The BTRAN function computes the block transpose of a partitioned matrix. The arguments to the BTRAN function are as follows:
is an
numeric matrix.
is a scalar with a value that specifies the row dimension of the submatrix blocks.
is a scalar with a value that specifies the column dimension of the submatrix blocks.
The argument x is a partitioned matrix formed from submatrices of dimension
. If the
th,
th submatrix of the argument x is denoted
, then the
th,
th submatrix of the result is
.
The value returned by the BTRAN function is a
matrix, the block transpose of x, where the blocks are
.
For example, the following statements compute the block transpose of a matrix:
a11 = {1 1, /* a 3 x 2 matrix */
1 1,
1 1};
a12 = 1 + a11;
a13 = 2 + a11;
a21 = 3 + a11;
a22 = 4 + a11;
a23 = 5 + a11;
x = (a11 || a12 || a13) // /* a partitioned matrix */
(a21 || a22 || a23); /* each submatrix is a 3 x 2 block */
z = btran(x, 3, 2); /* transpose the blocks */
print z;
Figure 24.63: Block Transpose of a Partitioned Matrix
| z | |||
|---|---|---|---|
| 1 | 1 | 4 | 4 |
| 1 | 1 | 4 | 4 |
| 1 | 1 | 4 | 4 |
| 2 | 2 | 5 | 5 |
| 2 | 2 | 5 | 5 |
| 2 | 2 | 5 | 5 |
| 3 | 3 | 6 | 6 |
| 3 | 3 | 6 | 6 |
| 3 | 3 | 6 | 6 |