RUN REGRESS   (x, y, name, <tval>, <l1>, <l2>, <l3>)   ; 
            
The REGRESS module performs ordinary least squares regression.
The inputs to the REGRESS subroutine are as follows:
is an  numeric matrix, where
 numeric matrix, where  is the number of variables and
 is the number of variables and  is the number of data points.
 is the number of data points. 
                  
is an  response vector.
 response vector. 
                  
is an  matrix of variable names.
 matrix of variable names. 
                  
is an optional  -value.
-value. 
                  
are optional  vectors that specify linear combinations of coefficients for hypothesis testing.
 vectors that specify linear combinations of coefficients for hypothesis testing. 
                  
The design matrix is given by x, and y is the response vector. The name vector identifies each of the variables. If you specify a  -value, the module prints a table of observed and predicted values, residuals, hat diagonal, and confidence limits for the
            mean and predicted values. If you also specify linear combinations with l1, l2, and l3, the module performs the hypothesis test
-value, the module prints a table of observed and predicted values, residuals, hat diagonal, and confidence limits for the
            mean and predicted values. If you also specify linear combinations with l1, l2, and l3, the module performs the hypothesis test  , where
, where  is the vector of parameter estimates. An example follows:
 is the vector of parameter estimates. An example follows: 
         
/* U.S. Population for decades beginning 1790, in millions */
name = { "Intercept", "Decade", "Decade**2" };
x = { 1  1  1,
      1  2  4,
      1  3  9,
      1  4 16,
      1  5 25,
      1  6 36,
      1  7 49,
      1  8 64 };
y = {  3.929,
       5.308,
       7.239,
       9.638,
      12.866,
      17.069,
      23.191,
      31.443 };
/* 5 dof at 0.025 level to get 95% confidence interval */
tval = quantile("T", 1-0.025, 5); 
l1 = { 0 1 0 };   /* test hypothesis lb=0 for linear coef */
l2 = { 0 1 0,     /* test hypothesis lb=0 for linear,quad */
       0 0 1 };
l3 = { 0 1 1 };   /* test hypothesis lb=0 for linear+quad */
run regress( x, y, name, tval, l1, l2, l3 );
Figure 24.14: Regression Analysis
| Parameter Estimates | 
| name | b | stdb | t | probt | 
|---|---|---|---|---|
| Intercept | 5.0693393 | 0.9655939 | 5.2499702 | 0.0033263 | 
| Decade | -1.109935 | 0.4923003 | -2.254588 | 0.0738509 | 
| Decade**2 | 0.5396369 | 0.0533975 | 10.10604 | 0.0001625 | 
| Covariance of Estimates | |||
|---|---|---|---|
| Intercept | Decade | Decade**2 | |
| Intercept | 0.9324 | -0.436 | 0.0428 | 
| Decade | -0.436 | 0.2424 | -0.026 | 
| Decade**2 | 0.0428 | -0.026 | 0.0029 | 
| Correlation of Estimates | |||
|---|---|---|---|
| Intercept | Decade | Decade**2 | |
| Intercept | 1 | -0.918 | 0.8295 | 
| Decade | -0.918 | 1 | -0.976 | 
| Decade**2 | 0.8295 | -0.976 | 1 | 
| Predicted values, Residuals, and Limits | 
| y | yhat | resid | h | lowerm | upperm | lower | upper | 
|---|---|---|---|---|---|---|---|
| 3.929 | 4.499 | -0.57 | 0.7083 | 3.0017 | 5.9964 | 2.1737 | 6.8244 | 
| 5.308 | 5.008 | 0.3 | 0.2798 | 4.067 | 5.949 | 2.9954 | 7.0207 | 
| 7.239 | 6.5963 | 0.6427 | 0.2321 | 5.7391 | 7.4535 | 4.6214 | 8.5711 | 
| 9.638 | 9.2638 | 0.3742 | 0.2798 | 8.3228 | 10.205 | 7.2511 | 11.276 | 
| 12.866 | 13.011 | -0.145 | 0.2798 | 12.07 | 13.952 | 10.998 | 15.023 | 
| 17.069 | 17.837 | -0.768 | 0.2321 | 16.979 | 18.694 | 15.862 | 19.812 | 
| 23.191 | 23.742 | -0.551 | 0.2798 | 22.801 | 24.683 | 21.729 | 25.755 | 
| 31.443 | 30.727 | 0.7164 | 0.7083 | 29.229 | 32.224 | 28.401 | 33.052 | 
| Test Hypothesis that l b = 0 | 
| f | dfn | dfe | prob | |
|---|---|---|---|---|
| for Linear Coef | 5.0831686 | 1 | 5 | 0.0739 | 
| f | dfn | dfe | prob | |
|---|---|---|---|---|
| for Linear,Quad Coef | 666.51095 | 2 | 5 | <.0001 | 
| f | dfn | dfe | prob | |
|---|---|---|---|---|
| for Linear+Quad Coef | 1.6774629 | 1 | 5 | 0.2518 |