring Functions
	Using Scoring Functions to Run a Scoring Model

	Using the SAS Embedded Process to Run Scoring Models
	How to Run a Scoring Model with the SAS Embedded Process
	Creating a Model Table
	SAS_EP Function
	Greenplum Scoring Files
	Starting and Stopping the SAS Embedded Process
	SAS Embedded Process Troubleshooting Tips

	Running the %INDGP_PUBLISH_MODEL Macro
	%INDGP_PUBLISH_MODEL Macro Run Process
	INDCONN Macro Variable
	%INDGP_PUBLISH_MODEL Macro Syntax

	Greenplum Permissions
	Scoring Function Permissions
	SAS Embedded Process Permissions

	SAS Scoring Accelerator for Hadoop
	Overview of Running Scoring Models in Hadoop
	Running Scoring Models in Hadoop
	INDCONN Macro Variable
	%INDHD_PUBLISH_MODEL Syntax
	%INDHD_RUN_MODEL Syntax
	Creating a Metadata File for the Input Data File
	Scoring Output
	Scoring Output File
	Querying and Viewing the Scoring Output File

	Hadoop Permissions

	SAS Scoring Accelerator for Netezza
	Overview of Running Scoring Models in Netezza
	Using Scoring Functions to Run Scoring Models
	How to Run a Scoring Model Using Scoring Functions
	Scoring Function Names
	Viewing the Scoring Functions
	Using Scoring Functions to Run a Scoring Model

	Using the SAS Embedded Process to Run Scoring Models
	How to Run a Scoring Model with the SAS Embedded Process
	Creating a Model Table
	SAS_EP Stored Procedure
	Netezza Scoring Files

	Running the %INDNZ_PUBLISH_MODEL Macro
	%INDNZ_PUBLISH_MODEL Macro Run Process
	INDCONN Macro Variable
	%INDNZ_PUBLISH_MODEL Macro Syntax
	Modes of Operation

	Netezza Permissions

	SAS Scoring Accelerator for Oracle
	Overview of Running Scoring Models
	Oracle Permissions
	How to Run a Scoring Model in Oracle
	Creating a Model Table
	Overview
	%INDOR_CREATE_MODELTABLE Run Process
	%INDOR_CREATE_MODELTABLE Macro Syntax

	Running the %INDOR_PUBLISH_MODEL Macro
	%INDOR_PUBLISH_MODEL Run Process
	INDCONN Macro Variable
	%INDOR_PUBLISH_MODEL Macro Syntax

	Oracle Scoring Files
	SASEPFUNC Table Function
	Overview of the SASEPFUNC Table Function
	Using the SASEPFUNC Table Function
	SASEPFUNC Table Function Syntax
	Run-Time Guidance for the Oracle Degree of Parallelism (DOP)
Setting

	SAS Scoring Accelerator for SAP HANA
	Overview of Running Scoring Models in SAP HANA
	How to Run a Scoring Model in SAP HANA
	INDCONN Macro Variable
	Creating the Model Table
	Overview
	%INDHN_CREATE_MODELTABLE Run Process
	%INDHN_CREATE_MODELTABLE Macro Syntax

	Running the %INDHN_PUBLISH_MODEL Macro
	%INDHN_PUBLISH_MODEL Macro Run Process
	%INDHN_PUBLISH_MODEL Macro Syntax

	Running the %INDHN_RUN_MODEL Macro
	%INDHN_RUN_MODEL Macro Run Process
	%INDHN_RUN_MODEL Macro Syntax

	Scoring Output
	Scoring Output Table
	Querying and Viewing the Scoring Output Table

	SAP HANA Permissions

	SAS Scoring Accelerator for SPD Server
	Overview of Running Scoring Models in SPD Server
	Running Scoring Models in SPD Server
	INDCONN Macro Variable
	INDDATA Macro Variable
	%INDSP_PUBLISH_MODEL Macro Syntax
	%INDSP_RUN_MODEL Macro Syntax
	Scoring Output
	Scoring Output Table
	Querying Scoring Output Tables

	SPD Server Permissions

	SAS Scoring Accelerator for Teradata
	Overview of Running Scoring Models in Teradata
	Using Scoring Functions to Run Scoring Models
	How to Run a Scoring Model Using Scoring Functions
	Scoring Function Names
	Viewing the Scoring Functions
	Using Scoring Functions to Run a Scoring Model

	Using the SAS Embedded Process to Run Scoring Models
	How to Run a Scoring Model with the SAS Embedded Process
	Creating a Model Table
	SAS_SCORE_EP Stored Procedure
	Teradata Scoring Files
	Controlling the SAS Embedded Process

	Running the %INDTD_PUBLISH_MODEL Macro
	%INDTD_PUBLISH_MODEL Macro Run Process
	INDCONN Macro Variable
	%INDTD_PUBLISH_MODEL Macro Syntax
	Modes of Operation

	Teradata Permissions

	SAS Scoring Accelerator and SAS Model Manager
	Using the SAS Scoring Accelerator with SAS Model Manager

	SAS In-Database Code Accelerator
	Using the SAS In-Database Code Accelerator
	Overview of the SAS In-Database Code Accelerator
	SAS In-Database Code Accelerator for Greenplum
	SAS In-Database Code Accelerator for Hadoop
	Overview
	Supported File Types
	Automatic File Compression with SAS Hadoop
	Using HCatalog within the SAS Environment
	Additional Prerequisites When Accessing Files That Are Processed
Using HCatalog
	BY-Group Processing with Hadoop
	Using the DBCREATE_TABLE_OPTS Table Option

	SAS In-Database Code Accelerator for Teradata
	Using the DS2ACCEL Option to Control In-Database Processing
	Considerations and Limitations
	BY-Group Processing When Running Thread Programs inside the
Database
	SAS In-Database Code Accelerator Examples
	Example 1: Running a Thread inside the Database
	Example 2: Using User-Defined Formats
	Example 3: Using User-Defined Formats and Packages
	Example 4: BY-Group Processing

	In-Database DATA Step Processing
	DATA Step Processing in Hadoop
	DATA Step Processing in Hadoop
	Requirements for DATA Step Processing
	Restrictions in DATA Step Processing
	Example: DATA Step Program for Hadoop

	Format Publishing and the SAS_PUT( ) Function
	Deploying and Using SAS Formats inside the Database
	Using SAS Formats and the SAS_PUT( ) Function
	How It Works
	Format Publishing with User-Defined Functions and the SAS Embedded
Process
	Special Characters in Directory Names
	Considerations and Limitations with User-Defined Formats
	Tips for Using the Format Publishing Macros
	Tips for Using the SAS_PUT( ) Function
	Determining Format Publish Dates

	Deploying and Using SAS Formats in Aster
	User-Defined Formats in the Aster Database
	Introduction to User-Defined Formats in Aster
	Aster Limitations and Restrictions When Using the FMTCAT= Option

	Publishing SAS Formats in Aster
	Overview of the Publishing Process
	Running the %INDAC_PUBLISH_FORMATS Macro
	INDCONN Macro Variable
	%INDAC_PUBLISH_FORMATS Macro Syntax
	Format Publishing Macro Example

	Aster Format Files
	Overview of Aster Format Files
	Example of a Format File

	Using the SAS_PUT( ) Function in the Aster Database
	Overview of the SAS_PUT( ) Function
	Implicit Use of the SAS_PUT( ) Function
	Explicit Use of the SAS_PUT( ) Function

	Aster Permissions

	Deploying and Using SAS Formats in DB2 under UNIX
	User-Defined Formats in the DB2 Database
	Publishing SAS Formats in DB2
	Overview of the Publishing Process
	Running the %INDB2_PUBLISH_FORMATS Macro
	INDCONN Macro Variable
	%INDB2_PUBLISH_FORMATS Macro Syntax
	Modes of Operation
	Format Publishing Macro Example

	Using the SAS_PUT( ) Function in the DB2 Database
	Implicit Use of the SAS_PUT( ) Function
	Explicit Use of the SAS_PUT( ) Function

	DB2 Permissions

	Deploying and Using SAS Formats in Greenplum
	User-Defined Formats in the Greenplum Database
	Publishing SAS Formats in Greenplum
	Overview of the Publishing Process
	Running the %INDGP_PUBLISH_FORMATS Macro
	INDCONN Macro Variable
	%INDGP_PUBLISH_FORMATS Macro Syntax
	Format Publishing Macro Example

	Using the SAS_PUT( ) Function in Greenplum
	Implicit Use of the SAS_PUT( ) Function
	Explicit Use of the SAS_PUT( ) Function

	Greenplum Permissions

	Deploying and Using SAS Formats in Netezza
	User-Defined Formats in the Netezza Data Warehouse
	Introduction to User-Defined Formats in Netezza
	Netezza Considerations and Limitations When Using the FMTCAT=
Options

	Publishing SAS Formats in Netezza
	Overview of the Publishing Process
	Running the %INDNZ_PUBLISH_FORMATS Macro
	INDCONN Macro Variable
	%INDNZ_PUBLISH_FORMATS Macro Syntax
	Modes of Operation
	Format Publishing Macro Example

	Using the SAS_PUT( ) Function in the Netezza Data Warehouse
	Implicit Use of the SAS_PUT( ) Function
	Explicit Use of the SAS_PUT( ) Function

	Netezza Permissions

	Deploying and Using SAS Formats in Teradata
	User-Defined Formats in the Teradata EDW
	Introduction to User-Defined Formats in Teradata
	Teradata Limitations and Restrictions When Using the FMTCAT=
Option

	Publishing SAS Formats in Teradata
	Overview of the Publishing Process
	Running the %INDTD_PUBLISH_FORMATS Macro
	INDCONN Macro Variable
	%INDTD_PUBLISH_FORMATS Macro Syntax
	Modes of Operation
	Format Publishing Macro Example

	Data Types and the SAS_PUT( ) Function
	Using the SAS_PUT( ) Function in the Teradata EDW
	Implicit Use of the SAS_PUT( ) Function
	Explicit Use of the SAS_PUT( ) Function
	Tips When Using the SAS_PUT( ) Function in Teradata

	Teradata Permissions

	In-Database Procedures
	Running SAS Procedures inside the Database
	Introduction to In-Database Procedures
	Running In-Database Procedures
	Procedures in Aster, DB2, Greenplum, Hadoop, Netezza, Oracle,
and SAP HANA
	Procedures in Teradata
	Procedure Considerations and Limitations
	Overview
	User-Defined Formats
	Row Order
	BY-Groups
	LIBNAME Statement
	Data Set-Related Options
	Column Names in Netezza
	Additional Limitations That Can Prevent In-Database Processing

	Using the MSGLEVEL Option to Control Messaging

	System Options Reference
	System Options That Affect In-Database Processing
	Dictionary
	DS2ACCEL= System Option
	DSACCEL= System Option
	SQLGENERATION= System Option
	SQLMAPPUTTO= System Option
	SQLREDUCEPUT= System Option

	Appendix
	Scoring File Examples
	Example of a .ds2 Scoring File
	Example of an Input and Output Variables Scoring File
	Example of a User-Defined Formats Scoring File

	Recommended Reading
	Index

